当前位置: 仪器信息网 > 行业主题 > >

行程限位器

仪器信息网行程限位器专题为您提供2024年最新行程限位器价格报价、厂家品牌的相关信息, 包括行程限位器参数、型号等,不管是国产,还是进口品牌的行程限位器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合行程限位器相关的耗材配件、试剂标物,还有行程限位器相关的最新资讯、资料,以及行程限位器相关的解决方案。

行程限位器相关的论坛

  • 【转帖】显微镜的七种观察方式

    [center][B]显微镜的七种观察方式[/B][/center]一、明视野观察(Brightfield) 明视野镜检是大家比较熟悉的一种镜检方式,广泛应用于病理、检验,用于观察被染色的切片,所有显微镜均能完成此功能。二、暗视野观察(Darkfield) 暗视野实际是暗场照明发。它的特点和明视野不同,不直接观察到照明的光线,而观察到的是被检物体反射或衍射的光线。因此,视场成为黑暗的背景,而被检物体则呈现明亮的象。 暗视野的原理是根据光学上的丁道尔现象,微尘在强光直射通过的情况下,人眼不能观察,这是因为强光绕射造成的。若把光线斜射它,由于光的反射,微粒似乎增大了体积,为人眼可见。 暗视野观察所需要的特殊附件是暗视野聚光镜。它的特点是不让光束由下至上的通过被检物体,而是将光线改变途径,使其斜射向被检物体,使照明光线不直接进入物镜,利用被检物体表面反射或衍射光形成的明亮图象。暗视野观察的分辨率远高于明视野观察,最高达0.02—0.004三、相差镜检法(Phasecontrast) 在光学显微镜的发展过程中,相差镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本. 相差显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相差镜检法广泛应用于倒置显微镜。 相差显微镜的基本原理是,把透过标本的可见光的光程差变成振幅差,从而提高了各种结构间的对比度,使各种结构变得清晰可见。光线透过标本后发生折射,偏离了原来的光路,同时被延迟了1/4λ(波长),如果再增加或减少1/4λ,则光程差变为1/2λ,两束光合轴后干涉加强,振幅增大或减下,提高反差。在构造上,相差显微镜有不同于普通光学显微镜两个特殊之处: 1.环形光阑(annulardiaphragm)位于光源与聚光器之间,作用是使透过聚光器的光线形成空心光锥,焦聚到标本上。 2.相位板(annularphaseplate)在物镜中加了涂有氟化镁的相位板,可将直射光或衍射光的相位推迟1/4λ。分为两种: 1) A+相板:将直射光推迟1/4λ,两组光波合轴后光波相加,振幅加大,标本结构比周围介质更加变亮,形成亮反差(或称负反差)。 2) B+相板:将衍射光推迟1/4λ,两组光线合轴后光波相减,振幅变小,形成暗反差(或称正反差),结构比周围介质更加变暗四、微分干涉称镜检术(DifferentialinterferencecontrastDIC) 微分干涉镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。 原理: 微分干涉称镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。 DIC显微镜的物理原理完全不同于相差显微镜,技术设计要复杂得多。DIC利用的是偏振光,有四个特殊的光学组件:偏振器(polarizer)、DIC棱镜、DIC滑行器和检偏器(analyzer)。偏振器直接装在聚光系统的前面,使光线发生线性偏振。在聚光器中则安装了偌玛斯斯棱镜,即DIC棱镜,此棱镜可将一束光分解成偏振方向不同的两束光(x和y),二者成一小夹角。聚光器将两束光调整成与显微镜光轴平行的方向。最初两束光相位一致,在穿过标本相邻的区域后,由于标本的厚度和折射率不同,引起了两束光发生了光程差。在物镜的后焦面处安装了第二个偌玛斯斯棱镜,即DIC滑行器,它把两束光波合并成一束。 这时两束光的偏振面(x和y)仍然存在。最后光束穿过第二个偏振装置,即检偏器。在光束形成目镜DIC影像之前,检偏器与偏光器的方向成直角。检偏器将两束垂直的光波组合成具有相同偏振面的两束光,从而使二者发生干涉。x和y波的光程差决定着透光的多少。光程差值为0时,没有光穿过检偏器;光程差值等于波长一半时,穿过的光达到最大值。于是在灰色的背景上,标本结构呈现出亮暗差。为了使影像的反差达到最佳状态,可通过调节DIC滑行器的纵行微调来改变光程差,光程差可改变影像的亮度。调节DIC滑行器可使标本的细微结构呈现出正或负的投影形象,通常是一侧亮,而另一侧暗,这便造成了标本的人为三维立体感,类似大理石上的浮雕

  • 常用仪器简明操作规程

    万通795 KFT 水分滴定仪 操作规程 1.操作步骤(1)按键接通电源,显示“system test…”仪器进行自检;(2)按选择方法,确认;(3)按键预滴定,调节合适的搅拌速度,漂移稳定时指示灯亮;(4)按键,加入样品,输入样品量及单位,确认;(5)滴定自动结束,屏幕显示结果;(7)按键断开电源。2.注意事项 (1)定期更换干燥剂;(2)不要随意改变滴定池限位器位置;(3)搅拌速度不宜太快,以防打碎电极,以溶液不产生气泡为准;(4)及时清理废液瓶,防止废液倒吸造成抽液泵损坏。3.附录 滴定度测定(1)选择“H2OTITER”方法 (2)其它操作同上,完成后自动保存结果。

  • 大行程传感器信号误差抑制与细分功能电路--成果推广

    大行程传感器信号误差抑制与细分功能电路--成果推广

    成果简介 以光栅、磁栅等大行程传感器输出信号为对象,针对信号噪声对测量精度影响,提供传感器信号多项误差集中补偿实现方案,量化抑制信号的等幅、直流漂移、正交等误差,提供倍率可调的高速细分功能电路,实现大行程、大角度范围内的长度、角度的高分辨率测量。 电路系统在数字化硬件平台上实现,系统结构简洁,具有高集成度、高灵活性特点,支持多种信号输出形式。目前市场上没有类似的集成化信号处理产品,成果电路在灵活性、可靠性、适用性方面具有显著市场优势。系统组成 以传感器输出的正余弦信号(或方波信号)为输入,进行信号多路高速采样,通过集成化数字功能电路完成多种误差补偿和高分辨率细分,电路输出既可以通讯到上位机,也可以以脉冲形式输出。http://ng1.17img.cn/bbsfiles/images/2016/07/201607121448_600114_3112929_3.png技术指标(1)误差抑制效果:直流漂移<20mv;正交误差<0.8°;等幅性<1%;(2)细分倍率:256、512、1024可调;(3)最大输入信号频率;40KHz(1024细分);(4)输出信号:细分计数、脉冲。 技术特点 目前市场上对于光栅、磁栅等传感器输出信号的补偿、细分、数据采集和信号转换等产品功能单一,在使用便利性、费用、效率等方面均呈现市场需求与产品不匹配特征。本成果电路提供了多功能、一体化、可定制的信号处理功能解决方案,即可以作为集成化功能模块嵌入到大型系统中,也可以承担小型系统定制化功能实现任务。应用领域(1)对长度、角度有大行程、高分辨率测量需求的应用场合;(2)对传感器信号等幅、直流漂移、正交等噪声有定量抑制需求的场合;(3)对长度、角度测量的集成度和灵活性有需求的场合。前期应用 已成功应用于国家计量科学研究院长度所,服务于自校准角度编码器系统,完成360°圆周内2.0"分辨率的角度细分功能任务。合作方式(1)技术服务;(2)个性定制。 联系人:朱维斌联系方式:0571-86875665,0571-87676266;Email:zhuweibin@cjlu.edu.cn;工贸所网址:http://itmt.cjlu.edu.cn;工贸所微信公众号:中国计量大学工贸所。中国计量大学工业与商贸计量技术研究所简介 中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。 中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。 “应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。更多研究所介绍请登录研究所网站itmt.cjlu.edu.cn或微信公众号。

  • 显微镜的景深!

    大多数使用过显微镜的人都应该知道景深是什么意思。是指在摄影机镜头或其他成像器前沿着能够取得清晰图像的成像景深相机器轴线所测定的物体距离范围。在聚焦完成后,在焦点前后的范围内都能形成清晰的像,这一前一后的距离范围,便叫做景深。 通俗的讲就是在这段空间内的被照的物体,呈现在底片面的影象模糊度,都在容许弥散圆的限定范围内,这段空间的长度就是景深。那又是什么影响着景深的大小呢? 首先是显微镜头的光圈 其次是显微镜头的焦距 再次是拍摄的距离 那有时怎么的一种关系呢? 光圈越大 (数值越小,例如f2.8的光圈大于f5.6),景深越小;光圈越小(数值越大,例如f16的光圈比f11的光圈小),景深越大 显微镜里的光圈应该就是数值孔径NA镜头焦距越长,景深越小;焦距越短,景深越大 距离越远,景深越大;距离越近,景深越小

  • 【原创大赛】热稳定化过程中PAN纤维特征结构的形成与演变

    【原创大赛】热稳定化过程中PAN纤维特征结构的形成与演变

    PAN纤维在热稳定化过程中会发生很多化学反应,形成多种不同的化学结构,本实验讨论研究热稳定化过程中各种特征结构的形成过程以及他们的演变规律。为了消除环境中的氧对特征结构形成过程的影响,选择在惰性气氛下对PAN纤维进行热处理。1、热稳定化过程中PAN纤维的特征结构种类http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567647_3043450_3.jpg图1惰性气氛下250℃热处理12h的PAN纤维的核磁谱图http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567648_3043450_3.jpg图2 PAN分子链图1为经惰性气氛下250℃热处理过的PAN纤维的核磁谱图,对核磁谱图进行分缝处理,可以得到各种化学位移上的特征峰,每处特征峰所代表的不同位置的C原子如图中所示。28ppm处特征峰代表CH2,108ppm和115ppm处特征峰代表无氢C原子,136ppm处特征峰代表=CH-,150ppm处特征峰代表-C=N,155ppm处特征峰代表=C-N,164ppm处特征峰代表间位脱氢的-C=N。结合PAN分子链特征(图2),推断出在热稳定化过程中纤维中生成了以下几种化学结构。在热稳定化过程中氰基发生环化反应与相邻氰基连成环,也有可能与相邻氰基较远而不发生环化反应。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567649_3043450_3.jpg 图3热稳定化过程中PAN纤维中形成的化学结构仔细观察这几种化学结构,根据C与N之间的化学键以及周围的化学环境对其进行分类。将(a)(b)(c)三种化学结构归为一类,他们的共同特征是都含有C=C-C=N,因此称这类化学结构为共轭结构;(d)和(e)两种化学结构都含有-C=N且其间位未脱氢,称这两种化学结构为亚胺结构;(f)和(g)两种化学结构的共同特点是都含有=C-N,因此称其为烯胺结构。2、惰性气氛下反应温度的确定http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567650_3043450_3.jpg图4惰性气氛下不同升温速率的PAN纤维DSC曲线表1惰性气氛下不同升温速率的反应起始温度 升温速率(℃/min) 反应起始温度( ℃) 2 170.3 4 177.8 6 185.0 8 192.6 10 196.0 http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567651_3043450_3.jpg图5反应起始温度与升温速率的线性关系图4为PAN纤维在惰性气氛下不同升温速率的DSC曲线,从图中可以看出不同升温速率下的DSC曲线的起始反应温度不同,这样我们表1中不同升温速率下DSC曲线中放热峰的起始反应温度,并以升温速率为横坐标、反应起始温度为纵坐标,得到图5,将图中的五个点进行线性拟合并利用倒推法可以得到,当升温速率为0时,起始反应温度为164.48℃,为了实验操作的方便性,选择170℃作为起始反应温度。 图6为PAN纤维在不同温度下处理相同时间的红外谱图。图中1450cm-1处吸收峰代表亚甲基,该亚甲基与碳氮键相连且亚甲基上面可以发生化学反应的氢较多,因此选择亚甲基作为判断化学反应变化的标志。随着热处理温度的升高,该峰逐渐红移,且逐渐变宽。将图6中的红外谱图进行分峰处理,可以得到图7不同热处理温度下亚甲基特征峰的半高宽变化趋势。图7显示出随着热处理温度的升高,亚甲基的半高宽逐渐变大,由于亚甲基周围的化学环境发生变化导致峰位红移,部分亚甲基周围化学环境变化峰位红移,而部分亚甲基未发生变化峰位未红移。图中亚甲基半高宽变化出现了两个转折点(190℃和230℃),说明PAN纤维中化学结构变化分为三个阶段,因此,我们将各个反应温度定在190℃、210℃、230℃和250℃。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241301_567652_3043450_3.jpg图6不同温度下热处理12h的PAN纤维的红外谱图 http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567653_3043450_3.jpg图7不同热处理温度下红外谱图中CH2的半高宽变化3、惰性气氛下特征结构的形成过程http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567654_3043450_3.jpg图8 PAN原丝与170℃热处理12h的PAN纤维的红外谱图http://ng1.17img.cn/bbsfiles/images/2015/09/201509241305_567655_3043450_3.jpg图9 170℃和190℃热处理12h的PAN纤维的红外谱图从图8中可以看出,与原丝红外谱图对比经过170℃热处理过的纤维谱图中2240cm-1所代表的氰基伸缩振动峰的强度降低,同时出现了1620cm-1所代表的C=N吸收峰,表明在热处理过程中PAN纤维中的氰基键断裂生成C=N;1450cm-1和1360cm-1两处吸收峰分别为亚甲基和次甲基的吸收峰,从图中可以看出这两处吸收峰峰强逐渐靠近,说明此过程中发生了脱氢反应;同时代表C=C的吸收峰1580cm-1出现,也说明了PAN纤维在低温热处理过程中发生了脱氢反应并生成了碳碳双键。由此我们推测在PAN纤维在170℃热处理温度下,氰基发生反应形成了亚胺结构,亚胺结构又脱氢形成了共轭结构。观察图9可以发现,经190℃热处理过的PAN纤维的红外谱图中出现了代表=C-N 的1150cm-1处振动峰,说明在190℃时PAN纤维中开始形成烯胺结构。亚胺结构与烯胺结构的元素组成相同,有研究者认为它们是互变异构体,在热稳定化过程中两种结构发生了互变反应,为了明晰热稳定化过程中烯胺结构的形成过程以及这两种结构之间的关系,将PAN纤维在190℃热处理不同的时间,将得到的样品进行

  • 【原创大赛】预氧化过程中PAN纤维径向结构的形成机制

    【原创大赛】预氧化过程中PAN纤维径向结构的形成机制

    在预氧化过程中,很多研究者认为环境中的氧很难进入到纤维内部是一种物理阻隔。但是从化学角度看,环化反应是氧化反应的前提条件,PAN纤维中生成的环化结构是发生氧化反应的基础,且从物理方面来看氧气分子是极小的,由此推测纤维表层阻碍氧进入芯部是一种化学阻隔,而非物理阻隔。选取两种不同的样品,为了使两种纤维样品的烯胺结构含量不同,将PAN原丝进行预处理,由于在惰性气氛热处理时PAN纤维中烯胺结构含量在从210℃开始迅速增加,1#和2#样品预处理条件分别为在惰性气氛下190℃和230℃热处理12h,再将预处理过的PAN纤维进行相同条件的空气气氛下的热处理,温度为230℃,时间为1h。将两种纤维样品进行核磁测试,可以得到图1。将得到的核磁谱图进行分峰处理,可得出,两种样品核磁谱图中特征峰的相对含量。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241759_567715_3043450_3.jpg图11#和2#样品的核磁谱图表1 1#和2#样品中155ppm和176ppm处特征峰相对含量 1# 2# W155/% 15.48 19.05 W176/% 3.91 4.87 表1中列出了1#和2#样品中代表烯胺结构的155ppm处特征峰的相对含量分别为15.48%和19.05%,代表氧化反应程度的176ppm出特征峰相对含量分别为3.91%和4.87%。1#样品中烯胺结构含量相对较低,相应的其氧化程度也较2#样品低。将两种样品进行包埋,利用切片机进行切片,并在光学显微镜下观察两种样品径向结构的差异。图2为两种样品的径向结构照片。http://ng1.17img.cn/bbsfiles/images/2015/09/201509241759_567716_3043450_3.jpg图2 1#和2#样品的径向结构照片对比两个样品的径向结构照片,可以发现两种纤维都出现了芯部预氧化程度较低的情况,1#纤维的径向结构较均匀,2#纤维出现明显的“皮”“芯”分层现象。这与前面的推测相吻合,由此从化学结构角度提出预氧化过程中PAN纤维径向结构的形成机理。预氧化过程中,氰基发生反应形成亚胺结构的同时,亚胺结构向烯胺结构转变,且在氧气的促进作用下转变的越多;由于与其他结构相比烯胺结构容易被氧化,纤维表层的烯胺结构不断与氧发生反应,导致扩散到纤维内部的氧较少,从而形成内部预氧化程度较低的不均匀的径向结构。

  • 关于显微镜的微分干涉功能

    微分干涉差显微镜 - 简介 1952年,Nomarski在相差显微镜原理的基础上发明了微分干涉差显微镜(differential interference contrast microscope)。DIC显微镜又称Nomarski相差显微镜(Nomarki contrast microscope),其优点是能显示结构的三维立体投影影像。与相差显微镜相比,其标本可略厚一点,折射率差别更大,故影像的立体感更强。 DIC显微镜的物理原理完全不同于相差显微镜,技术设计要复杂得多。DIC利用的是偏振光,有四个特殊的光学组件:偏振器(polarizer)、DIC棱镜、DIC滑行器和检偏器(analyzer)。偏振器直接装在聚光系统的前面,使光线发生线性偏振。在聚光器中则安装了石英Wollaston棱镜,即DIC棱镜,此棱镜可将一束光分解成偏振方向不同的两束光(x和y),二者成一小夹角。聚光器将两束光调整成与显微镜光轴平行的方向。最初两束光相位一致,在穿过标本相邻的区域后,由于标本的厚度和折射率不同,引起了两束光发生了光程差。在物镜的后焦面处安装了第二个Wollaston棱镜,即DIC滑行器,它把两束光波合并成一束。这时两束光的偏振面(x和y)仍然存在。最后光束穿过第二个偏振装置,即检偏器。在光束形成目镜DIC影像之前,检偏器与偏光器的方向成直角。检偏器将两束垂直的光波组合成具有相同偏振面的两束光,从而使二者发生干涉。x和y波的光程差决定着透光的多少。光程差值为0时,没有光穿过检偏器;光程差值等于波长一半时,穿过的光达到最大值。于是在灰色的背景上,标本结构呈现出亮暗差。为了使影像的反差达到最佳状态,可通过调节DIC滑行器的纵行微调来改变光程差,光程差可改变影像的亮度。调节DIC滑行器可使标本的细微结构呈现出正或负的投影形象,通常是一侧亮,而另一侧暗,这便造成了标本的人为三维立体感,类似大理石上的浮雕。

  • 迷你显微镜植入老鼠大脑“观察”其思维运行

    2013年02月27日 来源: 腾讯科学 作者: 悠悠/编译 腾讯科学讯(悠悠/编译) 据国外媒体报道,目前,科学家将迷你显微镜植入基因改良老鼠的大脑之中,有助于研究人员洞悉老鼠的思维运行。 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130226/0022fa99dc6c129708fa1b.jpg科学家最新研制一种迷你显微镜,可植入老鼠大脑之中,洞悉老鼠的思维变化,未来该装置有望用于治疗老年痴呆症 这个工具以空前的视角呈现出老鼠大脑结构,研究小组能够记录老鼠1000多个神经原的激活状况,并持续观测数个星期,使科学家能够研究老鼠大脑活动的历史进化过程。 美国斯坦福大学生物和应用物理学副教授马克-施尼策称,这种类型的问题,此前并未在行为自由的老鼠个体上进行测试。他和同事将这项研究报告发表在本月初发行的《自然神经科学》杂志上,并成立一家公司,生产销售迷你显微镜用于研究阿尔茨海默症和其它大脑紊乱等神经变性疾病。 施尼策解释称,我们将老鼠颅骨打开,把这种迷你显微镜植入一个小型圆圈之中,这个显微镜就像是给老鼠戴一个帽子。老鼠海马体的神经组织关联着空间记忆,通过基因改良可将这些神经呈现为绿色荧光蛋白质,特别是在钙质存在的时候。当神经细胞被激活,它们将自然地释放大量的钙离子,从而荧光效应就变得更加强烈。 迷你显微镜与一个相机芯片建立连接,能够将拍摄到的神经细胞的荧光闪烁状况传输至计算机屏幕,从而获得接近实时的老鼠大脑活跃性视频。 对于未经训练的眼睛,激活神经细胞变得随机无序,但是研究人员能够识别。特殊的神经细胞对应于圆圈中的特殊区域。施尼策解释称,个别神经细胞可能对老鼠大脑位置具有一定的选择性。该装置有能力实时绘制数百个神经细胞的活动状况,并长时间观测大脑组织的发展变化,未来它将用于监控研究阿尔茨海默症等大脑疾病的形成。

  • 光学显微镜简史

    早在公元前一世纪,大家就已发现颠末球形通明物体去调查细小物体时,可以使其扩大成像。后来逐步对球形玻璃外表能使物体扩大成像的规则有了知道。 1590年,荷兰和意大利的眼镜制作者现已造出相似显微镜的扩大仪器。1610年前后,意大利的伽利略和德国的开普勒在研讨望远镜的一起,改动物镜和目镜之间的间隔,得出合理的显微镜光路布局,其时的光学工匠遂纷繁从事显微镜的制作、推行和改善。   17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的开展作出了杰出的奉献。1665年前后,胡克在显微镜中参加粗动和微动调焦组织、照明体系和承载标本片的工作台。这些部件颠末不断改善,成为现代显微镜的根本组成部分。 1673~1677年时间,列文胡抑制成单组元扩大镜式的高倍显微镜,其间九台保管至今。胡克和列文胡克使用便宜的显微镜,在动、植物机体微观布局的研讨方面取得了杰出成就。 19世纪,高质量消色差浸液物镜的呈现,使显微镜调查微细布局的才能大为进步。1827年阿米奇第一个选用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制作和显微调查技能的迅速开展,并为19世纪后半叶包罗科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物供给了有力的东西。 在显微镜自身布局开展的一起,显微调查技能也在不断创新:1850年呈现了偏光显微术;1893年呈现了干与显微术;1935年荷兰物理学家泽尔尼克发明了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。 古典的光学显微镜仅仅光学元件和精密机械元件的组合,它以人眼作为接收器来调查扩大的像。后来在显微镜中参加了拍摄设备,以感光胶片作为可以记载和存储的接收器。现代又遍及选用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完好的图画信息收集和处理体系。

  • 【“仪”起享奥运】偏光显微镜在中药显微鉴别中的应用

    偏光显微镜又名偏振光显微镜、极化显微镜,主要用于地质学上观察和分析矿石薄片的光学性质,故又称为矿物显微镜。在偏光显微镜下,非均质性(各向异性)的物体或某些分子排列没有次序的有机物则会呈现出颜色不同、强弱不一的光彩,而其他不起偏光作用的均质性(各向同性)物质在这种暗视野中不发出任何光彩,仍保持黑暗状态。在中药材中有许多组织,例如植物的木质化细胞壁、淀粉粒、各种结晶体、动物的骨骼、横纹肌、矿物类中药等具有偏光性。赵中振等利用偏光镜观察药材粉末的各偏光特征鉴别了含34种药材的至宝三鞭丸。汪映宇首次对30种廖属植物茎、叶的组织学特征及其横切面和表面观的偏关特性进行研究,并在偏光发现气孔具有明显的马耳他十字效应,为廖属药用植物的鉴别提供了依据。曹莉嘉等用偏光显微镜对珍珠表面进行观察,获得了珍珠的主要评价依据。草酸钙结晶不易被发现,尤其是一些细小的砂晶、杆晶等存在于薄壁细胞中则更难发现。但在偏光显微镜黑暗的背景中,这些结晶则呈现出明亮的光斑,较大的结晶会显现出红、黄、绿、蓝等层次明显的平行色带,极易察觉。偏光显微镜用于中药鉴别正逐渐受到重视,但仍需不断积累研究资料。未明确规定使用偏光显微镜的项目,只是检验员在工作中按需要自行决定是否应用偏光显微镜。例如在观察当归中具有斜向交错纹理的韧皮薄壁细胞时,在偏光镜下更容易找到。

  • 气相-基线呈现鼓泡

    气相-基线呈现鼓泡

    我用的是GC-2014C,在进样二硫化碳溶剂的时候。基线呈现鼓泡现象,如图。我用的是自动进样器,换过进样针,衬管玻璃棉,色谱柱,还是出现这样的情况。机器已开够时间,在不进样的时候,基线是平稳的,进样多次,基线都是出现鼓泡现象,请问这是什么问题?怎么解决?[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907121332144479_6691_1816508_3.jpg!w690x517.jpg[/img]

  • 纤维之五----咖啡炭纤维

    纤维之五----咖啡炭纤维

    一、咖啡大家并不陌生,咖啡除了能喝以外,我们还经常将咖啡渣放入烟灰缸里,可以去除烟臭味,也容易熄灭烟蒂,如今咖啡渣的剩余价值又多了一项,上海纺织集团利用咖啡渣吸附异味、除湿导汗快、可循环利用的特点,把咖啡渣回收再利用,用咖啡渣为纤维原料。二、生产选择适合纺丝的废弃的咖啡渣(中国台湾屏东县泰武乡的咖啡豆残渣),经过摄氏1000度以上的煅烧处理,使咖啡渣的晶体向与孔隙呈现最佳状态,运用最新的纳米技术,进行微粉化,研磨成100~300纳米级粉体。其次是经特殊的工艺加工制成适用纤维生产的母粒,保证产品在后加工厂的可纺性。同时,设计特别的喷丝板。最后是优化并确定一定含量的母粒与聚酯切片共混,保证粉体在纤维中的合适含量,生产成咖啡炭纤维。三、性能1、咖啡渣是100%天然材料,回用过程环保。2、高温处理后的咖啡渣已经深度炭化,形成多孔结构,吸湿快干、舒适透气。3、咖啡炭纤维具有吸附异味、天然除臭(消臭率82%)的功效。细菌繁殖快慢取决于环境能提供多少温度、水分和养分,而咖啡炭的多孔吸附效果让体表水分得到有效控制,进而起到抑制细菌繁殖的作用。而细菌繁殖时会释放出的臭气氨也因此大幅除低4、良好的抗紫外性。四、应用内衣产品、袜子、衬衫、毛巾、床上用品及运动休闲装等各种用途。http://ng1.17img.cn/bbsfiles/images/2015/06/201506040929_548738_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506040929_548739_2974654_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506040929_548740_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506040929_548741_2974654_3.jpg

  • 芳纶纤维的应用

    芳纶纤维的应用 电力领域 对位芳纶纤维具有的优异性能,越来越受到电力系统的青睐,应用呈现逐年增加的态势。芳纶纤维在电力领域应用的范围包括变压器、开关设备绝缘拉杆、脐带缆及光缆等。在未来的3~5年内,芳纶材料将大量出现在胶管中,高压胶管产业将迎来一次大的变革。 芳纶纸蜂窝 以芳纶纸为增强体,经过一系列复杂工艺制成的蜂窝形结构材料,可以和不同类型的蒙皮形成重量轻,刚性强,强度高的夹层结构。芳纶纸蜂窝芯可应用于航空航天,轨道交通,船舶游艇,汽车制造,运动器材,医疗器械等对重量,强度和防火有特殊要求的高端领域。 高性能微孔薄膜 芳纶因其耐高温、阻燃、绝缘、高强高模的特性在高温条件下的复合膜材料领域有重要应用。例如,新一代锂离子电池隔膜,电池应用给隔膜发展提出3D立体空隙、高温条件下的形态稳定性及增强的电解液吸收、保持能力等新要求。 体育器材 芳纶纤维应用到体育器材中的优势:轻质高强、减振阻尼、耐冲击、成型性好、低蠕变性、耐酸碱、耐摩擦。根据不同需求,以芳纶和其他纤维复合可以起到优势互补作用。在赛艇、球拍、帆船、滑板、登山杖等各项体育器材领域都将大有作为。 橡塑制品 芳纶在轮胎、胶管、胶带等橡胶制品中应用广泛。国内外企业,如固特异、倍耐力、北京首创轮胎公司等采用芳纶帘线或芳纶/锦纶混纺帘线应用于汽车、航空轮胎。全球芳纶胶管的三大应用领域:汽车胶管、海底电缆及普通液压机械。防弹产品 五种形式:以织物、无纬布形式的柔性软质防弹材料,如防弹衣;硬质树脂基复合材料材料形式作为刚性硬质防弹材料,如防弹插板;以恰当的树脂性能、含量、界面强度制成的中高强度防弹复合材料,如防弹头盔;具有一定可塑性的防弹复合材料,如特种防弹车;复合装甲用夹层复合材料板,具有结构、功能、吸能的芳纶复合材料板。

  • 定量可调移液器常见故障及其处理方法

    定量可调移液器常见故障及其处理方法:  定量可调移液器是广泛用于医疗、卫生防疫、验血站、生化实验室、环境实验室、食品分析实验室的精密微量取样仪器,可以对少量液体样品及试剂进行迅速、准确的定量取样和加样。由于其取样准确,自身轻巧,使用方便,逐渐成为小容量专业的主要检定计量器具。目前,移液器主要分为两大类:国产和进口。  在检定中移液器不合格的原因大概分为两种: 1、容量超差。 2、是密合性超差。  产生的原因分别是:  1、密合性超差的主要原因是活塞和密封圈之间间隙过大,或者是密封圈老化。 解决方法:更换同规格的密封圈。如果密封圈观感较好,可以试试在活塞上加注凡士林。  2、容量超差的主要原因有三种: 一是密合性超差。密合性超差也将导致容量超差。 解决方法:更换同规格的密封圈。如果密封圈观感较好,可以试试在活塞上加注凡士林。 二是容量调节器内限位器位置不对。 以国产移液器为例:在检定某一点时,容量超差。 解决方法:用专用扳手调节移液器尾部的容量调节孔,容量偏大时,逆时针拨动扳手,使容量调节器逆时针旋转,反之,则顺时针拨动扳手,使容量调节器顺时针旋转即可。应反复多次,直至检定合格为止。 以进口移液器为例:在检定某一点时,容量超差。 解决方法:用专用扳手调节移液器尾部的容量调整孔,容量偏大时,顺时针拨动扳手,使容量调节器顺时针旋转,反之,则逆时针拨动扳手,使容量调节器逆时针旋转即可,应反复多次,直至检定合格为止。 三是容量计数器错位。如检定100μL时,实测容量为104μL,容量超差。 解决方法:用专用内六角形扳手插入移液器尾部调整孔内,左手握紧移液器,食指和拇指卡紧容量转动旋纽,中指按住锁紧装置按钮,右手转动扳手,将计数器的数码调整到104μL处,然后松开食指和拇指,转动容量调整旋纽至100μL即可。应反复多次,直至检定合格为止。  以上是移液器最常见的故障,如果遇到较为特殊的故障,必须具体情况具体分析。

  • 化学纤维种类

    化学纤维种类一般名称 1 有光纤维 bright fiber, lustrous fiber 生产过程中,末经消光处理而制成的光泽较强的化学纤维. 2 消光纤维(无光纤维) dull fiber, delustered fiber 生产过程中,经过消光处理(通常用二氧化钛为消光剂)制成的化学纤维.纤维表面的反射光减弱. 3 半消光纤维(半光纤维) semi – dull fiber 生产过程中,经部分消光处理(加入消光剂约0.5%)而制成的化学纤维. 4色纤维(色纺纤维) dope-dyed fiber, spun-dyed fiber 对纺丝溶液,熔体或凝胶丝采用色方法(加入色剂或有色母粒等)制成的有色化学纤维.5 复合纤维 composite fiber, conjugate fiber 由两种及两种以上聚合物,或具有不同性质的同一聚合物经复合纺丝法纺制成的化学纤维. 6 双组分纤维 bicomponent fiber 由两种聚合物纺制成的化学纤维 7 共纺纤维(混抽纤维) blended spun fiber 由两种或两种以上不同的聚合物混合后纺制成的化学纤维. 8 共聚纤维 copolymer fiber 由两种或两种以,上不同单体的共聚物纺制成的化学纤维. 9 异形纤维 profile fiber, modified cross – section fiber 经一定几何形状(非圆形)喷丝孔纺制的具有特殊横截面形状的化学纤维. 10 中空纤维 macaroni fiber, hollow fiber 贯通纤维轴向具有管状空腔的化学纤维11 超细纤维 superfine fiber 细度约在0.4旦以下的化学纤维 12 薄膜纤维 film fiber 高聚物薄膜经纵向拉伸、撕裂、原纤化或切割后拉伸而制成的化学纤维 12.1 裂膜纤维(膜裂纤维) split fiber 高聚物薄膜经纵向拉伸、撕裂、原纤化制成的化学纤维 12.2 切膜纤维 slit fiber 高聚物薄膜经纵向切裂、拉伸制成的化学纤维 13 导电纤维 electrical conductivity fiber 具有导电性能的纤维 14 抗静电纤维 anti – static fiber 不易积聚静电荷的化学纤维 15 耐高温纤维 high temperature resistan fiber 在较长时间经受高温(例如200℃以上)尚能基本保持其原有的物理机械性能的化学纤维. 16 阻燃纤维(耐燃纤维、难燃纤维、防燃纤维) flame retardant fiber 在火焰中仅阴燃,本身不发生火焰,离开火源,阴燃自行熄灭的化学纤维,其极限氧指数约在0.30以上. 17 导光纤维(光导纤维) optical fiber 以石英(或高分子材料)为原料制成,具有不同折射率的皮芯结构,主要由于皮层全反射作用而能传导光线的化学纤维.18 化纤长丝 chemical filament 长度很长的单根或多根连续化纤丝条.19 丝束 tow 用来切断成短纤维或经牵切法而制成化纤条的大量根数的连续长丝集合而成的基本无捻的长条化学纤维束. 20 化学短纤维(切段纤维) staple 化纤丝束经切断而成的,一定长度规格的短纤维. 21 牵切纤维(不等长短纤维) 化纤丝束经牵伸拉断而成的长度不相等(而有一定的比例)的短纤维. 22 棉型纤维 cotton type fiber 长度约在30~40毫米,细度在1.5旦左右的化学短纤维. 23 毛型纤维 wool type fiber, woollike fiber, woollen cut staple 长度约在70~150毫米,细度在3旦以上的化学短纤维.24 中长纤维 mid 〔-length〕fiber 长度(约51~65毫米)和细度(约2.5~3旦)介于棉型与毛型之间的化学短纤维 25 鬃丝 bristle, monofilament thread 类似动物鬃毛,直径较粗(约为0.08~2.00毫米)的合成纤维丝. 26 预取向丝(POY) partially oriented yarn, pre- oriented yarn 经高速纺丝获得的取向度在末取向丝(UDY)和牵伸丝之间的化纤长丝. 27 变形纱(变形丝) textured filament , textured yarn 具有(或潜在地具有)卷曲、螺旋、环圈等外观特性而呈现膨松性、伸缩性的单根或多根长丝纱.27.1 双收缩纱(双收缩丝) bi – shrinkage yarn 由不同收缩性能的两根长丝在纺丝或后加工过程中并绕制成的变形纱.其卷曲或已完全形成,或可将潜在卷曲及不完全卷曲通过加热后处理形成完全卷曲. 27.2 双组分纱(双组分丝) bi – compontent yarn 由横截面内包含有不同收缩性能的两种组分的长丝制成的变形纱.其卷曲或已完全形成,或可将潜在卷曲及不完全卷曲通过加热后处理形成完全卷曲. 27.3 拉伸变形纱(拉伸变形丝) (DTY) draw textured yarn 化纤长丝纱的拉伸阶段,全部或部分地与变形工艺在同一机台上进行而制成的变形纱. 27.4 填塞箱变形纱(填塞箱变形法) impact textured yarn 通过适当的喂料辊将纱超量喂入,或冲击地喂入加热的填塞箱而制成的二维卷曲变形纱.或通过加压的热流体(空气、氧体、蒸汽)将纱超量地施于冷表面而制成的三维卷曲变形纱.27.5 假捻变形纱(假捻变形丝) false – twist textured yarn 采用分段法或连续法将长丝纱经高度加捻、热定型及退捻的变形工艺而制成的变形纱.27.6 假捻定型变形纱(假捻定型变形丝) false – twist stabilized textured yarn 假捻变形纱再经连续热定型工艺或间歇热定型工艺制成的变形丝,连续工艺中将热处理的纱在控制张力状况下(为减少纱的卷缩或扭结)超量地喂入.如采用间歇工艺则将变形纱筒用热蒸汽定型.27.7 加捻变形纱(加捻变形丝) twist – textu

  • 【资料】“偏光显微镜法”观察“聚合物”球晶

    【资料】“偏光显微镜法”观察“聚合物”球晶

    聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,而其中球晶是聚合物结晶时最常见的一种形式。球晶可以长得比较大,直径甚至可以达到厘米数量级.球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。因此,普通的偏光显微镜就可以对球晶进行观察.因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。偏光显微镜的最佳分辨率为200 nm,有效放大倍数超过500—1000倍,与电子显微镜、x射线衍射法结合可提供较全面的晶体结构信息。 球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即—个球状聚集体。 光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波.即偏振光。—束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化。折射率值也随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。而这两束偏振光通过第二个偏振片时。只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。 在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。如图2—1是共聚聚丙烯在145℃时的球晶照片。在偏振光条件下,还可以观察晶体的形态,测定晶粒大小和研究晶体的多色性等等。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812011816_121451_1604910_3.jpg[/img]

  • 【资料】化学纤维种类

    一般名称 1 有光纤维 bright fiber, lustrous fiber 生产过程中,末经消光处理而制成的光泽较强的化学纤维. 2 消光纤维(无光纤维) dull fiber, delustered fiber 生产过程中,经过消光处理(通常用二氧化钛为消光剂)制成的化学纤维.纤维表面的反射光减弱. 3 半消光纤维(半光纤维) semi – dull fiber 生产过程中,经部分消光处理(加入消光剂约0.5%)而制成的化学纤维. 4色纤维(色纺纤维) dope-dyed fiber, spun-dyed fiber 对纺丝溶液,熔体或凝胶丝采用色方法(加入色剂或有色母粒等)制成的有色化学纤维.5 复合纤维 composite fiber, conjugate[d] fiber 由两种及两种以上聚合物,或具有不同性质的同一聚合物经复合纺丝法纺制成的化学纤维. 6 双组分纤维 bicomponent fiber 由两种聚合物纺制成的化学纤维 7 共纺纤维(混抽纤维) blended spun fiber 由两种或两种以上不同的聚合物混合后纺制成的化学纤维. 8 共聚纤维 copolymer fiber 由两种或两种以,上不同单体的共聚物纺制成的化学纤维. 9 异形纤维 profile[d] fiber, modified cross – section fiber 经一定几何形状(非圆形)喷丝孔纺制的具有特殊横截面形状的化学纤维. 10 中空纤维 macaroni fiber, hollow fiber 贯通纤维轴向具有管状空腔的化学纤维11 超细纤维 superfine fiber 细度约在0.4旦以下的化学纤维 12 薄膜纤维 film fiber 高聚物薄膜经纵向拉伸、撕裂、原纤化或切割后拉伸而制成的化学纤维 12.1 裂膜纤维(膜裂纤维) split [-film] fiber 高聚物薄膜经纵向拉伸、撕裂、原纤化制成的化学纤维 12.2 切膜纤维 slit [ - film ] fiber 高聚物薄膜经纵向切裂、拉伸制成的化学纤维 13 导电纤维 electrical conductivity fiber 具有导电性能的纤维 14 抗静电纤维 anti – static fiber 不易积聚静电荷的化学纤维 15 耐高温纤维 high temperature resistan fiber 在较长时间经受高温(例如200℃以上)尚能基本保持其原有的物理机械性能的化学纤维. 16 阻燃纤维(耐燃纤维、难燃纤维、防燃纤维) flame retardant fiber 在火焰中仅阴燃,本身不发生火焰,离开火源,阴燃自行熄灭的化学纤维,其极限氧指数约在0.30以上. 17 导光纤维(光导纤维) optical fiber 以石英(或高分子材料)为原料制成,具有不同折射率的皮芯结构,主要由于皮层全反射作用而能传导光线的化学纤维.18 化纤长丝 chemical filament 长度很长的单根或多根连续化纤丝条.19 丝束 tow 用来切断成短纤维或经牵切法而制成化纤条的大量根数的连续长丝集合而成的基本无捻的长条化学纤维束. 20 化学短纤维(切段纤维) staple[ fiber ] 化纤丝束经切断而成的,一定长度规格的短纤维. 21 牵切纤维(不等长短纤维) 化纤丝束经牵伸拉断而成的长度不相等(而有一定的比例)的短纤维. 22 棉型纤维 cotton type fiber 长度约在30~40毫米,细度在1.5旦左右的化学短纤维. 23 毛型纤维 wool type fiber, woollike fiber, woollen cut staple 长度约在70~150毫米,细度在3旦以上的化学短纤维.24 中长[型]纤维 mid 〔-length〕fiber 长度(约51~65毫米)和细度(约2.5~3旦)介于棉型与毛型之间的化学短纤维 25 鬃丝 bristle, monofilament thread 类似动物鬃毛,直径较粗(约为0.08~2.00毫米)的合成纤维丝. 26 预取向丝(POY) partially oriented yarn, pre- oriented yarn 经高速纺丝获得的取向度在末取向丝(UDY)和牵伸丝之间的化纤长丝. 27 变形纱(变形丝) textured filament [yarn], textured[filament] yarn 具有(或潜在地具有)卷曲、螺旋、环圈等外观特性而呈现膨松性、伸缩性的单根或多根长丝纱.27.1 双收缩[变形]纱(双收缩[变形]丝) bi – shrinkage yarn 由不同收缩性能的两根长丝在纺丝或后加工过程中并绕制成的变形纱.其卷曲或已完全形成,或可将潜在卷曲及不完全卷曲通过加热后处理形成完全卷曲. 27.2 双组分[变形]纱(双组分[变形]丝) bi – compontent yarn 由横截面内包含有不同收缩性能的两种组分的长丝制成的变形纱.其卷曲或已完全形成,或可将潜在卷曲及不完全卷曲通过加热后处理形成完全卷曲. 27.3 拉伸变形纱(拉伸变形丝) (DTY) draw textured yarn 化纤长丝纱的拉伸阶段,全部或部分地与变形工艺在同一机台上进行而制成的变形纱. 27.4 填塞箱[法]变形纱(填塞箱[法]变形法) impact textured yarn 通过适当的喂料辊将纱超量喂入,或冲击地喂入加热的填塞箱而制成的二维卷曲变形纱.或通过加压的热流体(空气、氧体、蒸汽)将纱超量地施于冷表面而制成的三维卷曲变形纱.27.5 假捻变形纱(假捻变形丝) false – twist textured yarn 采用分段法或连续法将长丝纱经高度加捻、热定型及退捻的变形工艺而制成的变形纱.27.6 假捻定型变形纱(假捻定型变形丝) false – twist stabilized textured yarn 假捻变形纱再经连续热定型工艺或间歇热定型工艺制成的变形丝,连续工艺中将热处理的纱在控制张力状况下(为减少纱的卷缩或扭结)超量地喂入.如采用间歇工艺则将变形纱筒用热蒸汽定型.27.7 加捻变形纱(加捻变形丝) twist – textured yarn 两根纱经捻合在一起热定型后分开卷绕的变形工艺而制成的变形纱. 1.3.27.8 喷气膨体纱(喷气变形纱) jet bulked yarn 将纱超喂通过一压缩涡流气流(空气、气体或蒸汽),使丝条上形成扭结环圈,再经过(或不经过)热处理而制成的变形纱. 27.9 假编变形纱(假编变形丝) knit – de – knit yarn 将纱经针织制成织物并热定型,然后拆散再经卷绕制成的变形纱. 27.10 齿轮卷曲法变形纱(齿轮卷曲法变形法) gear crimped yarn 加热的纱在一对齿轮间或类似装置内通过时形成卷曲而制成的变形纱.27.11 刀口卷曲[法]变形纱(刀口卷曲[法]变形丝) edge crimped yarn 由加热的纱通过刀边的变形工艺制成的变形纱.28 网络纱(交络纱) 预取向丝或拉伸变形纱经高压氧流吹捻,单丝间相互交缠,形成周期性的网络结的丝条

  • 新荧光成像技术可清晰呈现血管脉动

    中国科技网讯 据物理学家组织网近日报道,美国斯坦福大学的科学家开发出一种荧光成像技术,能够使活体动物血管脉动以前所未有的清晰度呈现。与传统的影像技术相比,其增加的清晰度类似于擦拭掉眼镜前的迷雾一般。该研究结果发表在最新一期的《自然医学》杂志在线版上。 该技术被称为近红外-Ⅱ成像,或NIR-Ⅱ。研究人员首先将水溶性碳纳米管注射到活体的血液中,然后用激光照射要观察的对象,如小白鼠。激光的波长在近红外范围内,约为0.8微米,可导致专门设计的碳纳米管发出1微米至1.4微米的波长更长的荧光,用于检测确定血管的结构。 碳纳米管发出的荧光波长要比传统成像技术更长,这是实现令人惊叹的微小血管清晰图像的关键。由于更长波长光散射较少,因此形成了更清晰的血管图像。此外,这种技术使图像呈现更精致的细节,允许研究人员能够获得一个快速的图像采集速度,近乎实时地测量血流量。 同时获得血流信息和看到清晰血管对于动脉疾病动物模型的研究将特别有用,如血流是如何受到动脉阻塞和收缩诱发的影响,还有其他事项如中风和心脏病发作的影响。 研究人员说:“对于医学研究而言,这是一个非常好的观察小动物特征的工具。其将有助于我们更好地理解一些血管疾病,以及其对于治疗的反应和如何可以设计出更好的治疗。” 由于NIR-Ⅱ至多只能穿透身体1厘米,所以它不会取代其他成像技术,而是X射线、CT、MRI和激光多普勒技术的补充。不过,它却是一个用于研究动物模型的强大方法。 研究人员说,下一步将使这项技术在人体内更容易接受应用,并探索可替代的荧光分子。他们希望找到小于碳纳米管又能够发出同样波长光的物质,以便使其可以很容易地从体内排出,消除任何毒性的担忧。(华凌) 《科技日报》(2012-12-11 二版)

  • 电子显微镜和数码显微镜的区别

    ①照明源不同。电镜所用的照明源是电子枪发出的电子流,而光镜的照明源是可见光(日光或灯光),由于电子流的波长远短于光波波长,故电镜的放大及分辨率显著地高于光镜。   ②透镜不同。电镜中起放大作用的物镜是电磁透镜(能在中央部位产生磁场的环形电磁线圈),而光镜的物镜则是玻璃磨制而成的光学透镜。电镜中的电磁透镜共有三组,分别与光镜中聚光镜、物镜和目镜的功能相当。   ③成像原理不同。在电镜中,作用于被检样品的电子束经电磁透镜放大后打到荧光屏上成像或作用于感光胶片成像。其电子浓淡的差别产生的机理是,电子束作用于被检样品时,入射电子与物质的原子发生碰撞产生散射,由于样品不同部位对电子有不同散射度,故样品电子像以浓淡呈现。而光镜中样品的物像以亮度差呈现,它是由被检样品的不同结构吸收光线多少的不同所造成的。   ④所用标本制备方式不同,电镜观察所用组织细胞标本的制备程序较复杂,技术难度和费用都较高,在取材、固定、脱水和包埋等环节上需要特殊的试剂和操作,最后还需将包埋好的组织块放人超薄切片机切成50~100nm厚的超薄标本片。而光镜观察的标本则一般置于载玻片上,如普通组织切片标本、细胞涂片标本、组织压片标本和细胞滴片标本等。   电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替。光子“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。   光学显微镜的分辨率与光波的波长有关。对于接近和小于光波波长的物体光学显微镜就无能为力了。电子运动的波长比光波波长短的多,就可以看到更细小的物体。光学显微镜是由一组光学镜头组成的放大成像系统,而电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替光子,这样就可以看到比光学系统能看到的更小的物体。   所谓“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。

  • 纤维之九------海岛纤维

    纤维之九------海岛纤维

    海岛纤维:海岛纤维是将一种聚合物分散于另一种聚合物中,在纤维截面中分散相呈“岛”状态,而母体则相当于“海”,从纤维的横截面看是一种成分以微细而分散的状态被另一种成分包围着,好像海中有许多岛屿。定岛型海岛纤维是通过先进的双组份复合纺丝技术制成的。从其横截面上看是一种组分以分散状态被另一种组分包围着,就像是海中的许多岛屿,因此得名。这二种组份为二种不同的聚合物,一种为溶剂可溶解的,另一种为溶剂不可溶解的,然后经化学方法将溶剂可溶解的聚合物(海)除去,留下溶剂不可溶解的聚合物(岛),并形成超细纤维。目前我们采用的岛组分原料为锦纶和涤纶,海组分为碱溶性涤纶。海岛纤维横截面图二.产品性能1.纤维线密度:用剥离法制造的超细纤维,单纤线密度为0.55~0.11dtex,其线密度为普通纤维的1/10。海岛法制造的超细纤维线密度一般可达0.11~0.011dtex。目前世界上最细的超细纤维,单纤线密度仅为0.000099dtex。2.海岛纤维织物手感柔软、滑爽,可制成具有高密性、吸湿性、拒水性,并有独特的美观性和时装风格性的织物。同时可在织物表面形成多层结构,使织物的反光点小,光泽、色泽柔和,表观丰满、细洁、精致。3.单丝线密度小,纤维比表面积大,其覆盖性、膨松性,保暖性和吸附性高,使织物具有极强的吸尘性,去污性和过滤性;由于纤维细细柔软,可保护被清洁的物品不受伤,因而是高性能的清洁用产品。4.纤维间空隙多而密,可利用其毛细管作用使织物获得较好的吸水、吸油性。另外适当改变纤维间空隙,可织成空隙仅为0.2~10Lm的海岛高密织物,具有优良的防水透汽性能。织物间的微孔结构允许织物内拥有较多的静态空气,因而可获得较好的隔热保暖作用。5.纤维抗弯刚度较小,容易使织物获得飘逸、潇洒的效果。芯层为高收缩丝,更赋予织物极佳的悬垂性和视觉的舒适。6.海岛纤维单丝绝对强度低,但纱的总强度能满足服用要求。经过溶离开纤,形成超细纤维,纤维结构与麂皮纤维近似,可以使仿麂皮整理从外观上的仿制深入到结构上的仿制。根据海岛纤维织物的特性,还可以尝试开发其他风格的服用面料以及清洁布、功能性纺织品、医疗用品等多用途的织物。7.纤维易相互缠结,在织物表面可形成浓密的绒毛,所以起绒性好。不仅具有天然皮革的稍根效果,绒毛还具有极好的方向感和弹性,而且绒毛柔软丰满、耐洗耐磨,还可染成各种颜色,性能远超过天然皮革。三、产品应用1、超纤皮革 超纤皮革,与真皮相比具有重量轻、耐褶皱性好、色牢度高、耐磨、透气性好等优点,综合性能更好。主要应用领域有: 鞋类:皮鞋、旅游鞋、运动鞋、皮靴等。 皮包类:皮包(旅行包、文件包、手提包、购物包)、皮箱、皮夹等。服装类:风衣、夹克、大衣、皮袄、皮裤、皮裙及其它男女服装。 装潢类:沙发、椅子坐垫、室内装潢用品等。 运动用品类:运动用夹克、滑雪衫、运动鞋、足球、拳击手套等。 其它:汽车用顶篷、方向盘罩、汽车用座垫、皮带、文具、书包等2、高密防水织物织物密度高,有良好的防水透气和挡风效果,手感柔软舒适性好。经拒水拒油整理后,具有很好的防水防油作用。3、高性能清洁布清洁布不仅可用于日常的清洁物体表面,还可以用于显微镜等精密光学仪器的清洁处理。超细纤维擦拭丰毛细网络多且致密,在擦试时有多重擦试效果,被擦掉的油污可保存在毛细管网络中,去油污效果特别好。4、高性能吸滤材料由于毛细网络多且致密,纤维吸附能力特别强,吸滤作用好。http://ng1.17img.cn/bbsfiles/images/2015/06/201506041211_548776_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041211_548775_2974654_3.pnghttp://ng1.17img.cn/bbsfiles/images/2015/06/201506041211_548774_2974654_3.png

  • 【原创】原子力显微镜的原理

    【原创】原子力显微镜的原理

    一、原理 原子力显微镜(Atomic Force Microscopy, AFM)是由IBM 公司的Binnig与史丹佛大学的Quate 于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191623_119371_1601358_3.jpg[/img] 图1、原子与原子之间的交互作用力因为彼此之间的距离的不同而不同,其之间的能量表示也会不同。 原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化,其作用力与距离的关系如“图1” 所示,当原子与原子很接近时,彼此电子云斥力的作用大于原子核与电子云之间的吸引力作用,所以整个合力表现为斥力的作用,反之若两原子分开有一定距离时,其电子云斥力的作用小于彼此原子核与电子云之间的吸引力作用,故整个合力表现为引力的作用。若以能量的角度来看,这种原子与原子之间的距离与彼此之间能量的大小也可从Lennard –Jones 的公式中到另一种印证。 img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img] 为原子的直径 为原子之间的距离 从公式中知道,当r降低到某一程度时其能量为+E,也代表了在空间中两个原子是相当接近且能量为正值,若假设r增加到某一程度时,其能量就会为-E 同时也说明了空间中两个原子之距离相当远的且能量为负值。不管从空间上去看两个原子之间的距离与其所导致的吸引力和斥力或是从当中能量的关系来看,原子力式显微镜就是利用原子之间那奇妙的关系来把原子样子给呈现出来,让微观的世界不再神秘。 在原子力显微镜的系统中,是利用微小探针与待测物之间交互作用力,来呈现待测物的表面之物理特性。所以在原子力显微镜中也利用斥力与吸引力的方式发展出两种操作模式: (1)利用原子斥力的变化而产生表面轮廓为接触式原子力显微镜(contact AFM ),探针与试片的距离约数个?。 (2)利用原子吸引力的变化而产生表面轮廓为非接触式原子力显微镜(non-contact AFM ),探针与试片的距离约数十个? 到数百个?。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img]

  • 纤维之八------海藻纤维

    纤维之八------海藻纤维

    制备工艺海藻酸是一类从褐藻中提取出的天然线性多糖,由1-4键合的β-D-甘露糖醛酸(M单元)和α-L-古罗糖醛酸(G单元)残基组成。在制备海藻酸纤维时,将海藻酸钠水溶液通过喷丝孔,挤入含有氯化钙的水溶液,G单元上的Na离子与二价金属离子发生离子交换反应,G单元与Ca2+形成蛋盒(egg-box)结构,G基团堆积而形成交联网络结构,从而转变成水凝胶纤维而析出。性能•抗菌性:纤维中含有大量的二价金属离子,具有天然的抗菌性•成胶性能:海藻酸钙遇到钠离子,发生离子交换,形成海藻酸钠,同时大量的水分进入纤维,形成胶体•离子交换性:海藻酸钠可以与铜离子、镉离子、钡离子、钙离子、钴离子、锌离子、镍离子等发生离子交换•海藻酸钙纤维有阻燃性LOI=34;海藻酸钡纤维比普通黏胶纤维有更好的防辐射性应用•吸湿性医疗敷料和绷带•电磁屏蔽织物•阻燃织物海藻酸钠是海藻纤维的主原料,而海藻酸是从褐藻提取的天然线性多糖,由1—4键合的B—D一甘露糖醛酸(M单元)和d—L一古罗糖醛酸(G单元)残基组成.它的大分子长链中可能含有纯M单元交联段、纯G单元交联段、G和M单元交替段及混合段等片段.http://ng1.17img.cn/bbsfiles/images/2015/06/201506041202_548772_2974654_3.png

  • 金相显微镜暗视野的观察

    金相显微镜暗视野的原理是根据光学上的丁道尔现象,微尘在强光直射通过的情况下,人眼不能观察,这是因为强光绕射造成的。若把光线斜射它,由于光的反射,微粒似乎增大了体积,为人眼可见。暗视野观察所需要的特殊附件是暗视野聚光镜。它的特点是不让光束由下至上的通过被检物体,而是将光线改变途径,使其斜射向被检物体,使照明光线不直接进入物镜,利用被检物体表面反射或衍射光形成的明亮图象。暗视野观察的分辨率远高于明视野观察,最高达0.02—0.004暗视野实际是暗场照明发。它的特点和明视野不同,不直接观察到照明的光线,而观察到的是被检物体反射或衍射的光线。因此,视场成为黑暗的背景,而被检物体则呈现明亮的象。

  • 【讨论】珠光体呈现不同颜色的原因?

    【讨论】珠光体呈现不同颜色的原因?

    冷拉45#钢 硝酸酒精溶液浸蚀 X100 珠光体呈现不同颜色是浸蚀深浅不同还是珠光体本身片距不一样形成的呢?看别人做的彩色金相组织很漂亮,我也收获一个,虽然不地道http://simg.instrument.com.cn/bbs/images/brow/em09510.gif。不过拍出来效果就差了很多http://simg.instrument.com.cn/bbs/images/brow/em09508.gifhttp://ng1.17img.cn/bbsfiles/images/2011/03/201103111116_282016_1619576_3.jpg

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制