当前位置: 仪器信息网 > 行业主题 > >

微量萃取仪

仪器信息网微量萃取仪专题为您提供2024年最新微量萃取仪价格报价、厂家品牌的相关信息, 包括微量萃取仪参数、型号等,不管是国产,还是进口品牌的微量萃取仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微量萃取仪相关的耗材配件、试剂标物,还有微量萃取仪相关的最新资讯、资料,以及微量萃取仪相关的解决方案。

微量萃取仪相关的资讯

  • 一种灵巧的微量固相萃取技术(MEPS)
    p 往期讲座内容见: a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/zt/frnqxsp" target=" _blank" span style=" color: rgb(0, 176, 240) " strong 傅若农老师讲气相色谱技术发展 /strong /span /a /p p style=" text-align: center " strong 第十九讲 一种灵巧的微量固相萃取技术(MEPS) /strong /p p   大家知道在分析和生物分析方法的开发中,样品处理是十分重要的一步。现代分析对一个样品的分析测定所用的时间越来越短,但是,样品制备过程所用的时间却仍然很长。据统计,在大部分的仪器分析实验室中,将一个原始样品处理成可直接用于仪器分析测定的样品状态,所消耗的时间约占整个分析时间的60-70%。在各种样品前处理方法中,目前各种无(少)溶剂的绿色样品处理技术成为仪器分析主要的前处理方法。当然近年最具吸引力的技术是固相微萃取(SPME),它是从固相萃取(SPE)衍生出来的一种无溶剂的样品处理技术,从SPE衍生出来的另一种微量固相萃取方法是填充吸着剂微萃取(Microextraction by packed sorbent ,MEPS ),它是2004年出现的一种精巧、环保、便利的固相萃取方法,(J Chromatogr B, 2004,801:317–321 J Mass Spectrom,2004,39 (12):1488)由瑞典阿斯特拉公司研发部(AstraZeneca R& amp D Sodertalje)的Mohamed Abdel-Rehim首先提出的。Abdel-Rehim (现时在瑞典斯德哥尔摩大学分析化学系)在2015年发表一篇有关MEPS的综述文章(TrAC,2015,67:34–44),讲述这一技术的发生和发展及其应用,这里以此文为主综合介绍MEPS的概况及应用。 /p p   MEPS是一种小型化的固相萃取(SPE)技术,用于样品的纯化,但与一般SPE有显著差异,它是把吸着剂直接集成到注射器中(BIN),而不是一个单独的小柱子。因此,不需要使用一个单独的萃取装置。MEPS甚至可以用于血浆或尿液样进行100次以上的萃取纯化,而常规固相萃取小柱只能使用一次。MEPS 可以处理容量小的样品或容量大的样品(10& amp #956 L -1000& amp #956 L 血浆,尿或水样),可与气相色谱/质谱,液相色谱/质谱,毛细管电色谱/质谱联用 。可在反相、正相,混合离子交换模式下使用。用注射器作为进样装置,可以自动化,包括样品处理,萃取和注射等步骤。SPE的洗脱处理只能是从上到下,而MEPS可以从两个方向洗脱处理。 /p p strong 1 MEPS的装置 /strong /p p   MEPS的装置是把大约2mg 固体吸着剂像塞子一样装到注射器(100,250& amp #956 L)的筒和针之间,如图1所示,这种技术结合样品萃取、预浓缩和洗脱于一体,设备有两部分:MEPS注射器和MEPS床,也叫做BIN,BIN包括MEPS床(固体吸着剂),和填充MEPS床的注射器针。BIN使用100-& amp #956 L 或 250-& amp #956 L气密MEPS注射器,它可以经受正常SPE的压力。 /p p style=" text-align: center " img title=" 10.png" src=" http://img1.17img.cn/17img/images/201601/insimg/794ad2e7-d40e-4633-bce2-cf265fdfd23f.jpg" / /p p style=" text-align: center " 图 1 MEPS的装置 /p p   当BIN失效或需要更换其他吸着剂时,把螺母拧开更换旧的BIN,换上新的BIN。整个装置可以手动或在线使用,MEPS适合于使用反相、正相、和离子交换模式下进行萃取富集。一般上讲,MEPS可以适应SPE的特点要求,只是把有效体积缩小到10 & amp #956 L,这样可以适应于LC或GC的自动进样注射器进样。MEPS的特点是使用很少量吸着剂,并且用很少量溶剂就可以把样品洗脱下来。 /p p strong 2 MEPS 的各种形式 /strong /p p   MEPS经过多年的研究进化,从手动(装在注射器中,或叫BIN)到半自动和全自动装置,见图 2。 /p p style=" text-align: center " img title=" 11.png" src=" http://img1.17img.cn/17img/images/201601/insimg/762b3772-e592-4863-a64e-78186bf94503.jpg" / /p p style=" text-align: center " 图 2 MEPS 的各种形式 /p p   MEPS的最重要的部分是吸着剂,重要的吸着剂见图3,最常用的是以硅胶为基质的键合于硅胶表面的烷烃固定相C2、C8和C18,很多研究者也喜欢使用聚酯类吸着剂。 /p p style=" text-align: center " img style=" width: 310px height: 368px " title=" 12.png" src=" http://img1.17img.cn/17img/images/201601/insimg/00c71233-772a-4448-84d5-74fb65d0b055.jpg" width=" 430" height=" 593" / /p p   通用型吸着剂的缺点是没有选择性,为了克服这个问题,人们选择分子印迹聚合物(MIPs),用以识别特异性的目标化合物。另一方面MEPS 也使用聚吡咯或聚酰胺类吸着剂,它们成功地用于杀虫剂和水性样品的分离。此外有人合成了聚苯胺(PANI)纳米丝,做成网络用于从水样中选择性分离三嗪、有机氯、有机磷农药。 /p p   近来Abdel-Rehim 研究组合成了一些适合于MEPS的新型吸着剂,具有高效、耐用、易于使用的特点,例如碳基吸着剂材料、针内溶胶凝胶MIP、溶胶凝胶MIP修饰的膜、和溶胶凝胶MIP 点纺丝吸着剂。 有关样品萃取吸着剂有多种多样品种可供选择(Trends in Analytical Chemistry, 2016,77:23–43),下一讲讨论这一问题。 /p p strong 3 MEPS装置的自动化应用举例 /strong /p p   MEPS自动化是把MEPS与自动进样器结合起来组成一个系统,来完成MEPS的所有步骤,包括样品的保温、萃取、清洗、温度控制、萃取和解析的时间控制,通过计算机上的操作系统来进行整个分析过程,这种设备有多家公司的商品仪器出售。 /p p   这种自动化的MEPS再与96微盘进样结合起来,可以大大缩短总分析时间,构成高通量分析模式。 MEPS 自动化可以使用多支萃取头组成萃取头集合,如图3的A,也可以和管尖填充固定相微萃取(MEPS),如图3的F,它的结构是萃取头放在微量吸液管的管尖处。也可以使用管内SPME或固相微萃取棒与HPLC组成自动化系统。 /p p style=" text-align: center " img style=" width: 479px height: 325px " title=" 14.png" src=" http://img1.17img.cn/17img/images/201601/insimg/f5afcc05-a3fc-4ae0-8da9-feb276280574.jpg" width=" 526" height=" 363" / /p p style=" text-align: center " 图 3 MEPS的自动化设备 /p p 图 3 的说明: /p p   A-- 多个萃取头集合 B--96支微管机械手操作台:(1)96-TFME(薄膜微萃取)设备,(2,4,5)是轨道搅拌器,分别用于预处理、萃取、和解析,(3)是固定相洗涤台,(6)是96支微管的氮气排空设备,(7)是注射器臂,(8)是XYZ行程臂,用于TFME或氮气排空设备准确地定位,置于多管萃取瓶(2-5)上 C—是B图中TFME设备的详图 D—是TFME与 DESI (脱附电喷雾电离)结合图,其中(1)电喷雾器,(2)进样毛细管,(3)是TFME设备固定于台子上,(4)是旋转台,(5)是按XYZ方向运行的样品台,(6)是气源,(7)是溶剂瓶 E—处于轨道搅拌器位置的活体SPME 96微管解析设备 F--管尖填充固定相微萃取设备详图 G--管尖固相微萃取设备与商品Tomtec Quadra 96结合使用图。 /p p   (Vuckovic D,TrAC,2013,45:136-153) /p p strong 4 MEPS在各个方面的应用举例 /strong /p p   MEPS 近年有很多应用,下表1列出100例的应用实例。 /p p 表 1& nbsp 近年 MEPS 应用举例 br/ /p table style=" width: 648px " border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr td width=" 32" /td td width=" 145" p style=" text-align: center " 分析物 /p /td td width=" 76" p style=" text-align: center " 吸着剂 /p /td td width=" 69" p style=" text-align: center " 基体 /p /td td width=" 79" p style=" text-align: center " 方法 /p /td td width=" 167" p style=" text-align: center " 文献 /p /td /tr tr td width=" 32" p style=" text-align: center " 1 /p /td td width=" 145" p style=" text-align: center " 利多卡因,甲哌卡因、布比卡因,罗哌卡因 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人血浆 /p /td td width=" 79" p style=" text-align: center " Gc-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr B,2004, 801:317–321 /p /td /tr tr td width=" 32" p style=" text-align: center " 2 /p /td td width=" 145" p style=" text-align: center " 肌氨酸 /p /td td width=" 76" p style=" text-align: center " MIP /p /td td width=" 69" p style=" text-align: center " 人血浆,尿液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Sep Sci,2014, doi:10.1002/jssc.201401116 /p /td /tr tr td width=" 32" p style=" text-align: center " 3 /p /td td width=" 145" p style=" text-align: center " 局部麻醉药 /p /td td width=" 76" p style=" text-align: center " 硅基苯磺酸阳离子交换剂 /p /td td width=" 69" p style=" text-align: center " 人血浆 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr,2004, B 813:129–135. /p /td /tr tr td width=" 32" p style=" text-align: center " 4 /p /td td width=" 145" p style=" text-align: center " 6-(苄基氨基)-2(R)-[[1-(羟甲基)丙基]氨基]-9-异丙基嘌呤(Roscovitine) /p /td td width=" 76" p style=" text-align: center " 聚苯乙烯聚合物ISOLUTE ENV + /p /td td width=" 69" p style=" text-align: center " 血浆,尿液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr B,2005, 817:303–307 /p /td /tr tr td width=" 32" p style=" text-align: center " 5 /p /td td width=" 145" p style=" text-align: center " 奥罗莫星(Olomoucine) /p /td td width=" 76" p style=" text-align: center " 聚苯乙烯聚合物 /p /td td width=" 69" p style=" text-align: center " 人血浆 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta,2005, 539: 35–39 /p /td /tr tr td width=" 32" p style=" text-align: center " 6 /p /td td width=" 145" p style=" text-align: center " 罗哌卡因,利多卡因,代谢物(甘氨酰二甲苯胺,甘氨酸二甲代苯胺,3-OH-利多卡因) /p /td td width=" 76" p style=" text-align: center " 硅胶基(C8),聚合物( ENV+),和甲基丙烯酸甲酯的有机整体柱 /p /td td width=" 69" p style=" text-align: center " 血浆,尿液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Liq Chromatogr Relat Technol,2006,29:829–840. /p /td /tr tr td width=" 32" p style=" text-align: center " 7 /p /td td width=" 145" p style=" text-align: center " 醋丁洛尔,美托洛尔 /p /td td width=" 76" p style=" text-align: center " 聚苯乙烯聚合物 /p /td td width=" 69" p style=" text-align: center " 血浆,尿液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Liq Chromatogr Relat Technol, 2007,30:575–586 /p /td /tr tr td width=" 32" p style=" text-align: center " 8 /p /td td width=" 145" p style=" text-align: center " 美沙酮 /p /td td width=" 76" p style=" text-align: center " Csilica-C8 /p /td td width=" 69" p style=" text-align: center " 血浆,尿液 /p /td td width=" 79" p style=" text-align: center " GC/MS /p /td td width=" 167" p style=" text-align: center " J Sep Sci,2007,30:2501–2505 /p /td /tr tr td width=" 32" p style=" text-align: center " 9 /p /td td width=" 145" p style=" text-align: center " 环磷酰胺 /p /td td width=" 76" p style=" text-align: center " C2-吸附剂 /p /td td width=" 69" p style=" text-align: center " 病人血浆 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Liq Chromatogr Relat Technol, 2008,31: 683–694. /p /td /tr tr td width=" 32" p style=" text-align: center " 10 /p /td td width=" 145" p style=" text-align: center " AZD3409(& nbsp & nbsp N-[2-[2-(4-氟苯基)乙基]-5-[[[(2S,4S)-4-[(3-吡啶羰基)硫代]-2-吡咯啉]甲基]氨基]苄基]-L-蛋氨酸 1-甲基乙酯) /p /td td width=" 76" p style=" text-align: center " C2, C8, 聚苯乙烯聚合物 /p /td td width=" 69" p style=" text-align: center " 大鼠,狗和人血浆样品 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr Sci,2008,46:518–523. /p /td /tr tr td width=" 32" p style=" text-align: center " 11 /p /td td width=" 145" p style=" text-align: center " 布比卡因和 & nbsp & nbsp [d3]-甲哌卡因 /p /td td width=" 76" p style=" text-align: center " C18羟基化聚苯乙烯二乙烯基本共聚物(ENV+) /p /td td width=" 69" p style=" text-align: center " 血浆样品 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta,2008, 630 : 116–123 /p /td /tr tr td width=" 32" p style=" text-align: center " 12 /p /td td width=" 145" p style=" text-align: center " 氟喹诺酮类 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 尿样 /p /td td width=" 79" p style=" text-align: center " CE-MS /p /td td width=" 167" p style=" text-align: center " Anal Chem,2009,81:3188–3193 /p /td /tr tr td width=" 32" p style=" text-align: center " 13 /p /td td width=" 145" p style=" text-align: center " 可卡因及其代谢物 /p /td td width=" 76" p style=" text-align: center " C8 , ENV+ ,Oasis MCX,Clean Screen DAU /p /td td width=" 69" p style=" text-align: center " 人尿样 /p /td td width=" 79" p style=" text-align: center " MS-TOF /p /td td width=" 167" p style=" text-align: center " J Am Soc Mass Spectrom,2009,20:891–899 /p /td /tr tr td width=" 32" p style=" text-align: center " 14 /p /td td width=" 145" p style=" text-align: center " 麻醉药品 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人血浆 /p /td td width=" 79" p style=" text-align: center " CE-MS /p /td td width=" 167" p style=" text-align: center " Electrophoresis, 2009,30 :1684–1691 /p /td /tr tr td width=" 32" p style=" text-align: center " 15 /p /td td width=" 145" p style=" text-align: center " 甲基安非他明和安非他明 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 头发 /p /td td width=" 79" p style=" text-align: center " MiAMi–GC/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2009, 1216 :4063–4070 /p /td /tr tr td width=" 32" p style=" text-align: center " 16 /p /td td width=" 145" p style=" text-align: center " 溶解性有机物和天然有机物 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 河水海水样品 /p /td td width=" 79" p style=" text-align: center " FT-ICR-MS /p /td td width=" 167" p style=" text-align: center " Anal Bioanal Chem, 2009, 395:797–807 /p /td /tr tr td width=" 32" p style=" text-align: center " 17 /p /td td width=" 145" p style=" text-align: center " 单萜类代谢产物 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人尿样 /p /td td width=" 79" p style=" text-align: center " GC/MS /p /td td width=" 167" p style=" text-align: center " Microchim Acta,2009,166:109–114 /p /td /tr tr td width=" 32" p style=" text-align: center " 18 /p /td td width=" 145" p style=" text-align: center " 有机优先污染物和暴露的化合物 /p /td td width=" 76" p style=" text-align: center " C18硅胶 /p /td td width=" 69" p style=" text-align: center " 废水和雪水 /p /td td width=" 79" p style=" text-align: center " GC/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr & nbsp A,2010, 1217 :6002–6011 /p /td /tr tr td width=" 32" p style=" text-align: center " 19 /p /td td width=" 145" p style=" text-align: center " 抗抑郁药 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 人血浆 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " J& nbsp Chromatogr B,2010, 878:2123–2129 /p /td /tr tr td width=" 32" p style=" text-align: center " a id=" _Hlk438024213" name=" _Hlk438024213" /a 20 /p /td td width=" 145" p style=" text-align: center " 利培酮及其代谢产物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 血浆和唾液 /p /td td width=" 79" p style=" text-align: center " LC库伦检测器 /p /td td width=" 167" p style=" text-align: center " Talanta,2010,81:1547–1553 /p /td /tr tr td width=" 32" p style=" text-align: center " 21 /p /td td width=" 145" p style=" text-align: center " 紫外滤光片和多环麝香化合物 /p /td td width=" 76" p style=" text-align: center " C8,C18 /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2010,1217:2925–2932 /p /td /tr tr td width=" 32" p style=" text-align: center " 22 /p /td td width=" 145" p style=" text-align: center " 奥卡西平及其代谢物 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 血浆和唾液 /p /td td width=" 79" p style=" text-align: center " LC-DAD /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta,2010, 661:222–228 /p /td /tr tr td width=" 32" p style=" text-align: center " 23 /p /td td width=" 145" p style=" text-align: center " 可替宁 /p /td td width=" 76" p style=" text-align: center " C2, C8, C18,硅胶,C8/SCX /p /td td width=" 69" p style=" text-align: center " 人尿样 /p /td td width=" 79" p style=" text-align: center " GC–MS /p /td td width=" 167" p style=" text-align: center " Anal Bioanal& nbsp Chem,2010,396:937–941 /p /td /tr tr td width=" 32" p style=" text-align: center " 24 /p /td td width=" 145" p style=" text-align: center " 甾体代谢物 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 动物尿样 /p /td td width=" 79" p style=" text-align: center " GC–MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2010,1217:6652–6660 /p /td /tr tr td width=" 32" p style=" text-align: center " 25 /p /td td width=" 145" p style=" text-align: center " 利培酮和9-羟利培酮 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 人血浆、尿样,唾液 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " J Chromatogr B,2011,879:167–173 /p /td /tr tr td width=" 32" p style=" text-align: center " 26 /p /td td width=" 145" p style=" text-align: center " 氟喹诺酮类化合物 /p /td td width=" 76" p style=" text-align: center " MIP /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " LC–MS/MS /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta,2011,685:146–152 /p /td /tr tr td width=" 32" p style=" text-align: center " 27 /p /td td width=" 145" p style=" text-align: center " 非极性杂环胺 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 尿样 /p /td td width=" 79" p style=" text-align: center " & amp #956 LC-荧光检测 /p /td td width=" 167" p style=" text-align: center " Talanta,2011,83:1562–1567 /p /td /tr tr td width=" 32" p style=" text-align: center " 28 /p /td td width=" 145" p style=" text-align: center " 瑞芬太尼 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 人血浆 /p /td td width=" 79" p style=" text-align: center " LC–MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr B,2011,879:815–818 /p /td /tr tr td width=" 32" p style=" text-align: center " a id=" _Hlk438027906" name=" _Hlk438027906" /a 29 /p /td td width=" 145" p style=" text-align: center " 氯氮平及其代谢产物 /p /td td width=" 76" p style=" text-align: center " -- /p /td td width=" 69" p style=" text-align: center " 干血斑 /p /td td width=" 79" p style=" text-align: center " LC库伦检测器 /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2011,1218:2153–2159 /p /td /tr tr td width=" 32" p style=" text-align: center " 30 /p /td td width=" 145" p style=" text-align: center " 阿托伐他汀及其代谢产物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 病人血清 /p /td td width=" 79" p style=" text-align: center " UHPLC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Pharm Biomed Anal,2011,55:301–308 /p /td /tr tr td width=" 32" p style=" text-align: center " 31 /p /td td width=" 145" p style=" text-align: center " 氯贝酸,布洛芬,萘普生,双氯芬酸和布洛芬 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " PTV–GC–MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2011,1218:9390–9396 /p /td /tr tr td width=" 32" p style=" text-align: center " 32 /p /td td width=" 145" p style=" text-align: center " 雌激素类化合物的17& amp #946 -雌二醇 /p /td td width=" 76" p style=" text-align: center " MIP,C18-硅胶(改性) /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " GC–MS /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta,2011,703 41–51 /p /td /tr tr td width=" 32" p style=" text-align: center " 33 /p /td td width=" 145" p style=" text-align: center " 阿片类药物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 海洛因成瘾患者血浆 /p /td td width=" 79" p style=" text-align: center " LC-CD /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta,2011,702:280–287 /p /td /tr tr td width=" 32" p style=" text-align: center " 34 /p /td td width=" 145" p style=" text-align: center " (E)-白藜芦醇 /p /td td width=" 76" p style=" text-align: center " C2, C8, C18, SIL(未改性硅胶), br/ & nbsp & nbsp & nbsp M1(80% C8 和 20% SCX) /p /td td width=" 69" p style=" text-align: center " 酒 /p /td td width=" 79" p style=" text-align: center " UPLC-PDA /p /td td width=" 167" p style=" text-align: center " a id=" OLE_LINK51" name=" OLE_LINK51" /a a id=" OLE_LINK50" name=" OLE_LINK50" /a J Sep Sci,2011, a id=" OLE_LINK55" name=" OLE_LINK55" /a a id=" OLE_LINK54" name=" OLE_LINK54" /a a id=" OLE_LINK53" name=" OLE_LINK53" /a a id=" OLE_LINK52" name=" OLE_LINK52" /a 34 :2376–2384 & nbsp & nbsp /p /td /tr tr td width=" 32" p style=" text-align: center " 35 /p /td td width=" 145" p style=" text-align: center " 美沙酮 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 干血斑( br/ & nbsp & nbsp & nbsp 美沙酮维持治疗患者) /p /td td width=" 79" p style=" text-align: center " LC库伦检测器 /p /td td width=" 167" p style=" text-align: center " Anal Bioanal Chem,2012,404:503–511 /p /td /tr tr td width=" 32" p style=" text-align: center " 36 /p /td td width=" 145" p style=" text-align: center " 黑索金,TNT /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人血浆,火药 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " Chromatographia,2012,75:739–745 /p /td /tr tr td width=" 32" p style=" text-align: center " 37 /p /td td width=" 145" p style=" text-align: center " 多环芳烃 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 水 /p /td td width=" 79" p style=" text-align: center " GC–MS /p /td td width=" 167" p style=" text-align: center " Talanta,2012, 94:152–157 /p /td /tr tr td width=" 32" p style=" text-align: center " 38 /p /td td width=" 145" p style=" text-align: center " 免疫抑制药物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 全血 /p /td td width=" 79" p style=" text-align: center " LC–MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr B,2012,897:42–49 /p /td /tr tr td width=" 32" p style=" text-align: center " 39 /p /td td width=" 145" p style=" text-align: center " 生物相关的酚类成分 /p /td td width=" 76" p style=" text-align: center " C2, C8, C18, SIL, and M1 /p /td td width=" 69" p style=" text-align: center " 酒 /p /td td width=" 79" p style=" text-align: center " UPLC-PDA /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2012,1229:13–23 /p /td /tr tr td width=" 32" p style=" text-align: center " 40 /p /td td width=" 145" p style=" text-align: center " 哌嗪类兴奋剂 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人尿样 /p /td td width=" 79" p style=" text-align: center " LC-DAD /p /td td width=" 167" p style=" text-align: center " J& nbsp Pharm Biomed Anal,2012,61:93–99 /p /td /tr tr td width=" 32" p style=" text-align: center " 41 /p /td td width=" 145" p style=" text-align: center " 精神治疗药 /p /td td width=" 76" p style=" text-align: center " C18, C8,和 C8-SCX /p /td td width=" 69" p style=" text-align: center " 人血清 /p /td td width=" 79" p style=" text-align: center " LC-DAD /p /td td width=" 167" p style=" text-align: center " Anal Bioanal Chem,2012,402:2249–2257 /p /td /tr tr td width=" 32" p style=" text-align: center " 42 /p /td td width=" 145" p style=" text-align: center " 普萘洛尔、美托洛尔、维拉帕米 /p /td td width=" 76" p style=" text-align: center " C2, C8, C18, 1M(阳离子交换剂)和Sil /p /td td width=" 69" p style=" text-align: center " 尿样 /p /td td width=" 79" p style=" text-align: center " 微量毛细管阵列电离质谱 /p /td td width=" 167" p style=" text-align: center " Rapid Commun& nbsp Mass & nbsp & nbsp Spectrom,2012,26:297–303 /p /td /tr tr td width=" 32" p style=" text-align: center " 43 /p /td td width=" 145" p style=" text-align: center " 普伐他汀普伐他汀内酯 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 大鼠血清和尿样 /p /td td width=" 79" p style=" text-align: center " UHPLC–MS/MS /p /td td width=" 167" p style=" text-align: center " Talanta,2012,90:22–29 /p /td /tr tr td width=" 32" p style=" text-align: center " 44 /p /td td width=" 145" p style=" text-align: center " 酚酸 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " GC–MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2012 1226:71–76 /p /td /tr tr td width=" 32" p style=" text-align: center " 45 /p /td td width=" 145" p style=" text-align: center " 抗癫痫剂 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人血浆和尿样 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " J& nbsp Sep& nbsp Sci,2012,35:359–366 /p /td /tr tr td width=" 32" p style=" text-align: center " 46 /p /td td width=" 145" p style=" text-align: center " 离子液体 /p /td td width=" 76" p style=" text-align: center " 硅胶 /p /td td width=" 69" p style=" text-align: center " 河水 /p /td td width=" 79" p style=" text-align: center " CE /p /td td width=" 167" p style=" text-align: center " Talanta,2012, 89:124–128 /p /td /tr tr td width=" 32" p style=" text-align: center " 47 /p /td td width=" 145" p style=" text-align: center " 有机磷农药 /p /td td width=" 76" p style=" text-align: center " 聚吡咯/尼龙 /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " GC–MS /p /td td width=" 167" p style=" text-align: center " J Sep Sci,2012,35:114–120 /p /td /tr tr td width=" 32" p style=" text-align: center " 48 /p /td td width=" 145" p style=" text-align: center " 挥发性和半挥发性成分 /p /td td width=" 76" p style=" text-align: center " C2, C8, C18, 硅胶和 M1 (混合 C8-SCX) /p /td td width=" 69" p style=" text-align: center " 酒 /p /td td width=" 79" p style=" text-align: center " GC–MS /p /td td width=" 167" p style=" text-align: center " Talanta,2012,88:79–94 /p /td /tr tr td width=" 32" p style=" text-align: center " 49 /p /td td width=" 145" p style=" text-align: center " 哌嗪类兴奋剂 /p /td td width=" 76" p style=" text-align: center " C8, C18 /p /td td width=" 69" p style=" text-align: center " 人尿样 /p /td td width=" 79" p style=" text-align: center " a id=" OLE_LINK97" name=" OLE_LINK97" /a a id=" OLE_LINK96" name=" OLE_LINK96" /a a id=" OLE_LINK95" name=" OLE_LINK95" /a a id=" OLE_LINK94" name=" OLE_LINK94" /a UPLC-DAD /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2012,1222:116–120 /p /td /tr tr td width=" 32" p style=" text-align: center " 50 /p /td td width=" 145" p style=" text-align: center " 感觉神经元特异性受体激动剂BAM8-22和拮抗剂BAM22-8 /p /td td width=" 76" p style=" text-align: center " C2, C8和ENV+ /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " GC-MS, LC-MS /p /td td width=" 167" p style=" text-align: center " Biomed Chromatogr, 27,2013:396–403 /p /td /tr tr td width=" 18" p style=" text-align: center " 51 /p /td td width=" 176" p style=" text-align: center " 大环麝香香水 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 废水 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2012,1264:87–94 /p /td /tr tr td width=" 18" p style=" text-align: center " 52 /p /td td width=" 176" p style=" text-align: center " 多环芳烃 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 水 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2012,1262:19–26 /p /td /tr tr td width=" 18" p style=" text-align: center " 53 /p /td td width=" 176" p style=" text-align: center " 抗癫痫药物 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人血浆和尿液 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Sep Sci,2012,35:2970–2977 /p /td /tr tr td width=" 18" p style=" text-align: center " 54 /p /td td width=" 176" p style=" text-align: center " 卤代苯甲醚 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 酒 /p /td td width=" 79" p style=" text-align: center " GC- ECD /p /td td width=" 167" p style=" text-align: center " J& nbsp Chromatogr& nbsp A,2012,1260:200–205 /p /td /tr tr td width=" 18" p style=" text-align: center " 55 /p /td td width=" 176" p style=" text-align: center " 芳香胺 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 环境水样 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " Anal Bioanal Chem,2012,404:2007–2015 /p /td /tr tr td width=" 18" p style=" text-align: center " 56 /p /td td width=" 176" p style=" text-align: center " 农药 /p /td td width=" 76" p style=" text-align: center " 聚苯胺纳米线 /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " & nbsp Anal Chim Acta,2012,739:89–98 /p /td /tr tr td width=" 18" p style=" text-align: center " 57 /p /td td width=" 176" p style=" text-align: center " 黄酮醇 /p /td td width=" 76" p style=" text-align: center " C2、C8、C18和C8 / SCX,SIL /p /td td width=" 69" p style=" text-align: center " 葡萄酒 /p /td td width=" 79" p style=" text-align: center " UPLC-DAD /p /td td width=" 167" p style=" text-align: center " Anal& nbsp Chim& nbsp Acta,2012, 739:89–98 /p /td /tr tr td width=" 18" p style=" text-align: center " 58 /p /td td width=" 176" p style=" text-align: center " 褪黑素与其他抗氧化剂 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 食品 /p /td td width=" 79" p style=" text-align: center " LC-荧光检测 /p /td td width=" 167" p style=" text-align: center " J Pineal Res,2012,53:21–28 /p /td /tr tr td width=" 18" p style=" text-align: center " 59 /p /td td width=" 176" p style=" text-align: center " L-抗坏血酸的测定 /p /td td width=" 76" p style=" text-align: center " C2, C8, C18和含C8的硅胶类似M1 /p /td td width=" 69" p style=" text-align: center " 饮料 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " Food Chem,2012,135:1613–1618 /p /td /tr tr td width=" 18" p style=" text-align: center " 60 /p /td td width=" 176" p style=" text-align: center " 卤代乙酸 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 氯化水 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromaogr A,2013,1318:35–42 /p /td /tr tr td width=" 18" p style=" text-align: center " 61 /p /td td width=" 176" p style=" text-align: center " 局部麻醉剂:利多卡因,甲哌卡因和布比卡因 /p /td td width=" 76" p style=" text-align: center " MIP /p /td td width=" 69" p style=" text-align: center " 血浆和尿液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " Biomed Chromatogr,2013,27:1481–1488 /p /td /tr tr td width=" 18" p style=" text-align: center " 62 /p /td td width=" 176" p style=" text-align: center " 心脏药物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 尿液 /p /td td width=" 79" p style=" text-align: center " UHPLC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr B,2013,938:86–95 /p /td /tr tr td width=" 18" p style=" text-align: center " 63 /p /td td width=" 176" p style=" text-align: center " 5-羟色胺再摄取抑制剂,抗抑郁药 /p /td td width=" 76" p style=" text-align: center " C8和强阳离子交换剂 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " 非水-CE /p /td td width=" 167" p style=" text-align: center " J Braz Chem Soc,2013,24:1635–1641 /p /td /tr tr td width=" 18" p style=" text-align: center " 64 /p /td td width=" 176" p style=" text-align: center " 麝香酮 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 河水 /p /td td width=" 79" p style=" text-align: center " 表面增强拉曼 br/ & nbsp & nbsp & nbsp 光谱(SERS) /p /td td width=" 167" p style=" text-align: center " Anal Bioanal Chem,2013,405:7251–7257 /p /td /tr tr td width=" 18" p style=" text-align: center " 65 /p /td td width=" 176" p style=" text-align: center " 利多卡因 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 唾液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " Biomed Chromatogr,2013,27:1188–1191 /p /td /tr tr td width=" 18" p style=" text-align: center " 66 /p /td td width=" 176" p style=" text-align: center " 非甾体类抗炎药 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人尿 /p /td td width=" 79" p style=" text-align: center " UHPLC-UV /p /td td width=" 167" p style=" text-align: center " J Chromatogr& nbsp A,2013,1304:1–9 /p /td /tr tr td width=" 18" p style=" text-align: center " 67 /p /td td width=" 176" p style=" text-align: center " 苯基黄酮 /p /td td width=" 76" p style=" text-align: center " C2、C8、C18,SIL,M1 /p /td td width=" 69" p style=" text-align: center " 啤酒 /p /td td width=" 79" p style=" text-align: center " UHPLC-DAD /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2013,1304:42–51 /p /td /tr tr td width=" 18" p style=" text-align: center " 68 /p /td td width=" 176" p style=" text-align: center " 大麻类 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 口服液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr& nbsp A,2013,1301:139–146 /p /td /tr tr td width=" 18" p style=" text-align: center " 69 /p /td td width=" 176" p style=" text-align: center " 氯苯 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " Anal& nbsp Bioanal Chem,2013,405:6739–6748. /p /td /tr tr td width=" 18" p style=" text-align: center " 70 /p /td td width=" 176" p style=" text-align: center " 迷迭香酸 /p /td td width=" 76" p style=" text-align: center " CMK-3纳米碳 /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " Chromatographia,2013, 76:857–860 /p /td /tr tr td width=" 18" p style=" text-align: center " 71 /p /td td width=" 176" p style=" text-align: center " 氧化应激生物标记物 /p /td td width=" 76" p style=" text-align: center " C2,C8,C18,SIL,M1 /p /td td width=" 69" p style=" text-align: center " 病人尿样 /p /td td width=" 79" p style=" text-align: center " UHPLC-PDA /p /td td width=" 167" p style=" text-align: center " Talanta,2013, 116:164–172 /p /td /tr tr td width=" 18" p style=" text-align: center " 72 /p /td td width=" 176" p style=" text-align: center " 橄榄生物酚 /p /td td width=" 76" p style=" text-align: center " CMK-3纳米碳 /p /td td width=" 69" p style=" text-align: center " 大鼠血浆 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " 73 Anal Sci,2013,29:527–532 /p /td /tr tr td width=" 18" p style=" text-align: center " 73 /p /td td width=" 176" p style=" text-align: center " 抗精神病药物 /p /td td width=" 76" p style=" text-align: center " 80% C8 20% SCX /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " GC-MS/MS /p /td td width=" 167" p style=" text-align: center " Anal Bioanal Chem,2013,405:3953–3963 /p /td /tr tr td width=" 18" p style=" text-align: center " 74 /p /td td width=" 176" p style=" text-align: center " 多环芳烃和硝基麝香 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 环境水 /p /td td width=" 79" p style=" text-align: center " LVI-GC–MS /p /td td width=" 167" p style=" text-align: center " Anal& nbsp Chim& nbsp Acta,2013, 773 :68–75 /p /td /tr tr td width=" 18" p style=" text-align: center " 75 /p /td td width=" 176" p style=" text-align: center " 氧化损伤DNA尿中的生物标记物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 尿 /p /td td width=" 79" p style=" text-align: center " LC-PDA /p /td td width=" 167" p style=" text-align: center " PLoS ONE 8 (2013)e58366 /p /td /tr tr td width=" 18" p style=" text-align: center " 76 /p /td td width=" 176" p style=" text-align: center " 抗精神病药物 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta,2013, 773:68–75 /p /td /tr tr td width=" 18" p style=" text-align: center " 77 /p /td td width=" 176" p style=" text-align: center " 羟基苯甲酸和羟基酸 /p /td td width=" 76" p style=" text-align: center " C2、C8、C18和C8,SIL / SCX /p /td td width=" 69" p style=" text-align: center " 葡萄酒 /p /td td width=" 79" p style=" text-align: center " LC-PDA /p /td td width=" 167" p style=" text-align: center " Microchem J,2013,106:129–138 /p /td /tr tr td width=" 18" p style=" text-align: center " 78 /p /td td width=" 176" p style=" text-align: center " 抗精神病药齐拉西酮 /p /td td width=" 76" p style=" text-align: center " C2 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " J Pharm Biomed Anal,2014,88:467–471 /p /td /tr tr td width=" 18" p style=" text-align: center " 79 /p /td td width=" 176" p style=" text-align: center " 可的松,皮质酮,acortisol /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 唾液、血浆、尿液和血液 /p /td td width=" 79" p style=" text-align: center " LC-DAD /p /td td width=" 167" p style=" text-align: center " J Pharm Biomed Anal,2014,88:643–648 /p /td /tr tr td width=" 18" p style=" text-align: center " 80 /p /td td width=" 176" p style=" text-align: center " 恩替卡韦 /p /td td width=" 76" p style=" text-align: center " 多孔石墨化碳颗粒 /p /td td width=" 69" p style=" text-align: center " 血浆,血浆超滤液 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Pharm Biomed Anal,2014,88:337–344 /p /td /tr tr td width=" 18" p style=" text-align: center " 81 /p /td td width=" 176" p style=" text-align: center " 莱克多巴胺 /p /td td width=" 76" p style=" text-align: center " C18和 C8/SCX, 8& amp #956 L容器 /p /td td width=" 69" p style=" text-align: center " 猪肌肉和尿液样本 /p /td td width=" 79" p style=" text-align: center " LC-UV /p /td td width=" 167" p style=" text-align: center " Food Chem,2014,145:789–795 /p /td /tr tr td width=" 18" p style=" text-align: center " 82 /p /td td width=" 176" p style=" text-align: center " 芳香胺 /p /td td width=" 76" p style=" text-align: center " DVB /p /td td width=" 69" p style=" text-align: center " 纺织品中偶氮染料 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " Talanta,2014, 119:375–384 /p /td /tr tr td width=" 18" p style=" text-align: center " 83 /p /td td width=" 176" p style=" text-align: center " 氨基甲酸乙酯 /p /td td width=" 76" p style=" text-align: center " SIL, C2, C8, C18, and M1 /p /td td width=" 69" p style=" text-align: center " 强化葡萄酒 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " Anal Chim Acta, 2014,818:29–35 /p /td /tr tr td width=" 18" p style=" text-align: center " 84 /p /td td style=" word-break: break-all " width=" 176" p style=" text-align: center " 贝塔受体阻滞剂美托洛尔和醋丁洛尔 /p /td td width=" 76" p style=" text-align: center " 聚苯乙烯 /p /td td width=" 69" p style=" text-align: center " 人血浆和尿样 /p /td td width=" 79" p style=" text-align: center " C-MS/MS /p /td td width=" 167" p style=" text-align: center " M.M. Moein (Ph.D. thesis), Stockholm University, 2014 /p /td /tr tr td width=" 18" p style=" text-align: center " 85 /p /td td width=" 176" p style=" text-align: center " 多环芳香族碳氢化合物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 水样 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2006, 1114:234–238 /p /td /tr tr td width=" 18" p style=" text-align: center " 86 /p /td td width=" 176" p style=" text-align: center " 布比卡因,利多卡因,罗哌卡因 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 人血样 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " Bioanalysis,2010, 2:197–205 /p /td /tr tr td width=" 18" p style=" text-align: center " 87 /p /td td width=" 176" p style=" text-align: center " 卤乙酸 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 氯化水 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2013, 1318:35–42 /p /td /tr tr td width=" 18" p style=" text-align: center " 88 /p /td td width=" 176" p style=" text-align: center " 三环类抗抑郁药 /p /td td width=" 76" p style=" text-align: center " C8/SCX /p /td td width=" 69" p style=" text-align: center " 口腔液体 /p /td td width=" 79" p style=" text-align: center " UHPLC–MS /p /td td width=" 167" p style=" text-align: center " & nbsp Chromatogr A,2014, 1337:9–16 /p /td /tr tr td width=" 18" p style=" text-align: center " 89 /p /td td width=" 176" p style=" text-align: center " 氯酚 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 土壤样品 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2014, 1359:52–59 /p /td /tr tr td width=" 18" p style=" text-align: center " 90 /p /td td width=" 176" p style=" text-align: center " 溴联苯醚 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 污泥 /p /td td width=" 79" p style=" text-align: center " GC-MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr A,2014, 1364:28–35 /p /td /tr tr td width=" 18" p style=" text-align: center " 91 /p /td td width=" 176" p style=" text-align: center " 非甾体类抗炎药物 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 血浆和尿样 /p /td td width=" 79" p style=" text-align: center " HPLC-PDA /p /td td width=" 167" p style=" text-align: center " J Chromatogr A 1367 (2014) 1–8 /p /td /tr tr td width=" 18" p style=" text-align: center " 92 /p /td td width=" 176" p style=" text-align: center " 瘦肉精, /p /td td width=" 76" p style=" text-align: center " MIP /p /td td width=" 69" p style=" text-align: center " 猪肉样品 /p /td td width=" 79" p style=" text-align: center " HPLC /p /td td width=" 167" p style=" text-align: center " J Pharm.Biomed Anal. 91 (2014) 160–168 /p /td /tr tr td width=" 18" p style=" text-align: center " 93 /p /td td width=" 176" p style=" text-align: center " 卡马西平、拉莫三嗪,奥卡西平,苯巴比妥,苯妥英和活性代谢物环氧化卡马西平和利卡西平 /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " HPLC-DAD /p /td td width=" 167" p style=" text-align: center " a id=" OLE_LINK4" name=" OLE_LINK4" /a a id=" OLE_LINK3" name=" OLE_LINK3" /a J Chromatogr B 971 (2014) 20–29 /p /td /tr tr td width=" 18" p style=" text-align: center " 94 /p /td td width=" 176" p style=" text-align: center " 千金藤素 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " UPLC /p /td td width=" 167" p style=" text-align: center " J Anal Methods Chem,2014,2014:1–6 /p /td /tr tr td width=" 18" p style=" text-align: center " 95 /p /td td width=" 176" p style=" text-align: center " 磺胺类药物 /p /td td width=" 76" p style=" text-align: center " C8 /p /td td width=" 69" p style=" text-align: center " 鸡粪废水样品 /p /td td width=" 79" p style=" text-align: center " HPLC /p /td td width=" 167" p style=" text-align: center " J Liq Chromatogr Relat Technol,2014,37:2377–2388 /p /td /tr tr td width=" 18" p style=" text-align: center " 96 /p /td td width=" 176" p style=" text-align: center " 五种抗精神病药(奥氮平、奎硫平、氯氮平、氟哌啶醇、氯丙嗪)和七中抗抑郁药(米氮平、帕罗西汀、舍曲林、西酞普兰,氯丙咪嗪,丙咪嗪、氟西汀) /p /td td width=" 76" p style=" text-align: center " 氨丙基杂化硅胶整体柱 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " LC–MS/MS /p /td td width=" 167" p style=" text-align: center " Talanta1,2015,40:166–175 /p /td /tr tr td width=" 18" p style=" text-align: center " 97 /p /td td width=" 176" p style=" text-align: center " 肉碱和酰基肉碱 /p /td td width=" 76" p style=" text-align: center " C2,C8,C18,M1 /p /td td width=" 69" p style=" text-align: center " 人尿 /p /td td width=" 79" p style=" text-align: center " LC–MS/MS /p /td td width=" 167" p style=" text-align: center " J Pharmaceu Biomed & nbsp Anal,2015,109:171–176 /p /td /tr tr td width=" 18" p style=" text-align: center " 98 /p /td td width=" 176" p style=" text-align: center " 儿茶酚胺类(如去甲肾上腺素、肾上腺素和多巴胺) /p /td td width=" 76" p style=" text-align: center " C18 /p /td td width=" 69" p style=" text-align: center " 干燥血浆和尿渍 /p /td td width=" 79" p style=" text-align: center " HPLC-库伦检测器 /p /td td width=" 167" p style=" text-align: center " J Pharmaceu Biomed & nbsp Anal,2015,104:122–129 /p /td /tr tr td width=" 18" p style=" text-align: center " 99 /p /td td width=" 176" p style=" text-align: center " 氯胺酮及其代谢物 /p /td td width=" 76" p style=" text-align: center " M1 /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " GC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr B, 2015,1004:67–78 /p /td /tr tr td width=" 18" p style=" text-align: center " 100 /p /td td style=" word-break: break-all " width=" 176" p style=" text-align: center " 贝塔受体阻滞剂美托洛尔,醋丁洛尔 /p /td td width=" 76" p style=" text-align: center " Carbon-XCOS /p /td td width=" 69" p style=" text-align: center " 血浆 /p /td td width=" 79" p style=" text-align: center " LC-MS/MS /p /td td width=" 167" p style=" text-align: center " J Chromatogr B, 2015,992:86–90 /p /td /tr /tbody /table p & nbsp /p p strong 5 小结 /strong /p p   样品制备是分析复杂样品的难题,例如对生物分析样品的处理,其成分复杂,有时样品量很少,所以MEPS 很适合在这一场合的应用,从举出的100例应用中也可以看出它适合于生物样品分析的前处理。 /p
  • 他,誓做固相微萃取中国先行者
    “这个长度只有一厘米多的搅拌棒作用可不小,以前进行海水增塑剂检测,至少需要一瓶矿泉水那么多的样本,每次出海需要在上百个监测点取样,这意味着出一次海至少要带回上千瓶矿泉水那么多的液体样本̷̷有了这个搅拌棒,每次检测只要一个矿泉水瓶盖的液体样本就足够了。”在位于城阳区的青岛博士创业园的实验室里,靳钊博士指着各种型号的搅拌棒和探针自豪地介绍着。  其实,真正神奇的不是这些黑色小棒或银色探针,而是靳钊与爱人坚持十余年的研发成果——固相微萃取技术。  固相微萃取,是很多人难以理解的专业名词,这门“小众”技术,高分子材料学博士毕业的靳钊与爱人坚持钻研了十余年。目前,这项技术已获得两项国家发明专利和一项实用新型专利,他所创立的青岛贞正分析仪器有限公司也成为国内在该领域首家拥有自主知识产权的企业。  靳钊说,他想做中国固相微萃取技术的先行者,事实上,他已经做到了。  民族的情怀:誓做固相微萃取中国先行者  固相微萃取技术这个看似高深难懂的专业术语,却是与食品安全息息相关的检测技术,更是中国对外贸易取得平等话语权的重要工具。  中国是全球最大的茶叶生产国,欧洲是我国茶叶出口的主要地区之一。有数据表明,2000年我国出口欧盟茶叶量比“全盛时期”的1998年减少了34.5%。“使这一数字锐减的,是1999年应用于茶叶农残检测的固相微萃取技术。使用这一新技术,农残的最小检出浓度降低了100倍。”靳钊说。当时,国内分析检测技术尚不能检测如此低含量的农药残留,出口茶叶面临因农残超标被遣回的风险,这严重制约茶叶出口。“没有先进的检测技术,在对外贸易中我们就无法取得与对方平等对话的权利,这成为我国对外贸易中最大的掣肘之一。”  因此,靳钊誓做固相微萃取的中国先行者。  人生“合伙人”协作 打破欧美技术垄断  2003年,在大连理工大学主修高分子材料学的靳钊博士收到一封邮件:一位分析化学专业的女博士在研究 “固相微萃取”课题时遇到了瓶颈,邀请靳博士共同进行科研攻关。  “固相微萃取技术是利用一种特殊的涂层,对检测物质进行定向吸附浓缩,以解决痕量(超微量)物难以检测的难题。”涂层所使用的材料,对于这项技术的稳定性、效率等具有决定性意义。当时国内虽然也有科研人员进行该技术的研究,但材料单一、性能不稳定,无法满足产业化应用的要求。  “我们共同开发了几款材料,没想到效果很好。经过四年的不懈努力,在试用了几十种材料、加工工艺与应用方法后,终于研制出了一款性能优异、产品稳定性强的固相微萃取产品。”  在过去二十年,固相微萃取技术及产品始终被欧美国家垄断,靳钊的研究成果不仅打破了技术和产品的国外垄断,还取得了更优的性能。“就以搅拌棒为例,我们的产品磨损率低,萃取效率高,品使用寿命更长,性能更好。德国产品平均一根棒能使用60-80次,而我们的能使用150-200次,大大降低企业的使用成本。”靳钊介绍说,此后他又与研发团队相继研发出十多款固相微萃取产品,广泛应用于环境监测、水质监测、食品安全、香精香料等领域的快速、痕量检测,填补了国内市场空白。  在这一过程中,两位博士也从技术 “合伙人”,发展成为一生的“合伙人”。  注册公司:在自家厨房开辟研发地点  既做科研又接触市场,科技成果产业化的思路深深根植于靳钊心中:“如果研发成果不进入市场,那这项研究就失去了意义。”2013年,随着产品体验者的增多,产品量产和市场化的需求凸显,成立公司成为顺其自然的选择。  “当时资金有限,根本没有钱去外面租专门的办公室,只能把公司注册在家里,研发地点是自家厨房。”靳钊用了一周时间拿到了小区单元42家住户的签字,又征求了街道同意,才算完成了公司的注册。  场地问题解决了,资金成为摆在靳钊面前的头等难题。这些年他为了搞研发、维系公司运转,陆续投入了70万。“这些钱都是从我和爱人每月工资里省出来的。”直到 2015年,靳钊在市人社局人才中心帮助下入驻青岛博士创业园,免费获得了100多平的办公用房,税务、工商等繁琐的手续也可以在园区的公共服务大厅一站办理。靳钊坦言,这让他能够把精力放在研发推广上,使公司真正快速发展。  造福于人:要把小众科技带进大众生活  前不久的一件小事让靳钊颇有感触:有位大妈从李沧专门坐车到城阳找他,想测测买的保健品成分合不合格。这让靳钊意识到,现实生活中,百姓对食品药品乃至环境安全如此重视,但权威、高效、便捷的检测手段太匮乏了。  “原本只是单纯地想做技术、做研究,但真做成了却发现,研究成果真正的意义是用在实践领域,是用来改变生活的。这更坚定了我把固相微萃取这项小众科技带进大众生活的信念。”  固相微萃取技术在食品安全领域还没有国家标准,所以技术的推广、百姓的认知度提升都还有一个漫长的过程。但今年初,国家有关部委明确提出要用固相微萃取检测水中有害物质,并力争在两年内建立环境监测领域固相微萃取的国家标准。“仿佛吹来了一阵春风,感觉固相微萃取这项技术的春天就要来了,十几年的坚持没有白费。”说着,靳钊脸上绽放出坚定的笑容。
  • 悬“珠”济世——单液滴微萃取(SDME)的妙用
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。 图 1 滴中滴液-液微萃取 ( Anal Chem 1996,68:1817-1882)   Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8&mu L辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做&ldquo 溶剂微萃取&rdquo (&ldquo solvent microextraction&rdquo ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。 图 2 &ldquo 溶剂微萃取&rdquo 示意图 ( Anal Chem 1996,68:2236)   1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。 图 3 &ldquo 用注射器针头下液滴进行溶剂微萃取&rdquo 示意图 (M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)   进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示 图4 顶空溶剂微萃取示意图   通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体&ldquo 脏&rdquo 而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。   SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。 1、SDME 的模式   到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5 单滴微萃取(SDME) 双相 三相 直接浸入 (DI) 连续流动 (CF) 液滴-液滴 (DD) 直接悬浮 (DSD) 顶空 (HS) 液-液-液 (LLL) 液-液-液+直接悬浮 (LLL + DSD) 图 5 SDME的7种模式   SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。 图 6 SDME各种模式的使用频率   到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。   为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1&ndash 3 &mu L液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。   静态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1&mu L甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。   动态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3&mu L样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3&mu L样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1&mu L甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。   暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。   两种使用最多的模式&mdash &mdash 直接浸入和顶空溶剂微萃取&mdash &mdash 具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。   一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。   除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。   DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。   顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。   在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 &mu L溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。   HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76&ndash 83)就是用2&mu L正辛醇液滴(含有4.0× 10&minus 6M 浓度的正十五烷和2.0× 10&minus 3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。   在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。 图 7 把液滴温度降低的设备图 1&mdash 电磁搅拌器 2&mdash 水 3--电磁搅拌棒 4&mdash 样品溶液 5&mdash 液滴 6&mdash 冰袋 7&mdash 微量注射器 8&mdash 聚四氟乙烯喇叭口 (Anal Chim Acta,2010,661:161)   图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40&mu L溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20&mu L溶剂(实验证明20&mu L溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。 图8 用热电冷却器冷却萃取溶剂 (J Chromatogr A,2010,1217:5883) 2、SDME 与分析仪器的配合   与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。   各种模式SDME 的配合所占比例见图 8 图 8 SDME 与分析仪器的配合的比例   国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献 1 SDME 结合GC-FPD分析水中6种有机磷农药 在5&mu L注射器针头装一个2mm 长的锥形物,抽取3.5&mu L萃取溶剂在水样中进行萃取 Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487&ndash 492(暨南大学) 2 通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法 用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 &mu L邻苯二甲酸二丁酯做萃取溶剂,萃取20min Chen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49&ndash 55(中科院地球化学所) 3 用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香 在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%, Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842&ndash 1849(中山大学) 4 动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油 3 &mu L离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13min Yang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178&ndash 184(吉林大学) 5 新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取 使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 [4,5-f] 喹喔啉 Ruiz-Palomero, C,LauraSoriano M, Valcá rcel M,Talanta,2014,125:72&ndash 77(西班牙科尔多瓦大学) 6 单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物 用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚 Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265&ndash 9272(印度贾达普大学) 7 用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇 注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量 &Scaron rá mková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53&ndash 60(捷克查尔斯大学) 8 单滴微萃取-气相色谱测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺 1&mu L庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取 Araujo L, Troconis M E, Cubillá n D,et al, Environ Monit Assess, 2013,185:10225&ndash 102339 用Fe2O3磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油 2.0 &mu L十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收 Ye Q,J Sep Sci, 2013, 36: 2028&ndash 2034(上饶师范大学) 10 用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮 2.5&mu L水溶液液滴,含有3 x10-4mol/L 7-羟基-4-甲基香豆素或6 x10-6mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3min Cabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学) 11 以单滴微萃取GC-MS分析细辛中的挥发物 正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min Wang G, Qi M,Chinese Chemical Letters,2013, 24:542&ndash 544(北京理工大学) 12 微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物 10 &mu L注射器取2.5 &mu L正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分 Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251&ndash 255(伊朗Razi大学) 13 表面活化剂辅助直接悬浮单液滴微萃取浓缩气相色谱分析生物样品中的曲马朵的多变量优化 把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析 Ebrahimzadeh H,Mollazadeh N, Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783&ndash 3790 14 用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析香鳞毛蕨精油 1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴 Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799&ndash 3806 (东北林业大学) 15 农田土壤中阿特拉津和甲氨基粉的快速测定&mdash 使用单液滴中鼓泡微萃取浓缩GC-MS分析 往注射器中吸入1 &mu L萃取溶剂,之后再吸入0.5 &mu L空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析 Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676&minus 7681 16 用SDME/GC&ndash MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素) 10 mL样品用甲苯作萃取剂,液滴1.0 &mu L,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 min dos Anjos P J, de Andrade J B, Microchem J,2014,112 :119&ndash 126 17 动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物 1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃ 萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。   (4)样品溶液离子强度的影响   往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。   (5)搅拌萃取溶液速度的影响   在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。   小结:   一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。   下一讲和大家讨论&ldquo 扭转乾坤&mdash 神奇的反应顶空分析&rdquo
  • 安东帕微波萃取设备在土壤化合物检测方面的应用
    不知道大家有没有注意到,最近天空的颜值是越来越高啦!今年是十四五时期的开局年,环境保护,推动绿色发展,促进人与自然和谐共生仍是发展的重中之重。然而在工业高速发展的今天,人们所从事的工业活动仍不可避免地会排放出一些化合物,这类化合物例如芳香族化合物,它们结构稳定,不易分解,可能会对环境造成严重的污染,通常在环境固体样品中可以被检测到。安东帕的前处理设备在土壤化合物检测方面一向有着非常优异的表现!相比于传统的萃取法,微波萃取具有快速、高效以及利用率高的优势。实验方案称取300 - 500 mg下列样品:BCR 392 -污水污泥工业土壤-自然污染萃取溶剂-溶剂1:20mL环己烷-丙酮,6:4(v/v),用于污水污泥-溶剂2:25mL正己烷-丙酮,7:3(v/v), 用于八氯苯乙烯工业土壤测量采用对应萃取溶剂的萃取程序,得到了有色萃取物。通过离心分离萃取物。实验结果证实了快速有效的微波加热萃取与灵敏GC-MS分析方法结合可以缩短整个分析过程!微波萃取时间短,并且能同时萃取多个样品,与需要耗时24小时的索氏萃取相比为实验室高通量处理节省大量时间。另一方面,小型实验室可在一台设备上同时完成无机和有机的样品制备。反应管和转子的独特设计, Multiwave 5000可以用于精确微量元素测定的酸消解,也可用于高效、多功能的溶剂萃取。通过磁性搅拌器辅助,可提高萃取效率,同时缩短反应时间。
  • 克莱克特发布克莱克特AS-3901AS固相微萃取进样系统新品
    AS-3901AS全自动固相微萃取进样系统,是克莱克特潜心研发的多功能新型自动进样装置,可搭配多种功能模块,实现不同样品前处理流程。产品采用模块化的设计方式,用户只需更换样品盘即可实现液体进样、固相微萃取之间的自由切换。AS-3901AS全自动固相微萃取进样系统性能特点: 液体进样、固相微萃取功能二合一;6.5 寸高清触摸屏,人机交互界面,功能自由定义;精密步进电机驱动,进样速度稳定,定量更精确;模块化设计,用户可根据需求选配不同功能模块,自由搭配;强大的多功能样品前处理平台,适合不同品牌气相色谱;不占用进样口,支持同一台 GC 双进样口进样。液体进样模式:全自动多功能进样系统的基本模块,可实现液体微量进样和大体积进样;定制进样针,进样深度、进样精度更高;进样速度可自由设置,适应不同黏度系数样品;进样针深度可结合实际需求调整;进样前后的时间延迟、进样针清洗可自由设置。固相微萃取模式:恒温和氮气吹扫功能的固相微萃取头老化模块,可进行固相微萃取头自动老化和氮气吹扫;转盘式样品恒温加热模块,可实现样品的恒温加热和萃取;全自动转塔式固相微萃取头插入萃取模块,可进行固相微萃取头全自动萃取;萃取的插入深度可调,可针对液面上(气体)及液面下(液体)样品进行萃取;具有磁力搅拌和加热功能,可控制样品瓶加热的时间、温度和磁力搅拌速度;可选用不同萃取头,以适应不同分析需求;萃取头自动清洗,避免交叉污染;具有固相微萃取针头自动插入色谱等仪器进样口系统的功能。AS-3901AS全自动固相微萃取进样系统技术指标 液体进样模式 样品盘160位,适用于2ml样品瓶最小进样体积0.1ul最大进样体积500ul进样针气密性进样针最大支持进样口2个(可定制扩展)进样速度选择快速、中速、慢速、用户自定义进样模式常规模式、三明治模式、PTV模式进样针深度位置2~30mm取样精度±0.01%进样精度RSD 萃取时间/温度0~240min,温度设置范围:室温~150℃,控温精度±1℃解吸时间/温度0~30min, 温度设置范围:室温~350℃,控温精度±1℃ 磁力搅拌速度0~1500rpm创新点:AS-3901AS全自动固相微萃取进样系统的创新之处是产品采用模块化的设计方式,用户只需更换样品盘即可实现液体进样、固相微萃取之间的自由切换。这种灵活的设计方法,赋予了产品丰富的可扩展性,以适应不同分析需要。 克莱克特AS-3901AS固相微萃取进样系统
  • 双核:在无锡,感受固相萃取和微波萃取
    4月8-9日,EMIF生态环境检测技术创新论坛在无锡成功举办。出席会议的有来自全省分析测试机构、高校科研单位和企业的代表,以及安捷伦、赛默飞、PE、沃特世、岛津、屹尧科技等仪器厂商。来自无锡、南京、常州、镇江等市环境检测中心的专家对环境监测的热点和方向、江苏省环境监测条例和现场监测的新标准做了分析解读,并分享了水质中藻毒素和酞酸酯的测定,以及环境空气中VOCs的测定技巧。江苏省环境检测中心的陈老师则介绍了检测行业飞行检查需要注意的要点以及检测机构内部质量管理的要点。前处理仪器作为环境监测中重要的一环,屹尧科技产品部齐经理在会上做了《水质和土壤中污染物分析自动化前处理方法》的报告。无论固相萃取还是微波萃取,屹尧科技都可以针对不同应用需求,为您提供更合适的解决方案。好的固相萃取仪什么样?它不应该只能测水样,还可以同时测土壤、食品和生物样!真正的全自动固相萃取仪,不会因为体积大小不同,或者用到不同的SPE柱子,就不得不手动更换配件。是的,EXTRA固相萃取仪作为真正全自动的“时间管理大师”,能同时轻松搞定各种类型的样品,并实现多种SPE柱的自动切换。除了便捷高效之外,再好看的数据,也首先要真实才有意义。用户一直苦恼的固相萃取过程中的交叉污染,对EXTRA早已不再是问题。它采用极其巧妙的流路设计,移液针配套高精度注射泵实现样品通过缓冲环进样方式,样品不经过泵阀,从源头上避免了交叉污染。随着样品量的不断增加,检测需求的不断提高,微波萃取在土壤和沉积物、固体废物等样品分析前处理中的应用也越来越多。密闭微波溶剂萃取利用微波加热的优势,大大提高了目标分析物在提取溶剂中的溶解度,增加其从样品基质中脱吸的速率,且更大程度的保留了易挥发组份。屹尧科技精确的温度控制保证了提取的重复性,110mL萃取管满足了标准中大样品量需求,45分钟即可完成27个样品的提取。屹尧科技,为您提供更高效可靠的微波萃取与更便捷精准的全自动固相萃取双核驱动的样品前处理。
  • 傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 固相微萃取(Solid Phase Micro Extraction,SPME)顶空气相色谱是一种简洁、便捷、环保、一举三得(萃取、浓缩、进样)的制样和分析并举的方法。SPME不仅可以和气相色谱仪器结合使用还可以和其他分析方法如液相色谱及各种质谱分析相结合。SPME有八大优点:1、操作简单,2、功能多样,3、设备低廉,4、萃取快捷,5、无需溶剂,6、在线、活体取样,7、可自动化,8、可在分析系统直接脱附。所以SPME是一种神通广大的样品制备技术。 1. 固相微萃取的由来   加拿大的 Pawliszyn 研究组在1987年研究气相色谱(GC)的快速进样技术,他们使用激光加热样品,使之快速汽化,这种 GC进样技术是把样品涂渍在激光光导纤维头部,把光导纤维头置于GC 汽化室中,用激光使样品中挥发性组分进入色谱系统,在研究中发现样品化气样速度很快,但是样品前处理却要耗费很长的时间。为了把样品处理时间缩短,他们就把处理和GC进样合二为一。即把光导纤维的石英丝涂渍上固定相(高聚物或吸附剂),因为当时 GC 毛细管石英色谱柱的涂渍工艺已经是成熟技术了,把涂渍固定相的石英丝放在样品水溶液中,吸收(吸附)被分析物,一段时间后取出石英丝置于 GC 汽化室中进行 GC 分析[3,4],这就是SPME 的开始。   为了把涂渍固定相的石英丝放入和取出 GC 的进样口不并且不影响 GC 气路系统的密封性,他们把涂渍固定相的石英丝粘接到 Hamilton 7000 型注射器针头上,如图 1 所示。用一支内径略大的不锈钢毛细管代替注射器的金属活塞棒,取一段 1.5 cm 石英丝,剥去一端0.5cm 的保护涂层,把另一端用环氧树脂粘接插入到不锈钢毛细管中,这个粘接着涂有固定相石英丝的不锈钢毛细管可以伸出或缩回到注射器针头中,以便通过隔垫把微萃取丝插到GC进样口中。其结构如图2所示。   图1 原始的SPME装置 图2 原始的SPME 针头和萃取丝装置 2.SPME 的理论研究   为了更好地理解 SPMEP 的本质和影响吸收过程的因素,Pawliszyn 研究组在发明了 SPME 以后就立刻进行了理论研究,考察了 SPME 萃取头在从水溶液中直接吸收被分析物的动力学过程,他们研究的一个模型说明,在充分搅拌溶液的条件下,样品吸收的时间只取决于样品在固定相中的扩散速度。另一个模型说明在静止的溶液中,样品吸收的时间取决于样品在溶液中的扩散速度,在使用标准的搅拌器械时,SPME 的萃取过程受溶质扩散过围绕 SPME 萃取丝周围一层静止的溶液液膜的控制。   他们还考察了SPME 萃取头在顶空情况下萃取挥发性样品的过程,这一研究说明:在溶液静态不搅拌情况下,进行顶空SPME 萃取,适合于具有高亨利常数、疏水性较强有机物的分析, 而且这种有机物在萃取固定相和空间气氛之间的分配系数较小,这一方法对测定难挥发性物质中的挥发性有机物有利。同时也详细研究了在充分搅拌被测溶液情况下进行顶空 SPME 萃取的过程,各种参数对萃取的影响。这些模型的研究促进了对 SPME 过程的理解,有利于这一方法的推广。 3.国内近年使用顶空固相微萃取气相色谱案例   我们从实际出发,看看国内近两年使用这一方法的进展,表 1 列出2013-2014年国内期刊上发表的HS-SPME-GC-MS分析案例。从这些发表的文章刊出:(1) HS-SPME-GC-MS使用十分广泛 (2) 国内的研究工作相比前几年有很大的提高(都使用了GC-MS作深入一些的研究) (3)研究工作大都使用商品化产品。 表 1 国内期刊上发表的HS-SPME-GC-MS分析案例 序号 分析对象 主要设备 文献 1 3种山茶属花香气成分的HS-SPME-GC-MS分析 安捷伦6890-5975C GC-MS联用仪,50mL顶空采样瓶、手动固相微萃取装置(美国Supelco公司);萃取纤维头2cm.50/30&mu m DVB 甘秀海,梁志远,王道平等,食品科学,2013,34(6):204-207 2 HS-SPME-GC-MS分析刺梨种子挥发性香气成分 安捷伦6890-5975C GC-MS联用仪,15mL顶空采样瓶手动固相微萃取装置(美国Supelco公司);萃取纤维头70&mu m PDMS 陈青,高健,中国酿造,2014,33(1):141-142 3 HS-SPME-GC-MS分析香荚兰豆中挥发性成分 安捷伦6890-5973 GC-MS联用仪,15mL顶空采样瓶, 萃取纤维头德国IKA公司),65&mu m聚二甲基硅氧烷.二乙烯基苯(PDMS&mdash DVB)萃取纤维头及100 17),手动固相微萃取(SPME)进样器装置(美国Supelco公司),65 Ixm聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。m PDMS萃取纤维头(美国Supelco公司) 卢金清,李雨玲,张锐等,中国实验方剂学杂志,20414,20(3):79-82 4 HS-SPME-GC-MS结合化学计量法对不同产地艾叶药材挥发性成分的比较分析 安捷伦6890-5973 GC-MS联用仪65 &mu mPDMS/DVB萃取头(美国Supelco公司),手动固相微萃取进样器装置(美国Supelco公司), 梁欢,卢金清,戴艺等,中国实验方剂学杂志,2014,20(18):85-90 5HS-SPME和VDE两种方法对普洱茶香气成分分析的比较研究 HS-SPME手动进样,500顶空采样瓶, 谢吉林,肖海军&rdquo ,鲍治帆等,云南农业大学学报,2014,29(6):873&mdash 879 6 SD-HS-SPME-GC-MS分析华中碎米荠挥发性成分 Agilent 6890/5973 GC-MS联用仪,17),手动固相微萃取进样器装置(美国Supelco公司),65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco公司),15 mL样品瓶。 卢金清,李婷+,郭彧等,中国实验方剂学杂志,2013,19(1):148-152 7 SPME-GC-MS法分析金华火腿风味物质的条件优化 Trace Ultra气相色谱.DSQ II质谱联用仪器、Triplus自动进样器美国, Thermo公司;75 gm CAR/PDMS萃取头(美国Supelco公司) 李鑫,刘登勇,李亮等,食品科学,2014,35(4):122-126 8 SPME-GC-MS法分析室内空气中挥发性有机物 Varian 4000 GC/MS气相色谱-质谱仪&rsquo ,分流/不分流进样口和离子阱质谱检测器。固相微萃取装置(美国Supelco公司),包括手柄和100 &mu m PDMS、65}&mu m PDMS/DVB、75肚m Carboxen/PDMS三种吸附纤维,15 mL顶空瓶(德国CNW公司)。 降升平,张小红,张玲玲等,太原理工大学学报,2013,44(3):272-277 9 SPME-GC-MS分析高梁 、大豆丹贝和大豆丹贝中的挥发性成分 SPME手动进样柄及75&mu m CAR/PDMS萃取头(美国Supelco公司); 1200 GC(美国瓦里安公司) 丁一,肖愈,黄瑾等,食品科学,2013,34(20):131 - 134 10 SPME-GC-MS 分析商品藤茶中环烃类化合物 Agilent 6890/5975C GC/ MS 联用仪, 手动固相微萃取装置(美国Supelco 公司),萃取纤维头为:2 cm - 50/30 &mu m DVB/ CAR/ PDMS 赖茂林,郁建平,山地农业生物学报,2014,33(4) :092 - 094, 11 SPME-GC-MS检测不同中西方奶酪的挥发性风味物质及比较 Agilent 6890N,59731气相色谱-质谱联用仪:SPME手柄、75&mu m CAR/PDMS萃取头(美国Supelco公司) 马艳丽,曹雁平,杨贞耐等,食品科学,2013,34(20):103 - 107 12 SPME-GC-MS联合分析槟榔花香气成分 岛津QP 2010 Plus型气相色谱-质谱联用仪(GC&mdash MS); 自动SPME进样器;5&mu mPDMS&mdash DVB萃取纤维头。 张明,黄玉林,宋菲等,热带作物学报,2014,35(6):1244-1249 13 薄皮甜瓜品种&lsquo 白玉糖&rsquo 香气成分的HS-SPME/GC-MS 分析 100&mu m PDMS(聚二甲基氧硅烷)萃取头(美国Supelco),Agilent 7890A/5975C GC-MS 气相色谱质谱联用仪 赵光伟,徐志红,孔维虎等,中国瓜菜,2014,27(5):14-17 14 保留指数在茶叶挥发物鉴定中的 应用及保留指数库的建立 SPME 65 &mu m 聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent 公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 15 不同高山杜鹃品种杂交后代花瓣香气成分的HS-SPME.GC.MS分析 Trace GCMS&mdash DSQ II气相色谱-质谱联用仪(Thermo,USA),萃取头的材料未报道 苏家乐,何丽斯,刘晓青等,江苏农业学报,2014,30(1):227-229 16 顶空固相微萃取结合气相色谱.质谱法分析兔肉的挥发性风味物质 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动SPME进样器、75&mu m碳分子筛/ 聚二甲基硅氧烷(CAR/PDMS)涂层萃取头(美国Supelco公司):萃取瓶美国Perkinelmer公司 王琚,贺稚非,李洪军等,食品科学,2013,34(14):212-217 17 顶空固相微萃取-气相色谱-质谱法分析东北油豆角挥发性成分 6890N-5975气相色谱-质谱联用仪,20 mL钳口项空样品瓶(美国Agilent公司);65&mu m PDMS,DVB萃取头(美国Supelco公司) 王艳,宋述尧牢,张越等,食品科学,2014,35(12):169-173 18 顶空固相微萃取-气相色谱-质谱法分析玉兰花的挥发性成分 Agilent 6890 GC-5975MS气质联用仪(美国安捷伦公司);固相微萃取装置,75 &mu mCAR/PDMS萃取头(美国Supelco公司) 许柏球,栾崇林,刘莉萍等,香料香精化妆品 ,2014,(3): 19 顶空- 固相微萃取-气相色谱- 质谱联用法分析 &ldquo 无锡毫茶&rdquo 中的香气成分 Trace MS 气相色谱-四极杆质谱联用仪(美国Finnigan 公司);手动SPME 进样器(美国Supelco 公司);100 &mu m 聚二甲基硅氧烷(PDMS)萃取头、75 &mu m 碳分子筛/ 聚二甲基硅氧烷(CAR/ PDMS)萃取头、65 &mu m 二乙烯基苯/ 聚二甲基硅氧烷( DVB/ PDMS)萃取头、50/30 &mu m 二乙烯基苯/ 碳分子筛/ 聚二甲基硅氧烷(DVB/ CAR/ PDMS)萃取头、15 mL 顶空瓶(上海安谱科学仪器有限公司) 曾 茜,曹光群,李 明等,分析测试学报,2014,3(10):1136 -1141 20 顶空固相微萃取.气质联用分析并比较两种延胡索挥发性成分 Trace DSQ型气质联用仪(美国Thermo Finnigan公司),手动固相微萃取装置,聚二甲基硅氧烷涂层萃取头 (100 &mu m聚二甲基硅氧烷)和125 m1带聚四氟乙烯涂层硅橡胶垫的螺口玻璃瓶(美国supelco公司) 施华青,陈彬,寿佳妮等,中国医药工业杂志, 2014,45(1):66-68,75 21 顶空固相微萃取一气质色谱联用技术分析海州香薷与石香薷中挥发性成分 Agilent 7890N-5973N GC.MSD气相色谱质谱联用仪(美国Agilent公司),GC-MSD数据分析系统65&mu m PDMS/DVB(聚二甲基硅氧烷/二乙烯苯)SPME萃取头。 李佳,刘红燕,张永清,中国实验方剂学杂志,2013,19(16):118-122 22 发酵牛肉肠挥发性成分固相微萃取条件优化分析 , SCION TQ气质联用仪(德国布鲁克公司),固相微萃取头和57330U固相微萃取手柄美国(Supelco公司), 用DVB/CAR/DMS、PDMS/DVB,CAR/PDMS 3种萃取头 董琪,王武宰,陈从贵等,食品科学,2014,35(12):174-178 23 固相微萃取条件对橙汁主要挥发性成分GC-FID测定的影响 6890-5973气相色谱(美国Agilent公司); SP3400气相色谱仪(北分瑞利分析仪器公司),固相微萃100&mu m PDMS(美国Supelco公司) 牛丽影,郁萌,吴继红等,食品科学,2013,34(22):224-233 24 酒醅微量挥发性成分的HS-SPME和GC-MS分析 6890N-5973I气相色谱-质谱联用仪(美国安捷伦公司),PC420固相微萃取仪,萃取头(75&mu m CAR/PDMS、65&mu m PDMS/DVB,50/30&mu m DVB,CAR/PDMS 100&mu m PDMS(颜色分别为黑色、蓝色、灰色、红色,美国Supelo公司) 赵爽,张毅斌,张弦等,食品科学,2013,34(4):118-124 25 食用油品中己醛的分析 GC-2010气相色谱仪(本岛津公司), SPME手柄及SPME纤维(Supelco公司), 100 &mu m PDMS, 65 &mu m PDMS/DVB, 85 &mu m PA, 85 &mu m CAR/PDMS 和70 &mu m CW/DVB,最终选取 85 &mu mCAR/PDMS 陈冬梅, 福建分析测试, 2014,23(3):22-26 26 同时蒸馏萃取法和固相微萃取法分析棕榈油与菜籽油复合火锅底料中的风味物质 QP2010型气相色谱-质谱联用仪(日本岛津公司),固相微萃取手柄、75 &mu m CAR/DMS固相微萃取头(美国Supelco公司) 张丽珠,黄湛,唐洁等,食品科学,2014,35(18):156-160 27 应用SPME-GC-MS分析变温压差膨化干燥香蕉脆片香气成分 萃取头65 &mu m DVB/PDMS(美国Supelco公司),QP 2010 Plus气相色谱-质谱联用仪(日本岛津公司) 李宝玉,杨君,尹凯丹等,食品科学,2014,35(14):184-18828 HS-SPME-GC-MS分析河南产牛至挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS型气相色谱-质谱联用仪,美国Supelco公司手动固相微萃取(SPME)装置,萃取头为65&mu m PDMS-DVB 尹震花,王海燕,彭涛, 中国实验方剂学杂志,2014,20(6):77-80 29 HS-SPME-GC-MS分析藿香蓟花中的挥发性成分 美国安捷伦公司GC 6890 N GC/5975 MS气相色谱-质谱联用仪,美国supelco公司手动固相微萃取(SPME)装置,萃取头为100&mu m PDMS-DVB 张橡楠,张一冰,张勇等,中国实验方剂学杂志,2014,20(9):99-101 30 SPME与SD提取八角茴香挥发性风味成分的GC-MS比较 美国安捷伦公司GC 6890 N GC/5973 MS型气相色谱-质谱联用仪,65&mu mPDMS/DVB萃取纤维头, 顶空瓶15mL(德国IKA公司) 黎强,卢金清,郭胜男, 中国调味品,2014,39(7):107-109 31 SPME-GC/MS/O法分析水性涂料的气味问题 气相色谱-质谱-嗅觉测量联用仪(Agilent 6890-5973 MSD-O),固相微萃取装置(Combi&mdash PAL,CTC-SPME),萃取纤维(Supelco,50/30&mu m DVB/CAR/PDMS StableFlex/SS l cm),20 mL顶空样品瓶 董婕,朱莉莉,方芳等,涂料工业,2014,44(5):53-55 32 SPME-GC-MS法研究竹叶柴胡和北柴胡挥发性成分差异 6890-5973N型气相色谱-质谱联用仪 (美国Agilent公司),手动固相微萃取装置(美国Supelco公司),萃取纤维头(100&mu m PDMS,7&mu m PDMS,85&mu m PA),5 mL SPME.GC专用采样瓶(美国Supelco公司) 王砚,王书林, 中国实验方剂学杂志,2014,20(14):104-108 33 SPME/GC-MS鉴别地沟油新方法(Ⅲ) Agilent 6890 GC/5973i MS气相色谱-质谱联用仪(美国安捷伦公司);自制SPME固相微萃取头NACC-1。 吴惠勤,黄晓兰,林晓珊等,分析测试学报,2014,32(11):1277-1282 34 巴氏灭菌对不同品种菠萝蜜汁挥发性香气成分的影响 Thermo Trace 1300-ISQ气相色谱一质谱联用仪,20mL样品瓶、固相微萃取自动进样手柄美国Thermo公司;固相微萃取头(65 &mu m PDMS/DVB) 美国Supelco公司。 皋香,施瑞城,谷风林等,食品科学,2014,35(9):63-68 35 保留指数在茶叶挥发物鉴定中的应用及保留指数库的建立 SPME 手持器(SAAB-57330U)和65 &mu m聚二甲基硅氧烷/二乙烯基苯(PDMS/DVB)萃取头(美国Supelco 公司);6890 气相色谱-5973 质谱仪(Agilent公司);自制改良顶空瓶(容积150 mL 玻璃试验瓶) 林杰,陈莹,施元旭等,茶叶科学, 2014,34(3):261-270 36 不同地区黄酒挥发性物质差异性分析 75 &mu mCAR/PDMS固相微萃取头(美国Suplco公司), Trace MS气相色谱-质谱联用仪(美国Finnigan公司) 王培璇,毛健,李晓钟等,食品科学,2014,35(6):83-89 37 不同性别伊拉兔肉挥发性风味物质的SPME-GC-MS分析 QP 2010气相色谱-质谱联用仪(日本岛津公司);手动固相微萃取进样器、75&mu m CAR/PDMS涂层萃取头(美国Supelco公司) 陈康,李洪军,贺稚非等,食品科学,2014,35(6):96-102 38 顶空固相微萃取-气相色谱.质谱联用法分析仔姜与老姜的挥发性成分 QP 2010型气相色谱-质谱联用仪(日本岛津公司;固相微萃取装置(配有50/30&mu m DVB/CAR/PDMS萃取头) 美国 Supelco公司;萃取瓶美国Perkin Elmer公司 汪莉莎,陈光静,张甫生等,食品科学,2014,35(10):153-157 39 顶空固相微萃取与气相色谱.电子捕获技术联用检测软木塞中2,4,6.三氯苯甲醚 CP-3800气相色谱仪(美国Varian公司),20 mL项空瓶,;手动固相微萃取手柄,100&mu m聚二甲基硅氧烷涂层萃取头(美国sigma公司) 张哲琦,王玉春,陈臣等,食品科学,2014,35(12):148-150 40 多种提取方法分析蛇莓挥发性组分 QP 2010-Plus 气相色谱-质谱联用仪(日本岛津公司),顶空进样针PDMS 100 &mu m, PDMS-DVB 65 &mu m, CAR-PDMS 75 &mu m,PA 85&mu m (美国Sigma 公司) 王晨旭,于兰,杨艳芹等,分析化学,2014,42(11):1710 -1714 41 海南主要地域生咖啡豆挥发性化学成分对比研究 QP 2010 Plus气质联用系统(日本岛津公司),20 mL顶空瓶,未报道萃取头品种 胡荣锁,初众,谷风林等,光谱学与光谱分析,2013,33(2):548-55342 葎草鲜品不同部位的挥发油成分及含量 仪器:Aghilent 6890-5973 GC/MS ;手动固相微萃取(美国Supelco公司),萃取纤维头为:100&mu mPDMS 彭小冰,邵进明,刘炳新等,贵州农业科学,2014,42(4):178-181  43 熟化方式对小米粉制品挥发性成分的影响 气相色谱质谱联用仪(美国Varian公司);顶空固相微萃取装置(美国Supelco公司), DVB/CAR/PDMS萃取头 李雯,陈怡菁,任建华等,中国粮油学报,2014,29(4):93-97 44 GC-MS分析比较3个特产香椿品种的挥发性成分 Varian 4000 GC-MS(美国瓦里安公司);顶空固相微萃取装置(包括手持式手柄,50/30&mu m DVB/PDMS、75 &mu m CAR/PDMS、lOO&mu m PDMS、65&mu m PDMS/DVB 4种萃取头,40mL顶空瓶)( 美国Supelco公司) 刘常金,张杰,周争艳等,食品科学,2013,34(20):261-267 45 HS-SPME-GC-MS法分析肉桂子挥发性化学成分 QP2010气相色谱-质谱联用仪(日本岛津公司),;手持固相微萃取设备(美国,Supelco公司)100&mu m PDMS ,75&mu m PDMS/CAR ,65&mu m PDMS/DVB 和50/30&mu m PDMS/DVB/CAR萃取 头 熊梅,张正方,唐军等中国调味品,2013,38(1):88-91 46 HS-SPME-GC-MS分析两种南瓜瓤挥发性成分 Agilent GC 6890 N /5975 MS,Supelco SPME 65&mu m PDMSA-DVB 萃取头物膜(聚二甲基硅氧烷)   小结:SPME 是现今和气相色谱仪连接使用最多的一种结合样品处理与分离分析在一起的方法,应用模式和应用范围还在发展。   下一讲讨论样品处理的另一种模式&mdash &mdash &ldquo 悬空济世&mdash 单滴液体微萃取的妙用&rdquo 。   最后预祝读者羊年快乐!万事如意!
  • 青岛博士夫妻攻克固相微萃取 农残检测等打破欧美20年垄断
    一根根几厘米长的探针,一根根不起眼的小黑棒,不仅打破了外国长达20年的技术垄断,还能应用于环境、食安检测中。青岛博士创业园的博士靳钊与妻子共同协作,攻克固相微萃取技术,研制出全国首款性能优异、产品稳定性强的固相微萃取产品,“举个简单的例子,它可以通过吸附茶叶的味道来判断里面有没有农残,还能使农残最小检出浓度降低100倍。”靳钊表示。正在做研究的靳钊博士  农残检出浓度降低100倍  固相微萃取技术看起来是一个晦涩难懂的专业术语,好像离我们很远,甚至很多人听都没听过。但实际上,早在10多年前,它就在食品安全检测方面与我们有过交集。而这一次的交集,也是促成靳钊博士想要攻克这一技术的契机。我们知道,中国是全球最大的茶叶生产国,而欧洲是我国茶叶出口的主要地区之一。有数据表明,2000年我国出口欧盟茶叶量比“全盛时期”的1998年减少了34.5%。“使这一数字锐减的,是1999年应用于茶叶农残检测的固相微萃取技术。”靳钊博士表示,这一技术使得农残最小检出浓度降低了100倍,而当时国内分析检测技术尚不能检测如此低含量的农药残留,“没有先进的检测技术,在对外贸易中我们就会成为聋子、瞎子,就无法取得与对方平等对话的权利,已成为对外贸易中最大的制约条件。”因此,在大连理工大学主修高分子材料学靳钊誓做固相微萃取的中国先行者。  2003年,靳钊接受一位女博士的邀请,共同研究“固相微萃取”课题,进行科研攻关,而材料开发就是当时最亟待解决的问题,“固相微萃取技术是利用一种特殊的涂层,涂层所使用的材料,对于这项技术的稳定性、效率等具有决定性意义。”当时国内虽然也有科研人员进行该技术的研究,但材料单一、性能不稳定,无法满足产业化应用的要求,“我们共同开发了几款材料,没想到效果很好。”经过4年的不懈努力,2007年,他们最终研制出了一款性能优异、产品稳定性强的固相微萃取产品——固相微萃取探针。固相微萃取搅拌棒  34款产品打破国外垄断  在过去的20年里,固相微萃取技术及产品始终被欧美国家垄断,靳钊的研究成果则彻底打破了技术和产品的国外垄断。2013年,靳钊成立青岛贞正分析仪器有限公司,他和团队专注于新一代超微量物质检测技术——固相微萃取技术的研发、推广与产业化,短短3年时间便获得国家发明专利授权,在推出固相微萃取探针的基础上,陆续研发出固相微萃取搅拌棒、固相微萃取吸附管等产品。  而相较欧美国家的类似产品,他们的固相微萃取产品取得了更优的性能。“以搅拌棒为例,我们的产品磨损率低,萃取效率高,品使用寿命更长,性能更好。德国产品平均一根棒能使用60~80次,而我们的能使用150~200次,大大降低企业的使用成本。”靳钊介绍说,此后他又与研发团队相继研发出多款固相微萃取产品,“目前一共有34款产品。”广泛应用于环境监测、水质监测、食品安全、香精香料等领域的快速、痕量检测,填补了国内市场空白。  而在固相微萃取技术日臻完善的过程中,不仅让靳钊收获了一次次科研突破的喜悦,也将那位与他共同攻关的女博士变成了他的人生伴侣。固相微萃取探针  “闻闻”味,就知有没有农残  据靳钊介绍,他们研发的产品除了性能更优,应用方面也更重实用性,还是以搅拌棒为例,“德国搅拌棒主要是实验室应用,更适用于作为科学研究的工具,其市场规模较小。而我们将其作为环境在线监测仪器的核心部件,可显著提高传统环境监测仪器的性能,降低能耗。简单来说,他们用做科研,我们则更注重应用到民生当中去。”  那该如何应用到民生当中去呢?“以羊肉为例,现在大家都怕有假羊肉。目前实验室的检测方法一般是先把羊肉绞碎,再用溶剂萃取,泡出各种物质,再蒸干,浓缩,然后进仪器检测,操作程序特别复杂。”靳钊表示,而使用固相微萃取技术,只要通过味道来判断就行,“将羊肉放到密闭小瓶子里,把探针扎到小瓶里吸取挥发出的特定物质,再把探针拿出来后一加热,气味中的特定物质就检测出来了。”靳钊表示,这个味道我们可能闻不出来,但一到仪器上,所有味道成分就会被区分开,“只要跟真羊肉的色谱图比对就可以,羊肉破碎啊提取啊,这些工作都不需要做了。”  此外,检测茶叶或者蔬菜农残,或是辨别鱼虾等新不新鲜,只要拿黑色的小棒——固相微萃取搅拌棒或探针“闻闻”味道,放在仪器里一查就真相大白了。  富集吸附,污染物“没跑儿”  “闻闻”味道,就能知道有没有农残,确实挺神奇,而事实上,固相微萃取的神奇可不止这一点。据靳钊介绍,通过固相微萃取产品,还能检测空气和水中有没有污染物,而能实现这些是因为“我们的固相微萃取技术其实就是一个富集类的材料,就说空气里或水里的污染物本来很少,但都被吸收到我们这产品上面了,我们叫富集,定向吸附。”靳钊表示,他们目前有34款产品,而构成他们高分子材料是不一样的,“要针对不同的物质选择用哪种产品,例如查除草剂,就得用急性很强的高分子材料,即定向吸附原理。”  采访中,靳钊举了一个海洋监测的例子来表现产品在富集污染物质方面的效果。监测人员出海做海洋监测,需要监测上百个点的海水,其中每个点都得带回1升海水,因为水少了根本检测不出来,这样要做完这上百个点的监测,可能得带了一船的样品回来 如果用固相微萃取搅拌棒,就不用带大瓶了,每个点只要 30毫升就行,因为本身搅拌棒有吸附能力,把搅拌棒放到水里吸附后直接进仪器检测就行,“可以少带很多样品,以前需要一船,现在只要一手提箱就够了” 而如果用探针,连海水都不需要带回来了,“他只要用密封小瓶取海水,现场将探针放进去,晃一晃,直接把针密封好后带回来进行检测就行”。当然,使用哪种产品可以根据自身需要选择,但不管选哪种,“对于海洋监测来说,都能减少很大的工作量。”固相微萃取吸附管  用于刑侦,分析火灾起火源  采访中记者了解到,固相微萃取吸附管是靳钊的团队在今年8月份刚刚开发出来的新产品,外形类似搅拌棒,“目前吸附管正在上海公安局试点应用。” 这怎么还跟公安局扯上关系了?面对记者的疑问,靳钊解释道,这款产品能应用于刑侦领域,“火灾现场火源分析还有毒品快速检测。”例如,有地方着火了,可以通过吸附管来分析是什么原因引燃了这起火灾。  首先,用一种气体采样器,吸取火灾现场的空气,“气体只要经过吸附管就会被吸附,之后再分析其中的物质就可以。”靳钊表示,测试阶段,上海公安局的工作人员从某火灾现场提取了烧焦的衣服等物质,把它们放在一个密闭容器里,之后在从里面抽气,用吸附管提取,检测后查出是汽油引燃的,“那一般来说就是人为纵火。”谈到为何在上海试点而非青岛,靳钊解释,上海公安局在公安系统中是能够做科研的地方,“如果试点效果理想,上海公安局确定使用了,之后就可能会制定一个标准,在全国铺开使用,到时候青岛肯定也会用。”  将推新品检测黄曲霉毒素  对于下一步的打算,靳钊告诉记者,明年他们团队有两个方向的目标,一是以固相微萃取技术作为核心,把环境监测仪器开发出来。再就是推出一款测黄曲霉毒素的产品。“像花生、大豆、玉米、茶叶等食品只要发霉了就会产生黄曲霉毒素,这是一种高致癌物质。”靳钊表示,目前,国家标准采用“免疫亲和柱法” 来检测黄曲霉毒素,但该方法使用繁琐,且价格昂贵,大大增加了质检部门的检测时间和检测成本。“一个柱价格在160元左右,而且只能用一次。”  而靳钊团队将要开发的产品,应用固相微萃取技术,使用高分子材料制作,对黄曲霉毒素有一个定向吸附,“只吸附黄曲霉毒素。”而且,高分子成本低很多,基本上80元左右就能搞定,还可以多次使用,且不需要专用的大型设备,对操作人员要求不高,甚至可实现车载,检测人员可以对市场上的食用油进行实时的检测。此外,“他们的储存比较麻烦,得放在冰箱里,在4℃的环境里储存,我们开发的新产品对储存条件没有要求。”这些都将大大降低黄曲霉毒素的检测成本,保障食品安全。
  • Supelco 固相萃取全线产品特价促销
    时间:2012年 4月20 日至 2012 年 7 月 31 日 活动介绍一:活动期间,购买Supelco固相萃取小柱任意一盒,可享受8折优惠,同一产品满10盒以上,可以享受75折优惠。 Supelclean和Supelclean Envi系列SPE小柱Sigma-Aldrich/Supelco提供的Supelclean和Supelclean Envi系列SPE小柱已广泛使用于食品/农业、环境领域中,拥有LC-18、Envi-18、LC-Florisil、LC-Alumina、LC-NH2、LC-Si、LC-SCX、LC-WCX、LC-SAX、PSA等多款广受欢迎的SPE小柱,特别是Envi-Carb/LC-NH2、Envi-Carb/PSA等双层柱已成为食品/农产品中农药多残留检测的指定产品。 Discovery系列SPE小柱和96孔板Discovery SPE产品是专门为制药和临床应用而开发,产品经严格的测试及质量控制。在快速,有效地提取、分离和浓缩来自生物体液和复杂基质的药物时,能提供更高的回收率和更好的重复性。Discovery DPA-6S SPE小柱为聚酰胺树脂填料,用于提取植物中的叶绿酸、腐植酸等萜类和黄酮类化合物、没食子酸、儿茶酚-A-原儿茶酚酸等,也可用于提取芳香类羧酸、硝基芳香化合物和不可逆保留的醌。Discovery混合模式SPE产品Discovery DSC-MCAX在提取来自生物基质如血浆和尿中的碱性药物化合物时,可更好地去除杂质干扰和提高选择性。Discovery SPE 96孔板满足了高通量药物筛选和分析的要求,该孔板技术具有的一致的流速动力学使其在具有极好的重现性和流通量的同时,还能拥有较高的的回收率和灵敏度。 Supel-Select系列SPE小柱(聚合物基质)Supel-Select SPE产品,是以亲水基团改性的苯乙烯聚合物为基质的固相萃取产品,专为水性样品中提取范围广泛的化合物而开发。Supel-Select系列有HLB(亲水亲脂平衡)、SCX(阳离子交换)、SAX(阴离子交换)等产品,可对应于大多数应用中建议使用的HLB、MCX和MAX小柱,使用Supel-Select 聚合物基质SPE产品可取得高回收率,高选择性和重现性。 SupelMIP分子印记SPE小柱SupelMIP SPE系列是由高度交联的聚合物组成,特定的固定相对提取单个目标分析物或一类结构相似的分析物具有极高的选择性。SupelMIP分子印记小柱的固定相和分析物之间有较强的相互作用力, 因此不仅可以使用于较为苛刻的SPE冲洗条件下,而且可以获得较高的选择性和较低的背景值。SupelMIP分子印记小柱可以用于提取食品、生物样品和环境样品中的克仑特罗、氯霉素、β-受体、β-激动剂、β-阻断剂、多环芳烃、亚硝胺等。 Hybrid SPE产品Hybrid SPE-蛋白沉淀技术,结合了蛋白沉淀的操作简单性和SPE的特异选择性,有效地去除生物样本中如血清、血浆中的蛋白和磷脂。该技术采用了专利的氧化锆涂层颗粒,只对磷脂有亲和吸附,对小分子化合物(如酸性、中性和碱性离子)均没有吸附。 Supel-Tips SPE产品Supel-Tips SPE产品系列用于微量样品中的小分子和生物大分子的萃取和浓缩。这些10µ l的吸头在吸头的最尖端填有固定相填料,它是用一种专利保护的高纯粘合剂粘合上去的。该种吸头型SPE能从微量样品中吸附目标化合物,经过浓缩和脱盐的目标化合物即可进行下一步分析。 活动介绍二:活动期间,购买Supelco Dispersive(分散)系列SPE产品任意一包,可享受7折优惠,同一产品满10盒以上,可享受6折优惠。 Supelco Dispersive(分散)系列SPE产品(dSPE)Supelco提供产品齐全的适用于“QuEChERS”方法的分散SPE提取管和净化管,应用于食品/农产品中的农药多残留分析,同时还可以为您度身订制适合您特定方法需要的分散SPE提取管和净化管。Supelco最新推出的产品Supel Que Z-Sep+/C18分散SPE是专门开发用于去除复杂样品如亚麻仁油、牛奶、肾脏等中的脂质成分,特别适合用于MS分析。在用GC-MS分析鳄梨中农残和用LC-MS-MS分析肾脏和牛奶中兽药残留物时,样品通过 Z-Sep+ 处理后比通过C18处理更干净且具有更低的背景值。 活动介绍三:活动期间,购买Supelco固相萃取装置及配件任意一套,可享受85折优惠。 Supelco SPE 固相萃取装置及配件Sigma-Aldrich/Supelco提供的Visiprep DL 12及24位防交叉污染固相萃取装置,具有独特的防交叉污染设计,有效地避免了样品处理时的交叉污染。独有的旋钮式流量控制阀使得流速控制简单准确,另外整个装置外型美观实用,选配件齐全,是固相萃取的理想选择。 Visiprep大体积上样器Visiprep大体积上样器是由内径1/8英寸的聚四氟乙烯管线,其中一端带有不锈钢沉子悬重物,另一端是一个分级式的SPE小柱连接头组成,将有沉子的一端放在样品贮存器中,连接头一端插入活化后的SPE小柱中,无需用手即可将大体积低粘度的液体样品转移到SPE小柱中。 Plateprep 96孔真空萃取装置Plateprep 96孔真空萃取装置的上部是一种清晰可见的丙烯酸树脂材料,很容易观察流速,其底座是聚丙烯材质,具有极好的抗化学腐蚀能力,同时还有一个可拆卸的真空表/减压阀能控制所有孔的流速。这个组合紧密的装置连接一个SPE96孔提取板后,就可以同时处理96个样品,单阀控制,平行处理和一致的动态流速更便于方法开发,获得较大的重复性。 Supelco Envi-Disk圆盘式固相萃取装置Envi-Disk 圆盘式固相萃取系统包含Envi-Disk圆盘式SPE六位上样装置,圆盘式固相萃取装置,47mm Envi-Disk SPE膜片(圆盘),可以同时处理6个1L的样品。每个萃取装置都有独立的流速控制阀来控制流速,分析速度快,有机溶剂使用量少,适合用于大量水样中有机污染物的处理。 如需了解促销详情,请点击这里。或者拨打以下联系方式.上海:021-61415566-8209 北京:010-65688088-6812 广州:020-38840730-5001关于Sigma-Aldrich:美国Sigma-Aldrich公司,是一家致力于生命科学与化学领域的高科技跨国公司,产品涵盖生物化学、有机化学、色谱分析等多个领域,产品数量超过120,000种,是全球数以万计的科学家和技术人员的实验伙伴。Sigma-Aldrich公司旗下的两大著名分析品牌Supelco和Fluka/RdH ,致力于分析化学领域的产品研制开发、生产销售和技术服务等,主要产品包括色谱柱、色谱耗材、固相萃取(SPE)、固相微萃取(SPME) 及品种十分齐全的高品质分析试剂和标准品,能为广大分析领域用户提供集色谱耗材、分析试剂和标准品于一体的一揽子解决方案。Sigma-Aldrich在36个国家与地区设有营运机构,雇员超过7900人,为全世界的用户提供优质的服务。Sigma-Aldrich承诺通过在生命科学、高科技与服务上的领先优势帮助用户在其领域更快地取得成功。如需进一步了解Sigma-Aldrich,请访问我们的官方网站:http://www.sigma-aldrich.com
  • 无溶剂香气萃取和分析研究进展
    11月22日至23日,由365bet体育在线、上海香料研究所、上海化工研究院有限公司共同主办,中国香料香精化妆品工业协会等单位协办的“2019 中国国际香料香精化妆品科学技术论坛”在上海举办。国内外高校、科研院所、香料香精化妆品行业专家学者、企业家等共200余人出席论坛。前美国化学学会农业和食品化学分会主席,美国化学学会会士 (fellow), 美国化学学会农业和食品化学分会会士(fellow),农业与食品化学杂志顾问委员, 美国俄勒冈州立大学michael qian教授被邀做了“无溶剂香气萃取与分析研究进展”,介绍了一下几个内容:传统香气分析概述传统溶剂提取法与溶剂辅助风味蒸发法顶空和吹扫捕集固相微萃取法 pdms搅拌棒萃取法eg-silicone搅拌棒吸附萃取法分析挥发性酚热脱附薄膜固相微萃取首先钱教授给大家一个确定风味重要化合物的思路。首先提取样品中的化合物(isolation),然后对其进行富集浓缩(concentration),通过一维或二维气相色谱进行分离(separation), 对其中的气味化合物可通过嗅觉检测器(olfacrometry)来进行识别, 然后通过气味强度评估(osme odor intensity assessment) 或是风味稀释分析(flavor dilution analysis)等评估法对重要气味化合物进行锁定。最后通过质谱(ms 或 ms/ms)或质谱红外(ms/ir)或核磁共振(nmr)进行鉴(identification)。 对浓度很低的化合物,可以在色谱分离之后,通过馏分的收集(preparative gc )来进一步对其浓缩, 以达到检测器的检测下限,进行成果的鉴定。 钱教授的学生正在使用odp来识别香味化合物钱教授把多年来的工作研究香气香味的经验与大家分享,比如如何才能提高监测灵敏度和提高分离效率,以下三个点非常重要:样品的制备和浓度通过优化色谱法来提高分离效率了解并利用检测的特异性 还比如几种的传统萃取技术(溶剂萃取,safe,同时蒸馏萃取)的优缺点,- 适合高浓度香气物质的萃取- 可同时萃取极性和非极性化合物- 耗时久- 重复性差- 需要使用同位素进行内标定量和现代化的无溶剂风味萃取的原理,丰富的应用案例以及他们的优缺点。静态顶空- 类似于食品上的气味成分- 有限的伪影生成- 无溶剂峰,可自动化- 低灵敏度- 适用于白酒中主要成分分析:乙醛,乙酸乙酯, 异戊醇, 乙酸异戊醇动态顶空- 无需样品制备- 高效富集- 自动化- 潜在的热伪影- 对低挥发物回收率低- 高酒精度会影响微量成分的分析固相微萃取在风味分析方面的挑战- 灵敏度- 选择性- 竞争吸附- 纤维重现性- 需要加入内标来定量(同位素稀释分析)pdms 搅拌棒吸附萃取- 可提取非极性和半极性的风味物质- 萃取相负荷是spme的100倍- 可用于直接接触或顶空模式- 使用方便,经久耐用, 可重复使用- 对高挥发性化合物回收率低(如乙醛,丙醛,丁醛,乙酸和短链酸)- 不能回收强极性化合物eg-silicone 搅拌棒吸附萃取- 有效提取高挥发性化合物,如乙醛,乙酸乙酯- 有效提取极性化合物,如酚类化合物, 短链酸- 可与pdms搅拌棒互相补充- 背景噪音较大- 稳定性和持久性较pdms搅拌棒差重要的挥发性酚类化合物有:装有微型瓶的热脱附管,和热脱附单元tdu2 此方法成果的萃取了marionberry (marion 黑莓)中的多种风味化合物, 其中包括呋喃酮,以及重要的酚类化合物,还有覆盆子酮等。 覆盆子酮是树莓类中重要的气味化合物,而此化合物只有在使用spe法才被检测到。spe法在这里更接近于液液萃取法的效果。在总结时,钱教授说到:”分析化学的不断发展将使快速的风味分析成为可能,并提供新的痕量风味成分的鉴定。” 并且强调:“有效的分析和鉴定关键风味成分需要将仪器分析与感官评估相结合。” 各种样品前处理的技术都有其优缺点,正确选择和结合最适合样品的技术是关键。哲斯泰为您提供各种无溶剂的萃取技术,给您一个强大的技术平台。我们也希望可以助所有的风味化学家一臂之力, 在样品前处理和嗅觉检测领域,更好的为大家服务! (china)和第三届(chile)国际香料会议的发起者和主席。
  • 亚临界水萃取仪
    成果名称 亚临界水萃取仪 单位名称 天津出入境检验检疫局动植物与食品检测中心 联系人 宓捷波 联系邮箱 mijb@tjciq.gov.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 □合作开发 &radic 其他 成果简介:   样品前处理技术是食品分析检测的最关键步骤之一。食品样品中的目标化合物一般含量极小,基体复杂、干扰物多,必须经过样品的制备、目标物质的提取、净化、浓缩等前处理过程才能最终进行检测。然而,提取和净化过程中通常需要大量使用乙腈、二氯甲烷等有毒试剂,并进行液固提取、转移、洗脱和最终的浓缩,残余溶液的废弃,这些都会对环境造成一定程度的污染,同时也会危害科学技术人员的生命健康。加强样品前处理技术的研究,在提高对食品样品中残留农兽药提取效率的同时,减少甚至不用有毒害的有机试剂,对于保障国家的食品安全、环境质量、人体健康都具有重大意义。   在食品分析检测过程中,目前广泛应用的前处理技术主要有微波辅助萃取(MAE)、加速溶剂萃取(ASE)、超临界流体萃取(SFE)等。这些方法提取效率高,定量准确,但同时也存在一些缺陷。一是操作处理时间过长。二是有机试剂用量大,对环境有污染。   天津检验检疫局围绕该关键点,广泛进行资料调研,认真分析,努力寻求方法的突破,积极尝试了亚临界水萃取后的多种反萃模式,并针对进出境食品中农兽药的残留情况进行方法开发。该项目利用固相吸附填料对亚临界水萃取后的目标物进行适时反萃和动态连接技术有效地克服了亚临界水萃取后目标物反萃的难点,建立了一套快速、灵敏、绿色、环保的亚临界水萃取-填料吸附的检测体系,并开发了简易、实用动态亚临界水萃取仪器。 应用前景:   该项目是一个以具有自主知识产权的新技术为基础的食品中农兽药残留检测的前处理技术平台。项目采用了亚临界水萃取,填料组合吸附,动态连接和针对性优化等技术,同时利用该技术组装的动态萃取装置材料普遍,连接简便,适于基层实验室自行组装使用,便于推广。   该项目具有四项核心技术:亚临界水萃取温度优化,吸附填料的模式优化装填法,溶剂组合反萃技术,动态萃取连接交替冲洗技术。该项目建立的静态和动态亚临界水萃取-反萃技术立足于检验检疫的实际工作,解决了实验室一线的前处理难题,并具有实际推广的应用前景。该项目利用绿色、环保的萃取溶剂-水取代了有机溶剂,基于节能、环保的科技发展理念,充分考虑技术的实用性和可发展性。该技术的特点是萃取溶剂无毒无害,实验材料获取容易、方法灵敏,对蔬果、粮谷、肉类中绝大多数农兽药都可以进行定量的萃取,且动态亚临界水装置结构简单,可以根据实验要求进行不同的改进。   目前,该项目构建的加速溶剂萃取的静态亚临界水萃取-C18吸附净化前处理技术平台可以在蔬果、粮谷和肉类基质中较好地完成农兽药提取,其检测低限可达0.05mg/kg,回收率及精密度均符合分析要求;由液相色谱泵和气相柱温箱以及管线自组装的动态亚临界水萃取装置,可以在蔬果、中药材以及肉类制品中进行多种农兽药的提取、检测,对农药和喹诺酮类药物的检测低限均达到0.1mg/kg。
  • 新拓仪器发布多样品全自动固相微萃取仪新品
    多样品自动固相微萃取仪是一款专门针对国标方法中,测定总溶解固体或蒸发残渣时,对水或试剂快速蒸发至恒重的仪器。代替了传统的水浴、油浴以及烘箱,可快速、简便的得到样品中的中溶解固体或蒸发残渣。大大缩减操作工序和步骤,减少实验操作人员的工作量。特点:  1.自带高温老化口,可进行固相微萃取探针的老化和氮气吹扫。  2.探针的插入深度和涂层的伸出长度均可通过程序调节,以适应不同实验的要求。  3.固相微萃取功能中,配有20个样品盘,适用10mL或20mL的顶空瓶。  4.样品盘有独立磁力搅拌加热位,温度控制范围: 室温~150℃,磁力搅拌速度:0~1500rpm。  5.液体进样采用气密针进样,最小进样体积1微升,进样积500微升;进样精度0.5%。  6.液体进样功能中,110个样品位,适用2mL进样小瓶。  7.配有6个清洗瓶位,适用4mL样品瓶,可自定义分配溶剂瓶位和废瓶位;创新点:自动固相微萃取是根据现代仪器的要求生产的一种新的样品预处理技术。凭借对SPME原理和技术发展的深刻理解以及新型SPME设备的不断应用和开发,SPME已广泛应用于环保和水质处理领域。这是较好的样品预处理方法之一,它具有简单,低成本和易于自动化等一系列优点。固相微萃取是在SPE的基础上开发的。它保留了其所有优点,并消除了色谱柱填充和溶剂解吸的缺点。它能通过类似于注射器的固相微萃取装置完成所有预处理和样品注射。该装置的针头中有一根伸缩杆,该杆与熔融石英纤维连接,其表面覆盖有色谱固定相。通常,熔融石英纤维隐藏在针头中。如有必要,可以推动进样器推杆以使石英纤维从针头突出。 多样品全自动固相微萃取仪
  • 新拓推出国内首台商品化的固相微萃取仪
    上海新拓分析仪器科技有限公司近日推出了全新产品: MASS-6027型多样品全自动固相微萃取仪,是国内首台商品化全自动固相微萃取仪。据SPME技术工程师范义蜂介绍,MASS-6027不使用有机溶剂,可无需浓缩和定容直接定量,可连续处理27个样品,具有磁力搅拌和加热功能。由于减少了溶剂和人工操作,更有利于操作人员的健康和减少人工成本,MASS-6027会比一般固相萃取产品更适合农残、水质等领域的应用。   MASS-6027的详情和现场操作情况请看视频。
  • 美国ATR超级固相萃取仪亮相“广西样品前处理技术创新大会”
    2019年3月22日广西样品前处理技术创新大会在南宁市圆满落幕,此次大会由 EWG1990仪器学习网联合广西分析测试协会以及全国分析测试协(学)会创新联盟、广东省分析测试协会举办。我公司参加了此次大会,此次展出的全自动浓缩仪S8系列,在自来水、环保、水文、污水厂、疾控、高校、海洋监测等方面,有很好的应用,在此次展会中,收到很多的观看和咨询。在此次展会中,也带来了最新产品的相关介绍,美国ATR推出的36位大体积超级固相萃取仪,是大体积水样的最佳萃取设备,它是自动化程度最高、萃取速度最快的固相萃取仪,可同时处理6个样品、连续不断处理36个大体积样品,可显著提高用户工作效率4倍以上。随着食品、药品、环境等领域的检测要求越来越严,检测样品含量要求越来越低,而检测样品、项目越来越多,对设备自动化要求也越来越高,美国ATR公司推出的这款超大体积固相萃取仪,操作界面简单、方便,极易学会,带漏液报警功能,可选配自动定量浓缩模块实现自动固相萃取和浓缩一体化自动操作,简单方便。
  • 上海新拓CW-2000超声-微波协同萃取/反应仪”获BCEIA金奖
    2007年第十二届北京分析测试学术报告会及展览会在北京圆满落幕。此次,由上海新拓微波公司多项自主研发、设计的分析测试仪器获得了与会者的极大关注。其中,CW-2000超声-微波协同萃取/反应仪更是得到了评委们的广泛认可,荣获2007年BCEIA展览会仪器金奖。CW-2000超声-微波协同萃取/反应仪正是凭借其独特新颖先进的技术组合、良好的用户评价和广阔的应用前景成为了今年BCEIA会上在众多微波仪器中唯一获得这一殊荣的仪器。 上海新拓微波公司总经理张和清在此衷心感谢广大用户对公司产品的厚爱和支持,公司承诺将继续坚持创新,不断进取,为我国分析仪器的发展作出自己的贡献。 screen.width-300)this.width=screen.width-300" border=0 screen.width-300)this.width=screen.width-300" border=0 在分析化学研究中样品的前处理过程(萃取/消解、分离和富集)是决定分析检测速度和质量的关键。通常样品的预处理过程所花费的工时约是后继仪器分析操作用时的十数倍或数十倍。因此,新技术和新仪器,一直是理化检验与分析界研究领域之一。在诸多样品预处理方法中,超声波和微波萃取技术的发展较为迅速,应用也较广泛。在美国环保局(USEPA)一些标准方法中(http://www.epa.gov),超声波和微波技术已被列为样品预处理的重要手段。 为填补我国样品预处理萃取仪器的空白,中山大学化学学院邹世春博士等人在多年大量样品预处理方法研究工作的基础上,将超声波和微波有机地结合起来,充分利用超声波的空化作用以及微波的高能作用,率先提出了在低温常压条件下进行微波-超声波协同作用进行样品前处理的新构想,并与我公司技术人员一起,联合研制出了CW-2000型微波-超声波协同萃取仪。 该仪器中直接固定于超声波换能器(50W)上的样品容器,巧妙地置于功率可调,温度可控的微波超声波辐射腔内,通过一系列电子自控技术,实现了直接超声波萃取、开放式微波萃取和微波-超声波二者协同萃取等各种不同的萃取、消解或合成方法。 本仪器的研发得到了广东省自然科学基金的资助,可广泛应用于环保、农业、食品、卫生防疫、地质、医学、化学化工、商检以及教育科研等领域中,是无机分析、有机分析和生物分析等样品前处理极为有效的手段之一,特别适合比重小,体积大的样品前处理(如:橡胶、塑料、中药、农产品和土壤等)。此外,该新型仪器还可作为一种新型反应器,用于高校和科研单位在化学反应、有机合成、样品消解、样品萃取和合成等方面展开许多有意义的研究工作。 仪器主要性能特点: ● 采用新型专利技术,该仪器具有超声波、微波以及微波-超声波协同萃取三种功能,可根据样品性质和分析要求,任意选择一种工作方式,真正做到一机多用; ● 低温常压环境,可减小对样品中目标物,尤其是对有机物结构的破坏; ● 根据容器体积,样品量可高达100 g或以上,尤其适用于比重小、体积大的样品处理(如中草药、橡塑等样品); ● 微波功率和辐照时间、目标溶液温度连续可调,超声振动、微波加热方式和程度可任意根据工作方式、时间和温度任意组合和设定; ● 采用直接超声波振荡方式(不需要超声波液体传递介质),萃取效率高、能耗低、噪声低;嵌入式无线设计,使样品容器置入、取出更为方便; ● 毋须加工或购置特殊材料的样品容器,并可根据用户要求制作不同容量容器,使用成本低; ● 采用控制磁控管阳极电流的方式(专利技术)获得准确稳定的连续微波输出功率(非脉冲方式),尤其适于低功率微波输出控制; ● 触摸式参数设置和显示,液晶视频监视样品处理全过程,实现真正的人机对话; ● 液晶显示器,人机对话,操作更为方便。 ● 非接触式红外测温;电视显示反应状;控温范围:室温-120℃ 精度±1℃;三种控制模式:时控制微波功率/温控微波功率/恒定微波功率。 ● 根据用户目的和要求,新仪器可广泛用于高等院校、科研院所及各生产部门等进行样品消解、萃取、无机或有机反应、合成等。 欢 迎 浏 览 我 们 的 网 站:www.sh-xintuo.com.
  • 新拓仪器固相微萃取产品:从内销到出口-抓住机遇实现外汇创收
    近期,新拓仪器公司张和清总经理高兴地宣布:“我公司开发生产的的固相微萃取产品不仅受到国内用户的高度认可,更远销德国、加拿大、美国以及新加坡等发达国家”。 作为国内首家从事固相微萃取产品研发销售的企业。回顾固相微萃取的发展经历,不难发现新拓仪器对国内样品前处理领域的市场前瞻性: 2011年以前,新拓仪器一直以微波消解产品作为公司的主打产品; 2011年,成立国内首个固相微萃取研发团队。 2012年,推出首款固相微萃取产品SPME-S-01。 2013年,有幸聘请固相微萃取发明人、加拿大皇家科学院院士Pawliszyn教授和英国皇家化学学会会士、国家杰出青年基金获得者、国内固相微萃取专家欧阳钢锋教授为公司的高级顾问,并成功获得了两位教授的全部固相微萃取专利授权。 加拿大皇家科学院院士Pawliszyn教授、英国皇家化学会会士欧阳钢锋教授与新拓仪器团队Pawliszyn教授与张和清总经理合影 自2014年以来,在强大的技术力量驱动下,新拓仪器抓住互联网模式的新机遇,积极开拓海外市场。最终,实现了固相微萃取产品的海外创收。为国家增加外汇提供自己的一份力量。 张和清总经理表示:在欧洲、美国等国家地区,固相微萃取已经成为业界公认的绿色样品前处理技术,所以国外用户对固相微萃取产品的认知度和接受度比较高。因此,我们的产品性能在受到国外用户肯定的同时,又提供了比进口产品更诱人的价格。这就是我们的产品在海外畅销的秘密。 目前,新拓仪器已开发多种固相微萃取产品,涵盖了大气、水质、环保、土壤、食品安全以及香精香料等领域。更有全球独家授权的固相微萃取捕集针Needle Trap,以满足用户全方位的需求。
  • 质检总局仪器使用满意度调查,安东帕微波消化萃取仪夺冠
    为了加强对专用仪器设备供应商的管理,督促供应商提高售后服务水平和质量,规范售后服务行为,保障仪器设备高效、良好的运行,并为今后专用仪器设备招标采购提供参考依据,从5月份起,国家质检总局会同中国出入境检验检疫协会在各直属检验检疫局中开展了质检专用仪器设备的使用情况和满意度问卷调查活动。 经过精心组织、广泛征集,共征集到北京、广东等检验检疫局40份有效调查问卷,2789条数据。通过数据汇总、初评打分、专家评审等工作程序,严格把关,层层审核,最终确定调查结果。在微波消化萃取仪分类中,奥地利安东帕(中国)有限公司微波消化萃取仪,用户满意度排名第一。 奥地利安东帕公司在样品制备(微波消解、微波萃取)领域已经有近40年的丰富经验,由于安东帕(Anton Paar)样品制备设备的超强的消解性能、最高的元素回收率、最高级别的安全性能,在世界各地许多重要检测实验室都将安东帕微波样品制备系统作为第一选择,并被用于美国NIST和欧盟ERM等标准物质认证检测工作。Multiwave PRO 微波消解萃取系统为用户提供全面获取精准的痕量分析结果所需的样品制备解决方案,甚至能够处理要求严苛的复杂样品,以进行专业的痕量分析。Multiwave PRO 微波消化萃取仪拥有完善的温度压力综合控制系统。该系统种类众多的附件,可帮助实现消解、浸提、氧燃烧、溶剂萃取、干燥、蒸发及紫外消解等功能,是一个专业高端的微波样品制备平台。 在安东帕微波消化萃取仪的整个使用期限内,来自安东帕厂家专业的技术团队都会为您提供快速、高效的售后服务。您身边随时都有经验丰富的团队为您提供本土化的应用支持及培训,尽可能降低您等待的时间。详情请见:http://www.anton-paar.com/cn-cn/products/details/microwave-reaction-system-multiwave-pro/sample-preparation/ 附:用户满意度调查结果 :http://www.ciitee.com/news_view.asp?id=160
  • 【瑞士步琦】使用快速溶剂萃取仪 E-916测定橡胶中的可萃取物
    使用快速溶剂萃取仪测定橡胶中的可萃取物E-916应用”橡胶(Rubber)是指具有可逆形变的高弹性聚合物材料, 橡胶按原料可分为天然橡胶与合成橡胶两种。天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶是以石油、天然气为原料,以二烯烃和烯烃为单体聚合而成的高分子。橡胶是橡胶工业的基本原料,广泛应用于工业和生活各方面,制造轮胎、胶管、胶带、电缆及其他各种行业,全球约 70% 的天然橡胶用于交通运输行业中的轮胎制造。天然橡胶、钢铁、石油和煤炭一起并称为四大工业原料,是基础产业以及工业建设不可缺少的物资。1介绍快速溶剂萃取是在高温高压下用溶剂对固体或者半固体样品进行萃取的方法。该实验对橡胶中的可萃取物进行研究,按照ISO 1407-2023标准进行测定。该标准要求使用索氏萃取法,萃取时间为16小时 ,每小时5次循环。本文中介绍了一种有效的测定橡胶样品中可萃取物的方法,使用快速溶剂萃取仪E-916上在高温高压下进行提取,与标准相比,提取时间可以显着减少。2设备快速溶剂萃取仪 E–916平行蒸发仪 P-6分析天平(精度 ±0.1mg)干燥箱快速溶剂萃取仪 E-914 / E-916最快速度和最大样品处理量的结合快速溶剂萃取仪 E-914 / E-916 结合最大速度与处理量,是快速加压溶剂萃取 (PSE) 的最佳解决方案。通过并行处理更多样品、轻松加载样品和快速收集萃取物,提高生产率。平行蒸发仪 Multivapor可高效蒸发多个样品使用平行蒸发仪 Multivapor P-6 / P-12 对多个样品执行高效蒸发。通过同时处理大量样品加速样品蒸发过程。平行蒸发仪 Multivapor&trade 因其易用性可最大程度提高过程的效率。3试剂及样品丙酮橡胶样品样品 A: 预计值:18-22%样品 B: 预计值:19-24%4萃取步骤样品制备样品的提取溶剂蒸发提取物称重可提取含量的计算取 0.5g 样品放入纸滤筒中,装入 40mL 萃取池中(样品无需与硅藻土混合),按照表1的萃取参数进行萃取。表1: 快速溶剂萃取仪 E-916 萃取参数:参数温度100° C压力100 bar溶剂Acetone 100%萃取池40 mL接收瓶240 mL循环3预热1 min保持10 min排液3 min溶剂冲刷2 min气体冲刷5 min用平行蒸发仪 P-6 浓缩萃取后的溶剂,参数见表2。表2:平行蒸发仪参数参数加热温度45 °C转速7压力500 mbar溶剂蒸发浓缩后,将接收瓶在干燥箱中干燥至 102°C 恒重,在干燥皿中冷却至室温至少1小时后,称重。5结果样品A和样品B的可萃取含量如表3-4所示。结果均在在预期范围内。表3:样品 A 的结果(预期值 18- 22%)样品A样品重量接收瓶重量总重量萃取物含量%P10.5333152.7283152.836520.29P20.6547149.0583149.195120.90P30.5134153.2947153.400721.87平均值 [%]__20.61RSD [%] __1.48表4:样品 B 的结果(预期值 19- 24%)样品B样品重量接收瓶重量总重量萃取物含量%P40.5859146.4764146.586518.79P50.6023149.2818149.395918.94P60.6598148.4589148.582818.78平均值 [%]__18.84RSD [%] __0.496结论标准要求使用索氏提取时间为 12-16 小时,每小时至少循环 5 次。与标准中使用的索氏提取相比,使用快速溶剂萃取仪 E-916 萃取时间仅需 1 小时即可完成萃取任务。
  • 科奥美萃:新一代萃取材质为检测安全提升保障
    质量检测作为食品、医药、化工等行业的重要环节,关系到产品、企业甚至整个行业的发展,而被检测物的提取分离更是起着至关重要的作用,不论在欧洲标准、美国标准……对于数据及效果起到决定因素的正是萃取柱、色谱柱等材料。   据了解,人、动物、植物的体液和组织中微量物质的定性定量分析,如药物代谢研究、违禁药鉴别和食品的安全检测,通常要求使用固相萃取柱做样品预处理去掉绝大部分杂质,以确保分析检测的精确性和灵敏度,也最少程度污染昂贵的仪器。   但是,作为固相萃取柱的主要类型,石墨、聚合物和硅胶基质的“三国演义”,已慢慢呈现出硅胶基质独步天下的局面。尤其是当科奥美萃在全球率先推出以球形B型硅胶作为材料骨架的固相萃取产品之后,彻底改变了原有硅胶基质不规则、无定形等属性所带来的影响。   球形B型硅胶固相萃取产品键合技术好,因此保证了其对于分析物样品的处理能够达到高回收率,低干扰的效果。采用球形B型硅胶固相萃取产品的InnovationTM 系列,经过多方测试得出以下结果:PSA固相萃取柱GC-MS清洁度85% Aminopropyl固相萃取柱GC-MS清洁度85% C8+SCX固相萃取柱上三聚氰胺回收率(pH3.5上样)95% SCX固相萃取柱上三聚氰胺回收率(pH3.5上样)95% C18固相萃取柱GC-MS清洁度95% 羧酸型WCX固相萃取柱上司来吉兰(Seligiline)回收率(pH1上样,500mg/3cc)95% EDTA型WCX固相萃取柱上百草枯和敌草快回收率(pH7上样,500mg/3cc)95% Phenyl固相萃取柱GC-MS清洁度95% DEAE固相萃取柱上异丁苯丙酸回收率95% SAX固相萃取柱上异丁苯丙酸回收率90% C8+SAX固相萃取柱上异丁苯丙酸回收率90% Cyano固相萃取柱GC-MS清洁度95% Diol固相萃取柱GC-MS清洁度95%。   可见球形B型硅胶不论在清洁度还是在回收率上均能够帮助使用者获得最佳效果。   而且球形B型硅胶的压力降小,通透性好,对血浆等较为粘稠的样品很好操作,没有无定形无机硅胶固相萃取产品经常会发生的粘稠样品阻塞问题。因此球形B型硅胶固相萃取产品可以保证在背景清洁效果的条件下,有效的减少发生粘稠样品阻塞问题,既保证了实验效果,又达到了保护仪器的目的。   在此基础上,无锡科奥美萃生物科技公司(Chrom-Matrix Inc.)使用高纯度球形B型硅胶和独一无二的键合技术研发出InnovationTM 系列的17种固相萃取柱能够适用于顾客的绝大部分应用,在国内国际竞争中,产品质量和成本上有明显的竞争优势:   1) Chrom-Matrix Inc.使用B型高纯度球形硅胶   2) 键合技术好,因此在SCX、WCX、WAX、SAX、PSA、aminopropyl、C8+SCX、C8+SAX (or WAX) 上Chrom-Matrix Inc.独步天下   3) 分析物样本在Chrom-Matrix Inc.的产品上回收率高、干扰少   4) 有LC/MS/MS,GC/MS和其他技术提供售后服务。   科奥美萃所研发的以球形B型硅胶为材质的InnovationTM 系列萃取产品,充分考虑了各类企业、机构、部门等在实际操作中的应用需求,因此对于检测效果能够达到更佳的状态,以保障检测工作的顺利执行,为安全检测的效果提供有效的保证。
  • analytica China之新拓仪器:看好固相微萃取未来发展
    p    strong 仪器信息网讯 /strong 2016年10月10-12日,第八届慕尼黑上海分析生化展(analytica China 2016)在新国际博览中心召开。 /p p   新拓仪器自成立20余年以来,一直致力于实验室样品前处理仪器设备的研发与销售,以微波消解仪作为核心产品,研发、生产涉及固相萃取仪、大气采样及其他实验室常规处理设备等多个领域。目前,公司的高端产品系列包括:高压密闭微波消解/萃取仪器系列、常压微波辅助萃取/反应仪系列、大流量空气细颗粒物采样器、SPME固相微萃取系列、多样品均质仪、多通道营养盐分析系统(特别针对车载/船载实验环境设计)、全自动氮吹浓缩仪、多通道正压式固相萃取仪、石墨消解仪等。 /p p   在本届展会上,新拓仪器携全新推出的MASS-6027多样品全自动固相微萃取仪精彩亮相。仪器信息网编辑借机采访了上海新拓分析仪器科技有限公司副总经理余伟杰,就新产品的技术特点、创新点以及固相微萃取技术未来的发展进行了深入的探讨。更多精彩内容,请观看视频。 /p script src=" https://p.bokecc.com/player?vid=C0481AC747765C859C33DC5901307461& amp siteid=D9180EE599D5BD46& amp autoStart=false& amp width=600& amp height=490& amp playerid=621F7722C6B7BD4E& amp playertype=1" type=" text/javascript" /script
  • 普立泰科携全新一代全自动固相萃取系统亮相BCEIA
    2013年10月23日,第十五届北京分析测试学术报告会及展览会(BCEIA 2013)于北京展览馆隆重召开,本次展会共吸引了国内外17个国家的364个厂商参展,北京普立泰科作为前处理行业资深代理及生产商携5款口碑优良的仪器亮相BCEIA,尤其之中更有一款全新发布的全自动多通道固相萃取仪引起了广泛关注。 众多学者前来技术交流 全自动多通道固相萃取系统以六通道,无线控制,高效的样品处理能力,实现一个序列解决288个样品处理,可选的灵活配置等优势吸引了众多眼球。此款仪器外观新颖,功能强大,与市场上现有的固相萃取有很大区别,采用surface平板电脑控制整个系统,全自动实现样品的整个净化过程。 全自动多通道固相萃取系统以六通道,无线控制,高效的样品处理能力,实现一个序列解决288个样品处理,可选的灵活配置等优势吸引了众多眼球。此款仪器外观新颖,功能强大,与市场上现有的固相萃取有很大区别,采用surface平板电脑控制整个系统,全自动实现样品的整个净化过程。 全自动多通道固相萃取系统以六通道,无线控制,高效的样品处理能力,实现一个序列解决288个样品处理,可选的灵活配置等优势吸引了众多眼球。此款仪器外观新颖,功能强大,与市场上现有的固相萃取有很大区别,采用surface平板电脑控制整个系统,全自动实现样品的整个净化过程。 众多学者前往
  • 萃取技术的奥秘揭秘——萃取实验装置助力学生掌握工业化工过程
    萃取是一种常用的分离和纯化技术,特别适用于分离提纯液体或乳浊液中的溶质。萃取原理类似于吸收,利用溶质在两相之间的溶解度差异进行分离操作。在化工类专业的实践教学中,萃取实验装置扮演着重要角色,通过实践操作装置,学生可以深入理解萃取技术的原理和应用。本文将介绍萃取实验装置在实践教学中的应用与成果,以及其特点和优势。 一、实践教学中的萃取实验装置应用 实践教学中的萃取实验装置主要用于验证性实验,如苯甲酸在水煤油中的萃取过程。装置包括萃取剂槽、水泵、流量计、塔部进料口、塔部出料口、油水液面控制管等。原料液则通过油泵、流量计,从塔部出料口流入设备。萃取剂和原料液在装置中进行接触,利用其密度差异和溶解度不同,实现苯甲酸的分离提取。 二、装置特点与优势 1. 萃取工艺的应用前景良好:萃取工艺成本较低,应用前景良好。实践教学中的萃取实验装置可以使学生了解并掌握萃取工艺的基本原理和操作技术,为将来的工作实践奠定基础。 2. 结构简单、操作方便:萃取实验装置采用欧标铝型材框架设计,整体结构简单紧凑,使用方便。硬质PVC透明管路设计使实验现象更直观,学生能够清晰观察和理解萃取过程。 3. 智能学习系统的配套:萃取实验装置配备智能学习系统,通过预习视频、3D仿真、在线考评测试等功能,培养学生的自主学习意识,激发学生的学习兴趣。同时,教师也可以借助该系统减轻教学压力,并提供学生个性化的辅导和指导。 4. 提供质保服务:为了解决用户后顾之忧,该装置提供6年质保服务,确保用户在使用过程中的顺利进行。这为教师和学生提供了更大的安心和保障。 总结: 萃取实验装置在化工类专业的实践教学中具有重要应用和优势。通过实践操作装置,学生可以了解萃取技术的原理和应用,提高实践动手能力、掌握分离原理和操作技巧,培养科学认识和实际工作能力。装置的特点和配套智能学习系统进一步增强了实践教学的效果和学习体验。为了确保用户的使用体验和满意度,该装置还提供质保服务。通过萃取实验装置的应用,将为化工类专业的学生提供更好的实践教学环境和机会,培养出更多优秀的化工人才。
  • XT-9916型微波消解/萃取仪通过上海市高新技术成果转化
    经过上海市高新技术成果转化项目认定办公室组织评委会审定,由上海新拓公司最新研发、生产的XT-9916密闭式智能微波消解/萃取仪以其多个自主知识产权创新点和国际领先的温/压控制技术被认定为上海市高新技术成果转化项目。 新拓公司从2001年就开展了微波消解仪的非接触压力控制技术的自主研发。2010年,突破现有技术瓶颈,研发出中红外非接触式扫描温控,实时扫描和监控所有样品的真实温度,实现了在密闭式微波消解设备中的非接触式温/压实时扫描监控。该技术已成功应用于XT-9916密闭式智能微波消解/萃取仪中,并于2012取得了相关技术的国家发明专利。 国内现有高通量密闭式微波消解设备由于检测技术的制约,都是以主控罐作为代表来控制温度和压力,并不能监控所有罐内样品的反应情况,存在极大的安全隐患。 国外同类产品中,只有2家德国公司拥有类似的非接触式温/压实时扫描监控技术,但由于其压力测控所需的部件十分昂贵,一般用户难以承受。 XT-9916密闭式智能微波消解/萃取仪实现了在密闭式微波消解设备中的非接触式温/压实时扫描监控,很好地解决了高通量微波反应设备的高效性与安全性的矛盾,在温/压控制技术上领先所有国内其它产品和大部分国外同类产品。 XT-9916微波消解/萃取仪已获三项专利授权,通过了上海市计量测试技术研究院对项目产品的技术检测。此外,中国科学院上海上海科技查新咨询中心对项目进行查新,确认该项目在温/压控制技术上达到国际先进水平。 目前,该产品已正式批量投产,全国多家药检所、乳制品厂家、检验检疫机构、院校等用户反映仪器运行安全稳定,获得了用户的一致好评。新拓公司将会不断创新,提升自身的科研能力,研发出更贴近市场需求的高性能产品。
  • 中国固相萃取仪市场研究报告(2017版)
    p   固相萃取技术(SOILD PHASE EXTRACTION,简称SPE)于八十年代在国外兴起,它取代了传统的液-液萃取技术。目前,固相萃取技术在样品前处理中所起的作用也显得日益重要,已被广泛应用于医药、血液、检验检疫、环保、水质、食品领域中的样品前处理。同时,人们也开始使用固相萃取技术对复杂的生物样品基质进行纯化。此外,随着技术的成熟,全自动固相萃取仪的使用也越来越广泛。 /p p    span style=" color: rgb(0, 176, 240) " strong 固相萃取技术现状 /strong /span /p p   固相萃取技术基本原理和液相色谱相同,但两者最终需要达到的目的不一样。固相萃取技术纯化的原理为:在萃取过程中,固定相对分析物的吸附力比溶解分离物的溶剂更大。当样品溶液通过吸附剂床时,分离物浓缩在其表面,其他样品成分通过吸附剂床。通过只吸附分离物而不吸附其他样品成分的吸附剂,可以得到高纯度和浓缩的分离物。 /p p   相比较高效液相色谱需要在短时间内将各化合物分离并保持好的峰形,固相萃取则是要从复杂的基液中分离出所需要的化合物并将其浓缩,以便进一步的分析。因此,一般固相萃取柱填料的粒径比高效液相色谱柱填料的粒径要大,而且固相萃取柱填料的形状是不规则的,这样可以增加接触样品的表面积。目前用的最广泛的是键合硅胶柱和聚合树脂柱。 /p p    span style=" color: rgb(0, 176, 240) " strong 固相萃取仪市场及相关应用 /strong /span /p p   固相萃取技术已经越来越广泛地被应用在各种实验室。然而,大部分用户仍在用手动固相萃取。手动固相萃取一般是采用多个固相萃取柱(SPE小柱)一次同时进行多个样品萃取。这就要求操作人员必须全神贯注,否则容易发生添加顺序混乱,导致样品作废。其次,采用手动固相萃取容易造成样品回收率重现性较差。在固相萃取过程中,样品及洗脱液通过固相萃取柱的速度会直接影响最后的回收率及重现性。而在手工操作过程中,控制流速十分困难的。因此其重现性很难保证。此外,采用手动固相萃取所需时间较长。 /p p   自动固相萃取仪可以很好地弥补手动固相萃取仪的缺陷。首先,自动固相萃取仪严格按照系统设定程序进行,不会出现手工操作的错误。其次,自动固相萃取仪能够准确控制液体流速,保证实验结果的重现性。此外,自动固相萃取仪能够运行多个不同的程序,建立的方法便于推广及建立标准方法。因此,自动固相萃取仪不仅能够降低实验人员的劳动强度,提高效率,更重要的是能够保证结果的可靠性及重现性。目前国内许多实验室要求按照GLP标准进行管理,这就要求所有的原始实验数据都必须完整地保存,而自动固相萃取仪可以很好地保存已建立的方法及实验数据,从而方便了按照GLP标准的管理。 /p p   全自动固相萃取仪按处理样品量的不同可分为:小体积全自动固相萃取仪和大体积全自动固相萃取仪。小体积全自动固相萃取仪针对的样品主要为进样量在50ml以下的食品、药品、血液等 大体积全自动固相萃取仪主要为进样量在200ml量以上的水样。全自动固相萃取仪按萃取载体可分为:柱萃取全自动固相萃取仪和膜萃取全自动固相萃取仪,其中,膜萃取全自动固相萃取仪主要为大体积水样而设计的,膜萃取速度快是其优点,而且不容易堵塞,但是单个样品的处理成本较柱萃取高。 /p p   目前国内有10余家在做全自动固相萃取仪。据统计,全自动固相萃取仪国内年销售额在3~4亿元。从市场总体情况来看,整个固相萃取仪年销售量在***台左右(包括手动、半自动和全自动),其中全自动固相萃取仪的年销售量在***台左右。产值排名靠前的部分全自动固相萃取仪生产厂家主要有:北京普立泰科仪器有限公司、天津博纳艾杰尔科技有限公司(已被SCIEX公司收购)、上海屹尧仪器科技发展有限公司、济南海能仪器股份有限公司、美国Horizon Technology公司、吉尔森公司、Biotage AB、德国lctech公司、莱伯泰科有限公司和睿科仪器有限公司等。就国产技术方面来看,相比较进口品牌的全自动固相萃取仪,国产品牌全自动固相萃取仪近年来的发展速度较快,基本掌握了全自动固相萃取仪生产技术,但也存在一些差距。 strong ( span style=" color: rgb(0, 176, 240) " 不同品牌之间的技术和价格比较及市场占有率分布详见: /span /strong a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a span style=" color: rgb(255, 0, 0) " strong ) /strong /span /p p    span style=" color: rgb(0, 176, 240) " strong 受调研用户单位性质及应用领域分布 /strong /span /p p   《中国固相萃取仪市场研究报告(2017版)》得到了广大用户、企业以及业内专家的大力支持。其中,共有380余位来自食品、环境、制药、第三方检测、科研机构等领域的专家和实验室用户参与了此次固相萃取仪调研。根据统计,参与本次调研的用户当中,检测/质控人员所占比例最高,为67% 接下来为科研人员和单位管理人员,所占比例分别为24%和9%。 /p p   从参与本次抽样调研的固相萃取仪用户的分布领域来看,用户集中在食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生等领域,其中食品/饮料领域中固相萃取仪用户的比例最高,达到30%,其次是环保/水工业领域,所占比例为28%。食品/饮料、环保/水工业、农/林/牧/渔、制药/化妆品和医疗/卫生领域的用户合计占整个用户的比例为85%。 /p p    span style=" color: rgb(0, 176, 240) " strong 受调查用户购买全自动固相萃取仪价格分布 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/83569614-c7ba-40d7-861f-7b5533f6c0d6.jpg" title=" QQ图片1.png" / /p p style=" text-align: center " strong 图4.2 受调查用户购买全自动固相萃取仪价格统计分布 /strong /p p style=" text-align: right "   (数据来源:仪器信息网抽样调研) /p p   从图中可以看出,受调查用户购买的全自动固相萃取仪价格集中在10万-40万之间,其中全自动固相萃取仪采购价格在20万-30万之间的受调查用户,占到了总调查人数的20%。此外,6%的仪器用户全自动固相萃取仪的购买价格在60万以上。 /p p    span style=" color: rgb(0, 176, 240) " strong 2016年全自动固相萃取仪采购招标情况分布 /strong /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201710/insimg/d80d51a1-e303-4061-8742-5a397bb3a96e.jpg" title=" QQ图片2.png" / /p p style=" text-align: center " strong 图4.3 2016年全自动固相萃取仪采购招标数量月分布(单位:台) /strong /p p style=" text-align: right "   (数据来源:互联网) /p p   strong  注:1、数据统计从2016年1月1日到2016年12月31日 2、采购数据来源于互联网公开发布的相关招中标信息。 /strong /p p   通过对互联网公开发布的2016年度全自动固相萃取仪的招投标信息进行梳理汇总发现,目前市场对全自动固相萃取仪的需求呈现周期性波动。但从整体趋势来看,产品需求成规律性变化趋势 strong ( span style=" color: rgb(0, 176, 240) " 具体变化规律及相关政策解读详见: /span /strong span style=" text-decoration: none " strong a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " span style=" text-decoration: none color: rgb(255, 0, 0) " 中国固相萃取仪市场研究报告(2017版) /span /a /strong /span strong ) /strong /p p    span style=" color: rgb(0, 176, 240) " strong 2016年全自动固相萃取仪采购区域分布 /strong /span /p p style=" text-align: center " strong img src=" http://img1.17img.cn/17img/images/201710/insimg/e2c9a604-8755-4da3-8cc8-f5b683cfff77.jpg" title=" QQ图片20171025143337.png" / /strong /p p style=" text-align: center " strong 图4.5 2016年全自动固相萃取仪采购区域分布 /strong /p p style=" text-align: right "   (数据来源:互联网) /p p   注:1、数据统计从2016年1月1日至2016年12月31日 2、采购数量来源于互联网公开发布的相关招中标信息,此处仅统计中标结果,废标和谈判中数据未列入 3、区域分布图通过第三方软件“地图慧”绘制所得。 /p p   2016年,通过公开招标采购全固相萃取仪的单位共涉及28个省份/直辖市。其中以西南、华南和华东地区较为密集。 strong ( /strong span style=" color: rgb(0, 176, 240) " strong 各省份全自动固相萃取仪具体需求状况及采购单位详情请见: /strong /span a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a strong ) /strong 。 /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " strong 《中国固相萃取仪市场研究报告(2017版)》 /strong /span /p p    strong 目录 /strong /p p    strong 第1章、 固相萃取仪技术与市场概述. 9 /strong /p p   1.1 固相萃取仪技术与市场简介. 9 /p p   1.2全自动固相萃取仪市场部分主流仪器情况统计. 11 /p p   1.3 全自动固相萃取仪市场部分主流仪器价格区间统计. 12 /p p   1.4全自动固相萃取仪市场部分主流厂商情况分析. 13 /p p   strong  第2章、 固相萃取仪技术现状及发展趋势. 15 /strong /p p   2.1固相萃取仪技术特点与优势. 15 /p p   2.2部分主流全自动固相萃取仪主要性能参数对比. 17 /p p   2.3 当前产品缺陷及用户关注点. 20 /p p    strong 第3章、 固相萃取仪主要应用领域与目标用户分析. 22 /strong /p p   3.1 受调查用户所在单位性质统计. 22 /p p   3.2 受调查用户所在领域统计. 22 /p p   3.3 受调查用户固相萃取仪使用特点分析. 23 /p p   3.4全自动固相萃取仪主要应用领域分析. 24 /p p    strong 第4章、 全自动固相萃取仪市场保有量/市场规模分析. 28 /strong /p p   4.1全自动固相萃取仪主流品牌占有率. 28 /p p   4.2受调查用户购买全自动固相萃取仪价格分析. 28 /p p   4.3全自动固相萃取仪市场容量/年销售量. 29 /p p   4.4 2016年全自动固相萃取仪采购招标情况分析. 31 /p p   4.5固相萃取仪部分主要用户单位分布情况. 33 /p p    strong 第5章、 总结. 35 /strong /p p    strong 附录:全自动固相萃取仪部分潜在用户单位列表. 37 /strong /p p br/ /p p style=" text-align: center " strong 更多报告内容请阅读: /strong /p p class=" f18" style=" margin: 0px padding: 0px font-size: 18px color: rgb(60, 84, 151) font-family: 宋体, & #39 Arial Narrow& #39 text-align: -webkit-center white-space: normal background-color: rgb(255, 255, 255) " a href=" http://www.instrument.com.cn/survey/Report_Census.aspx?id=141" target=" _blank" title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " strong 中国固相萃取仪市场研究报告(2017版) /strong /span /a /p p style=" text-align: center " strong & nbsp & nbsp 【咨询热线】:010-51654077-8042 /strong /p p 更多相关报告内容: /p p   · 2016食品行业政策解读及相关分析仪器市场动态研究报告 /p p   · 2016年制药行业市场发展及对仪器市场影响分析报告 /p p   · 2016年分析仪器中标信息统计分析报告 /p p   · 2016年中国环境监测市场分析及未来市场预测报告 /p p   · 中国气质联用仪市场调研报告(2016版) /p p   · 中国气相色谱仪市场调研报告(2016版) /p p   · 中国在线挥发性有机物分析仪市场调研报告(2016版) /p p   · 2016年第三季度分析仪器中标信息分析报告 /p p   · 中国傅立叶变换中红外光谱仪市场调研报告(2016版) /p
  • 萃取富集-石墨炉原子吸收法测试工业废水中铊含量
    铊及铊化物都具有剧毒,铊对动植物的毒性远大于铅、镉、汞等其他重金属。《GB 31573-2015 无机化学工业污染物排放标准》中规定涉铊的无机化合物工业企业,其车间或生产设施废水排放口的铊总量限值为0.005 mg/L。现行水质中铊含量测定标准《HJ 748-2015 水质铊的测定石墨炉原子吸收分光光度法》中列出了两种测试方法:沉淀富集法和直接法。直接法对于基体复杂的废水样品而言,基体影响大,且灵敏度不足,准确性存疑;沉淀富集法则需要用到溴水(剧毒试剂)、离心机(额外的实验设备)等,对实验室管理体系要求较高,增加了企业的管理成本。珀金埃尔默开发了一种利用铁盐和溴化钾试剂对废水样品中的铊进行萃取富集处理的方法,有效去除碳酸锂生产企业排放废水中的复杂基质,并降低对石墨炉原子吸收光谱仪的灵敏度要求,大大简化了处理过程,节省企业的管理成本,结果准确可靠,是一种高性价比的企业内控检测方法。仪器和试剂本次实验使用的是PerkinElmer™ 900T型火焰-石墨炉一体式原子吸收光谱仪,配置铊元素无极放电灯(Tl-EDL)。样品处理用到的试剂有:硫酸、磷酸、盐酸、铁(III)盐(即硫酸铁或氯化铁)、溴化钾、甲基异丁基酮(MIBK),纯度要求在分析纯以上。前处理精确量取废水样品25mL于烧杯中,加入铁盐试剂,盐酸,混匀后置于150 ℃ 电热板上加热,待无气泡冒出后,提高加热温度使溶液近干。取下稍冷后,加入硫酸(1+4),加热数分钟,用水转移至50mL比色管中,加水定容至35mL,加入溴化钾试剂,摇匀。静置,加入磷酸,加水定容至50mL刻度,摇匀。向比色管中准确加入5 mL甲基异丁酮(MIBK),充分振摇数分钟,待静置分层后,取上层有机相测试。样品分析仪器测试参数石墨炉升温程序标准溶液与样品测试谱图如下图所示,峰型左右对称呈正态分布形状,出峰时间在1秒左右,表明石墨炉温度程序对样品合适。标准溶液和样品溶液Tl测试谱图标准曲线和样品测试结果见下图,萃取富集-石墨炉原子吸收法测试TI的结果与ICP-MS法一致,加标回收符合方法验证要求。通过萃取富集的处理方式,样品中低浓度Tl元素可以浓缩至有机相中,相应的限量指标也从原来0.005 mg /L转变为0.025 mg/L,同时原本干扰大的基体组分也去除干净,大大降低对仪器的灵敏度要求。萃取富集石墨炉法Tl标准曲线AAS和ICPMS测试结果想要了解更多测试细节,欢迎扫码下载应用报告。扫描上方二维码即可下载资料
  • 美华科技八通道固相萃取仪亮相上海Analytica展
    10月16日至18日,2012慕尼黑分析生化展在上海新国际展览中心举行,美华科技/美森自动化在会上展出了MULTI-SPE A208八通道全自动固相萃取仪及MULTI-SPE M08正压型多功能固相萃取装置。MULTI-SPE A208全自动固相萃取仪是该展会上唯一一款八通道自动固相萃取仪,其通量高及高度智能化的特点引起了许多参观者的高度兴趣。MULTI-SPE A208在仪器硬件及软件的设计上更加贴近用户的实际需求。 而MULTI-SPE M08则以其操作简单,适用范围而赢得包括许多国外参观者的注意。与真空负压型固相萃取装置比较,正压型固相萃取装置具有压力均衡稳定,易于控制流速的特点。而MULTI-SPE M08不但可以进行常规的SPE操作,而且还可以完成大体积样品一次性载入、双柱萃取、以及大体积洗脱组份收集的特点。另外,该仪器还可以满足不同用户的特殊应用,使得其受到许多参观者的好评。展会期间,公司CEO,样品前处理专家陈小华博士就客户提出的固相萃取及其他样品前处理问题给予了解答和建议,为客户解决他们在样品前处理遇到的实际问题。
  • PAS固相微萃取系统荣获仪器信息网2019年度“*新品”奖
    “科学仪器*新品”评选活动于线上隆重发布,德国PAS CONCEPT 96高通量薄膜固相微萃取获得了各位专家评审和各界同仁的认可,从700多款仪器中脱颖而出,荣获2019年度科学仪器“*新品”奖!德祥产品总经理-金莹瑛女士代表领奖,并发表获奖致词,她首先感谢了平台对于德祥产品的支持,接着向观众介绍了近30年来德祥在仪器行业深耕及发展,详细阐述PAS高通量薄膜固相微萃取产品的创新之处。德祥承诺将会始终如一的为广大客户提供更多*的进口实验室设备及贴心的服务。2019年度科学仪器*新品德祥产品总经理-金莹瑛女士致词德国PAS Technology是一家集研发和销售自动样品处理的技术的公司,专注于无溶剂萃取技术,提供从采样到解析的一系列自动化解决方案。公司总部位于图林根州的马格达拉,可以为全球的客户提供*的服务,并与微萃取领域的权威教授Janusz Pawliszyn及其研发团队合作,成功开发了CONCEPT 96及CONCEPT NT等产品。涉及的行业包括:医疗实验室、环境分析、食品分析、空气分析和饮用水分析系统。继固相微萃取技术Solid Phase Microextration,简称“SPME”自1989年发明于加拿大皇家学院Janusz Pawliszyn教授,面世30年以来,目前该技术成熟,已受到市场广泛认可后,又推出了薄膜固相微萃取技术TFME(Thin Film Solid Phase Microextration),也称Coated Blade SPME。德国PAS CONCEPT 96高通量薄膜固相微萃取系统是首台将TFME薄膜固相微萃取在LC/LC-MS中的应用商业化的设备。在TFME中,与圆柱型的萃取头相比,这种薄片式形状的萃取相采用高表面积/体积比的平面薄片,在这种结构下,萃取相的表面积增加,而涂层的厚度保持不变或变薄,这使得无需延长采样时间的情况下提高了灵敏度。德国PAS CONCEPT 96 高通量薄片固相微萃取(1) 高灵敏度高表面积/体积比的平面薄片结构,萃取相表面积增加,灵敏度大大提高。(2) 高萃取效率可同时自动化处理96个样品,平均每个样品萃取时间<3min(3) 可用于复杂样品的前处理涂层薄片可直接浸入提取非常复杂的样品,例如生物流体、组织均质体等,减少溶剂带来低回收率,柱床易堵塞的影响CBD:涂层薄片装置 (4) 步骤简单,绿色化学集预处理、提取、清洗、解析于一体,绿色环保(5) 应用范围广可用于代谢组学、污染物、药物及其代谢物等领域,适用于生物医学、毒品检测、食品药物残留、环境水药物残留等行业目前已有很多不同应用的外文文献,如:《固相微萃取分析鸡肉组织中的多兽药残留》、《固相微萃取兴奋剂检测》、《固相微萃取分析生物体液中的脂肪酸》▼ *产品点击速递PAS CONCEPT 96 高通量薄片固相微萃取
  • 污水识毒,一机两得 | SUPEC 5220型 在线固相萃取液质联用系统
    当打击毒品与污水挂钩为了助力缉毒检查,各地区开始进行污水中毒品的分析。污水验毒,通过污水毒品检测技术了解区域毒情,打击毒品犯罪,为公安机关快速精确的判定“毒情”提供有利技术支撑。污水识毒,谱育科技硬核新利器来咯,高效、快速、精准分析,高端技术应用激发禁毒实战新动能。✦✦每一次创新都不同凡响SUPEC 5220 OSPE LC-MS/MS 在线固相萃取液质联用系统● ● ●一机两得,大体积进样+常规进样渠道无需前处理,采用自动化“一站式”分析模式大体积进样,实现ng/L级别的检出限和定量限前沿技术搭配,精准监测,更从容应对复杂基质双柱交替运行,无需反复,更高效输出监测数据★产品概述★谱育科技全新推出的SUPEC 5220 在线固相萃取液质联用系统,仪器采用在线SPE(固相萃取)与LC-MS/MS联用技术,增大样品通量,实现对复杂基质中目标物的富集与分离,有效解决传统离线SPE方法前处理繁琐、效率低等问题,大大提升实验室污水中违禁品的检测效率和实验结果的准确性。
  • 智能化全自动固相萃取仪
    成果名称 智能化全自动固相萃取仪 单位名称 北京普立泰科仪器有限公司 联系人 初春 联系邮箱 Chun.chu@pltk.com.cn 成果成熟度 □研发阶段 □原理样机 □通过小试 &radic 通过中试 □可以量产 合作方式 □技术转让 □技术入股 □合作开发 &radic 其他 成果简介: 基于我国十二五科技发展规划对大力发展国产仪器的要求,根据北京市食品安全分析测试工程技术研究中心需求,结合首都科技条件平台专项科学仪器开发培育项目2013年度项目组织工作指南,开发基于固相萃取的智能化样品前处理设备,具有包括以下研发内容: 在仪器开发方面,侧重于1)研制具有自主知识产权的全自动固相萃取仪;2)通过集成控制软件、人机界面、方法系统数据和传输接口,形成智能化样品前处理设备。在应用开发方面,侧重于将该系统用于环境监测和食品安全等领域关键技术的研究。 本项目是在本研究团队多年研究基础上,以产、研、用合作研究模式的进一步设计和开发。仪器开发任务将为应用开发提供高性能的固相萃取仪和集成控制软件;工程化开发将确保研制仪器的安全性、稳定性和耐用性,为全自动固相萃取仪的产业化提供保证。应用开发将以环境污染物、食品中有毒有害物质为仪器开发提供的样品样机 工程化样机和成型产品进行测评和改进意见反馈,同时还将拓展仪器的性能,并扩充仪器开发建立的数据库。 ①接触式液面探测技术; 通过技术对比,选择计算式针随液面下降的方式进行取样,大大降低了交叉污染的可能性; ②固相萃取设备的高可靠性和高重复性; 全自动仪器的高可靠性和高重复性一直是困扰厂商的一个技术壁垒,本项目通过硬件和软件的相互配合,在仪器设计中采用先进的材质和部件进行试验,在每个部件上都做到精益求精,样机和每一台出厂机器都确保经过稳定性测试,使仪器达到要求; ③样品预处理条件与方法效率间的方法建立。 样品预处理过程一直占据了整个实验过程的绝大部分时间,有60%以上的时间都在进行样品预处理,但是目前实验室样品数量越来越大,应急监测、常规检测都变成了实验室的常态,目前科技发展越来越迅速,对效率和速度的要求越来越高,如何更快更好的将预处理条件建立是摆在科研工作者面前的一个难题。本项目通过与北京市理化分析测试中心的合作,建立了预处理时间少于5小时的前处理方法,并且通过多通道的全自动智能化仪器,让实验室效率大幅提高。 创新点: ①研制的固相萃取仪能够实现样品前处理的智能化、自动化及高通量; ②该项目研发的设备包括进样、萃取、收集、清洗多种功能,实现样品前处理操作的一体化; ③仪器研发与相应的应用方法同步进行,提供完善的解决方案。 应用情况: 将研制的智能化多功能样品前处理设备用于食品安全及环境监测等领域关键技术的研究,并建立环境样品中多氯联苯污染物、食品中有机氯农药和拟除虫菊酯类农药残留的前处理方法,拓展仪器的应用。 ①以环境中持久性有机污染物为研究对象,为多氯联苯类污染物的检测提供技术支持; ②以有机氯农药和拟除虫菊酯类农药为研究对象,为实现该类食品安全预警与质量控制提供技术支持。 应用前景: 可以有效的利用公司已有的客户资源和课题合作单位,通过网络、会议、展会等形式扩大产品的知名度,通过先试用再购买的销售手段进行智能化样品前处理设备的推广,在短期内增加客户群体和仪器持有量,更好更快速的打开市场。 本课题研制的全自动固相萃取仪已经展现了良好的市场前景,经过低于一年半的项目周期,不仅成功研制出可使用的样机,使用样机做了许多涵盖面较广的应用,并且在短期内已经销售了3套,展现出非常可观的销售前景,并且目前已有涵盖企业、高校、科研院所、检测单位等不同领域的用户达成了购买意向。 本课题组针对研制的全自动固相萃取仪,制定了相应的推广应用计划: 1. 继续拓展在各相关领域的应用范围,推广固相萃取法针对持久性有机污染物、多环芳烃类的应用; 2. 继续拓展在食品安全领域的应用范围,推广固相萃取在有机磷农药、兽药、非法添加剂、真菌毒素等领域的应用; 3. 借助课题合作单位的国产科学仪器应用示范中心、&ldquo 国产科学仪器设备应用示范产业技术创新战略联盟&rdquo ,以及首都科技条件平台等多个平台进行全自动固相萃取仪的应用、示范及推广工作。 知识产权及项目获奖情况: 已提交专利申请4项,其中发明专利3项,实用新型专利1项,还未授权。 撰写核心期刊文章2篇,一篇已接收,一篇在审稿。
  • 上海新拓推出多通道正压式固相萃取仪
    上海新拓研制的XT-SPE-Ⅰ 型多通道正压式固相萃取仪,一次可处理24个样品,通过每一个孔位的微调旋钮,可真正自由调节每个孔位的流速大小,从而确保每一个萃取柱的流量均匀 创新性的串联接口,可将两支萃取柱连接进行串联萃取。这些新型设计的应用,使得固相萃取的进行更为合理、高效。      详细请浏览:http://www.sh-xintuo.com/cp.aspx?id=40
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制