核磁共振器

仪器信息网核磁共振器专题为您提供2024年最新核磁共振器价格报价、厂家品牌的相关信息, 包括核磁共振器参数、型号等,不管是国产,还是进口品牌的核磁共振器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合核磁共振器相关的耗材配件、试剂标物,还有核磁共振器相关的最新资讯、资料,以及核磁共振器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

核磁共振器相关的厂商

  • 夸利安公司(Qualion Ltd. )是专业的工业核磁分析仪器公司,位于以色列北部的漂亮海滨城市----海法,她是一家技术密集型的跨国企业,致力于核磁分析技术在工艺生产中的应用,尤其是炼油、乙烯及其他化工工艺中的应用。夸利安核磁共振仪首次把实验室的分析技术NMR 应用到工艺现场,它是世界上唯一一家用核磁共振技术对工艺管道中样品成分和理化特性进行实时在线分析的公司;工业核磁共振分析仪可长时间、不间断的对管道中的样品进行连续扫描测量,分析结果准确可靠,重现性和再现性非常良好,是一项独一无二的在线实验室分析技术。分析时,样品直接流入核磁分析的探头管道系统,无需对系统进行校正,无需标样做参比,就可直接得到分析结果。夸利安核磁共振分析系统稳定性好,分辨率高,分析结果准确可靠,可在数秒钟内就可以对样品的多种物理、化学性质指标做出准确的分析。建立在夸利安核磁共振波谱基础上的在线分析模型适用性强,维护量少,维护费用低。炼油厂和重质粘稠液体行业在工艺上使用夸利安核磁共振在线分析系统,能显著的降低生产能耗,延长设备的使用寿命,纯化产品的组成,提升高附加值产品的收率,提高企业的利润;该系统上的项目投资可在不到数个月的时间内全部回收。夸利安公司的产品主要集中在一个领域:样品质量指标的实时在线分析;自1995 年以来,夸利安核磁共振在线分析系统已经广泛应用于全球炼油企业的先进过程控制和在线实时分析。其用户遍布欧美30 多个发达国家和地区。夸利安公司拥有一支非常专业、、有多年现场施工经验的技术工程队伍,能从设计、施工、系统上线试车及售后的各种技术支持与维护方面提供全方位的服务;夸利安核磁共振公司拥有覆盖全球的技术支持服务中心,为用户提供全程式、低风险的在线分析技术解决方案。
    留言咨询
  • 布鲁克公司 生命科学和分析系统的市场领导者 在 50 多年的发展历程中,布鲁克始终致力于开发和生产性能强大的测量仪器,为我们客户的研究和行业发展铺平了道路。如今,布鲁克已经成为全球领先的分析技术提供商。全球超过 6,000名员工不断努力满足客户需求,扩展科学、工业和医疗分析的范围。 核磁共振(NMR)的传统 布鲁克由核磁共振(NMR)先锋人物 GüntherLaukien 创办,布鲁克的传统与 核磁共振(NMR) 波谱紧密相关。20 世纪 60 年代,布鲁克是第一家为科学和工业领域生产商用脉冲核磁共振(NMR)波谱仪的公司,从而为开发现代材料和以核磁共振(NMR) 为基础的医疗进步奠定了坚实基础。 始终如一的正确解决方案 时至今日,布鲁克仍旧保持其独特的技术专长,并坚持追求为所有分析任务提供最佳解决方案的目标。布鲁克的产品组合涵盖了所有先进的测量技术,从用于日常任务的常规分析系统到高端研究系统。 支持技术 这些出色的技术能力可以最大限度帮助客户克服所面临的时间、预算和性能限制,从而提高工作效果。布鲁克的个性化全面服务方案可以为客户提供支持,实现最佳工作效果并帮助其专注于核心业务。感谢关注!布鲁克官网:www.bruker.com布鲁克应用技术咨询:400-898-5858布鲁克售后技术支持:400-898-1088布鲁克售后技术支持邮箱:helpdesk.bbio.cn@bruker.com如有其他需求请发送邮件Marketing.BBIO.CN@bruker.com
    留言咨询
  • 400-860-5168转1037
    麟文仪器是一家倡导以技术为先的仪器公司,在仪器领域有着丰富的应用经验,尤其在材料领域包括陶瓷、玻璃以及聚合物方面有非常强的应用背景;近年来我们在煤灰高温粘度方面也积累了丰富的应用经验。我们力求以针对性的产品、系统化的应用和专家式的服务,多层次、持续性地满足用户的专业需求。麟文仪器是英国牛津公司台式核磁共振仪(小核磁,MQC)的代理,全面负责台式核磁共振(NMR)的销售、维修以及技术服务,为广大食品行业用户、化纤用户、石化用户以及化工用户提供安全、迅速 、环保的核磁方法。牛津的60MHz高分辨台式核磁共振仪(Pulsar)是近年牛津的又一新产品,分辨率与300MHz的分辨率相当。该仪器具有操作简单、费用节省,是医药公司、研究所、大学供科研人员、研究生、本科生使用的理想仪器。麟文仪器还可为红外光谱仪用户提供各种红外附件产品。麟文仪器目前是英国Specac在国内的指定代理商,为广大用户提供质量优异、满足不同要求的红外光谱附件和其他光谱仪器的附件。我们也可以为广大用户提供质优价廉的国产配件,尤其是红外光谱需求量很大的KBr碎晶,因其质量优异而受到广大用户的青睐。 麟文仪器自2006年6月开始全面代理在玻璃陶瓷非常著名的Orton的测试仪器,为用户提供相应的技术支持、技术服务;并负责中国地区的销售。Orton的仪器包括: 玻璃软化点测定仪 玻璃退火点应变点测定仪 玻璃近似软化点仪测定仪 高温弯曲梁粘度计 高温平板粘度计 高温旋转粘度计 膨胀仪麟文仪器还为国内外著名的陶瓷厂商提供测定窑炉温度的Orton测温锥(测温三角锥)和测温块。Orton的测温锥(测温三角锥)和测温块以其质量稳定、测温准确在玻璃、陶瓷、耐火材料等行业有较高的声誉。 有关麟文仪器产品的详细信息、资料等,请登录本公司的网站:www.leadwin.cn。
    留言咨询

核磁共振器相关的仪器

  • picoSpin 45波谱仪结构紧凑、价格合理,为用户提供核磁共振(NMR)波谱技术的强大功能。该仪器大大减少了成本与尺寸,使各类实验室都可使用核磁共振光谱技术。它操作简便,可让核磁共振技术使用经验有限的学生和技术人员利用该技术来鉴定化合物或分析其结构。仪器单元仅占传统核磁共振波谱仪的一小部分空间。 该仪器的毛细管进样系统包含于一个可更换的样品仓内,仅需30&mu L液体样品。其温控永久磁铁不需要液体冷冻剂,进而无需使用耗材或专用的实验室设备。此外,由于仪器的重量很轻(少于5公斤),可轻松实现在多个实验室之间的共用。核磁共振波谱数据文件为标准的JCAMP-DX格式,以便兼容标准核磁共振数据分析套件。微型45MHz 1H脉冲傅里叶变换核磁共振波谱仪高性能,高分辨率,重量轻,便于携带使用简便;无需进行专门的操作培训可更换的毛细管样品仓微线圈探头完全可自由控制的脉冲控制器以太网界面网络服务器GUI包含一年期的Mnova*核磁共振数据分析套件规格数据样品量:30µ L尺寸:7 x 5.75 x 11.5 英寸 (17.8 x 14.6 x 29.2厘米)重量:10.5磅(4.8千克)
    留言咨询
  • 操作简便,性能优越,可媲美其他分析技术 依托数十年优质核磁共振仪器的研发经验,布鲁克最新推出了经济高效、性能卓越的紧凑型核磁共振波谱仪:Fourier 80 台式核磁共振波谱仪。 Fourier 能提供可与其他分析技术相媲美的优质数据,且操作简单、软件易用,即使不是核磁共振波谱专家,也能获取相关核磁共振的明确结果。 最重要的是,Fourier 可以安装在通风柜或工作台上,不需要另建基础设施。 有了布鲁克核磁共振台式系统,任何科学家或技术人员都能成为核磁共振专家。获取核磁共振相关化学结果,从未如此轻松Fourier 采用现代化直观 GoScan 软件,只需轻触按钮,即可获取优质样品数据。Fourier 还可使用布鲁克著名的专业软件 TopSpin&trade 。 为了帮助科学家借助核磁共振获得独特且明确的答案并加以利用,布鲁克一直在针对多个应用领域的特定分析难题开发工作流程。用户还可以轻松创建自己的工作流程和协议,利用核磁共振的强大功能,在自己的专业领域提供清晰、优质的结果。Fourier 80 台式核磁共振波谱仪
    留言咨询
  • 核磁共振教学仪随着医学教育的不断进步,传统的教学方法和设备已经无法满足现代教育的需求。纽迈分析核磁共振教学仪作为教学设备更新的典范,以其创新的技术、高度仿真的操作体验和安全的教学环境,正在引领医学教育的新潮流。在医学领域,尤其是对于核磁共振成像(MRI)这样的高端技术,传统的教学方法已经无法满足学生对实际操作经验的需求。教学设备更新成为提升教育质量的关键。纽迈核磁共振教学仪正是为了解决这一问题而设计,它通过模拟真实MRI操作环境,为学生提供了一个安全、高效的学习平台。苏州纽迈分析核磁共振教学仪EDUMR20-015V-I,是在经典的核磁共振成像技术实验仪的基础上升级得到的一款专为核磁共振成像技术教学实验而设计的小型台式核磁共振仪器。EDUMR20-015V-I搭载核磁共振成像虚拟数据采集与图像重建实验教学平台,实现上机操作和虚拟核磁共振数据采集相结合,使学生可以全方位了解核磁共振及其成像原理。核磁共振教学仪核磁共振教学仪的产品参数:磁场强度:0.5T±0.03T可辅助搭建以下平台:磁共振教学示范平台核磁共振教学仪的产品特点:1、永磁体,台式桌面设计,磁体安全、稳定,占地面积小;2、专用教学设计,软、硬件均具有高度的开放性;3、具有与医用核磁共振成像仪相同的模块,真实体验磁共振的原理、仪器、应用;4、适用于医疗器械、医学影像、生物医学工程、医学物理、近代物理等相关专业理论与实践教学。核磁共振教学仪的功能介绍:1、参数(包括90º 与180º 脉冲的脉宽)的初始化设置和实验结果的保存;2、核磁共振信号的数据采集、处理,观察的FID信号(时域、频域),自旋回波信号等;3、核磁共振图像的显示、处理和保存;4、提供K-space原始数据;5、手动校准和自动校准磁共振频率;6、系统硬件信号的可开放测试;7、远程实验功能;8、多种磁共振成像序列;9、实用的磁共振成像软件,友好的操作界面,多参数可调;10、可扩展的三维成像,图像重建功能;纽迈分析核磁共振教学仪代表了教学设备更新的新方向,它通过提供安全、高效、互动性强的学习平台,极大地提升了医学生对MRI技术的理解和应用能力。随着教育方式的不断进步,纽迈核磁共振成像教学仪有望成为医学教育中不可或缺的一部分。
    留言咨询

核磁共振器相关的资讯

  • 布鲁克 2018 核磁共振 NMR 培训计划 (核磁共振高级培训课程)
    布鲁克 2018 核磁共振 NMR 培训计划详情请前往以下网址下载http://www.instrument.com.cn/netshow/SH100343/down_880258.htm布鲁克 2018 核磁共振 NMR 培训计划布鲁克 2018 核磁共振 NMR 培训计划核磁共振 NMR Avance 1D/2D (Avance 谱仪操作培训)核磁共振 NMR Advanced NMR Methods(高级 NMR 方法培训)核磁共振 NMR Avance Service and Maintenance(Avance 谱仪维护)核磁共振 NMR Avance Solid State NMR Methods(Avance 固体核磁操作培训)
  • 核磁共振、顺磁共振、磁共振成像......你想要的都在这里
    p style=" text-align: justify "   磁共振指的是自旋磁共振(spin magnetic resonance)现象,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。人们日常生活中常说的磁共振成像(Magnetic Resonance Imaging,MRI),是基于核磁共振现象的一类用于医学检查的成像设备。 /p p style=" text-align: justify "    span style=" color: rgb(255, 0, 0) " strong 那么,你真正了解核磁共振(NMR)、磁共振成像(MRI) 及电子顺磁共振(EPR/ESR)吗? /strong /span /p p style=" text-align: justify "    strong 核磁共振波谱(NMR) /strong /p p style=" text-align: justify "   核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR )研究的是原子核对射频辐射(Radio-frequency Radiation)的吸收。1945 年布洛赫(Bloch )和伯塞尔 (Purcell) 证实了原子核自旋的确实存在, 他们为此共同获得了1952 年诺贝尔物理奖。1991年诺贝尔化学奖授予了R.R.Ernst教授,以表彰他对二维核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖的授予,充分说明了核磁共振的重要性。 /p p style=" text-align: justify "   自1953年出现第一台核磁共振商品仪器以来,核磁共振在仪器、实验方法、理论和应用等方面有着飞跃的进步。目前,NMR不仅是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析,其所应用的学科已经从化学、物理扩展到了生物、医学等多个学科。 /p p style=" text-align: justify "    strong 磁共振成像(MRI) /strong /p p style=" text-align: justify "   核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。 /p p style=" text-align: justify "   MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。经常为人们所利用的原子核有: sup 1 /sup H、 sup 11 /sup B、 sup 13 /sup C、 sup 17 /sup O、 sup 19 /sup F、 sup 31 /sup P。在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。 /p p style=" text-align: justify "    strong 电子顺磁共振(EPR/ESR) /strong /p p style=" text-align: justify "   电子顺磁共振(Electron Paramagnetic Resonance 简称EPR),或称电子自旋共振 (Electron Spin Resonance 简称ESR),是研究电子自旋能级跃迁的一门学科,是直接检测和研究含有未成对电子的顺磁性物质的现代分析方法。 /p p style=" text-align: justify "   自1945年物理学家Zavoisky首次提出了检测EPR信号的实验方法至今,电子顺磁共振技术的理论、实验技术和仪器结构性能等诸多方面都有了很大的发展,特别是20世纪70年代随着计算机和固体器件等电子技术的发展及其推广应用,使EPR实验技术有了许多重大的突破。随着现代科学技术的发展,EPR已经在物理学、化学、材料学、地矿学和年代学等许多领域获得了越来越广泛的应用。 /p p style=" text-align: justify " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 131px " src=" https://img1.17img.cn/17img/images/202006/uepic/675b0ee9-ba73-4bfb-892b-46b308191a24.jpg" title=" ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" alt=" ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" width=" 600" height=" 131" border=" 0" vspace=" 0" / /a /p p style=" text-align: justify "   自20世纪40年代以来,磁共振技术的持续发展对生命科学、医药、材料等多学科的发展起到了巨大的推动作用。而相关学科的快速发展,对磁共振技术也提出了更高的要求。在多方需求的碰撞下,核磁共振(NMR)、电子顺磁共振(EPR/ESR)、磁共振成像(MRI)等不同分支的磁共振技术也逐渐“百花齐放” DNP、超高转速固体核磁、液相色谱核磁联用等各种新的技术和应用层出不穷,为磁共振的发展提供了强劲的动力,其应用范围跨越了物理、化学、材料、生物等多个学科。 /p p style=" text-align: justify "   为了促进和加强国内外磁共振工作者的学术交流与合作,仪器信息网、北京波谱学会、《波谱学杂志》将于2020年6月9-10日联合举办“第四届磁共振网络会议”(iConference on Magnetic Resonance,简称iCMR 2020)”。本次会议开设了磁共振(MR)新技术及其应用、核磁共振(NMR)技术及其应用、顺磁共振(EPR/ESR)技术及其应用、磁共振成像(MRI)技术及其应用四个专题,更大范围涵盖了波谱相关技术及应用,共计安排了11位专家报告,并吸引了布鲁克、日本电子、国仪量子、纽迈分析、青檬艾柯等国内外的知名企业参与。 /p p style=" text-align: justify "   而且,特别值得一提的是,本次会议邀请到了清华大学宁永成教授分享其八本书的故事。非物理专业出身,如何深入理解和应用磁共振波谱?届时,宁永成教授和杨海军高工的专家对话环节或将让您醍醐灌顶。 span style=" color: rgb(255, 0, 0) " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 立即报名》》》 /a /strong /span /p p style=" text-align: center " strong 报告日程 /strong /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" strong 磁共振(MR)新技术及其应用(6月9日) /strong /a /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p style=" text-align:center " 09:20-09:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target=" _blank" 开幕致辞—非物理专业出身,如何深入理解和应用磁共振波谱? /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target=" _blank" 杨海军(清华大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 09:30-10:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target=" _blank" 多核人体磁共振成像(MRI)新仪器及应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target=" _blank" 周欣(中国科学院精密测量科学与技术创新研究院) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 10:00-10:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target=" _blank" 基于量子技术的单分子磁共振谱学和成像 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target=" _blank" 石发展(中国科学技术大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 10:30-11:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target=" _blank" 布鲁克固体核磁新技术简介 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target=" _blank" 王秀梅(布鲁克(北京)科技有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 11:00-11:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target=" _blank" “非常见”原子核的固体核磁共振研究 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target=" _blank" 徐骏(南开大学) /a /p /td /tr /tbody /table p style=" text-align: center " br/ /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 核磁共振(NMR)技术及其应用(6月9日) /a /strong /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p style=" text-align:center " 14:00-14:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target=" _blank" 基于磁共振技术的蛋白质动态调控机制研究 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target=" _blank" 姜凌(中国科学院精密测量科学与技术创新研究院) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 14:30-15:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target=" _blank" 日本电子特有核磁技术简介 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target=" _blank" 叶跃奇(JEOL(Beijing)) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:00-15:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target=" _blank" 核磁共振仿真波谱仪开发与教育应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target=" _blank" 汪红志(华东师范大学上海市磁共振重点实验室) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:30-16:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target=" _blank" Bruker液体核磁新进展 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target=" _blank" 徐雯欣(布鲁克(北京)科技有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 16:00-16:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target=" _blank" 基于密度泛函理论的高精度有机分子化学位移计算在线系统构建及其在有机分子核磁谱图指认及结构确证中的应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target=" _blank" 李骞(中国科学院化学研究所) /a /p /td /tr /tbody /table p style=" text-align: center " br/ /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 顺磁共振(EPR/ESR)技术及其应用(6月10日) /a /strong /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p 09:00-09:30 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target=" _blank" 若干血红素衍生物的电子自旋顺磁共振研究 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target=" _blank" 李剑峰(中国科学院大学) /a /p /td /tr tr td width=" 14%" p 09:30-10:00 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target=" _blank" 电子顺磁共振在研究青蒿素激活机制中的应用 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target=" _blank" 刘国全(北京大学药学院) /a /p /td /tr tr td width=" 14%" p 10:00-10:30 /p /td td width=" 48%" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target=" _blank" 光合作用水裂解催化中心的仿生模拟 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target=" _blank" 张纯喜(中国科学院化学研究所) /a /p /td /tr tr td width=" 14%" p 10:30-11:00 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target=" _blank" 顺磁共振仪器——从系综到单自旋 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target=" _blank" 许克标(国仪量子(合肥)技术有限公司) /a /p /td /tr tr td width=" 14%" p 11:00-11:30 /p /td td width=" 48%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target=" _blank" 利用电子顺磁共振(EPR)指导有机合成 /a /p /td td width=" 37%" align=" center" valign=" middle" p a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target=" _blank" 蒋敏(杭州师范大学) /a /p /td /tr /tbody /table p style=" text-align: center " br/ /p p style=" text-align: center " strong a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" 磁共振成像(MRI)技术及其应用(6月10日) /a /strong /p p style=" text-align: center " span style=" color: rgb(227, 108, 9) " a href=" https://www.instrument.com.cn/webinar/meetings/6832/" target=" _blank" — 我要报名 — /a /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p style=" text-align:center " 14:00-14:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target=" _blank" 心脏磁共振成像中的黑血技术 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target=" _blank" 丁海艳(清华大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 14:30-15:00 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target=" _blank" 低场核磁成像在临床前科研中应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target=" _blank" 丁皓(苏州纽迈分析仪器股份有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:00-15:30 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target=" _blank" 智能集成化磁共振成像系列仪器及应用 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target=" _blank" 刘化冰(北京青檬艾柯科技有限公司) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:30-15:40 /p /td td width=" 48%" p style=" text-align:center " 现场讨论环节 /p /td td width=" 37%" p style=" text-align:center " 杨海军主持 /p /td /tr tr td width=" 14%" p style=" text-align:center " 15:40-16:10 /p /td td width=" 48%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target=" _blank" 我的八本书 /a /p /td td width=" 37%" p style=" text-align:center " a href=" https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target=" _blank" 宁永成(清华大学) /a /p /td /tr tr td width=" 14%" p style=" text-align:center " 16:10-16:40 /p /td td width=" 48%" p style=" text-align:center " 专家对话 /p /td td width=" 37%" p style=" text-align:center " 杨海军@宁永成 /p /td /tr tr td width=" 14%" p style=" text-align:center " 16:40-17:00 /p /td td width=" 48%" p style=" text-align:center " 现场答疑 /p /td td width=" 37%" p style=" text-align:center " 全体参会人员 /p /td /tr /tbody /table p   span style=" color: rgb(255, 0, 0) " strong  特别惊喜: /strong /span 为了提高磁共振工作者工作和学习的热情,鼓励大家积极参与会议交流环节,本次会议还特别安排了抽奖环节,将从积极提问的参会者中抽取幸运者,送出主办方精心准备的礼品(小度智能音箱、京东卡)! /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/aff21f8a-cd43-40a2-bb8d-8fa2d2012782.jpg" title=" 二维码图片_6月3日17时44分31秒.png" alt=" 二维码图片_6月3日17时44分31秒.png" / /p p style=" text-align: center " strong 扫码报名,免费参会 /strong /p
  • “低场核磁共振仪器近几年异军突起”
    仪器信息网讯 为进一步促进我国低场核磁共振技术研究工作的开展和学术交流,并推进低场核磁共振技术在各领域中的应用,2013年10月12日,由上海理工大学主办、纽迈电子科技有限公司协办的&ldquo 第五届全国低场核磁共振技术及应用研讨会&rdquo 在上海理工大学召开,150余名来自不同专业领域的专家和学者出席了会议,仪器信息网应邀参加了此次会议。本次大会主席上海理工大学医疗器械与食品学院院长刘宝林教授主持了会议,上海理工大学副校长刘平发表了演讲,王欣博士代表庄松林院士宣读了贺词。 会议现场 上海理工大学教授医疗器械研究所所长聂生东教授   代表本次会议主办方,上海理工大学的聂生东教授围绕磁共振技术中的二维谱做了主题报告,聂生东教授谈到:&ldquo 二维谱的出现是核磁共振(NMR)检测技术的一次飞跃,从二维谱中可以快速、精确地对不同组分进行区分,因而在测录井和常规实验中被广泛采用。&rdquo 聂生东教授从实验采集数据中反演出二维谱的过程,比一维反演需要解决更多、更复杂的问题. 聂生东教授带领的团队通过研究罚函数正则化和子空间正则化两大类方法,分析了不同二维反演算法的优点和不足. 根据对近年来国内外相关文献的深入分析可知,虽说目前已有的二维反演算法都存在一定的局限性,但其仍然具有很大的发展空间。 中国石油大学地球物理与信息工程学院院长肖立志   作为我国核磁共振测井的开创者之一,肖立志围绕核磁仪器的发展历程做了报告,肖立志教授表示:&ldquo 目前,全球核磁共振仪器及耗材市场规模上百亿美金,其中占份额比较高的产品有液体高分辨核磁波谱仪、固体核磁波谱仪、医用核磁成像仪,而多孔介质核磁分析仪、井下油气核磁探测仪、地表资源核磁探测仪等低场核磁共振仪器近几年则异军突起。&rdquo   &ldquo 因高场核磁共振仪器因体积大、价格昂贵,低场化、小磁铁、便携式、低成本、个性化和掌上化成为了核磁共振技术的发展趋势。低场核磁共振仪器的第一应用是医学诊断,第二是化学研究,第三则是方兴未艾的&lsquo 多孔介质&rsquo 领域。如果说高场核磁共振仪器是医学诊断、化学研究的实验室里的&lsquo 阳春白雪&rsquo ,那么低场核磁共振仪器将成为每个实验室里的&lsquo 下里巴人&rsquo 。&rdquo   最后,肖立志指出:&ldquo 技术知识的普及、价格和速度的限制、解决方案的精细化要求、行业样品的多样性和丰富性是当前核磁共振仪器面临的挑战。&rdquo 上海交通大学纳米生物医学研究中心主任古宏晨   上海交通大学的古宏晨教授做了关于磁共振在生命科学领域应用的主题报告,古宏晨教授介绍说:&ldquo 磁共振成像成果(MRI)是八十年代发展起来的一项先进医学成像诊断成果,其性能比已有的其他成像诊断成果如X射线CT优越,主要用于软组织的检测与早期诊断,可以提高疾病早期诊断准确度。&rdquo   &ldquo 我目前的研究方向主要是磁共振成像造影剂。它是用来缩短成像时间,提高成像对比度和清晰度的一种磁性纳米材料。由于磁性纳米材料具有粒径小和强的可操纵性而被成功地应用于疾病的诊断与治疗以及生物物质的分离等方面,尤其是其作为造影剂在磁共振成像方面具有非常好的应用前景。&rdquo 海外华人磁共振协会主席、哈佛大学教授宋一桥   宋一桥主要介绍了核磁共振的基本原理以及核磁共振技术在多孔介质中测量流体信息的物理机制。之后,宋一桥针对生物医学、石油工业以及食品工业等不同研究领域中常见的多孔介质,如红细胞、骨骼组织、储层岩石及奶酪等特定对象,如何利用核磁共振技术有效地测量出人们所关心的物理信息,利用大量的实验谱图进行了详细的阐述,并说到:&ldquo 核磁共振技术在测量奶酪等多孔介质的流体信息有着自身的独到之处。&rdquo 分会场掠影   本次会议除了主会场主题报告外,还设置了食品农业、生命科学、地球物理与多孔介质、橡胶/材料/高分子4个分会场,来自不同专业领域的与会专家围绕着当前低场核磁共振技术发展中的一些关键问题,如短弛豫时间、微弱信号测量、分子扩散运动研究、提供成像分辨率等进行了广泛和深入的交流,并针对当前国内低场核磁共振技术应用及国产低场核磁共振仪器的发展提出建议。 上海纽迈电子科技有限公司总经理杨培强   作为此次会议的协作方负责人,杨培强表示:&ldquo 纽迈科技自第一届全国低场核磁共振技术及应用研讨会起坚持与主办方展开紧密合作,到现在已经连续合作了5届。现在这个会议的规模越来越大,从最初的50人发展到了现在的150余人,吸引了越来越多从事低场核磁共振技术开发与应用研究的国内外专家学者。随着核磁共振用户数量的扩大,我们应该吸引更多的低场核磁厂家一起推动技术的推广与应用,厂家、高校、研究院所、学会、政府等通过合作共同参与到推广应用中,使核磁共振技术能够广泛地为用户和社会创造应用和研究价值才更有意义,为此中国仪器仪表学会分析仪器分会同意成立核磁共振分析仪器专业委员会,今后将由专委会担当起主办方的职责。&rdquo   &ldquo 目前低场核磁共振技术的发展趋势主要有三点,一是能够测量更微弱的信号;二是对核磁信号有更快捷的有效响应速度;三是能够获得更多的有用信息。低场核磁共振仪器则主要表现在由实验室科研用发展为现场便携式、工业在线式等。作为一家专注于低场核磁共振技术及仪器开发的公司,我们希望在低场核磁共振仪器&lsquo 快弛豫、弱信号&rsquo 方面,开拓出更多的应用领域,为国内外用户创造更多的应用价值。&rdquo 合影留念

核磁共振器相关的方案

  • 应用低场核磁共振研究绿豆浸泡过程成像分析
    运用低场核磁共振能够很好的了解绿豆吸水这一动态过程,绿豆的吸水率可以间接从测量 FID 信号获得,通过测量弛豫时间 T2 及其幅值,可以掌握水分在绿豆中的结合状态,运用核磁共振成像可以快速无损观测到绿豆内部吸水状况:绿豆先吸水打破休眠期,而后进入活化期,这个期间各种生化活动都在进行中,最后种子吸水进入平稳期,等待之后胚芽冲破种皮的过程。运用核磁共振对绿豆吸水过程的探索同理也可应用于其他种子吸水过程的研究。
  • 应用分享 | 核磁共振 FTNMR 的基本原理
    磁矩不为零的原子核(例如 1H),在静磁场中由于磁矩和磁场的相互作用形成能级裂分,当存在合适的电磁辐射时,能级间发生跃迁,即产生核磁共振现象。
  • 使用台式核磁共振波谱仪分析违禁药品:苯丙胺
    核磁共振谱图具有较高的结构选择性和区别能力, picoSpin 80 核磁共振在违禁药物稽查中的分析应用,将A类技术引入推定测试中,加强违禁药物的早期识别能力,对策划药进行初步识别和分类提供了一种解决方案。• 核磁共振技术(NMR)具有结构选择性和较高的区别能力,验证实验技术之一,可用于得到确定的定性和定量分析结果。高场核磁共振(1H NMR)仪器也可用于验证实验,但其价格昂贵,承担的实验任务繁重,需要集中使用且资源有限,对于样品现场快速分析来说成本昂贵。 • picoSpin 80 核磁共振波谱仪是一款价格合理、使用方便、结构紧凑,无需氘代试剂,无需锁场匀场的台式仪器, 可提供高质量核磁谱图,是对新型毒品和易制毒品进行初筛鉴定的强有力手段。核磁共振谱图数据易于分析,能够反映出分子化学结构中的微小区别。药品分子中的关键官能团能够决定药品所属种类,例如苯丙胺类物质等,这些官能团使得每类药品有独特的核磁共振特征峰,可用于药品类别的区分。改变分子官能团的种类或者位置,会使其核磁共振谱图发生相应的不同变化,在特定的灵敏性条件下,可依此对特定药品进行鉴别。 • 使用 picoSpin 80 台式核磁共振波谱仪开发出一套标准操作程序(SOP),用于采集一系列苯丙胺衍生物和甲基苯丙胺衍生物的核磁谱图,建立谱图数据库。利用化学结构特征来区别不同物质种类,进行物质结构确认。然后根据谱图数据库来检测了几种已知和未知的案例样品。 目前我们是唯一一家使用台式核磁共振波谱仪进行非法毒品检测,并建立了SOP操作流程及毒品核磁谱图数据库。

核磁共振器相关的资料

核磁共振器相关的论坛

  • 核磁共振的原理

    核磁共振的原理   核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。      根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:      质量数和质子数均为偶数的原子核,自旋量子数为0   质量数为奇数的原子核,自旋量子数为半整数   质量数为偶数,质子数为奇数的原子核,自旋量子数为整数   迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P      由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。      原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。      原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。      为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。

核磁共振器相关的耗材

  • 核磁共振样品管
    核磁共振样品管:匹配核磁设备,定制不同尺寸。
  • 大鼠磁共振立体定位器SRP-5R
    大鼠磁共振立体定位仪SRP-5R是可用于核磁共振实验的大鼠立体定位仪器,它采用MRI兼容材料制造而成,并带有显微操作器,专业用于大鼠核磁共振实验时固定大鼠。大鼠磁共振立体定位仪SRP-5R头部固定器组件100%是由塑料制成,但AP框架棒和基板都由金属制成,因此,保证了稳定和精确的立体定位记录,大鼠磁共振立体定位仪SRP-5R头部固定器组件能够从基板拆卸,使得MRI可以扫描固定在相应位置的动物。核磁共振扫描之后,相应位置固定着动物的头部固定组件,能够轻易地放回在基板的原有位置。 这些大鼠磁共振立体定位仪SRP-5R能够用于多种多样的应用,只需更换头部固定组件用于小型动物(大鼠/小鼠)。结合该设备注入标记或造影剂,用于MRI扫描,头部固定组件可以进行立体定位,记录对准动物的MRI扫描点。大鼠磁共振立体定位仪SRP-5R特色自从NARISHIGE的立体定位操作器根据新标准制作后,AP框架具有18.7mm的方形形状。如提供的SM-15立体定位显微操作器。需要不带显微操作器的版本请看SRP-5R-HT2。SRP-5R 和SRP-6R之间的差别在于AP框架杆的数目。 SRP-5有一个AP框架杆,而SRP-6有两个AP框架杆。用于小鼠的版本分别的SRP-5R和SRP-6R(SRP-5R-HT2和SRP-6R-HT2不带显微操作器)大鼠磁共振立体定位仪SRP-5R规格配件SM-15 立体定位显微操作器耳柱口、鼻夹六角扳手尺寸大小,重量SRP-5R: 宽400 x 深300 x 高110mm, 7.4kg * 该头部固定夹不能连接麻醉面罩GM-3。
  • 磁共振大鼠头部固定器SRP-AR2
    磁共振大鼠头部固定器SRP-AR2是一款可用于核磁共振环境中的大鼠头部固定装置,是大鼠脑立体定位固定实验和核磁共振实验的理想工具。磁共振大鼠头部固定器SRP-AR2可连接到SR系列固定装置。这样的连接,确保头部的固定极其稳定。当拆卸仪器用于MRI测量时,仪器材料是100%塑料使拆卸过程更容易。可以把标记插入该机械 ,简单地通过对准测量点与测量对象,操作者就能操作MRI测量。一旦MRI测量完成后,该磁共振大鼠头部固定器SRP-AR2可以很容易地恢复其作为固定仪器的功能,即保持动物的固定。两种型号可供选择:SRP-AR 用于大鼠, 和SRP-AM2 用于小鼠。磁共振大鼠头部固定器SRP-AR2规格配件六角扳手安装把手耳柱口、鼻夹尺寸大小/重量宽300 x 深120 x 高85mm, 850g
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制