当前位置: 仪器信息网 > 行业主题 > >

微小传感器

仪器信息网微小传感器专题为您提供2024年最新微小传感器价格报价、厂家品牌的相关信息, 包括微小传感器参数、型号等,不管是国产,还是进口品牌的微小传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微小传感器相关的耗材配件、试剂标物,还有微小传感器相关的最新资讯、资料,以及微小传感器相关的解决方案。

微小传感器相关的资讯

  • 小小传感器 助力城市环境监测
    生态环境治理精细化是新时代生态文明建设的新要求、新考验,道路作为城市的血管,密集处往往是人口聚居地、各类污染排放聚集区。近年来我国科技工作者开展大气传感器的相关研发,为城市大气污染监测与溯源提供更精细的技术工具和数据支撑,助力提升大气污染防治精细化水平。在济南,技术人员将传感器“藏”在出租车中,实现对道路PM2.5、PM10等空气污染物浓度的实时移动监测,传感器定位精度小于20米,每3秒上传一组数据。300辆装有传感器的出租车每天合计行程超过 6.9万公里,数据超过360万组,平均每天可覆盖95%以上的主城区机动车道路,依托传感器的有力支撑,完美弥补了定点大气网格化监测的不足,能以最快速度掌握城市环境的具体情况。环境污染较为严重的区域还包括施工场地。土石方填挖、建筑材料装卸、建筑拆除及建筑垃圾消纳等施工工序中均会产生扬尘,想要实现城市治理精准化、精细化,借助物联网、传感器等数字化技术进行实时监测尤为关键。传感器接入扬尘监测云平台,则能够对施工场地的黄土覆盖、监控设施与扬尘监测设备PM2.5和PM10数值等方面进行监控,有利于及时落实防控措施情况,并对施工项目的扬尘治理工作进行有序推进,足以可见小小传感器可以针对施工场地起到日常监督管理的作用。资料图片:工作人员操作的智能无人监测船在对河道进行水质快速监测分析在水质监测方面,想要及时发现水生态环境问题,从而实现视觉感知、数据采集、图像分析、信息处理等数字化服务,监测平台可采取给摄像头增加滤光镜和布设水下传感器的方式,这项技术利用水质监测、视频监控等不同类型来源的水质数据进行算法模型分析,从而快速锁定污染源,将可能出现的水质污染情况、位置等数据及时传送到监管部门。相信在未来,数据准确、参数齐全的新型传感器会陆续登上舞台,通过多参数、全方位和更加精确的数据支撑进行环境监测,提升我们对城市污染的科学认识,助力城市生态环境一路向好。
  • 船舶气象仪-一款有条不紊的微型气象传感器
    船舶气象仪-一款有条不紊的微型气象传感器#2022已更新【品牌型号:天合环境TH-Y6】雷雨大风天气对船舶航行安全会带来很大影响,船舶在大风浪区域航行,将出现较剧烈的摇荡运动、降速、航向不稳定,以及由此引起的其他操纵方面的困难,甚至出现难以预料的危险,而且大雨、暴雨会引起能见度下降,影响航行安全。一、产品简介山东天合环境科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。TH-Y6型六要素微气象仪原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向。与传统的超声波风速风向仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。TH-Y6型六要素微气象仪创新性地将气象标准六参数(环境温度、相对湿度、风速、风向、大气压力、压电雨量)通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将六项参数一次性输出给用户。二、产品特点1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向3、风速、风向、温度、湿度、大气压力、压电雨量六要素一体式4、采用先进的传感技术,实时测量,无启动风速☆5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行6、高集成度,无移动部件,零磨损7、免维护,无需现场校准8、采用ASA工程塑料室外应用常年不变色9、产品设计输出信号标配为RS485通讯接口(MODBUS协议);可选配232、USB、以太网接口,支持数据实时读取☆10、可选配无线传输模块,最小传输间隔1分钟11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆三、技术参数1、风速:0~60m/s(±0.1m/s);2、风向:0~360°(±2°);3、空气温度:-40-60℃(±0.3℃);4、空气湿度:0-100%RH(±3%RH);5、大气压力:300-1100hpa(±0.25%);6、压电雨量:0-4mm/min(±4%)7、功率:1.08W8、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证☆9、生产企业具有知识产权管理体系认证证书和计算机软件注册证书☆四、产品尺寸图五、产品结构图六、注意事项1.传感器水平周围1米半径无遮挡,避免水滴飞溅影响2.传感器安装位置应避开强机械振动源3.传感器安装上方应为开阔区域,雨滴应直接滴落至传感器,应免二次滴落和连续水流冲击
  • 研究首次制造出亚微米厚度的柔性压力传感器
    柔性压力传感器是得到关注最多的一类柔性传感器,在生物医学、脑机工程、智能制造等众多领域得到了应用。近日,大连理工大学研究员刘军山团队与李明教授等团队合作,独辟蹊径地提出了一种纳米工程策略,首次制造出了亚微米厚度(0.85μm)的柔性压力传感器。相关成果发表在Small上,并被选为封面文章。封面图片。大连理工大学供图柔性压力传感器通常由上下两层柔性电极层和中间的功能软材料层组成,外界压力会导致功能软材料层产生压缩变形,从而引起传感器输出信号的改变。而这种以功能软材料层压缩变形为主导的传感机理,要求电极层具有相对较大的抗弯刚度,电极层厚度一般要比功能软材料层大1~2个数量级。因此,现有的柔性压力传感器厚度只能在百微米甚至毫米量级,严重影响了传感器的轻质性、变形性和共形性。团队通过纳米工程策略,将柔性压力传感器的传感机理,由功能软材料层的压缩变形为主导,转变为柔性电极层的弯曲变形为主导,从根本上解除了对于传感器厚度的限制。并且,由于超薄的柔性电极层拥有极强的变形能力,使得传感器具有优异的检测性能。传感器的单位面积重量只有2.8 g/m2,相当于普通办公打印纸的1/29,能够承受曲率半径小至8.8μm的面外超大弯曲变形,并且能够与皮肤表面实现完全共性贴合。另外,传感器的灵敏度为92.11 kPa-1,检出限为0.8 Pa,均处于目前公开报道的最高水平。纳米工程策略可以成数量级地减小传感器的厚度,从而突破性提升传感器的轻质性、变形性和共形性,同时还能够使得传感器具有超高的检测性能,为柔性压力传感器的设计和制造提供了一种全新的思路。
  • 大连理工大学科研团队首次制造出亚微米厚柔性压力传感器
    近日,国际知名期刊《Small》以封面文章刊发了我校机械工程学院刘军山研究员团队关于柔性压力传感器的最新研究成果“Nanoengineering Ultrathin Flexible Pressure Sensor with Superior Sensitivity and Perfect Conformability”。柔性压力传感器是得到关注最多的一类柔性传感器,在生物医学、脑机工程、智能制造等众多领域得到了应用。柔性压力传感器通常由上下两层柔性电极层和中间的功能软材料层组成,外界压力导致功能软材料层产生压缩变形,从而引起传感器输出信号(电阻、电容、电压)的改变。这种以功能软材料层压缩变形为主导的传感机理,要求电极层具有相对较大的抗弯刚度,电极层厚度一般要比功能软材料层大1~2个数量级。因此,现有的柔性压力传感器厚度只能在百微米甚至毫米量级,严重影响了传感器的轻质性、变形性和共形性。   刘军山研究员团队长期开展柔性传感器研究,通过与我校力学系李明教授等团队合作,独辟蹊径地提出了一种纳米工程策略,首次制造出了亚微米厚度(0.85µm)的柔性压力传感器。纳米工程策略将柔性压力传感器的传感机理由功能软材料层的压缩变形为主导转变为柔性电极层的弯曲变形为主导,从根本上解除了对于传感器厚度的限制;而且,由于超薄的柔性电极层拥有极强的变形能力,使得传感器具有优异的检测性能。传感器的单位面积重量只有2.8 g/m2,相当于普通办公打印纸的1/29,能够承受曲率半径小至8.8µm的面外超大弯曲变形,并且能够与皮肤表面实现完全共性贴合。另外,传感器的灵敏度为92.11 kPa-1,检出限为0.8 Pa,均处于目前公开报道的最高水平。纳米工程策略可以成数量级地减小传感器的厚度,从而突破性提升传感器的轻质性、变形性和共形性,同时还能够使得传感器具有超高的检测性能,为柔性压力传感器的设计和制造提供了一种全新的思路。   该项工作得到了国家重点研发计划项目(2020YFB2008502)、国家自然科学基金(51875083)和大连市科技创新基金(2020JJ25CY018)的。
  • 地铁隧道气象传感器-一款闪闪发光的五要素气象传感器@2023已更新《风途/仪器》
    地铁隧道气象传感器Czujnik pogody tunelu metra风途【FT-WQX5】是一款闪闪发光的五要素气象传感器。随着公路隧道向长大化方向发展,行车速度和密度加大,公路隧道火灾事故的发生率也随之增加,隧道通风排烟问题也逐渐引起高度重视。  一、产品简介  山东风途物联网科技有限公司作为专业研发生产销售微型气象仪的企业,一直致力于微型气象仪和气象环境解决方案推广应用。具有完整的生产链、实力雄厚的技术团队和全面的营销团队,我们研发生产的超声波风速风向仪、五要素微气象仪、六要素微气象仪和小型自动气象站等气象产品,已广泛应用到气象监测、城市环境监测、风力发电、航海船舶、航空机场、桥梁隧道等领域,客户遍布全国各地,并取得了良好的社会效益和经济效益。  与传统的微型气象仪相比,我司产品克服了对高精度计时器的需求,避免了因传感器启动延时、解调电路延时、温度变化而造成的测量不准问题。  FT-WQX5型五要素微气象仪创新性地将风速、风向、温度、湿度、大气压力通过一个高集成度结构来实现,可实现户外气象参数24小时连续在线监测,通过数字量通讯接口将五项参数一次性输出给用户。  二、产品特点  1、顶盖隐藏式超声波探头,避免雨雪堆积的干扰,避免自然风遮挡(实用新型专利,专利号ZL 2020 2 3215713.X)☆  2、原理为发射连续变频超声波信号,通过测量相对相位来检测风速风向(发明专利,专利号ZL 2021 1 0237536.5)☆  3、风速、风向、温度、湿度、大气压力五要素一体式(实用新型专利,专利号ZL 2020 2 3215649.5)☆  4、采用先进的传感技术,实时测量,无启动风速☆  5、抗干扰能力强,具有看门狗电路,自动复位功能,保证系统稳定运行  6、高集成度,无移动部件,零磨损  7、免维护,无需现场校准  8、采用ASA工程塑料室外应用常年不变色  9、产品设计输出信号标配为RS485通讯接口(MODBUS协议) 可选配232、USB、以太网接口,支持数据实时读取☆  10、可选配无线传输模块,最小传输间隔1分钟  11、探头为卡扣式设计,解决了运输、安装过程松动不准的问题☆
  • 传感器能为城市大气环境精细化管理做什么?
    山东省济南市,2017年8月,首批100辆出租车装上了能监测PM2.5和PM10的传感器,使得济南成为全国首个利用出租车进行大气监测的城市。同年10月,又有200辆出租车加装道路走航监测设备。在北京,中国环境科学研究院大气环境研究所科研楼三层楼顶,一排排精密仪器正在不停运转,一组组数据被精确记录。传感器测试观测室里多台不同品牌不同型号的大气污染物传感器正在进行性能比对,这些数据将为改进传感器性能提供基础依据。从济南到北京,从车载传感器到传感器测试观测室,新型低成本大气传感器是中国环境科学研究院大气环境研究所的研究方向之一。作为生态环境部直属科研单位的中国环境科学研究院,近年来正在不断投入开展大气传感器的相关研发,为城市大气污染监测与溯源提供更精细的技术工具和数据依据。始于需求 源自基层大气传感器应用始于基层,源自2013年的一个电话。“我们从2013年开始研究城市网格化监测和大气传感器的应用,其需求来源于2013年山西省太原市的一个电话。”中国环境科学研究院大气环境研究所副所长高健告诉记者。2013年,全国首次开展城市空气质量六项参数监测,也就是这一年,太原市夏季出现了严重的臭氧污染。为了扭转不利局面,太原市政府找到了中国环境科学研究院团队。但当时的太原只有4个监测点位,很难全面代表整个城市的污染状况。无奈之下,高健团队利用手动采样的方法在太原布设了60个监测点位,没想到效果很好,整个城市的污染地图被很好地呈现出来。从那时起,高健带领团队开始寻找便捷、低成本、有一定精度的传感器产品,来替代成本高、耗人力大但精度高的手工方法。2013年—2016年,大气污染防治领域开始出现类似产品,“微型站”开始成为“标准站”的有效补充。2016年,高健团队组织了包括国内外十余个品牌的大气传感器评测工作,为时一年的细致评测后,发布了研究论文,阐述了大气传感器的适用条件、存在问题和改进方案。在大气污染防治应用方面,大气传感器也迎来了井喷,针对工地、企业、园区、港口等目标场景的固定式应用,逐渐发展到无人机搭载、船载、车载等移动方式。例如济南市生态环境局2018年全面建成1000余个微站,在市、区县、街镇三级大气污染联防联动中得到广泛应用,实现了济南市大气污染治理向公里级网格化精细监管、快速精准溯源、联动高效治理的转变。目前,环保无人机搭载传感器设备在全国多个工业园区进行污染源位置排查、环境应急监测,锁定排放源,联动环境应急处置。船载传感器也已在江苏、上海等地示范应用,监测内河、港口等重点区域的空气质量,补全移动源监管的重要环节。小小传感器 能解大问题每个城市有各自的“基因”,决定了人与路的关系。道路是城市的血管,密集处往往是人口聚居地,是商业发达区域,是各类污染排放聚集区。在济南,从你身边经过的出租车,或许不是寻常的出租车,它可能装载着传感器。这些设备从出租车的外观上是看不出来的,因为设备藏身在车灯里。别看传感器体积小,它能弥补固定环境监测器械分布不均匀的缺陷。“在项目初期,我们考虑可以利用出租车的覆盖范围广、监测结果不受人为干预的特点,在车顶上安装传感器,可实时监测污染情况,通过与现有的空气监测站等定点大气网格化监测数据相互补充、相互校准的方式,获得监测区域的大气质量数据,高效促进大气污染源头治理。”高健告诉记者。每3秒一组数据;定位精度小于20米,精准治理;300辆车每天合计行程超过 6.9万公里,数据超过360万组,平均每天可覆盖95%以上的主城区机动车道路……这些数据弥补了定点大气网格化监测的不足,依托传感器的有力支撑,可以实现城市毛细血管的净化与疏通。获取数据只是第一步,治理才是关键。相关部门可以根据从出租车传感器上获取的实时数据,精准锁定哪些地方有道路扬尘污染,从而进行精准治理,既节约时间,也节约了成本。在安徽省亳州市,除市区所有出租车外,还投入了近百辆装有大气环境监测系统的小型车辆,做到了监管全覆盖。相关人员一旦发现手机云图上出现颜色异常,就会第一时间在微信群里反映,通知对应的部门和执法人员到现场进行处理。截至目前,全国已有40多个城市,数千辆出租车安装并应用了这一传感器。“下一步,我们将加强研究,把传感器做精、做好,利用传感器体积小、成本低的优势,帮助城市更好地解决当地空气污染问题。”高健表示。新型传感器 面向新需求生态环境治理精细化是新时代生态文明建设的新要求、新考验。数据准确、参数齐全的新型传感器正在走上舞台。大气传感器需要解决的不仅仅是高时空分辨率的数据支撑,更是要通过多参数、全方位的监测,提升我们对城市污染来源和影响的科学认识。近年来,高健团队并没有停止对传感器技术前沿的探索。“新产品、新方法、新技术如雨后春笋般不断涌现,关键是要锁定最合适的产品和技术,解决科学需求。”中国环境科学研究院大气环境研究所助理研究员沈毅成告诉记者,“我们正在将新型的粒径谱传感器、黑碳传感器应用于走航监测中。新型的测量参数能够帮助我们区分道路扬尘、柴油车、汽油车尾气和城市本底污染,实现街区尺度的颗粒物来源解析。”目前,济南市的微站网络和走航出租车搭载的PM2.5传感器已经全部升级成为粒径谱传感器,能够将颗粒物的浓度细分成31个粒径区间,可以有效区分不同类型的颗粒物对PM2.5、PM10的相对贡献。“更加先进设备不断走出去,多元化的数据不断传回来,大数据赋能智慧环保已经到来。”沈毅成表示。
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • 仪器表征,科学家开发了基于分子级裂纹调制策略的新型应变传感器!
    【科学背景】应变传感器是一种关键技术,用于在多种应用中实现高灵敏度的机械感知,如人形机器人的指尖控制和皮肤贴合健康监测设备。然而,现有的应变传感器普遍依赖于裂纹生成机制,这限制了它们在灵敏度、应变范围、稳定性和时间空间分辨率上的综合性能。传统裂纹导电材料在小传感面积与高性能之间存在固有的权衡,其裂纹易于扩展并难以控制,导致传感器在应对大应变和长期稳定性方面的表现有限。为解决这些挑战,天津科技大学生物基纤维材料国家重点实验室刘阳教授、国家重点实验室主任程博闻教授、南开大学Jiajie Liang课题组联合提出了一种分子级裂纹调制策略,采用逐层组装技术在MXene和银纳米线复合薄膜中引入了强、动态和可逆的硫-银(S-Ag)配位键。这种创新策略不仅在传感器中实现了极小的感测面积(仅0.25 mm² ),同时提供了超宽的工作应变范围(0.001-37%)、极高的灵敏度(在0.001%时的增益因子超过500,在35%时超过150,000)、快速的响应时间、低滞后和优异的长期稳定性。此外,基于这种高性能传感元件,研究团队成功实现了每平方厘米100个传感器的可拉伸传感器阵列,展示了高时间空间分辨率的实际应用,如多通道脉冲信号监测系统。【科学亮点】(1)本研究首次采用分子级裂纹调制策略,在MXene和银纳米线复合导电薄膜中引入强、动态和可逆的硫-银(S-Ag)配位键。这一策略通过逐层组装技术,实现了裂纹生成和传播的精确控制。(2)实验结果表明,所制备的基于裂纹的可拉伸应变传感器(S-M/A)具有多重优异的性能特征:传感面积极小(仅0.25 mm² ),但具备超宽的工作应变范围(0.001-37%),高灵敏度(在0.001%应变下的增益因子超过500,35%应变时超过150,000),快速的响应时间(约5毫秒),低滞后和长期稳定性。此外,通过S-Ag配位键的动态调控,传感薄膜能有效地能量耗散,防止裂纹间隙的扩展,从而保持了纳米级别的裂纹结构和传感性能的稳定性。(3)这一研究突破了传统裂纹调制策略的限制,克服了传感面积和性能之间的固有权衡,为高密度、高分辨率的可拉伸应变传感器阵列的实现提供了新的思路和方法。通过高效的组装工艺,作者实现了每平方厘米100个传感器的集成,展示了该传感器阵列在多通道脉冲感测系统中的实际应用,具备优异的时间空间分辨率和监测精度。【科学图文】图1:引入S-Ag配位键到S-M/A感测薄膜中。图2:S-MXene和S-M/A薄膜的表征。图3:S-M/A传感器的应变感测性能。图4:应变感测性能比较。图5:S-M/A感测薄膜的裂纹调制行为。图6:S-M/A传感器阵列在脉冲信号测量中的应用。【科学结论】本文开发了一种基于分子级裂纹调制策略的新型应变传感器,通过引入强、动态和可逆的S-Ag配位键,有效地解决了传统裂纹型传感器中传感面积与性能之间的权衡问题。此技术不仅在传感面积极小的情况下实现了超高灵敏度和广泛的应变范围,还通过动态调控裂纹形态和能量耗散机制,提高了传感器的稳定性和可靠性。通过分子级的设计和制备过程,将有机和无机材料有效地结合在一起,为高性能应变传感器的设计提供了新的思路和方法。此外,本文展示了简便且可扩展的制造工艺,为实现高密度、高分辨率的传感器阵列奠定了基础。这种基于分子级裂纹调制的策略不仅有助于推动应变传感器技术的进步,还为未来在可穿戴设备、健康监测和智能机器人等领域中需求高精度、高稳定性传感器的开发提供了新的理论和实践基础。原文详情:Liu, Y., Xu, Z., Ji, X. et al. Ag–thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 15, 5354 (2024). https://doi.org/10.1038/s41467-024-49787-9
  • 德国成功研发氮原子大小量子传感器 可用于测量微磁场
    p   量子技术为电子元件小型化开辟了新的途径。近日,德国弗劳恩霍夫应用固体物理研究所(IAF)和马普固体研究所发布消息称,其科研人员共同研发出一种量子传感器,未来可用于测量微磁场,如硬盘磁场和人脑电波。 /p p   集成电路越来越复杂,目前一台奔腾处理器可容纳约3000万个晶体管,因而硬盘的磁性结构可识别的范围仅为10至20纳米,比直径为80至120纳米的流感病毒还小,该量级的尺寸规格只有量子物理技术可触及。新研发的量子传感器则可精确测量这类用在未来硬盘上的微小磁场。新型量子传感器仅有氮原子的大小,作为载体物质的是一种人造金刚石。金刚石具有很好的机械和化学稳定性以及超强的导热性能,可通过引入硼、磷等外来原子,将晶体制成半导体,且非常适用于光学电路。 /p p   IAF的研究人员在近几十年中研制并优化出用于生产金刚石的设备,一种专用的椭圆形等离子体反应堆模具。在800-900摄氏度的高温下,在金刚石底物上从导入甲烷气和氢气中可长出金刚石层,再将边长3-8mm的晶体从底物剥离并抛光,最后制造出具备量子物理用途的、仅含碳原子稳定同位素C12的超纯单晶金刚石晶体。所用的甲烷气经锆过滤器净化,氢气经其它手段净化。 /p p   研究人员制做磁场检测器有两种途径:直接植入单个氮原子,或在制造金刚石的最后一步加入氮。之后,在超净室内采用氧等离子体蚀刻法均可制作出类似于原子力显微镜的纤细金刚石尖。关键点是导入的氮原子以及晶格中的相邻空位。该氮空位中心就是实际的传感器,用激光和微波照射时会发光,发出的光可随附近磁场的强度变化而变化。专家们将这项创新与光学探测磁共振(ODMR)相提并论。 /p p   这种传感器不仅能准确检测到纳米级的磁场,还能确定其强度,应用潜力惊人。例如,可监控硬盘质量,检测出密集存储数据中的小错误和发现有缺陷的数据片段,在刻写和读取前即将其去除。因此,可减少随着小型化的加速而迅速增加的废料,降低生产成本。IAF的专家称,这种量子传感器还可用于测量很多微弱磁场,包括脑电波。与目前使用的脑电波传感器相比,不仅更准确,而且在室温下即可使用,无需经液氮冷却。 /p
  • 非侵入性微型传感器可测人体pH值,或有助于诊断癌症
    据最新一期《化学科学》杂志报道,加拿大研究人员开发出一种可更准确测量pH值的微型传感器,或有助更好地理解和诊断包括癌症在内的一系列疾病。 多伦多大学士嘉堡分校化学系助理教授张晓安称,在活生物系统中实时检测pH值,对于探测和理解pH值失衡导致的相关疾病至关重要。如低pH值与囊性纤维化、局部缺血以及癌症的病理状况密切相关。pH值信号可用于诊断疾病及监测治疗效果,了解人体组织内的pH值在何时何地发生显著变化是非常重要的。因此,迫切需要找到一种可进行深入、精确的探查,同时又确保不入侵组织的新方法。 张晓安团队使用核磁共振光谱技术开发的微型传感器,可以非侵入方式在原子水平对分子进行非常详细的观察。研究人员将大肠杆菌细胞作为实验对象,完成了对卵母细胞(鱼卵细胞)的传感器测试。 pH值是对质子(附着于其他分子的微小带电粒子)活性的测定。质子活性很难在组织中测量,因为质子移动迅速,难以用常规核磁共振的时间尺度来捕获分子位置。利用核磁共振测量pH值的主要挑战在于,在不同的质子化状态(附着或不附着)对分子进行精细成像。既有核磁共振技术无法对不同质子态的实时测量提供足够的精度。 张晓安团队研发的传感器,则通过一种缓慢的质子交换机制,提供了独特的解决方案。该探测器可减缓质子运动,并观察不同状态下的质子,从而使测量变得更为灵敏和精确。该传感器虽为医疗成像设计,但亦可扩展到环境科学、生物学乃至食品生产和质量控制等其他应用领域。
  • 世界最小超声波传感器问世
    英国研究人员16日说,他们制造出了世界上最小的超声波传感器。它是如此微小,以至于可以在一根头发丝上排成队列。这一成果可广泛用于探索细胞内部等微观环境。   英国诺丁汉大学当天发布公报说,该校应用光学研究小组制造出了这种微型超声波传感器。它比现有的超声波传感器要小许多,500个这种传感器排在一起才会达到一根头发丝的宽度。它同时具有超声波特性和光学特性,在感知到超声波时会微微变形,这种变形可以被照射它们的激光所探测到,从而获得超声波的信息 反过来,如果对它发出一个激光脉冲,它也可以受激向外发出超声波,探测目标对象。   研究人员马特克拉克说,纳米技术的兴起带来了对微型超声波探测器的需求,他们开发的新设备将超声波探测技术推广到了纳米尺度上。目前人们比较熟悉的超声波应用是医疗检查,这种新型设备就可以用来对一个细胞的内部进行超声波检查,提供过去难以获得的生理信息。   此外,这种超声波传感器的分辨率也很高,它所用的声波频率超出了可见光的频率,因此在理论上它可以获得比最好的光学显微镜还要清晰的图像。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 日本团队研发出小型化集成化的量子传感器
    据《日本经济新闻》报道,日前由东京工业大学和产业技术综合研究所组成的研究团队,成功研发出使金刚石制造的量子传感器实现小型化和集成化的技术,该技术能够捕捉到非常微小的磁力变化。在技术层面,量子传感器使用了以金刚石作为原材料的半导体元件制造技术,能够通过电信号读取到微小的磁力变化数值。实验显示,上述半导体元件受激光照射而产生的电流会因磁力作用而发生变化,这就确认了量子传感器功能得以实现。由于上述用金刚石制造的量子传感器能够对大脑或神经活动产生的微小磁力变化进行检测,所以将有望应用于对大脑状态及大脑活动进行深入精细的研究,以阐明大脑活动机理,预防神经性疾病。
  • 纳米级量子传感器实现高清成像
    日本东京大学科学家最近利用六方氮化硼二维层中的硼空位,首次完成了在纳米级排列量子传感器的精细任务,从而能够检测磁场中的极小变化,实现了高分辨率磁场成像。氮化硼是一种含有氮和硼原子的薄晶体材料。氮化硼晶格中人工产生的自旋缺陷适合作为传感器。(a)六方氮化硼中的硼空位缺陷。空位充当用于磁场测量的原子大小的量子传感器,对磁场敏感,像一个纳米“磁针”。(b)量子传感器纳米阵列的光致发光。通过分析响应微波的光致发光强度的变化,研究人员可测量每个传感器点的磁场。图片来源:东京大学研究团队研究团队在制作出一层薄的六角形氮化硼薄膜后,将其附着在目标金丝上,然后用高速氦离子束轰击薄膜,这样就弹出了硼原子,形成了100平方纳米的硼空位。每个光点包含许多原子大小的空位,它们的行为就像微小的磁针。光斑距离越近,传感器的空间分辨率就越好。当电流流经导线时,研究人员测量每个点的磁场,发现磁场的测量值与模拟值非常接近,这证明了高分辨率量子传感器的有效性。即使在室温下,研究人员也可检测到传感器在磁场存在的情况下自旋状态的变化,从而检测到局部磁场和电流。此外,氮化硼纳米薄膜只通过范德华力附着在物体上,这意味着量子传感器很容易附着在不同的材料上。高分辨率量子传感器在量子材料和电子设备研究中具有潜在用途。例如,传感器可帮助开发使用纳米磁性材料作为存储元件的硬盘。原子大小的量子传感器有助于科学家对人脑进行成像、精确定位、绘制地下环境图、检测构造变化和火山喷发。此次的纳米级量子传感器也将成为半导体、磁性材料和超导体应用的“潜力股”。
  • 新型有机薄膜传感器或可替代外部光谱仪?
    德国科学家研制出一种新型有机薄膜传感器,它能以全新的方式识别光的波长,分辨率低于1纳米。研究人员称,作为一款集成组件,这种新型薄膜传感器未来可替代外部光谱仪,用于表征光源。这一技术已经申请专利,相关论文刊发于最新一期《先进材料》杂志。  光谱学被认为是研究领域和工业领域最重要的分析方法之一。光谱仪可以确定光源的颜色(波长),并在医学、工程、食品工业等各种应用领域用作传感器。目前的商用光谱仪通常“体型”较大且非常昂贵。  现在,德累斯顿工业大学应用物理研究所(IAP)和德累斯顿应用物理与光子材料综合中心(IAPP)的研究人员与该校物理化学研究所合作,开发出了一种新型薄膜传感器,能以一种全新的方法识别光的波长,而且,由于其尺寸小、成本低,与商用光谱仪相比具有明显优势,未来或可成功替代后者。  新型传感器的工作原理如下:未知波长的光激发薄膜内的发光材料。该薄膜由长时间发光(磷光)和短时间发光(荧光)的器件组成,它们能以不同方式吸收未知波长的光,研究人员根据余辉的强度推断未知输入光的波长。  该研究负责人、IAP博士生安东基奇解释说:“我们利用了发光材料中激发态的基本物理特性,在这样的系统内,不同波长的光激发出一定比例的长寿命三重和短寿命单重自旋态,使用光电探测器识别自旋比例,就可以识别出光的波长。”  利用这一策略,研究人员实现了亚纳米光谱分辨率,并成功跟踪了光源的微小波长变化。除了表征光源,新型传感器还可用于防伪。基奇说:“小型且廉价的传感器可用于快速可靠地确定钞票或文件的真实性,而无需任何昂贵的实验室技术。”  IAP有机传感器和太阳能电池小组负责人约翰内斯本顿博士说:“一个简单的光活性膜与光电探测器结合,形成一个高分辨率设备,令人印象深刻。”
  • 新型生物传感器可提高检测灵敏度
    近日,中科院上海应用物理研究所、苏州纳米技术与纳米仿生研究所、复旦大学中山医院、上海计量测试技术研究院合作开发了一种基于DNA纳米结构修饰界面的电化学生物传感器,用于microRNA肿瘤靶标的超灵敏检测,相关工作已于日前发表于Nature杂志社新出版的综合性期刊Scientific Reports。   微小RNA(microRNA)是一种内源性的非编码单链RNA,在细胞的一系列生理发育过程中起着重要的调控作用。研究者发现microRNA的异常表达与很多肿瘤的发生发展直接相关,特别是发现它可以稳定地在血清中存在,是一类非常有前景的肿瘤标记物。   与传统的PCR等均相检测方法相比,基于表面反应的电化学生物传感器对疾病相关的microRNAs检测具有更加廉价、更容易实现现场检测的优点。然而,电化学生物传感器的灵敏度常常受到界面传质过程和拥挤效应的限制。   为了解决这些问题,中科院上海应用物理研究所研究员樊春海及其团队之前已发展了利用三维DNA纳米结构修饰金电极表面的新方法,可以显著增强表面分子的结合能力和提高检测灵敏度。   在樊春海指导下,闻艳丽等科研人员将这种DNA纳米结构修饰表面用于microRNA的传感检测。研究表明,这种新型的生物传感器可以检测到aM(10-18 mol/L)水平(1000个分子)的microRNAs,具有良好的单碱基区分能力,且能与前体RNA很好地区分。利用这种新型生物传感器灵敏度高、重复性好、无须标记和无须PCR扩增的优点,研究者对于一系列食管鳞状细胞癌病人样本中的microRNAs表达水平进行了分析,并实现了对癌组织和癌旁组织的良好区分。
  • 中国科学家研制出用“眨眼”开关家电的传感器
    p   想象一下,眨眨眼睛,电灯打开 再眨眨眼睛,电灯关闭......中国科学家近日报告说设计出一种新型传感器,可附在眼镜上探测眨眼动作,从而使“眨眼”之间完成开关家用电器等日常任务成为现实。 /p p   “该项技术可以被认为拥有了‘第三只手’。”研究负责人之一、重庆大学胡陈果教授告诉新华社记者。她说,如果正常人的双手被占用,可使用这种新型人机交互方式控制身边的电子设备,因渐冻症等疾病而失去活动能力的患者同样能从中受益,未来还将探索把这种传感器安装在人体的不同部位,尝试以此操控智能机器人。 /p p   除了胡陈果外,重庆大学蒲贤洁、郭恒宇以及中国科学院北京纳米能源所王中林教授等人参与研究,论文发表在新一期美国《科学进展》杂志上。 /p p   据胡陈果介绍,传统人机交互系统在探测眨眼动作时,主要探测的是极为微弱的体表生物电信号,而他们利用近年来热门的摩擦纳米发电技术设计出新型传感器,探测的是眨眼引起的太阳穴附近皮肤的微小运动,不仅灵敏度极高,并且相对于传统探测方法还具有更好的耐久性和稳定性。 /p p   她解释说,该传感器由上下两层薄膜构成,中间有一定间隔。传感器装在眼镜腿上,接触眼角附近的皮肤。当眼睛眨动,眼角周围皮肤产生微小运动,会使两层薄膜产生接触 眨完眼后眼睛睁开,两层薄膜就会分离。在薄膜背面制备一层导电层,就可产生与眨眼对应的脉冲电信号输出。 /p p   测试结果表明,该脉冲电信号的输出强弱与眨眼的力度和快慢有直接关系。与有意识眨眼相比,无意识眨眼比较轻微,脉冲信号强度小,所以两者较易区分。 /p p   该设计除了能够实现通过眨眼来控制电子设备的开关,还能在虚拟打字人机交互界面上进行输入,比如打出英文单词和空格符号,组成句子。由于该传感器的极高灵敏度和稳定性,完成这些任务的准确性很高。 /p p   胡陈果说,今后计划进一步改进眨眼输入法系统,争取能通过这种方式输入任意语句,包括进行中英文的切换,输入数字以及标点符号,还可结合输入法自动关联常用词组,就像现在人们在普通电脑键盘上能做的那样。此外,研究人员也希望能通过两眼眨动的组合形式,实现诸如遥控智能设备等更为复杂的应用。 /p p   胡陈果指出,感官控制的人机交互可以在人和外界设备之间建立新的自然交流途径,有利于提高人们的生活品质,而这项工作“使得通过眨眼来控制电子设备有希望从实验室走向我们的日常生活”。 /p
  • 2023世界传感器大会将于11月5日开幕
    新闻发布会 | 2023世界传感器大会将于11月5日重磅开幕!  10月25日,2023世界传感器大会新闻发布会在河南省人民政府新闻办公室召开。  2023世界传感器大会(WSS)由河南省人民政府与中国科学技术协会作为主办单位,郑州市人民政府、中国仪器仪表学会、河南省工业和信息化厅、河南省科学技术协会承办,大会定于2023年11月5至7日在郑州国际会展中心召开。  新闻发布会现场  2023世界传感器大会以“感知世界 智创未来”为主题,以“立足中原、辐射中国、引领国际”为理念,以“强产业、强合作、强品牌”为目标,以“国际化、智慧化、专业化”为特色,以“优秩序、优环境、优服务”为宗旨,集聚全球传感器领域最具影响力的科学家和企业家,以及相关政府部门的领导,围绕传感器领域的技术前沿、产业趋势和热点问题发表演讲和进行高端对话,打造全球传感器领域顶级盛会。 2023年的传感器大会,中国仪器仪表学会将充分发挥科技平台的优势资源,强化新技术交流,拓展新的应用领域,加强政产学研用的深度合作。在此基础上,以信息技术为驱动,以智能化、数字化、绿色化为目标,强调信息化与工业化的深度融合,探讨新型工业发展的路径,为传感器相关行业提供更广阔的发展空间和机遇。中国仪器仪表学会将立足国际竞争环境,切实肩负起新时代科技社团的使命和职责,为新型工业对接信息资源,提供技术支持和解决方案,为推动新型工业的发展贡献力量,助力国家和地区经济的高质量发展。 本次大会会期共3天,由会、展、赛三部分组成。目前,邀请到出席大会的院士有尤政、蒋庄德、周立伟、褚君浩等11名 邀请的国际代表有国际计量测试联合会主席Kenneth TV Grattan(肯尼斯格拉特)、中德智能技术研究院德方院长Axel Kuhn(阿克塞尔库恩) 邀请的国际组织有英国皇家测量及控制学会、意大利仪器制造商协会、马来西亚工程师学会等。本届大会将展示一系列令人瞩目的新产品,这些产品在灵敏度、精度、可靠性以及应用范围等方面都有很大的提升。比如,今年将展出的一种新型压力传感器,它可以对微小的压力进行精确测量,并且具有很高的稳定性,可以应用在医疗、工业和汽车等领域。大会将展出了一系列智能传感器,这些传感器可以与人工智能技术相结合,实现远程监控和自动化控制,进一步提升了传感器在智能化应用中的价值。除此之外,还将展示一些应用于工业生产、环境监测、医疗健康、智能家居等领域的传感器及系统。  传感器大会不仅是一个交流和展示的平台,也是一个推动产业发展的平台。本次大会及分场活动与郑州市的产业发展紧密融合,通过促进产业协同创新、拓展应用场景和加强产业链建设等方式,大会与郑州市产业发展深度融合。技术研讨会、产业对接会和项目路演等分场活动,将为郑州市的产业发展注入新的动力。大会致力于将郑州市打造成为中国传感器产业的基地,为国内外的传感器企业搭建起一个交流合作的平台。  本次大会汇聚了众多传感器领域的知名企业,截至目前,共有传感器相关企业233家参展,其中包含京东、西门子、海克斯康、E+H、百度云、汉威等知名传感器企业将盛装亮相。这些企业通过本次展会,展示了自己的最新产品和技术成果,并进行了深入的交流和合作。同时,我们也希望通过本次展会,吸引更多的企业来到郑州,共同推动中国传感器产业的发展。
  • 钻石量子传感器可提升电动汽车10%续航里程
    据报道,近年来,电动汽车(EVs)作为替代传统汽油内燃机汽车的环保型汽车,受到越来越多用户的欢迎,同时,科研人员也加大针对高效电动汽车电池的研发力度。然而,由于对电池电量的估计不准确,导致电动汽车效率较低,通常是通过电池输出电流评估电动汽车电池充电状态,这将用于计算车辆剩余行驶里程数。一般而言,电动汽车电池电流可达到数百安培,然而,能检测到该电流的商用传感器无法测量毫安等级电流的微小变化,从而导致电池电量估计不确定性约10%,这意味着电动汽车的行驶里程可以延长10%,反之,如果提高电动汽车电池电量评估精度,将增强电池使用率。幸运的是,日本一组科学家已找到了解决方法,他们研究发现一种基于钻石量子传感器的检测技术,在测量电动汽车典型的大电流时,可以在1%的精度内估计电池电量。该研究报告发表在9月6日出版的《科学报告》杂志上。该研究负责人是东京理工大学Mutsuko Hatano教授,他解释称,我们研发的钻石传感器对毫安电流非常敏感,而且足够紧凑,可以在汽车上使用,此外,我们能在电动汽车嘈杂环境中检测到精度较高的毫安等级电流状态。在这项研究中,研究人员开发了一个传感器原型,使用两个钻石量子传感器,放置在汽车母线(输入和输出电流的电气接点)的两侧,然而,他们使用一种叫做“差分检测”的技术来消除由两个传感器检测到的常见噪声,仅保留实际信号,反之,使用这种钻石量子传感器能在背景环境噪声中检测到10毫安等级的小电流。接下来,科学家团队利用两个微波发生器产生频率的模拟-数字混合控制,在1千兆赫带宽内追踪分析量子传感器的磁共振频率,结果发现磁共振频率可实现±1000安的较大动态范围(检测到的最大电流和最小电流之比),此外,该传感器的工作温度范围较广,从零下40摄氏度至零下85摄氏度,适用于普通车辆的温度范围。最后,该研究团队对这款原型进行了全球协调轻型车辆测试周期(WLTC)驾驶测试,这是电动汽车能耗的标准测试,该传感器能够准确跟踪-50安至130安的充放电电流,电池电量估计精度在1%以内。Mutsuko Hatano教授表示,这些发现意味着什么呢?电池使用率每提高10%,电池重量则减少10%,这将使2030年2000万辆新型电动汽车的运行能耗减少3.5%,生产能耗降低5%,这相当于2030年全球交通运输领域二氧化碳排放量减少0.2%。
  • 德国开发出检测玻璃幕墙裂纹的传感器
    据德国弗劳恩霍夫研究所网站报道,该所科学家研发的一个特殊传感器系统可以检测到玻璃幕墙上微小的裂纹,并对即将发生的玻璃破碎的危险发出警告。相关技术将在5月18日至20日举行的纽伦堡国际传感器、测试测量技术展上进行展示。   玻璃幕墙体现了现代建筑学与美学结构设计的最佳结合。不过,玻璃幕墙上的玻璃破碎坠落危及行人的情况也时有发生,而迄今为止,相关安全检查一般仅依靠敲打玻璃的声音来判断。这样的检测只能确认已经形成整条裂痕的玻璃,而不能警告即将发生的危险。   现在,位于维尔茨堡的德国弗劳恩霍夫硅酸盐研究所(ISC)与行业合作伙伴共同开发了一个传感器,它可识别5毫米长的微裂纹,并在玻璃实际破裂之前就及时发出维修提示。负责该研究的伯恩哈德布伦纳博士介绍说,他们在一块玻璃上按照一米的间距安装多个压电传感器执行器模块(piezoelektrische Sensor-Aktor-Module),一个传感器执行器模块产生超声波,其他传感器接收这种注册过的超声波。如果超声波信号保持不变,说明玻璃是完好的 如果信号发生变化,就表明玻璃产生了裂痕。通常,这些裂纹从玻璃的边缘产生,最初是不可见。随着时间的推移,例如在环境温度变化的影响下,它才会逐渐扩大。   该传感器通过电缆连接到建筑物的控制系统,所有传入的数据都会被自动分析,当玻璃出现微小裂缝时就会触发警报。研究者还成功将传感器安装到层压玻璃面板间。由于这些传感器在层压玻璃的生产过程中就已经被整合到两块玻璃板之间,因此,它们能在玻璃安装前就检测到玻璃在运输过程中出现的缺陷。   这一新的安全系统不仅可以提前预测玻璃碎裂,还能提供舒适的功能:该传感器执行器模块同温度和光传感器相连,可以根据光照情况选择开关百叶窗,从而控制室内环境。
  • 灵敏度升十倍 廉价石墨烯传感器问世
    美研制出廉价石墨烯海绵传感器 灵敏度是现有最好设备的10倍   据美国《大众科学》网站近日报道,美国伦斯勒理工学院的科学家最新研制出了一款纤巧、便宜且能重复使用的新式传感器,其由石墨烯泡沫制成,性能远超现在市面上的商用气体传感器,而且,在不远的未来,科学家们能在此基础上研制出更优异的炸弹探测器和环境传感器。   新传感器摒弃了阻止传感器应用和发展的诸多限制。最近几年,在操作纳米结构并用其制造性能卓越的探测器以精确追踪空气中的化学物质方面,科学家们已经取得了重大的进步,然而,他们研制出的各式各样的传感器,尽管从理论上而言很好,但却并不实用。   目前传感器的设计都非常复杂,常常依赖单个纳米结构,而且,科学家们需要对这样的结构进行仔细操作以及更加精确的分析。另外,制造出的传感器往往不能重复使用,且必须在特定的温度或压力下才能工作,因此,科学家们一直没有制造出一款可靠、便宜且可以重复使用的手持传感设备。   现在,伦斯勒理工学院的科学家们使用石墨烯泡沫研制出了这种邮票大小的新型传感器。他们将石墨烯,即单层碳原子,种植在泡沫镍结构上,随后移除泡沫镍,留下一个类似泡沫的石墨烯结构,其具有独特的电性,能够用于执行传感任务。   当将其暴露于空气中时,空气中的粒子会被吸收到泡沫表面,而且每个这样的粒子会用不同的方式影响石墨烯泡沫,对其电阻进行微小的改动。让电流通过其中并且测量电阻的变化,就能知道泡沫上依附的是什么粒子。科学家们让大约100毫安的电流通过该泡沫,结果发现,这种石墨烯泡沫能够导致粒子解吸,也就是说,粒子自动从传感器上剥落下来,清除这些粒子,传感器就可以重复使用了。   科学家们对传感器进行了微调,让其来探测氨水(自制爆炸物硝酸氨的关键成分),该石墨烯泡沫传感器在5分钟到10分钟内就设法探测到了这种富有攻击性的粒子,而且效率是现有市面上最好探测器的10倍。科学家们接着用其来探测有毒气体二氧化氮(爆炸物分解的时候也会释放出这种气体),结果表明,其效率也是目前商用传感器的10倍。   石墨烯泡沫非常容易处理且操作简单,而且在室温下也能很好地工作,这都是科学家们非常心仪的特质,该石墨烯泡沫传感器可让科学家们更快制造出更便宜实用的手持传感设备来对大气进行探测。
  • 石墨烯鼓有望制造出超高灵敏度传感器
    科技日报讯 荷兰代尔夫特理工大学的科学家发现用石墨烯薄片制成的&ldquo 鼓面&rdquo ,能够在光的作用下发生振动,根据这一原理能够检测到非常微小的位置和力度的变化,未来有望据此用石墨烯制造出具备超高灵敏度的传感器设备和量子计算机内存芯片。相关论文发表在近日出版的《自然· 纳米技术》杂志上。   石墨烯以其独特的机械和电气性能闻名于世,而最近荷兰的科学家们发现,这种神奇材料还具有一种独特功能。由于单层石墨烯只有一个原子厚,质量极低,因此研究人员设想能否用其制造出一面能够感受到微小振动的&ldquo 鼓&rdquo 。这面鼓的鼓面由石墨烯制成,敲击它的鼓槌则是以微波频率发射的光。   领导这项研究的荷兰代尔夫特理工大学的维伯· 辛格博士和他的同事用石墨烯在一个光力学空腔中对这一设想进行了验证。他们发现,在光力学空腔中,他们能够通过观察光干涉现象产生的图案,检测出物体位置及其微小的变化,精度能够达到17飞米(原子直径的一万分之一)。   物理学家组织网近日报道称,实验中的光不仅有利于检测到鼓的位置,同时也能够向鼓面施加压力。来自光的推力非常非常小,但足以推动质量极小的用石墨烯制成的鼓面,让其发生位移。这意味着科学家们可以用光敲击石墨烯制成的鼓。根据这一原理有望制造出具备超高灵敏度的传感器设备。   此外,科学家也可以用它来制造内存,这些微波光子能够将光转化为机械振动,并将其存储长达10毫秒的时间。虽然对人类而言10毫秒极其短暂,但对目前的计算机芯片而言这已经不少了。辛格称,他们的一个远期目标是通过这种二维晶体鼓来研究量子运动。   辛格说,如果敲击一个普通的鼓,鼓面只会发生上下振动。而如果敲击的对象是一个量子鼓,将不仅能够通过敲击让鼓面发生振动,还能使其形成一种量子叠加状态:鼓面将同时既在上面也在下面。这种奇怪的量子运动不仅具有科学相关性,还能够在量子记忆芯片上获得应用。在一台量子计算机中,量子比特同时既可以是0也可以是1,因此其运算速度远远超过目前传统的计算机。石墨烯制成的量子鼓就具备这种能力,它能够在用与普通RAM芯片相同的方式来存储数据的同时,接收和存储量子计算机的量子计算结果。
  • 光谱仪的未来将趋向微小型化发展
    微型光谱仪具有许多大型光谱仪所不具备的优点,如重量轻、体积小、探测速度快、使用方便、可集成化、可批量制造以及成本低廉等,像普通光谱仪一样微型光谱仪有着巨大的应用市场,可以应用在实验室化学分析、临床医学检验、工业监测、航空航天遥感等领域,因而引起了人们广泛的兴趣。微型光谱仪的实现可以应用多种技术,目前常用的方法包括:采用新型滤光技术制作微型光谱仪 利用光纤的化学传感性制成光纤探针进行光谱分析 使用微细加工制作集成式微型光谱仪等。  利用光纤制作的微型光谱仪,光纤传感器的主要特点是具有很高的传输信息容量,可以同时反映出多元成分的多维信息,并通过波长、相位、衰减分布、偏振和强度调制、时间分辨、收集瞬时信息等来加以分辨,真正实现多道光谱分析和复合传感器阵列的设计,达到复杂混合物中特定分析对象的检测,这对电传感器和声传感器而言是望尘莫及的。光纤的探头直径可以小到与其传播的光波波长属于同一数量级,这样小巧的光纤探头可以直接插入那些非整直空间和无法采样的小空间(如活体组织、血管、细胞)中,对分析物进行连续检测。  OceanOptics公司的MichaelJ.Morris等人研制一种紧凑级联光纤DIP探针微小光谱仪,该系统的设计是使用单股光纤以获得高分辨率光谱信息,对于决定液体的吸收、发射和散射,或测量pH或有毒金属浓度使用固定指示材料。光谱仪的模式限制光学设计得到很高的光通量,常规应用中可以使用50μ m的光纤。微型光纤光谱仪还有美国Stwenchristesen等人研制的便携式光纤拉曼光谱仪,便携式光纤拉曼光谱仪可以对化学试剂鉴定盒进行非接触分析,它包括二极管激光器、中阶梯摄谱仪、电荷桐合器件(CCD)检测器和一个带有滤光涂层的光纤探针,这种光谱仪被用来分析密封玻璃容器中的化学试剂和其它有毒化学物。拉曼光谱是通过使用一个带有25m光纤的EICRamanProbe探针获得的。探针输出功率在紫翠玉激光器下为80mW,而二极管激光器为137nW。这种微型拉曼光谱仪也可以用T单个活细胞的分析。  由于光谱仪的结构特点以及光谱仪广泛的应用领域,在微小光谱仪的研究中可以采用多种方法和多种思路。比如改善AOTF的波长覆盖范围、波长分辨率和通光本领,可以使它能应用于各种光谱化学分析,而用这样的元件可以制成结构简单、性能良好、成本低廉的光谱仪,或者使用分辨率较高的中阶梯光栅,与一般棱镜结合,进行交叉色散,可以得到分辨率很高的二维光谱图,所以可以根据微小光谱仪的本身特点和工作环境要求来进行设计。  微加工技术的发展以及MEMS、MOEMS的出现使许多学科技术的研究都朝着微小型化的方向发展,更需要一些特殊条件下(如外星、地下、深海、危险区等)的工作仪器。光谱仪在未来的新世纪必将出现高度智能化和微型化的趋势,微型光谱仪可以说是微型仪器的一种。微型仪器实际上是具有仪器功能的MEMS/MOEMS产品,是MEMS技术的实际应用。  微型仪器的核心技术之一是微型传感技术,采用各种新原理、新概念的各类传感器是实现微型仪器的关键和必要条件。现在仪器朝着微小型化、智能化的发展使我们又面临一个新的考验,也是我们发展的一个机遇。
  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
  • 美研制出生物体与电子设备相结合的湿度传感器
    研究人员将真菌孢子与石墨烯量子点结合在一起,制造出了一种极其微小的生物机器人。   &ldquo 这是一个令人着迷的设备,你可以说它是一个传感器,也可以说它是一个类似于机械战警般的生物机器人。&rdquo 美国伊利诺伊大学芝加哥分校的科研人员日前将真菌所产生的孢子与石墨烯量子点结合在了一起,制造出了一种极其微小的生物机器人。该装置有望用于环境监测、食品安全等领域。相关论文发表在自然出版集团旗下的《科学报告》期刊上。   随着纳米技术的发展,制造出肉眼不可见的微型机器人已经成为一件可能的事情,将生物体与无生命的机器相结合也成为解决问题的一个备选方案。新研制出的这种装置主要由孢子和石墨烯量子点组成,研究人员首先从细菌中提取孢子,再将石墨烯量子点放置在孢子的表面,而后在孢子两侧各贴上一个电极。这样,当孢子周围的湿度下降时,孢子就会收缩,其中的水分会被压出。由于孢子缩小后体积变小,两侧的量子点会紧靠在一起,电极的导电性也会立即发生变化,从而达到了监测湿度的目的。研究人员将这个设备称为&ldquo 纳米电子机器人设备(NERD)&rdquo 。   该研究论文第一作者、伊利诺伊大学芝加哥分校副教授维卡斯· 贝瑞说:&ldquo 在湿度发生改变的那一刻,我们就能立即得到一个清晰准确的反馈。这个反应速度比目前最先进的人造吸水聚合物制成的传感器快10倍以上。而且与人造传感器相比,这种生物传感器在极端低压以及极低湿度下具有更加出色的灵敏度。&rdquo   物理学家组织网近日报道称,目前常见的湿度传感器的灵敏度随着湿度的增加而逐渐增强,而NERD的灵敏度在低湿度情况下反而更加灵敏。这种传感器能够适应各种环境,甚至是真空,这在防腐或食品质量监测领域有重要应用前景。对于运行在太空中的设备而言,这些传感器同样非常重要,因为在这些地方湿度的变化是预示泄漏的一个重要信号。   贝瑞说:&ldquo 这种传感器具有广泛的应用前景,此类研究为人们探索生物体与电子及机械设备的结合提供了一个新的角度。&rdquo
  • 拉曼生物传感器检测脑瘤只需一滴血
    加拿大研究人员在美国化学会《ACS纳米》上发表论文称,他们开发出一种生物传感器,可帮助医生从微小的血液样本中精确诊断出脑癌。图片来源:ACS纳米根据美国国家癌症研究所的数据,脑肿瘤的死亡率很高,5年生存率仅为36%。更准确的诊断或会改善这种情况,但组织活检具有侵入性,且可能会错过有关肿瘤组成的重要信息;而基于成像的方法又无法提供足够的灵敏度和分辨率。为了有效治疗脑癌,医生不仅需要确认恶性肿瘤的存在,还需要确定它是起源于此(原发性肿瘤)还是从其他器官转移到大脑(继发性肿瘤)。医生还需要知道肿瘤位于器官的哪个位置。由于现在没有诊断技术可在无手术或痛苦的脊椎穿刺的情况下完成这一任务,研究人员希望开发一种使用少量血清的无创测试方法。研究人员使用高强度激光束在镍芯片上产生3D镍—镍氧化物纳米层。通过这个过程形成的超敏生物传感器能检测出微量的肿瘤衍生物质,如核酸、蛋白质和脂质,这些物质通过血脑屏障进入循环。传感器使用表面增强拉曼光谱法检测这些组分,该方法为每个样品生成分子谱或指纹。然后,研究人员使用深度神经网络分析这些特征,以找到脑肿瘤的证据并确定其类型,并预测其在大脑中的位置。使用液体活检平台,研究人员可从5微升血清中检测出脑癌,还可将其与乳腺癌、肺癌和结肠直肠癌区分开来,具有100%的特异性和敏感性。他们在区分原发性脑肿瘤和从肺或乳腺转移到大脑的继发性肿瘤方面取得了类似的成功。新技术使研究人员能以96%的准确率确定肿瘤位于9个脑区室中的哪一个。研究人员说,该测试的非侵入性允许随着时间的推移监测癌症的发展,以便医生作出更好的治疗决策。
  • 石墨烯传感器可让小分子“现形”
    科技日报北京7月12日电 尽管科学家因为石墨烯无与伦比的属性而对其青睐有加,但迄今为止,其实际应用仍然乏善可陈。不过,瑞士洛桑联邦理工学院(EPFL)生物纳米系统实验室和西班牙光子科学研究所的科学家们在最新一期的《科学》杂志上宣称,他们利用石墨烯独特的光学和电子学属性,研制出了一种具有超高灵敏度的分子传感器,可以探测蛋白质或药物小分子的详细信息。  在红外吸收光谱学这种标准的探测方法中,光被用来激活分子。不同分子的振动不同,借由这种振动,分子会显示其存在甚至表现自己的“性格”。这些“蛛丝马迹”可在反射光中“读出”。但在探测纳米大小的分子时,这一方法的表现差强人意。因为照射分子的红外光子的波长约为6微米,而目标分子仅几个纳米,很难在反射光中探测到如此微小分子的振动。  于是,石墨烯受命于危难之间。研究合作者丹尼尔罗德里戈解释道,如果让石墨烯拥有合适的几何形状,其就能将光聚焦在表面上的某个特定点上,并“倾听”附着其上的纳米分子的振动。他说:“通过使用电子束轰击并使用氧离子蚀刻,我们在石墨烯表面弄了一些纳米结构。当光到达时,纳米结构内的电子会振荡,产生的‘局域表面等离子体共振’可将光聚集在某个点上,其与目标分子的尺度相当,因此,能探测纳米大小的结构。”  除此之外,这一过程也能揭示组成分子的原子键的属性。研究人员称,当分子振动时,连接不同原子的原子键会产生多种振动,不同振动之间的细微差别可提供与每个键的属性以及整个分子的健康状况有关的信息。为了找出每个原子键发出的“声音”从而确定所有的频率,需要用到石墨烯。在实验中,研究人员对石墨烯施加不同的电压,让其“调谐”到不同的频率,从而能“阅读”其表面上的分子的所有振动情况,而使用目前的传感器无法做到这一点。研究人员海蒂斯奥特格说:“我们让蛋白质附着在石墨烯上,并用这一方法,得到了分子全方位的信息。”  研究人员表示,这种简单的方法表明,石墨烯在探测领域拥有不可思议的潜能,奥特格表示:“尽管我们研究的是生物分子,但这一方法或许也适用于聚合物和其他物质。”
  • 日本研制出柔性压力传感器,有望协助肿瘤检测
    提起肿瘤,相信大多人都是惧怕的,因为它在大多数时候都代表了痛苦与死亡,至今,人们对于大部分肿瘤依旧束手无策。  而传感器的功能相信大家都是了解的,是人工智能硬件的必备品,越小越灵敏的传感器也就意味着可以办成更多的事。  由于生产方法的限制,人类还很难制造出厚度在100位微米以下的传感器。但是日前却传来了好消息,日本东京大学的研究人员研发了一种由纳米纤维材料制成的超薄柔性压力传感器,仅80微米厚,可以很准确地感知圆形物体表面的压力,甚至可以一次性测量出144个点的压力。  利用碳纳米管、石墨烯和高分子弹性聚合物等制成了300-700纳米厚的纳米纤维材料,再形成透明、轻薄的多孔结构。  研究人员将这一传感器放进人造血管之中进行测试,发现可以测量出极其微小的压力变化,同时还可以检测出压力在这种环境中传播的速度。  由此,研究人员表明,未来是有希望利用搭载这种传感器的橡胶手套来检测出乳腺癌或是肿瘤的。  我们相信时间的力量,有一天,肿瘤再不会成为一个可怕的代名词。
  • 美国发明可探测致癌物质的纳米传感器
    美国科研人员发明了一种微型传感器,可以检测少量有毒的致癌物质或追踪活细胞内部抗癌药物的效用。   “我们制作了一个非常小的纳米传感器,可以检测致癌分子或单一细胞内的重要治疗药物”,麻省理工学院的研究人员Michael Strano表示。   “传感器比一个活细胞还小得多,因为它的体积小巧,可以放置在不适宜放较大传感器的地方”,他说。   Strano称,传感器是由被称为碳纳米管的薄丝碳分子制成。   研究团队在碳纳米管里小心加入DNA,传感器能发出可被近红外光谱探测出的荧光,因人体组织不能在这个光谱下发光,所以可以辨别出纳米管的位置。   当传感器与细胞内的DNA发生作用时,光信号就会改变,从而帮助研究人员辨识出一些特定分子。   从1991年被发现以来,纳米碳管(carbon nanotube,CNT) 日益令人瞩目。这些卷曲状的石磨虽然微小到肉眼不可见,但是硬度比钻石还高,由有机物构成,可以呈现出多种形式,具有金属或者半导体的特性,有望发展为纳米电子学(nanoelectronic)、医学的首选材料,成为新型传感器光传感器和合成原料的加固成分。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制