当前位置: 仪器信息网 > 行业主题 > >

维赫控制仪

仪器信息网维赫控制仪专题为您提供2024年最新维赫控制仪价格报价、厂家品牌的相关信息, 包括维赫控制仪参数、型号等,不管是国产,还是进口品牌的维赫控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合维赫控制仪相关的耗材配件、试剂标物,还有维赫控制仪相关的最新资讯、资料,以及维赫控制仪相关的解决方案。

维赫控制仪相关的论坛

  • 微机控制冲击试验机软件操作规程

    1 微机控制冲击试验机试验完毕,点击“落摆”按钮,摆锤自动落到0度角位置停止,退出试验状态。关闭该控制软件,计算机和机器电源2 反复操作第8步,完成一批试样的试验,试验结果自动保存。在“打开”按钮里可找到每批次的实验结果。3 将试样放到钳口正确位置,点击“退销”,安全销弹出,点击“试验冲击”按钮。试验开始,摆锤冲击完毕后,自动挂摆,软件自动记录本次冲击的能量。多次试验后软件自动记录计算最大值最小值和平均值。4 点击“试验开始”,确认一切准备就绪,点击“取摆”按钮,摆锤自动扬摆,挂钩,安全销弹出。5 将摆锤稳在0度位置无摆动,点击“角度置零”按钮,使软件角度显示为零。6 点击软件左上角按钮“试样”,将试样参数输入完毕后,点击“确定”,即可完成试样信息创建,启动自动保存试验数据功能。7 点击微机控制冲击试验机软件右上方“标称能量”下面的能量选择,调整能量档位,调到与当前摆锤能量相符的档位。8 将计算机数据连接线安装好,打开软件ImpactStar(系统参数;摩擦损失等调试人员已设定,客户不必设定,可直接操作)。9 接通电源开关,指示灯应亮。按钮盒子上的钮子开关拨到“开”的位置,当按动“取摆”按钮时,摆锤应在您面对微机控制冲击试验机正面位置时,做逆时针转动,若方向不对,应立即将钮子开关拨到“关”的位置,然后切断电源改变电源相序。10 本微机控制冲击试验机采用三线四线制50赫兹380伏电源,请务必正确连接,并接通地线。

  • 岛津多道荧光光谱仪控样的控制范围

    岛津多道荧光光谱仪控样的控制范围是怎么来的呀?定值可以从化学法得到,控制范围软件说明书没有提到呀!控样的校正系数应该是分析控样后自动得到的吧?高手指点下吧?

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 液质联用仪控制电脑维修感悟

    [align=center]Qtof6510[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]控制电脑维修感悟[/align] 该仪器控制电脑为惠普两款固定型号的工作站,其它品牌和型号的电脑均无法控制仪器。我们的电脑是HP XW4600 workstation,随仪器采购购置,直到最近在使用中突然无法正常进入系统,表现为开机界面中断、重启无线重复,无法进入XP操作系统。1、联系仪器厂家说是电脑本身系统问题不归仪器厂家负责,让找电脑厂家维修,要是能准备好仪器厂家要求的两款特定电脑,可以以付费上门安装仪器控制软件的方式解决问题。2、咨询电脑维修厂家,每家说法都不太一样,报价也不一样,最后带着电脑去了惠普售后,到了之后等了一会,然后给插上电试了一下,姑且说是给检测了一下,其实也没见有啥操作,就说主板坏了,老式电脑主板需要等配件半个月左右,到时再根据具体维修情况看哪里还需要更换,估计维修周期1个月吧,光一块主板费用就是2000元,价格让人无语。最后没有维修又拿回来。3、有其他老式电脑和新电脑但都无法替换,因为人家就用那两款,如何解决。自己找了一台与其类似的电脑hp Compaq,仪器控制软件居然能装上,按照提示装完后进行IP地址配置,instrument configuration配置仪器,都正常通过。打开控制软件进行调谐,基本正常,但是到最后调谐报告却无法正常完整弹出,先不管,反正调谐能通过,只是无法正常显示而已。在软件上建立方法运行样品正常,本以为问题解决,可是结果在序列进样时会突然中断,结果只是能用但用着闹心,可能这就是所谓的bug。考虑电脑系统不是那台坏电脑XW4600的系统,于是想直接复制那台电脑系统,问题又来了,XW4600电脑是磁盘阵列raid设置,常规Upan启动根本不行,于是开机又更改为正常形式,备份系统,还原到hp Compaq电脑,更新电脑驱动,问题依旧,还是存在调谐报告无法完整显示和序列中断。暂时先凑合用吧,就是别扭。4、维修方案又回到已经坏了的XW4600电脑,网上买了个二手主板,换上原来的CPU后开机又提示时间未设置无法进入系统,考虑可能是电池没电了,有换了一块主板电池,再次开机提示风扇未检测到,一看机箱风扇没转,用手试了一下,风扇比较卡,估计坏了,还是无法正常开机。从废旧电脑找了个四线调速风扇,换上之后还是提示风扇未检测到。找了个专业人士问了一下,原来风扇可以根据温度调整转速进而调节机箱散热风量,所以不是常规的两根线,而是四根接线。于是调整线序后风扇开机转了,但是还是没有进入系统,卡在开机内存检测过程,仔细核对手边的维修配件,原来工作站的内存条与一般电脑内存条不同,是专用的,换好专用内存条后,开机正常,然后继续装仪器控制软件,进行相关设置,正常使用。 维修过程耗时较长,也很是艰难,但是真的更加了解了电脑的结构,也提供一种电脑故障解决方案,可能这款电脑有其独到的配置和驱动程序,其它的电脑很难替换满足需要,同时也是建议厂家使用更通用的电脑,使得维修更便捷。

  • 微流控控制器说明

    [b][url=http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html]微流控控制器[/url][/b]是[b]控制微流体器件[/b]如微型泵,微型阀的功能强大的[b]流控控制器[/b],[b]微流控控制器[/b]简化了实验室科研的复杂设计。微流控控制器OEM版本操作简单,更加有效,更适合微流体和微流控产业化使用,可以广泛用于医疗设备,生物处理系统,实验室仪器,化学仪器和科学设备和许多其它使用流体控制装置(泵,阀等)的领域,方便用户集成和制造工具。[img=微流控控制器]http://www.f-lab.cn/Upload/flowtest_.jpg[/img][b][/b]微流控控制器:[url]http://www.f-lab.cn/microarray-manufacturing/flowtest-oem.html[/url][b]微流控控制器[/b]FlowTest™ OEM版本结合:[list][*]现代化和高品质的控制板,不仅是设计和流体控制子系统开发的关键工具,也是在工业化和制造阶段新直接整合成新的先进仪器的关键工具。[/list][list][*]开发和集成成套套件是一个灵活的,有效的和用户友好的软件套件,用于快速开发,高效编程和易于集成。这些软件大大简化了新先进仪器的流体功能。也降低了集成的成本和时间,同时在工业化工作期间促进在仪器内的操作控制器。[/list]

  • 液位控制仪表系统故障分析步骤

    (1)液位控制仪表系统指示值变化到最大或最小时,可以先检查检测仪表看是否正常,如指示正常,将液位控制改为手动遥控液位,看液位变化情况。如液位可以稳定在一定的范围,则故障在液位控制系统;如稳不住液位,一般为工艺系统造成的故障,要从工艺方面查找原因。  (2)差压式液位控制仪表指示和现场直读式指示仪表指示对不上时,首先检查现场直读式指示仪表是否正常,如指示正常,检查差压式液位仪表的负压导压管封液是否有渗漏;若有渗漏,重新灌封液,调零点;无渗漏,可能是仪表的负迁移量不对了,重新调整迁移量使仪表指示正常。  (3)液位控制仪表系统指示值变化波动频繁时,首先要分析液面控制对象的容量大小,来分析故障的原因,容量大一般是仪表故障造成。容量小的首先要分析工艺操作情况是否有变化,如有变化很可能是工艺造成的波动频繁。如没有变化可能是仪表故障造成。

  • 气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力控制模式与流量控制模式[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的载气和辅助气体所采用的流量控制方式主要分为压力控制和流量控制模式(线速度控制模式可以认为是一种特殊的流量控制模式,线速度本质上与色谱柱流量相同),在色谱分析系统的具体应用场合中各自有其优势,下文对两种控制方式的特点予以说明。[/font][align=center][font=宋体]简介[/font][/align][align=center][font=宋体]恒压力控制模式[/font][/align][font=宋体][font=宋体]压力控制模式或称之为恒压控制模式,即在整个分析过程中保持供气压力不变,常用于进样口载气控制,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,286,187]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740208012_3978_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]恒压控制方式的进样口结构[/font][/font][/align][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒压阀或者电子压力传感器用以实现恒压力控制模式,进样口系统采用开环方式进行控制,系统惯性较小。[/font][font=宋体]当色谱工作者进行液体进样时,由于样品受热发生瞬间气化,样品体积迅速增加,可能会影响进样口压力(流量)的稳定;采用气体进样(包括阀进样、热解析进样、顶空进样等进样器)时,由于进样过程中载气流路发生较短时间的阻断,也可能会影响进样口压力(流量)的稳定。可能会干扰色谱图基线,造成色谱分析重复性问题或者产生定量问题。[/font][font=宋体]进样口采用恒压模式控制时,由于进样导致的压力(流量)扰动发生之后,再次恢复原始状态所需的平衡时间较短,并且压力(流量)扰动的程度也比较弱。但是如果进样口发生轻微漏气,由于系统开环控制的原因,进样口不能自动识别轻微漏气问题。此时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的分流比将变化,色谱分析灵敏度降低,长期工作下,由于空气的渗入色谱柱可能发生损坏。[/font][font=宋体]即使采用电子流量控制器(可以自动识别程度较严重的进样口漏气),在一定的泄漏程度范围之内,也同样存在此问题。[/font][align=center][font=宋体]进样阀导致气路的瞬间阻断[/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]气体进样经常采用六通阀进行,六通阀有带有三个刻槽转子和带有气路通孔的定子组成,以平面型六通阀为例,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,[/font][/font][align=center][img=,195,127]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740300223_2270_1604036_3.jpg!w690x450.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]六通阀结构[/font][/font][/align][font=宋体][font=宋体]六通阀一般工作于[/font][font=Times New Roman]Load[/font][font=宋体]和[/font][font=Times New Roman]inject[/font][font=宋体]两个状态其工作位置,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。在两个位置下,载气都可以畅通的流过阀系统。[/font][/font][align=center][img=,296,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740396160_8660_1604036_3.jpg!w690x260.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]六通阀的工作状态[/font][/font][/align][font=宋体][font=宋体]六通阀的转子旋转[/font][font=Times New Roman]60[/font][font=宋体]°,完成位置的转换(一般情况下即完成进样),但是需要注意转子旋转需要一定的时间,在转子旋转过程中的某些时间范围内,气路发生阻断现象,如图[/font][font=Times New Roman]4[/font][font=宋体]所示。例如转子旋转[/font][font=Times New Roman]30[/font][font=宋体]°时,载气在进样阀之前积累,气路压力升高,当转子旋转到[/font][font=Times New Roman]60[/font][font=宋体]°之后,较高的压力通过阀通道进入进样口,造成压力扰动。[/font][/font][align=center][img=,189,101]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740464564_753_1604036_3.jpg!w690x369.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]气路阻断状态[/font][/font][/align][align=center][font=宋体]恒流量控制模式[/font][/align][font=宋体][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒流阀阀或者电子压力传感器用以实现恒流量控制模式,进样口系统采用闭环方式进行控制,系统惯性较大,进样口流量结构如图[/font][font=Times New Roman]5[/font][font=宋体]所示。[/font][/font][align=center][img=,417,236]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740530012_9952_1604036_3.jpg!w690x390.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]恒流方式的进样口结构图[/font][/font][/align][font=宋体]采用恒流量方式控制的进样口(填充柱进样口较为常见),流量控制惯性相对较大,流量调节速度较慢。如果进样口发生微漏问题时,某些情况下(例如采用填充柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统)会导致进样口压力的变化,从而影响色谱峰的保留时间,使得色谱工作者可以及时发现故障并进行处理。[/font][font=宋体][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也支持进样口的恒线速度控制方式,该方式可以认为是特殊的流量控制方式[/font][font=宋体]——本质上讲线速度和柱流量是相同的概念。但是恒线速度方式,不可以通过机械阀实现,只可以通过电子流量控制器的压力程序来实现。[/font][/font][font=宋体]线速度可以认为是色谱柱平均流速的表示方法,采用线速度控制方式更加容易使分析条件符合范德蒙特方式曲线,容易实现稳定和高效的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,获得较短的分析时间和较高的理论塔板数。使用较宽温度范围程序升温的分析条件时,建议选择恒线速度方式控制进样口流量。[/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以通过计算和调节进样口压力程序的方法,实现进样口的恒压力、恒流量或恒线速度控制。[/font][align=center][font=宋体]阀系统控制恒压与恒流的区别[/font][/align][font=宋体][font=宋体]某些复杂的分析场合下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]会安装有较多进样和切换阀,用来实现进样和色谱柱的选择调控。阀系统的重要特点是色谱系统阻尼的时变和瞬变[/font][font=宋体]——在色谱分析过程中,色谱系统的阻尼(一般来自色谱柱)会发生随时间的缓慢变化和切换时间点上的阻尼瞬间变化。安装有阀的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统,经常会观察到“不稳定”的基线,例如在某个确定的时间点上,会发生确定的基线跳跃、尖刺、负峰等信号。[/font][/font][font=宋体][font=宋体]色谱系统在恒压工作模式下,系统流量在阀切换之后恢复速度较快。但是需要做阻尼匹配,如图[/font][font=Times New Roman]6[/font][font=宋体]所示。例如某系统中使用图[/font][font=Times New Roman]6[/font][font=宋体]所示的色谱柱选择阀,阀发生切换动作是,色谱柱[/font][font=Times New Roman]C[/font][font=宋体]或者阻尼[/font][font=Times New Roman]R[/font][font=宋体]将会被连接入色谱分析系统,色谱系统的阻尼将发生瞬间的变化。如果色谱柱[/font][font=Times New Roman]C[/font][font=宋体]和[/font][font=Times New Roman]R[/font][font=宋体]的阻尼差异较大,那么系统出口的流速变化也会较大,那么最终会导致基线水平的变化,最终影响色谱定量,严重情况下会导致[/font][font=Times New Roman]FID[/font][font=宋体]检测器熄灭。[/font][/font][font=宋体]阻尼匹配一般使用阻尼柱或阻尼管(细内径管路)或者针型阀,需要实验确认良好的阻尼匹配,最终获得状态良好的基线,同时系统流量恢复的时间也更短。[/font][font=宋体][font=宋体]色谱系统在恒流工作模式下,系统流量在阀切换之后恢复速度较慢,基线扰动的幅度较大,扰动的时间长度较长,但是可以省略阻尼,即图[/font][font=Times New Roman]6[/font][font=宋体]中的阻尼柱可以用空管路代替,降低色谱系统成本。[/font][/font][align=center][img=,350,175]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091741006422_7415_1604036_3.jpg!w690x345.jpg[/img][font=宋体] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'] [/font][font=宋体]阻尼匹配[/font][/align][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明色谱系统的进样口和阀系统使用恒压力和恒流量控制模式的特性。[/font]

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 【分享】电控水力控制阀的工作原理及维护

    电动控制阀是一种以[color=#0000ff]电磁阀[/color][color=#0000ff]2W系列电磁阀[/color] 为向导阀的水力操作式阀门。常用于给排水及工业系统中的自动控制,控制反应准确快速,根据电信号遥控开启和关闭管路系统,实现远程操作。水力电动控阀并可取代闸阀和蝶阀用于大型电动操作系统。阀门关闭速度可调,平稳关闭而不产生压力波动。该阀门体积小、重量轻、维修简单、使用方便、安全可靠。电磁阀可选用交流电220V,或直流电24V,可根据各种场合选用常开或常闭型均可。电控水力控制阀结构特点和用途电控水力控制阀由主阀、电磁阀、针型阀、球阀、微形[color=#0000ff]过滤器[/color][color=#0000ff],风扇及过滤器FB-9804[/color]和[color=#0000ff]压力表[/color][color=#0000ff]数字式压力表SPG-063[/color]组成水力控制接管系统。通过电磁阀可以实现对阀门开启和关闭的遥控。加装附加装置后,可控制开启和关闭的速度。 电控水力控制阀利用导阀控制阀门的开启和关闭,节省能源。可代替其它阀门大型电动装置。电控水力控制阀产品广泛用于高层建筑、生活区等供水管网系统及城市供水工程。 电控水力控制阀工作原理 当阀门从进口端给水时,水流流过针型阀进入主阀控制室,当电磁导阀打开时,控制室内的水经电磁导阀、球阀流出。球阀开度大于针阀开度,主阀控制室内压力很低,主阀处于全开状态。 当电磁导阀关闭时,主阀控制室的水不能流出,控制室升压,推动膜片关闭主阀。 电控水力控制阀维护: 水力控制阀前要安装过滤器,并应便于排污的要求。 水力控制阀是一种利用水自润式阀体,无须另加机油润滑,如遇主阀内零部件损坏时,请按下列指示进行拆卸。(注:内阀内一般消耗损伤品为膜片和○型圈,其它内部零件损伤甚少)1.先将主水力控制阀前后端闸阀关闭。2.将主水力控制阀盖上的配管[color=#810081]接头[/color][color=#810081],铜制防水接头JG-T-M[/color]螺丝松开,释放阀内压力。3.将所有螺丝取下,包括控制管路中的必要铜管的螺帽。4.取水力控制阀阀盖和弹簧。5.将轴芯、膜片、活塞等取下,切勿损伤膜片。6.将以上各项东西取出后,检查膜片及○型圈是否损坏;如无损坏请勿再分自行争其内部零件。7.如发现水力控制阀膜片或○型圈有损坏,请将轴芯上的螺帽松脱,逐浙分解出膜片或型圈,取出后重新换上新的膜片或○型圈。8.详细检视主阀内部水力控制阀座、轴芯等是否有损坏,若有其它杂物在主阀内部将其清理出。9.依反向是顺序将更换后的零部件组合装好主阀,注意阀门不能有卡阻现象。

  • 【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    【原创大赛】超快太赫兹-扫描隧道显微镜(THz-STM)—调控单原子隧道电流

    原子级上电流的超快控制对纳米电子未来的创新至关重要。之前相关研究表明,将皮秒级太赫兹脉冲耦合到金属纳米结构可以实现纳米尺度上极度局部的瞬态电场。 近期,加拿大阿尔伯塔大学(University of Alberta)Frank A. Hegmann教授研究组在美国RHK Technology公司生产的商用超高真空扫描隧道显微镜(RHK-UHV-SPM 3000)系统上自主研发了太赫兹-扫描隧道显微镜(THz-STM),首次在超高真空中对Si(111)-(7×7)样品表面执行原子分辨率THz-STM测量,展示了超高真空中的THz-STM探索原子精度的超快非平衡隧道动力学的超强能力。[align=center][img=,500,264]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311403502131_145_981_3.jpg!w500x264.jpg[/img][/align][align=center]图1:利用THz-STM在超高真空中控制极端隧道电流[/align] 在图1(a)中可以看到,超快太赫兹(THz)脉冲通过反向视窗上的透镜(左侧)聚焦到超高真空(中间)的STM探针上,在隧道结(插图)处产生隧道电流。图1(c)中展示了耦合到STM针尖的太赫兹脉冲引发随时间变化的偏压(VTHz(t),红色实线),驱动超快太赫兹感应电流(ITHz(t),蓝色实线),从而产生整流的平均隧道电流。太赫兹脉冲极性(0°, 90°, 180°)可用于控制太赫兹脉冲引起的整流隧道电流,如图1(e)所示。电子从样品向尖端流动,产生负的太赫兹极性,从尖端到样品具有正的太赫兹极性。[align=center][img=,500,358]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405019168_3214_981_3.jpg!w500x358.jpg[/img][/align][align=center]图2:Si(111)- (7×7)上的单个原子非平衡隧穿的超快控制[/align] 极限太赫兹脉冲驱动的隧道电流高达常规STM中稳态电流的107倍,实现了以0.3nm的空间分辨率对硅表面上的单个原子成像,由此确定在高电流水平下的超快太赫兹脉冲驱动隧道确实可以局域化为单一原子。此外,测试结果表明解释Si(111)-(7×7)上的太赫兹驱动的STM(TD-STM)图像的原子波纹(其中数百个电子在亚皮秒时间尺度内隧穿),需要理解非平衡充电动力学由硅表面的太赫兹脉冲引起。同时,单个原子的太赫兹驱动隧道电流的方向可以通过太赫兹脉冲电场的极性来控制。在太赫兹频率下,类金属Si(111)-(7×7)表面不能从体电子屏蔽电场,导致太赫兹隧道电导与稳态隧道电导基本机制的不同。很显然,这样一个极端的瞬态电流密度并不会影响所研究的单原子STM针尖或样品表面原子,如同在传统STM测试中具有如此大小隧道电流的Si(111)-(7×7)一样。[align=center][img=,500,214]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311405376531_6859_981_3.jpg!w500x214.jpg[/img][/align][align=center]图3:太赫兹感应电流中的热电子[/align] 在高太赫兹场中观察到了来自热电子的隧道电流的额外贡献。超快太赫兹诱导的带状弯曲和表面状态的非平衡充电打开了新的传导通路,使极端瞬态隧道电流在尖端和样品之间流动。半导体表面的THz-STM为原子尺度上的超快隧穿动力学提供了新的见解,这对于开发新型硅纳米电子学和以太赫兹频率工作的原子级器件至关重要。[b]参考文献:[/b]1. Tyler L. Cocker, Frank A. Hegmann et al. An ultrafast terahertz scanning tunneling microscope. Nature Photonics, 151(2013).2. Vedran Jelic, Frank A. Hegmann et al. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface. Nature Physics, 4047(2017).

  • 危险化学品的一般控制原则

    危险化学品的一般控制原则:1.操作控制:包括,隔离、替代、通风、个体防护、工艺变更等。2.管理控制:通过管理手段按照国家法律和标准建立起来管理程序和措施,是预防化学品危害的一个重要方面。

  • 新人求助,微波消解仪的控制罐

    我是一个刚入行的小白。今天实验室做硬脂酸镁镉盐检验,使用微波消解仪进行消解。我们的消解仪只有三个罐——一个控制罐和两个标准罐。如果说两个标准罐一个放供试品,一个放对照品,那么控制罐里放的是什么液体?我看到操作指南上说控制罐不能放空白。还是说我一开始就理解错了?大家帮帮忙吧。

  • 微机控制压力试验机

    微机控制压力试验机产品描述:一、技术参数:1、最大试验力? 2、测量范围:80~2000KN(0~2000kN显示)3、力值精度:≤±1%ㄓ庞谝患叮? 4、压力传感器精度:0.1/F.S5、横梁空间: 365mm6、试验空间:310mm7、上下压盘尺寸:220*220mm8、活塞行程:150mm9、过载保护:超满量程的2%,系统自动停机,破形后自动卸载;活塞达到极限位置保护。10、电机功率:2.5KW 11、力控制速度范围:0-1500KN/min12、加荷可以连续长时间保持恒压(电脑自动控制微机控制压力试验机)13、具有手动、自动两套加荷系统,转换方便。14、全程无分档,自动调零,标定简单。15、油缸下置式。16、油源控制:液压比例阀控制调节速度,换向阀控制方向;油泵最大使用压力约:31.5MPa;油泵流量:10L/min;电机功率:2.5KW17、工作电压:380V/220V18、主机尺寸(长*宽*高):1000*600*1800mm19、油源尺寸(长*宽*高):500*500*1000mm20、随机配备联想电脑、HP A4激光打印机;联想电脑:型号:启天M4400,CPU:ICP D 347,内存:256M ,硬盘:80G,显示器:17”纯平。21、微机控制压力试验机软件验收标准: (1)、位移、力值各传感器可以自动清零。主界面上另设手动清零按钮。 (2)、加载速度、间隔时间等可以根据试验要求设定? (3)、在试验模块内可以根据试块输入面积、领期、试验员、序列号、日期等参数。 (4)、保压模式下:可以任意设定恒定压力值,保持时间任意,电脑自动控制,可以连续多级保压。 (5)、可显示 力-时间曲线,自动换算兆帕值,并可以自动保存到设定表格中,同时将各曲线一并保存到表格中。并能通过打印机打印试验报告。 (6)、试验报告在软件中有编辑器,用户可根据自己要求对试验报告自行编辑、设计、更改。 (7)、比例阀、换向阀实现自动控制,自动调节。 (8)、送油阀、回油阀实现手动控制时使用。

  • 小型恒温控制系统设备焊接维修注意事项

    小型恒温控制系统设备在维修的时候注意点比较,无锡冠亚小型恒温控制系统设备专业厂家提醒,其焊接部分也是维修的重点之一,那么,小型恒温控制系统设备焊接的时候注意哪些方面呢?  小型恒温控制系统设备焊接时要对机箱及小型恒温控制系统设备各部件采取保护措施,防止被焊枪火焰烧坏。焊接时要注意焊枪火焰的调节,将火焰调节至中性火焰时才能焊接,焊接时速度要尽可能的快,避免长时间加热温度过高对压缩机、制冷阀体、铜管等产生破坏。  小型恒温控制系统设备焊接时如果发现焊接后铜管有发黑的现象应调大助焊剂的流量,直到焊接后铜管呈紫色为止。更换小型恒温控制系统设备板式换热器时,焊接时焊接点以下应泡在水中,使用含银 50%的银焊条对板换进行焊接,禁止不采取保温措施直接对板式换热器进行焊接否则会导致温度过高而损坏,焊接好后,一定要用保温板对其进行保温,防止表面结露。安装时,进液端在下部,出气管端在上部。  小型恒温控制系统设备的压缩机搬动过程中不得将压缩机横放或倒置,否则会使滑动部分的润滑性能降低导致压缩机启动时损坏。相对于水平状态的倾斜度不得超过 5 度,在拔去橡胶塞后应尽快焊入系统中,时间控制在 10 分钟内。更换毛细管时,不能随意增加或减少毛细管的长度,当毛细管的长度增加时,将会产生不利情况。铜管与毛细管、过滤器与毛细管套接时毛细管插入深度控制在 10mm 左右,铜管钎焊的装配间隙:单边为 0.05~0.15mm。  小型恒温控制系统设备的焊接部分是很重要的,同时需要注意其工艺部分的强化,焊接的部分尽量找专业点的技术人员进行焊接。

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

  • 【原创大赛】气相色谱仪流量控制原理与维护 (一-二) 进样口手工流量控制器和电子流量控制器原理

    【原创大赛】气相色谱仪流量控制原理与维护   (一-二) 进样口手工流量控制器和电子流量控制器原理

    [align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] [font=宋体](一)[/font] [font=宋体]进样口手工流量控制器原理[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体][font=宋体]以分流[/font]/[font=宋体]不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口手工流量控制的基本原理。[/font][/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流[/font]/[font=宋体]不分流([/font][font=Calibri]Split/Spliless[/font][font=宋体])进样口。进样口流量控制方式有手工流量控制和电子流量控制两种,手工流量控制方式的色谱仪价格较为低廉,抗污染能力强,运行与维护成本较低,目前仍旧在普通化工分析等行业中使用。[/font][/font][font=宋体] [/font][align=center][font=宋体]常见的手工流量控制方式[/font][/align][font=宋体]进样口手工流量控制器大致分流两类,压力控制方式和总流量控制方式。[/font][font=宋体][font=宋体]图[/font]1[font=宋体]所示为压力控制方式,载气由压力控制器调节到适合压力,即为柱前压。[/font][/font][font=宋体]隔垫吹扫流量和分流流量分别由对应的针型阀控制,调节到合适的流量。[/font][font=宋体]柱流量由色谱柱来确定。[/font][font=宋体]压力控制器调节速度较快,适合气体阀进样或者样品气化体积较大的场合。分流流量、隔垫吹扫流量、柱流量各自独立,需要单独测定各流路流量,调节工作量较大。[/font][align=center][img=,690,457]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010003569364_7168_1604036_3.png!w690x457.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font]1 [font=宋体]压力控制方式原理[/font][/font][/align][align=center][img=,690,453]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010004036078_273_1604036_3.png!w690x453.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font]2 [font=宋体]总流量控制方式原理[/font][/font][/align][font=宋体]载气由总流量控制器调节,输入进样口固定的流量,进样口压力缓慢上升,当压力达到设定值后,分流控制器开启,使得进样口压力恒定于设定值。[/font][font=宋体]分流控制器一般是背压阀,当输入压力达到设定值时才能开启。进样口的压力最终由分流控制进行调节。[/font][font=宋体]总流量控制方式,进样口流量调节工作量较小,总流量和进样口压力之间有相互影响,系统的调节惯性较大。样品气化气体较大或者气体进样阀进样时一般可能会观测到相对较长时间的压力流量扰动。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体][font=宋体]分流[/font]/ [font=宋体]不分流进样口常见控制方式的原理和性能比较。[/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font][font=宋体][font=宋体][/font][/font]------------------[font=宋体][font=宋体][/font][/font][align=center][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]流量控制原理与维护[/font][/align][align=center][font=宋体] (二) 进样口电子流量控制器原理[/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]以分流/不分流进样口为例,讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口电子流量控制的基本原理。[/font][font=宋体] [/font][align=center][font=宋体]分流不分流进样口的流量工作原理[/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中使用的各类进样口中,最为常见的是分流/不分流([font=Calibri]Split/Spliless[/font])进样口。目前较多使用电子流量控制器,不同仪器厂家对于电子流量控制命名不同,如[font=Calibri]AFC[/font]、[font=Calibri]EPC[/font]、[font=Calibri]EFC[/font]等,其大致原理比较接近,都是采用了基于电磁阀通断气流结合流量控制器和压力计来实现进样口的流量(压力)控制。[/font][font=宋体]图1为常见的分流[font=Calibri]/[/font]不分流进样口电子流量控制器的结构框图,当[font=Calibri]GC[/font]系统开启后,总流量控制器向进样口注入设定的流量,压力计测定的进样口压力会逐渐上升,在分流控制器的调解下,进样口压力达到设定值,进样口的流量状态达到就绪。[/font][font=宋体]隔垫吹扫流量值较低,受进样口压力的限制。[/font][font=宋体]色谱柱流量为计算值,电子流量控制器实际上只控制进样口压力。色谱柱是否安装正确,色谱柱是否堵塞,色谱柱是否断开,实际上进样口并不能感知到。[/font][font=宋体] [/font][align=center][font=宋体] [img=,690,419]https://ng1.17img.cn/bbsfiles/images/2020/09/202009010005202895_1475_1604036_3.png!w690x419.jpg[/img][/font][/align][align=center][font=宋体]图1 分流[font=Calibri]/[/font]不分流进样口结构原理[/font][/align][font=宋体]在分流工作方式下,进样口的总流量等于分流流量、隔垫吹扫流量和柱流量之和。[/font][font=宋体]当由于某种原因,进样口压力发生增大现象,此时GC系统会控制分流控制器增加分流出口流量,以降低进样口压力,使得进样口压力恢复设定值;反之亦然。在进样较大体积的液体或者气体样品时,一般会观察到进样口压力(流量)的瞬间变化。[/font][font=宋体] [/font][font=宋体]在不分流进样状态下,进样瞬间分流控制器将分流流量关闭,此时进样口总流量等于柱流量和隔垫吹扫流量之和。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体] [/font][font=宋体]电子流量控制器,实际上只控制进样口的输入总流量和压力。[/font]

  • 微生物控制菌求助

    麻烦给位帮帮我,最近我们在做控制菌检测样品,想知道样品太酸了,会不会对检测沙门菌有影响,为什么?对其他控制菌呢

  • 在微流控系统中如何选择合适的流量控制装置

    在微流控系统中如何选择合适的流量控制装置

    [size=13px][b][color=#339999]摘要:针对微流控技术中的压力和流量控制,本文介绍了目前常用的两类装置:注射泵和压力泵,重点介绍了这两种装置的性能特点,并对这两种压力控制装置进行了简要的分析对比。分析结论是压力泵将逐渐替代注射泵的应用,特别是压力泵在结合各种传感器和切换阀等配件后,在实现超高的响应性、稳定性和可重复性等前提下,更能涵盖几乎所有的微流体应用,并拓展进入相关新兴领域。[/color][/b][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][b][size=18px][color=#339999]1. 引言[/color][/size][/b][size=13px] 微流控([/size][size=13px]Microfluidics[/size][size=13px])是一种精确控制和操控微尺度流体的技术,又称其为芯片实验室([/size][size=13px]Lab on a Chip[/size][size=13px])或微流控芯片技术。通过微流控技术可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块芯片上并自动完成分析的全过程。[/size][size=13px][size=13px] [/size]一个典型的微流控系统主要由流量控制装置和微流控芯片两部分组成,其中流量控制装置由多个部件组成,包括泵,阀门,传感器、储液管,管线等,用于气体、液体或液体混合物的微流量精密控制,流量一般低于[/size][size=13px]50ml/min[/size][size=13px]。[/size][size=13px][size=13px] [/size]微流体技术中微流量控制的基本原理是通过外力把所需要的气体或液体推入微流控芯片内,这些外力可由外部的驱动泵或压力控制装置提供。目前,研究人员主要使用的两种类型微流量控制装置分别是微量注射泵和高精度压力控制器,本文将针对这两种微流量控制装置进行分析比较,为微流控技术的实际应用提供有效的技术支持。[/size][b][size=18px][color=#339999]2. 微量注射泵[/color][/size][/b][size=13px][size=13px] [/size]微量注射泵是以往微量蠕动泵和循环泵的升级替代产品,是微流控领域经常使用的一种流量控制系统。微量注射泵可分为两类:价格便宜但会产生流量振荡的普通注射泵和价格偏贵但可以提供更高流量稳定性的无脉动注射泵。几种典型的微流量注射泵如图[/size][size=13px]1[/size][size=13px]所示。[/size][align=center][b][color=#339999][img=微流控压力泵和注射泵性能的详细分析和比较,690,138]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932237145_4550_3221506_3.jpg!w690x138.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]1 [/size][size=13px]几种典型的微流量注射泵[/size][/color][/b][/align][size=13px][size=13px] [/size]微量注射泵的主要优势是易于使用。无脉冲注射泵的主要弱点是时间响应性太慢,微流控芯片内的流量变化需要几秒到几个小时后才能达到稳定的流速,这种慢响应的弊端也是微量注射泵在数个应用领域如微液滴的制备内应用的主要限制因素。但随着采用能达到微米或纳米步长的步进电机技术,以及增加注射泵微机械部件接触的精密度,注射泵机械部件的生产质量,实验装置的流阻,实验用导管和芯片的弹性与高流阻特性等,可解决上述问题。注射泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])可以快速实现微流控实验装置的搭建。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])新型无脉冲的注射泵可产生低于[/size][size=13px]1%[/size][size=13px]的流动稳定性。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])注射液体量对于长时间的实验来讲是可知的。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵产生的最大压力可达几百个[/size][size=13px]bar[/size][size=13px]左右。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])器件内的平均流量不会因器件流阻的实际变化而发生变化(注射泵因高压而发生停止运动除外)。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])流量的响应时间在几秒到几小时内变化,这依赖于流体的阻力。响应时间的快慢可通过使用特定的微流体导管来进行调节。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])因没有流量计,在暂态过程(几秒到几个小时)中,用户不知道实际的液体流量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])如果器件的流阻增加(如因通道堵塞或灰尘产生),微量注射泵产生的压力会无限制的增加。产生的压力增加到一定程度便会反过来损坏器件。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵无法实现死端通道(类似集成微流控阀)内流体的流量控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])注射泵驱动的液体体积总量是有限制的,而不是无限的。[/size][size=13px][size=13px] [/size]([/size][size=13px]6[/size][size=13px])如果需要知道流体系统内部的压力,需要配备压力传感器。[/size][size=13px][size=13px] [/size]([/size][size=13px]7[/size][size=13px])即使是使用无脉冲的微量注射泵,也需要根据具体的实验条件来仔细的选择注射器的大小,以此来避免注射泵的步进电机造成的液体流量的周期性脉动。[/size][size=13px][size=13px] [/size]([/size][size=13px]8[/size][size=13px])流量的脉冲振荡效应可以通过使用一致性较好的微流体导管来进行降低。[/size][size=13px][size=13px] [/size]([/size][size=13px]9[/size][size=13px])环境的温度变化会对引起管路材料收缩并改变管路的内径,而内径的微小变化会导致流速发生四次方的巨大变化。同时温度改变也会引起流体内气泡的体积变化而产生不希望的流体位移,这些最终都会对微流体注射泵性能带来严重影响。[/size][b][size=18px][color=#339999]3. 微量压力泵(压力控制器)[/color][/size][/b][size=13px][size=13px] [/size]微量压力泵是一种控制容器中样品流量的新型装置,即通过在压力下将样品平稳注入微流体芯片。目前多数微流控研究都是通过使用压力控制器来完成的,因为它们可以在微流控芯片中以快速响应时间([/size][size=13px]80ms[/size][size=13px])建立无脉冲流。压力驱动的流动装置无延迟地传播流体中的压力变化,允许快速流动切换。由于没有移动的机械部件,压力驱动流的平稳运行得到进一步增强。[/size][size=13px][size=13px] [/size]目前市场上有许多不同类型的精密压力调节器,各有特点。压力调节器类型的选择取决于特定需求和应用,然而,所有压力调节器都需具备一个特点,那就是能够高精度的控制液体的流动。下图是几种典型的国外微流体压力调节器产品。[/size][align=center][b][color=#339999][img=02.几种典型的微流量压力泵,690,141]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932511670_1765_3221506_3.jpg!w690x141.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]2 [/size][size=13px]几种典型的国外微流量压力泵[/size][/color][/b][/align][size=13px][size=13px] [/size]压力和流量是一个对应关系,即通过控制施加在液体上的压力,也可以控制流体的流速,至于采用压力控制模式,还是采用流速控制模式,需要根据具体应用需要进行选择。下面是微流控装置中这两种控制模式的结构示意图。[/size][align=center][b][color=#339999][img=03.微流控装置中的压力和流量两种控制模式,690,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933358798_241_3221506_3.jpg!w690x289.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]3 [/size][size=13px]微流控装置中的压力和流量两种控制模式[/size][/color][/b][/align][size=13px][size=13px] [/size]如图[/size][size=13px]3[/size][size=13px]所示,在压力控制模式中,压力控制器通过调节样品储液容器上方的气体压力,将样品流体注入到微流控芯片中。为了解微流控芯片中所注入样品流体的流量,需要在微流控芯片的进口端或出口端增加一个流量传感器。如果此流量传感器作为压力控制器的测量信号,则会形成一个反馈闭环控制回路,可实现样品流体的精密流量控制。[/size][size=13px][size=13px] [/size]由此可见,与高精度注射泵相比,如图[/size][size=13px]4[/size][size=13px]和图[/size][size=13px]5[/size][size=13px]所示,通过将压力控制器与流量传感器相结合,可以实现超精确和快速响应的流量控制。[/size][align=center][b][color=#339999][img=04.注射泵和压力泵的微流控流量控制时间响应效果对比图,350,294]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933539524_3049_3221506_3.jpg!w400x337.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]4 [/size][size=13px]注射泵和压力泵的微流体流量控制时间响应性效果对比图[/size][/color][/b][/align][align=center][b][color=#339999][img=05.注射泵和压力泵的微流控流量控制稳定性效果对比图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250934166653_4218_3221506_3.jpg!w690x321.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]5 [/size][size=13px]注射泵和压力泵的微流体流量控制稳定性效果对比图[/size][/color][/b][/align][size=13px][size=13px] [/size]压力控制泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])压力源允许无脉冲的流量流动。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])驱动液体的体积量可达到几升的液体量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])响应时间最快可达到[/size][size=13px]9 ms[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])允许死端或者封闭通道内的液体控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])当使用流量计时,允许同时控制液体的流量和压力。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])最高压力会受到限制,目前常用的压力控制器的最高输出压力仅能达到[/size][size=13px]8bar[/size][size=13px],但采用新型的压力控制器,最高输出压力可达[/size][size=13px]50bar[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])当压力不平衡时,尤其是在多个输入口进行流量切换时,压力控制器可能会产生倒流(可使用开关阀门来解决这种倒流现象)。[/size][b][size=18px][color=#339999]4. 总结[/color][/size][/b][size=13px][size=13px] [/size]综上所述,每种微流体控制系统都有各自的缺点和优点。注射泵方便,并且已经使用了很长时间,然而当面临复杂或需要精细控制微流体时,性能会受到限制(响应时间,波动和温度等等),这在微流体实验中经常碰到这种情况。[/size][size=13px][size=13px] [/size]压力泵越来越多地被使用,因为它是为微流体开发的,它完全满足用户的期望(响应性、稳定性、可重复性等等)。压力控制技术几乎涵盖了所有的微流体应用([/size][size=13px]97%[/size][size=13px]以上),并开始进入其它相关领域,如生物学和化学。同时,配套压力控制器的可选配件如传感器和切换阀等非常广泛,可以针对实验的需求而加以选择,同时这些选配件的价格下降使得其应用领域更加广泛。[/size][align=center][size=13px]~~~~~~~~~~~~~~~~~[/size][/align]

  • 危险化学品控制原则

    危险化学品的操作控制 —— 替代控制、 预防化学品危害最理想的方法是不使用有毒有害和易燃易爆的化学品, 但这一点并不是总能做到, 通常的做法是选用无毒或低毒的化学品替代已有的有毒有害化学品, 选用不可燃化学品替代易燃化学品。危险化学品的操作控制 —— 通风通风是控制作业场所中有害气体、 蒸气或粉尘最有效的措施。 借助于有效的通风, 使作业场所空气中的有害气体、 蒸气或粉尘的浓度低于安全浓度, 保证工人的身体健康, 防止火灾、 爆炸事故的发生。

  • 危险化学品控制

    危险化学品的操作控制 —— 替代控制、 预防化学品危害最理想的方法是不使用有毒有害和易燃易爆的化学品, 但这一点并不是总能做到, 通常的做法是选用无毒或低毒的化学品替代已有的有毒有害化学品, 选用不可燃化学品替代易燃化学品。危险化学品的操作控制 —— 风通风是控制作业场所中有害气体、 蒸气或粉尘最有效的措施。 借助于有效的通风, 使作业场所空气中的有害气体、 蒸气或粉尘的浓度低于安全浓度, 保证工人的身体健康, 防止火灾、 爆炸事故的发生。

  • 气相色谱仪流量控制原理与维护 —— 背压阀与电子背压控制

    气相色谱仪流量控制原理与维护 —— 背压阀与电子背压控制

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]背压阀与电子背压控制[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][font=宋体]背压阀一般情况下安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口或者进样阀的输出端,为进样口或者进样阀的定量环提供合适的工作压力。背压阀调节迟滞现象较弱,调节速度快。[/font][/font][font='Times New Roman'] [/font][align=center][font=宋体]背压阀简介[/font][/align][font=宋体][font=宋体]背压阀可以在一定输出端流量变化范围内保持阀输入端的压力恒定,其经常安装于某些[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流不分流进样口或者进样阀的输出端,以保证进样口或进样阀的定量环工作于合适的压力之下,其常见的安装位置如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口中,背压阀一般安装于进样口的分流出口端,通过旋转阀控制旋钮调节进样口压力。[/font][/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用气体进样阀进样时,如果进样阀定量环压力与进样口压力差异较大,进样之后可能会在色谱图上产生明显的进样干扰信号,进样口压力和流量控制也比较容易发生震荡的现象,从而造成基线的扰动。在进样阀定量环的输出端安装背压阀,调节定量环压力与进样口压力相同,可以改善阀进样产生的基线扰动。此外,通过背压阀的工作,可以保证每次进样时定量环压力的一致性,从而改善定量重复性。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]在使用高压液体进样阀时,例如分析丁烯丙烯类样品,需要保持系统定量环的压力,不至于产生样品减压造成部分或者全部气化,最终影响定量重复性和准确性。[/font][img=,553,408]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301270100_9686_1604036_3.jpg!w690x508.jpg[/img][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]背压阀的安装位置[/font][/font][/align][font=宋体][font=宋体]背压阀原理基于压力平衡,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,由调节膜、旋钮、弹簧组成。弹簧和旋钮施加的压力[/font][font=Times New Roman]F[/font][font=宋体]与阀腔体内压力[/font][font=Times New Roman]P1[/font][font=宋体]达到平衡,即:[/font][/font][align=center][font=宋体][font=Times New Roman]F = P1*A[/font][/font][/align][font=宋体][font=宋体]式中[/font][font=Times New Roman]A[/font][font=宋体]为调节膜表面积。[/font][/font][align=center][img=,137,224]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301346664_1685_1604036_3.jpg!w388x636.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]2[/font][/font][font='Times New Roman'] [/font][font=宋体]背压阀的[/font][font='Times New Roman'][font=宋体]结构图[/font][/font][/align][align=center][font=宋体]背压阀稳定输入压力的工作原理[/font][/align][font=宋体][font=宋体]阀开启时,当输入端压力[/font][font=Times New Roman]P1[/font][font=宋体]与弹簧压力相同时,调节膜位置上升,阀进入开启状态,气体由输出端流出。如果输出端由于某种原因发生阻尼变化,造成腔体压力[/font][font=Times New Roman]P1[/font][font=宋体]上升,此时调节膜位置上升,阀输出流量增大,从而降低腔体压力,使其恢复原状,从而保证输入压力不变;当输出端由于某种原因发生阻尼变化造成腔体压力[/font][font=Times New Roman]P1[/font][font=宋体]下降,此时调节膜位置下降,阀输出流量降低,从而提高腔体压力,使其恢复原状,从而保证输入压力不变。[/font][/font][align=center][font=宋体]背压阀的特点和使用注意事项[/font][/align][font=宋体]背压阀内部反馈回路较短,阀响应速度快,系统迟滞现象较弱,调节比较方便。这一点在进样口的压力控制方面较为理想,由样品气化或者阀切换带来的压力扰动,可以迅速得到恢复。[/font][font=宋体]背压阀不论连接于进样口的分流出口,还是连接于六通阀的定量环输出端口,含有大量样品的气体将通过阀释放,那么阀的维护比较重要,一般情况下需要在阀的入口端之前安装净化器,避免由于样品冷凝造成阀内部污染或者造成阀损坏。[/font][align=center][font=宋体]电子背压控制[/font][/align][font=宋体][font=宋体]电子式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的分流[/font][font=Times New Roman]/[/font][font=宋体]不分流进样口,一般采用压力传感器和比例电磁阀组成的负反馈系统实现进样口的压力控制。进样口压力传感器一般安装于隔垫吹扫出口以减轻污染,比例电磁阀一般安装于分流出口,通过调节阀开度的方法,调节分流出口的气体流出流量从而控制进样口压力,如图[/font][font=Times New Roman]3[/font][font=宋体]所示:[/font][/font][align=center][img=,462,280]https://ng1.17img.cn/bbsfiles/images/2022/10/202210241301491986_2628_1604036_3.jpg!w690x417.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]电子式分流不分流进样口结构[/font][/font][/align][font=宋体]分流不分流进样口在工作时,不断比较实际压力与设定压力之前的差值,如果发生较大负偏差(即实际压力低于设定压力),[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]控制系统主动降低分流出口的比例电磁阀开度,分流出口的流量降低,从而使进样口压力升高恢复设定值,反之亦然。[/font][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单介绍背压阀的基本用途、原理、结构和使用注意事项。[/font]

  • 微机控制压力试验机的维护及保养方法

    微机控制压力试验机的使用人员必须十分熟悉设备的操作方法和性能,严格按照设备说明书上的要求来进行设备操作,在使用的同时进行很好的维护。微机控制压力试验机对使用人员一般都有哪些要求呢。  一:三好  用好设备,管好设备,修好设备。  二:四会  会使用,会维护、会点检,会紧急处理故障。  三:五不准  不准让设备在超负荷下运行;不准乱拆、乱装、乱改;不准随意取消微机控制压力试验机安全装置;不准考试不合格人员上岗操作及独立从事维护工作;不准无证无经验人员操作及检修设备。  四:四保持  设备“四保持”的内容保持设备的外观整洁;保持设备的结构完整性;保持设备的性能和精度;保持设备的自动化程度

  • 气相色谱仪流量控制原理与维护 —— 压力控制部件 减压阀、稳压阀和电子压力控制器

    气相色谱仪流量控制原理与维护 —— 压力控制部件  减压阀、稳压阀和电子压力控制器

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][font=宋体]压力[/font][/font][font=宋体]控制部件[/font][/align][align=center][font=宋体]减压阀、稳压阀和电子压力控制器[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]减压阀、稳压阀和电子压力控制器均为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]重要的压力控制部件,这些部件协同工作,向[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]提供稳定可靠、压力大小可调节的气流。[/font][font='Times New Roman'] [/font][align=center][font='Times New Roman'][font=宋体]一[/font] [/font][font=宋体]减压阀的基本原理和使用注意事项[/font][/align][font=宋体][font=宋体]减压阀一般安装于高压气体钢瓶出口或者[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的气源流路中,可以将高达十余[/font][font=Times New Roman]MPa[/font][font=宋体]的气源压力调节至[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以承受的压力范围内(一般在[/font][font=Times New Roman]1MPa[/font][font=宋体]左右),并且可以长期稳定工作。减压阀由弹性元件(调节膜)、输出调节螺杆、输入调节弹簧、阀门密封弹簧、阀门密封垫等部件构成,其基本结构原理如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,326,349]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101039139777_4784_1604036_3.jpg!w489x524.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]1 [/font][font=宋体]减压阀[/font][font='Times New Roman'][font=宋体]结构图[/font][/font][/align][font=宋体][font=宋体]减压阀的工作原理,可以简单的理解为阀入口压力与阀出口压力之和等于输入弹簧压力,如图[/font][font=Times New Roman]2[/font][font=宋体]所示,阀内部空间分为高压室和低压室,由调节膜隔开。调节膜的面积为[/font][font=Times New Roman]So[/font][font=宋体],阀输出压力为[/font][font=Times New Roman]Po[/font][font=宋体],阀输出压力作用与调节膜的压力为[/font][font=Times New Roman]Fo[/font][font=宋体],输入压力为[/font][font=Times New Roman]Pi[/font][font=宋体],阀芯面积为[/font][font=Times New Roman]Si[/font][font=宋体],输入压力作用于阀芯的压力为[/font][font=Times New Roman]Fi[/font][font=宋体]。[/font][/font][align=center][img=,363,238]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101039226561_3586_1604036_3.jpg!w690x452.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font]2 [font=宋体]不同压力下压力表状态图示[/font][/font][/align][font=宋体][font=宋体]当减压阀处于稳定工作状态时,调节膜受到来自输入弹簧(包括阀门密封弹簧)的压力[/font][font=Times New Roman]F[/font][font=宋体]、高压室压力[/font][font=Times New Roman]Fi[/font][font=宋体]和低压室压力[/font][font=Times New Roman]Fo[/font][font=宋体]的综合作用,三种作用力达到平衡,可以使减压阀输出压力稳定。[/font][/font][font=宋体][font=宋体]即[/font][font=Times New Roman]F = Fi + Fo[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]减压阀通过输入调节螺杆的旋转,可以改变作用与调节膜片的压力[/font][font=Times New Roman]F[/font][font=宋体]的大小,从而实现减压阀输出压力的调节。[/font][/font][font=宋体][font=宋体]当由于某种原因,减压阀输出气体压力[/font][font=Times New Roman]Po[/font][font=宋体]增大,此时[/font][font=Times New Roman]Fi+Fo F[/font][font=宋体],调节膜片上升,使得阀芯与阀体的空隙减小,高压室进入低压室的气体流量减小,导致[/font][font=Times New Roman]Po[/font][font=宋体]下降,减压阀输出压力[/font][font=Times New Roman]Po[/font][font=宋体]恢复;当由于某种原因造成减压阀输出压力[/font][font=Times New Roman]Po[/font][font=宋体]减小,此时[/font][font=Times New Roman]Fi+FoF[/font][font=宋体],膜片下降,阀芯和阀体之间的空隙增大,高压室进入低压室的气体流量增大,减压阀阀输出压力[/font][font=Times New Roman]Po[/font][font=宋体]恢复,实现稳定输出压力的功能。[/font][/font][font=宋体][font=宋体]当输入压力[/font][font=Times New Roman]Pi[/font][font=宋体]发生变化时,由于阀芯的面积远小于调节膜片,则[/font][font=Times New Roman]Fi[/font][font=宋体]远小于[/font][font=Times New Roman]Fo[/font][font=宋体],[/font][font=Times New Roman]Fi[/font][font=宋体]的变化不会显著影响减压阀输出压力[/font][font=Times New Roman]Po[/font][font=宋体]。[/font][/font][align=center][font=宋体]减压阀的使用注意事项[/font][/align][font=宋体][font=Times New Roman]1 [/font][font=宋体]气源的清洁[/font][/font][font=宋体]来自气源或者管路中的油污、固体颗粒物将会造成减压阀工作的异常,例如减压阀输出压力不稳定,可能会导致正弦波状态的基线扰动;或者压力持续缓慢升高或者降低,此种现象可能会造成减压阀输出压力表或者色谱色谱仪的损坏。[/font][font=宋体]减压阀安装之前,需要确认钢瓶接口的清洁,输送氧气的钢瓶、管路、减压阀都需要严格禁油,以免发生燃烧或爆炸等事故。[/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]操作方法[/font][/font][font=宋体]减压阀安装到位之后,开启气源之前,需要首先调节输出螺栓,将减压阀关闭,此时阀芯位置上升,封闭低压室入口。气源开关开启之后,再缓慢旋转输出螺栓,开启减压阀调节输出压力。[/font][font=宋体]由于机械稳压调节装置存在一定的时间滞后,如果在高压室内无压力、阀芯处于开启状态的情况下下打开高压气源,机械稳压调节装置不能及时完成控制,可能瞬间会有较大压力的气体输出至管路和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],造成减压阀出口压力表或者[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]损坏。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]关机之后,建议将载气钢瓶和减压阀关闭,首先放出减压阀输出端的气体,然后再释放输入端气体,最后松开减压阀。这样操作可以使减压阀和压力表中的弹性部件(弹簧、膜片)避免长期压紧造成疲劳。[/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]压力和流量范围[/font][/font][font=宋体]减压阀不可以在超出其设计压力和流量范围下正常工作,否则不能实现稳压和调节压力功能,色谱工作者需要根据使用场合选择量程合适的减压阀。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]不可以空载[/font][/font][font=宋体]减压阀出口必须连接阻尼合适的负载,否则稳压能力下降。[/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]合适的压力差[/font][/font][font=宋体]减压阀的入口和出口需要有一定程度的压力差,否则无稳压作用。[/font][font='Times New Roman'] [/font][font=宋体] [/font][font='Times New Roman'] [/font][align=center][font=宋体][font=宋体]二[/font] [font=宋体]、稳压阀的原理[/font][/font][/align][font=宋体]稳压阀与减压阀功能不同,一般安装于机械式[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]内部,向[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的进样口、检测器或者阀切换系统提供稳定、可调节的气流压力。[/font][font=宋体][font=宋体]与减压阀不同,稳压阀输入压力以及输入端和输出端一般压力差较低,常见的稳压阀输入压力为[/font][font=Times New Roman]0.6MPa[/font][font=宋体]左右,其输入和输出端压力差范围约[/font][font=Times New Roman]0.5MPa[/font][font=宋体]左右。稳压阀内部的弹性元件(一般使用波纹管)刚性较弱,调节螺杆的螺距较小,通过阀手柄的旋转可以实现精细的压力调控。[/font][/font][font=宋体][font=宋体]稳压阀内部结构原理与减压阀近似,主要由弹性元件、螺杆手柄、输出压力表组成(输入端一般不安装压力表指示输入压力),如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][align=center][img=,370,232]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101039317805_2557_1604036_3.jpg!w603x378.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]稳压阀结构原理图[/font][/font][/align][font=宋体][font=宋体]在工作过程中,当稳压阀出口压力[/font][font=Times New Roman]P3[/font][font=宋体]增大时,波纹管位置向上移动,针型阀与阀体之间的间隙减小,气体由输入端流入阀内的流量降低,从而使出口压力恢复。与减压阀不同,波纹管内的压力[/font][font=Times New Roman]P2[/font][font=宋体]比输出压力[/font][font=Times New Roman]P3[/font][font=宋体]略高,稳压阀的机械滞后更加明显,输出压力波动更低。[/font][/font][font=宋体]与减压阀相似,色谱工作者也需要注意气源的洁净程度、稳压阀的输出端也必须连接一定阻尼的负载,否则将无法稳定工作。此外需要注意稳压阀输入端的气流压力稳定,如果阀输入端存在频率较高(或者频率极低的)的压力扰动,稳压阀将不能良好实现稳压作用。[/font][font='Times New Roman'] [/font][align=center][font=宋体]三、 [/font][font=宋体]电子压力控制器[/font][/align][font=宋体]以减压阀和稳压阀为代表的的机械式压力控制器,制造成本低、结构坚固、运行可靠,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]以及外围进样设备中仍旧有一定的使用量。[/font][font=宋体]由于机械螺杆方式调节存在间隙和弹性元件的长期使用之后发生的磨损和疲劳问题,机械式压力控制器难以实现长期稳定的可靠性和重复性,机械部件存在一定的迟滞性,并且调节不便,手柄的旋转角度与输出压力无直接对应关系,必须依靠输出端安装压力表以监视压力,难以应对复杂样品、复杂分析系统的使用要求,其逐渐将被电子压力控制器所取代。[/font][font=宋体][font=宋体]常见的电子压力控制器由比例电磁阀、压力计和阻尼等部件组成,各个部件构成负反馈压力控制系统,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统控制下协同工作,其典型结构如图[/font][font=Times New Roman]3[/font][font=宋体]所示。[/font][/font][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统根据分析条件的要求,不断比较实际输出压力与理论计算压力之间的差异,给予比例电磁阀合适的调节动作,实现电子压力控制器的输出压力稳定。良好的电气[/font][font=Times New Roman]-[/font][font=宋体]机械系统设计,可以使[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]满足复杂样品分析、复杂分析系统的要求。[/font][/font][align=center][img=,338,72]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101040216617_6144_1604036_3.jpg!w690x146.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]4 [/font][font=宋体]电子压力(流量)控制器组成结构图[/font][/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]小结[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的常见压力控制器原理和使用注意事项介绍。[/font]

  • 【分享】职业噪声危害与控制

    噪声是一种人们所不希望要的声音.它经常影响着人们的情绪和健康,干扰人们的工作,学习和正常生活. 长期工作在高噪声环境下而又没有采取任何有效的防护措施,必将导致永久性的无可挽回的听力损失,甚至导致严重的职业性耳聋.国内外现都已把职业性耳聋列为重要的职业病之一.强噪声除了可导致耳聋外,还可对人体的神经系统\心血管系统\消化系统,以及生殖机能等产生不良的影响.特别强烈的噪声还可导致神经失常\休克\甚至危及生命.由于噪声易造成心理恐惧以及对报警信号的遮蔽,它常又是造成工伤死亡事故的重要配合因素. 患有职业性耳聋的工人在工作中很难很好地与别人交换意见,以致影响工作效率 在日常生活和社交活动中,无法很好地同自己的亲人或朋友交流思想感情,更无法欣赏美妙的音乐,戏曲.特别是到了晚年,这种情况更为严重.这在心情上,将造成非常大的痛苦. 一般来说,采用工程控制措施或个人防护措施,将人们实际接受的噪声控制在85dB(A)以下(按接噪时间每工作日8小时计),噪声对听力所产生的影响就很小了.与此同时,噪声对健康的其他方面的影响也将大大减弱.因此,职业噪声危害的控制往往总是与听力保护工作紧密联系在一起. 为了有效控制职业噪声的危害,近年来工业发达国家在完善法规,执行听力保护计划,加强监察,研究开发低噪声产品,噪声控制新技术以及高性能护耳器等方面,做了大量工作,并取得了显著的进展. 有关噪声标准法规,自70年代以来,工业比较发达的国家,已趋于完善并得到严格执行.当前有些国家规定职业噪声暴露标准为8小时等效连续A声级90dB,但多数国家规定为85dB(A).总的趋势是要过渡到85dB(A)。但不管是规定90dB(A)或85dB(A),对噪声超过85dB(A)的生产场所都要求对工人定期进行听力检查,发给工人护耳器,告诉工人所在工作场所的噪声级和工人听力检查结果,对工人定期进行教育培训等,以预防职业噪声造成的危害。由于在噪声方面有法规标准要求,对职业性耳聋的赔偿也有明确的规定,执行又比较严,职工自我保护意识相对也比较高,因而职业噪声危害问题基本得到了控制。 我国目前尚无职业噪声暴露国家标准。1979年8月由卫生部和原国家劳动总局正式颁发的《工业企业噪声卫生标准》(试行草案),已于1994年11月在无适当标准替代它的情况下,被宣布废止,使这方面的标准呈现空白。1999年12月卫生部颁布《工业企业职工听力保护规范》。 由于我国当前缺少极不应该缺少的职业噪声暴露国家标准,有些相关标准或规定虽然已颁布,但尚未细细严格执行,使得我国职业噪声危害控制工作受到影响。国家有关主管部门尽快完善这方面的标准和规定,已是迫在眉睫之事了。 控制职业噪声危害的技术途径主要有三条:一是控制噪声源;二是在传播途径上降低噪声;三是采取个人防护措施;如佩带护耳器。我国噪声控制方面的研究工作大约从本世纪50年代后期开始,至今已有40年的历史。传统的噪声控制工程方法,如吸声、隔声、消声、隔振、阻尼降噪等方法已被相当多的人所熟悉,并应用于实际工作中,解决了不少实际噪声问题。同时气流噪声和机械撞击性噪声的控制技术,也已达到相当高的水平。各类噪声问题的控制手段现已大体具备,就总体水平来说,我国噪声控制技术同国外并无多大差别。在护耳器研制方面,我国目前也已有此类产品问世,其主要性能已接近国际水平。 对某一具体的噪声问题而言,采用何种方法来解决,要看实际情况而定。一般来说,在经济条件和技术上可行的情况下,应鼓励优先考虑采取工程措施,从声源或传播路径上来降低生产场所的噪声。但是,尚有许多场所,从经济或技术上考虑,目前还不可能采用声源降噪或声传播路径的措施,这些场所应及时采用个人防护措施来控制噪声的危害。再如,有些车间的机械设备或管道很多、很复杂,而受噪声影响的操作工人却较少,这种情况下,暂考虑使用个人防护的办法来解决噪声问题要经济很多。另外,还有些地方虽然在声源上或声传播路径上采取了一定的降噪措施,但噪声级仍未能降到85dB(A)或90dB(A)以下,其所遗留的问题应当借助护耳器来补充解决。 在控制职业噪声危害方面,护耳器目前在世界范围内仍然发挥着重要作用,使用面很广。即使在业余活动的场合,只要有强噪声存在,护耳器也可大派用场。使用护耳器是一种既简便又经济的办法。国外有关噪声的法规标准一般都明文规定:在噪声达到或超过90dB(A)的场合,工人必须使用护耳器;任何人(包括工厂的上司、来厂参观的贵宾)只要进入该场所,也都必须佩带上护耳器;对那些对噪声较敏感的工人,即使在85dB(A)至90dB(A)的环境下工作,也必须使用护耳器。 护耳器主要包括耳塞与耳罩。目前在国外较为流行使用的是一种慢回弹泡沫塑料耳塞。这种耳塞具有隔声值高、佩带舒适简便等优点。

  • 微生物控制验证计划

    微生物控制验证计划1 范围本标准规定了公司生产过程中的微生物控制要求以及验证计划。本标准适用于公司食品生产过程中对微生物控制的验证活动。2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本均适用于本标准。GB 5749 生活饮用水卫生标准GB 14881 食品企业通用卫生规范GB 15980 一次性使用医疗用品卫生标准GB 4789.2 食品安全国家标准 食品微生物学检验 菌落总数测定GB 4789.3 食品安全国家标准 食品微生物学检验 大肠菌群计数GB 4789.10食品安全国家标准 食品微生物学检验 金黄色葡萄球菌检验GB 4789.15食品安全国家标准 食品微生物学检验 霉菌和酵母计数Q/QL G06.034-2011 卫生标准操作程序(SSOP)3 职责工厂品管部对车间卫生状况进行监控,定期开展微生物验证,并根据检验结果对车间卫生进行管控,必要时,委托化验室抽样检测。4 术语与定义4.1食品接触面 指生产过程中与所生产食品直接接触的设备、工器具、人、水、空气、包材等;或间接接触的门把手、电源开关等。

  • 控样的校正方式及控制范围

    最近有几个版友都在问关于控样校正的问题,所以整理了以下内容控样又叫内控样,据说是中国人先使用的,国外一般是叫类型标准化样品(Type Standardization Samples或Type Standard Samples),主要用于校正分析样品与校准标样之间由于组织结构和化学组成不一致引起的分析结果的偏差,也可以消除第三元素的影响。它与用于过程控制的监控样品(Control Samples)是不一样的。控样的基本要求:控样元素含量应位于校准曲线含量范围之内,并尽可能与分析样品的化学成分含量接近;控样应与分析样品有相同或相近的组织结构和生产冶炼工艺;控样含量应经化学法或其他可靠的分析方法定值准确可靠、成分分布均匀、质量上无气孔、砂眼、裂纹、夹杂等物理缺陷,并有足够储量。如果条件允许,最好是自己制备、准确定值后使用,不仅节省成本,而且与自己的分析条件更一致,分析结果更可靠;如果条件不允许,去购买合适的控样也可以。(其实制作控样还是很麻烦的,在此不赘述)使用控样校准,需保证仪器的工作曲线正常,一般是在曲线全局标准化后进行控样校正,如果曲线标准化系数变动了,控样校正的系数也需要重新计算的,还好,现在的很多软件都考虑到了这个问题。在使用控样校正时还有以高带低的原则,比如你要分析含量为1.3%的元素,恰巧有浓度分别为1.5%和1.1%的两块控样,浓度都相差0.2%,此时使用1.5%的那块控样更合适。控样的校正方式与控制范围控样校正有加法校正(Translational)和乘法校正(Rotational)两种。如果控样的浓度合适,选择哪种校正方式没多大的区别,可实际上如何选择校正方式让许多人纠结,记得有人在论坛中说过,浓度在0.1%以上的用加法,浓度在0.1%以下的用乘法,有人赞同,也有人反对,如何选择校正方式,还是没有一个权威的结论此外,还有一个问题是关于控样的控制范围,控样元素的含量与分析样品之间或多或少存在一定的差异,对于那些各元素浓度范围窄的牌号就省事些,比如45#钢,C含量范围0.42%-0.50%,选择碳含量0.45%同类型的控样肯定没问题。可对于有些样品,比如ADC12牌号的铝合金,Cu要求1.5%-3.5%,如果控样的Cu含量是1.6%,用这个控样来控制Cu含量为3.4%、同样为ADC12牌号的试样就有些不合适了。很多人用控样结果出现错误,是由于控样的控制范围未应用好。正巧,我这几天无意中看到了张增坤老师写的一篇文章,上面提到了控样的校正方式及控制范围,我觉得这个经验总结挺实用的,贴出来供大家讨论 控样的校正方式及控制范围元素含量校正方式控制范围0.0001-0.005乘法100%0.005-0.01乘法70%0.01-0.1加法±0.010.1-0.5加法±0.10.5-1.0加法±0.151.0-3.0加法±0.203.0-5.0加法±0.305.0-10.0加法±0.5010.0-20.0[/si

  • 【转帖】职业噪声危害与控制进展述评

    摘要:环境噪声主要来源于厂矿内部向外辐射的工业噪声以及交通噪声﹑建筑施工噪声和生活噪声等。由厂矿内部向外辐射引起扰民的工业噪声,占相当大的比例。因此常常有这样一种情况,把厂矿内的噪声治理好了,噪声对职工的职业危害问题解决了。同时噪声引起的扰民问题也解决了。80年代至90年代以来,环境噪声问题,在国内一直受到更多的注意。由于控制环境噪声扰民和控制职业噪声危害所采取的技术措施——吸声﹑隔声﹑消声﹑隔振﹑阻尼等,是相通的。对噪声所采取的测量﹑分析方法(包括仪器),有相当多的部分也是可以相互借用。因此,可以这样来说,从环保角度来控制噪声,在控制技术与测试分析技术(包括仪器)所取得的成就,对职业噪声危害控制来说,是一种帮助﹔同样,从控制职业噪声危害角度出发,在控制技术以及噪声测试技术(包括仪器)所取得的成就,对环境来说,也是一种帮助。这两方面的工作有交叉。   环境噪声主要来源于厂矿内部向外辐射的工业噪声以及交通噪声﹑建筑施工噪声和生活噪声等。由厂矿内部向外辐射引起扰民的工业噪声,占相当大的比例。因此常常有这样一种情况,把厂矿内的噪声治理好了,噪声对职工的职业危害问题解决了。同时噪声引起的扰民问题也解决了。80年代至90年代以来,环境噪声问题,在国内一直受到更多的注意。由于控制环境噪声扰民和控制职业噪声危害所采取的技术措施——吸声﹑隔声﹑消声﹑隔振﹑阻尼等,是相通的。对噪声所采取的测量﹑分析方法(包括仪器),有相当多的部分也是可以相互借用。因此,可以这样来说,从环保角度来控制噪声,在控制技术与测试分析技术(包括仪器)所取得的成就,对职业噪声危害控制来说,是一种帮助﹔同样,从控制职业噪声危害角度出发,在控制技术以及噪声测试技术(包括仪器)所取得的成就,对环境来说,也是一种帮助。这两方面的工作有交叉。  职业噪声控制在我国已有40多年的历史。职业噪声危害的控制主要涉及到噪声控制技术﹑护耳器以及噪声测量仪等方面的问题。下面就这此方面的现状和进展做一些简介并略加评说。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制