当前位置: 仪器信息网 > 行业主题 > >

温度采集仪

仪器信息网温度采集仪专题为您提供2024年最新温度采集仪价格报价、厂家品牌的相关信息, 包括温度采集仪参数、型号等,不管是国产,还是进口品牌的温度采集仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合温度采集仪相关的耗材配件、试剂标物,还有温度采集仪相关的最新资讯、资料,以及温度采集仪相关的解决方案。

温度采集仪相关的资讯

  • 我国首部《温度数据采集仪校准规范》颁布
    近日,国家质检总局发布了《温度数据采集仪校准规范》,对温度数据采集仪的校准设备、校准方法等进行了统一规定。这部校准规范将从2013年1月8日开始正式实施,届此,我国广泛使用的各类温度数据采集仪将拥有统一的性能评价方法,并有望建立起完善的量值溯源体系,实现温度数据采集仪温度测量的准确、可靠。   按照该规范的规定,温度数据采集仪就是可直接置于被测环境中进行测量,具有自动采集被测温度信号、数据存储、记录、通讯等功能的温度测量仪表。该规范的主要起草人、浙江省计量院高级工程师沈才忠介绍,温度数据采集仪包括冷链温度记录仪、灭菌温度记录仪、环境温度记录仪以及炉温跟踪记录仪等,应用领域非常广泛。   以冷链温度记录仪为例,这类温度数据采集仪主要用于农产品、水产品以及药品、疫苗、血液等冷藏、冷冻运输中的温度监测,即用于冷链温度的监测。“现在,基于物联网技术的现代冷链物流技术蓬勃发展,其中,冷链温度监控系统至关重要。为冷藏、冷冻、保鲜产品的全过程控制提供技术保证的核心就是冷链温度记录仪,它的运用可有效保证农产品、水产品以及药品、疫苗、血液的保鲜度,使产品质量在运输、储存过程中得到有效保证。”沈才忠强调,整个冷链物流系统的运转都要以实时的温度监控为基础,所以必须保证温度数据采集仪的计量准确。   在食品、药品生产以及疾病诊疗中用以消杀毒、灭菌温度监测的灭菌温度记录仪也是被广泛使用的一类温度数据采集仪。封闭式的灭菌温度记录仪可以置于消毒、杀毒物品内部,也可投入到需要灭菌的液体或流质之中,以监测、验证消杀毒、灭菌温度是否达到了规定要求,从而保证药品、食品生产的灭菌工序控制能够按照工艺要求进行,以保证药品、食品的安全。   沈才忠还介绍了另两类温度数据采集仪:环境温度记录仪和炉温跟踪记录仪。环境温度记录仪主要用于冷库、仓库、实验室等空间的温度监测,确保需要冷藏储存的物品得到有效保存,实验室环境符合实验要求,使各类科学实验能够正确实施。当需要对环境温度进行连续监控时,环境温度记录仪可实现最小记录间隔为1秒的数据测量,保证监控的连续性和有效性。环境温度记录仪还主要用于育种、育苗的温度监测。在高效生态农业中,可连续监测农作物种苗的生长环境,实现高产稳产,并且帮助农作物新品种的研究 在人工繁殖、养殖中,可监控繁殖、养殖温度,促进养殖、繁殖的顺利进行。炉温跟踪记录仪主要用于工业生产过程中有关工艺过程的温度验证。如玻璃窑炉温度、热处理炉温度、电子产品老化温度、电子线路板贴焊温度的监测、验证等等,以确保工业产品的温度处理工艺符合要求,保证产品质量。   “温度数据采集仪的应用如此广泛,而且很多是涉及人们的食品、药品安全领域,但以前,我国却没有统一的校准设备和校准方法,导致采集仪的计量性能无法得到保证。”沈才忠说,很多温度数据采集仪的使用者对采集仪需要定期校准才能保证计量准确这一点认识不够,他们往往不会主动送检。而温度数据采集仪的量值溯源方法也各不相同,评价标准不一致,导致采集仪应用的通用性、互换性受到限制,阻碍了它的进一步发展。因此,需要制定温度数据采集仪的校准规范,以统一该类测量仪表的性能评价方法,完善温度计量的量值溯源体系,确保温度数据采集仪计量性能的准确可靠。   规范提出,“本规范适用于内置传感器、测量范围为(-50~ 150)℃以及外置传感器、测量范围为(-80~ 500)℃的温度数据采集仪的校准。”规范还对校准设备、校准项目、校准方法都做出规定。同时,规范还建议,为了确保采集仪在其规定的技术性能下使用,复校时间间隔最长不应超过1年。
  • 病毒气溶胶采集富集仪
    仪器名称病毒气溶胶采集富集仪单位名称检验检疫科学研究院联系人胡孔新联系邮箱kongxinhu@sina.com成果成熟度□正在研发 □已有样机 □通过小试 □通过中试 &radic 可以量产合作方式&radic 技术转让 &radic 技术入股 &radic 合作开发 &radic 其他成果简介:&mdash &mdash &ldquo 国家重点新产品&rdquo ,拥有自主知识产权的环境微生物气溶胶监测系统&mdash &mdash 专业针对空气病毒性微生物监测设计,现场实现目标浓缩富集,提升敏感性,超越现有空气微生物采样器&mdash &mdash 温湿度环境小气候数据同时采集&mdash &mdash 系统的收集、富集、样品处理、检测技术方案&mdash &mdash 轻巧、便于携带、友好软件智能控制符合国际ISO14698-1及GB/T:25916.1-2010: 洁净室及相关受控环境生物污染控制通用标准,是大型集会、公共场所、禽畜养殖场、生物反恐、生物安全、食品、制药、化妆品、医药等领域里对空气有机污染监测的理想设备。通过①计算机3D辅助制作符合流体动力学的气液混合装置、②表面活性剂样本处理技术、③磁珠富集、核酸提取技术一体化以及④病毒检测配套方法四个关键方面创新设计,解决了生物气溶胶采集效率问题,整合了收集、富集、核酸提取和目标检测等技术环节,提高了气溶胶回收率和监测敏感性,适用于各种类型的实验分析。收集、富集生物气溶胶同时监测环境温、湿度数据,彻底抛开传统Anderson法,且收集效果远远优于Anderson法,与后续检测技术对接程度及敏感性优于现有国内外采样器。智能控制、设计精美、外观紧凑,携带方便,高效、可靠收集、富集空气中的生物颗粒(病毒、细菌、真菌、花粉等&hellip )。主要特点:1. 大体积液体样品收集气溶胶,防止大体量空气采集导致气溶胶再流失;现场浓缩成小体积样品,提高监测敏感性,避免现场大体积收集管过多,减轻工作量。2. 配套广谱和特异监测目标富集试剂,样品后续处理高度灵活,可满足多种分析检测技术,如免疫测定、PCR、颗粒微生物计数、分离培养及显微镜观察等,提升检测敏感性和现场操作简便性。3. 便携供电长达2h以上,体积小、外观紧凑,设计精美,标准支架、手提箱方便携带,设备坚固耐用可适用于各种恶劣环境。4. 自动进行温度、湿度监测,可连续提供小体积液体样品。5. 机器主要部件可拆分并进行灭菌或清洗、消毒。主要技术参数:型号BIO-Capturer-5病毒气溶胶采集富集仪应用传染病监测、动物疫病监测、卫生监督、生物反恐原理液体包裹收集,磁珠修饰富集温度监控有湿度监控有智能化控制触屏人机界面颗粒尺寸1um空气流速30-40L/min实时监控采集时间设定1-999min可调采样体积设定1-9999L可调采集液体积20ml+/-5回收样品体积100&mu L(配套广谱和特异微生物目标富集试剂)电池持续时间2h电压要求12VDC主机重量3kg噪声&le 70dB功耗<40W工作环境温度+5℃ to +50℃+0℃ to +50(可选冬季温度防护箱)储藏环境温度-20℃ to 70℃国际同领域生物气溶胶监测仪器类比分析:产品设备国别知识产权大体积采集外接电源自备电源智能控制气体定量精确定量温湿度监测目标富集小样品回收配套试剂敏感性提升10-100倍SKC BIO-SAMPLER美国&radic &radic &radic × × × × × × × × × Coriolis空气采样器法国&radic &radic &radic &radic &radic &radic × × × × × × BIO-Capturer病毒气溶胶采集富集仪中国&radic &radic &radic &radic &radic &radic &radic &radic &radic &radic &radic &radic 数据展示:气溶胶采集、富集效果评价实验以10倍系列稀释流感病毒H3N2气溶胶模拟采集、富集实验,分别以统一条件real-time PCR方法对直接收集液样品、广谱富集磁珠处理后样品、特异富集磁珠处理后样品进行检测分析,评价采集、富集效果。结果显示:特异富集处理后,灵敏度高出至少2个数量级;广谱富集处理灵敏度高出至少1个数量级。(如下图所示)。应用前景: 该仪器可应用于: 各级出入境口岸,包括口岸场所及国际航行交通工具等卫生监督、生物反恐、传染病监测; 禽畜养殖场、市场等动物疫病环境监测; 各级疾病预防控制中心、医疗机构传染病监测、内部感染监控; 邮政处理场所、人口密集的公共场所、重大集会场所等反生物恐怖监测; 科研院所生物安全实验室等感染性生物气溶胶泄漏的监控; 其他存在有机污染的生物气溶胶环境监测领域等。知识产权及项目获奖情况:科技部、环保部、商务部、质检总局四部委认定&ldquo 国家重点新产品&rdquo 证书相关知识产权列表:知识产权类别知识产权名称状态实用新型专利生物气溶胶采集富集装置;授权专利号:ZL201220127837.9国家发明专利病毒性气溶胶采集富集仪,授权专利号:ZL201210089458.X国家发明专利用于固相膜免疫分析方法流动相的样本处理制剂,授权专利号:ZL200410091168.4国家发明专利一种特异性检测流感病毒合成多肽授权专利号:ZL201010233015.4专利技术:液面包裹喷气口,高效气溶胶粒子采集、易清洗采样头设计专利技术:高效/简便富集操作、回收浓缩小样品、对接分子生物学、免疫学检测成熟方法专利技术:系统、完整的病毒生物气溶胶现场监测解决技术方案与配套试剂
  • 水样的采集与保存,做好水质检测的第一步
    在水质检测的过程中,水样的采集和保存是水质分析的重要环节。要想获得准确、全面的水质分析资料,首先必须使用正确的采样方法和水样保存方法并及时送样分析化验,正确的采样和保存方法是获得可靠检测结果的前提。水样采集和保存的主要原则:(1)水样必须具有足够的代表性;(2)水样必须不受任何意外的污染。既然水样的采集和保存这么关键,那对于水样的采集和保存,有什么样的要求呢?又有哪些是需要注意的?一、水样的采集1、首先要选择好具体的采样位置,避免周围环境对采样器或采样装置进水口的污染,包括采样者手指污染的可能性也要防止。图片源于网络特别是采集微生物指标的水样,使用前要求严格无菌,因此就要对容器进行干热或湿热灭菌处理。曾有朋友弱弱抱怨,这些前处理工作不仅增加了工作量,也增加了实验室的仪器维护、安全保障等压力。事实上,这些工作并非一定如此。因为,必要的是灭菌的容器,而不是容器灭菌工作。清时捷无菌采样袋,预先灭菌,即开即用2、采样前,应让水放流数分钟,特别是采集自来水或具有抽水设备的井水时,以冲去水管或采样装置管线并积留的杂质。3、水样采得后应立即在盛水器(水样瓶)上贴上标签或在水样说明书上作好详细记录。水样说明书内容应包括水样采集的地点、日期、时间、水源种类、水体外观、水位高度、水源周围及排出口的情况、采样时的水温、气温,气候情况,分析目的和项目、采样者姓名等等。图片源于网络二、水样的保存水样采集后,应尽快进行分析检验。某些项目还要求现场测定(如水中的溶解氧、二氧化碳、硫化氢、游离氯等)。但由于各种条件所限(如仪器、场地等),往往只有少数测定项目可在现场进行(温度、电导率、pH值等),大多数项目仍需送往实验室内进行测定。因此,水样的保存是个很重要的问题。水样在采集后,如不妥善保存,水中所含物质发生物理的、化学的和生物学的变化是很普遍的。对于水样保存的方法主要有以下几种:1、冷藏或冰冻保存原则上讲,从采样到分析的时间间隔应越短越好。水样若不能及时进行分析,一般应保存在5℃以下(大约3~4℃左右为宜)的低温暗室内。这样可使生物活性受到抑制,生物化学作用显著降低。2、加入保存药剂水样保存的另一种方法是加入保存药剂。加入的方法可以是在采样后立即往水样中投加化学药剂,也可以是事先将化学药剂加到盛水器里。对保存药剂的一般要求是,有效、方便、经济并且应对测定无干扰和无不良影响。不同水样和不同的被测物要求使用不同的保存药剂。三、采样的注意事项1.微生物:同一水源、同一时间采集几类检测指标的水样时,先采集供微生物学指标检测的水样。采样时直接采集,不得用水样刷洗已灭菌的采样袋,并避免手指或其他物品对袋口的沾污。2.理化指标:采样前先用水样荡洗采样器、容器和塞子2-3次。3.水龙头水的采集:应注意采样时间,夜间可能析出可沉渍于管道的附着物,取样时应打开龙头放水数分钟,排除沉积物。采集用于微生物学指标检验的样品前应对水龙头进行消毒。4.采样时不得搅动水底沉积物。5.注明水样编号、采样者、日期、时间及地点。以上关于水样采集及保存的简单分享。如果大家在水质检测中有其他的疑问,欢迎您给我们留言,也可拨打“400-660-7869”联系我们。●往期推荐 ●● 水厂加氯消毒工艺改进,看看绍兴市上虞区水司是怎么做的!● 我国自来水处理工艺常见问题及解决措施,你了解么?● 农村饮水安全问题,你那里解决了吗?● 南方暴雨引发洪涝,灾区饮用水安全该如何做好?长按关注清时捷公众号微信号 : sinsche-com联系热线:400-660-7869
  • CR1000数据采集器中标中国矿业大学
    2015年5月份,我公司销售的美国Campbell公司生产的CR1000中标中国矿业大学,已经供货。 CR1000数据采集器是Campbell数据采集器里面性价比最高的一款。它提供传感器的测量、时间设置、数据压缩、数据和程序的储存以及控制功能,由一个测量控制模块和一个配线盘组成,具有强大的网络通讯能力。CR1000数据采集器的扫描速率能够达到100Hz,拥有模拟输入、脉冲计数、电压激发转换、数字等多个端口,外围接口有CS I/O、RS-232以及SDM等,采用12VDC外接可充电电池供电。对于低温的环境,用户还可以选择低温型的CR1000-XT数据采集器。CR1000所具有的高精度性、高适应性、高可靠性以及合理的价格等特点,使其成为科研、商业与工业系统应用的理想选择。目前,CR1000数据采集器已在气象观测、农业研究、土壤水分研究、风力观测、道路气象站、工业产品测试、通量观测、涡动协方差系统等众多领域得到了广泛应用标准的CR1000数据采集器包含4M的数据和程序存储空间,可通过外接存储模块和CF存储卡来实现大容量数据存储。数据和程序保存在非失意性闪存和内存里。锂电池装在内存和实时时钟上。当首选电池(BPALK,PS100)电压降至9.6V以下时,CR1000也能够延缓执行操作,从而减少不准确测量的可能性。CR1000可以通过外围设备扩展从而形成一个数据采集系统。很多CR1000系统可以构建一个网络从而形成当地或整个地区的监测网络。 数据存储为表格形式 l PakBus? 操作系统l 软件支持:LoggerNet3.4/4.0,PC4001.2,或者ShortCut2.2l 支持 CR1000KD手持式显示器(选配),读数方便l CSI/O和RS-232串行接口l 内部温度补偿,实时时钟,超时和温度变化实时校准l 当CR1000从主电源上分离后,使用内部锂电池支持SRAM存储和时钟以确保数据、程序和精确的时间l 具有强大的网络通讯功能,【主要性能】l 最大扫描速率:100Hzl 模拟输入:16个单端(或8个差分)通道l 脉冲通道:2个l 工作温度:标准为-25℃至+50℃,可扩展-55℃至+85℃l 内存:标准为4M内存,可扩展至2G,额外数据存储使用CFM100存储模块和一个CF存储卡。l 13-bit模拟数字转换l 16-bit H8S Hitachi微型控制器,32-bit内部CPU
  • 差示扫描量热仪温度如何校准呢?
    dì一篇 简要描述   差示扫描量热仪的差热分析法是一种重要的热分析方法,是指在程序控温下,测量物质和参比物的温度差与温度或者时间的关系的一种测试技术。该法广泛应用于测定物质在热反应时的特征温度及吸收或放出的热量,包括物质相变、分解、化合、凝固、脱水、蒸发等物理或化学反应。广泛应用于无机、硅酸盐、陶瓷、矿物金属、航天耐温材料等领域,是无机、有机、特别是高分子聚合物、玻璃钢等方面热分析的重要仪器。第二篇 标定物的选择   不定期的进行温度校正,以保证测试准确度。根据样品的实际测试温度,选择标定物。标定物选择的原则:标定物的外推温度与样品待测项目的温度要比较接近,以保证测试的准确性。  下表为常用标定物的熔点及理论热焓数值。标准物质理论熔点℃理论熔融热焓J/g铟In156.628.6锡Xi231.960.5锌Zn419.5107.5一、测试仪器:久滨仪器2020年升级款JB-DSC-600差示扫描量热仪第三篇 温度校准操作步骤1、打开电脑,将仪器数据线与电脑连接,插上仪器电源,打开仪器背面的开关打开软件,点击菜单栏中设备信息—管理员通道—456进入—输入理论和测量值—保存2、关机重启、重新打开软件、仪器,连接成功后再次测量锡的熔点值,若实际测量的温度若不在231.9±1℃范围内,重复上述操作,直到锡的熔点值在231.9±1℃范围内为止。第四篇 技术参数温度范围室温~600℃温度分辨率0.01℃温度波动±0.1℃升温速率0.1~100℃/min任意可选控温方式升温、恒温、降温(PID温度调节)DSC量程0~±600mW自动切换DSC灵敏度0.01mg恒温时间建议<24h气体控制氮气、氧气(仪器自动切换)气体流量0~300ml/min显示方式24bit色,7寸大屏幕液晶显示参数标准配有标准校准物(锡),带一键校准功能,用户可自行对温度进行校准电源AC 220V 50HZ或定制软件软件可以设置数据采集频率,适应各分辨率电脑屏幕;支持笔记本,台式机,支持WIN2000、XP、WIN7、WIN8、WIN10等操作系统,可以导出EXECL数据包、PDF报告
  • 关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告
    近日,上海市环境科学学会和浙江省生态环境监测协会发布关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告,根据《上海市环境科学学会团体标准管理办法》《浙江省生态环境监测协会团体标准管理办法(试行)》的要求,《生态环境监测现场移动端数据采集规范》(T/SSESB 8-2023 T/ZJEEMA 0005-2023)团体标准按照规定程序编制,经专家组审查通过,现批准发布,发布日期为2023年9月25日,自2023年10月1日起实施。规范中对现场移动端和现场监测仪器发展现状进行阐述,并列出常用仪器名称和主要功能,如下所示:此外,规范还在功能要求中强调,现场移动端的功能应能覆盖场监测业务全流程,具体包括:任务下载。现场移动端应具备下载和查看现场监测方案或采样计划的功能,信息内容包括被测对象基本信息、任务名称和编号、监测类别、监测点位、监测项目、监测周期和频次、样品类别和数量、采样和分析方法、质量保证与控制要求、样品运输保存要求、监测人员。适用时还应包括生产工艺和污染治理设施信息、执行标准及限值、监测仪器设备、监测点位示意图、分包项目等内容。仪器出入库管理。现场移动端应具备通过射频识别(RFID)、扫码等方式采集现场监测仪器信息的功能,包括但不限于任务名称和编号、出入库日期和时间、使用时长、使用人等。适用时还应采集仪器检定校准和期间核查、日常维修维护等内容。点位布设。现场移动端应具备通过电子监测点位示意图、地理信息定位、扫码等方式记录监测点位信息的功能。适用时还应通过照相、文字补充描述等方式采集点位信息。样品采集和测试。(1)现场移动端应具备通过无线模块、串口等方式采集现场监测仪器数据的功能,包括但不限于现场监测过程参数、测试结果、仪器使用前后关键性能指标核查信息、仪器状态和质控信息。对于无法通过仪器采集的数据和信息,可采用手工录入方式。(2)现场监测仪器通讯协议要求应符合附录A要求,监测因子和信息编码应符合附录B要求,现场监测仪器软件宜具备监测流程管理和控制功能。(3)通过现场移动端或LIMS中预设的原始记录表单,将现场监测过程中采集的数据自动生成相关记录,原始记录表单的格式和内容应符合实验室管理体系要求。(4)可通过现场移动端添加现场质控样品。样品流转。现场移动端应具备样品流转记录功能,样品流转信息包括但不限于监测任务基本信息、样品类别、样品名称、数量、性状、采样人或送样人、保存剂、保存温度和避光情况等。适用时还应采集样品运输轨迹和时间等信息。任务上传。现场监测任务完成后,现场移动端中该任务下的所有采集的数据均应上传至LIMS,包括监测数据、质控数据、仪器信息、地理位置信息、监测点位示意图等。详细内容见附件:关于批准发布《生态环境监测现场移动端数据采集规范》团体标准的公告.pdf上海市环境科学学会关于《生态环境监测现场移动端数据采集规范(征求意见稿)》团体标准公开征求意见的函.pdf
  • 岩土介质温度-渗流-应力-化学耦合多功能试验仪研制
    p style=" line-height: 1.75em "   岩土介质温度-渗流-应力-化学耦合多功能试验仪是中国科学院武汉岩土力学研究所自主研制和开发的多功能试验仪。该所科研人员自2013年起经过反复试验和调试,2014年获得研制成功,并取得多项发明专利,已配合完成多项国家级科研课题及设计院委托科研项目,各试验结果已发表在国际学术期刊上。该实验系统具有优异的技术性能,达到了国际同类岩石力学试验仪器的主流水平,并且具有较高的性价比,得到了国内同行的认可,已推广应用到中国石油大学(华东)、湖北工业大学、山东科技大学、河海大学、南昌大学、中国矿业大学(徐州)等多家高等院校。 /p p style=" line-height: 1.75em "   岩土介质温度-渗流-应力-化学耦合多功能试验仪可进行温度-应力-渗流-化学腐蚀(THMC)全耦合的岩石三轴流变试验,也可进行THMC全耦合或局部耦合条件下的岩石常规三轴力学试验。该试验仪具有以下特点:1、多物理场耦合:温度、应力、渗流和化学腐蚀全耦合或局部耦合 2、多功能:大尺寸单轴压缩试验、变角剪切试验、巴西劈裂试验 3、高精度闭环伺服电机控制:耗能低,静音,适合长时间试验 4、结构简单:适合试验操作 5、大吨位高刚度反力框架。 /p p style=" line-height: 1.75em "   该试验仪由围压室、大吨位偏压加载框架、高精度围压伺服控制模块、高精度偏压伺服模块、高精度孔压伺服控制模块、变形测量模块、温控模块和油路旁路过滤模块等10部分组成。 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/b0292a17-412b-4e9e-94da-8903de45742e.jpg" title=" W020160421397808361989.jpg" / /p p style=" line-height: 1.75em text-align: center "   中国石油大学(华东)试验仪照片 /p p style=" line-height: 1.75em text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/a49162de-e660-4dc7-b8c7-ff029f7b61d2.jpg" title=" W020160421397808373820.jpg" / /p p style=" line-height: 1.75em text-align: center "   采集控制系统 /p p br/ /p
  • 污水中病毒富集很头疼?——美正智能水体微生物采集系统来搞定
    新冠肺炎疫情发生以来,未经处理的污水或污泥已被检测出新冠病毒的RNA片段(相关信息见摘录的《科学通报》)。此外,污水中还被证实存在诺如病毒、脊髓灰质炎病毒、甲肝病毒、轮状病毒等以水为媒介的病毒,易引起传染病的发生。2022年4月6日,国家卫生健康委发布推荐性行业标准《WS/T799-2022 污水中新型冠状病毒富集浓缩和核酸检测方法标准》,使监测部门对生活污水、医疗机构污水中新型冠状病毒富集浓缩和核酸检测的质量和效率有了更明确的指导(相关标准详见文尾附件)。污水、污泥、管道水。。。采样体积大、病毒含量较小,如何有效且快速对水中病毒进行高效检测,以实现对传染病暴发的有效防控,为监测预警提供有力支撑?本期核心话题:病毒浓缩的高效方法!现行病毒浓缩方法介绍美正生物智能水体微生物采集系统帮您解决复杂的水体富集操作!美正生物近期推出智能水体微生物采集系统新产品。该系统由智能水体微生物采集仪、水体指标(浊度、余氯、pH值、温度)快速检测试剂或设备组成,可从水体中快速富集微生物,在实验室室内使用,也可野外检测,为微生物监测及预警提供有力支撑,可用于食品安全监测、环境监测、水质监测等。优势体现1、工作原理符合欧盟标准(BS EN ISO 15216-1-2017)、美国环保局标准方法(EPA method1615)和我国国家标准《污水中新型冠状病毒富集浓缩和核酸检测方法标准》中的要求,采用吸附洗脱方法和超滤。2、适合不同水源的采集和富集,饮用水、环境水和污水等。3、携带方便,实现现场不同点位的水样的采集及富集。4、阳离子富集杯,实现现场大体积水样富集(1000L以上),流速可达到7-10L/min;无需对水样进行前期的预处理,包括除杂质和调节酸碱度等,直接富集微生物,该膜的病毒截留率达到99.999%。5、超率浓缩管既适用于二次浓缩(阳离子膜病毒洗脱液),又适用于小体积水(10mL-3L)的超滤富集,流速可达到2mL-20mL/min,病毒截留率达到90%以上。6、质量控制-过程对照MS2。
  • 中科院青藏所用红外系统观测纳木错湖面温度
    人民网科技频道讯 在公益性行业(气象)科研专项“中国冰冻圈卫星监测关键技术研究及系统开发”(项目编号:GYHY(QX)2007- 6-18)的湖冰专项的支持下,青藏高原所科研人员在纳木错成功安装了IRR-P红外温度数据采集系统,积极开展湖面温度观测。  据科研人员介绍,这套红外温度数据采集系统,采用适于野外观测的SI-111 高精度红外温度传感器(波长范围: 8-14 μm),并与CR1000数据采集器连接,设定采集数据的时间间隔后,采用太阳能板供电,保障了在野外条件下进行不间断的数据测量。该红外数采系统为长期湖面温度、湖冰变化、蒸散发遥感反演等气候变化研究提供了基础数据支持,为青藏高原冰川-湖泊以及水文过程变化研究提供基础数据。
  • 2014年赛默飞世尔科技诚招data Taker数据采集器代理商
    data Taker,作为赛默飞旗下产品,是世界著名的工业级数据采集器品牌,来自澳大利亚,其广泛用于各种数据的采集,可连接多种不同类型的传感器,对温度、湿度、风速、风向、雨量、水位、流量、电压、电流、4-20mA电流回路、电阻、应力、应变、位移、裂缝、沉降、荷载、倾角、压力等各类数据进行采集,同时可对采集到的各种原始数据进行计算,并按所需要的工程单位或统计报告的形式将原始数据或计算结果返回到上位机。目前已在教育科研、自动气象站、水文、环境监测、生态农业、林业、石油化工、水利、桥梁与道路监测、建筑物自动化监测等各个领域得到广泛应用。众多世界知名的研究机构、高标准的重点实验室、高等院校等是我们的客户。 作为直接国外厂商,欢迎各位洽谈业务,联系方式:021-68654588-2295, Kevin Peng 多年来,我们凭借仪器杰出的性能和优质的服务深得世界范围内广大用户的信赖。基于产品的特点,data Taker数据采集器采取渠道销售的模式,由我方授权符合资质的代理商进行指定区域/行业内销售业务,每年签发一次正式授权书。目前,我们data Taker数据采集器产品已具有很强的客户信赖度和影响力,在全国有很好的声誉,现诚招气象、生态、环境(空气质量)监测、水文水质监测、能源监测、交通监测、工业自动化监测领域经销商,共同推进2014年业务发展和长远合作计划。赛默飞世尔科技公司的合作伙伴必须资质完善、诚实守信、共同遵守业务合作规则。我们也会提供最佳的产品培训、应用支持和技术服务。敬请广大经销商选择我公司data Taker数据采集器,确认经销渠道和网络。申请时限:从2014年2月到2014年9月底止联系人:彭先生 13816907295E-mail: kevin.peng@thermofisher.com 办公电话:021-68654588转2295产品及应用信息,请浏览:http://www.datataker.com 或来电来函索取。特此公告!赛默飞世尔科技2014年2月关于data Takerdata Taker品牌创建于1983年,是数据采集与数据记录设备的世界领导品牌之一。产品的设计、研发与制造全部在澳大利亚完成。data Taker数据采集器支持各种类型的传感器,并可稳定、高效地记录与储存数据,供客户进行数据分析。data Taker的数据采集产品被广泛应用于教育科研、自动气象站、水文、环境监测、生态农业、林业、石油化工、水利、桥梁与道路监测、建筑物自动化监测等各个领域,并得到客户一致认可。在全球40多个国家设有分销机构。欲获取更多信息,请浏览我们的网站:www.thermofisher.com.au www.datataker.com 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、 Life Technologies、 Fisher Scientific 和 Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了9个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000 名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录 www.thermofisher.cn
  • 基于浮标温度剖线的湖泊调查
    基于浮标温度剖线的湖泊调查背景 夏季,深层湖泊会发生温度分层——表面温暖,深层水很冷。这对此类湖泊中的营养平衡和生物栖息地产生了很大影响。由于气候变化引起的气温普遍升高,两者都将发生变化,因此也将改变湖泊中生态系统的生活条件。巴伐利亚州环境局与威尔海姆市水管理局和OTT HydroMet公司合作,实施了一项测量项目,用于连续监测巴伐利亚阿默尔湖水中的水温剖线。由于可行的并且经过长期测试的方法非常少,因此有必要寻找新方法来实现客户基于浮标的温度曲线的想法。经过努力,在阿默尔湖的最深处(81 m)安装了一个浮标,该浮标由三个混凝土配重(每个750 kg)固定就位。 固定在浮标底部的测量链可在16个不同深度连续测量阿默尔湖的水温。由另外安装在浮标上面的紧凑型气象站LUFFT WS501-UMB,持续监控气象数据来帮助分析测量链上提供的温度数据。 监控解决方案测量浮标固定在湖泊的最深处(81 m)。在它的下侧, 有一个带有16个温度传感器的测量链,该测量链均匀地分布在下方,一直到湖底。 固定在浮标底部的测量链可在16个不同深度连续测量阿默尔湖的水温。由另外安装在浮标上面的紧凑型气象站LUFFT WS501-UMB,持续监控气象数据来帮助分析测量链上提供的温度数据。 OTT HydroMet交付的浮标配备了大量的测量设备:紧凑型气象站LUFFT WS501-UMB,用于监测气象参数:气温、气压、相对湿度、总辐射、风向和风速太阳能电池板,用于自主电源测量链带16个 温度传感器数据采集器netDL500,远距离传输 测量链和紧凑型气象站的温度传感器不断收集数据(间隔15分钟的平均值)。 测得的数据存储在浮标内部安装的OTT netDL数据记录器中。 一天内多次将数据通过移动通信从测量站点传输到水管理机构的数据库中,以便即时进行评估。
  • 中国药典《药品红外光谱集》标准谱图采集全攻略
    红外光谱仪是药物研究及生产必备的分析仪器之一,而粉末压片几乎是每个测试人员的必备技能。尽管压片工作看起来简单重复且没有太多的技术含量,但是想要采集到一张能够与药典标准红外谱图相媲美的谱图数据却并不是一件轻松的事情。2023 年 10 月,中国药典《药品红外光谱集》(2023 年版)正式发布。安捷伦技术人员经过多年的工作经验的积累,将通过红外谱图评价标准、红外实验室基本要求、仪器准备、粉末压片标准工作流程、粉末压片制样过程注意事项以及谱图常见问题解析等六个方面对标准红外谱图采集流程进行详细介绍。红外谱图评价标准高质量红外光谱图通常需要满足以下条件:基线平直且纵坐标在 85-100%T 之间最强吸收峰纵坐标在 5-15%T 之间在 2200-2400 cm-1 处没有 CO2 吸收峰干扰在 3400 cm-1 及 1600 cm-1 附近区域没有水峰干扰光谱信噪比好且谱线平滑下图为使用 Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图。图 1. Cary630 FTIR 光谱仪采集的盐酸法舒地尔标准红外光谱图红外实验室基本要求使用红外光谱仪的用户实验室应具备以下条件:实验室温度控制在 25℃ 左右,湿度控制在 50% 以下,并保证日常恒温恒湿要求用于仪器波数准确度及光度精度验证的标准聚苯乙烯(PS)薄膜储备溴化钾、氯化钾及石蜡油等常规试剂,并放置在干燥皿内备用用于样品压片制备过程中的红外烘烤灯红外压片机、模具及配套的压片工具仪器准备安捷伦 Cary630 FTIR 光谱仪体积小巧、性能稳定,且满足《中国药典》对红外光谱仪的所有指标要求。仪器采用主机与附件分体式的设计,用户可根据测试需求及样品类型选择合适的附件。药物粉末压片测试时,可选择主机搭配透射样品仓附件实现 400-4000 cm-1 范围内红外谱图的采集。仪器软件为符合 21 CFR Part11 法规要求的 MicroLab PC 软件,为药物研发及药物质控实验室提供最安全的数据完整性保证。粉末压片时,测试条件如下:仪器分辨率:2 cm-1波长范围:400-4000 cm-1扫描次数:32 次药物粉末压片标准工作流程取 1-2 mg 样品与 100-200 mg 干燥后的溴化钾粉末(取决于药物红外吸收的强弱特性,二者比例可适当调整)放入玛瑙研钵中混合研磨,直至得到均匀、超细的颗粒。组装压片磨具,将底部压头光面朝上放入模具中。将样品缓慢加入模具中并使其均匀地散布在底面压头上。把上压头光面向下放入模具,压上压杆。将模具放入压片机中压制,压力调整到 20 MPa 左右,保持 1-2 min。转动卸压阀,缓慢卸掉压力并取出模具。用压头反向取出片子并检查片子的均匀程度和透明度。将样品放入样品支架并置于样品仓内进行测量。粉末压片制样过程注意事项为了能够获得效果良好的谱图,注意事项总结如下:1溴化钾及氯化钾粉末易吸水,日常应放置在干燥皿中保存。使用前须在 120℃(或 150℃)干燥箱中恒温干燥 2 小时以上。2为避免颗粒散射造成的基线倾斜问题,样品及试剂颗粒应进行充分研磨至 2.5um 以下,以研磨过程中粉末不再有颗粒感为宜。3如样品和试剂在研磨过程中发生离子交换,则需要更换试剂类型或改用糊法进行测试。4如果压出的片子易碎,请确认是否与加入粉末太少、压力过大或压力保持时间太长有关,可通过增加粉末体积或降低压力等方式来避免这种情况。5如果片子与模具粘合在一起、脱模困难,需要确认是否由样品易吸水或比较粘稠的特性引起。若是样品特性原因,可适当减少样品加入量;若是室内湿度过大或模具未清洗干净引起,可降低室内湿度或在红外烘烤灯下制备样品以及深度清洗模具等来优化。谱图常见问题解析获得红外谱图后,分析谱图可发现制样过程中存在的问题并优化制样过程。经常遇到的几种情况分别为:1加入样品量不合适谱图吸收峰的强弱,可判断加入的样品量的多少。如图 2 所示,光谱 1 中所有峰为尖峰,但吸收峰强度较弱,可判定为加入样品量不足;光谱 2 中多个峰平顶饱和,可判定为加入样品量过多。根据峰强度的强与弱,可通过减少或者增加样品加入量来优化。图 2. 光谱 1 中加入样品量太少,吸收较弱;光谱 2 中加入样品量太多,峰饱和2基线倾斜透过率光谱越高波数越向下倾斜,如图 3 所示。通常是样品与试剂研磨不充分,光在样品上发生散射造成的。图 3. 研磨不充分样品谱图对比如图 4 所示,分别制备不同颗粒粒度样品的溴化钾压片并采集红外谱图。从图中可以看出,随着颗粒粒径减小,透射谱图基线的倾斜问题得到明显改善。图 4. 不同颗粒粒度样品的溴化钾压片谱图3样品与试剂发生离子交换在样品压片过程中,试剂与样品可能发生离子交换。如一些有机盐,可选择更换试剂类型或者采用糊法的方式来避免。以盐酸氯酯醒为例,如使用 KBr 作为研磨试剂,则会发生离子交换导致谱图发生变化,此时可选用 KCl 为研磨试剂进行压片。如图 5 所示,可以看到分别使用两种试剂压片后的谱图差异。图 5. 分别使用 KBr 及 KCl 作为研磨试剂进行盐酸氯酯醒压片后采集的红外谱图4二氧化碳干扰峰影响用户经常会发现在 2200-2400 cm-1 处出现杂峰,这主要是因为空气中二氧化碳浓度变化引起的,如图 6 所示。从图中可见,此特征峰有时为正峰,有时候为倒峰,造成这种差异的原因是扫描背景谱图与扫描样品谱图时环境中二氧化碳的浓度发生了变化。所以在进行红外谱图采集的过程中,工作人员应尽量避免对着样品仓的位置呼气,同时要尽量降低背景与样品扫描的时间差。图 6. 二氧化碳对光谱影响示意图结 语以上经验总结,希望能够对日常工作中需要使用红外光谱仪的用户带来一些启发。通过对工作细节的优化,能够轻松获得一张可与药典中标准红外谱图相媲美的结果。如果您对安捷伦 Cary630 FTIR 红外光谱仪感兴趣的话,可通过点击以下链接获取相关资料。https://www.agilent.com/cs/library/technicaloverviews/public/te-cary630-material-id-5994-4992zh-cn-agilent.pdf
  • 柔性材料在温度环境下力学性能测试技术应用
    柔性材料在温度环境下力学性能测试技术应用柔性电子器件飞速发展,它们被广泛用于医疗诊断、监测和柔性机器人等领域。柔性电子涵盖有机电子、塑料电子、生物电子、纳米电子、印刷电子等,包括RFID、柔性显示、有机电致发光(OLED)显示与照明、化学与生物传感器、柔性光伏、柔性逻辑与存储、柔性电池、可穿戴设备等多种应用。随着其快速的发展,涉及到的领域也进一步扩展,目前已经成为交叉学科中的研究热点之一。Science将有机电子技术进展列为2000年世界十大科技成果之一,美国科学家艾伦黑格、艾伦马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得2000年诺贝尔化学奖。近几年,国内清华大学、西北工业大学、南京工业大学、华中科技大学等国内著*名大学都先后建立了柔性电子技术专门研究机构,柔性电子技术已经引起了我国研究人员的高度关注与重视,柔性电子领域的研究异常火热,使得该领域的发展日新月异并取得了长足的进展。近期,复旦大学复旦大学高分子科学系教授彭慧胜领衔的研究团队,成功将显示器件的制备与织物编织过程实现融合,在高分子复合纤维交织点集成多功能微型发光器件等相关成果发表在Nature。华中科技大学吴豪教授团队联合复旦大学李卓研究员,基于负泊松比超材料结构开发出高性能柔性电子皮肤。相关成果 “Flexible Mechanical Metamaterials Enabled Electronic Skin for Real-time Detection of Unstable Grasping in Robotic Manipulation” 发表在Advanced Functional Materials上。杭州师范大学朱雨田教授团队通过简单的原位还原和溶剂浇注技术,开发了由聚乙烯醇(PVA)、 柠檬酸(CA)和银纳米粒子(AgNPs)组成的可拉伸和透明的多模态电子皮肤传感器,它具有应变、温度和湿度方面的多种传感能力。在柔性材料(柔性玻璃、柔性OLED、柔性电池、柔性电子皮肤)以及柔性电子元器件等研究过程中,在一定温度环境下的力学性能(屈服强度、延伸率、泊松比、杨氏模量)是评价柔性材料应用场景维度的一个非常重要的指标, 也是制定柔性电子制造过程工艺关键参数。一般情况下,该类测试载荷精度要求较高,且样品小,在进行屈服、强度、延伸率等力学性能测试时,在实现温度冷热环境,拉伸功能同时还需配备非接触类视觉测量类仪器,如DIC。冷热原位拉伸微观应力应变解决方案冷热原位拉伸微观应力应变测试系统主要应用于小尺度的相关的柔性材料、生物、金属、有机聚合物、纤维等各种材料科学研究,可实现温度范围-190~600℃,温控精度±0.1℃ 最*大载荷5kN。冷热原位拉伸测试系统通过实时获取材料动态载荷下,形变和温度等数据,结合DIC联用进行材料微观结构分析数据,可实现定量分析材料微观力学性质、相变行为、取向变化、裂纹萌生和扩展、材料疲劳和断裂机制、材料弯曲、高温蠕变性、分层、形成滑移面以及脱落等现象,实现各种材料性能的研究。三维数字图像相关技术(DIC)具有准确性、稳健性和易用性的特点,已被广泛应用于应变测量。但是,对于需要高放大倍数的测量样品,3D测量仍很难达到测量需求,这主要是由于3D测量缺乏具有足够景深的光学元件,无法从不同视角获取3D分析所需的两张高放大率图像。WTDIC-Micro弥补了传统设备无法进行微小物体变形测量的不足,成为一种微观尺度领域变形应变测量的有力工具。 该测试系统采用模块化设计, 核心冷热原位拉伸台采用专利技术自主设计、加工制造,开发出集成化、多功能、兼容性强、变温范围大、灵活小巧,安装快捷方便、操作简单、性能可靠的冷热原位微观应力测试系统解决方案,且性价比高。1) 应用范围广:可用于金属、无机(半导体、陶瓷)、有机(生物、高分子、纤维)、复合涂层等多个学科的材料科学研究。2) 温控技术强:三种变温模块(半导体冷热、液氮/电热冷热等)可自由更换,变温范围-190~600℃,RT~1000℃,温控精度±0.1℃,具有自主产权核心温控模块算法;3) 载荷加载功能多:可更换多种专用夹具,可实现测试样品的拉伸、挤压、疲劳测试;最*大拉伸载荷5kN,载荷精度0.2%;拉伸速率达1 -100 um/s,最*大位移50mm;4) 变温拉伸台适应性强:可适配扫描电子显微镜、光学显微镜系统、X射线衍射仪等系统;5) 软件集成度高:集成温控、拉伸测试,可进行载荷、温度、位移多种参数设置,可结合灵活的阀值进行循环负载的复杂实验,可以实时进行材料研究应力应变;6) 软件界面表现丰富:系统软件提供多种模式的材料检测模式,温度、载荷、位移阈值设置,曲线生成,数据自动采集、多种格式输出;7) 技术支持:自主研发,定制开发灵活;提供全面的解决方案和技术指导。三维显微应变测量系统 WTDIC-Micro显微应用测量系统:光学显微镜和DIC数字图像相关技术的结合,可以满足纳米级精度测量需求。 使用方法步骤 在柔性小尺寸试样测试过程中,冷热原位拉伸测试系统的使用方法及步骤如下:(1) 通过专用的小试样散斑喷涂装置,制作散斑涂层。当然,也可以通过画线等方式制作标记,视频引伸计均可支持,但制作散斑涂层后面还可以扩展到其他用途,所以我们建议处理为散斑涂层。制作完成的试样类似下图。  小尺寸试样散斑喷涂效果 (2) 将小试样放在对应的试验机上并夹持住冷热原位拉伸测试系统加载试样测试结果(1)应变-状态曲线(2)位移-状态曲线温度波动曲线(3)数据表格计算得到的位移场(上)和应变场(下) 总结:在柔性材料研究中,高精度实时获取不同温度下的应力应变数据,是解决柔性小尺寸试样变温环境应力应变测量问题的较佳方案。文天精策仪器科技(苏州)有限公司针对小尺寸试样力学试验中的测量难题,为用户提供成套解决方案,在小试样的加载装置、夹具设计、环境控制等方面提供完整的解决方案。
  • 朱幸俊研究员团队:镧系发光纳米温度探针及光学测温技术
    镧系发光纳米温度探针及光学测温技术胡倩1 朱幸俊11上海科技大学物质科学与技术学院生物体温度监测在医学诊断和治疗方面有着重要意义。传统的生物体测温方式依赖于侵入式探头或者局限于体表检测的热成像设备。对于体内深层组织的无损温度探测仍然是一项挑战。光学测温技术基于温度敏感的发光材料和器件,以光信号作为输出实现温度检测。在发光材料中,镧系发光纳米材料(LLNs)具有光稳定性好、发射谱带丰富、低自发荧光干扰等独特优点,在体内成像检测和疾病诊断方面具有广泛应用。目前已报道了一系列LLNs的发光信号的强度、寿命等光学性质与温度相关,因此可以作为温度检测探针。与此同时,LLNs本身的纳米级尺寸有别于传统温度检测的宏观设备,因此可以胜任亚细胞级别的微观热效应检测以及热传递过程研究,提升测温的空间精度,借助LLNs的近红外发光,能进一步提高光信号在组织中穿透深度,更好的实现深组织、非侵入性温度检测。(一)LLNs温度探针的测温策略温度可以改变LLNs的发光强度比、带宽、光谱偏移、寿命等方式影响LLNs的发光特性[1]-[3]。其中,发光强度比和发光寿命这两种策略受生理环境的干扰更小,从而具有更高的测温准确性[4]-[5]。基于发光强度比率构建温度探针电子在两个相邻激发能级(能级差一般小于1000 cm-1)中的分布与温度有关,满足Boltzmann分布,因此具有热依赖性的两个能级发光强度比与温度之间的关系可描述为, [6]-[7],其中I2/I1为两个能级的发射强度比;ΔE是两个能级能量差,C是由发光基质材料确定的常数,T为温度,kB为玻耳兹曼常数。因此,通过在不同温度下检测两条发射峰的比值,可得到温度以发射强度比值的关系,作为温度检测的校正曲线。基于发光寿命构建温度探针在LLNs体系中,温度敏感的能量转移也会导致激发态寿命的变化,从而可以测量在脉冲激发下特定能级跃迁的寿命与温度的依赖关系,通过发光衰减曲线推断温度信息[8]-[9]。(二)LLNs测温技术与设备基于发光强度比率的测温技术较为直观,相关设备的设置与光谱检测系统类似,主要特点是恒温控制系统的附加。其装置如图1所示,由半导体激光器、样品台、控温器、滤光片、光谱检测器和计算机组成,其中激光器、样品台、滤光片、光谱检测器用于发光材料的光信号激发与收集,控温器件用于样品的恒温与变温进而得到不同温度的光谱。类似的基于发光强度比率的成像检测设备的光谱检测器被替换为CCD相机,通过滤光片系统采集不同波段的发射带,通过光强度成像图的计算得到温度分布结果。光强比率测温技术的设备较为简单,但这项测温方法易受生物环境引起的光散射或吸收的干扰[4],需在组织或模拟组织的假体中对温度曲线进行校正来减小误差[10];基于发光比率的温度检测其优点是检测速度较快,对于快速变化的温度具有更好的实时跟踪能力。发光寿命作为荧光团固有特性,受环境干扰较小,因此可以提高测量准确性[11]-[12],而且LLNs的发光寿命相对小分子荧光探针更长,对于基于成像的寿命检测系统的构建相对短寿命检测难度较低。具体的设备构建如图2所示,将常规的荧光成像代替为时间门控荧光成像系统,配合波形发生器、斩波器等,对相机的分辨率要求高,并且由于寿命衰减曲线的测试需要借助时间门控单元,对光信号进行多次采集,因此获取完整衰减曲线的图像时间较长,不利于检测快速变化的温度信号[8]。两种发光温度检测技术各有优势,目前研究工作中所报道的比率型温度检测技术较为成熟,寿命检测的测温技术仍然处于优化阶段,主要难点是长波长近红外发射的寿命检测技术尚不成熟。图1. 基于发光强度比率温度计的实验设备图2. 基于发光寿命温度计的实验设备[8](三)LLNs温度探针的生物应用LLNs体内无创温度监测的特性促使了一些新兴的生物医学领域应用,尤其在疾病诊断和指导治疗方面[4],[13]-[16]。我们最近总结了基于镧系发光纳米复合材料的温度检测技术及其生物学应用的研究工作,并梳理了不同测温技术在生物应用上的特点(Chem. Eur. J., 2022, 28, e202104237),希望和大家一起探讨光学测温技术的应用空间以及相关设备的研制。基于LLNs的生物体温度检测,近年来我们开展了一系列的应用。例如我们曾经报道了一种以上转换发光材料为核心(NaLuF4:Yb,Er@NaLuF4),以光热材料(碳)作为外壳的LLNs,其中上转换发光材料的Er3+发光中心特征的525与545 nm发射强度的比值与温度呈现相关性,因此可作为光学温度探针。通过检测光热过程中的微观温度变化,进一步发现光热效应下纳米颗粒的升温幅度和速率大于常规的外部加热方式。利用这一特性,可以实现温和宏观温度下的微观高温,进而在保证光热治疗剂标记的恶性细胞被有效杀伤的同时,减少不必要的热扩散而损伤病灶周边的正常组织,提升治疗的精度(如图3a)[17]。寿命检测技术上,复旦大学李富友课题组利用PAA-PEG包裹的NaNdF4:Yb@CaF2纳米颗粒,此种材料的Yb3+离子能够发射980 nm光信号,由于Nd3+与Yb3+在不同温度下的能量传递效率不同,Yb3+的980 nm发光寿命随着温度发生线性变化。在活体动物光学成像仪上进行了时间门控系统的附加,利用脉冲激光器对材料进行照射,然后采集材料的发光衰减,最终获得温度-寿命曲线,进一步在活体动物的血管部位进行光信号的采集,考察血管内血液温度与血流相关性,为心血管疾病的诊断和疗效评估提供了重要途径(如图3b)[8]。图3. (a)基于强度比率的Er3+掺杂上转换光热LLNs用于光热治疗过程微观温度监测[17]。(b) 基于寿命的Yb3+-Nd3+共掺杂的LLNs温度计用于心血管疾病[8]。(四)LLNs温度探针的展望合成可调控的LLNs温度探针的发展加速了其作为体内潜在温度传感工具的应用,但为了使其具有更准确的读数结果,还需进一步优化。其中,减少外部干扰和校准通过组织的发光衰减是亟待解决的重要问题。同时进一步探索波长更长的光谱区域,可实现更深层次的组织传感,促进LLNs在体内疾病诊断和治疗方面的生物应用。参考文献1. C. D. S. Brites, S. Balabhadra, L. D. Carlos, Adv. Opt. Mater., 2019, 7, 1801239. 2. A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak, Appl. Phys. Rev., 2021, 8, 011317.3. H. Suo, X. Zhao, Z. Zhang, Y. Wang, J. Sun, M. Jin, C. Guo, Laser Photon. Rev. 2021, 15, 2000319.4. N. Kong, Q. Hu, Y. Wu and X. Zhu, Chem. Eur. J., 2022, 28, e202104237.5. M. Jia, Z. Sun, M. Zhang, H. Xu, Z. Fu, Nanoscale., 2020, 12, 20776-20785.6. J. Zhou, B. Del Rosal, D. Jaque, S. Uchiyama, D. Jin, Nat. Methods., 2020, 17, 967-980.7. A. Bednarkiewicz, L. Marciniak, L. D. Carlos, D. Jaque, Nanoscale., 2020, 12, 14405-14421.8. M. Kong, Y. Gu, Y. Chai, J. Ke, Y. Liu, X. Xu, Z. Li, W. Feng, F. Li, Sci. China Chem. 2021, 64, 974-984.9. L. Marciniak, K. Trejgis, J. Mater. Chem. C., 2018, 6, 7092-7100. 10. L. Labrador-Páez, M. Pedroni, A. Speghini, J. Garcí a-Solé , P. Haro-Gonzá lez, D. Jaque, Nanoscale., 2018, 10, 22319-22328.11. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118. 12. K. Maciejewska, A. Bednarkiewicz, L. Marciniak, Nanoscale Adv., 2021, 3, 4918-4925.13. M. Quintanilla, M. Henriksen-Lacey, C. Renero-Lecuna and L. M.Liz-Marzán, Chem. Soc. Rev., 2022.14. Z. Yi, Z. Luo,X. Qin, Q. Chen, X. Liu, Acc. Chem. Res., 2020, 53, 2692-2704.15. B. del Rosal, E. Ximendes, U. Rocha, D. Jaque, Adv. Opt. Mater., 2017, 5, 1600508.16. M. Tan, F. Li, N. Cao, H. Li, X. Wang, C. Zhang, D. Jaque, G. Chen, Small., 2020, 16, 2004118.17. X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, F. Li, Nat. Commun. 2016, 7, 10437.【作者简介】胡倩 博士研究生2020年毕业于湖南师范大学,获化学专业学士学位。目前是上海科技大学物质科学与技术学院博士研究生,师从朱幸俊教授,主要从事近红外发射镧系纳米复合材料的温度传感和生物成像应用的研究。朱幸俊 研究员上海科技大学物质科学与技术学院研究员、博士生导师。2017年博士毕业于复旦大学生物研究院(导师李富友教授),2017-2019年在美国斯坦福大学材料科学与工程系作为博士后学者从事生物医学成像以及神经调控材料与器件的研发工作。目前已在Nature Communications, Chemical Society Reviews, Nano Letters, ACS Nano, PNAS, Biomaterials等国际著名期刊上发表研究论文30余篇,他引3500余次(H因子26),并持有多项专利。多项研究成果入选科睿唯安ESI化学和材料领域前1%高被引论文(Highly Cited Paper)。研究项目获国家自然科学基金、上海市浦江人才计划资助。课题组致力于发展适用于生物医学的新型纳米材料和技术,通过构建纳米复合材料,利用其光、热、磁、声等性质,实现高选择性、低侵入性的生物成像、疾病治疗和生理功能调控。欢迎感兴趣的同学报考上海科技大学研究生,课题组长期招聘化学、材料学以及生物学相关专业博士后。具体可邮件沟通咨询,zhuxj1@shanghaitech.edu.cn(本文编辑:刘立东)专家约稿招募中若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑邮箱:liuld@instrument.com.cn微信/电话:13683372576扫码关注【3i生仪社】,解锁生命科学行业资讯!
  • 土壤多参数自动采集远程传输系统—SoilNet
    table width=" 630" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 126" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 504" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" 土壤多参数自动采集远程传输系统—SoilNet /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 126" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 504" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 北京师范大学 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 126" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 153" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 屈永华 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 148" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 203" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" qyh@bnu.edu.cn /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 126" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 504" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 126" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 504" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp □其他 /span /p /td /tr tr style=" height:226px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 630" height=" 226" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/5c9d1b6a-f712-4841-bdf6-b1d567fec299.jpg" title=" 5.png" style=" width: 500px height: 303px " width=" 500" vspace=" 0" hspace=" 0" height=" 303" border=" 0" / /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" S /span span style=" line-height:150% font-family:宋体" oilNet是具有无线数据采集与传输功能的土壤水分无线传感器节点。SoilNet由低功耗高精度无线数据采集终端和土壤温湿度传感器组成。数据采集终端具有自动采集与长时间低功耗运行能力,支持SDI-12国际上通用的传感器数据采集协议;支持1-5个土壤温湿度探头。温湿度传感器基于频率域的介电常数探测原理,与国际通用的土壤探测传感器规格兼容。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family:宋体" 主要技术指标: /span /strong /p span style=" line-height:150% font-family:宋体" 指标描述可测参数土壤温度;土壤体积含水量测量精度与称重法比较,总体相对精度优于97%网络协议汇聚节点与服务器之间GPRS网络供电方式内置干电池部署方式自由模式,根据用户需要,可以按照10-300米间距部署可连续工作时间按照5分钟采样间隔,每天上传两次数据计算,可连续工作时间不低于1年 /span p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 1. /span span style=" line-height:150% font-family:宋体" 无需定期人工采集数据,SoilNet自动完成土壤传感器数据采集,实现传感器与数采系统无缝集成。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 2. /span span style=" line-height:150% font-family:宋体" 无需费力数次挖埋,SoilNet的一次布署,便可实现对仪器进行长期的远程实时监测,定期查看土壤温湿度数据。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 3. /span span style=" line-height:150% font-family:宋体" 大范围内长时间序列自动测量,可为遥感产品真实性检验提供地面测量数据。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 4. /span span style=" line-height:150% font-family:宋体" 可埋藏在地下50厘米深处,不影响农田作业。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 应用领域:遥感土壤水分多尺度监测、地质灾害实时预警、智慧农业灌溉管理 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 630" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 遥感土壤水分多尺度监测、地质灾害实时预警、智慧农业灌溉管理 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 垃圾场灾害预测等 /span /p /td /tr /tbody /table p br/ /p
  • 烟民噩耗:公共场所尼古丁采集仪“上岗”
    尼古丁被动采集仪  9月13日从兰州市公共场所尼古丁被动检测培训启动会上了解到,作为全国2016年空气中尼古丁采样检测试点城市之一,兰州市将在城关区、七里河区随机抽取50家公共场所(10家行政部门、40家餐饮场所)安装尼古丁被动采集仪。  通过检测到的尼古丁数据,来客观分析兰州市在餐饮场所、政府办公场所二手烟暴露的情况,以进一步检验《兰州市公共场所控制吸烟条例》颁布实施以来的控烟成效 同时为评估兰州市控烟法规执行实际效果提供科学数据,为更好监控控烟法律的执行提供科学方法。另据了解,《兰州市公共场所控制吸烟条例》将于明年修订。  国家控烟办副主任杨杰表示,兰州市总体控烟情况逐步好转,人们对生存环境安全性的关注度不断提高,对创建无烟环境的呼声也越来越强烈,但公众仍存在对控烟法律知晓度不高、对公共场所吸烟的引导劝阻工作做得还不够等不容忽视的问题。为了进一步做好禁烟、控烟工作,今年,国家在北京、深圳、兰州三个城市试点实施空气中尼古丁被动检测。  揭秘尼古丁采集仪  模样:质量轻体积小  “你看,这就是尼古丁被动采集仪!别看它个头小,但它的嗅觉可灵敏了,公共场所里如果有人吸烟,它就能将产生的尼古丁捕捉到。”兰州市控烟办工作人员手里拿着一个用透明塑料袋装着的小仪器如是说。  尼古丁被动采集仪体积很小、携带方便。其外形是一个直径约5厘米,高4-5厘米的圆柱形装置,圆柱体的最中间装着一个过滤膜。通过空气的自然流动,尼古丁即被吸附到过滤膜上。之所以称其为被动采集仪,是因为只要将其安放在室内一个秘密的地方,其本身就有能力让尼古丁自动“送”上门来。采集环境空气中尼古丁的过程,是利用尼古丁在空气中的自由扩散作用,透过采集仪上的过滤膜来将尼古丁吸附到膜上。  作用:评价控烟是否得力  相比较于其他评价二手烟的方式,检测空气中的尼古丁浓度具有较高的灵敏性与特异性。每个尼古丁被动采集仪在室内秘密的地方放置7天之后,将其中的过滤膜取出来送到专门的实验室检测,通过检测到的过滤膜上尼古丁的数量计算出这一区域里的尼古丁浓度。  众所周知,取证难依然是公共场所控烟最头疼的事。有了尼古丁被动采集仪,就能真实地了解到一个区域内是否有人吸烟,为控烟工作提供科学评价。
  • 德国IKA/艾卡:RET control-visc 中的温度控制
    摘要目的:研究RET control-visc加热磁力搅拌器采用2pt (Two-point mode,两点控温模式),fPID (Fast PID mode,快速PID控温模式)和aPID (Accuracy PID mode,精确PID控温模式)这三种不同控温模式对样品控温精度与效果,测试验证RET control-visc加热磁力搅拌器在PID控制技术上的精确与稳定优势。方法 采用外部温度探头PT100对水,50mPas 硅油和500mPas硅油这三种不同介质在不同温度对三种不同控温模式进行比对控温测试。结果 采用2pt控温模式升温速率快,但温冲较大且稳定性偏差较大;aPID升温速率较慢,但温冲小且具有高精度稳定性;fPID升温速率和温冲在2pt与aPID之间,同样也具有高精度稳定性优势。结论,不同控温模式,可以满足不同用户需求,用户可选择性高,在实际应用中有很大帮助。 1.关键词PID 解读: PID(P比例-I积分-D微分)控制-由比例单元P、积分单元I和微分单元D组成,PID控制吸取了比例控制的快速反应功能、积分控制的消除余差功能和微分控制的预测功能,从控制效果看,这是比较理想的一种温度控制方法。PID三作用控制器虽然性能效果比较理想,但并非任何情况下都可采用PID三作用控制器。因为PID三作用控制器需要整定比例度Kp、积分时间Ki和微分时间Kd三个变量,不同的介质,其温度特性不尽相同,PID参数设定也不同,调节比例,积分,微分的三项参数对升温速率,温冲,稳定时间,相对误差,稳定性等性能指标有不同的影响,所以在实际应用上是很难将这三个变量都整定到最佳值[1]。IKA为此开发了具有PID参数自整定功能的两种PID温度控制模式,其参数的自动调整是通过智能化调整或自校正、自适应算法来实现的,有利于控制不同温度特性的介质,使其达到最优控温效果。下面我们将一起来分析世界顶级加热磁力搅拌器 -- RET control-visc如何利用高精度控制PID技术实现理想的控温效果。 2.实验部分 2.1 仪器与试剂加热磁力搅拌器 (RET control-visc)PT100温度传感器 (IKA? PT 100.50 )30mm圆柱体磁力搅拌子 (IKAFLON? 30 )labworldsoft?软件 (IKA labworldsoft?)数据采集仪 (Ahlborn Almemo? 2690)PT100-1温度探头 (Ahlborn FPA32P )1000mL低型烧杯 (SCHOTT DURAN) 水 (普通自来水)硅油 (50mPas)硅油 (500mPas) 2.2 实验方法分别量取800mL水/50mPas硅油/500mPas硅油于1000mL低型烧杯中,放入30mm搅拌子,然后将烧杯置于RET control-visc加热磁力搅拌器盘面中心,连接RET control-visc外部温度传感器PT100进行控温,将温度探头置于离烧杯壁10mm与杯底20mm处,再将外部Alhborn温度探头PT100-1置于与RET control-visc加热磁力搅拌器PT100相近位置,连接labworldsoft软件对样品温度变化进行实时采集记录。按照表1实验条件对磁力搅拌器分别进行设置测试。3.结果与讨论3.1 800mL水在1000mL烧杯中的测试图表:计算结果:3.3 800mL 500mPas硅油在1000mL烧杯中的测试图表: 3.4 实验结果以上实验表明在使用1000ml烧杯,采用800ml三种不同粘度介质为载体进行控温测试,三种不同控温模式都可以达到不同目的的控温效果。因此,可以简单的概括三种控温模式之间相互比较的控温特点:2pt升温速率最快,温冲最大,稳定性最差;aPID升温速率最慢,温冲最小,稳定性最好;fPID基本介于2pt与aPID之间。4. 结语最新一代的RET control-visc加热磁力搅拌器对不同的介质,不同的设定温度都可以达到良好、精确及稳定的控温效果,甚至高粘度的样品效果也很好。而且RET control-visc提供了三种不同的温度控制模式给用户选择:如果用户对介质温度控制要求不是那么敏感,只需快速达到设定温度,那么可以选择2pt控温模式;如果用户对介质温度要求非常的严格苛刻,需要尽可能低温冲,稳定度好,控温精确,那么可以选择aPID控温模式。如果用户允许有一点温冲,但又希望控温效果好,加热速率快,那么可以选择fPID控温模式。不同的控温模式,满足不同的需求,RET control-visc加热磁力搅拌器是医药、生化、生物和化学等应用领域一个理想明智的选择。
  • 新品速递 | 数据采集和处理的下一个时代
    HBK发布全新数据采集生态系统——HBK FUSION与HBK ADVANTAGE。HBK发布的新一代HBK FUSION与HBK ADVANTAGE数据采集(DAQ)系统,旨在满足开发、检定和认证的需求,为工程师提高和改善测量工作流程。HBK FUSION数采硬件丰富的功能为开发、检定和认证新产品提供全方位的测量。它建立了效率的新标准,缩短了设置和测试时间,拥有超越上一代数采的数据吞吐量和通道密度。HBK ADVANTAGE软件符合人机工程学设计,数据采集更简单、灵活、快捷,极大地提高了效率和处理能力。自动传感器配置,以及用于将传感器分配到测量点的HBK COMPANION应用,为用户提供了快速设置,使得仪器可以立即投入工作,进行精确测试,并与团队分享结果。关于Hottinger Brüel & Kjæ r 行业领导者HBM和Brüel & Kjæ r合并为Hottinger Brüel & Kjæ r,成为全球领先的综合测试、测量、控制和模拟解决方案提供商。 Hottinger Brüel & Kjæ r提供贯穿测试与测量产品生命周期的完整解决方案组合,这些解决方案将传感器、测试与测量的物理世界和模拟、建模软件与分析的数字世界相结合。通过创建一个可扩展且开放的数据采集硬件、软件和模拟生态系统,产品开发人员可以缩短产品上市时间,推动创新,并在竞争激烈的全球市场中占据领先地位。
  • 物联网虫情信息采集设备-一款淋过暴雨会更坚强的植物病菌孢子捕捉仪省市县区域/直送2024全+境+派+
    物联网虫情信息采集设备-一款淋过暴雨会更坚强的植物病菌孢子捕捉仪省市县区域/直送2024全+境+派+送解决方案【WX-CQD2】通过对虫情的持续监测,可以在害虫数量还处于较低水平时就发现其踪迹,从而采取相应的防治措施,避免虫害大规模爆发造成严重的损失。例如,在农业领域,及时监测到蝗虫幼虫的出现,就能提前进行防治,防止蝗虫大量繁殖吃光农作物。一、产品简介名称:虫情测报仪符合标准:符合GB-T24689.1-2009标准图像式虫情测报工具。主要目的:对虫害的发生与发展进行分析和预测,为现代农业提供服务,满足虫情预测预报及标本采集的需要。工作原理:利用现代光,电,数控等技术,实现了害虫诱捕虫体高温杀虫,传送带配合运输,整灯自动运行等功能。在无人监管的情况下,可自动完成诱虫,杀虫,虫体分散,拍照,运输,收集,排水等系统作业,然后利用无线传输技术、物联网技术并实时将环境气象和虫害情况上传到指定农业云平台。二、主体结构主机材质:喷塑底座:底座高度40cm,用于防止雨季雨水倒灌至中控箱中百叶窗:防鸟兽屏幕:7寸触屏整机尺寸:717mm*727mm*1565.7mm。组成部分:诱虫装置、撞击屏、杀虫装置、高清摄像头、主控系统、机械组件、雨雪传感器、光感传感器、专业金属箱体框架三、技术参数操作系统:安卓系统供电方式:标配220VAC,可选配太阳能供电。设备功耗:整机功耗:≤200W;待机功耗≤25W;工作环境:0~70℃,0~85%(相对湿度)、无凝结绝缘电阻:≥2.5MΩ (漏电保护)诱虫装置:默认光学诱虫原理,可选药物诱虫原理。光学诱虫采用主波长为365nm的20W黑光灯管,灯管启动时间≤5S。撞击屏:采用高透玻璃材质,互成120度角,单屏尺寸:长595±2mm,宽213±2mm,厚5mm。杀虫装置:上下两层远红外虫体处理仓,致死率不低于98%,虫体的完成率不小于95%。远红外虫体处理仓工作15分钟后,温度可达85℃±5℃。高清摄像头:本设备支持500W像素摄像头,摄像头采用对插方式,方便现场更换。可通过摄像头实时采集传送带上的虫子情况,所拍摄图像清晰度能够达到人工识别昆虫种类的要求。主控系统:主控系统可提供蓝牙APP配置工具,支持蓝牙非接触式配置。支持更改设备工作模式,单独控制设备的各个组件启动运行。支持远程升级程序、基站定位、自动校时、通过蓝牙配置APP设置参数等功能。通信方式:支持4G通信、可选配以太网RJ45通信。机械组件:箱体内部含虫雨挡板、杀虫挡板、烘干挡板、震动装置、移虫装置、补光灯、摄像头等机械装置及控制执行设备。虫情测报仪震动装置可将诱集到的虫体进行震动,使昆虫冲突均匀洒落平铺在传送带上,避免虫体堆积,确保每个虫体特征都可清楚拍摄,配合平台软件AI分析识别系统,可保证不同时间段诱集到的昆虫不混淆。雨控技术:通过雨雪传感器检测现场天气情况,无雨雪天气正常运行,有雨雪天气停止运行。识别雨雪天气后,控制虫雨挡板开合方向,实现虫雨分离。光控技术:通过光照传感器检测现场光照强度,不受瞬间强光影响。当光照小于程序设定值时,控制设备正常运行;当光照大于程序设定值时,控制设备停止运行。时控技术:可设置工作开始时间、工作时长、单次工作循环时间、诱虫灯开启时长、雨后延迟开启时长等。工作模式:支持自动工作模式、手动工作模式,支持工作模式切换。自动工作模式工作流程:飞虫受诱虫光源吸引→进入百叶窗→撞向撞击版→撞击后掉入杀虫仓→杀虫仓高温杀死虫子后→杀虫挡板翻转→虫子尸体掉进烘干仓→烘干仓进行高温烘干,烘干完成后→烘干挡板翻转→虫子尸体掉落在震动板上→震动板启动→虫子尸平铺至传送带上→传送带将将飞虫尸体运送到摄像头下→拍照→上传照片至服务器。手动工作模式介绍:支持通过蓝牙配置APP、云平台、虫情监测APP控制各机械组件运行。四、安装方式:1.选择好虫情检测柜体安装位置,尽可能提前预制平坦硬质水泥高台,再根据底座固定尺寸进行打孔。2.使用配件里的膨胀螺丝装到打好8个孔位中。3.将设备支撑柱下面的四角抬高焊脚的8个膨胀螺丝孔位对应好,用扳手拧紧固定,即可。五、虫情测报平台:1.虫情测报平台可根据不同权限进行分账号登陆及管理,至少能分配8级以上不同权限的账号。2.虫情测报平台远程查看虫情测报仪的各个部件的当前工作状态,且状态可进行存储,可查看历史记录。3.虫情测报平台用户可增加害虫种类。4.虫情测报平台具有按区域和时间两种方式的害虫种类、数量变化的统计图包含柱状图和折线图。5.虫情测报平台使用第二代虫情数据库进行AI自动分析,同时用户可对AI分析结果自行补录修正。6.虫情测报平台支持二次开发,免费提供专业虫情测报平台及APP客户端,平台可提供API接口。可提供基于java、C#的SDK开发接口。
  • 开展数据采集仪环保产品认证的通知
    各有关单位:   为适应我国在线监测发展需要,推动相关产品标准化进程,中环协(北京)认证中心决定于近期开展对数据采集仪的环保产品认证工作,详情请来电咨询。   联系人:王则武 张倩   联系电话:010-51555010,51555011 中环协(北京)认证中心   二○○九年三月三十日
  • 样品该如何采集与保存呢
    样品采集通常简称采样,是一种取样的方式,是一种科学的研究方法。我们实验流程的第一步就是样品采集,这一步也是至关重要的。为了我们实验结果的准确性,一定要正确选择采样方法和容器,执行采样操作规程哦~样品采集样品采集是指从待测样品库中抽取数量一定的具有代表性的样品作为检测分析的材料。在分析测量过程中,只有采集到合理且正确的样品,才有可能取得到有用的数据,得到正确可靠的结论。关于样品采集,有四大原则:代表性原则、典型性原则、适时性原则、程序原则。样品保存从样品的采集到样品的分析测定这一段时间里,由于空间、时间的变化,有可能会导致样品中的某些物理参数和化学组分发生变化,以致于检测失败或数据不准确。如何减少这些变化,保证检测结果的可靠性准确性呢,就需要采取一定的措施,尽快检测或者妥善保存。常见的保存方法有三种:1、密封保存法对于含水分或者具有挥发性的样品,放置在密闭的容器中,防止样品风化、挥发;对于需要干藏的样品来说,也可以有效的防止外源的空气与水分侵入,污染样品。2、化学保存法在样品中加入某些物质来保证样品的性质稳定。常见的有加生物抑制剂、酸(碱)化,可以有效的防止生物作用、防止样品物理性质改变等。需要注意的是加入的物质不应干扰其他组分的测定。3、冷藏保存法将样品放置在光暗处或者是冰箱中,可以有效的抑制样品中的生物活动,防止外源微生物污染样品导致变质,同时也可以减缓样品自身的物理作用与化学速度。样品的采集和保存是整个样品分析检测过程中最为关键的部分,如何采集正确的样品、防止污染、防止被测组分的损失,显得尤为重要。根据不同的样品、不同的分析项目及分析方法,我们可以采用不同的采样方法和保存方法来对样品进行采样与保存哦。
  • 刑侦新产品:立体足迹激光扫描采集分析仪
    在近日召开的陕西省刑事新技术培训班上,一款名为“立体足迹激光扫描采集分析仪”的刑事技术新产品在会上进行了功能展示,引起在座基层刑事技术民警的浓厚兴趣,大家在展台亲手操作使用设备,他们认为,推广此项技术对提高办案质量和办案速度势必起到积极作用。此前,该仪器在全国第六届好痕迹检验技术研讨会上得到足迹专家的一致好评,目前已获我国独立知识产权最高级别的发明专利。   以往,在国际上,提取立体足迹通常采用是高灌注法,不但效率低,而且需要操作者具有一定的提取经验,尤其是在针对雪地、灰尘等软基客体的足迹时,难度更大,一单提取失败无法挽救,是现场的重要物证遭受损失。立体足迹激光 扫描采集分析仪的问世,掀开了刑事技术研究崭新的一页,该设备的非接触提取和数字化处理取代了百年来一直靠手工制模提取和经验型检验的模式,为刑侦专家快速有效处置案件事故提供先进实用的科技手段。该分析仪的主要技术特点是:   实现数字化无损提取现场立体足迹   该仪器能够快速、准确、无损地提取现场立体足迹。利用现代激光扫描三位测量和计算机技术,实现了对现场立体足迹原物大、原始形态的数字化采集、存储和传输,直接记录并显示足迹各部位的三维数据,如足迹重压点位置及深度、鞋底磨损形态及范围等。亦可用于提取轮胎等其他立体痕迹。采集设备与足迹不直接接触,从根本上解决了外界对足迹的干扰破坏,真正实现了原始无损提取,避免了“实物填充法”带来的人为破坏和变形,以及后期材料干缩、裂纹等问题,为综合利用提供了条件,为准确 检验鉴定奠定了基础。   多功能数字化辅助检验工具   利用软件模拟比较显微镜原理,研究出立体足迹辅助检验专家传统,设计出双视窗检验、三维重建显示、重压点检验自动搜索、磨损面检验、坐标网络、深度伪彩三维贴图、标注方式长度角度面积的双视窗数据同步对比测量等 一系列专业化设计的辅助检验工具。首次实现了对现场足迹的重压点和磨损变形的辅助检验。使经验专家型进入了数字化定量检验。坐标检验和网络格检验工具,给各类足迹特征检验提供了一个快捷有效的检验手段,尤其是游动式坐标检验工具,可把0点定在任一特征位置,依此扩展进行定量化检验,使检验更加灵活、方便和实用。   机械化还原现场立体足迹   系统根据三维测量数据,直接计算出雕刻机加工代码,利用三维雕刻机,直接对高密度板等板材加工雕刻,实现对立体足迹的加工还原。既可还原造型客体(鞋底)模型,也可还原承受客体(凹痕)模型,还原足迹具有高精度、不变形、易保存,经久、耐磨、抗摔,便于携带等优点。   今年6月,应湖北省公安刑警总队痕迹室之约,研制单位技术人员携带该设备赶到武汉,会同五位全国著名足迹专家,利用该仪器对震惊全国的“12.7”案件的现场证据进行检验分析,因嫌疑人在逃,嫌疑人家里遗留的鞋子与现场遗留的足迹缺乏行走的样本比较,五位足迹专家意见不一致。之前,因该案件现场能提取的足迹痕迹和其他有价值的痕迹、线索有限,使安检一度进展不顺利。技术人员使用该仪器吧现场提取的足迹痕迹检材和嫌疑人家里提取的鞋子进行扫描分析,并把结果送给专家进行研判,使专家意见得到统一,锁定了犯罪嫌疑人。
  • 河流微塑料|从采集到分析,轻松“一网打尽”
    导读 微塑料是一种新兴的污染物,具有与其它污染物相似的普遍性和生态毒性,微塑料的尺寸范围大、分布广、环境干扰影响大,所以快速采集、处理、分析微塑料组分,对于环境污染治理有很重要的意义。微塑料的危害 《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》对“重视新污染物治理”提出了有关要求。新污染物虽然在环境中浓度较低,但具有器官毒性、神经毒性、生殖和发育毒性、免疫毒性、内分泌干扰效应、致癌性、致畸性等多种生物毒性,同时具有较强的生物持久性、明显的生物富集性、难以监测等特性,对人体健康和生态环境构成危害。 现阶段国际上主要关注的新污染物包括:微塑料、环境内分泌干扰物(EDCs)、全氟化合物等持久性有机污染物、抗生素等四大类。作为四大类新型污染物之一的微塑料等细颗粒物,可以吸附重金属和有机污染物的载体,其危害性更为复杂。 下面小编为您介绍河流中微塑料从采集到样品前处理方法以及使用岛津傅立叶变换红外光谱仪(IRSpirit)快速进行分析的过程。 微塑料的采集 目前海水和淡水中微塑料采集一般采用具有不同孔径网目的拖网,使用拖网需要船只,对流域面积也有一定要求。采用一种新型微塑料采集装置Albatross(株式会社Pirika),解决了昂贵的租船费用以及狭窄地点和流速慢的河流难以取样的限制问题,可以在任何地点轻松使用的采集装置,仅需3分钟即可完成收集微塑料样品,成本低、使用方便。 图1 微塑料采集装置Albatross图2(a) 河流A中的采集过程图图2(b) 河流B中的采集过程图3 采集的微塑料样品 微塑料的前处理 首先将采集到的样品过2mm和0.1mm目筛,在通过0.1mm目筛捕集的样品中加入30%的双氧水(H2O2),溶解杂质,然后用纯水清洗样品,去除H2O2,加入5.3mol/L的碘化钠水溶液(NaI),进行比重分离。 图4 前处理流程 微塑料的分析 在收集的微塑料中,随机选了一颗微塑料使用岛津小巧型IRSpirit进行红外分析,光学显微镜观察图像和红外测定结果如下: 图5 收集的部分微塑料图6 光学显微镜下微塑料图像图7 FTIR的测定结果 岛津塑料分析系统包括了多种类型塑料的红外谱图,这些塑料经过了0小时(未照射)到使用Iwasaki Electric Co., Ltd.生产的超加速老化仪最长550小时(相当于紫外线照射约10年)照射。以上测定结果和紫外线照射550小时老化的PE匹配。检测到图中⻩框所示的3400cm-1附近的O-H伸缩振动、1750 cm-1附近的C=O伸缩振动引起的吸收,因此,可以推测出该微塑料暴露在环境中由于紫外线照射引起的氧化老化。另外,根据图中蓝框所示的1050cm-1附近的吸收峰,判断可能存在硅酸盐等。 结语 采用新型微塑料采集装置Albatross(株式会社Pirika),仅需3分钟即可完成收集微塑料样品,成本低、使用方便。针对采集的微塑料样品进行前处理,使用岛津傅立叶变换红外光谱仪(IRSpirit)可实现快速分析。 本文来源于:藤里砂(岛津制作所全球应用技术开发中心),河流中采集的微塑料的前处理方法和FTIR的分析方法。本文内容非商业广告,仅供专业人士参考。
  • 数据采集神器-奥豪斯SPDC软件
    SPDC软件是一款免费的奥豪斯自主研发的数据采集工具,支持RS232接口或以太网连接,对单台奥豪斯天平或秤的称重数据进行实时采集至Excel,方便数据分析和处理。数据采集平台SPDC软件适配奥豪斯的天平,水分仪,工业称重,pH电化学等产品。数据接口默认设置相同,软件自动识别COM端口号码。运行SPDC软件,可在几秒内完成连接配置,轻松开始数据采集。灵活的数据采集能力支持自动和手动数据传输,满足不同的数据采集需求。方便在线实时监控数据变化。自动打印:只需开启天平或者工业秤的自动打印功能,即可实现称重数据的自动传输,大大节省数据采集时间。手动打印:手动打印键可实现打印单个称重信息或者完整的打印条信息。打印条信息包括:日期和时间、天平ID、天平名称、用户名、称量结果等,符合数据追溯的要求。免费搭建实验数据MS EXCEL平台,为后期实验数据分析做好准备SPDC数据采集软件支持支持多种数据导出格式,包括MS Excel,Access, Text和 Word。数据采集导入Excel后,可以直接用Excel自带函数做数据分析。另外,SPDC还具有导入数据至自定义单元格的功能,即直接导入已经做好的实验表格,提升了数据录入的效率,减少出错的机会。如何获取SPDC 软件奥豪斯网站提供免费软件下载,或者售后服务热线:4008-217-188指导安装。如何使用SPDC软件奥豪斯集团成立于1907年,拥有遍布各地的营销、研发和生产基地。通过不断为各地用户提供优质的称量产品与完善的应用方案,奥豪斯产品已遍及环保、疾控、食药、教学科研、食品、新能源和制药工业等各种应用领域,赢得了广泛的认可与青睐。我们致力于提供符合各国安全、环境及质量体系的产品,涵盖电子天平、台秤、平台秤、案秤、摇床、台式离心机、加热磁力搅拌器、涡旋振荡器、干式金属浴、实验室升降台和电化学产品等。
  • 无损测试材料相变温度的利器——相变温度分析仪
    p   武汉嘉仪通科技有限公司作为一家以薄膜物性检测为战略定位的高科技企业,一直专注于薄膜材料物理性能分析与检测仪器的自主研发,拥有一系列自主研发的热学相关分析仪器。其中,相变温度分析仪是嘉仪通热学分析仪器中非常有代表性的产品之一。 br/ & nbsp & nbsp 相变温度分析仪(PCA)是根据材料相变前后光学性质(反射光功率)有较大差异的特性,在程序控温下,使用一束恒定功率的激光照射样品表面,记录反射光功率变化,形成反射光功率与温度变化曲线,从而确定相变温度的一款仪器。可以实现对相变材料进行相变温度的实时测定、新型材料(相变材料、相变储能材料)的稳定性测试及性能优化以及进行新型相变机理(晶化温度的尺寸效应、材料的结晶动力学过程等)的研究等功能。 br/ strong span style=" color: rgb(0, 176, 240) " 为什么选择研发相变温度分析仪? /span /strong br/ /p p   相变材料(PCM-Phase Change Material)是指温度不变的情况下而改变物质状态并能提供潜热的物质。相变材料实际上可作为能量存储器,这种特性在节能、温度控制等领域有着极大的意义。这种非常重要的材料,可广泛应用在航天、服装、制冷设备、军事、通讯、电力、建筑材料等方面。但是在这种材料的科研过程中,理想的相变材料非常难找到,只能选择具有合适相变温度和有较大相变潜力的相变材料,而无损测试材料的相变温度却又是很难办到的。 /p p   嘉仪通正是发现了无损检测材料相变温度的重要性,想要帮助科研人员解决相变温度测试难题,进一步助力相变材料的应用发展,因此我们加大投入力度,从理论研究到工程化测试,不断攻坚克难,采用更加先进的测试方法和更加精密的控制系统,最终历时近6年时间,终于成功研发出了这款可以无损检测材料相变温度的精密仪器。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e832f85f-2f28-4ec9-8c44-f495fd028266.jpg" title=" 相变温度分析仪PCA-1200.png" alt=" 相变温度分析仪PCA-1200.png" width=" 400" height=" 275" border=" 0" vspace=" 0" style=" width: 400px height: 275px " / /p p style=" text-align: center " strong 相变温度分析仪 PCA-1200 /strong /p p strong span style=" color: rgb(0, 176, 240) " 嘉仪通相变温度分析仪具有哪些功能特性? /span /strong /p p style=" text-align: center " strong 全新技术设计 /strong /p p img src=" https://img1.17img.cn/17img/images/201809/uepic/f4dc9b2c-620c-4f33-9da4-2d0dcecca464.jpg" title=" 全新技术设计.png" alt=" 全新技术设计.png" width=" 350" height=" 330" border=" 0" vspace=" 0" style=" float: left width: 350px height: 330px " / br/ span style=" color: rgb(0, 176, 80) " strong br/ 无需基线,曲线趋势分析 /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无需标样,绝对测算方法 /strong strong /strong /span /p p br/ br/ span style=" color: rgb(0, 176, 80) " strong 无损检测,无需破坏膜层材料结构 /strong strong /strong /span /p p style=" text-align: center " br/ br/ strong 功能特色 /strong /p p · 采用高性能长寿命红外加热管进行加热,核心加热区采用抛物反射面设计,确保对样品进行有效全方位加热。 /p p · 采用PID调节与模糊控制相结合的温控系统,可实现系统的高速跟随控制,可实现最快50℃/s升温速度。 /p p · 以直线滚珠轴承作为组件支撑及运动导向关联件,确保送样的平稳可靠,行程限垫可有效确保导轨的行程范围。 /p p · 压迫式弹针接触端可确保温度传感器的有效接通,同时其弹力可确保设备处于锁紧状态时方可进行加热操作等事宜,避免误操作。 /p p · 组合隔温挡圈能有效形成前后隔离,确保温场均匀。 /p p style=" text-align: center " strong 应用范围 /strong /p p style=" text-align: center " TiN薄膜,GeTe薄膜,ZrO sub 2 /sub 薄膜,掺Ti的ZnSb薄膜,SiC薄膜,显示屏玻璃,形变记忆合金薄膜,NiAl复合薄膜,VO sub 2 /sub 薄膜,PZT铁电材料,MgO/Ni-Mn-Ga薄膜,GST相变存储薄膜,金属Co薄膜,Al sub 2 /sub O3薄膜,等 /p p style=" text-align: center " strong 测试案例 /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 红外材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/b7da2f45-1e2a-4575-ad21-52c91c75b63a.jpg" title=" 四川大学提供的红外材料样品VO2.jpg" alt=" 四川大学提供的红外材料样品VO2.jpg" / /strong /p p style=" text-align: center " strong 图1:VO2不同升温速率12℃/min、15℃/min /strong /p p style=" text-align: center " strong (四川大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 复合材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/fa3ce443-ac01-434e-8bb7-f2fc8e00b90b.jpg" title=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" alt=" 西南科技大学提供的复合材料样品铝镍合金复合薄膜.jpg" / /strong /p p style=" text-align: center " strong 图2:铝镍合金复合薄膜 /strong /p p style=" text-align: center " strong (西南科技大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 相变存储材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/f175574c-c528-4a7c-a745-aaf92126f24e.jpg" title=" 中科院微系统所提供的相变存储材料样品.jpg" alt=" 中科院微系统所提供的相变存储材料样品.jpg" / /strong /p p style=" text-align: center " strong 图3:相变存储材料图 /strong /p p style=" text-align: center " strong (中科院微系统所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 热电薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/a822a53d-5c63-41c6-a2ea-3237ee56ece0.jpg" title=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" alt=" 深圳大学提供的热电薄膜材料样品掺Ti的ZnSb.jpg" / /strong /p p style=" text-align: center " strong 图4:热电转换薄膜材料(掺Ti的ZnSb) /strong /p p style=" text-align: center " strong (深圳大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 氧化锆薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/63e8d2e4-4c04-4112-aa76-10f92a542629.jpg" title=" 清华大学提供的氧化锆薄膜样品.png" alt=" 清华大学提供的氧化锆薄膜样品.png" / /strong /p p style=" text-align: center " strong 图5:ZrO2薄膜 /strong /p p style=" text-align: center " strong (清华大学提供样品) br/ /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201809/uepic/e6c00cea-ef7b-4cca-a103-57181b6b0131.jpg" title=" 氧化锆薄膜与XRD对比图.jpg" alt=" 氧化锆薄膜与XRD对比图.jpg" / /p p style=" text-align: center " strong 氧化锆薄膜与XRD对比图 /strong br/ /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 高温陶瓷材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/ffba8968-5aa8-4340-927b-bad7ff25421f.jpg" title=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" alt=" 海南大学提供的高温陶瓷材料样品TiN薄膜硅基底.jpg" / /strong /p p style=" text-align: center " strong 图6:高温陶瓷材料(TiN薄膜硅基底) /strong /p p style=" text-align: center " strong (海南大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 硬质合金薄膜材料 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/9b945867-70c2-4548-adcc-cb5a2dbc1488.jpg" title=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" alt=" 武汉大学提供的硬质合金薄膜材料样品切削刀具.png" / /strong /p p style=" text-align: center " strong 图7:切削刀具相变监测曲线 /strong /p p style=" text-align: center " strong (武汉大学提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong SiC薄膜 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/05df342d-1488-40b8-bf7c-8cf2f1dbd1d5.jpg" title=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" alt=" 中国电子科技集团第五十五研究所提供的SiC薄膜样品.png" / /strong /p p style=" text-align: center " strong 图8:SiC薄膜热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (中国电子科技集团第五十五研究所提供样品) /strong /p p style=" text-align: center " span style=" color: rgb(0, 176, 80) " strong 显示屏玻璃 /strong /span strong br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/01d1e69a-88b7-4aae-9edc-c1864a7dce34.jpg" title=" 武汉天马提供的显示屏玻璃样品.png" alt=" 武汉天马提供的显示屏玻璃样品.png" / /strong /p p style=" text-align: center " strong 图9:显示屏玻璃热膨胀系数监测曲线 /strong /p p style=" text-align: center " strong (武汉天马提供样品) /strong /p p style=" text-align: right " strong (供稿:武汉嘉仪通) /strong /p
  • 生物气溶胶检测仪-一款用于采集空气中浮游菌的机器2024实时更新
    型号推荐:生物气溶胶检测仪-一款用于采集空气中浮游菌的机器2024实时更新,生物气溶胶检测仪在采集空气中浮游菌的过程中,展现出了其独特的优势。下面将从精准采样、智能化操作、数据管理与分析以及快速检测四个方面,详细阐述其对采集空气中浮游菌的帮助。 一、精准采样 生物气溶胶检测仪通过高效的采样模块,能够精准地采集空气中的微生物浮游菌。其采样技术确保微生物颗粒被完整且准确地收集,为后续的检测分析提供可靠的样本基础。 二、智能化操作 该检测仪多采用智能化设计,用户可轻松设置采样参数,设备将自动完成采样、检测及数据上传等一系列工作。这不仅简化了操作流程,还大大提高了工作效率。 三、数据管理与分析 生物气溶胶检测仪提供强大的数据管理平台,用户可以对采样数据进行长短期评估管理分析。这有助于了解环境中微生物的变化趋势,为决策者提供科学依据。 四、快速检测 该检测仪集成了快速检测功能,大大缩短了从采样到出结果的时间。这种快速响应能力使得在发现潜在微生物污染风险时,能够迅速采取防控措施。 五、产品优势 1.空气微生物采样检测一体机集大流量采集模块、快速荧光检测模块、清洗模块等于一体,实现了全自动无人值守检测(可每天定时多时段检测),省却了人工单独采样,采样完成再转换到实验室检测的过程; 2.安卓系统RAM2G+ROM16G; 3.大流量空气采样装置(干壁气旋固气分离原理) 4.采用MPPT硅光电倍增管检测器 5.可每天定时多时段检测; 6.检测完自动报讯数据; 7.可wifi联网将数据无线上传至云平台; 8.配置数据管理平台,可进行长短期评估管理分析; 9.交直流两用,可方便长时段监测,也可方便流动检测; 10.可选配4G模块,定位模块 生物气溶胶检测仪以其精准采样、智能化操作、数据管理与分析及快速检测等特点,为采集空气中浮游菌提供了极大的帮助。这些优势使得生物气溶胶检测仪在环境监测、疾病防控等领域具有广泛的应用前景。
  • 从大量数据到大数据,King’s SDMS仪器数据采集及科学数据管理系统的应用
    对于实验室或检测机构,仪器设备是所有业务开展的基础,数据则是核心命脉,而传统的仪器设备原始数据收集方式,效率低耗时长、操作流程不规范、不易保存与查找、错误率高、易篡改等成了制约检测机构持续高速发展的瓶颈和弊端,这严重影响了实验数据的质量和实验室工作效率。 为适应当今的实验室数据化应用与分析,青软青之提供了King’s SDMS 仪器数据采集及科学数据管理系统,旨在满足检测领域对仪器设备数据自动采集和应用的全方位需求。系统通过构建智能数据解析服务中心,让各类仪器设备数据协议的繁杂简单化、标准化,为数据使用方提供规范的统一的目标数据,让整个数据采集过程更便捷、更高效、更准确、更安全。 从大量数据到大数据 检测数据是检测机构的血液,如何做到对实验得到的大量过程、结果数据高效的收集、分析、存储,从而形成统一的、结构化的数据以便使用呢?又如何让这个过程变得自动、便捷、可靠呢?King’s SDMS 仪器数据采集及科学数据管理系统的应用在以下方面得到了切实提升: 1、采集实验室设备生产过程中产生的各类数据,如:可读文件、数据库等,也包括可交互的通讯接口数据,如:串口(RS-232)、网口(TCP-IP)等。 2、提升检测数据准确性:确保分析任务符合质量规范,并通过系统自动采集仪器输出数据,以避免人为因素对数据的影响,保证了数据的真实性,提高了数据的准确性和可靠性。 3、全流程可追溯:实验数据在自动采集系统中得到全程记录和存储(含检测项目、检测结果,仪器名称、使用时间,使用人等信息),最终生成快捷,真实,完整的原始数据,为检测报告提供可追溯依据。 4、为分散的数据收集点,系统提供统一数据采集接入接口,全面覆盖所有数据源,解决了需要采集多种数据源时依赖多个平台或者工具来完成数据分散的挑战。 5、格式化收集到的原始数据,为LIMS或第三方提供查询服务。数据格式根据实验类型不同,大致可分为,实验数据、标物数据、称量数据等。 实验室设备现状及解决办法 纵观检测行业,仪器设备数量之多、种类之繁,即使是针对同一项目进行检测的仪器设备,由于制造商的不同所输出的数据也千差万别,如此造就了仪器设备数据采集实施难度加大、费用居高不下的局面。为此,King’s SDMS 仪器数据采集及科学数据管理系统提供多种采集方式支持,以满足不同仪器的数据采集需求。 Ø 文档型采集 支持word、excel、pdf、TXT、CSV等任何可读文件。 Ø 串口型采集 支持RS232、485、422等。 Ø 网络API采集 通过调用设备厂商提供的API接口,从设备上直接获取数据并实现自动化采集和存储,支持Restfull Api、webser-vice、RPC等。 Ø 设备直采 直接从设备获取数据,可定制与设备直接通讯,主动采集数据。 Ø 设备主动推送 系统提供身份认证和数据接收接口后三方设备可主动推送数据,无需人工干预,实现数据同步和更新。 King’s SDMS 仪器数据采集及科学数据管理系统具有完备的数据及业务交互功能,可独立运行也可与LIMS、ELN等现有业务系统,以及其他第三方行业专业系统灵活整合。大幅提高工作效率和质量,可轻松完成集团型及多实验室联合运营场景运营支撑。
  • 深圳朗石新一代DT10数据采集传输仪精彩亮相
    生态环境部在2019年发布了HJ 35X-2019系列水污染源在线监测系统新标准。新标准增加了对数据上报的要求,规定了数据传输的频次。数采仪需要分析数据有效性,接受平台反控采样器采样、送样和留样功能,并读取仪器的状态、设置、日志等。新标准对于数采仪的要求更高、规范更加严格。为响应新标准要求,方便用户水质监测运维工作,朗石自主研发了DT10数据采集传输仪(下称数采仪)。DT10数采仪是一款应用于水质在线监测系统进行数据传输上报的仪器,完全符合《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)的标准及《污染物在线监控(监测)系统数据传输标准》(HJ 212-2017、 HJ/T 212-2005)传输协议。应用范围:可应用于地表水、污染源、水站、自来水厂等水质在线监测系统的数据采集传输,服务于工程项目公司、环境技术服务公司、各类型企业等。 朗石DT10数据采集传输仪产品特点:? 接口类型丰富,并配备以太网、全网通3G/4G等多种通讯方式;? 支持数据“一站多发”、自动补传、手动补发功能;? 新增超标告警及留样控制功能,真正实现“智慧运维”,为企业节省运维成本。 此次新产品发布,朗石公司特别举办了“全网预约免费试用”的活动,欢迎前来朗石官网或微信公众号咨询,
  • 西藏拟建人类遗传资源样本基因库 将在全区采集样本
    基因库  日前,自治区科技厅组织相关医学领域专家召开了“西藏人类遗传资源样本基因库建设”的座谈会。12月28日,自治区科技厅高新处工作人员透露,西藏人类遗传资源样本基因库建设方案由自治区科技厅、西藏大学、自治区人民医院、拉萨市人民医院、日喀则市人民医院等单位联合拟定。西藏未来将建人类遗传资源样本基因库,实现样本资源共享。  启动  明确基因库建设意义 在全区范围内采集样本  人类遗传资源是融合生物样本实体、生物分子信息及样本表型数据的综合资源,对于开展人类疾病预测、诊断、治疗研究具有不可替代的重要作用,是人类疾病临床与基础转化为医学研究的重要桥梁,是精准医学研究的不可再生性资源。它既是促进人口健康、维护人口安全、控制重大疾病以及推动医药创新的重要物质基础,也是全面提升我国生命科学创新能力,推动重大科技创新和增强国家核心竞争力,创造社会财富的物质基础。  西藏人类遗传资源样本基因库建设,具体是要建立一套适用于青藏高原人群的质量控制体系、规范,形成一套相关的管理体系文书,建立青藏高原人类信息管理资源平台,实现资源共享。同时收集、保藏样本时要求原住人群不少于2万,且样本不少于200个家系,迁居西藏2代以上人群不少于5万,且样本不少于500个家系。  自治区科技厅高新处工作人员介绍,目前,自治区科技厅等多个单位正在联合拟定西藏人类遗传资源样本基因库建设方案。同时,西藏大学与青海大学开展合作,拟申报科技部2017年“中国青藏高原人群遗传资源库建设”项目,促进我国生物遗传资源的保护、利用和开发,对国家生物资源和基因安全作出应有贡献。  分析  结合我区实际情况 样本保存、运输成“难题”  会上,来自医学领域的十多位专家分别就样本的保存、运输、研究及平台建设等发表了自己的建议和意见。首先,西藏自治区在选取样本时要在全区范围内采集,保证样本的空间地域性 其次,在不同地区抽取血液时要采取不同的方式 最后,要保持血液样本的新鲜、完整性,采集样本之后要做好分子标记族群,并用专门仪器标记基因测序等。  专家分析我区实际情况后指出,目前存在样本保存、运输的问题。“西藏幅员辽阔、地广人稀,部分地区交通不便。要保持血液样本的新鲜、完整性,就必须解决运输问题。而且样本如何更好地保存也是个问题。”高新处工作人员表示,虽然西藏大学有用于血液样本存放的冷冻库,但与全区范围的血液样本数量相比,这个冷冻库的容量太小。座谈会后,专家将就我区存在的问题,逐一商讨解决办法。
  • 环标《污染源在线自动监控(监测)数据采集传输仪技术要求》发布
    为贯彻《中华人民共和国环境保护法》,规范污染源在线自动监控(监测)系统建设工作,实施国家环境保护标准《污染源在线自动监控(监测)系统数据传输标准》(HJ/T 212),统一性能指标,确保现场监测数据准确传输,制定本标准。本标准规定了污染源在线自动监控(监测)系统中数据采集传输仪的技术性能要求和性能检测方法。本标准适用于数据采集传输仪的选型使用和性能检测 对于污染源在线自动监控(监测)系统中具有数据采集传输功能的现场监测仪表,只规定其用于数据采集传输功能部分的性能指标和校验方法。   附录:污染源在线自动监控(监测)数据采集传输仪技术要求(HJ 477-2009)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制