当前位置: 仪器信息网 > 行业主题 > >

红色细胞计

仪器信息网红色细胞计专题为您提供2024年最新红色细胞计价格报价、厂家品牌的相关信息, 包括红色细胞计参数、型号等,不管是国产,还是进口品牌的红色细胞计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红色细胞计相关的耗材配件、试剂标物,还有红色细胞计相关的最新资讯、资料,以及红色细胞计相关的解决方案。

红色细胞计相关的资讯

  • 细胞激光器标记人体所有细胞
    激光拥有许多普通光不同的特征,使激光在许多领域被作为工具使用。但一般激光都需要复杂的技术和设备制造,让细胞发射出激光的想法似乎比较疯狂。科学家有时候看起来就是这么疯狂,最近有科学家真的制造出能发射激光的活细胞。这一新技术成为《自然》网站的最近头条新闻。科学家将含有荧光染料的油滴注射到单细胞内,用短脉冲光线激发细胞内染料产生激光。  这一新技术发表在7月27日《自然光子》杂志上,该技术不仅能开发为医学诊断的方法,也具有形成治疗疾病新技术的可能。  这一技术的设计者是Seok Hyun Yun和Matja? Humar,哈佛大学医学院的这两位光物理学家,利用油滴反射和放大光线使单细胞产生激光。Yun在2011年曾经报道过一种能产生激光的细胞,先利用基因工程技术让细胞表达荧光蛋白,然后将表达荧光蛋白的细胞放置于一对镜子中间,或者是细胞借助镜子的反射制造激光。最新这一技术更进一步,是让细胞自己独立产生激光。  在未来,这种“生物激光器”将能被进一步开发,植入活的动物体内,这能将大大提高显微镜扫描的精确度。将这种激光细胞植入身体内,可以制造出体内激光光源,帮助科学家观察组织结构和诊断疾病。  生物技术常用的荧光探针包括荧光染料和荧光蛋白,这些荧光的特点是发射比较宽的波长。这一特点导致荧光探针无法同时使用许多类型。例如我们可以选择绿色、红色和蓝色的荧光,其实同样是红色,其波长有非常多的类型。因为每个探针都是多种波长组成的混合光线,因此我们只能选择很少几类荧光作为工具。例如我们比较常用的荧光免疫组织化学,你一次用三种颜色标记三种不同蛋白就非常不错了。  激光能解决这个尴尬的问题,因为激光的特点就是非常窄的波长,这样理论上,我们可以同时追踪非常大量不同的目标分子。而且也能大大提高检测的灵敏度。波士顿布里格姆妇女医院生物工程学家Jeffrey Karp对该技术大加赞赏,认为是解决了用一种技术同时示踪数千种目标分子的伟大发明。  最新报道的这一技术核心是将含有荧光的聚苯乙烯滴注射到细胞内,可通过改变聚苯乙烯滴直径获得不同发射波长的激光。理论上组合不同的聚苯乙烯滴和不同波长的染料,能用不同波长光线标记人体所有的细胞。
  • 如果仪器有颜色,那一定是红色——记国产仪器使用心得
    如果仪器有颜色,那一定是红色——记国产仪器使用心得仪器论坛用户:hzauwanj 在下乃是一名小小的实验技术人员,在高校工作,主要负责学院大型仪器共享平台的管理。所以接触的仪器还是非常多的。我们单位偏向于生物化学类,我所管理的平台上有许多仪器,从小型仪器如台式离型机、PCR仪、细胞破碎仪到大型仪器如共聚焦显微镜、流式细胞仪、高分辨液质联用仪等,其中包含很多国产设备,但是主要集中在中低端设备范围,并且样品制备类的设备较多。印象比较深刻的是细胞破碎仪,由于平台使用范围较广,当年按照破碎量的大小分配了一台法国产的大型破碎仪,只用来处理10mL至50mL样品量的破碎;配备一台进口超声破碎仪,只要负责5ML以下样品量的破碎。但是由于超声破碎为接触型破碎模式,清洗处理不当样品间污染的概率较大,而我们学院的破碎量主要集中在20mL以下,进口的破碎仪机时过于饱满,排队现象严重。为解决这样一个情况,学院决定补充一台破碎仪,由于预算的原因,购置了一台国产聚能破碎仪,价格大概只有进口仪器的25%左右。仪器操作简单,而且由于是国产仪器,工程师回复处理问题都很及时,印象中当年工程师上门培训就来了不止3次。在使用过程中也是不断的听取我们的使用反馈,目前这台仪器是学院使用率较高的仪器。负责管理仪器过程中,不知道大家有没有这样的感觉,现在的仪器厂家对于仪器配件只换不修,特别是电路板这类的故障。有一次我们的破碎仪出现故障,仪器压缩机没法按照程序启动,我们保修后工程师很快上门检修,发现是一个继电器烧了,工程师很快和我说明情况,并建议我直接去五金店购买就行,并给我详细的讲解了这一部分电路的工作原理。后来我在五金店购置继电器,2元钱解决了这个问题,并且对这类仪器问题有了较深的理解。之后我们平台又购置了该厂家一台台式细胞破碎仪,也算是学院师生对这个厂家的认可吧。2015年购置的广州聚能JN-02C细胞破碎仪2020年购置的广州聚能mini台式细胞破碎仪个人感觉与进口仪器相比,国产仪器的厂家包容性更强,对用户的开放度和透明度更高。当然,在高端仪器这一块,国产仪器还是有很长的路要走。目前国际关系风云变化也是影响这仪器行业的发展,特别是现在进口免税制度以及技术封锁的不确定性,是我们仪器行业的危机也是国产仪器发展的机遇。相信国产仪器会越做越好,特别是近年来在液相色谱、质谱等仪器技术上实现了一些重要突破。希望以后在实验室里可以看到越来越多的国产仪器,越来越多的中文操作界面。点击查看专题
  • 纳米钻石温度计问世 可测量干细胞内部温度
    纳米钻石可用于量子计算机中处理量子信息。近日,哈佛大学的研究人员利用纳米钻石的量子效应,将其变为&ldquo 温度计&rdquo ,测量出了人类胚胎干细胞内部的温度变化,精确度是现有技术的10倍。通过加入金纳米粒子,研究人员还能够利用激光对细胞的特定部分加热甚至杀死细胞,这有望提供一种新的治疗癌症而不损害健康组织的方法,以及研究细胞行为的新手段。研究论文发表在本周的《自然》杂志上。   在这项最新研究中,研究人员使用纳米线将直径约100纳米的钻石晶体注入一个人类胚胎干细胞中,然后用绿色激光照射细胞,使氮杂质发出红色荧光。当细胞内局部温度出现变化时,红色荧光的强度会受到影响。通过测量荧光的强度,便可以计算出相应的纳米钻石的温度。由于钻石具有良好的导热性,就可以像温度计一样显示出其所处细胞内部环境的即时温度。   研究人员同时还将金纳米粒子注入细胞内,然后用激光来加热细胞的不同部位,加热点的选择和温度升高多少都可由纳米钻石&ldquo 温度计&rdquo 来精确控制。&ldquo 现在我们有了一个可以在细胞水平上控制温度的工具,让我们能够研究生物系统对温度变化的反应。&rdquo 参与该研究的哈佛大学物理学家彼得· 毛瑞尔说。   他指出,基础生物学涉及到的很多生物过程,从基因表达到细胞新陈代谢,都会受到温度的强烈影响,纳米钻石&ldquo 温度计&rdquo 将是一个有用的工具。例如,通过控制线虫的局部温度,生物学家可以了解简单有机体的发育。&ldquo 你可以加热单个细胞,研究其周围的细胞是否会减慢或者加快它们的繁殖率。&rdquo 毛瑞尔说。   目前也有一些其他测量细胞温度的方法,比如利用荧光蛋白或碳纳米管,但这些测量手段在敏感性和准确度方面都有欠缺,因为其中的一些成分会和细胞内的物质发生反应。毛瑞尔说,他们的纳米钻石&ldquo 温度计&rdquo 的敏感度至少提高了10倍,能够检测出细微到0.05开的温度波动。而且其还有改进的余地,因为在活细胞外部,该&ldquo 温度计&rdquo 的敏感度已经达到0.0018开的温度波动。
  • 眼科疾病的曙光:实验室培育出了视神经细胞
    约翰霍普金斯大学的研究者开发出了一种方法,能将人体干细胞转变为视网膜神经细胞,这是一种位于视网膜内能将视觉信号传递给大脑的神经细胞。这类细胞的死亡或者紊乱能引起视力丧失,譬如青光眼和多发性硬化症(MS)。“我们的研究不仅让人们更深入的了解了视神经的生物学功能,也为开发防治视力疾病的药物提供了细胞模型,”研究者Donald Zack博士表示,他是约翰霍普金斯大学医学院的眼科教授。“并且,这也有利于开发细胞移植方法来来恢复青光眼或者MS患者的视力。”整个实验的详细过程发表于《科技报告》杂志上,通过修饰一系列的人体胚胎干细胞使其具有荧光特性,以区别视网膜神经细胞,然后使用此类细胞来区分生成的细胞。研究者们使用一种叫做CRISPR-Cas9的基因组编辑技术,向干细胞DNA中插入了荧光蛋白基因。这种红色的荧光蛋白只有在另一个基因BRN3B (POU4F2)表达的情况下才会表达。BRN3B通过成熟的视网膜神经细胞表达,所以一旦干细胞变成了视网膜神经细胞,它就会在显微镜下显红色。接下来,他们运用荧光激活细胞筛选法来分离纯化新生成的视网膜神经细胞。Zack表示,新生成的细胞表现出了与自然生成的视网膜神经细胞一样的生物学和物理特性。研究者也发现,在实验的第一天添加一种叫做毛喉素的化学物质,有助于提高视网膜神经细胞的生成效率。研究者提醒到,毛喉素广泛用于减肥和肌肉塑形,也常作为中药治疗各种紊乱,但是对于防治视力损失和其它一些紊乱并不一定安全有效。“在培养的第30天,显微镜下能看到明显的成簇的荧光细胞,”首席研究者Valentin Sluch博士表示,他以前是霍普金斯大学生物化学、细胞分子生物系的学生,现在任职于诺华公司。Sluch在加入诺华之前就完成了该研究。“第一次成功的时候我很高兴,”Sluch说道。“我几乎跳了起来,然后跑去告诉我一个同事。就好像马上就能分离出细胞进行研究一样,这在以前是不可能的。”“我们知道,这仅仅是个开始,”Zack补充道。在随后的研究中,他的实验室旨在找出其它与视神经细胞生存和功能相关的基因。“我们希望这些细胞能为治疗青光眼和其它类型的视神经疾病提供新的方法。”为了能够利用这些细胞治疗MS,Zack正与Peter Calabresi合作,他是霍普金斯大学多发性硬化症研究中心的主管、神经病学教授。
  • sp-icpTOF-MS评估单细胞级应激反应
    今日热点NEWS2023.9.25 应用单细胞ICP−TOF-MS评估细胞的应激反应TOFWERKicpTOF 单细胞-电感耦合等离子体-飞行时间质谱法(sc-ICP-TOF-MS)是一种能自动且直接检测单个人体细胞中蛋白质相对浓度的分析方法。也可以进一步采用金属纳米簇(Metal Nanocluster, MNC)标记目标蛋白抗体和钌红(RR)染色来确定单细胞数量以及评估细胞的相对体积。作者通过sc-ICP-TOF-MS对人体ARPE-19细胞进行系统性研究,以探究这些细胞中经过IrNCs、PtNCs和AuNCs标记的特异性抗体铁调素(HP)、金属硫蛋白-2(MT2)和铁蛋白(FPN)的表达情况。考虑到APRE-19细胞在悬浮液中呈球形且RR与细胞表面结合,则细胞体积与Ru信号强度的二分之三次方成正比。这样不仅可以确定每个细胞中目标蛋白质的质量,有了体积信息后,还可以推导出相对浓度。研究人员比较了高血糖应激和氧化应激两种模型下的ARPE-19培养物,对照组与实验组细胞显示了分析物的质量、细胞体积和目标蛋白质浓度的相对变化,从而可以清楚地识别出经过相应处理后的细胞亚群。01简介 细胞的个体异质性意味着族群的细胞中金属和生物大分子的表达水平可以相差2到3个数量级。据报道,这种细胞间的显著差异可能是多种病症的根源。因此想正确解释细胞群中目标分析物表达必须能够对单个细胞进行定量分析。因为细胞转录组还受到细胞体积的影响,所以在分析细胞群中的目标分析物时,还需要评估单个细胞体积。此外,了解每个细胞的蛋白质量和特定蛋白浓度也是非常重要的。单细胞电感耦合等离子体质谱法(sc-ICP-MS)是一种应用较为广泛的技术,可用于研究细胞中的内源性无机元素和特定生物分子,新一代的飞行时间质谱仪(TOF)已经可以同时检测单个细胞内多个目标分析物。在以往报道中,这种技术被用于藻类元素指纹图谱、酵母对金属的吸收和对精子进行多元素分析。蛋白质质量通常在单个细胞中数量级为fg(飞克,10-15克)或ag(阿克,10-18克),因此抗体(Ab)标签必须有尽可能高的灵敏度。通常选用Maxpar聚合物作为抗体标记金属原子的载体(100-140个原子每Ab)。本文使用的金属纳米团簇(MNCs)可以提供更高的信号放大率,比如AuNCs和IrNCs中分别含有579和1760个Au和Ir金属原子。为了用sc-ICP-TOF-MS测定单个细胞中蛋白质浓度,需要选择合适体积标记物。以往的研究表明,Mg和Ca等内源性元素与细胞体积相关,然而同时测量极低浓度的Mg和Ca和金属标记物是一项极具挑战的工作(小编注:原文中解释为质荷比相差较多,这不是因为文中icpTOF仪器的TOF检测器所限制。更准确解读是因前端CCT模式下优化参数所限,不一定能对处于低浓度区间的低质量数和高质量数元素做到同时高灵敏度检测)。Rapsomaniki等人提出了一种方法,使用能与蛋白质氨基共价结合的Ru复合物,理想情况下,体积标记物只结合细胞膜,这样就能将金属信号强度与细胞体积相关联。 为了比较在不同补充剂条件下的细胞培养效果,获取每个细胞的相对体积至关重要。本研究首次提出了一种使用sc-ICP-TOF-MS直接测定人体单细胞中蛋白质相关浓度的方法。作者使用MNC标记的特异性抗体来检测目标蛋白,并使用RR染色来标记细胞体积。通过测量标记蛋白和101Ru+的信号强度,本文建立了一个简洁的自动化检测方法,用于比较不同细胞群体和评估应激细胞模型。本案例通过sc-ICP-TOF-MS对人类ARPE-19细胞的三种目标蛋白质表达情况进行了研究。这三种蛋白质HP,MT2,FPN分别被IrNCs、PtNCs和AuNCs标记,并随后进行 RR 染色。通过sc-ICP-TOF-MS对这些目标蛋白进行定量检测,作者为体外细胞研究带来了对细胞异质性的新认识。02实验方法 使用人类ARPE-19细胞和MNC标记的免疫探针进行免疫测定:研究人员使用MNC标记的免疫探针同时标记了固定细胞悬浮液中的三种蛋白质。用于在ARPE-19细胞中标记HP、MT2和FPN的免疫测定流程在免疫探针浓度方面已经进行了优化。优化可以确保蛋白质的完全识别,以及足够的清洗步骤以避免非特异性相互作用。此项流程是独立地使用三种免疫探针(Anti-h-HP:IrNCs、Anti-h-MT2:PtNCs 或 Anti-h-FPN:AuNCs)进行的。优化后的抗体浓度分别为 4 μg mL−1、10 μg mL−1 和 4 μg mL−1。为了对ARPE-19细胞进行RR标记,悬浮液中的细胞被浸泡在50 μg mL−1 的RR溶液中30分钟。之后,使用磷酸盐缓冲溶液(PBS 浓度0.1M,pH值7.4)将细胞颗粒洗涤两次,以去除多余的RR。 实验先将ARPE-19细胞以1 × 105 cells mL−1 浓度悬浮在50 mM Trizma缓冲液中(pH值7.4),再进行sc-ICP-TOF-MS分析。作者经过连续稀释和测量对照组细胞来选择合适的细胞浓度。为进行离子校准,使用了含有Pt、Ir、Au和Ru的多元素标准溶液。每天分析两组悬浮液以确定sc-ICP-TOF-MS实验设置的传输效率。使用的两组悬浮液分别是商用含PtNP的标准试样以及含有ARPE-19细胞的对照组溶液。数据处理使用了TOFpilot、Excel和JASP软件。在STDS模式下优化ICP-TOF-MS参数,用于测量不同的细胞标签,而在CCTS模式下优化参数则用于检测细胞内源性元素。为确认基于MNC标记的免疫探针和RR标签的sc-ICP-TOF-MS方法,还使用商用ELISA试剂盒测定了对照组和高血糖处理的ARPE-19细胞中HP和FPN蛋白的平均浓度。 本文的sc-ICP-TOF方法中采用的是TOFWERK icpTOF 2R和ESI microFAST SC系统。ARPE-19细胞悬浮液的细胞计数通过BD Accuri C6细胞计数仪完成,同时使用Leica DM IL LED光学显微镜捕获细胞悬浮液的图像。使用Bandelin sonoplus HD2070探头进行超声处理,以配合ELISA试剂盒进行蛋白质测定。03钌红(RR)标记ARPE-19细胞:细胞区分和体积标记 为了更好地使用金属标记抗体对生物分子进行sc-ICP-MS分析,科研人员需要同步观测元素标签和细胞内源性元素(Ca, Cu, Fe, P等),从而确认细胞的完整性和抗体的正确识别。但由于内源性细胞元素和标签金属的质量差异,这种同时检测可能会受到限制。为了解决这一问题,研究人员使用RR来检测单个ARPE-19细胞,而其与MNC标签之间的相近的质量允许同时以高灵敏度检测。实验中,科研人员注意到纯RR信号可能与ARPE-19细胞的膜片段相对应,而MNC标签信号可能来自未结合到蛋白质的自由MNC标记免疫探针。此外,使用RR不仅可以确定细胞事件的数量,还可以评估细胞的相对体积,从而允许在每个细胞中确定目标蛋白的质量和相对浓度(小编注:具体计算公式和过程请参考原文)。最后,结合同期的光学显微镜观察到的细胞体积差异,RR信号范围还被用来识别多个细胞事件,从而确保单细胞数据评估的准确性。04压力下ARPE-19细胞的蛋白质水平 研究探讨了在两种不同条件下培养的ARPE-19细胞中三种蛋白质的表达:一种使用高血糖模型(100 mmol 葡萄糖,48小时)培养,另一种使用诱导氧化应激模型(5 mmol AAPH 1小时)培养。通过sc-ICP-TOF-MS分析实现了对单细胞中HP、MT2和FPN蛋白质的同时检测以及它们相对浓度的确定。为此,通过应用选定的阈值从背景中鉴别出细胞事件后,将193Ir+、195Pt+和197Au+的强度信号转化为Ir、Pt和Au的绝对质量。然后,将每个细胞的金属质量转化为相应的蛋白质含量(小编注:具体计算公式和过程请参考原文)。最后,使用单细胞测量的101Ru+信号强度计算出单细胞体积从而得到蛋白质的相对浓度。研究中使用单细胞ICP-TOF-MS得到三种蛋白质的检测限分别为HP是3.8 ± 0.4 ag/细胞,MT2是9 ± 1 ag/细胞,FPN是4.4 ± 0.6 fg/细胞。05高血糖对ARPE-19细胞的影响 利用 sc-ICP-TOF-MS 测定对照组和高血糖处理的 ARPE-19 细胞中 HP、MT2 和 FPN的水平,研究人员评估了高血糖对三种蛋白质产生的影响。如原文中表1中结果所示,高血糖(GL)处理影响了全部三种蛋白质的平均质量,它们均发生了过表达。但在比较相对蛋白质浓度时,平均值没有明显差异。图1的A-C比较了对照组和高血糖组HP、MT2和FPN的质量分布,高血糖组的细胞平均值明显较大(注意图中y轴是对数坐标),而中值不受影响,高血糖处理的细胞蛋白质量在中位数上下分布更为分散。因此,如果只比较群体平均值(如使用传统的ELISA试剂盒法),可能会影响到诊断和治疗效果。高血糖处理扩大了两极分布,表面上看HP、MT2和FPN在细胞群里质量变化较大,而相对浓度(图1 D-F)差异有所减小。此外,每个细胞的蛋白质分布直方图(图1 A-C)呈倾斜状,中位数以上的离散度大于中位数以下的离散度,当考虑到细胞体积时(图1 D-F),峰形不再倾斜,表示蛋白质质量较大的浓度体积也较大,但在直方图里可以观测到两组细胞群。图 1. 用sc-ICP-TOF-MS测定对照组(绿色)和高血糖处理(橙色)的 ARPE-19 细胞中的HP、MT2和FPN的质量的箱形图和直方图(百分比表示)(A-C)以及相对蛋白质浓度(D-F)。(A、D)HP(B、E)MT-2(C、F)FPN。数据包括四组生物重复的对照组和高血糖处理的 ARPE-19 细胞的分析结果,每次重复都进行了三次仪器测量。 图2研究了蛋白质质量和细胞体积之间的相关性,蛋白质质量较大的细胞群在散点图上半部分用红色标出,质量较小的细胞在底部用绿色标出。图2的B、C显示的红色圈部分的细胞群中的细胞体积与蛋白质量之间呈线性增长关系,即细胞体积越大,蛋白质量越高。高血糖组(图2 D-F)也观测到了相同的趋势,但MT2和FPN中红色标记组的比例更高,意味着经过高血糖处理后,有更多细胞的体积与这两种蛋白质质量成线性关系。图2 用sc-ICP-TOF测定的对照组和高血糖处理组的HP、MT2和FPN蛋白质质量与细胞体积的散点图。A-C为对照组,D-F为高血糖组。101Ru+信号是和金属纳米簇免疫探针的金属信号同时被测量的。红色椭圆代表蛋白质质量较大的细胞群,绿色椭圆代表蛋白质质量较小的细胞群。 为了评估细胞体积是否受到处理方法的影响,研究人员对101Ru+信号强度也 进行了研究(原文图S4)。对于较大的细胞,对照组和高血糖处理组观察到相同的分布,然而对较小的细胞,明显有不同的趋势:低于65cts3/2的细胞中,只观察到对照组细胞(即此区间未发现高血糖处理的细胞),而在65-140cts3/2范围,对照组细胞比高血糖处理的细胞数要多,平均101Ru+信号强度明显大于高血糖处理的细胞(p=0.04),表明高血糖会增大细胞体积,与文献中对应酵母细胞结果一致。此外,高血糖会诱发氧化应激、脂质过氧化和细胞凋亡,并抑制细胞增殖,这可能会改变抗氧化剂和控制金属稳态的蛋白质水平。 为了验证该方法的有效性,研究人员使用商用ELISA试剂盒进行了对比实验。在高血糖处理过的细胞中,HP和FPN的平均质量均出现过表达,两者变化倍数均为1.4。在95%置信度下的t检验显示,对照组和高血糖处理的细胞之间存在显著差异(p值分别为5 x 10-4和2 x 10-6),在sc-ICP-TOF-MS结果中也发现了同样的趋势,HP和FPN的变化倍数分别为1.4和1.3。因此,sc-ICP-TOF-MS获得了与细胞生物学常用技术很高一致性的结果。不过需要强调的是,ELISA分析只能获得细胞培养物中蛋白质的平均含量,而sc-ICP-TOF-MS可以获得每个细胞的蛋白质质量,并考虑细胞体积,而不是整体细胞群的平均值,从而能够更好地理解细胞应激反应背后的生物机制。06诱导氧化应激对APRE-19的影响 作者使用同样方法研究了对照组和AAPH处理的氧化应激APRE-19细胞中HP、MT2和FPN的含量。图3描述了比较蛋白质质量分布(图3 A-C)和蛋白质相对浓度分布(图3 D-F)。从图3 A-C可以看出,氧化应激状态下单细胞的HP和FPN平均蛋白质质量增加,而MT2无明显变化。每个细胞HP蛋白质量的中位数无明显变化,而MT2和FPN中位数却有所下降,分别从 1.41 ag/cell 降至 1.23 ag/cell 和 从0.81 fg/cell 降至 0.69 fg/cell),这些差异都有统计学显著性。三种蛋白质的平均相对浓度都有所下降(图4 D-F),但对照组和氧化应激组细胞之间的FPN浓度差异并不明显。图3 用sc-ICP-TOF-MS测定对照组(绿色)和氧化应激组(橙色)的ARPE-19细胞中的HP、MT2和FPN的质量的箱形图和直方图(百分比表示)(A-C)以及相对蛋白质浓度(D-F)。(A、D)HP(B、E)MT-2(C、F)FPN。数据包括四组生物重复的对照组和氧化应激处理的 ARPE-19 细胞的分析结果,每次重复都进行了三次仪器测量。 图3 A-C中三种蛋白质的直方图显示了两种处理方式的细胞都属于一个大细胞群。然而考虑到细胞体积时,图3 D-F可以识别出几个大小不同的细胞群。对照组HP的相对蛋白浓度直方图(图3 D)有一个最大值,而氧化应激组细胞有两个不同的细胞群。图3 E中,氧化应激组中低蛋白质浓度的细胞比例比对照组更高。图3 F显示,两组都有两个不同细胞群,但是中浓度和低浓度FPN蛋白质浓度下细胞的百分比不同。 最后,图4展示了通过sc-ICP-TOF-MS得到的对照组和使用AAPH进行氧化应激处理的具有特定体积细胞的频率直方图。实验结果显示,与对照组的细胞相比,经氧化应激处理的细胞中具有高Ru信号(超过65 cts3/2)的细胞百分比更高,这意味着这些细胞的体积更大。AAPH是一种过氧自由基化合物,能增加活性氧种类的产生和通过改变细胞膜的透性增加细胞体积。因此,这种对比使我们能够得到关于AAPH处理的有趣发现,这些发现只能通过逐细胞研究细胞群体并考虑每个细胞的体积来得到。例如,与对照组细胞相比,AAPH处理的细胞中HP和FPN的质量更高,但该处理也显著增加了细胞体积;因此,这些蛋白质的质量增加不仅意味着处理后细胞内蛋白质浓度增加,也意味着细胞大小的增加。图4 使用sc-ICP-TOF-MS获得的对照组(灰色,4635个细胞)和经过氧化应激处理(黑色,3505个细胞)的ARPE-19细胞体积频率直方图。06结论 研究人员需要了解每个细胞的目标物质质量、浓度和细胞体积的变化,才能评估细胞在不同外部刺激作用下的反应和相应机理。本文介绍的方法是通过sc-ICP-TOF-MS检测经金属纳米簇(MNC)标记的抗体作为蛋白质测定的特异性标签,以及使用钌红染(RR)作为体积标签,从而以高灵敏度定量测量单细胞中的特定蛋白质的质量,单细胞的相对体积和目标蛋白质的相对浓度。实验提出的自动化且简单的检测和数据处理方法可以处理大量数据并有效地比较对照组和处理过的细胞培养物,以获得可靠的结论。实验还可以评估每个单细胞中的蛋白质总质量,从而更深入了解细胞内发生的生化过程。备注:翻译仅供学习和参考,内容以英文原文为准。文中图片版权均归ACS杂志社所有。TOFWERK icpTOF让离子再飞一会儿!‍TOFWERK icpTOF电感耦合等离子体-飞行时间质谱耦合了Thermo 公司的 iCAP RQ平台和TOFWERK高性能飞行时间质谱。iCAP RQ平台提供了高强度并稳固的ICP进样和离子源,简单可靠的椎体和离子电镜和Q-cell科技。飞行时间质谱分析仪在保证跟四级管(QMS)同等灵敏度的同时,为icpTOF增加了快速全谱分析,更宽的线性动态范围和高达6000的质量分辨率,提供了快速全谱图采集和所有元素同位素的同步分析能力。◾搭配激光剥蚀,生物、地质样品快速成像案例◾单细胞多元素组分同时分析◾大气颗粒物、单颗粒、海洋环境、土壤、固废无机多组分分析;◾极地冰芯、合金材料、玻璃陶瓷中多元素分析
  • 银纳米粒子或可用于攻击肿瘤细胞
    科学日报报道,近日美国加州大学圣塔芭芭拉分校的科学家们设计了一种具有一对独特且重要特性的纳米粒子。这种球形粒子的组成成分是银,它被包裹在一个涂满缩氨酸的壳内部,后者使得它能够攻击肿瘤细胞。此外,这个壳是蚀刻的,因此那些没有攻击到目标的纳米粒子会自行分解和消除。这项研究被发表在期刊《自然材料》(Nature Materials)上。 两个单独的银纳米粒子(红色和绿色)选中前列腺癌细胞为目标   纳米粒子的核心利用了一种名为电浆子光学(plasmonics)的现象。在电浆子光学里,纳米结构的金属,例如金和银,在被光线照射时会发生共振,且集中在靠近表面的地磁场。通过这种方式,荧光染料被增强,看起来比自然状态&mdash &mdash 也即没有金属存在时&mdash &mdash 要明亮10倍。但当核心被蚀刻时,这种增强效果会消失,粒子也就变得暗淡。   加州大学圣塔芭芭拉分校鲁奥斯拉蒂研究实验室发明了一种简单的蚀刻技术,利用了生物相容的化学制品快速分解和移除活体细胞外部的银纳米粒子。这种方法只会留下完整的纳米粒子用于成像或者量化,从而揭示了那些细胞被定位攻击目标,以及每一个细胞被内在化了多少。   &ldquo 这种分解是创造针对特定刺激物做出反应的药物的一个有趣概念。&rdquo 分子,细胞和发育生物学学院(MCDB)鲁奥斯拉蒂实验室的博士后研究员、斯坦福-桑福德伯纳姆医学研究所的盖里· 博朗(Gary Braun)这样说道。&ldquo 通过分解过剩的纳米粒子并通过肾进行清理,它能最小化偏离目标的毒性。&rdquo   这种移除无法渗透目标细胞的纳米粒子的方法非常独特。&ldquo 通过关注那些真正进入细胞的纳米粒子,我们能够理解哪些细胞是目标,并从更细节的角度研究组织传输通道。&rdquo 博朗说道。   有些药物能够独自穿透细胞膜,但很多药物,尤其是RNA和DNA基因药物,是带电的分子,它们会被细胞膜所阻隔。这些药物必须通过内吞作用进入细胞,在这个过程中细胞会吞没并吸收分子。&ldquo 一般需要纳米粒子作为载体来保护药物并护送它进入细胞,&rdquo 博朗说道。&ldquo 而这正是我们所要测量的:通过内吞作用载体的内在化。&rdquo   由于纳米粒子有一个核心壳结构,研究人员可以实现不同的表面涂层并对比各自肿瘤目标选择和内在化的效率。通过使用不同的目标受体转换表面药剂从而实现不同疾病的目标选择&mdash &mdash 或者细菌的目标生物体。根据博朗表示,这一方法应该能够发展一种药物传输极大化的方法。   &ldquo 这些新的纳米粒子拥有某些了不起的特性,在朝肿瘤传输目标药物相关的研究中它已经证明是一种非常有用的工具。&rdquo 加州大学圣塔芭芭拉分校纳米医学中心和MCDB学院特聘教授埃尔基· 鲁奥斯拉蒂(Erkki Ruoslahti)这样说道。&ldquo 它们在治疗感染方面也有潜在的应用。由可抵抗所有抗生素的细菌导致的危险感染越来越常见,现在急需解决这类问题的新方法。银常被用作抗细菌药剂,而我们的目标技术或可能将利用银纳米粒子治疗体内任何地方的感染变为现实。&rdquo (
  • GE医疗细胞图像竞赛获奖者的细胞图片照亮时代广场
    GE医疗细胞图像年度竞赛旨在展现细胞之美,并展示全世界细胞生物学家所进行的鼓舞人心的研究,至今已有六年历史。获奖者的参赛细胞图片于4月19日至21日在美国纽约时代广场NBC Universal高清屏幕上播放的特别节目中展示。 2012年,参赛作品第一次分为两个类别,包括高内涵分析和显微镜。GE医疗生命科学部根据15,000名公众投票结果选出三位获奖者,分别为Jane Stout女士(来自美国)、Anushree Balachandran女士(来自澳大利亚)和Markus Posch先生(来自英国)。 \ Jane Stout' s Image Microscope winner 来自美国印第安纳大学医学院的Stout女士获得了显微镜类第一名,她的图像作品(侧重于癌症)为&ldquo 中期上皮细胞,其中微管染为红色、丝粒染为绿色,DNA染为蓝色&rdquo 。 Anushree Balachandran, the High-Content Analysis winner 来自澳大利亚悉尼Genea的Balachandran女士获得了高内涵分析类第一名,她的图像作品(侧重于亨廷顿舞蹈症)为&ldquo 来源于亨廷顿舞蹈症干细胞的少突胶质前体细胞,其中鬼笔环肽染为绿色,粘着斑蛋白染为红色,DNA染为蓝色&rdquo 。 Markus Posch' s image, Regional winner, UK 来自英国邓迪大学基因调控与表达中心的Posch先生是显微镜类地区获奖者,他的图像作品(侧重于癌症)为&ldquo 前中期人子宫颈癌(HeLa)细胞,其中GFP-组蛋白标记的染色体呈蓝色,微管蛋白染为黄色&rdquo 。 本次竞赛吸引了100多名研究癌症、HIV和神经退行性疾病等细胞水平疾病的研究人员参与。先由包括五位评判者的专家科学小组确定每个类别的入围作品,然后由公众投票决定获奖作品。 GE医疗生命科学部研究与应用市场总经理Eric Roman博士表示:&ldquo 今年的获奖图像与往年一样漂亮、引人注目。这些图像不仅可从美学角度进行欣赏,还提醒我们注意疾病背后的细胞复杂性以及细胞研究为何如此重要。我们感谢向我们发送图像的参赛者、评审小组以及参与投票的每个人。&rdquo 今年的入围作品由以下人员选出:Kristie Nybo博士(BioTechniques助理编辑);Julian Heath博士(Microscopy & Analysis编辑);Nick Thomas博士(GE Healthcare首席科学家);Paul Goodwin博士(GE Healthcare科学主管);以及上届GE Healthcare细胞图像竞赛获奖者Leslie Caron博士(Genea研究科学家)。
  • 岛津原子力显微镜——iPS细胞与癌细胞的对比与区分
    干细胞的研究一直受制于供体细胞很难获得,而且相关实验的伦理风险也不容忽视。因此2007年发明的诱导式多能性干细胞(iPS)技术成为最佳的胚胎干细胞替代。iPS细胞在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等方面都与胚胎干细胞相似。但是iPS转化过程中,会有一定的几率发展为癌细胞。不同体细胞来源的iPS细胞成瘤性有差异。因此,如何筛选安全型iPS细胞是该技术能够进入临床实验的关键。原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的细胞观测设备。除了形貌观察外,原子力显微镜还可以多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些特征为原子力显微镜应用于iPS细胞观测与筛选提供了技术基础。为此设计一个实验,分别用原子力显微镜观察未分化的iPS细胞和HeLa细胞。HeLa细胞是一种被广泛使用的癌变细胞,因此可以和iPS细胞进行对比观察。上图显示了SPM形状图像(a)HeLa细胞和(b)iPS细胞。用光学显微镜观察到的相应相位差图像分别显示在(c)和(d)中。图中箭头所示位置处的截面形状轮廓如(e)和(f)所示。从细胞形态上来看,HeLa细胞呈圆顶形,表面隆起比较高,约7um;而iPS细胞呈扁平状且细胞间粘附呈网状结构,细胞高约1.7um。仔细观察细胞之间的边界,可以看出HeLa细胞之间的边界呈凹陷状,而iPS细胞之间的边界是凸起的,而且呈网络状。据此可分析得知这两种细胞各自的间粘附具有差异,且HeLa细胞之间的粘附较弱,而iPS细胞之间的粘附较强。除了形貌观察外,原子力显微镜还可以通过力学测量获得细胞表面的机械性能。如下图所示,用探针针尖压触细胞表面,通过对探针获得的力反馈分析样品各类机械性能。对于本实验,在对64×64点的测量区域进行测量后,从获取的体数据中形成形状图像。该观察中使用的探针是由OlympusCorporation制造的OMCL-TR800PSA并且具有0.15N/m的弹簧常数。测量是在培养液中的活细胞条件下进行的。对细胞的最终压力(排斥力)为2.5nN。通过比较从探针与样品接触的位置到达到2.5nN的力的变化,确定样品的硬度。(a)和(b)显示了SPM观察到的HeLa和iPS细胞的细胞形状图像,(c)和(d)显示了相应的ZX断面图像,是从样品竖截面方向看时在(a)和(b)中箭头所示的X线位置处施加到探针的力的图像。图中上方为测量起点,下方白色虚线为压触终点,显示了样品截面形状轮廓。在ZX图像中,探针与样品接触后检测到力的位置以黄色到红色的颜色显示。因为这表明探针对细胞的变形,所以可以理解较大量的细胞变形显示细胞的较软部分。可以从细胞变形量了解硬度。(c)中的HeLa细胞显示出均匀的变形,但相比之下,在(d)中的iPS细胞中,细胞体较软,细胞间粘附区较硬。分析结果表明,HeLa细胞表面硬度比较均匀,软硬部分差别不大,而iPS细胞主体较软,细胞间粘附区较硬。由以上测试可知,利用原子力显微镜对iPS细胞进行表征,有潜力发展为正常细胞筛选以及剔除癌变细胞的合适工具。本文内容非商业广告,仅供专业人士参考。
  • 【党建活动】演绎红色剧本,传承红色基因——自贸试验区开封片区医学产业联合党支部开展红色剧本演绎主题活
    为更好的传承红色基因,迎接党的二十大,10月5日上午,自贸试验区开封片区医学产业联合党支部副书记王晓丽、中镜科仪总经理助理王萍、河大科技总经理董保杰等一行,以“喜迎党的二十大”为主题来到开封市国家文化出口基地双创园体验红色党政题材剧本演绎。自贸试验区开封片区医学产业联合党支部由河南中镜科仪科技有限公司与开封康必恩医学检验实验室有限公司共同成立。党支部围绕党建共建、发展共促、资源共享、活动共办、队伍共育、基层共治、文化共兴、品牌共创等方面加强密切合作交流,切实把党组织的政治优势、组织优势转化为推动企业发展的动能优势、发展优势,以党的建设高质量推动经济发展。在本次党建活动中,党员及入党积极分子在红色剧本《兵临城下》中演绎“时空穿越”,回到那段激情火热的年代,身临其境体验奉献故事,感受英勇先辈们的家国情怀。在跌宕起伏的情节中亲身体验中共地下党隐藏小我,游走在刀尖和悬崖之上,隐藏在黑暗之中,只为拯救光明的未来,只为拯救国家和民族于危难之中的奉献精神。活动结束后,党员们纷纷表示,通过这种喜闻乐见、新颖有趣沉浸体验的学习方式,感受到了先辈们的无私奉献精神,作为年轻一辈,我们应当铭记先辈的奋斗历程,发扬红色传统,用青春书写属于我们时代的奋斗故事,为实现中华民族伟大复兴的中国梦贡献自己的青春和力量。撰稿 王晓丽编辑 陆瑞洁制作 殷 雪审校 李凤丽审核 王 萍
  • 临床介导的 CD8+ T 细胞和 NK 细胞焦亡的发现揭示了黑色素瘤异质性
    黑色素瘤组织中,与细胞焦亡相关的基因(PRGs)GZMA、GSDMB、NLRP1、IL18和CHMP4A的阳性细胞比例低于正常皮肤。细胞焦亡是一种影响肿瘤微环境和肿瘤免疫治疗的新领域。然而,细胞焦亡的作用仍有争议,部分原因是由于黑色素瘤的细胞组成异质性。2023年8月,上海中医药研究院皮肤病研究所李斌教授团队在Cell Death& Disease杂志上发表题为 Clinical-mediated discovery of pyroptosis in CD8+ T cell and NK cell reveals melanoma heterogeneity by single-cell and bulk sequence 的研究论文。本文对黑色素瘤标本的单细胞转录组进行了全面分析。我们发现PRGs的表达在免疫细胞中,如CD8+细胞(代表CD8+ T细胞)和CD57+细胞(代表NK细胞)中失调。此外,免疫组化和多重免疫荧光染色实验结果进一步证实了GZMA+细胞和GSDMB+细胞主要在免疫细胞中表达,特别是在CD8+ T细胞和NK细胞中。黑色素瘤标本中,GZMA+合并CD8+ T细胞(0.11%)和GSDMB+合并CD57+细胞(0.08%)的存在量很少,而对照组分别为4.02%和0.62%。这些发现表明,肿瘤中免疫细胞的减少可能降低了细胞焦亡的能力,从而对抗黑色素瘤的特性构成了潜在的风险。我们根据单细胞和整体RNA-seq分析,构建了一个预后风险模型和个体化的预测模型(C指数=0.58,P = 0.002),提示PRGs在恶性黑色素瘤的预防中可能发挥作用。总之,通过实验验证鉴定了免疫细胞群和免疫基因模块,有助于我们更好地理解黑色素瘤中的细胞焦亡。实验部分本文中,研究者使用TissueGnostics公司TissueFAXS Spectra全景多光谱组织扫描定量分析系统获取图像。获取到图像利用StrataQuest软件进行定量分析。Panel 1 :DAPI,CD8,GZMA,GSDMBPanel 2:DAPI,CD57,GZMA,GSDMB虽然细胞焦亡对癌症的影响尚为有定论,但是也正因为如此,针对细胞焦亡的研究仍然有广泛的未知等待探索。考虑到细胞焦亡的研究和炎症反应过程密切相关,借助于TissueFAXS Cytometry技术,结合多色免疫荧光染色,不但可以精准识别焦亡相关特异性蛋白表达的细胞,还可以实现对细胞焦亡水平在组织中的空间分布、形态特征、与其他细胞类型的相互作用等方面的高通量、高精度、高信息量的定量分析。在单细胞定量水平上,先通过识别细胞核标记对细胞进行计数,继而借助于Tissue Cytometry的核扩张算法精准对细胞质/膜染色的形态进行识别。在获得单细胞真实染色的轮廓区域后,对每个细胞蛋白标记的所有像素强度进行统计分析,最终获得单个细胞蛋白表达的真实强度水平。这种方法用于阳性阈值的精准筛选划分,甚至更进一步鉴定了阳性细胞与相邻的阴性细胞的作用关系。在本文中作者还利用了多组学研究的思路,对黑色素瘤发病机制有关的细胞 - 细胞相互作用网络提出了新的见解思路,以CD8阳性T细胞作为研究线索观察到CD8细胞边缘浸润的失调,进一步为肿瘤免疫的相关机制研究拓展了研究领域的广度。除此之外,针对NK细胞、GZMA 细胞和 GSDMB 细胞也均进行了原位精准空间定量分析,为后续的深入研究奠定了扎实的基础。在这些研究中,在切片原位的多重免疫组化标记,针对不同表型细胞的蛋白表达及细胞分布分析,也都是利用TissueFAXS Cytometry技术来进行的个体化精准定量分析。Figure 1 GZMA+细胞和GSDMB+细胞由CD8+T细胞分泌。A:对照组和黑色素瘤组织的多色免疫荧光染色图像。DAPI(蓝色)、CD8(粉色)、GZMA(绿色)和GSDMB(红色)。B:CD8+GZMA+共定位和CD8+GSDMB+共定位散点图。Figure 2 NK T细胞分泌GZMA+细胞和GSDMB+细胞A:对照组和黑色素瘤组织的多色免疫荧光染色图像。DAPI(蓝色)、CD57(粉色)、GZMA(绿色)和GSDMB(红色)。B:CD8+GZMA+共定位,CD8+GSDMB+共定位,CD57+GZMA+和CD57+GSDMB+散点图。
  • 分子细胞卓越中心等阐释细胞增殖示踪技术ProTracer的建立与应用
    6月2日,《自然-实验手册》(Nature Protocols)在线发表了中国科学院分子细胞科学卓越创新中心周斌研究组与西湖大学何灵娟研究组合作完成的研究成果(Genetic recording of in vivo cell proliferation by ProTracer)。该研究阐释了细胞增殖示踪技术——ProTracer的构建及应用,并以肝细胞增殖的示踪为例,论述了如何利用ProTracer技术示踪成体哺乳动物在器官稳态与修复再生过程中的细胞增殖。细胞增殖是多种组织器官发育、稳态维持及修复再生过程中细胞来源的基础。体内细胞增殖由于细胞类型以及所处的时期不同存在较大差异。此前,领域内较为常用的检测细胞增殖的方法主要分为细胞增殖标志物染色、核苷酸类似物掺入及同位素掺入。上述方法对于检测体内细胞增殖均有一定的局限性:细胞增殖标志物染色方法只能检测某个瞬间的细胞增殖状态,核苷酸类似物可以进行长时程的掺入却有一定的细胞毒性,同位素掺入的检测方法比较复杂且不便捷。此外,上述检测方法均无法做到细胞类型特异性的细胞增殖检测。当目的细胞的增殖速率较为缓慢时,利用上述检测方法易出现目的细胞的增殖信号被其他增殖速率较快的细胞增殖信号干扰或淹没的问题。为了解决上述问题,周斌研究组最近建立了能够示踪体内细胞增殖的遗传示踪技术——Proliferation Tracer(ProTracer)。该技术实现了在体内长时间不间断地示踪细胞增殖、细胞类型特异性的细胞增殖检测以及活体检测细胞增殖等多方面的突破。该工作剖析了使用ProTracer技术进行细胞增殖示踪的技术细节,包括小鼠品系的构建、鉴定、交配策略以及细胞增殖示踪的最终检测方法。为了实现体内无缝隙捕捉细胞增殖,研究构建了一个可被诱导变成Cre的CreER小鼠品系——Ki67-Cre-rox-ER-rox(Ki67-CrexER),其中rox是Dre同源重组酶的识别位点。当将Ki67-CrexER小鼠与特定的DreER小鼠结合后,DreER能够在Tamoxifen诱导后入核并识别Ki67-CrexER中的rox位点,同时发生Dre-rox同源重组反应将位于两个rox位点之间的ER序列切割掉,从而在DreER表达的细胞中将诱导性表达的Ki67-CrexER转变为持续性表达的Ki67-Cre,实现时空可控以及细胞特异性的细胞增殖的不间断捕捉。此外,结合荧光素酶报告基因,ProTracer技术也可以实现终身无创检测活体动物内特定细胞类型的增殖,无需处死动物。该工作以成体小鼠肝脏作为示例,探究了对成年小鼠组织中细胞增殖的示踪,包括小鼠交配策略、tamoxifen诱导策略、小鼠损伤模型与组织样本分析等。科研人员利用ProTracer技术探讨了肝脏在成体组织稳态及损伤再生中的肝细胞增殖,并量化了肝脏稳态以及损伤状态下的新生肝细胞数量,发现了肝细胞增殖的区域性富集现象,揭示了成体肝脏中新生肝细胞的主要来源。该工作的发表为领域内使用ProTracer技术研究特定细胞类型的体内增殖示踪提供了便利。研究工作得到中国科学院、国家自然科学基金、科学技术部、上海市科学技术委员会,以及分子细胞卓越中心动物平台和细胞平台等的支持。红色:GS+肝细胞;紫色:E-Cad+肝细胞;绿色:GFP+肝细胞
  • 你了解不怕水,无制样要求的红外成像吗?无需任何标记鉴别生物样品,病毒、单细胞、活细胞观测统统不在话下!
    近年来,红外光谱和显微成像技术有了突飞猛进的发展,尤其是在生命科学领域,得益于红外光谱技术对于分子结构的敏感性,其能够在无任何标记的情况下实现对生物样品成分的鉴定和分布解析,这对于不便于荧光标记的一些生物样品鉴别十分有利。然而目前大多数的红外光谱空间分辨率受限于红外光的衍射限,只有10-20 μm,且依赖于红外光波波长。另外多数红外检测设备对于生物样品制样过程也有着严格要求,如样品切片厚度,细胞和组织尺寸,含水量,需要荧光染色等,这对于生命科学研究非常不利。 针对上述问题,美国photothermal spectroscopy corp公司经多年潜心攻关,研发出非接触亚微米分辨红外拉曼同步测量系统—mirage,该设备凭借其有的光学光热红外(o-ptir, optical photothermal infrared)技术克服了上述问题,将红外光谱的空间分辨率提升至亚微米(~500 nm);无需制备薄片,直接测试较厚样品,大地简化了制样过程、提高测试效率;同时可实现无接触式地快速简易测量,有效避免了传统atr模式下的散射像差和交叉污染。且该设备在反射模式下所得谱图与透射模式下ftir完全一致,还可以选配透射模式,十分适用于液体样品和一些特殊混合样品,大的扩展了光热红外在生命科学领域的应用范围(如图1所示)。这项先进技术让mirage有别于传统的红外测试设备,能够对生命科学领域的常用样本,诸如细胞爬片,病理组织切片,单细胞细菌等有良好的兼容性,并让活细胞观测成为可能。除此之外,mirage还可与拉曼光谱进行联用,实现同时同地相同分辨率的ir和raman测试,且无荧光风险,能够帮助研究者更快速全面的确定所分析生物样品的化学组成信息。图1. o-ptir光学光热红外显微镜,工作原理及钙化乳腺组织的o-ptir红外成像图 光学光热红外o-ptir在生命科学领域应用的显著优势:1.亚微米的空间分辨率;2.可直接获取液体中活细胞的红外成像;3.灵敏度高,可直接观测单细胞 (如细菌、哺乳动物细胞等);4.无米氏散射干扰,即使在细胞边缘也不受影响;5.高的光谱分辨率;6.无需直接接触即可测量软组织的红外光谱;7.可实现红外和拉曼同步测量;8.可实现超过10 μm厚的样品测试,直接置于载玻片上观察分析;9.可配置化的红外光源;典型案例分析:1.感染疟原虫的红细胞表征 疟原虫属寄生虫引起的疟疾是威胁生命的主要疾病之一,而疟原虫引发的感染周期十分复杂,因此在细胞和分子水平观察疟原虫的变化对于研究疟原虫的致病有着重要意义。agnieszka m. banas等人通过使用o-ptir对疟原虫感染的红细胞在亚微米尺度的分子特征变化进行了表征,结果显示正常红细胞的蛋白呈现环状分布,而感染后的红细胞蛋白质则呈现无规则分布。通过对比传统ftir与基于o-ptir技术能够发现,o-ptir能够提供更为详细的图像分辨率并且能够测量红细胞不同位置的光谱信息。而传统ftir受制于米氏散射限制,效果较差。图2. 对比ftir与o-ptir对红细胞成像的结果:(a)红细胞的白光图;(b)图a中红色方块放大的区域;(c,e)ftir的蛋白/脂质空间分布的红外成像;(d,f)o-ptir的蛋白/脂质空间分布的红外成像;(g)红细胞的ftir红外光谱;(h)红细胞的o-ptir红外光谱 (g,i)疟原虫感染红细胞和正常红细胞的pca(pc1&pc2,pc1&pc3)得分;(h,j)疟原虫感染红细胞和正常红细胞的pca(pc1&pc2,pc1&pc3)得分 参考文献:b. [malaria] “comparing infrared spectroscopic methods for the characterization of plasmodium falciparum-infected human erythrocytes” (nature communication chemistry, https://doi.org/10.1038/s42004-021-00567-2). advantages: 1, 3, 4, 5, 6 2.单个病毒的红外成像 受制于红外限分辨率的限制,单个病毒的红外光谱成像一直以来都是十分困难的,对于只有100 nm左右的病毒进行红外光谱成像显得十分无力。yi zhang等人使用o-ptir技术成功实现对单个痘病毒进行了检测,并成功观测到了病毒的外形,并对病毒表面的蛋白的光谱进行了表征。图3.单个痘病毒的光谱和成像表征。(a)痘病毒的干涉散射图像 (b)痘病毒1550cm-1波束下的mip图像 (c)痘病毒1650cm-1波束下的mip图像 (d)随机选取病毒上4个点的光谱 参考文献:“vibrational spectroscopic detection of a single virus by mid-infrared photothermal microscopy” (analytical chemistry, https://dx.doi.org/10.1021/acs.analchem.0c05333). advantages: 1, 3, 4, 5, 6 3. 光学光热红外o-ptir与raman光谱协同分析固定或活的单细胞 英国曼彻斯特大学的peter gardner教授近期发表了他们关于活(和固定)细胞振动光谱分析的新研究结果。作者使用光学光热红外o-ptir与raman光谱,并借助于两个激发源(qcl和opo激光器),对细胞进行了宽光谱范围的覆盖,从而使所有与生物学相关的分子振动都能被检测到,且保持一致的亚微米的空间分辨率。此外,红外光谱采集与拉曼光谱有效的结合起来,在相同的激发位置,形成振动互补,得到一套完整的振动光谱信息。如下图所示,该红外和拉曼的组合方式可以用来分析液体环境中固定或活细胞的亚细胞结构,其中的蛋白质二次结构及富脂体均可以在亚微米尺度上被有效地识别出来。 图4. o-ptir观测固定未染色mia paca-2细胞成像。(a)固定的未染色的mia paca-2细胞的光学图像;(b)红色方块区域的放大图像;(c)opo波束段的o-ptir红外光谱;(d)qcl波束段o-ptir的红外光谱;(e)黑色区域的拉曼和红外光谱 参考文献d. [mammalian cancer cell] “analysis of fixed and live single cells using optical photothermal infrared with concomitant raman spectroscopy” (analytical chemistry, https://dx.doi.org/10.1021/acs.analchem.0c04846). advantages: 1, 2, 3, 4, 5, 6, 74. o-ptir与s-xrf联用探究阿尔兹海默症阿尔兹海默症是老年痴呆症常见的病因之一,而淀粉样β蛋白沉淀是引发ad的重要病因之一,因此对于淀粉样β蛋白分布的研究就显得十分重要。nadja gustavsson等人通过o-ptir成功观测到了神经中的淀粉样β蛋白分布,并且结合s-xrf分析发现铁簇与淀粉样β-折叠结构和氧化的脂质存在共定位关系。这项研究充分预示了o-ptir/s-xrf联合技术可在ad疾病的研究中发挥重要作用。图5.单个神经元的o-ptir与x光荧光成像。(a)单个神经元的光学(左)与o-ptir图像(中和右)(b)神经元上铜、铁的分布(c)铁与蛋白叠合图(d)铁与脂质的叠合图参考文献[neuron] “correlative optical photothermal infrared and x-ray fluorescence for chemical imaging of trace elements and relevant molecular structures directly in neurons” (“light: science & applications” https://doi.org/10.1038/s41377-021-00590-x) advantages: 1, 3, 4, 5, 6 用户单位: 用户评价:
  • 新方法可预测干细胞分化过程
    美国密歇根大学研究人员近日通过在新型细胞基质上培养成体干细胞的实验,发现了一种可以预测干细胞是如何进行分化并形成何种组织的方法。研究成果刊登在8月1日的《自然—方法学》(Nature Method)上。      相关仪器及方法:NSR2005i9步进式投影曝光装置 Prometrix P-10表面轮廓仪 6320FV扫描电镜 Samdri-PVT-3D临界点干燥仪 XL20扫描电镜 ABI 7300实时PCR系统 Axiovert 200M倒置显微镜 新型干细胞基质(支架)   完成人:克里斯托弗陈课题组   实验室:美国宾夕法尼亚大学生物工程系 密歇根大学生物工程系与机械工程系 台湾成功大学医学院骨关节研究中心   这是细胞培养实验开始第二天的人体间叶细胞的干细胞免疫荧光图。图中,红色部分为“微柱”,绿色部分为细胞,蓝色部分为细胞核。这个细胞在后期分化为了骨细胞。(图片提供:Michael T. Yang (University of Pennsylvania))   这是人体间叶细胞的干细胞扫描电镜图。该细胞被放置在长度为13微米的长“微柱”上生长。在细胞培养实验第二天,细胞产生向心力,这可以从“微柱”的弯曲程度看出。这个细胞在后期分化为了脂肪细胞。(图片提供:Jianping Fu (University of Michigan))   这是人体间叶细胞的干细胞被放置在短“微柱”上培养的扫描电镜图。细胞培养实验第二天,这些细胞开始伸展,其伸展程度和施加在“微柱”上的力均大于在长“微柱”培养的细胞。这些细胞在后期分化为了骨细胞。(图片提供:Jianping Fu (University of Michigan))   干细胞转变为其他种类细胞的过程称为细胞分化。而要想发展以干细胞为基础的再生治疗技术,关键在于充分了解细胞分化。   “我们首次证明了,在细胞分化起始阶段,我们就能预测细胞下一步的分化过程。”Jianping Fu说。Fu是密歇根大学机械工程与生物医学工程的助理教授,同时也是文章的第一作者。“通常情况下,要了解掌握干细胞分化的趋势,需要数周甚至更长的时间。我们的研究成果则可以加速这一过程,这在药物筛查和再生医学方面有很大的应用前景。采用我们的方法,可以较早预测干细胞的分化,以及其在新药治疗中将转变成何种细胞类型。”   在这项研究中,Fu和他的同事发现,干细胞对它们附着的基质会施加一定的力。这种力很有可能与细胞分化有关,但对其的研究还不及对化学触发的研究那么广泛。研究人员在文章中说,培养干细胞所用基质的刚性确实有助于测定干细胞会转变成何种类型。   “经过研究,我们可以肯定地说,和化学因素一样,力学因素在控制细胞分化方面起着同样重要的作用”,Fu说,“而在这以前,干细胞生物学家在很大程度上忽略了这种力学因素”。   研究人员构建了一种新型的干细胞基质(支架),其刚性可调节,而无需改变其化学成分,传统的干细胞生长基质则无法做到这点。这种新型的基质支架看起来像是一种微型地毯,上面布满了类似于头发的突起物——“微柱”,由聚二甲基硅氧烷这种弹性聚合物制成,而聚二甲基硅氧烷是橡皮黏土的重要成分,Fu说。研究人员可以通过调节微柱的高度来调节这种基质的硬度。   工程师在实验中对骨髓和其他连接组织(比如脂肪)进行提取,得到人体间叶细胞组成的干细胞。干细胞在坚硬的基质中生长,最后分化转变成了骨细胞,而在较软的基质中生长,则分化转变成了脂肪。当研究人员通过这种基质的力学性能观察到了细胞分化之后,他们决定在整个细胞培养过程对细胞的这种附着力进行跟踪测定,看是否能预测到这些细胞的分化。   研究人员使用荧光显微镜测量微柱的弯曲程度,从而对细胞这种附着力进行定量分析。“我们的研究表明,如果干细胞要进行分化,那么它们的附着力会比那些没有分化的干细胞要大许多,而干细胞分化成不同类型的细胞,其附着力也会有很大差异。”Fu表示,“我们证明了,可以通过观察这种附着力的变化来提早预测干细胞分化。”   制成这种新基质的成型工艺成本很低,研究人员也表示,任何对此有兴趣的科研人员都可以获得这种成型工艺。“我们觉得,这种工艺为整个科研领域提供了一种新的、切实可行的方法。”Fu表示。
  • 死细胞染料超低价现货大促销
    Propidium iodide (PI)和7-aminoactinomycin D (7-AAD)是最常用的死细胞指示剂,可用于荧光显微镜、激光共聚焦、流式细胞仪检测等实验方法。为答谢广大客户对联科的支持和厚爱,联科生物特推出原装进口(Life Technologies)的死细胞染料优惠大酬宾,超低价现货供应PI和7-AAD 死细胞染料。PI通过嵌入碱基与DNA结合,对序列几乎没有偏好性,每4-5个碱基对可结合一个染料。PI也能与RNA结合,通过核酸酶处理可区分RNA和DNA染色。一旦PI与核酸结合,其荧光可增强20-30倍,最大激发光为535nm,最大发射光为617nm。PI为膜不通透性,无法透过活细胞膜,可用于鉴定死细胞或复染及细胞周期检测等。图1 人Jurkat T细胞经Alexa Fluor 488 annexin V和PI染色。人Jurkat T细胞经1 μM camptothecin处理,早期的凋亡细胞磷脂酰丝氨酸(PS)外翻,与Alexa Fluor 488 annexin V(绿色)结合,晚期凋亡细胞和坏死细胞可被PI染色(红色)。7-AAD可与DNA结合,该复合物由488 nm激光激发,最大发射光为647 nm。7-AAD可被活细胞排斥,但也可用于固定破膜的细胞。7-AAD可用于细胞周期检测、死细胞鉴定等实验。7-AAD与DNA的GC区选择性地结合,在多线染色体和染色质中产生不同的带型,用于染色体带型研究。图2 人Jurkat T细胞经10 μM camptothecin处理4h(右图)或未处理(左图),用流式细胞仪进行分析。Camptothecin处理的细胞具有更高比例的凋亡细胞(A)。L=活细胞;D=死细胞。名称 货号 规格 目录价(¥) 促销价(¥) Propidium Iodide - FluoroPure Grade P21493 100 mg 2210 1000 7-Aminoactinomycin D (7-AAD) A1310 1 mg 1916 800 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014070008.html
  • 寓教于乐 亲身参与—五洲东方党支部继续红色之旅
    2012年12月23日下午,北京五洲东方科技发展有限公司党支部组织20多位党员参观了北京顺义焦庄户地道战遗址纪念馆,这是五洲东方支部为建党九十周年纪念系列活动第三次参观学习。 活动大合影   北京焦庄户地道战遗址纪念馆先后被北京市政府命名为&ldquo 北京市青少年教育基地&rdquo 、被国家六部委定为百家&ldquo 全国中小学爱国主义教育基地&rdquo 之一、被中宣部定为&ldquo 全国爱国主义教育示范基地&rdquo 、被国家发改委定为&ldquo 全国红色旅游景区&rdquo ,被称为&ldquo 人民第一堡垒 地道战的故乡&rdquo 。在展馆参观区,通过现场专业导游的介绍讲解,支部成员体会到焦庄户人民抗日战争所表现出的民族智慧和抗日精神;在地道参观区大家亲身参与愉快体验进入地道参观,仿佛回到儿时的电影场景中&hellip 抗战艰苦历程 焦庄户人民斗争 全景展示   之后在地道战纪念馆现场五洲东方党支部组织了关于中国抗战内容的历史知识抢答题节目,共分时间类、地点类和人物类三类题目。抢答环节中现场积极热烈,参与性很强,特别是年轻的支部成员热情抢答争论标准答案使本次活动达到高潮。 历史知识抢答   2011年五洲东方党支部通过先后举办大型征文比赛、天津周邓纪念馆参观学习、两期大型纪念宣传海报、图书馆文档资料参观学习、发展大会、转正大会、焦庄户纪念馆参观学习等一系列活动为公司党员群众的组织生活交出了一份丰富而满意的答卷。 再见红色之旅
  • 活细胞RNA成像技术获突破
    近日,华东理工大学生物反应器工程国家重点实验室及光遗传学与合成生物学交叉学科研究中心教授杨弋团队和浙江大学研究员任艾明团队合作,在活细胞RNA成像技术研究中取得突破性进展,相关研究在线发表于《自然-方法》。RNA是活细胞中最重要的生物大分子之一,它不仅能将遗传信息从DNA传递到蛋白质,还在各种细胞生命活动功能调控方面发挥重要作用。活细胞中的RNA是高度时空动态变化的,它们往往需要在特定时间、空间和丰度下才能执行正确的生物学功能。因此,发展活细胞RNA成像技术对于探究RNA的复杂时空动态变化规律和生物学功能至关重要。荧光RNA是近年新兴发展的RNA荧光标记与成像技术,其原理是利用RNA适配体作为标签,特异性结合小分子染料并激活其荧光。相较于其他RNA标记与成像技术,荧光RNA具有操作简单直接、对靶标RNA干扰小、信噪比高等优点。研究人员只需要将靶标RNA序列与荧光RNA适配体序列融合,加入染料配体即可实现靶标RNA的低背景原位实时标记与成像。杨弋与朱麟勇组成的交叉学科联合攻关团队此前发展系列高性能荧光RNA,在国际上首次实现高等生物细胞内不同种类RNA的原位标记与高信噪比成像,成功解决了活细胞RNA实时标记与成像的难题。然而,许多细胞生命过程需要多种RNA分子同时参与。因此,亟需发展具有生物正交的高性能荧光RNA来实现活细胞内多种RNA分子的同时标记与成像,进而解析它们的功能与调控机制。针对这一挑战,联合团队基于全新的分子设计理念与分子共同定向进化策略,发展了国际上首个可用于细胞成像的大斯托克斯位移荧光RNA,实现了活细胞RNA与基因位点的单激光双发射多色实时成像,并进一步在活细胞与活体动物上完成了RNA-蛋白质相互作用的实时监测。研究人员发展出一种Clivia荧光RNA适配体,它由30个核苷酸构成,同时结合不发光的染料分子,进而激活高亮度荧光。通过对染料分子进行修饰改造,该团队成功获得了光谱涵盖黄色到红色系列高亮度荧光RNA,再结合两种荧光RNA光谱特性,利用单色激光实现了两种活细胞RNA或基因位点的荧光成像。受益于Clivia小巧的结构,这种成像方式可被插入到多种小核RNA序列中,在不影响这些RNA本身定位与功能的情况下,实现高信噪比原位实时RNA标记与动态成像。研究人员随后发展了RNA-蛋白质相互作用检测技术,首次实现了活体动物中RNA-蛋白质相互作用的原位实时检测。Clivia具有高稳定性、高信噪比、高亮度,是目前唯一可用于活细胞分析的大斯托克斯位移荧光RNA,也是唯一可在活体上对RNA动态进行测量的荧光RNA。Clivia将为活细胞与活体RNA的多色成像以及RNA功能与调控机制研究提供极具价值的实用工具,也有望为活细胞与活体生物传感、即时诊断甚至实时诊断技术的发展提供新的机遇。
  • 196万!复旦大学多色流式细胞仪采购项目
    项目编号:0705-224002028114项目名称:复旦大学多色流式细胞仪采购国际招标预算金额:196.6700000 万元(人民币)最高限价(如有):192.7366000 万元(人民币)采购需求:1、招标条件项目概况:多色流式细胞仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028114招标项目名称:多色流式细胞仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1多色流式细胞仪1套激光配置:配置至少四根固态激光器,488nm蓝色激光器一根,640nm红色激光器一根,405nm紫色激光器一根,561nm激光器一根预算金额:人民币196.67万元 最高限价:人民币192.7366万元 合同履行期限:签订合同后5个月内合同履行期限:签订合同后5个月内本项目( 不接受 )联合体投标。
  • 是时候介绍这套靠谱的低氧活细胞检测系统了
    当地时间10月7日,瑞典卡罗琳医学院宣布,授予威廉凯林(William G. Kaelin Jr)、彼得拉特克利夫(Sir Peter J. Ratcliffe)及格雷格塞门扎(Gregg L. Semenza)诺贝尔生理学或医学奖,以表彰他们在“发现细胞如何感知和适应氧气供应”领域的卓越贡献。我们都知道,这次诺奖的核心发现就是围绕HIF-1(低氧诱导因子)这条信号通路,小编在这里不再赘述这条通路伟大而精妙的丰富内核,而要强调的是,人类的多种疾病都和常氧/低氧的调节有关,比如恶性肿瘤,肾性贫血,损伤修复,循环障碍疾病等,这次的三位诺奖得主已经为我们发现并阐明了生物体启动氧感知的重要钥匙,而仍然有太多未知的关键节点等待同道中人去探索发现。常用的方法包括体外化学模拟和体外物理模拟,说白了就是给细胞加工具药物(例如CoCl2)或者是低氧环境培养。对于有些细胞模型或研究方向来说,低氧环境培养是必不可少的,然而往往很多实验室的低氧培养设备和其他检测设备是分家的,或者甚至缺少低氧培养的相关设备,给许多实验设计造成了不大不小的困扰。点点点点一下嘛解决方案靠谱的隆重介绍所以Cytation & Lionheart氧浓度可调节活细胞检测系统上图便是能够便捷控制CO2和O2的气体控制装置,在面板上可以方便设定CO2和O2的浓度范围,比如上图,O2的浓度已经从常规的20%降低到5%。是不是惊讶于她的轻盈体型?咱们就是这么节约空间资源有木有!当然,作为控制器,是需要和咱们的核心检测设备Cytation或Lionheart搭载使用的,这样就能够完美实现低氧环境控制和灵活多样的活细胞检测同步进行(传送门)。新鲜小案例:研究一下3D细胞球的缺氧变化此前我们已经介绍过非常多的3D细胞的应用案例,由于3D细胞能够更好地模拟体内细胞的微环境,因此针对3D细胞培养的缺氧水平下的研究需求也是非常多的。11个小时内,人源肝细胞球内的低氧水平逐渐增加(Cyto-ID Hypoxia 染料用于标记细胞内缺氧水平,红色荧光信号增加,表示细胞低氧状态加剧) 请向后滑动_____通过Gen5软件的细胞圈选识别,可以对Cyto-ID标记的细胞缺氧信号定量分析。_____这个图展示了不同的分析方式下的信号倍比变化,数据说明一切,咱们还是需要选择对合适的分析方法__________使用低亲和力球形96板 ,能够快速的构建3D细胞模型(相关案例传送门),接入CO2和N2后,通过气体控制装置设定CO2条件5%,氧气条件8%,放入细胞培养板,即可在长时间内实时监测细胞球的形态或其他需要检测的指标。来自霍普金斯医学院的案例首先,Dr. Gilkes团队在分子水平,研究了多种乳腺癌细胞系在低氧(1%)培养条件下的HIF-1和RohB的mRNA水平及蛋白水平的表达变化,在发现显著差异后,当然是要研究一下这个关键的RohB在活细胞水平,特别是3D细胞培养模型中, 如何影响肿瘤细胞的表型变化,于是,Cytation和Lionheart就发挥了重,要,作,用啦。__
  • 贝克曼推出流式细胞仪新品,应用领域再次扩大
    2014年10月中国首发CytoFLEX流式细胞仪,首次将先进的性能卓越的现代光通技术应用于流式细胞仪中。目前,全球销量已超越600台,中国已超150台,获得了用户的认可和支持。   CytoFLEX S系列流式细胞仪是CytoFLEX平台的延伸产品。CytoFLEX 流式细胞仪配备三色激光选项,波长分别为488nm、638nm 和405nm。CytoFLEX S系统能够预置多达四种激光,包括波长为561nm、375nm 或原有平台中的激光,以及最高13色荧光通道,从而拓展研究的可能性。  561nm激光  流式细胞仪平台新增561nm 的激光后,即可进行额外的多色检测,而且用户可以将成像检测结果转移到流式细胞仪上,从而轻松实现检测结果的定量分析。此外,相比488nm激光,561nm激光对于红色荧光蛋白的激发更加有效。利用561nm 激光检测红色荧光蛋白您可以实现动态范围和灵敏度的提升。  特殊应用:荧光蛋白检测(mCherry)  分别运用配备561nm激光的PE通道以及 595/20 BP 滤光片的 CytoFLEX S 流式细胞仪,以及配备 488nm 激光的 ECD 通道和标准 595/20 BP滤光片的CytoFLEX流式细胞仪,对 mCherry 表达细胞株进行分析。  375nm激光  CytoFLEX S 375 nm 激光是 CytoFLEX 系列桌面型流式细胞仪的新增选项。新增的 375 nm 波长激光,在空间分离光束点中,能够实现对 Hoechst、DAPI 和亮紫外(BUV)染料的出色激发。这样能够确保无需使用真正的紫外光即可通过上述染料/荧光染料进行试验,从而避免了相应的费用,降低研究成本。  特殊应用:  运用 Hoechst 和 DAPI 进行分析   利用Hoechst 33342外排,鉴别129/C57B/6鼠骨髓中的侧群细胞。适用于sca-1和 c-kit的阴性和双阳性细胞系。  通过近紫外线激光对亮紫外(BUV)染料激发进行分析  通过 BUV 661、BUV737 和 BUV 805 进行 CD3 抗体染色的全血。  根据规定,利用不同的带通滤波器对各种亮紫外染料进行检测。通过所有 BUV 染料观察阳性和阴性样本之间的良好分离度。
  • 指真生物CytoFocus系列流式细胞仪获批上市!
    近日,指真生物CytoFocus系列流式细胞仪获得北京市药品监督管理局批准的二类医疗器械注册证(京械注准20212220543),该仪器同时可配置双激光四色/六色/八色的流式细胞仪。CytoFocus系列流式细胞仪标配蓝色(488nm)和红色(638nm)激光器,配置四色、六色和八色荧光通道,自动进样,操作简单,功能全面,能够覆盖临床常规开展的淋巴细胞亚群分析(TBNK)及CD4细胞绝对计数、细胞因子检测、HLA-B27检测、白血病/淋巴瘤免疫分型、中性粒细胞CD64、造血干细胞计数、精子检测和DNA倍体分析等。主要特点:配置灵活:双激光四色、六色、八色性能强大:高分析速度、高灵敏度和高稳定性高速自动:支持40个管或96孔板自动进样,最高50000events/s进样速度智能简洁:固定光路无需校正,自动荧光补偿调节绝对计数:体积法和微球法同时兼容荧光通道:高灵敏度:FITC≤30MESF、PE≤20 MESF、APC≤20 MESF高分辨率:仪器分辨率:CV<2%配套多种细胞因子检测试剂产品特点:时间短:单次样本处理<1小时,大大节省时间,市面上大部分试剂样本处理时间在3小时左右。自动化:采用磁性微球,使用磁力架可实现分离或后期配套使用样本前处理系统实现无手工处理,解放劳动力同时避免人为误差,市面上大部分试剂采用塑料微球无法实现后续自动化。质控品:试剂盒内包含高低质控品,市面上大部分试剂盒内不包含质控品或需要单独购买。
  • 流式细胞仪大显身手 高通量纳米材料生物毒性检测技术取得进展
    随着纳米技术的快速发展,越来越多的新型纳米材料不断出现并迅速应用在实际生活中。因此,发展快速、高通量的生物检测手段对纳米毒性的快速安全评估极为重要。流式细胞术是毒理学检测的常用技术,具有高通量、快速、准确的特点。但由于团聚的纳米材料在尺寸上同细菌相近,严重干扰检测结果,使得流式细胞术难以运用于纳米材料对细菌的毒性评估。  近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所吴李君、陈少鹏课题组建立了基于PI-GFP双荧光标记的纳米材料细菌毒性检测方法:GFP绿色荧光表征细菌的生长,碘化丙啶PI红色荧光标记区分死、活细胞,在流式细胞仪上准确区分细菌与纳米材料,通过绿色荧光和红色荧光细胞的相对比例,反应纳米材料的毒性。对比单荧光标记,双荧光标记可以更准确地检测纳米材料的毒性。运用上述建立的双荧光报告系统,他们研究了水环境中金属离子及表面活性剂对纳米银毒性的影响,揭示了不同环境因子对纳米银细菌毒性的影响和机制。结果表明,双荧光报告检测系统可以较准确地反应纳米材料的毒性,适用于环境纳米材料生物学效应的评估。该研究成果已被国际毒理学期刊Cheomsphere (DOI: 10.1016/j.chemosphere.2016.04.074)接收。  该研究受到国家重大研究计划、中科院先导专项B、国家自然科学基金以及研究院院长基金资助。  双荧光报告基因系统检测纳米银生物毒性
  • 应用:日立电镜-Gatan 3View联用技术在生物细胞三维重构的应用
    利用SU5000和Gatan 3View 2XP 对老鼠肝细胞截面的高分辨截面观测 图1. 老鼠肝细胞高分辨BSE图像仪器:热场发射SU5000 , Gatan 3View® 2XPSEM(加速电压: 2 kV, 真空模式: 高真空)3View(图像大小: 16k×16k, 像素点尺寸: 2 nm/pixel, 观测区域: 33 mm×33 mm)图. 1 为老鼠肝细胞整体染色并树脂包埋后的高分辨截面观测结果,图中可观测到整个细胞及细胞器的分布。右图是左图黄框内区域数字放大5倍后的结果,图中可明显观测到细胞核 (N) 及其附近的内质网(ER) ,线粒体(M) 及嵴(←), 高尔基体(G), 糖原颗粒 (▲)分布。利用SU5000和Gatan 3View 2XP 对老鼠肝细胞超薄切片观测及三维重构 (a) 超薄切片观测图像 (b)三维重构结果(长为10 μm的正方体)(c) 三维重构 (XY 面, YZ 面,XZ 面)图2. 老鼠肝细胞连续切片及三维重构结果 图. 2 为老鼠肝细胞染色树脂包埋后连续切片(a)及三位重构(b)(c)结果。 三维重构图像可以通过300张截面图像堆叠计算得到。 由于热场发射电子枪束流的稳定性,可连续长时间地拍摄获取300多张的图像。通过三维重构的结果可直观地看到细胞尺寸结构及其细胞器的三维分布,能更多地获取生物细胞的信息。 利用SU5000和Gatan 3View 2XP 对老鼠肝细胞三维重构结果分析 图3. (a) 连续截面BSE图像堆叠图像结果 (b) 线粒体及细胞核体分布 (红色为线粒体,绿色为细胞核)(c)线粒体的尺寸分布直方图 通过连续切片获得的三维重构结果,可选择性的得到所需信息,如线粒体的分布,结构,尺寸数目的面分布及体分布等。 图3为三维堆叠图及后续分析出的线路体(红色)及细胞核(绿色)的分布图。可直观地观测到线粒体的形状,结构及分布。 图2显示的是线粒体的尺寸分布直方图,可通过软件直接得到线粒体的体分布和面分布,进而分析细胞内线粒体的数目及分布。 仪器: 热场发射SU5000 Gatan 3View® 2XP 三维重构: Image Pro Premier 3D (Media Cybernetics Inc.)SEM条件:加速电压 2 kV 真空模式 高真空3View条件:图像尺寸 8k×8k 像素尺寸 4.4 nm/pixel 观测区域 36 mm×36 mm 切片厚度 50 nm 切片数  300 该产品更多信息请关注:SU5000 http://www.instrument.com.cn/netshow/SH102446/C220210.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注日立高新官方网站:http://www.hitachi-hightech.com/cn/
  • 3i流式新品|搭载561nm激光器 层浪发布FongCyte™流式细胞仪
    2024年1月,北京层浪生物科技有限公司在仪器信息网发布层浪生物FongCyte™流式细胞仪搭载561nm激光器新品。查看报价参数主要创新点如下:1.检测光通过光纤传导至三个独立的树杈形检测器阵列,降低了模块之间的耦合,提高光路系统稳定性。专利的检测器及激光器双恒温控制(准确控温在25℃±0.3),光路系统,无惧环境温度波动,输出结果稳定可靠。 2.两种进样模式,定量吸入模式,高精度柱塞泵正压进样非蠕动泵驱动或者负压上样,可免微球绝对计数;持续上吸模式,负压持续吸样,适用于稀有细胞检测。 3.每台仪器内嵌自动进样器,单管及高通量模式可选。高通量模式包括孔板进样模式及管式进样模式,兼容96孔板,40孔流式管,40孔EP管,软件一键式切换,无需等待。具有软件一键式通道排堵功能。智能自动清洗系统携带污染率<0.05%。 4.AI智能数据分析:有周期拟合,淋巴亚群等AI算法。561 nm 激光应用意义RFP红色荧光蛋白及水果系列荧光蛋白的最佳激发波长,488 nm不可取代;PE及PE耦合染料的最佳激发波长,带来更好的信噪比;空间独立激发,使用561 nm激发PE及其耦合染料,与488 nm激发的FITC染料配合,大大减少补偿值,甚至可以实现免调。如下图所示:488 nm激光,mCherry激发效率为0.8%,PE激发效率为53%。561nm激光,mCherry激发效率为64%,PE激发效率为95%。搭载561 nm激光器的流式细胞仪可提高 PE、PE家族染料及mCherry 等水果系列荧光蛋白的检测灵敏度和分辨率,扩展了荧光染料选择范围,满足特殊应用的需求。488 nm激光器PE/mCherry激发效率561 nm激光器PE/mCherry激发效率(图源:https://www.fpbase.org/spectra/) 日常新品申报入口 ↓↓↓https://www.instrument.com.cn/Members/NewProduct/NewProduct
  • 夏普开发出效率最高的红色半导体激光器
    夏普于2012年12月25日宣布,开发出了世界光转换效率最高的红色半导体激光器,型号为“GH0641FA2C”,其光转换效率达到33%。该产品振荡波长为640nm,通过优化材料组合和构造,提高了转换效率,在单模振荡红色半导体激光器中实现了业界最高的转换效率。该激光器计划主要用于车载用平视显示器及小型投影仪等。   该产品的最大光输出功率为150mW,阈值电流为55mA(标准)。光输出功率为150mW时,工作电流为182mA(标准),工作电压为2.5V(标准)。峰值振荡波长为642nm。光束发散角度为水平方向9度、垂直方向17度。样品价格(含税)为5000日元,预定从2013年1月31日开始样品供货,2013年3月29日开始量产,计划每月量产1万台。
  • 光域生物医学在体流式细胞仪(IVFC)科研产品发布
    2022年9月16日,光域生物医学在第五届单细胞多组学研究与临床应用峰会上发布全球首台在体流式细胞仪科研产品IVFC-1000系列。IVFC-1000系列科研仪器是基于在 体流式细胞检测技术(IVFC,in vivo Flow Cytometer) ,可直接对活体小动物免抽血、实时检测外周血或淋巴循环系统中的细胞、分子等目标物质,该技术为光域生物医学自主知识产权,并实现从头独立开发与生产,在国际上是一项颠覆性创新技术。 在体流式细胞检测技术(IVFC)从研发、验证、产品化至今,已与国内外诸多知名高校、研究院所、临床医院开展多项研究与合作,其创新性、可行性以及应用价值均已得到国内外同行和专家的认可,相关研究成果发表在Nature、Nature Medicine、Cell、Blood、Light: Science & Applications、Cancer Research、Journal Controlled Release、ACS Nano等国际权威学术期刊上,累计发表学术论文100余篇,其中10分以上的文章30余篇。 IVFC-1000系列在体流式细胞仪开创了一项全新的活体细胞学检测方法,为生命科学研究提供基于体内真实环境的全新解决方案,是与传统技术完全不同的新维度。 作为一项创新技术,在科研领域的应用也在不断拓展,包括:肿瘤、药学、免疫、干细胞等。 应用案例: 1、肿瘤:循环肿瘤细胞(CTC)检测 IVFC检测手术切除肿瘤前后CTC的数量变化(每周检测一次) 常规流式细胞仪抽血检测手术后CTC的数量变化(每两周检测一次) IVFC与常规流式细胞仪检测结果呈线性关系,灵敏度是常规流式细胞仪的1.8倍 原文:Cancer Research 2012, 72: 2683-2691 2、药学:药物递送系统(DDS)研究 不同纳米粒在外周血循环系统中的清除动力学:(a)IVFC检测结果,(b)HPLC抽血检测结果 IVFC检测不同纳米粒在外周血循环系统中的聚集(aggregation) IVFC同时双色检测两种不同粒径纳米粒的清除动力学 原文:Journal of Controlled Release 2018, 278: 66-73 3、免疫:移植后T细胞亚群动态变化 用不同颜色荧光蛋白标记不同T细胞: Teff DsRed(红色),nTreg GFP(绿色),iTreg DsRed+GFP(黄色) IVFC定量检测外周血循环系统中Teff、nTreg和iTreg细胞 原文:Nature Medicine 2010, 16(6): 718-723 4、干细胞:间充质干细胞(MSC)归巢动力学 IVFC定量检测GFP-MSC在不同小鼠模型中的归巢动力学 (60h采集12组数据,每次检测60min) 常规流式细胞仪检测GFP-MSC在不同小鼠模型中的数量变化 (24h采集5组数据,每次采血15μl) 原文:Stem Cells Translational Medicine 2017, 6(4): 1120–1131
  • 春风送暖,红色关怀,315正式启航
    2015年,聚光科技近红外产品走过了18个年头;阳春三月是杭州春风醉美的时节; 2015年3月15日,聚光科技“春风送暖 红色关怀 ——聚光科技近红外系列产品用户巡检回访专项行动”启动仪式在杭州总部和北京分会场同期举办;这标志着这项筹备长达数月的专项行动正式拉开了序幕。“春风送暖 红色关怀”杭州总部分会场部分成员合影“春风送暖 红色关怀”北京分会场部分成员合影 聚光科技(杭州)股份有限公司实验室事业部总经理马放均先生在北京分会场致辞,并宣布此次行动正式启动!马总在致辞中表示,此次活动是我们聚光科技近红外产品的一场“成人礼”,更是对一直关心支持我们的广大用户回报的时候,此次行动,我们要给用户带去实惠落地的优惠政策和免费增值服务,还有多种形式的合作方案,聚光科技肩负着推动国产近红外发展的重任,我们有责任推广这项技术,为更多的企业和用户带去效益!预祝这次行动取得圆满的成功!实验室事业部总经理马放均先生就启动仪式致辞 聚光科技近红外销售经理李光先生作为销售代表发言,他表示,此次活动是对近红外销售一线同事最大的支持,销售人员一直在努力得改进和维护客户关系,特别是老用户,我们一直把对老用户的关怀摆在最重要的位置,希望这次行动是一个美好的开始,想用户提供最好服务。聚光科技近红外销售经理李光先生发言 聚光科技售后服务工程师方超代表售后服务工程师在此次启动仪式上郑重承诺,在此次行动中一定会竭尽所能地解决用户现存的问题,提高用户的满意度,向用户展现聚光科技售后服务工程师专业、热情的精神面貌。聚光科技售后服务工程师方超先生发言 本次专项行动除了为用户提供免费的软件升级和仪器基础保养之外,还会与用户就合作方式展台深入的探讨,聚光科技近红外应用中心经理周新奇先生发布了本次行动中与用户合作的方案,包括合作开发维护模型,帮助自身检测能力稍弱的用户建立模型等多种形式,旨在帮助用户用好近红外这项技术,开发更多更好的模型以向其他客户提供更好的模型和服务。聚光科技近红外应用中心经理周新奇先生发布用户合作方案 此次行动先遣六支小分队分别去往东北、河北、山东、江苏、广东和湖北6个省份,每支小分队均由售后服务工程师+应用工程师+销售工程师的强大阵容组成,力求在仪器的使用、维护、模型开发、备件仪器销售各个方面都能协助用户,提高用户体验。六支先遣小分队授旗出发 本次行动得到了广大用户的大力支持,在前期进行的调研问卷活动中,有很多的用户都及时给了我们很好的反馈,便于我们在出发之前根据用户的需要做好充分的准备,为用户提供更好更优质更全面的服务! 启动大会拉上圆满的帷幕的同时,我们一支支小分队也整装待发即将踏上送暖旅程,不论酷暑严寒我们都将信守承诺如约来到您的身边,献上我们真诚的关怀!
  • ibiPore可视化的Transwell:可实时观察流动、剪切力作用下细胞迁移、侵袭、细胞间相互作用
    德国ibidi的ibiPore可以实时观察流动、剪切情况下的细胞侵袭、迁移、细胞相互作用等实验。对实验结果进行观察统计时,不需要将膜取下,也不需要将另一边的细胞擦掉(经常将膜擦破,导致实验失败),可直接将μ-Slide放于显微镜下观察统计。细胞可以通过两种方式,选择贴壁于氮化硅膜的上下两侧。可以把细胞种植在膜下边,避免自由落体的说法,大大提高了实验的准确性。21世纪注定是一个生命科学的世纪,科研工作者们如果想在这个世纪去决胜,能做到一点,不仅要好的idea,领先的技术,更需要得心应手的好工具。所谓工欲善其事必先利其器,今天为大家介绍德国ibidi的μ-Slide ibipore SiN (图1), 一款具有多孔氮化硅膜的μ-Slide载玻片,可用于实时观察流动、剪切力条件下的细胞侵袭、迁移以及细胞相互作用的可视化的“ transwell ”,更多应用请参阅文中(Intended Use的相关内容)。图1. ibipore及ibipore SiN氮化硅膜培养细胞的染色结果。图片背景为在ibipore氮化硅膜上培养细胞的荧光染色结果,规则排布的白色圆点为氮化硅膜的孔隙ibipore有上下两个独立的通道(见图2),两个通道 overlap 的区域由一个孔径大小均一的氮化硅膜隔离开(见图3)。两个通道可以分别培养细胞,通过两种方式,细胞可以贴壁于氮化硅膜的上下两侧。在细胞侵袭实验中,普通的transwell只能将细胞培养在上侧,这样所得到的实验结果并不能明确的说明是由于重力作用还是侵袭能力本身造成的。而ibipore考虑到这一因素,建议实验者在氮化硅膜的下侧进行细胞培养,检测细胞向上侧通道进行迁移的能力,进而巧妙的排除了重力作用对侵袭实验的影响。配合ibidi流体剪切力系统以及加热孵育系统,可以在流动、剪切力条件下实时的观察细胞的侵袭以及迁移等实验。德国ibidi公司为满足不同实验的需求设计了不同孔径的氮化硅膜(见图4)。ibipore与传统的transwell实验最大区别有三点:①. ibipore可以在上下两个通道中培养细胞,这样可以观察细胞向上的侵袭情况,排除以往实验中重力作用的影响;②. ibipore中间的氮化硅膜具有良好的光学特性,可以实时成像观察侵袭情况,也可以进行免疫荧光染色实验;③. ibipore可以配合ibidi流体剪切力系统,观察淋巴细胞等在流动状态下的侵袭情况。ibipore产品介绍ibipore产品特点:* 透过薄而多孔的薄膜获得卓越的光学性能* 有着广泛的应用,细胞可完全粘附到顶部-基底* 对于不同细胞类型有多种孔径大小可以选择应用:1.流动状态下跨内皮细胞迁移2.2D或3D凝胶内细胞层的共培养和传输分析3.顶部-基底细胞极性分析4.顶部-基底梯度的细胞屏障模型分析5.细胞迁移分析(例如,用于研究肿瘤侵袭或转移)在μ-Slide ibiPore IV型胶原涂层3μm孔径中人类内皮细胞的免疫荧光染色,相位对比度、DAPI(蓝色)、VE钙粘蛋白(绿色)和F肌动蛋白(红色)的叠加图像。技术特点:1.SiMPore的微孔氮化硅膜2.中间具有多孔光学膜的跨通道结构3.优异的光学性能,堪比盖玻片4.孔径大小0.5μm,3μm,5μm,8μm供选择5.中间膜0.4µ m(400 nm)6.使用工作距离0.5mm的物镜7.与ibidi泵系统(流体剪切力系统)完全兼容8.下部通道中明确的剪切力和剪切速率范围µ -Slide ibiPore SiN工作原理µ -Slide ibiPore SiN由插入两个通道之间的水平多孔膜组成。上部通道是膜上方的静态储液池。下部通道是灌注通道,用于对附着在膜上的细胞施加限定的剪切应力。上部通道和下部通道仅通过隔膜彼此连通。图2. ibipore组成示意图多孔膜由氮化硅(SiN)制成,这种材料具有非常高的化学和机械稳健性。400nm厚的氮化硅膜非常适合成像和显微镜观察,没有任何自发荧光或透明度问题(如玻璃)。SiN材料可以直接用于贴壁细胞培养,也可以选择用ECM蛋白包被。应用建议:孔径 & 孔密度什么是孔密度孔密度是指膜的空隙体积分数。是孔隙的体积除以膜的总体积。下面的图形为采用相同的放大倍数。图3. 不同孔径的氮化硅膜不同应用的建议孔径:不同的细胞大小和直径不同,根据具体实验请选择不同孔径图 4. 为不同应用推荐的不同孔径的氮化硅膜Intended Use经证实的应用这些应用已由ibidi研发团队或者我们的用户进行过试验。Endothelial Barrier Assays内皮屏障分析在膜一侧培养单层细胞。细胞可以在静止或者流动剪切力条件下培养。Co-Culture and Cell Barrier Assay共培养和细胞屏障分析在膜的两侧分别培养单层细胞。通过这种方法可以进行信号传递、共培养以及迁移实验(例如,分析药物通过上皮或内皮屏障的传递)。Apical-Basal Cell Polarity Assays顶端-?基底端细胞极性分析3D凝胶基质中的化学因子可以导向在膜另一侧培养的单层细胞的极性发生。Potential Use潜在应用以下示例将讲述该产品进一步的潜在应用。ibidi仍需在内部测试这些应用,因此我们无法提供特定的实验方案。但是,从技术角度来看,这些应用应该是可行的。Trans-Membrane Migration in 2D/2D跨膜迁移在膜的一侧培养单层细胞。可以观察悬浮的白细胞在流动状态下的滚动、粘附以及侵袭情况。Cell Transport in a 3D Gel Matrix细胞在3D凝胶基质中的传递3D凝胶基质中的细胞迁移:在流动状态下,观察白细胞的滚动、粘附以及向3D凝胶基质中肿瘤细胞方向的迁移情况。Application Examples 应用实例MDCK和NIH-3T3细胞的相差显微镜观察Madin-Darby犬肾(MDCK,左)和NIH-3T3(右)细胞在μ-Slide ibiPore SiN,孔径0.5μm的玻片中,无蛋白质包被。接种后,将细胞在静态条件下在培养箱中保持20小时。相差显微镜,4倍物镜。请注意,这张图像中的中心多孔区域看起来更暗,因为0.5μm的孔隙无法用低分辨率物镜分辨。流动条件下HUVECS的相差显微观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN中,孔径3μm的玻片中,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。固定后的相位对比显微镜,10倍物镜。流动下HUVECs F肌动蛋白细胞骨架的荧光显微镜观察人脐静脉上皮细胞(HUVEC)在μ-Slide ibiPore SiN,孔径5μm玻片中的免疫荧光染色,有纤连蛋白包被。将细胞接种并在具有ibidi泵系统/流体剪切力系统的流动条件(10达因/cm2)下在培养箱中保持12小时。绿色:肌动蛋白(鬼笔肽),蓝色:细胞核(DAPI)。荧光显微镜,20倍物镜。选择指南:ibidi跨膜分析实验解决方案参考文献:Salvermoser, Melanie, et al. "Myosin 1f is specifically required for neutrophil migration in 3D environments during acute inflammation." Blood, The Journal of the American Society of Hematology 131.17 (2018): 1887-1898. 10.1182/blood-2017-10-811851Rohwedder, Ina, et al. "Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration." Haematologica (2019). 10.3324/haematol.2019.225722Non-Recommended Applications不建议的应用因技术原因,本产品不适用于以下应用,应避免使用.本产品不适用于:1.上通道灌流2.两个通道的灌流3.跨膜流动4.筛选应用订购信息
  • 150万!华南理工大学实时活细胞成像分析仪采购项目
    项目编号:GZZJ-ZFG-2023072项目名称:华南理工大学实时活细胞成像分析仪项目预算金额:150.0000000 万元(人民币)最高限价(如有):150.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1实时活细胞成像分析仪1套功能:实时活细胞成像分析仪全程放置于培养箱中,兼容多种规格尺寸的孔板、培养皿、培养瓶,可在明场及红色、绿色双色荧光通道条件下,对培养的细胞进行实时长时间的自动成像。一次可同时进行多块多孔板的实验,每块多孔板可独立运行,采用不同的时间间隔拍照,用户可通过联网的电脑自定义实验流程和进行远程控制,获取各种格式的图像或动态视频,自动依据相位图、荧光信号分析生成的基于图像应用的图表,以显示细胞的变化及趋势。用途:实时活细胞成像分析仪主要应用于基础研究领域,结合其实时、长时间观察、自动分析的特点,可实时观测多组细胞生长过程,可获得每个时间点的照片、数值、曲线、影像等资料,为细胞生长发育、肿瘤研究、免疫研究、干细胞研究、药物评价、基因编辑与转染效率分析等多种应用提供丰富可靠的数据支持。人民币150万元 经政府采购管理部门同意,本项目( 实时活细胞成像分析仪)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):办理免税证明后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-87112962  2.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 220万!华南理工大学全时程动态活细胞成像及功能分析系统项目
    项目编号:GZZJ-ZFG-2023080项目名称:华南理工大学全时程动态活细胞成像及功能分析系统项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1全时程动态活细胞成像及功能分析系统1套功能:全时程动态活细胞成像及功能分析系统可放置于培养箱中,兼容多种规格尺寸的孔板、培养皿、培养瓶,可在明场及红色、绿色双色荧光通道条件下,对培养的细胞进行实时长时间的自动成像。一次可同时进行多块多孔板的实验,每块多孔板可独立运行,使用不同的物镜和荧光通道,采用不同的时间间隔拍照,用户可通过联网的电脑自定义实验流程和进行远程控制,获取各种格式的图像或动态视频,自动依据相位图、荧光信号分析生成的基于图像应用的图表,以显示细胞的变化及趋势。用途:全时程动态活细胞成像及功能分析系统主要应用于基础研究领域,结合其实时、长时间观察、自动分析的特点,可实时观测多组细胞生长过程,可获得每个时间点的照片、数值、曲线、影像等资料,为细胞生长发育、肿瘤研究、免疫研究、干细胞研究、药物评价、基因编辑与转染效率分析等多种应用提供丰富可靠的数据支持。人民币220万元经政府采购管理部门同意,本项目(全时程动态活细胞成像及功能分析系统)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货(可办理免税):办理免税证明后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 飞纳 Pharos-STEM 扫描透射电镜在细胞生物学和病理学的应用
    飞纳 Pharos-STEM 在细胞生物学和病理学的应用一直以来,透射电镜(TEM)是观察和研究超微结构的首选工具,可用于观察整个细胞结构,包括细胞壁、细胞膜、细胞核和各种细胞器的变化,以及外源物质与细胞之间的关系等。不仅有助于许多重要细胞器的结构和功能的研究,而且有助于解剖病理学、血液学和微生物学等学科的病理诊断研究。 扫描透射(STEM)模式作为 TEM 的附加配件,可以显著提高生物样品的衬度,特别是未染色的组织切片。应对此类生物样品,TEM 操作人员通常也会选择相对较低的加速电压(80kV)来增加图像的衬度,并提高清晰度。但是由于其操作的复杂性,在对细胞生物学和病理学的超微结构的研究中,还没有被广泛应用(除专业的电镜中心外)。 飞纳台式场发射扫描电镜,体积小巧,具有低电压成像的优势,配备了新型的扫描透射(STEM)探测器后,可以结合扫描电镜和透射电镜的功能特点,在 15kV 的低加速电压下,就可以获得高分辨率的扫描透射成像。在观测电子束敏感的生物样品时,可以获得高成像质量图片。 以下为大家分享生物组织样品的制样方法以及 4 个使用 Pharos-STEM 拍摄的案例。(加速电压 15kV,工作距离 8.9mm) 具体过程如下:使用 2.5% 的戊二醇溶液(溶解于 PH 值为 7.4 的 0.1M 碳酸钠缓冲液中)进行固定,固定完成后,组织样品在碳酸钠缓冲液中清洗 1-2 天。这个过程具体包括使用 2% 四氧化饿清洗 4h,2% 醋酸铀清洗 1h,醋酸钠清洗 1h;然后使用梯度乙醇和丙酮进行脱水处理;接着按照标准配方使用低粘度环氧树脂 Spurr 进行包埋,将树脂在 70℃ 下固化 15h;最后使用超微切片机制备 70nm 厚的组织切片,将组织切片安装在 300 目的铜网上。接下来将具有样品的铜网放入 Pharos-STEM 中进行观测,结果如下。 案例一:被肾小囊(Bowman's capsule)包裹的正常肾小球 图1 小鼠肾标本样品(肾小球和临近的肾血管)的 STEM 图。红色箭头处可以看到含有红细胞的肾小球毛细血管,毛细血管被肾小球基底膜和足细胞的足突包围。 图1 为被肾小囊(Bowman's capsule)包裹的正常肾小球的超微结构。 STEM 图显示了正常肾小球毛细血管袢和肾小球系膜,与 TEM 下的微观图像类似。STEM 图中的红色箭头处清晰显示了肾小球基底膜、系膜基质、系膜胞质、足细胞足突的细节以及与基底膜毗邻的裂孔结构。STEM 图像显示了高分辨的超微结构,图像衬度明显,可以快速捕捉到极小的细胞变化,并快速分析感兴趣部位的微观结构。 案例二:正常的小鼠胰腺腺泡细胞 图 2 正常的小鼠胰腺腺泡细胞结构 STEM 图。图中显示了酶原颗粒(Z)、液泡、线粒体(M)、腺泡腔(L)和粗面内质网(R)。上图为胰腺星形细胞,下图为内质网的精细结构。 案例三:人类脑肿瘤组织 图 3 人类脑肿瘤组织 STEM 图。图中清晰显示了细胞的超微结构特征,髓鞘轴突、线粒体和嵴结构(M)、包含细胞间质纤维和囊泡的星形细胞结构(红色箭头处)。图中可以清晰观测到细胞结构和细胞器之间的关系。 图4 培养的全能干细胞的 STEM 图。晶状体上皮细胞内有大量的细胞质器,如线粒体和卵圆形细胞核。均质的细胞外观与早期细胞分化阶段的细胞相似(数据来自 ROR1e LECs)。图中可以清晰看到晶状体的微结构,包括靠近组织周围的晶状体上皮细胞,以及与之相邻的具有杆状细胞核的未成熟的晶状体纤维细胞,具有圆形细胞核的细胞和晶状体纤维细胞类似。 总结 通过以上 4 个案例,可以看出,使用配备 STEM 探测器的飞纳台式场发射扫描电镜,在观察生物类样品时,在较低的加速电压下,几分钟内便可以获得高衬度、高分辨图像。如您对此产品感兴趣,欢迎联系我们。 参考文献 Cohen Hyams T Mam K Killingsworth MC, 2020, ‘Scanning electron microscopy as a new tool for diagnostic pathology and cell biology’, Micron, vol. 130, pp. 102797 -102797, http://dx.doi.org/10.1016/j.micron.2019.102797.C. U., Devi, M. Masona, T. Cohen Hyams, M. C. Killingsworth, D. G. Harmana V. Gnanasambandapillai, L. Liyanage and M. D. O’Connor, ‘A simplified method for producing human lens epithelial cells and light-focusing micro-lenses from pluripotent stem cells’, Experimental Eye Research (2020) https://doi.org/10.1016/j.exer.2020.108317
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制