红外探边仪

仪器信息网红外探边仪专题为您提供2024年最新红外探边仪价格报价、厂家品牌的相关信息, 包括红外探边仪参数、型号等,不管是国产,还是进口品牌的红外探边仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外探边仪相关的耗材配件、试剂标物,还有红外探边仪相关的最新资讯、资料,以及红外探边仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

红外探边仪相关的厂商

  • 禹城通佳边坡材料有限公司坐落于山东禹城辛寨镇安庄西(308国道北侧),是一家专门从事边坡绿化与生态防护材料研发、生产、销售、技术服务及设计施工为一体的高新技术企业。?我公司主要产品有环保草毯、植物纤维毯、抗冲生物毯、麻椰固土毯、植被毯、椰毯、椰网、麻网、生态袋、植生袋、草坪植生带、土工格室、三维土工网垫及其他土工材料,产品广泛应用于交通、水利、环保及其他领域生态边坡建设,实现快速生态护坡效果。在高速公路、铁路、河渠护岸、矿山修复、山体边坡及其他生态边坡治理工程中,经广大工程单位使用证明,产品质量稳定、可靠、施工方便,价格合理,售后服务号,得到广大客户的一致好评。?禹城通佳边坡材料有限公司秉承“研制更好的产品、提供更好的服务、创建更好的品牌”的经营理念及“为客户提供优质的产品及超值服务”的服务宗旨,禹城通佳边坡材料有限公司热诚希望携手各界朋友,共铸彼此辉煌。
    留言咨询
  • 广州飒特电力红外技术有限公司是一家总部设在中国广州的民营红外热像仪跨国企业,公司在法国、爱尔兰、英国分别设有研发、生产和销售中心,是中国红外热像仪制造的龙头企业。 飒特企业目前生产的红外热像仪产品超过11个类别,35种产品。主要应用于电力、军事、警务、钢铁石化、水泥、电子制造业、电信、轨道交通、建筑、消防、教育以及医疗行业的发热人群筛查及人体测温等等。只要涉及到测温的领域(尤其是非接触性的状态检测),红外热像仪都能大展身手。 飒特企业是GB/T 1987-2005《工业检测型红外热像仪》国家标准的起草单位,,是中国红外成像技术的领跑者。公司拥有30几项的国内外专利和独立的知识产权,系列产品被国家科技部、国家商务部、国家质量监督局、国家环保局联合授予国家重点新产品。 飒特企业所制造的红外热像仪产品远销德国、法国、日本、美国、俄罗斯、中东、巴西、韩国、澳大利亚等全世界三十多个国家和地区,获得海内外用户一致的肯定与好评! 而今,飒特企业已经成为了国际市场上名列前茅的民用红外热成像研发及生产企业,“飒特红外”已成为了国际著名的红外热像仪品牌。 请即拨打020-82227875飒特企业国内销售部。您的需求,正是飒特企业全力以赴的理由!
    留言咨询
  • 广州飒特红外股份有限公司始建于1991年,公司座落在美丽的花城广州,公司位于广州黄埔经济技术开发区,主厂区占地1000多平方米,建筑面积50000多平方米,职工600人,公司拥有其中工程师200多人,大专及同等以上学历占67%。公司通过吸引国内外先进的技术与自主研发相结合,不断创新。 广州飒特红外股份有限公司是一家专注于红外热成像仪产品的研发、生产和销售的高新技术企业,在法国、爱尔兰、英国分别设有研发、生产和销售中心,其旗下各类产品出口到世界上30多个国家和地区,是中国红外界成功进入世界市场的一家跨国公司。公司下面有军品部,是国家国防产品供应商,国家二级保密单位。 “飒特红外”成立至今已有20多年的发展历史,作为世界知名的红外热像仪主要制造商,“飒特红外”产品线涵盖了入门迷你型、普通工具型、工业维护型、高端研究型、消防救援型、矿用防爆型、安全侦察型、夜驾辅助型医疗诊断型、智能监控型等十大系列超过60种热像仪产品,年产量超过一万台。“飒特红外”通过为全球三十多个国家和地区提供完善、稳定的红外应用技术和产品解决方案,让全球各地的电力、消防、石化、冶金、煤矿、建筑、医疗、电力、安防、监控、等领域的用户享有全方位的红外热像产品及服务。 “飒特红外”是中国GB/T 1987-2005《工业检测型红外热像仪》国家标准的制定单位;是中国消防和电力两大行业红外热像仪检测技术国家标准的主要参与起草单位和样机提供单位;是中国红外热像仪制造业龙头企业。“飒特红外”拥有119项的国内外**和独立的知识产权,系列产品被中国科技部、商务部、质检总局以及环保局授予《国家重点新产品》证书。
    留言咨询

红外探边仪相关的仪器

  • 仪器简介:■ 红外吸收光谱测量范围:2-10µ m(MCT)/1-5.5µ m(InSb)■ 时间分辨率:50ns(MCT)/25ns(InSb)■ 碳化硅红外辐射源,波长范围1-16µ m■ 镀金反射镜,增加红外光收集效率■ 红外辐射源既可做为加热源,又可做为光谱透射测量的辐射源■ 既可测量通过样品的连续光谱透射(吸收),也可测量时间分辨红外光谱技术参数:■ 红外吸收光谱测量范围:2-10µ m(MCT)/1-5.5µ m(InSb)■ 时间分辨率:50ns(MCT)/25ns(InSb)■ 碳化硅红外辐射源,波长范围1-16µ m■ 镀金反射镜,增加红外光收集效率■ 红外辐射源既可做为加热源,又可做为光谱透射测量的辐射源■ 既可测量通过样品的连续光谱透射(吸收),也可测量时间分辨红外光谱主要特点:■ 红外吸收光谱测量范围:2-10µ m(MCT)/1-5.5µ m(InSb)■ 时间分辨率:50ns(MCT)/25ns(InSb)■ 碳化硅红外辐射源,波长范围1-16µ m■ 镀金反射镜,增加红外光收集效率■ 红外辐射源既可做为加热源,又可做为光谱透射测量的辐射源■ 既可测量通过样品的连续光谱透射(吸收),也可测量时间分辨红外光谱
    留言咨询
  • 红外探水仪 一、产品应用概述 红外探测属广义遥感技术,它建立在红外辐射场的基础上。地球上一切物质,每时每刻都在向外辐射红外电磁波,并形成红外辐射场。物质在向外部发射红外辐射的同时,必然会把它内部的信息传递出来。因而根据场的变化,即探测曲线上所出现的异常,提前发现隐蔽的地质灾害体,从而预防灾害的发生。红外辐射场理论应用于隧道地质预报中,就是当隧道外围空间和掘进前方存在隐伏水体或含水构造时,隐伏水体或含水构造产生的异常场就要叠加到正常场上,使隧道内的正常场产生畸变,根据拱顶、隧底、边墙、掌子面探测曲线和测量数据的变化就能确定隐伏水体或含水构造所在空间方位。HS-S320型红外探水仪,将探测场强数据储存在仪器内,与微机连接后,可将探测数据传输至HS-S320红外探水仪***软件,自动实现快速准确成图,提示场强畸变数据,并可以三维立体视图分析。二、红外探水仪在超前地质预报中的作用 超前探水指在某些地区,不能确保设有水害威胁时,在采掘工作之前必须进行探水,进一步探明水文情况,确切掌握水源的位置和距离。这是预防突然涌水的重要措施。红外探测仪可实现拱顶、隧底、边墙、掌子面全空间***探测,其预报内容:掘进前方、上方、下方、两边30米范围内有无含水断层和溶洞。三、***产品 ***号:201520225699.1四、产品特点: 1、硬件:采用的红外波段,能更***反映被探测对象的变化; 2、软件:新增三维立体视图分析,预测判断更直观!五、技术参数 1、显示屏:LCD(128*64白屏) 2、探测距离:≦30米 3、存储数据:700组 4、瞄准方式:红色激光指示 5、通信接口:RS232 6、软件:三维立体视图分析 7、电源:充电电池 8、电源电压:1.2V×5 9、按键:一体化膜按键 10、仪器箱:定制***三防箱 11、提供检测报告模版六、使用环境要求 1、温度:0℃~+45℃ 2、湿度:应不大于85%。 3、无腐蚀性气体以及强电磁场干扰。七、服务支持 提供***技术支持和免费培训。
    留言咨询
  • 微秒时间分辨超灵敏红外光谱仪 传统光谱仪由于光源,测量方式等限制,需要几秒钟或者更长的测量时间来获取一个完整的光谱。 然而,生物医学、化学动力学等许多过程都是发生在微秒的时间内,这些过程是传统技术的光谱仪没办法观察到。IRsweep公司推出的IRis-F1时间分辨快速双光梳红外光谱仪是一种基于量子联激光器频率梳的红外光谱仪,突破了传统光谱仪需要几秒钟或者更长的测量时间来获取一个完整的光谱的限制,能实现高达1 μs时间分辨的红外光谱快速测量,提供了结合高测量速度(微秒时间分辨率)、高光谱分辨率和宽光谱范围的解决方案,这种高速的测量方案开启了生物医药、化学反应动力学光谱分析的全新的可能。 IRis-F1 微秒时间分辨超灵敏红外光谱仪IRis-F1微秒时间分辨超灵敏红外光谱仪原理示意图 主要特点: 1 μs时间分辨率 高达0.25 ~0.5 cm-1波数分辨率 双量子联激光频率梳技术提供高能量光源 测量数据信噪比高 易于微量及痕量光谱分析 方便易用、可靠性高 主要技术参数: 高信噪比 广泛的应用领域: 时间分辨光谱 动力学研究 光催化研究 高通红外光谱分析 适用固体、液体、气体样品化学成分分析 主要应用案例:1、菌紫红质时间分辨红外光谱研究 菌紫红质(bacteriorhodopsin)是存在于细菌(如生活在盐湖中的嗜盐细菌)中的光敏跨膜质子泵。 菌紫红质结构示意图盐湖中嗜盐细菌光敏变色实验装置示意图 时间分辨快速双光梳红外光谱测量结果时间分辨快速双光梳红外光谱测量结果显示: 成功观察到微秒时间分辨下的菌紫红质光敏状态变化 在微秒测试时间内,mOD浓度下光谱结果良好 光谱噪音水平低 时间分辨快速双光梳红外光谱适用于: 直接分析快速生物过程 实时研究动力学变化 高通分析蛋白-配体相互作用 2、光催化过程的时间分辨红外光谱研究 三联吡啶钌(Ru(bpy)32+ )由于具有良好的受激发特性,在电致发光(ECL)检测领域有着广泛的应用。光催化水分解反应机理: (i) Ru(bpy)32+ 被光激活;(ii) 消耗 S2O82- ,变为3+ 价转态 (iii)在 Co3O4 催化下,电子从水转移到 Ru(bpy)33+ 还原成2+价转态 相应的实验方案示意图时间分辨快速双光梳红外光谱测量结果时间分辨快速双光梳红外光谱测量结果显示: 成功观察到微秒时间分辨下的催化反应 获得μOD浓度下信号 能结合ATR技术时间分辨快速双光梳红外光谱适用于: 催化反应 化学反应 反应过程监控3、时间分辨红外光谱进行远距探测 远距探测用于远程探测危险物质,如爆炸物、生物/化学试剂等在安全防护领域具有重要的意义。而远距探测依赖于来自遥远表面的光束反射信号探测,具有较大的挑战。 实验装置示意图IRsweep远程探测方案测量结果IRsweep远程探测方案测量结果显示: 成功探测到远程物体的漫反射信号 较高的输出能量具有远程探测的优势 能探测到 1 μg/cm2 表面覆盖的信号IRsweep远程探测方案可用于: 国土安全 机场安检 IRsweep 相关光学产品IRcell – 超长光程激光样品池 适用于红外激光吸收光谱 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试更低容量更高灵敏度 光程长度:349 cm 样品池体积:38 ml 低边噪声水平:0.2‰ rms IRcell 技术参数: IRcell 应用案例 实时分析呼吸气体中的CO和CO2 — using an EC-QCL 实验装置示意图实验测试结果Ghorbani, R. & F. Schmidt, F.M. Appl. Phys. B (2017) 123: 144. doi:10.1007/s00340-017-6715-x 使用IRcell用于呼吸气体的分析结果显示: 成功探测呼唤气体中的CO2和CO 较长的光程具有痕量气体探测的优势 对痕量气体探测具有很高的信噪比IRcell适用于: 工业、医疗、环境领域的痕量气体检测 工业过程控制 安全监控 微量样品测试 部分用户 2018年8月,套新一代IRis-F1时间分辨快速双光梳红外光谱系统在德国柏林自由大学( Free University of Berlin)的Joachim Heberle 教授组成功完成安装。
    留言咨询

红外探边仪相关的资讯

  • 一文了解|红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。本文将介绍红外被动近场显微成像技术的基本原理,以及基于此可实现的物体表面近场辐射探测与红外超分辨温度成像研究。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知的是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步的研究。图1 物体表面存在的近场辐射及其探测方式 (a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距,即可获得近场、远场混合信号( 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集的光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2 红外被动近场显微镜SNoiM的实物图(a) 红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO2衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长( ~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO2)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO2强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO2衬底)的几种显微图像及成像原理示意图:(a)光学显微、(b)远场红外和(c)近场红外另外,值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO2;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO2。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。图4 NiCr金属线在不同测试模式下的红外热成像结果:(a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像
  • 红外近场辐射探测及超分辨温度成像
    红外热成像技术通过探测物体自身所发出来的远场红外辐射从而感知表面温度,在军事、民航、安防监控及工业制造等重要领域有着广泛应用。但由于光学衍射极限的限制,红外热成像的分辨率通常在微米尺度及以上,因此无法用于观测纳米尺度的物体。近几年,我们开发了红外被动近场显微成像技术,通过探测物体表面的近场辐射从而极大地突破红外衍射极限限制,将红外温度探测及成像从传统的微米尺度拓展到了纳米尺度。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所红外科学与技术全国重点实验室的科研团队在《红外与毫米波学报》期刊上发表了以“红外近场辐射探测及超分辨温度成像”为主题的文章。该文章第一作者为朱晓艳,主要从事红外被动近场成像方面的研究工作。本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度成像。近场辐射我们首先从黑体辐射的本源入手。如图1(a)所示,绝大多数物体内部都包含大量带正电荷和负电荷的粒子,这些带电粒子永远不会静止不动,而是一直处于随机扰动状态(热运动)。我们所熟知的热辐射就源自物体内部的这种带电粒子热运动,辐射特征可由普朗克黑体辐射定律描述。但鲜为人知地是,物体内的电荷扰动不仅在距离物体辐射波长尺度以外的区域产生红外热辐射(远场辐射),而且在物体近表面处会生成一种能量密度极高的表面扰动电磁波(以倏逝波形式存在),可称之为近场辐射。理论很早就预言了这种表面电磁波(近场辐射)的存在,并发现针对远场辐射所建立的认知及规律(如普朗克辐射定律等)将不再适用于近场辐射,但相关实验研究由于探测难度极高而一直未有明显突破。2009年,美国麻省理工学院和法国CNRS的研究组取得重要进展,先后在实验上验证了纳米尺度下近场辐射热传输效率可远超黑体辐射极限。尽管该实验验证了物体表面近场倏逝波的存在,但相关物理现象仍然缺少更直接的实验手段对其进行更进一步地研究。图1(a)物体表面存在的远场辐射及近场辐射;探针调制技术:(b)当探针远离样品时不会散射物体表面的近场倏逝波、(c)当探针靠近物体近表面时可以散射近场倏逝波;(d)红外被动近场显微镜(SNoiM)的示意图红外被动近场显微镜(SNoiM)的实验原理及其应用SNoiM技术的实验原理物体表面的近场辐射由于其倏逝波特性(即强度随着远离物体表面急剧衰退)而难以探测。在SNoiM中,利用扫描探针技术有效地解决了这一问题。如图1(b)所示,当不引入纳米探针(或探针远离物体表面)时,物体近表面的近场倏逝波无法被探测,该显微镜工作于传统红外热成像模式,即仅获得其远场辐射信号。SNoiM技术的关键是,将探针靠近样品近表面(比如10 nm以内),近场倏逝波可以被针尖有效散射出来。该探测模式下,探测器所获取的样品信号中同时存在近场和远场分量。因此,通过控制探针至物体表面的间距h,即可获得近场、远场混合信号(h 100 nm或撤去探针,称为远场模式)。最终,利用探针高度调制及解调技术即可从远场背景中提取物体的近场信息。图1(d)展示了SNoiM系统探测近场信号的示意图。探针所散射的近场信号首先由一个高数值孔径的红外物镜进行收集。但在该过程中,无法消除来自环境、被测物体及仪器自身的远场辐射信号,它们随近场信号一同被红外物镜收集,导致被测物体微弱的近场信号湮没于巨大的远场背景辐射之中。为了最大程度降低远场背景信号,研究人员在红外物镜上方设计了一个孔径极小的共焦孔(约100 μm),通过此共焦结构可以缩小收集光斑,有效抑制背景辐射信号。然而,即使是这样,是否有足够灵敏的红外探测器能够检测到纳米探针所散射的微弱近场信号也是一大难点。为此,本团队研发了一款超高灵敏度红外探测器,攻克了这一技术壁垒。图2(a)展示了首套SNoiM设备实物图。其中,金色圆柱腔体为低温杜瓦,内部搭载了自主研制的超高灵敏度红外探测器(CSIP)及一些低温光学组件;白色方框内为实验室内组装的基于音叉的原子力显微镜(AFM)、红外收集物镜及样品台区域,具体细节参照图2(b)、(c)。红外近场图像的空间分辨率不再受探测波长限制,而是由探针尖端尺寸决定。如图2(b)中插图所示,通过电化学腐蚀方法,可制备出形貌优良的金属(钨)纳米探针,其中,针尖直径可小至100 nm以内。图2(a)红外被动近场显微镜SNoiM的实物图,其中搭载了超高灵敏度红外探测器;(b)AFM及红外收集物镜;插图为通过电化学腐蚀制备的金属(钨)纳米探针;(c)探针与样品的显微照片基于SNoiM的超分辨红外成像研究利用SNoiM技术探测物体表面的近场辐射可极大突破红外衍射极限,实现超分辨红外成像。首先以亚波长金属结构的成像结果为例进行展示。图3(a)为Au薄膜样品在普通光学显微镜下所拍摄的图像。其中,亮金色区域为Au薄膜(约50 nm厚),其他区域为SiO₂衬底。使用SNoiM系统可同时获取该样品的远场和近场红外图像(获取远场图像时只需将探针挪离样品表面)。如图3(b)所示,由于成像波长较长(~ 14 μm),远场红外图像的分辨率远不如普通光学显微图像。比如,Au与衬底(SiO₂)的边界无法清晰区分以及中间细小金属条状结构无法识别等(图中黑色虚线所示)。然而,在相同探测波长下,如图3(c)所示的近场红外图像则展现了超高的空间分辨率,其图像清晰度可完全与普通光学显微镜所获取的图像相比拟。为了进一步理清上述三种显微成像技术的区别,图3示意图中给出了探测到的信号来源:对于光学显微图像,其信号来自于可见光的反射。由于金属的反射能力较强,因而Au上的信号远比SiO₂强。可见光波长范围为400~760 nm,因而光学显微镜可清晰分辨该样品表面的细微结构。远场红外成像不依赖于外界光源照射,直接通过红外物镜收集物体自身所发射出来的辐射信号,并对其进行成像。在探测波长为14 μm情况下,受衍射极限的限制,系统的实际空间分辨率也只有约14 μm。近场红外成像则检测探针尖端所散射的样品表面近场辐射信号,因此不受远场光学衍射极限限制,可获得超分辨红外图像(图3c)。图3 样品Au(SiO₂衬底)的(a)光学显微、(b)远场红外和(c)近场红外的图像及成像原理示意图另外值得注意的一点是,图3(c)所示的红外近场图像不仅仅在分辨率上有所提高,而且在金属与衬底的信号强度对比上出现了明显反转(由远场切换至近场后,Au由弱信号方(蓝色)转变为强信号方(红色))。针对上述现象的解释如下:远场成像时,Au是高反射物体,因此吸收红外光的能力极弱,根据基尔霍夫定律,则其红外发射率也很低。因而远场红外成像中其信号弱于衬底SiO₂;而在近场成像中,室温金属(Au)中的自由电子存在剧烈的热运动(热噪声),从而在金属表面产生极强的表面电磁波,因而Au上的信号远强于SiO₂。由此可见,SNoiM技术不仅突破了红外衍射极限限制,而且能够检测远场显微镜所无法探测的物理过程。基于SNoiM的微观载流子输运及能量耗散可视化研究基于SNoiM技术的另一项创新与突破在于纳米尺度下通电器件中微观载流子输运及局域能量耗散的直接可视化。值得指出,SNoiM所检测的近场辐射信号来自于物体近表面的传导电子,因此其成像结果所反映的是物体表面的局域电子温度(Te)。目前仅SNoiM技术可实现纳米尺度下电子温度分布的直接成像。下面将以通电微小金属线(NiCr合金)为例进行说明。图4 (a)通电金属线显微图像及远场热成像;器件弯折区域分别为(b)凹形、(c)U形的扫描电镜图像及超分辨红外近场热成像图4(a)为NiCr金属线的光学显微图像(上)及其通电后的红外远场热图像(下)。红外远场成像检测通电器件的远场辐射,从而估算出器件的表面温度。比如,器件中心处出现明显热斑,该处温度最高,表明电流流经微小弯曲金属线时能量耗散最大。而受衍射极限限制,远场红外热成像无法分辨微小金属线(宽度约3.3 μm)上不同区域的温度分布,因此无法有效反映微观尺度上载流子的能量耗散特性。与之相比,近场红外热成像则可清晰展示器件中心区域微观载流子的输运及能量耗散行为。如图4(b)所示,当电流经过器件凹形弯折区时,近场红外热成像下,该区域内存在极其不均匀的温度分布,而且在凹形内侧出现显著热斑。该现象表明,通电NiCr器件的凹形区内存在非均匀局部焦耳热,且内侧区域电子能量耗散最大,这是由于电流的拥挤效应所造成的。此外,该温度分布图像似乎表明,通电时,载流子倾向于避开直角拐角处,并趋于沿着U形路径分布。为验证这一猜想,该实验进一步设计了中心区域呈U形弯折的通电NiCr金属线,并对其进行了近场红外热成像表征。图4(c)显示,U形区域温度均匀分布,无明显局域热斑,这表明载流子倾向于沿着U形路径均匀输运。基于SNoiM纳米热分析研究而提出的新设计大大缓解了电流拥挤效应可能对器件造成的局部热损伤,具有重要的指导意义。总结与展望综上,利用SNoiM技术,可以实现物体表面的近场辐射探测及红外超分辨温度成像。该技术是目前国际上唯一能够进行局域电子温度成像的科学仪器,不仅突破了红外远场热成像的衍射极限限制,且首次实现了纳米尺度下通电器件中载流子输运行为与能量耗散的直接可视化。该研究内容均基于第一代室温SNoiM系统,目前,第二代低温SNoiM系统已被成功搭建,有望进一步突破后摩尔时代信息和能源器件的功耗降低及能效提升难题,探索物理新机制,并推动纳米测温技术新的发展。这项研究获得国家自然科学基金优秀青年基金的资助和支持。论文链接:DOI: 10.11972/j.issn.1001-9014.2023.05.001
  • PSC发布mIRage超高空间分辨红外成像光谱仪新品
    超高空间分辨红外成像光谱仪 — —mIRage O-PTIR系统 产品简介:美国PSC (Photothermal Spectroscopy Corp, 前身Anasys公司)最新发布的一款应用广泛的亚微米级空间分辨率的红外光谱和成像采集系统mIRage。基于独家专利的光热诱导共振(PTIR)技术,mIRage产品突破了传统红外的光学衍射极限,其空间分辨率高达500 nm,可以帮助科研人员更全面地了解亚微米尺度下样品表面微小区域的化学信息。 mIRageTM O-PTIR 光谱O-PTIR (Optical Photothermal Infrared) 光谱是一种快速简单的非接触式光学技术,克服了传统IR衍射的极限。与传统FTIR不同,不依赖于残留的IR 辐射分析,而通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,来反映微小样品区域的化学信息。 mIRage工作原理:• 可调的脉冲式中红外激光汇聚于样品表面,并同时发射与红外激光共线性的532 nm的可见探测激光;• 当IR吸收引发样品材料表面的光热效应,并被可见的探测激光所检测到;• 反射后的可见探测激光返回探测器,IR信号被提取出来;• 通过额外地检测样品表面返回的拉曼信号,可以实现同时的拉曼测量。 O-PTIR克服了传统红外光谱的诸多不足:• 空间分辨率受限于红外光光波长,只有10-20 μm• 透射模式需要复杂的样品准备过程,且只限于薄片样品• 无传统ATR模式下的散射像差和接触污染 O-PTIR的优势之处在于: • 亚微米空间分辨的IR光谱和成像(~500 nm),且不依赖于IR波长• 与透射模式相媲美的反射模式下的图谱效果• 非接触测量模式——使用简单快捷,无交叉污染风险• 很少或无需样品制备过程 (无需薄片), 可测试厚样品• 可透射模式下观察液体样品• 可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,无荧光风险mIRage 技术参数 波谱范围模式探针激光样品台最小步长样品台X-Y移动范围IR (1850-800 cm-1)反射 532 nm 100 nm 110*75 mmIR (3600-2700 cm-1)透射Raman (3900-200 cm-1)反射 重要应用实例分析: 1、多层薄膜 高光谱成像: 1 sec/spectra. 1 scan/spectra样品区域尺寸:20 μmx 85 μm size. 1 μm spacing.图谱中可以明显看出在不同区域上的羰基,氨基以及CH2 拉伸振动的分布。 2、高分子膜缺陷左:尺寸为240 μm的两层薄层上缺陷的光学图像;右:在无缺陷处(红色)和缺陷处(蓝色)的样品的IR谱图,998 cm-1处为of isotactic polypropylene 的特征红外吸收峰。 3、生命科学 左:70*70 μm范围的血红细胞的光学照片;中:红色条框区域在1583cm-1处的Raman照片;右:红血细胞选择区域的同步的IR和Raman图谱 上左:水中上皮细胞的光学照片;上右:目标分子能够在红外光谱上很容易的区分和空间分离,可以明显看到0.5-1.0 μm的脂肪包体;下:原理示意图:红外光谱测量使用透射模式,步长为0.5 μm。 4、医药领域 左:PLGA高分子和Dexamethasone药物分子的混合物表面的光学照片中:在1760 cm-1 出的高光谱图像,显示了 PLGA在混合物中的分布,图像尺寸40 μm * 40 μm右:在1666 cm-1 出的高光谱图像,显示了 Dexamethasone在混合物中的分布,图像尺寸40 μm *40 μm 5、法医鉴定 左:800 nm纤维的光学照片右:纳米纤维不同区域的O-PTIR图谱 6、其他领域• 故障分析和缺陷• 微电子污染• 食品加工• 地质学• 考古和文物鉴定 部分用户及发表文章 [1] Ji-Xin Cheng et al., Sci. Adv.2016, 2, e1600521.[2] Ji-Xin Cheng et al., Anal. Chem. 2017, 89, 4863-4867.[3] Label-Free Super-Resolution Microscopy. Springer, Biological and Medical Physics, Biomedical Engineering.创新点:基于独家专利的光热诱导共振(PTIR)技术,mIRage突破了传统红外的光学衍射极限,空间分辨率高达500 nm;可以与拉曼联用,实现同时同地相同分辨率的IR和Raman测试,但无任何荧光风险;非接触式测量,避免了交叉污染。 mIRage超高空间分辨红外成像光谱仪

红外探边仪相关的方案

  • 利用FLIR红外热像仪研究普林塞萨港地下河洞穴系统中的蝙蝠群
    一个由意大利、菲律宾人员组成的研究小组一直在使用FLIR的红外热像仪来研究位于菲律宾的令人惊叹的普林塞萨港地下河洞穴系统中的蝙蝠的行为。研究人员希望这项技术能够让他们更深入地了解蝙蝠群的规模和特性,而且掌握了这项技术也将有助于他们在未来多年保护这些物种。
  • 氦质谱检漏仪红外探测器杜瓦封装检漏
    随着空间遥感技术的不断发展, 对空间探测器的性能和光谱提出越来越高的要求. 红外探测器是红外探测系统的核心元件, 在航天和天文领域有广泛的应用, 随着波长向长波扩展和探测灵敏度的提高, 红外探测器必须在超低温下工作. 因此需要将红外探测器封装在杜瓦瓶中, 组装成杜瓦封装器件, 目前红外探测器在空间应用中多采用机械制冷方式, 将外部制冷机与杜瓦封装器件连接. 从而实现低温工作. 真空度的保持是杜瓦封装器件的重要指标. 真空度差或者真空度保持时间短将直接影响红外探测器组件的性能. 因此需要进行泄漏检测, 上海伯东德国 Pfeiffer 氦质谱检漏仪提供无损的检漏方法, 成功应用于红外探测器杜瓦封装器件检漏!
  • 纳米红外光谱探测细胞外囊泡的结构和异质性
    布鲁克纳米红外光谱仪(nanoIR)采用光热诱导共振技术(AFM-IR)实现微小区域红外信号的采集。红外激光照射到样品上,样品吸收辐射光产生热膨胀,这种热膨胀引发探针的震荡,通过监控探针的震荡强度获得红外吸收强度。AFM-IR利用原子力探针作为样品红外吸收的传感器,实现了超高灵敏度的光谱和红外成像探测,化学成像分辨能力可以达到10nm。近期,澳大利亚悉尼大学悉尼药学院团队将纳米红外光谱方法引入到单个EV结构的检测中,展示了其在同一EVs和不同EVs群体之间揭示个体EVs异质性的能力。

红外探边仪相关的资料

红外探边仪相关的试剂

红外探边仪相关的论坛

  • 红外碳硫仪中影响碳硫结果的几点因素

    红外碳硫分析仪根据燃烧方式的不同分为高频红外碳硫分析仪、管式红外碳硫分析仪以及电弧红外碳硫分析仪,目前市场主流为高频红外碳硫分析仪以及电弧红外碳硫分析仪。 高频红外碳硫分析仪由于其高频炉的高频感应燃烧,能保证分析材料的充分燃烧释放,是目前最理想的有色/黑色金属、粉末、矿石、水泥等材料的碳硫分析设备。电弧红外碳硫分析仪由红外检测系统与电弧燃烧炉组成,是专门应用于不锈钢、普碳钢、低合金钢等金属材料的碳硫分析,快速、准确,性价比高,颇受用户欢迎。然而,红外吸收法分析碳硫虽然有很多优点,但也受很多客观因素的限制影响。现罗列总结几点,希望能帮助广大的红外碳硫用户!1.碳受影响的主要因素:a.分析气流量 流量的稳定性对红外碳硫仪是至关重要的,特别是对于碳数据的影响。一般碳结果高低与流量呈以下规律:流量值变低,碳数据就偏高,释放曲线偏低偏胖;流量值变高,碳数据就偏低,释放曲线偏高偏瘦。影响流量值变化的主要因素有:氧气压力的稳定性、气路通畅性(灰尘多少)、是否漏气及流量计是否损坏等。b.粉尘吸附 做样越多,产生的灰尘就越多。粉尘是有害物质,不仅产生吸附碳硫作用,过多的粉尘还会堵塞气路元件,造成气路不通畅。c.添加剂的选择 不同的材料选择不同的添加剂,高频红外中一般性的金属材料使用钨粒即可,但一些特殊材料需还原性更强,热值更高的添加剂如:纯铁、纯铜、锡等;电弧红外的常规添加剂为锡、纯铁、硅钼粉,用于分析合金材料足够了。d.氧气纯度及流量 纯氧可以助燃,纯度99%以上即可。氧气的输出压力控制在:电弧红外0.05mpa,高频红外0.08即可;流量控制在1.5L/Min(90L/H)即可。e.称样量的选择 一般的样品称样量在0.1-0.5g左右,如果是超低碳硫,可能需要加大称样量。f.其他 与添加剂的纯度、瓷坩埚空白值等有关,分析超低碳硫时影响很大。2.硫受影响的主要因素:a.粉尘吸附 粉尘越多,对硫的吸附越厉害,硫值就越低。特别在电弧燃烧炉中,目前电弧燃烧炉过滤粉尘的系统主要还是80年代的除尘仓滤纸除尘+药棉二级除尘技术,它能快速有效的挡住灰尘进入碳硫检测池,但短时间内会积累大量灰尘,需经常手动清理。电弧炉手动清理灰尘一般在8—10个样效果较好。b.水分影响 二氧化硫遇水会形成亚硫酸,减少了红外线对二氧化硫的吸收,从而影响数据。水分的存在一般是由氧气的纯度、管道遇冷后没有做样预热(特别是冬天,外界温度低,容易形成冷凝水)以及结晶水带来的。c.添加剂的选择 相应的材料选择使用适应的添加剂对硫的释放很重要。d.称样量的选择 一般的样品称样量在0.1-0.5g左右,如果是超低碳硫,可能需要加大称样量。f.其他 与添加剂的纯度、瓷坩埚空白值等有关,分析超低碳硫时影响很大。

  • 红外线及探测知识

    红外测温仪光电仪器的核心部件之一 —— 红外探测器红外线探测器是把入射红外辐射能量转变为其他形式能量(一般为电能)的一种转换器或传感器.它是各种红外仪器最重要的关键元件,可分为热敏探测器和光子探测器两大类.1.热敏探测器1,1:热敏电阻探测器热敏电阻器是电阻值对温度极为敏感的一种电阻器,也叫半导体热敏电阻器。它可由单晶、多晶以及玻璃、塑料等半导体材料制成。这种电阻器具有一系2列特殊的电性能,最基本的特性是其阻值随温度的变化有极为显著的变化,以及伏安曲线呈非线性。 热敏电阻器种类繁多,一般按阻值温度系数可分为负电阻温度系数(以下简称负温系数)和正电阻温度系数(以下简称正温系数)热敏电阻器;按其阻值随温度变化的大小可分为缓变和突变型;红外测温仪按其受热方式可分为直热式和旁热式;按其工作温度范围可分为常温、高温和超低温热敏电阻器;按其结构分类有棒状、圆片、方片、垫圈状、球状、线管状、薄膜以及厚膜等热敏电阻器。热敏电阻器的主要特点是对温度灵敏度高,热惰性小,寿命长,体积小,结构简单,以及可制成各种不同的外形结构。因此,随着工农业生产以及科学技术的发展,这种元件已获得了广泛的应用,如温度测量、温度控制、温度补偿、液面测定、气压测定、火灾报警、气象探空、开关电路、过荷保护、脉动电压抑制、时间延迟、稳定振幅、自动增益调整、微波和激光功率测量等等。随着近代军事技术、特别是空间技术的发展,对热敏电阻器除了要求高可靠、长寿命、超高温和超低温外,还需要灵敏度更高、不需致冷、性能优良的测辐射功率的热敏器件

  • 一体机全量程高频红外碳硫仪

    一体机全量程高频红外碳硫仪

    一体机全量程高频红外碳硫仪http://ng1.17img.cn/bbsfiles/images/2017/01/201701191656_647341_1224541_3.jpg一.仪器概述CS887型红外碳硫分析仪采用整机模块化一体机设计,即高频炉、气路系统、电路系统、红外检测系统四个独立模块整机一体化。高频炉和红外检测系统一体机代表了国际主流设计(高频炉和红外检测系统分体式是国内80~90年代技术)。高频炉加装专业的防高频泄漏装置,整机电路系统装有防电磁干扰装置,从而免除了由于高频干扰或电磁干扰引起的分析结果不稳定和高频辐射对人体的影响。本产品能快速、准确地测定钢、铁、合金、铸造型芯砂、有色金属、水泥、矿石、焦炭、催化剂及其它材料中碳、硫两元素的质量分数。这套设备引进了国外的先进技术,是集光、机、电、计算机、分析技术等于一体的高新技术产品,具有测量范围宽(内置不同材料的全量程曲线)、抗干扰能力强、功能齐全、操作简便、分析结果准确可靠等特点。二.红外检测原理CO2、SO2等极性分子具有永久电偶极矩,因而具有振动和转动等结构。按量子力学分成分裂的能级,可与入射的特征波长红外光耦合产生吸收,气体分子在红外光波段,具有选择性吸收谱图,当特定波长的红外光通过CO2或SO2气体后,能产生强烈的光吸收。由于探测器是将光信号转换为电信号,当探测器工作在线性区域内,选定某一特定波长并且确定了分析池(吸收池)长度时,由测量光强能换算出混合气体中被测气体的浓度,这就是红外吸收法能定量测量气体浓度的基本原理。本仪器选定的测量波长:CO2为4.26um,SO2为7.4um。分析室包括微型红外光源,反光镜,调制电机,吸收池,滤光片和探测器。微型红外光源用电加热到800℃产生红外光,经吸收池被CO2、SO2吸收后再经过窄带滤光片,滤去除上述波长外的其他光辐射的能量,入射到探测器上,则探测器上检测到的是与CO2、SO2浓度相对应的光强,经过探测器光电转化为电信号,再经微机进行归一化定标处理,积分反演成为碳硫元素的百分含量。在光源与吸收池之间放有调制马达,把光信号调制成64Hz的交变辐射信号。探测器输出的中心频率为64Hz。由热释电器件转化为电信号经前置放大和后级放大后通过数模转换进入微机,在微机中经线性化运算使之转换成与CO2、SO2含量成比例的数值。三.技术规格和指标1.基本参数:仪器性能及附件 测定元素:碳硫联测分析原理:高频炉燃烧—红外线吸收法检测分析范围:碳:0.00001%-100%硫:0.00001%-100%称样量(固体钢标):标准0.5g,支持不定量称样

红外探边仪相关的耗材

  • 超高分辨TERS针尖增强拉曼探针/Nano IR纳米红外探针
    NEXT-TIP SL公司成立于2012年,是西班牙研究委员会 (CSIC) 的衍生公司。其生产的TERS针增强拉曼探针和纳米红外探针,基于纳米粒子沉积技术,形成具有可控尺寸和成分的纳米颗粒涂层,具有超高的横向分辨率,大大提高了使用寿命。TERS针增强拉曼探针Next-Tip TERS 探针的出色性能与其形态特征有关。这些探头的设计经过开发,具有优异的 AFM 性能和超强的拉曼信号。突破针增强拉曼探针的限制:&bull 高可靠性,使用户能够专注于样品的表征。&bull 高达3 nm的超高分辨率&bull 超高灵敏度,可获得完全清晰/稳定的光谱,质量优于传统TERS。增强因子和对比度增强系数 (EF) 值是根据探针针的增强电场来量化拉曼信号的增强的参数。这个参数基于对比度值。对比度值根据在同一点的近场和远场扫描收集的实验数据计算。金TERS探针保证对比度高于20,银TERS探针保证对比度高于40,使得Next-Tip TERS 探针的增强系数高达105 -106。寿命银镀层的TERS探针由另一层金纳米粒子保护,以避免氧化和污染,保持等离激元的效应。致密的金纳米颗粒涂层提升了金属层厚度,大大提高了探针的耐用性。此外,纳米颗粒沿探针表面形成的不规则结构延长了其测量的寿命。性能可控的涂层沉积过程可实现坚固探头的高可重复性和高分辨率。此外,这种涂层工艺可以在针的点放置一个或两个纳米颗粒,实现超高空间分辨率。测量显示 AFM 分辨率小于5 nm,TERS 分辨率小于10 nm。TERS针增强拉曼探针类型高分辨率TERS在锐的硅基针上附着尤其致密,不规则和锐的纳米颗粒涂层,可获得超高空间分辨率和高质量的成像。基础TERS: 通过致密、不规则、颗粒状坚固的纳米颗粒涂层,用优化的涂层产生超强的拉曼信号,获得准确的成像和光谱数据。各型号参数对比银芯基础TERS探针高分辨金TERS探针高分辨银芯TERS探针型号NT-EASY-TERS-70银NT-EASY-TERS-300银NT-TERS-E-85金NT-TERS-E-335金NT-TERS-E-85银NT-TERS-E-335金共振频率(kHz)703008533585335力常数(N/m)2262.8452.845悬臂长度(μm)240160240160240160TERS针增强拉曼探针 测量结果1L MoS2/AuCNT/Graphene Oxide 单层过渡金属二硫化物(TMDC)拉曼激发模式高精度表征参考文献:Alvaro Rodriguez, Matěj Velický , Jaroslava &Rcaron áhová, Viktor Zólyomi, János Koltai, Martin Kalbá&ccaron , and Otakar Frank. Activation of Raman modes in monolayer transition metal dichalcogenides through strong interaction with gold. Phys. Rev. B 105, 195413 – Published 10 May 2022. DOI: https://doi.org/10.1103/PhysRevB.105.195413Nano IR纳米红外探针纳米红外光谱的原理是基于一个锐的金属涂层前沿,激发激光束落在该前沿上。探针针的电磁场由于局部表面等离激元共振和避雷针效应的共同作用而具有局域限制和增强的效果。更强的纳米红外信号Next-Tip探针得到的红外信号比常用AFM探针高出几倍(约5倍)。下图显示了使用相同带宽激光源的两种探针在硅上获取的未标准化的近场振幅光谱。更高的纳米红外信噪比与使用标准的探针得到的光谱相比,使用Next-Tip探针得到的光谱具有更小的背景干扰,从而得到更高的SNR和更清晰的光谱。下图显示了使用两种探头在13.6秒内记录的PMMA的三阶解调纳米红外吸收光谱。Nano IR纳米红外探针类型各型号参数对比象鼻形金字塔形型号NT-IR-E-85NT-IR-E-335 NT-IR-P-75NT-IR-P-330共振频率(kHz)8533575330力常数(N/m)2.8452.842悬臂长度(μm)240160225125
  • 红外线测温仪探头
    可外接探头红外线测温仪 型号;HAD-TES-1327K0.1 ℃ /0.2 ℉ 分辨率-35 ℃ ~ +500 ℃内装雷射示光点、背光显示资料记录储存及读取双温度计及双显示 (1327K)发射率可调整 (1327/1327K)过低警戒点蜂鸣器响声警示 (1327/1327K)大值、小值记录红外线温度计规格显示LCD数位显示有背光能测量范围-35 ℃ ~ 500℃ (-31℉ ~ 932℉ )解析度0.1 ℃ / 0.2 ℉  准确度 ±2%读值或2 ℃之较大值感应光谱6~ 14μm距离与目标比12:1(小目标物∶25mm直徑)放射率0.17~ 1.00 (1326∶固定0.95)照准 雷射光点示(1毫瓦特)电热耦K-TYPE温度计规格∶1327K测量范围-150 ℃ ~ 1350℃ (-238℉ ~ 1999℉ )测量单位解析度范围 准确度℃0.1℃ -150℃~ 0℃± (0.2% 读值 +1.0 ℃)0℃~ 200℃± (0.1% 读值 +1.0 ℃)1℃ 200℃~ 1350℃± (0.2% 读值 +2 ℃)℉0.1℉-238℉~ 32℉± (0.2% 读值 +2 ℉)32℉~ 200℉± (0.1% 读值 +2 ℉)1℉200℉~ 1999℉± (0.2% 读值 +4 ℉)般规格:资料记忆容量50组(可直接於LCD上读取)(1326/1327)99组(可直接於LCD上读取)(1327K)自动关机约15秒 电池寿命连续使用约100小时 (雷射针及显示器背光灯均不使用时) (碱性电池)电源单006P 9V电池操作、储存环境0 ℃~ 50℃(32℉ ~ 122℉)低於80%RH-10℃~ 60℃(14℉~ 140℉)低於70%RH尺寸172mm x 118mm x 46mm重量220克附件说明书、电池
  • 可外接探头红外线测温仪
    可外接探头红外线测温仪 型号;HAD-TES-1327K0.1 ℃ /0.2 ℉ 分辨率-35 ℃ ~ +500 ℃内装雷射示光点、背光显示资料记录储存及读取双温度计及双显示 (1327K)发射率可调整 (1327/1327K)过低警戒点蜂鸣器响声警示 (1327/1327K)大值、小值记录红外线温度计规格显示LCD数位显示有背光能测量范围-35 ℃ ~ 500℃ (-31℉ ~ 932℉ )解析度0.1 ℃ / 0.2 ℉  准确度 ±2%读值或2 ℃之较大值感应光谱6~ 14μm距离与目标比12:1(小目标物∶25mm直徑)放射率0.17~ 1.00 (1326∶固定0.95)照准 雷射光点示(1毫瓦特)电热耦K-TYPE温度计规格∶1327K测量范围-150 ℃ ~ 1350℃ (-238℉ ~ 1999℉ )测量单位解析度范围 准确度℃0.1℃ -150℃~ 0℃± (0.2% 读值 +1.0 ℃)0℃~ 200℃± (0.1% 读值 +1.0 ℃)1℃ 200℃~ 1350℃± (0.2% 读值 +2 ℃)℉0.1℉-238℉~ 32℉± (0.2% 读值 +2 ℉)32℉~ 200℉± (0.1% 读值 +2 ℉)1℉200℉~ 1999℉± (0.2% 读值 +4 ℉)般规格:资料记忆容量50组(可直接於LCD上读取)(1326/1327)99组(可直接於LCD上读取)(1327K)自动关机约15秒 电池寿命连续使用约100小时 (雷射针及显示器背光灯均不使用时) (碱性电池)电源单006P 9V电池操作、储存环境0 ℃~ 50℃(32℉ ~ 122℉)低於80%RH-10℃~ 60℃(14℉~ 140℉)低於70%RH尺寸172mm x 118mm x 46mm重量220克附件说明书、电池
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制