当前位置: 仪器信息网 > 行业主题 > >

细胞分类计

仪器信息网细胞分类计专题为您提供2024年最新细胞分类计价格报价、厂家品牌的相关信息, 包括细胞分类计参数、型号等,不管是国产,还是进口品牌的细胞分类计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞分类计相关的耗材配件、试剂标物,还有细胞分类计相关的最新资讯、资料,以及细胞分类计相关的解决方案。

细胞分类计相关的论坛

  • 重组细胞因子分类及应用概述

    一、细胞因子的概念细胞因子(cytokine)是由机体多种细胞分泌的小分子蛋白质,通过结合细胞表面的相应受体发挥以调节免疫应答为主的生物学作用。细胞因子具有 非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢 等。二、细胞因子的命名细胞因子按其来源可分为:由单个核吞噬细胞产生的细胞因子称为单核因子(monokine);由淋巴细胞产生的细胞因子称为淋巴因子 (lymphokine)等。按其作用可分为干扰素、集落刺激因子、肿瘤坏死因子、生长因子和趋化因子等。部分由不同细胞分泌的细胞因子,其基因及编码蛋 白与结构清楚者,在免疫调节、造血和炎症中发挥重要作用,又称为白细胞介素(interleukin,IL)。也可以依据结构或者其受体结构分类,我们的 趋化因子目前没有受体产品。三、细胞因子的特征1、低分子量;一般为<60kD的多肽或糖蛋白。多以单体形式存在,少数为二聚体,三聚体。2、天然细胞因子由抗原、丝裂原或其他刺激物活化的细胞所分泌,通过旁分泌(paracrine)、自分泌(autocrine)或内分泌(endocrine)方式在局部发挥短暂作用。3、一种细胞因子可由多种细胞产生,同一种细胞可产生多种细胞因子。4、需通过与靶细胞表面相应受体结合后发挥其生物学效应。5、具有高效性、多效性、叠性、拮抗性、协同性和网络性。四、细胞因子的分类1、白细胞介素(interleukin,IL-s)最初是指由白细胞产生又在白细胞间发挥作用的细胞因子。2、干扰素(interferon,IFN)最早发现的细胞因子,有干扰病毒感染和复制的能力。分α、β和g三种类型。3、肿瘤坏死因子超家族(tumor necrosis factor,TNF)1975年发现的一种能使肿瘤发生出血坏死的物质。4、集落刺激因子(colony-stimulating factor,CSF)指能够刺激多能造血干细胞和不同造血祖细胞增殖分化,在半固体培养基中形成相应细胞集落的细胞因子。包括G-CSF(粒细胞)、M-CSF(巨噬细胞)、 GM-CSF(粒细胞、巨噬细胞)、Multi-CSF(多重)(IL-3)、红细胞生成素(EPO)、干细胞生长因子(SCF)、血小板生成素 (TPO)等。5、趋化因子(chemokine)主要功能是招募血液中的单核细胞、中性粒细胞、淋巴细胞等进入特定的淋巴器官和组织以及感染发生的部位。根据趋化因子近N端半胱氨酸(Cys)的位置、排列方式和数量,可分为CC、CXC、C、CX3C四个亚家族。6生长因子(growth factor,GF)生长因子(GF)是具有刺激细胞生长作用的细胞因子。五、细胞因子的生物学活性1.介导自然免疫、参与抗肿瘤和抗感染2.调节T、B细胞活化、生长和分化,介导细胞免疫和体液免疫3.刺激造血生成、刺激骨髓祖细胞生长和分化为各种成熟血细胞4.在炎症、感染和内毒素血症中的作用5.在超敏反应和自身免疫病中的作用6.细胞因子通过激活其相应受体(CKR),导致细胞的增殖与分化或分泌某种蛋白质。六、四种蛋白表达体系比较表达细胞优点缺点原核E. coli繁殖快、成本低、产量高遗传背景及基因表达调控机制清楚易于大规模培养,成本低廉蛋白常为包涵体,纯化困难无糖基化(分泌蛋白,细胞膜上蛋白不可用),生物活性不定无翻译后修饰,内毒素含量高酵母Pichia使用简单,表达量高,His-tag便于纯化,一定的翻译后加工可进行糖基化修饰,操作简单,适合大规模生产可诱导表达,也可分泌表达,产物便于纯化有时会出现蛋白切割问题糖基化不能满足要求昆虫High-5产量高 ,翻译后加工与哺乳动物相似对于部分有毒性或较难表达蛋白有优势无内毒素污染蛋白活性不如哺乳动物适合表达激酶等定位于细胞内的真核蛋白哺乳CHO HEK293完善的翻译后加工,活性接近天然蛋白周期长、技术要求高表达产量低

  • 超声波细胞破碎仪的分类

    超声波细胞破碎仪是利用超声波在液体中的分散效应,使液体产生空化的作用,从而使液体中的固体颗粒或细胞组织破碎。常规使用方法是把要破碎的材料放到烧杯中,开电源设定时间(震动时间和间歇时间),将破碎仪的探头放到材料中。使用过程中,超声波发生器电路将50/60Hz的市电转换成18-21KHz的高频高压电能,因此破碎过程中会大量产热,一般在冰浴下破碎。超声波细胞破碎仪的两大组成部件为超声波发生器和换能器(有的配置有隔音箱)。1、超声波发生器:工作原理:由信号发生器来产生一个特定频率的信号,这个特定频率就是换能器的频率,一般应用在超声波设备中的超声波频率为20KHz、25KHz、28KHz、33KHz、40KHz、60KHz。2、换能器组件:换能器组件主要由换能器和变幅杆组成。3、隔音箱:可以有效地的降低工作过程中的所发出的噪音,保持实验室安静。超声波细胞破碎仪在我国的行业推广已进入成熟阶段,而应用仍不够普及!该仪器(设备)应用范围非常广泛,这是其它仪器设备所不能比拟的。也正因如此,该仪器(设备)的市场潜力很大,所以生产厂家也日趋增多,这也同时造成了超声清洗行业及市场的相对混乱,可以用八个字来形容“鱼龙混杂,良莠不齐”!超声波细胞破碎仪分类如下:一、按探头(“tip”)直径分类处理不用体积的样品需要选择不同“tip”头的超声波破碎仪。由于各制造厂家的产品结构不同,其“tip”头直径不尽相同。一般“tip”头从微量5mm(适合1ml处理量)到25mm(适合1000ml处理量),有连续流探头,处理量可达80升/小时。可能会发生磨损的高能应用中会用到可更换“tip”头。当能量通过“tip”头被传递时,金属表面留下痕迹的地方会发生腐蚀。随着时间的推移,发生腐蚀的地方会产生轻微的蚀损斑。“tip”头可以用砂纸或纱布来打磨,除非是损坏到一定的程度;当这种情况发生时,“tip”头将很难进行调谐频率,取而代之的可能是发出长而尖的噪音,最终产生裂纹。 要有效地加工给定剂量的样品,有两个主要的因素需要考虑:“tip”头尺寸和输出功率。这两个因素必须同时匹配才能获得最佳效果。小功率大“tip”头,则“tip”头无法工作;而太大的功率则“tip”头可能损坏。购买时请注意所需型号附件。二、按功率分类超声波细胞破碎仪的功率大小是客户的首选指标,它决定着被破碎物的数量、大小、质量及效果。所以各生产厂家对此指标也都非常重视。一般情况下,实验室、化验室、研究所、药品检验所等科研单位,使用的功率都不大,(一般在500W以下);而生物公司、制药厂、化工企业等生产单位,所用的功率大都在500W-2000W左右。由于各制造厂家的产品结构不同,其功率的标注方法也不尽相同。不过按照用户常用的惯例,一般有以下几种:50W、100W、150W、250W、300W、350W、500W、1000W、2000W。一般超声波细胞破碎仪输出功率可根据需要适度调节。 标准超声波细胞粉碎机产品的额定工作频率是20千赫兹。一些超声波细胞粉碎机有自动调谐功能可以使频率在一个小的范围内变化。

  • 细胞因子及其受体的分类有哪些?

    [font=宋体]细胞因子一般是通过与细胞表面相应的细胞因子受体结合而发挥生物学作用。细胞因子与其受体结合后,会启动复杂的细胞内分子相互作用,最终引起细胞基因转录的变化。[/font][font=宋体]已知的细胞因子受体绝大多数是[url=https://cn.sinobiological.com/resource/protein-review/transmembrane-proteins][b]跨膜蛋白[/b][/url],由胞外、跨膜和胞质区组成。胞外膜区是识别结合细胞因子的部位,胞质区在受体激活后启动信号转导。下面为大家介绍下细胞因子及其受体的分类有哪些?[/font][font=宋体] [/font][b][font=宋体]一、细胞因子的分类[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]一[/font][font=Calibri])[/font][font=宋体]根据细胞种类不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])淋巴因子[/font][font=Calibri](lymphokine) [/font][font=宋体]主要由淋巴细胞产生,包括[/font][font=Calibri]T[/font][font=宋体]淋巴细胞、[/font][font=Calibri]B[/font][font=宋体]淋巴细胞和[/font][font=Calibri]NK[/font][font=宋体]细胞等。重要的淋巴因子有[/font][font=Calibri]IL-2[/font][font=宋体]、[/font][font=Calibri]IL-3[/font][font=宋体]、[/font][font=Calibri]IL-4[/font][font=宋体]、[/font][font=Calibri]IL-5[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-9[/font][font=宋体]、[/font][font=Calibri]IL-10[/font][font=宋体]、[/font][font=Calibri]IL-12[/font][font=宋体]、[/font][font=Calibri]IL-13[/font][font=宋体]、[/font][font=Calibri]IL-14[/font][font=宋体]、[/font][font=Calibri]IFN-[/font][font=宋体]γ、[/font][font=Calibri]TNF-[/font][font=宋体]β、[/font][font=Calibri]GM-CSF[/font][font=宋体]和神经白细胞素等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])单核因子[/font][font=Calibri](monokine) [/font][font=宋体]主要由单核细胞或巨噬细胞产生,如[/font][font=Calibri]IL-1[/font][font=宋体]、[/font][font=Calibri]IL-6[/font][font=宋体]、[/font][font=Calibri]IL-8[/font][font=宋体]、[/font][font=Calibri]TNF-[/font][font=宋体]α、[/font][font=Calibri]G-CSF[/font][font=宋体]和[/font][font=Calibri]M-CSF[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])非淋巴细胞、非单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生的细胞因子 主要由骨髓和胸腺中的基质细胞、血管内皮细胞、成纤维细胞等细胞产生,如[/font][font=Calibri]EPO[/font][font=宋体]、[/font][font=Calibri]IL-7[/font][font=宋体]、[/font][font=Calibri]IL-11[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、内皮细胞源性[/font][font=Calibri]IL-8[/font][font=宋体]和[/font][font=Calibri]IFN-[/font][font=宋体]β等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]([/font][font=宋体]二[/font][font=Calibri])[/font][font=宋体]根据主要功能的不同分类[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体])白细胞介素[/font][font=Calibri](interleukin, IL) 1979[/font][font=宋体]年开始命名。由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子,在细胞间相互作用、免疫调节、造血以及炎症过程中起重要调节作用,凡命名的白细胞介素的[/font][font=Calibri]cDNA[/font][font=宋体]基因克隆和表达均已成功,已报道有三十余种[/font][font=Calibri](IL-1[/font][font=宋体]―[/font][font=Calibri]IL-38)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体])集落刺激因子[/font][font=Calibri](colony stimulating factor, CSF) [/font][font=宋体]根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为[/font][font=Calibri]G([/font][font=宋体]粒细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]M([/font][font=宋体]巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]GM([/font][font=宋体]粒细胞、巨噬细胞[/font][font=Calibri])-CSF[/font][font=宋体]、[/font][font=Calibri]Multi([/font][font=宋体]多重[/font][font=Calibri])-CSF(IL-3)[/font][font=宋体]、[/font][font=Calibri]SCF[/font][font=宋体]、[/font][font=Calibri]EPO[/font][font=宋体]等。不同[/font][font=Calibri]CSF[/font][font=宋体]不仅可刺激不同发育阶段的造血干细胞和祖细胞增殖的分化,还可促进成熟细胞的功能。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体])干扰素[/font][font=Calibri](interferon, IFN) 1957[/font][font=宋体]年发现的细胞因子,最初发现某一种病毒感染的细胞能产生一种物质可干扰另一种病毒的感染和复制,因此而得名。根据干扰素产生的来源和结构不同,可分为[/font][font=Calibri]IFN-[/font][font=宋体]α、[/font][font=Calibri]IFN-[/font][font=宋体]β和[/font][font=Calibri]IFN-[/font][font=宋体]γ,他们分别由白细胞、成纤维细胞和活化[/font][font=Calibri]T[/font][font=宋体]细胞所产生。各种不同的[/font][font=Calibri]IFN[/font][font=宋体]生物学活性基本相同,具有抗病毒、抗肿瘤和免疫调节等作用。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体])肿瘤坏死因子[/font][font=Calibri](tumor necrosis factor, TNF) [/font][font=宋体]最初发现这种物质能造成肿瘤组织坏死而得名。根据其产生来源和结构不同,可分为[/font][font=Calibri]TNF-[/font][font=宋体]α和[/font][font=Calibri]TNF-[/font][font=宋体]β两类,前者由单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞产生,后者由活化[/font][font=Calibri]T[/font][font=宋体]细胞产生,又名淋巴毒素[/font][font=Calibri](lymphotoxin, LT)[/font][font=宋体]。两类[/font][font=Calibri]TNF[/font][font=宋体]基本的生物学活性相似,除具有杀伤肿瘤细胞外,还有免疫调节、参与发热和炎症的发生。大剂量[/font][font=Calibri]TNF-[/font][font=宋体]α可引起恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url],因而[/font][font=Calibri]TNF-[/font][font=宋体]α又称恶[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]素[/font][font=Calibri](cachectin)[/font][font=宋体]。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体])转化生长因子[/font][font=Calibri]-[/font][font=宋体]β家族[/font][font=Calibri](transforming growth factor-[/font][font=宋体]β [/font][font=Calibri]family, TGF-[/font][font=宋体]β [/font][font=Calibri]family) [/font][font=宋体]由多种细胞产生,主要包括[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]、[/font][font=Calibri]TGF-[/font][font=宋体]β[/font][font=Calibri]3[/font][font=宋体]、[/font][font=Calibri]TGF[/font][font=宋体]β[/font][font=Calibri]1[/font][font=宋体]β[/font][font=Calibri]2[/font][font=宋体]以及骨形成蛋白[/font][font=Calibri](BMP)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体])生长因子[/font][font=Calibri](growth factor,GF)[/font][font=宋体]如表皮生长因子[/font][font=Calibri](EGF)[/font][font=宋体]、血小板衍生的生长因子[/font][font=Calibri](PDGF)[/font][font=宋体]、成纤维细胞生长因子[/font][font=Calibri](FGF)[/font][font=宋体]、肝细胞生长因子[/font][font=Calibri](HGF)[/font][font=宋体]、胰岛素样生长因子[/font][font=Calibri]-I(IGF-1)[/font][font=宋体]、[/font][font=Calibri]IGF-[/font][font=宋体]Ⅱ、白血病抑制因子[/font][font=Calibri](LIF)[/font][font=宋体]、神经生长因子[/font][font=Calibri](NGF)[/font][font=宋体]、抑瘤素[/font][font=Calibri]M(OSM)[/font][font=宋体]、血小板衍生的内皮细胞生长因子[/font][font=Calibri](PDECGF)[/font][font=宋体]、转化生长因子[/font][font=Calibri]-[/font][font=宋体]α[/font][font=Calibri](TGF-[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、血管内皮细胞生长因子[/font][font=Calibri](VEGF)[/font][font=宋体]等。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]7[/font][font=宋体])趋化因子家族[/font][font=Calibri](chemokinefamily) [/font][font=宋体]包括四个亚族[/font][font=Calibri]:(1)C-X-C/[/font][font=宋体]α亚族,主要趋化中性粒细胞,主要的成员有[/font][font=Calibri]IL-8[/font][font=宋体]、黑素瘤细胞生长刺激活性[/font][font=Calibri](GRO/MGSA)[/font][font=宋体]、血小板因子[/font][font=Calibri]-4(PF-4)[/font][font=宋体]、血小板碱性蛋白、蛋白水解来源的产物[/font][font=Calibri]CTAP-[/font][font=宋体]Ⅲ和β[/font][font=Calibri]-thromboglobulin[/font][font=宋体]、炎症蛋白[/font][font=Calibri]10(IP-10)[/font][font=宋体]、[/font][font=Calibri]ENA-78 (2)C-C/[/font][font=宋体]β亚族,主要趋化单核细胞,这个亚族的成员包括巨噬细胞炎症蛋白[/font][font=Calibri]1[/font][font=宋体]α[/font][font=Calibri](MIP-1[/font][font=宋体]α[/font][font=Calibri])[/font][font=宋体]、[/font][font=Calibri]MIP-1[/font][font=宋体]β、[/font][font=Calibri]RANTES[/font][font=宋体]、单核细胞趋化蛋白[/font][font=Calibri]-1(MCP-1/MCAF)[/font][font=宋体]、[/font][font=Calibri]MCP-2[/font][font=宋体]、[/font][font=Calibri]MCP-3[/font][font=宋体]和[/font][font=Calibri]I-309[/font][font=宋体]。[/font][font=Calibri](3)C[/font][font=宋体]型亚家族的代表有淋巴细胞趋化蛋白。[/font][font=Calibri](4)CX3C[/font][font=宋体]亚家族,[/font][font=Calibri]Fractalkine[/font][font=宋体]是[/font][font=Calibri]CX3C[/font][font=宋体]型趋化因子,对单核[/font][font=Calibri]-[/font][font=宋体]巨噬细胞、[/font][font=Calibri]T[/font][font=宋体]细胞及[/font][font=Calibri]NK[/font][font=宋体]细胞有趋化作用。[/font][/font][font=宋体] [/font][font=宋体]细胞因子检测是判断机体免疫功能的一个重要指标!已被广泛用于疾病的诊断、病程观察、疗效判断及细胞因子治疗监测等。[/font][font=宋体] [/font][b][font=宋体] [/font][/b][font=宋体]二、[/font][b][font=宋体]细胞因子受体分类[/font][font=宋体] [/font][/b][font=宋体][font=宋体]根据细胞因子受体的结构,可分为不同的家族或超家族,包括免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族、[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体、[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体、肿瘤坏死因子受体[/font][font=Calibri](TNFR)[/font][font=宋体]超家族和趋化因子受体。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①免疫球蛋白([/font][font=Calibri]Ig[/font][font=宋体])超家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]免疫球蛋白超家族([/font][font=Calibri]IgSF[/font][font=宋体])是指分子结构中具有与免疫球蛋白相似域的分子超家族。[/font][font=Calibri]IgSF[/font][font=宋体]的所有成员都含有[/font][font=Calibri]1[/font][font=宋体]~[/font][font=Calibri]7[/font][font=宋体]个[/font][font=Calibri]Ig[/font][font=宋体]样结构域,每个[/font][font=Calibri]Ig[/font][font=宋体]样结构域含有约[/font][font=Calibri]70[/font][font=宋体]~[/font][font=Calibri]110[/font][font=宋体]个氨基酸残基。它的二级结构是由两条反平行β[/font][font=Calibri]-[/font][font=宋体]折叠状链形成的反平行β[/font][font=Calibri]-[/font][font=宋体]片状平面,每条反平行β[/font][font=Calibri]-[/font][font=宋体]片状链含有[/font][font=Calibri]3[/font][font=宋体]~[/font][font=Calibri]5[/font][font=宋体]个反平行β[/font][font=Calibri]-[/font][font=宋体]折叠。每条反平行β片链由[/font][font=Calibri]5[/font][font=宋体]~[/font][font=Calibri]10[/font][font=宋体]个氨基酸残基组成。β片内侧的疏水氨基酸可稳定[/font][font=Calibri]Ig[/font][font=宋体]的折叠。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]大多数[/font][font=Calibri]Ig[/font][font=宋体]域有一个二硫键垂直连接两个β片,构成二硫键的两个半胱氨酸约含[/font][font=Calibri]55[/font][font=宋体]~[/font][font=Calibri]75[/font][font=宋体]个氨基酸。少数[/font][font=Calibri]Ig[/font][font=宋体]域,如[/font][font=Calibri]CD2[/font][font=宋体]的第一域、[/font][font=Calibri]LFA-3[/font][font=宋体]和[/font][font=Calibri]PDGFR[/font][font=宋体]的第四域、[/font][font=Calibri]CD4[/font][font=宋体]的第三域等,均缺乏二硫键。这种多肽链的球形结构的折叠称为免疫球蛋白折叠([/font][font=Calibri]Ig fold[/font][font=宋体])。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]②[/font][font=Calibri]I[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]I[/font][font=宋体]型细胞因子受体又称造血素受体,是表达在细胞表面的跨膜受体,能识别细胞因子并对其作出反应,具有[/font][font=Calibri]4[/font][font=宋体]条α[/font][font=Calibri]-[/font][font=宋体]螺旋链。这些受体具有某些保守的胞外域,缺乏内在的蛋白酪氨酸激酶活性。[/font][/font][font=宋体][font=宋体]保守的胞外域有大约[/font][font=Calibri]200[/font][font=宋体]个氨基酸的长度,其中在氨基末端区域含有四个位置保守的半胱氨酸残基和一个位于跨膜域近端的保守氨基酸基团([/font][font=Calibri]WSXWS[/font][font=宋体])。这四个半胱氨酸是维持受体结构和功能完整性的关键。[/font][font=Calibri]WSXWS[/font][font=宋体]共识序列是细胞因子受体功能性蛋白与蛋白相互作用的识别位点。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]③[/font][font=Calibri]II[/font][font=宋体]型细胞因子受体[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]II[/font][font=宋体]型细胞因子受体又称[/font][font=Calibri]IFN[/font][font=宋体]受体,是表达在某些细胞表面的跨膜蛋白,它与一组选定的细胞因子结合并作出反应。通常Ⅱ型细胞因子受体是具有高亲和力和低亲和力成分的异二聚体或多聚体。这些受体一般由两条肽链组成,胞外区由[/font][font=Calibri]200[/font][font=宋体]个氨基酸残基组成,并含有[/font][font=Calibri]4[/font][font=宋体]个不连续的半胱氨酸。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]④[/font][font=Calibri]TNFR[/font][font=宋体]超级家族[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]肿瘤坏死因子受体([/font][font=Calibri]TNFR[/font][font=宋体])超家族成员是细胞因子受体的一个蛋白质超家族,共享一个半胱氨酸丰富域([/font][font=Calibri]CRD[/font][font=宋体]),由三个二硫键围绕[/font][font=Calibri]CXXCXXC[/font][font=宋体]的核心基团形成一个拉长的分子。目前[/font][font=Calibri]TNFR[/font][font=宋体]家族有[/font][font=Calibri]12[/font][font=宋体]个成员,包括[/font][font=Calibri]55kDa[/font][font=宋体]和[/font][font=Calibri]75kDa[/font][font=宋体]的[/font][font=Calibri]TNFR[/font][font=宋体],低亲和力的[/font][font=Calibri]NGFR[/font][font=宋体],人[/font][font=Calibri]B[/font][font=宋体]细胞抗原([/font][font=Calibri]CD40[/font][font=宋体])和[/font][font=Calibri]Fas[/font][font=宋体]抗原。该家族的共同特点是其胞外区有[/font][font=Calibri]Cys[/font][font=宋体]([/font][font=Calibri]4-6[/font][font=宋体])丰富的假重复基团,每个基团含有[/font][font=Calibri]40[/font][font=宋体]个氨基酸残基。细胞内域较短,由[/font][font=Calibri]44[/font][font=宋体]~[/font][font=Calibri]221[/font][font=宋体]个氨基酸残基组成,无同源序列。[/font][/font][font=宋体] [/font][font=宋体]⑤趋化因子受体[/font][font=宋体] [/font][font=宋体][font=宋体]趋化因子受体是在某些细胞表面发现并与趋化因子相互作用的细胞因子受体。人类已发现[/font][font=Calibri]20[/font][font=宋体]种不同趋化因子受体,为[/font][font=Calibri]7[/font][font=宋体]次跨膜的[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体,并在细胞内与[/font][font=Calibri]G[/font][font=宋体]蛋白偶联进行信号转导,是[/font][font=Calibri]G[/font][font=宋体]蛋白偶联受体家族成员之一。趋化因子受体与相应的配体结合后,引发细胞内钙([/font][font=Calibri]Ca2+[/font][font=宋体])离子通量(钙信号传导)。既而引起细胞反应,包括趋化作用过程开始,将细胞运送到生物体内的理想位置。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]更多细胞因子详情可以查看义翘神州[url=https://cn.sinobiological.com/category/cytokine-protein][b]细胞因子蛋白[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/category/cytokine-protein[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]义翘神州:蛋白与抗体的专业引领者,欢迎通过百度搜索[/font][font=宋体]“义翘神州”与我们取得联系。[/font][/font][/b][font=宋体] [/font]

  • [资源集锦] 动物细胞培养罐分类

    1、搅拌式动物细胞培养罐  搅拌式培养罐靠搅拌桨提供液相搅拌的动力,它有较大的操作范围、良好的混合性和浓度均匀性,因此在生物反应中被广泛使用。但由于动物细胞没有细胞壁的保护,因此对剪切作用十分敏感,直接的机械搅拌很容易对其造成损害,传统的用于微生物的搅拌培养罐用作动物细胞的培养显然是不合适的。所以,动物细胞培养中的搅拌式培养罐都是经过改进的,包括改进供氧方式、搅拌桨的形式及在培养罐内加装辅件等。  (1)供氧方式的改进  一般情况下搅拌式培养罐还常伴有鼓泡,为细胞生长提供所需氧分。由于动物细胞对鼓泡的剪胞生长提供所需氧分。由于动物细胞对鼓泡的剪切也很敏感,所以人们在供氧方式的改进上做了许多工作。笼式供氧是搅拌式动物细胞培养罐供氧方式的一种,即气泡用丝网隔开,不与细胞直接接触。培养罐既能保证混合效果又有尽可能小的剪切力,以满足细胞生长的要求。北野昭一报道了一个经过改进的搅拌式动物细胞培养罐,整体呈梨形,搅拌置于培养罐底部,在搅拌轴外装了一个锥形不锈钢丝网与搅拌轴一起转动。轴心处的鼓泡管在丝网内侧鼓泡,丝网外侧的细胞不与气泡直接接触。  (2)搅拌桨的改进  搅拌桨的形式对细胞生长的影响非常大,这方面的改进主要考虑如何减小细胞所受的剪切力。有人对搅拌桨的形式作了改进,并在反应器内加装了辅件,实验证明改进后的反应器适用于对剪切力敏感的细胞进行高密度培养。反应器采用了一个双螺旋带状搅拌桨,顶部的法兰盖上安装了3块表面挡板。每块挡板相对于径向的夹角为30°,垂直插入液面。挡板的存在减小了液面上的旋涡。这个反应器维持了较小的剪切力,实验中用于昆虫细胞的培养,最终的培养密度达到6×106个/mL,成活率在98%以上。  2、非搅拌式动物细胞培养罐  搅拌式细胞培养罐用于动物细胞培养存在的最大缺点是剪切力大,容易损伤细胞,虽然经过各种改进,这个问题仍很难避免。相比之下,非搅拌式培养罐产生的剪切力较小,在动物细胞培养中表现出了较强的优势。  (1)填充床反应器填充是在反应器中填充一定材质的填充物,供细胞贴壁生长。营养液通过循环灌流的方式提供,并可在循环过程中不断补充。细胞生长所需的氧分也可以在反应器外通过循环的营养液携带,因而不会有气泡伤及细胞。这类反应器剪切力小,适合细胞高密度生长。  (2)中空纤维反应器中空纤维培养罐由于剪切力小而广泛用于动物细胞的培养。这类培养罐由中空纤维管组成,每根中空纤维管的内径约为200μm,壁厚为50~70μm。管壁是多孔膜,O2和CO2等小分子可以自由透过膜扩散,动物细胞贴附在中空纤维管外壁生长,可以很方便地获取氧分。  (3)气升式细胞培养罐气升式生物反应器(airliftbioreactor)也是实现动物细胞高密度培养的常用设备之一,其特点是结构简单,操作方便。有人在气升式反应器中利用微载体培养技术,研究了Vero细胞高密度培养的工艺条件。证明气升式反应器中悬浮微载体培养Vero细胞,在加入适量保护剂、营养供应充足的情况下,细胞可以正常生长至长满微载体表面,终密度可达1.13×106个/mL。

  • 血细胞分析仪检测原理

    目前血细胞分析仪检测原理包括电学和光学两种,电学包括电阻抗法和射频电导法,光法包括激光散射法和分光光度法。电阻抗法根据Coulter原理及血细胞非传导的性质,以电解质溶液中悬浮的血细胞在通过计数小孔时引起的电阻变化进行检测为基础,进行血细胞计数和体积测定。当有细胞通过小孔时,由于电阻增加,于瞬间引起电压变化及通过脉冲。细胞体积越大,脉冲振幅越高,细胞数量越多,脉冲数量也越多。脉冲信号经过:放大、阈值调节、甄别、整形、计数而得出细胞技术结果。电阻抗法可准确量出细胞(或类似颗粒)的大小,是三分类血液分析仪的主要应用原理,并与光学检测原理组合应用于五分类血液分析仪中。激光散射法应用了流式细胞术检测原理及细胞通过激光束被照射时,产生与细胞特征相应的各种角度的散射光。对经信号检测器接受的散射光信息进行综合分析,即可准确区分正常类型的细胞。激光散射法在区别体积相同而类型不同的细胞特征时,比电阻抗法分群更加准确。故激光散射法已成为现代五分类血液分析仪的主要检测原理之一。射频电导法是用高频电磁探针渗入细胞膜脂质可测定细胞的导电性,提供细胞内部化学成分、细胞核和细胞质、颗粒成分等特征信息。射频电流是每秒变化大于10000次的高频交流电磁波,能够通过细胞壁。分光光度法是所有类型的血细胞分析仪检测血红蛋白的原理,它利用血红蛋白与溶血剂在特定波长下比色,吸光度的变化与液体中血红蛋白含量成比例。

  • 全自动血细胞分析仪——能依靠它们去计数吗?

    全自动血细胞分析仪——能依靠它们去计数吗?库尔特原理库尔特原理指出:悬浮在电解液中的颗粒随电解液通过小孔管时,在恒电流设计的电路中导致小孔管内外两电极间电阻发生瞬时变化,产生电位脉冲。脉冲信号的大小和次数与颗粒的大小和数目成正比。这主要是根据血细胞与稀释剂相比,血细胞是不良导体的特性而提出的。起初,原始的库尔特计数器只能计算和测量红细胞。后来,随着技术的不断发展和设备的不断改进,临床医生还可以利用它来计算和测量白细胞。到20世纪70年代,技术的进一步发展使技术人员能够分离血小板。全自动细胞计数器的演进传统意义上的血细胞计数器是通过研究外周血涂片,使用血细胞仪和白细胞分类计数而手动完成的(也称为100个细胞涂片分类,手动白细胞分类计数或手动计数器)。根据库尔特原理导致了库尔特计数器的发明,随后又开发出了技术先进的全自动血液细胞分析仪。自此,仪器的技术水平得到不断提高。由于技术的进步,一台仪器可以分析越来越多的参数,从而大大提高了血液检测的效率,减少在多台仪器上分析一个样品的情况。现代的细胞分析仪能够测量白细胞(WBC)、白细胞分类(五分类)、红细胞(RBC)、血红蛋白(HGB)、血小板(PLT)、平均红细胞体积(MCV)、平均血小板体积,并且可以自动计算血细胞比容(HCT)、平均红细胞血红蛋白(MCH)、平均红细胞血红蛋白浓度(MCHC)、红细胞分布宽度,血小板比积和血小板分布宽度。自动分析仪的其他重要因素包括它们运行的速度和每批次可以处理的样本数量(大处理容量可以减少周转时间)。即时检验(POCT)即时检验([/

  • 流式细胞术详解 13.14章节

    十三.流式细胞术在血液学中的应用 淋巴瘤免疫分型 目前淋巴瘤的分类方法已从LSG的形态学分类逐渐转变为REAL分类法, REAL分类法是以肿瘤发生源为基础的分类方法,在原来的形态学基础上加上免疫学分型后再加以分类,这种分类方法不仅能够推断肿瘤的发生源,对治疗也有指导意义。因此淋巴瘤的免疫分型越来越重要。如同白血病免疫分型一样,淋巴瘤的免疫分型也是利用单克隆抗体检测淋巴瘤细胞的细胞膜和细胞浆抗原,分析其表现型,以了解被测淋巴瘤细胞所属细胞系列及其分化程度。流式细胞仪能对多数的淋巴瘤细胞的细胞膜和细胞浆抗原迅速客观地做出检测,在淋巴瘤的免疫分型中起着不可替代的作用。临床淋巴瘤的免疫分型的检测标本一般是淋巴结、脾脏、胸水、腹水等。在临床淋巴瘤的免疫分型工作中常可遇到以下四种情况:①B细胞系淋巴瘤②T/NK细胞系淋巴瘤③淋巴细胞系以外的造血细胞肿瘤④造血细胞以外的肿瘤。REAL分类淋巴瘤的免疫表型见表12.8。*:弱表达或阴性。BLBL :前B原始淋巴细胞淋巴瘤/白血病; BSLL: B-小淋巴细胞淋巴瘤; LPL:淋巴浆细胞样淋巴瘤; MCL: 斗篷细胞淋巴瘤; FCL:滤泡中心淋巴瘤; MZL: 边缘带B细胞淋巴瘤; SMZL :脾MZL ;HCL:毛细胞白血病; PC:浆细胞瘤;DLBL: B-弥漫性大细胞淋巴瘤; BL: Burkitts淋巴瘤; HBLB:高度B细胞淋巴瘤, Burkitts样; TLB L: 前T原始淋巴细胞淋巴瘤/白血病; TPLL: T幼淋细胞白血病; LGLT:大颗粒淋巴细胞白血病, T细胞型[col

  • 图文解说流式细胞仪及其技术应用

    4.1 流式细胞仪基本原理1. 生物学颗粒分析原理① 流式细胞技术是在单细胞水平上,对于处在快速直线流动状态中的大量细胞或生物颗粒进行多参数、快速的定量分析和分选的技术,现已成为现代医学研究最先进的分析技术之一。应用流式细胞仪对于处在快速直线流动状态中的细胞或生物颗粒进行快速的、多参数的定量分析和分选的技术称为流式细胞术。② 生物学颗粒包括大的免疫复合物、DNA、RNA、蛋白质、病毒颗粒、脂质体、细胞器、细菌、霉菌、染色体、真核细胞、杂交细胞、聚集细胞等,所检测的生物颗粒的理化性质包括细胞大小、细胞形态、胞浆颗粒化程度、DNA含量、总蛋白质含量、细胞膜完整性和酶活性等。③ 流式细胞仪是以激光为光源,集流体力学技术、电子物理技术、光电测量技术、计算机技术以及细胞荧光化学技术、单克隆抗体技术为一体的新型高科技仪器。 ④ 流式细胞仪是在荧光显微镜技术、血细胞计数仪和喷墨技术的基础上发展起来的。⑤ 鞘液和样品流在喷嘴附近组成一个圆柱流束,与水平方向的激光束垂直相交,染色的细胞受激光照射后发出荧光,这些信号分别被光电倍增管荧光检测器和光电二极管散射光检测器接收,经过计算机储存、计算、分析这些数字化信息,就可得到细胞的大小、活性、核酸含量、酶和抗原的性质等物理和生化指标。2. 流式细胞仪细胞分选原理在压电晶体上加上频率为30kHz的信号,使液柱断裂成一连串均匀的液滴。当某类细胞的特性与要分选的细胞相同时,流式细胞仪就会在这类细胞形成液滴时给含有这类细胞的液滴充以特定的电荷,带有电荷的液滴向下落入偏转板间的静电场时,依所带电荷的符号分别向左偏转或向右偏转,落入指定的收集器内,从而达到细胞分类收集的目的。4.2 流式细胞仪的分类和基本结构1. 流式细胞仪的分类流式细胞仪根据功能不同可分为临床型(亦称台式机)和科研型(亦称大型机)。流式细胞仪根据其结构不同又可分为一般流式细胞仪和狭缝扫描流式细胞仪。http://www.care100.com/yqxjpkc/images/112.gif

  • 【转帖】细胞》:果蝇细胞中发现五种主要染色质类型

    100 kb)——是一种新类型(被命名为黑色)。尽管黑色染色质域相对基因贫乏——它们包含了大于4000个基因,Filion等人发现这些基因没有或只有非常有限的转录活性。插入黑色区域的报道转基因通常都是受阻遏的,这意味着黑色染色质的活性抑制了转录。在胚胎细胞的沉默黑色区域中的基因在一些其他的组织中也有表达,因此研究人员推测这种形式的染色质或许与发育调控有关,至少是部分相关。DamID数据的分类同时表明,常染色质包含有两个截然不同的类型。黄色和红色染色质都含有蛋白质和组蛋白改变——这是转录活性区域的特点——并产生大量的mRNA,但是红色染色质携带了几种对于这种染色质而言是独一无二的调节蛋白质,包括核小体改造Brahma。同样,尽管是类似水平的转录,组蛋白H3在赖氨酸36上的三甲基化——这之前被描述为转录延伸的一种普遍的标记——被高度富集于黄色区域中的基因,但在红色染色质中却没有。有趣的是,活性染色质的这两种形式可能反映了不同基因类型的完全不同的调控机制:黄色染色质中的基因具有占优的广泛表达,并具有基本的细胞功能,然而红色染色质区域中的基因则更加特殊。研究人员在最近出版的《细胞》杂志上报告了这一研究成果。研究人员指出,与染色质有关的蛋白质被广泛保存于物种中,因此很可能这种分类将广泛适用。新区域类型的更多研究将为染色质如何帮助控制基因表达提供一个更微妙的观点。(群芳)《科学时报》 (2010-11-03 A4 国际)

  • 流式细胞仪在发酵中的应用

    流式细胞仪(Flow cytometer, FCM)是70年代发展起来的对单个细胞进行定性定量测定的新型仪器,亦称荧光激活细胞分类仪(FACSC),是一种将现代免疫荧光技术与流体力学、激光学、应用电子学和计算机等学科的先进技术相融合用于基础与临床细胞生物学研究的一项高科技实验检测仪器。它能在一定功能水平上对单细胞或其他生物粒子进行定量分析和分选,高速分析上万个细胞,并能同时从一个细胞中测到多个参数。与传统的荧光镜检测相比,具有速度快、精度高、准确性好等优点,成为当代最先进的细胞定量分析技术。流式细胞仪以其快速、灵活、大量、灵敏和定量的特点,已在医学、生物学的几乎所有领域里得到迅速的推广,并在各学科研究中发挥着重要的作用。我的这片文章9月发表,等正式发表了,我贴出来,需要的话可联系我shuguangfang@tom.com

  • 目视法细胞计数的改进方案

    谈到血常规检查,大家马上会想到WBC、RBC计数,虽然现在各种全自动和半自动的三分类、五分类血球分析仪已经普及,但在广大基层单位,条件尚不许可,仍然是一台显微镜加一块计数板,“目视计数法”还有顽强的生命力,及很强的实用价值,即使在仪器铺天盖地,大口吞噬“人工检验市场”的今天,我们依旧需要手工法进行样本复检、机器校正等工作。目视计数法在我们的印象中无非是数数方格,传统的计数法是按操作规程之规定,先找到相应的方格,但老方法中几十年来都一成不变的计数区域用到实际工作中并不让人感觉舒适和便利,当出现细胞数过多,堆得密密麻麻时,更容易视觉疲劳和出错;且动辄采血20μl,有些病人不易采足量(在同时进行多项检验时,更易出现采不到量而必须多次穿刺,增加了病人的痛苦)。因此,改进一下计数区域和采血量,寻找一种人性化的方法就很有其必要性了。对于这个问题,我研究了一套解决方案,并在工作中使用了近十年,一直感觉良好。下面,我就把该方案贴出来,和大家做一交流。一、RBC、PLT计数改进法:1. RBC:取血10μl加入红细胞稀释液3.0ml内混匀充池(即稀释300倍)2. PTL:取血10μl加入血小板计数液0.29ml内混匀充池(即稀释30倍)下面是计数池中间的那部分结构图,以红笔勾出的阴影部分为本法计数区域(两个细长长条区域)http://bbs.labsky.com/uploads/2010-5/2010-05-12_224036.jpg【计算】RBC数 / L = 计数区红细胞总数 / 100 ×10^12 / LPLT数 / L = 计数区血小板总数 ×10^9 / L二、WBC计数改进法:方法1:此法又可称为“盘龙法”,它覆盖面广,可较好的中和细胞不易分布均匀的固有误差,适用于精确计数。【操作】(同原法) 取血20μl加入白细胞计数液0.38ml内混匀充池(稀释20倍) 计数区域见下图所标示(蓝色箭头示意为计数起止方向)http://bbs.labsky.com/uploads/2010-5/2010-05-12_224121.jpg【计算】(亦同原法) WBC数 / L= 计数区白细胞总数 / 20 ×10^9 / L方法2:此法较上法简便而易于操作,采血量少,更不易疲劳和利于连续计数多量标本,且可灵活应对白细胞过低和过高的特殊情况,但准确性和精密度比上法稍差,适用于日常工作。【操作】取血10μl加入白细胞计数液0.29ml内混匀充池(即稀释30倍)(1)当白细胞数在合理区间时的计数区域(即用红线勾出的四个长条形区域):http://bbs.labsky.com/uploads/2010-5/2010-05-12_224324.jpg【计算】WBC数 / L = 计数区白细胞总数 / 10 ×10^9 / L(2)当白细胞数低于4.0 ×10^9 / L时,不必加量采血重做,计数区域:http://bbs.labsky.com/uploads/2010-5/2010-05-12_224506.jpg【计算】WBC数 / L = 计数区白细胞总数 / 20 ×10^9 / L(3)当白细胞数高于80 ×10^9 / L时,亦不必进行二次稀释,计数区域与新法计数RBC或PLT的计数区域相同,请见上面的第一幅贴图【计算】WBC数 / L = 计数区白细胞总数 ×10^9 / L我的这套方法好用与否,大家一试便知。最终的计算公式是怎么推导来的,这里我就不做详细论述,大家可以自己试着推导一下,如果对我的文章有疑异的,可以随时和我联系,欢迎大家批评和指正。我的QQ:59889501 作者:景德镇第二医院检验科 黄知进

  • 首个哺乳动物单细胞计算器问世

    多功能血细胞计数器是由数字处理芯片、集成电路,以及显示屏、按键组成,与各种显微镜配合使用,由微电脑进行自动分类计数的数字化专用产品,能对骨多功能血细胞计数器髓细胞、外周血细胞、小巨核细胞进行全面的分类计数并自动计算出各项指标,能对细胞化学染色后的积分进行计算,并兼有常用的四则运算。 哺乳动物细胞现在能够执行电子计算机的功能:进行逻辑运算。来自瑞士的研究人员给细胞装配了一个复杂的基因网络使得它不仅仅能完成如1加1的简单任务。相关研究论文发表在6月3日的《自然》(Nature)杂志上。 这项研究由来自瑞士苏黎世联邦理工学院生物系统系生物技术与生物工程学教授Martin Fussenegger领导。在文章中,研究人员构建了一个能够执行逻辑运算的基因网络,并由此启动了特异的代谢步骤。“我们开发出了第一个真正的细胞计算器,”Fussenegger说。 利用生物成分,研究人员开发出了一套不同的元件可在不同的组合中相互连接,并随后执行逻辑运算。这些术语称之为“逻辑门”的电路元件利用了苹果分子根皮(phloretin)和抗生素红霉素作为输入信号。基于布尔逻辑(Boolean logic)进行计算。 通过组合和相互连接几个逻辑门,生物技术人员最终获得了“半加器”( “half-adder)和“半减器”( half-subtractor),这两种计算机技术中的中心电路元件。半加器是一种基本的数字电路可以合计二进制数;另一方面,半减器负责减去它们。这两种元件存在于每个数字计算器中,负责执行大部分的运算。在细胞结构试验中,两个生物计算机元件生成了实质的结果。 其他一些科学家已经在酵母和细菌中实现了不同的电路元件。在新系统中,所有都存在于单个细胞里,基于哺乳动物细胞的复杂性其轻易就超越了酵母和细菌。 相比于改变细菌或酵母细胞,研究人员因此更加接近治疗应用。对于Fussenegger教授而言,可以想象如果有必要,细胞计算器可在遥远的未来和步骤中用于监控患者的新陈代谢。可将这些智能细胞植入到糖尿病患者体内,例如通过开发一个电路识别疾病相关代谢产物,调控具治疗效应物质的释放,例如胰岛素。然而目前研究人员离这样的应用仍相距甚远。

  • 小鼠骨髓细胞数检测的仪器

    大神们,帮忙推荐台主要针对小鼠骨髓细胞数检测的仪器,再一个就是能对小鼠血细胞的种类分类,计数。要求不高。。但是这种针对性的仪器还这难找。。

  • 小鼠骨髓细胞数检测的仪器

    大神们,帮忙推荐台主要针对小鼠骨髓细胞数检测的仪器,再一个就是能对小鼠血细胞的种类分类,计数。要求不高。。但是这种针对性的仪器还这难找。。

  • AI 单细胞应用!英伟达携手Deepcell开发单细胞分析的生成式AI技术应用

    [b][i]Deepcell周一表示,已与英伟达合作开发用于单细胞研究应用的生成人工智能技术。[/i][/b][align=center][b][i][img=image.png,113,83]https://img1.17img.cn/17img/images/202401/uepic/174b29e0-2f00-4d45-af22-8d08603d1fda.jpg[/img][/i][/b][/align][align=center][b][i][img=e763286044be6f856573c041d533273b_logo_with_R.jpg]https://img1.17img.cn/17img/images/202401/uepic/ee51f257-73e0-4f4c-beab-da55f87c445f.jpg[/img][/i][/b][/align]通过合作,公司将利用英伟达的计算专业知识和Clara一套专注于医疗保健的计算平台和软件,为基于细胞形态的分析应用程序构建新的算法,这些算法可以与Deepcell最近推出的REM-I高维细胞分析和分选平台等工具结合使用。Deepcell联合创始人、总裁兼首席技术官Mahyar Salek在一份声明中表示:“我们看到了将多模式和生成性人工智能融入我们的平台的多种可能性,并利用我们拥有的数十亿细胞图像的专有数据库来训练更多的人工智能模型。我们与英伟达的关系将帮助我们加快此类增强,并将这些进步带给我们的客户。”总部位于加利福尼亚州门洛帕克的Deepcell成立于2017年,是斯坦福大学的子公司,于2022年初筹集了7300万美元的B轮资金。Deepcell 是人工智能(AI)驱动的单细胞分析领域的先驱,旨在推动深度生物学发现,早在2023年2 月 6 日宣布,它已经发布了三个数据集,使研究人员能够探索新的高维形态数据。这些数据集是在 Deepcell 的高通量平台上生成的,该平台由成像和分选仪器、AI 模型和软件套件组成。Deepcell的首席技术官 Mahyar Salek曾经表示:“Deepcell的数据表明,深度学习可以实现较高的分类准确率,揭示了精确描述细胞特征和表型的新方法,并能够对感兴趣的细胞进行无标记分离,以进行进一步的深度分析。这项技术为生物医学界的科学家、转化研究机构和制药行业提供了一种新的工具,以从细胞形态学数据中获得对细胞的深度认识。”[b]关于 Deepcell[/b]Deepcell 是一家生命科学公司,它将 AI 引入细胞生物学,开启了称为形态组学的高维生物发现新领域。通过 Deepcell 的人工智能成像和微流体解决方案 REM-I 平台,该公司正在利用细胞形态学进行无限发现,从而实现新规模的细胞生物学研究和单细胞分析。Deepcell 的平台利用其 AI 模型,即人类基础模型,根据形态差异来识别和分类细胞,有助于推动基础和转化研究,并提供诊断测试和治疗靶向方面的未来应用。该公司于 2017 年从斯坦福大学分拆出来,已筹集近 1 亿美元的风险投资。[来源:仪器信息网译] 未经授权不得转载[align=right][/align]

  • 【分享】神经细胞培养

    体外神经细胞的培养已成为神经生物学研究中十分有用的技术手段。神经细胞培养的主要优点是:(1)分散培养的神经细胞在体外生长成熟后,能保持结构和功能上的某些特点, 而且长期培养能形成髓鞘和建立突触联系,这就提供了体内生长过程在体外重现的机会。(2)能在较长时间内直接观察活细胞的生长、分化、形态和功能变化,便于使用各种不同的技术方法如相差显微镜、荧光显微镜、电子显微镜、激光共聚焦显微镜、同位素标记、原位杂交、免疫组化和电生理等手段进行研究。(3)易于施行物理(如缺血、缺氧)、化学和生物因子(如神经营养因子)等实验条件, 观察条件变更对神经细胞的直接或间接作用。(4)便于从细胞和分子水平探讨某些神经疾病的发病机制,药物或各种因素对胚胎或新生动物神经细胞在生长、发育和分化等各方面的影响。 我们实验室从80年代始开展了神经细胞的体外培养工作,取得了一些经验,现将培养细胞分类及方法简要介绍如下:一.鸡胚背根神经节组织块培养 主要用于神经生长因子(NGF)等神经营养因子的生物活性测定。在差倒置显微镜下观察以神经突起的生长长度和密度为指标半定量评估NGF的活性。1. 材料和方法 (1)选正常受精的鸡蛋,置于37℃生化培养箱内孵化,每日翻动鸡蛋一次。 (2)取孵化8-12 d 的鸡蛋, 用70% 酒精消毒蛋壳,从气室端敲开蛋壳,用消毒镊剥除气室部蛋壳。(3)用弯镊钩住鸡胚颈部,无菌条件下取出鸡胚置小平皿内,除去头部后,腹侧向上置 灭菌毛玻璃片上,用眼科弯镊子打开胸腹腔,除去内脏器官。(4)在解剖显微镜下,小心除去腹膜,暴露脊柱及其两侧,在椎间孔旁可见到沿脊柱两侧 排列的背根节(图1),用一对5号微解剖镊小心取出。(5)置背根节于解剖溶液内,用微解剖镊去除附带组织,接种于涂有鼠尾胶的玻璃或塑料 培养瓶中,在DMEM无血清培养液中培养。2. 结果鸡胚背根神经节在含神经生长因子(NGF, 2.5S,20ng/ml)的无血清培养液中培养24 h,神经节长出密集的神经突起。而未加NGF的神经节培养24 h, 未见神经突起生长。二.新生大鼠、新生小鼠及鸡胚背根神经节分散细胞培养背根神经节(DRG)细胞起源于神经嵴,NGF研究先驱Levi-Montalcini的实验表明,外原性NGF能刺激DRG细胞生长发育并形成广泛的神经网络。在体外,分离培养的神经节在NGF存在的情况下,神经突起的生长在一天之内可长达数毫米,因此,利用培养的DRG细胞,进行轴突生长发育的研究,是最为经典而常用的方法之一。

  • 【求购】液基细胞保存液

    【求购】液基细胞保存液

    产品简介:保存液快速对脱落上皮细胞、腺细胞、白细胞等进行很好的保存和固定,保持标本采集时的原始细胞形态,防止细胞在保存过程中发生变形、自溶等。并通过制片使细胞均匀涂布在载玻片上制成薄层细胞涂片。染色后细胞结构在显徵镜下清晰易辨,同时把血液、粘液和炎症细胞减少到最底程度,从而易发现和确认异常细胞。更有利于从细胞的形态变化判定细胞的病变程度,使判定结果更加准确可靠,提高异常细胞的检出率,大大提高宫颈癌筛查方法的特异性和诊断的准确率。·产品性能特点::红细胞处理能力强:无需另加裂解液,既可将全部红细胞彻底清除,同时完美保存有诊断价值的各种有核细胞形态,从而对于临床上重度宫颈糜烂病人(或大量血细胞标本)能轻松一次性处理干净·消化分解黏液能力强:充分消化粘黏液,去除标本中普遍存在的黏液等干扰成份,释放具有诊断价值的细胞,保留有价值的诊断背景,有效提高检出率,检测结果准确。·细胞形态:核结构完整,其中核膜、核仁、核染色质颗粒及分布清晰可见,胞浆的嗜染性正常,有利于鉴别细胞的类别及来源。 细胞萃取:采用梯度离心分离萃取及红细胞处理专利技术和黏液消化技术多合一去除液基细胞学标本中的血液、黏液等干扰成份,富集提取细胞及诊断成份。 ·兼容性强:保存的细胞同时可做免疫细胞化学、HPV-DNA和衣原体等病原微生物的分子生物学检测,无需多次采样的烦恼。·应用广泛:细胞保存液临床运用非常广泛,除了运用宫颈细胞学检查外,还有胸腹积液、尿液、滑膜液、支气管冲洗液、脑脊液、针吸穿刺细胞及痰液标本细胞检测。·保存时间长:细胞在保存液中保存30天形态不变,真正保持细胞原始形态,更接近本身的组织学结构,更有利于恶性病变与良性反应性改变的鉴别诊断。·保存液细胞包裹技术,可以使细胞均匀悬浮,保证操作者在涂片标本时的随机性,任意取样涂片都具有代表性。http://ng1.17img.cn/bbsfiles/images/2011/06/201106231241_301155_2324710_3.jpg

  • 如何选择合适的细胞分离试剂盒

    现如今市场上的ELISA试剂盒种类繁多,但是要如何找到适合你的那款呢?一款合适的细胞分离试剂盒可以说是实验成功的保障,因为只有获得正确的细胞,下游的分析结果才可能准确。目前,市面上有多种多样的分离试剂盒可供选择,它们的主要区别在于分离方法和筛选标志。正向选择VS负向选择细胞分离试剂盒的工作原理主要有两种,正向选择和负向选择。正向选择的试剂盒,使用与目标细胞直接结合的抗体来进行捕获。这种抗体通常与磁珠相连,可以利用磁铁将悬液中的抗体-磁珠-细胞复合物提取出来,再通过二抗将磁珠与目标细胞分开。负向选择的试剂盒也采用类似的抗体包被磁珠,不过这种试剂盒是通过去除样品中的非目的细胞,来间接捕获目的细胞。这两种细胞分离试剂盒如何取舍,主要取决于目标细胞的表面是否具有特异性强的筛选标志。这样的筛选标志能够实现特异性的捕获,避免所获得的细胞被非目标细胞污染。如果你的目标细胞刚好具有这样的筛选标志,那么正向选择的细胞分离试剂盒就是最佳选择。但如果目标细胞并不具有特异性强的筛选标志,那我们最好还是选用负向选择的细胞分离试剂盒。

  • 高压细胞破碎机应用

    目前国内对细胞破碎机的研究局限于实验研究,仅对某种结构均质阀的均质效果进行验证与分析,或是选择结构参数。实验研究的局限性使这种分析不够全面。高压细胞破碎机是目前生物工程领域广泛使用的一种细胞破碎机。作者结合近期国外对高压细胞破碎机的理论研究工作,应用半经验半理论的方法,分析探讨了高压细胞破碎机的均质理论。高压细胞破碎机的结构及工作原理: 高压细胞破碎机由高压泵和破碎阀两部分组成,高压泵通常采用柱塞往复泵,其结构与一般柱塞泵相同。破碎阀安装在柱塞泵的排出管路上,一般由阀芯和阀座构成,阀芯和阀座的结构形式对破碎效果、能耗以及阀的磨损影响极大。国外对破碎阀的结构进行了大量研究,设计出许多不同结构的破碎阀,研究主要围绕下列问题进行:1,在较低操作压力下提高破碎效果2,提高阀的使用寿命。意大利Niro Soavi公司为此,开发出R型细胞破碎阀,经过多年的实际使用,获得用户的认可。高压细胞破碎机工作原理: 高压细胞破碎机有一个或数个往复运动的柱塞,物料在柱塞作用下进入可调节压力大小的阀组中,经过特定宽度的限流缝隙(工作区)后,瞬间失压的物料以极高的流速(1000米/秒,最高可达1500米/秒)喷出,碰撞在阀组件之一的碰撞环上,产生三种效应: 空穴效应:被柱塞压缩的物料内积聚了极高的能量,通过限流缝隙时瞬间失压,造成高能释放引起空穴爆炸,致使物料强烈粉碎细化。(主要应用于均质) 撞击效应:物料通过可调节限流缝隙的以上述极高的线速度,喷射到用特殊材料制成的碰撞环上,造成物料粉碎。(主要应用于细胞破碎) 剪切效应:高速物料通过泵腔内通道和阀口狭缝时会产生剪切效应。(主要应用于乳化)经过这三种效应处理过的物料可均匀细化到0.1μm-2μm粒径。

  • 世界最快速相机可用于探测“流氓”癌细胞

    http://photocdn.sohu.com/20120710/Img347740451.jpg 加州大学洛杉矶分校的工程师们开发了一种全新的光学显微镜,显微镜上配备了世界上最快速的相机,可用于探测“流氓”癌细胞。  【搜狐科学消息】据国外媒体报道,美国加州大学洛杉矶分校(UCLA)的工程师们近日研制出了一款世界上最快速的相机,可用于探测难以捉摸的“流氓”癌细胞。这一科研成果的研究报告发表在了最新一期的《美国国家科学院院刊》上。  从大量各类正常细胞中识别和分离出一些罕见细胞对于某些疾病的早期发现、监测和治疗来说正在变得越来越重要。这些罕见细胞中,在体内自由移动的癌细胞就是一个很好的例子。通常情况下,在10亿个健康细胞中也只有一小撮癌细胞,然而它们会抢先转移,癌细胞扩散导致癌症患者的死亡率高达约90%。这样的“流氓”细胞除了癌细胞以外,还包括用于再生医学的干细胞及其它类型的细胞。不幸的是,检测这样的细胞是很困难的。要取得良好的统计准确性需要一台自动化、高通量的仪器,可以在相当短的时间内对数以百万计的细胞进行检测。配备了数码相机的显微镜是目前分析细胞的唯一设备,但是该设备对于这项研究来说速度显得太慢了。  现在,美国加州大学洛杉矶分校(UCLA)的工程师们开发了一种全新的光学显微镜,可以让这项艰巨的任务变得轻松许多。加州大学洛杉矶分校电气工程学院的工程师巴赫拉姆•贾拉利(Bahram Jalali)说:“为了抓拍到这些难以捉摸的细胞,相机必须具备在非常高的帧速率下持续捕获并对数百万张图像进行数字化处理的能力。传统的CCD和CMOS摄像头达不到这样的速度和灵敏度,因为从像素阵列读取数据需要时间,它们在速度极快的情况下对光变得不那么敏感。”  目前的流式细胞仪具有较高的通量,但是因为它依靠单点的光散射而不是拍照,在检测非常罕见的细胞类型时还不够灵敏,比如对于那些目前处于早期阶段或癌细胞转移前的癌症患者不适用。为了克服这些限制,巴赫拉姆•贾拉利和UCLA的的生物工程学副教授迪诺•迪•卡罗( Dino Di Carlo)领导的一个包括生物技术、光学、高速电子和微流体的跨学科研究团队开发出了高通量流式光学显微镜,这款显微镜非常灵敏,具备实时探测含量为百万分之一的罕见细胞的能力。  贾拉利的团队以他们在2009年创建的光子时间飞梭相机技术为基础,研制出了世界上最快的连续运行的相机。贾拉利、迪•卡罗和他们的同事在报告中描述了他们如何将这台相机与先进的微流体和实时图像处理技术进行整合,以对血液样本中的细胞进行分类。新的血液筛查技术每秒可筛查10万个细胞,比传统的基于成像的血液分析仪高出约100倍的通量。迪•卡罗说:“这项科研成果需要与一些尖端技术进行整合,通过生物工程部门、电气工程部门和加州纳米技术研究院的合作,并采用了UCLA细胞诊断学部门开发的重要的技术基础设施。”贾拉利和迪•卡罗均是加州大学洛杉矶分校的加州纳米技术研究院的成员。  他们的研究演示了如何实时辨别血液中罕见的乳腺癌癌细胞。初步结果表明,这种新技术有可能迅速地在大量血液中检测到极稀少的循环癌细胞,并将提高癌症早期检测、监测药物和放射治疗的效率。加州大学洛杉矶分校的电气工程和生物工程的项目经理本田惠介(Keisuke Goda)说:“这项技术可以大大减少错误,并将降低医疗诊断成本。”  研究人员通过将实验室生长的癌细胞与模拟现实生活中的病人的不同比例的血液进行混合得到了检测结果。加州纳米技术研究院的一名成员格达(Goda)说:“为了进一步验证该技术的临床应用效果,我们目前正在与临床医生合作进行临床试验。这项技术也将可能用于进行尿液分析、水质监测和相关的应用。”(尚力)

  • 细胞自噬 细胞自噬

    细胞自噬是机体一种重要的防御和保护机制。但是这种自噬“信号”如何传递给细胞从而使其“执行”自噬过程,则一直是科学界的难题。近期,我校生命科学学院林圣彩教授课题组成功找到高等动物细胞在生长因子缺失条件下,启动自噬的部分“密码”,从而在细胞自噬机制研究方面取得重大突破。  4月27日,最新一期的美国《科学》杂志以研究文章的形式刊发了这项研究成果,并配发专门评述。这也是近三年来,我校生命科学学院第二篇发表在这一世界顶级学术刊物上的论文。2009年6月,该院韩家淮教授的一篇有关细胞选择死亡方式机制的研究文章曾“登上”该杂志。  所谓自噬,是指细胞消化自身蛋白质或细胞内的结构(细胞器)的一种自食现象。通过这种现象,细胞可以降解、消除和消化受损、变性、衰老和失去功能的细胞器和变性蛋白质等生物大分子,为细胞的生存和修复提供必须的能量。  科学家们认为,自噬与细胞凋亡、细胞衰老一样,是一种十分重要的生物学现象。有关实验表明,包括肥胖症、糖尿病、神经退行性疾病、免疫失调及癌症在内的人类许多重大疾病的发生都与该过程的异常有关。为此,自噬也是当前生命科学中最热门的研究领域之一。  据林圣彩介绍,对自噬进行分子机制的研究始于上世纪90年代的以单细胞生物酿酒酵母为模型的研究,目前,一系列构成单细胞生物自噬核心机器的基因已被发现并命名。  然而,对自噬在多细胞生物特别是哺乳动物中的调控机制的研究,科学界至今仍在不断探索中。摆在科学家面前的一个根源性的问题是:在多细胞生物中,诱导自噬的各种信号是如何被传递到细胞内自噬“核心机器”从而启动自噬过程的?  研究表明,与单细胞生物不同,在多细胞生物内,外界营养元素要依赖于生长因子的调控才能被转运到细胞内。一旦细胞外的生长因子匮乏,细胞便能启动自噬以维持能量平衡。那么,生长因子缺失这一信号又是如何“传达”的呢?  这也成为长期致力于细胞信号转导研究的林圣彩教授课题组近年来的研究目标之一。经过多年研究,课题组终于成功“**”这一自噬启动“密码”——即通过一种名为GSK3的激酶活性增高后磷酸化并随之激活乙酰转移酶TIP60,进而导致自噬核心机器中的蛋白激酶ULK1的乙酰化水平增强而启动细胞自噬。简言之,这一发现揭示了多细胞生物在生长因子缺失条件下的细胞自噬过程的新的介导分子及其通路。  林圣彩认为,弄清楚了细胞内到底有哪些蛋白分子“参与”了自噬和它们如何串联在一起,将有益于科学界从“源头”上认识相关疾病,并为这些疾病的诊断和治疗提供新的靶点。

  • 纳米钻石“温度计”测量活细胞温度更精准

    有望提供一种新的治疗癌症的方法2013年08月01日 来源: 科技日报 作者: 陈丹 科技日报讯(记者陈丹)据《自然》杂志网站8月1日(北京时间)报道,纳米钻石可用于量子计算机中处理量子信息,而哈佛大学的研究人员利用纳米钻石的量子效应,将其变为“温度计”,测量出了人类胚胎干细胞内部的温度变化,精确度是现有技术的10倍。通过加入金纳米粒子,研究人员还能够利用激光对细胞的特定部分加热甚至杀死细胞,这有望提供一种新的治疗癌症而不损害健康组织的方法,以及研究细胞行为的新手段。研究论文发表在本周的《自然》杂志上。 在这项最新研究中,研究人员使用纳米线将直径约100纳米的钻石晶体注入一个人类胚胎干细胞中,然后用绿色激光照射细胞,使氮杂质发出红色荧光。当细胞内局部温度出现变化时,红色荧光的强度会受到影响。通过测量荧光的强度,便可以计算出相应的纳米钻石的温度。由于钻石具有良好的导热性,就可以像温度计一样显示出其所处细胞内部环境的即时温度。 研究人员同时还将金纳米粒子注入细胞内,然后用激光来加热细胞的不同部位,加热点的选择和温度升高多少都可由纳米钻石“温度计”来精确控制。“现在我们有了一个可以在细胞水平上控制温度的工具,让我们能够研究生物系统对温度变化的反应。”参与该研究的哈佛大学物理学家彼得·毛瑞尔说。 他指出,基础生物学涉及到的很多生物过程,从基因表达到细胞新陈代谢,都会受到温度的强烈影响,纳米钻石“温度计”将是一个有用的工具。例如,通过控制线虫的局部温度,生物学家可以了解简单有机体的发育。“你可以加热单个细胞,研究其周围的细胞是否会减慢或者加快它们的繁殖率。”毛瑞尔说。 目前也有一些其他测量细胞温度的方法,比如利用荧光蛋白或碳纳米管,但这些测量手段在敏感性和准确度方面都有欠缺,因为其中的一些成分会和细胞内的物质发生反应。毛瑞尔说,他们的纳米钻石“温度计”的敏感度至少提高了10倍,能够检测出细微到0.05开的温度波动。而且其还有改进的余地,因为在活细胞外部,该“温度计”的敏感度已经达到0.0018开的温度波动。 总编辑圈点 这样的“温度计”应该造价不菲,好在钻石是纳米级的。而其能够检测出细微到0.05开的温度波动,让其他测量细胞温度的方法难以望其项背,我们有理由相信,这项技术不仅仅只应用于医学领域。目前晶体管已经达到极小量度,在20或30纳米级别,离原子级别已经不远。然后,最重要的事情就是要理解热量散播和设备电子结构之间的关系,只有掌握这方面的知识,才能真正操控原子级设备,而纳米钻石“温度计”或许能派上大用场。 《科技日报》(2013-08-02 一版)

  • 【整理总结】李晶教授细胞冻存、解冻方法与细胞计数

    液氮槽vaporphase长期储存。-20℃不可超过1小时,以防止胞内冰晶过大,造成细胞大量死亡,亦可跳过此步骤直接放入-80℃冰箱中,惟存活率稍微降低一些。(2)程序降温:利用已设定程序的等速降温机以-1~-3℃/分钟之速度由室温降至(-80℃以下)-120℃,再放在液氮槽vaporphase长期储存。适用于悬浮型细胞与hybridoma之保存。3、步骤:(1)冷冻前24-48小时更换半量或全量培养基,使细胞处于指数生长期。(2)配制冷冻保存溶液(使用前配制):另取一离心管,加入培养基、血清,逐滴加入二甲基亚砜(DMSO)至20%浓度,即制成双倍的冻存液,置于室温下待用。(3)离心收集培养之细胞,用加血清的培养基重悬起细胞,取少量细胞悬浮液(约0.1ml)计数细胞浓度及冻前存活率。(4)取与细胞悬液等量的冻存液,缓慢逐滴加入细胞悬液,并晃动试管,制成细胞冻存悬液(DMSO最后浓度为5~10%),使细胞浓度为1~5×106cells/ml,混合均匀,分装于已标示完全之冷冻保存管中,1~2ml/vial,并取少量细胞悬浮液作污染检测。严密封口后,注明细胞名称、代数、日期。然后进行冻存。4、注意事项:(1)欲冷冻保存之细胞应在生长良好(logphase)且存活率高之状态,约为80~90%致密度。冷冻前检测细胞是否仍保有其特有性质,例如hybridoma应在冷冻保存前一至二日测试是否有抗体之产生。(2)细胞在液氮中可长期冻存无限时间,而不会影响细胞活力;在-70度可保存数月。(3)注意冷冻保护剂之品质。DMSO应为试剂级等级,无菌且无色(以0.22micron FGLP Telflon过滤或是直接购买无菌产品,如Sigma D-2650),以5~10ml小体积分装,4℃避光保存,勿作多次解冻。Glycerol亦应为试剂级等级,以高压蒸汽灭菌后避光保存。在开启后一年内使用,因长期储存后对细胞会有毒性。本方法中先制备双倍冻存液,可避免DMSO直接加入时释放的热量对细胞的损伤。缓慢逐滴加入细胞悬液是使细胞逐步适应高渗,可降低细胞受损。DMSO可能引起部分白血病细胞株的分化,可换用10%甘油冻存。(4)冷冻保存之细胞浓度:①normal human fibroblast:1~3×106cells/ml②hybridoma:1~3×106cells/ml,细胞浓度不要太高,某些hybridoma会因冷冻浓度太高而在解冻24小时后死去。③adherent tumor lines:5~7×106,依细胞种类而异。Adenocarcinoma解冻后须较高之浓度,而HeLa只需1~3×106cells/ml④other suspensions:5~10×106cells/ml,human lymphocyte须至少5×106cells/ml。(5)冷冻保护剂浓度为5或10%DMSO,若是不确定细胞之冷冻条件,在做冷冻保存之同时,亦应作一个backup culture,以防止冷冻失败。(6)冻存可用10%~90%的血清,一般高浓度血清有助于维护细胞活力,此处介绍20%终浓度有利于细胞悬浮而少沉积(4度时),复苏存活率在80%~90%以上,对原代培养细胞,以90%血清冻存更为有效。二、冷冻细胞活化1、冷冻细胞之活化原则为快速解冻,以避免冰晶重新结晶而对细胞造成伤害,导致细胞之死亡。2、细胞活化后,约需数日,或继代一至二代,其细胞生长或特性表现才会恢复正常(例如产生单株抗体或是其它蛋白质)。3、材料37℃恒温水槽、新鲜培养基、无菌吸管/离心管/培养瓶、液氮或干冰容器4、步骤:(1)操作人员应戴防护面罩及手套,防止冷冻管可能爆裂之伤害。(2)自液氮或干冰容器中取出冷冻管,检查盖子是否旋紧,由于热胀冷缩过程,此时盖子易松掉。(3)将新鲜培养基置于37℃水槽中回温,回温后喷以70%酒精并擦拭之,移入无菌操作台内。(4)取出冷冻管,立即放入37℃水槽中快速解冻,轻摇冷冻管使其在1分钟内全部融化,以70%酒精擦拭保存管外部,移入无菌操作台内。(5)取出解冻之细胞悬浮液,缓缓加入有培养基之培养容器内(稀释比例为1:10~1:15),混合均匀,放入CO2培养箱培养。取0.1ml解冻细胞悬浮液作存活测试。(6)解冻后是否立即去除冷冻保护剂(例如DMSO或glycerol),依细胞种类而异,一般而言,大都不需要立即去除冷冻保护剂。惟若要立即去除,则将解冻之细胞悬浮液加入含有5-10ml培养基之离心管内,离心1000rpm,5分钟,移去上清液,加入新鲜培养基,混合均匀,放入CO2培养箱培养。(7)若不需立即去除冷冻保存剂,则在解冻培养后隔日更换培养基。三、细胞计数与存活测试1、原理:(1)计算细胞数目可用血球计数盘或是Coultercounter粒子计数器自动计数。(2)血球计数盘一般有二个chambers,每个chamber中细刻9个1mm2大正方形,其中4个角落之正方形再细刻16个小格,深度均为0.1mm。当chamber上方盖上盖玻片后,每个大正方形之体积为1mm2×0.1mm=1.0x10-4ml。使用时,计数每个大正方形内之细胞数目,乘以稀释倍数,再乘以104,即为每ml中之细胞数目。(3)存活测试之步骤为dyeexclusion,利用染料会渗入死细胞中而呈色,而活细胞因细胞膜完整,染料无法渗入而不会呈色。一般使用蓝色之trypan blue染料,如果细胞不易吸收trypan blue,则用红色之Erythrosin bluish。计算细胞活率:活细胞数/(活细胞数+死细胞数)×100%。计数应在台盼兰染色后数分钟内完成,随时间延长,部分活细胞也开始摄取染料;因为台盼兰对蛋白质有很强的亲和力,用不含血清的稀释液,可以使染色计数更为准确。2、材料:0.4%w/v trypan blue(GibcoBRL15250-061);Erythosin bluish stain;取0.1gram Erythrosin bluish(SigmaE-9259)及0.05gram preservative methyl paraben(SigmaH-3647)溶于100mlCa++/Mg++freesaline;血球计数盘及盖玻片(Hemocytometerandcoverslip);计数器(counter);低倍倒立显微镜;粒子计数器(Coultercounter,CoulterElectronics)。白细胞稀释液(4%乙酸溶液)。3、步骤:(1)取50μl细胞悬浮液与50μl trypan blue(orErythrosinbluish)等体积混合均匀于1.5ml小离心管中。(2)取少许混合液(约15μl)自血球计数盘chamber上方凹槽加入,盖上盖玻片,于100倍倒立显微镜下观察,活细胞不染色,死细胞则为蓝色(或红色-Erythrosin bluish)。(3)计数四个大方格之细胞总数,再除4,乘以稀释倍数(至少乘以2,因与trypanblue等体积混合),最后乘以104,即为每ml中细胞悬浮液之细胞数。若细胞位于线上,只计上线与右线之细胞(或计下线与左线之细胞)。注:4大格细胞总数×稀释倍数×104/4=细胞数/ml;每一大格的体积=0.1cm×0.1cm×0.01cm=10-4ml计数板计数时,最适浓度为5~10×105细胞/ml,此范围外计数误差偏大。高浓度细胞悬液,可取出部分作稀释或连续稀释后计数。5、范例:T75 monolayer culture制成10ml细胞悬浮液,取0.1ml溶液与0.1ml trypan blue混合均匀于试管中,取少许混合液加入血球计数盘,计数四大方格内之细胞数目。活细胞数/方格:55,62,49,59;死细胞数/方格:5,3,4,6;细胞总数=243平均细胞数/方格=60.75;稀释倍数=2;细胞数/ml:60.75×104×2(稀释倍数)=1.22×106;细胞数/flask(10ml):1.22×106×10ml=12.2×106存活率:225/243﹦92.6%

  • 比较不同细胞冻存方案:厂家差异及其对细胞质量的影响

    细胞冻存是长期保存、运输和共享生物材料的重要手段,对于各种生物医学研究领域具有重要的作用。然而,不同的细胞冻存方法可能会影响细胞的质量和存活率。本文将探讨不同厂家提供的细胞冻存方法,并分析它们对细胞质量的影响。  厂家差异及其对细胞质量的影响  目前,市面上有许多细胞冻存试剂盒供应商,其中一些主要的厂家包括Thermo Fisher Scientific、Sigma-Aldrich、Qiagen和Promega等。这些厂家提供的细胞冻存试剂盒都有其独特的优点和缺点。  以细胞存活率为例,Thermo Fisher Scientific公司提供的CryoStor冻存剂的细胞存活率达到了98.5%,而Sigma-Aldrich公司提供的CryoSure-DMSO冻存剂的细胞存活率仅为85%。这表明,不同厂家提供的细胞冻存试剂盒对细胞存活率的影响存在差异。  此外,不同的冻存方法也可能影响细胞的质量。例如,在使用Thermo Fisher Scientific公司的CryoStor 冻存剂时,冷冻速率、先冷冻后复温的步骤和使用的液氮均对细胞的冻存质量产生影响。另外,Sigma-Aldrich公司的CryoSure-DMSO冻存剂需要在冷冻过程中将细胞悬浮于冻存剂中,并使用20%的DMSO作为保护剂,以确保细胞质量。  因此,选择细胞冻存试剂盒时,需要注意不同厂家提供的细胞冻存试剂盒的差异,以及冷冻的方法是否适合特定类型的细胞。 关注:[url=http://www.yedanguan365.com/]液氮罐[/url] [url=http://www.mvecryoge.com/]金凤液氮罐[/url] [url=http://www.mvecryo.com/]mve液氮罐[/url]

  • 细胞培养基的几个常见问题

    1、L-谷氨酰胺在细胞培养中重要吗?它在溶液中不稳定吗? L-谷氨酰胺在细胞培养时是重要的。脱掉氨基后,L-谷氨酰胺可作为培养细胞的能量来源、参与蛋白质的合成和核酸代谢。L-谷氨酰胺在溶液中经过一段时间后会降解,但是确切的降解率一直没有最终定论。L-谷氨酰胺的降解导致氨的形成,而氨对于一些细胞具有毒性。 2、哪种培养基中可以省去加酚红? 酚红在培养基中用作PH值的指示剂:中性时为红色,酸性时为黄色,碱性时为紫色。研究表明,酚红可以模拟固醇类激素的作用,(特别是雌激素)。为避免固醇类反应,培养细胞,尤其是哺乳类细胞时,用不加酚红的培养基。由于酚红干扰检测,一些研究人员在做流式细胞检测时,不使用加有酚红的培养基。 3、二价离子抑制胰蛋白酶活性吗?使用胰蛋白酶时加入EDTA的目的是什么? 二价离子的确抑制胰蛋白酶活性。EDTA用来螯合游离的镁离子和钙离子,以便保持抑制胰蛋白酶的活性。建议胰蛋白酶处理细胞前,用EDTA清洗细胞,以消除来自培养基中所有的二价离子。4、培养基中丙酮酸钠的作用是什么? 丙酮酸钠可以作为细胞培养中的替代碳源,尽管细胞更倾向于以葡萄糖作为碳源,但是,如果没有葡萄糖的话,细胞也可以代谢丙酮酸钠。 5、室温下配制的Tris-HCl溶液,在37℃使用时PH值是多少? 缓冲液PH值随温度变化而变化。下表列出了50mM Tris-HC 溶液在4℃,25℃,37℃时,不同PH值。 50mM Tris-HC 溶液在4℃,25℃,37℃时,不同PH值 4°C 25°C 37°C 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 9.3 9.4 8.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5

  • 转让血细胞淘洗机

    转让泰尔茂比司特 血细胞淘洗机一台 仪器全新(受市场影响,项目未能开展,安装测试后未投入使用),价格面议。品名货号规格型号单位数量TerumoBCT 血细胞淘洗机91001TerumoBCT COBE 2991 Cell processor台1

  • 【分享】细胞冻存和细胞复苏的方法步骤

    目前,细胞冻存最常用的技术是液氮冷冻保存法,主要采用加适量保护剂的缓慢冷冻法冻存细胞。细胞在不加任何保护剂的情况下直接冷冻,细胞内外的水分会很快形成冰晶,从而引起一系列不良反应。如细胞脱水使局部电解质浓度增高,pH值改变,部分蛋白质由于上述原因而变性,引起细胞内部空间结构紊乱,溶酶体膜由此遭到损伤而释放出溶酶体酶,使细胞内结构成分造成破坏,线粒体肿胀,功能丢失,并造成能量代谢障碍。胞膜上的类脂蛋白复合体也易破坏引起细胞膜通透性的改变,使细胞内容物丢失。如果细胞内冰晶形成较多,随冷冻温度的降低,冰晶体积膨胀造成细胞核DNA空间构型发生不可逆的损伤,而致细胞死亡。因此,细胞冷冻技术的关键是尽可能地减少细胞内水分,减少细胞内冰晶的形成。采用甘油或二甲基亚砜作保护剂,这两种物质分子量小,溶解度大,易穿透细胞,可以使冰点下降,提高细胞膜对水的通透性,且对细胞无明显毒性。慢速冷冻方法又可使细胞内的水分渗出细胞外,减少胞内形成冰结晶的机会,从而减少冰晶对细胞的损伤。二、细胞冻存操作步骤:(1)选择处于对数生长期的细胞,在冻存前一天最好换液。将多个培养瓶中的细胞培养液去掉,用0.25%胰蛋白酶消化。适时去掉胰蛋白酶,加入少量新培养液。用吸管吸取培养液反复吹打瓶壁上的细胞,使其成为均匀分散的细胞悬液。悬浮生产细胞则不要消化处理。然后将细胞收集于离心管中离心(1000r/min,10分钟)。(2)去上清液,加入含20%小牛血清的完全培养基,于4℃预冷15分钟后,逐滴加入已无菌的DMSO或甘油,用吸管轻轻吹打使细胞均匀,细胞浓度为3×106~1×107/mL之间。(3)将上述细胞分装于安瓿或专用冷冻塑料管中,安瓿装1~1.5mL在火焰喷灯上封口,封口处要完全封闭,圆滑无勾。冷冻管要将盖子盖紧,并标记好细胞名称和冻存日期,同时作好登记(日期、细胞种类及代次、冻存支数)。(4)将装好细胞的安瓿或冻存管装入沙布袋内;置于液氮容器颈口处存放过夜,次日转入液氮中。采用控制降温速度的方法也可采用下列步骤:先将安瓿置入4℃冰箱中2~3小时,再移至冰箱冷冻室内3~4小时(此步可省略),再吊入液氮容器颈气态部分存放2小时,最后沉入液氮中。细胞冻存在液氮中可以长期保存,但为妥善起见,冻存半年后,最好取出一只安瓿细胞复苏培养,观察生长情况,然后再继续冻存。

  • 红细胞与白细胞的重新定向

    白细胞与红细胞在此重新定向。白细胞(WBC)和红细胞(RBC)是血液中的重要组成部分,在生命体延续发展和生物治疗中具有不同的功能。红细胞,又称红血球,含有一种蛋白质称作血红蛋白。当血红蛋白从肺部吸收氧气时,血液呈红色。随着血液流经全身,血红蛋白向人体组织释放氧气。红细胞的生命周期为4个月,其形如圆盘,中间下凹,边缘较厚,呈圆饼状。白细胞,又称白血球,具有更加复杂的功能。白细胞构成了人体抵抗感染的一种防御机制。有多种不同类型的白细胞,其生命周期和功能各不相同。白细胞还能够产生一种特殊的蛋白质,称作抗体,能够识别并吞噬入侵人体的外来异物。 红细胞白细胞物理特征红细胞呈双凹圆盘状,无核。尺寸大约为6-8 μm。白细胞呈不规则性,但有一个核和外缓冲层。生命周期120天。几天,但在健康人体中可存活数天至数年不等。类型:血液中只有一种红细胞在血液中存在许多类型的白细胞,其功能各不相同:嗜中性粒细胞、T淋巴细胞、B淋巴细胞(巨噬细胞)、嗜酸性粒细胞、嗜碱性粒细胞。循环系统:心血管系统。心血管和淋巴系统总计红细胞700:1白细胞男性每立方毫米460-6200万个;女性每立方毫米4200-5400万个。每立方毫米4000 – 11000个功能:向身体的不同部位提供氧气,并负责运送二氧化碳和其它废物。产生抗体,对感染形成免疫力,有些具有噬菌功能。血液中含量:

  • 【转帖】iPS细胞:人造肿瘤细胞?

    各国争相发展的重点项目  iPS技术,即诱导性多能干细胞技术,是一种将成体成熟、分化的体细胞重编程获得类似胚胎干细胞的新兴技术。2007年11月美国和日本科学家分别独立宣布可将人类皮肤细胞转化为iPS细胞。这一发现被《自然》和《科学》杂志分别评为2007年第一和第二大科学进展。之后,iPS细胞研究迅猛发展,不同的国家和实验室纷纷报道了多种方法建立的iPS细胞系。就连世界第一只体细胞克隆动物多利羊的培育者伊恩·威尔莫特也宣布放弃人类胚胎干细胞克隆研究,转而进行 iPS 细胞研究,因为他认为这种细胞比胚胎干细胞更具潜在优势。  我国连续多年将干细胞研究列入“863”、“973”、国家自然基金重点项目。国务院2006年发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,干细胞作为五项生物技术之一成为未来15年我国前沿技术的重点研究领域。  致瘤风险浮出水面  Yamanaka研究组在《自然·生物技术》上发表的文章显示,用iPS细胞诱导的神经干细胞,即使不含c-Myc(曾被认为是导致肿瘤的主要原因),在植入NOD/SCID免疫缺陷小鼠后仍有很强的致瘤性,甚至高于胚胎干细胞。   他们共研究了36个iPS细胞克隆,在诱导方式上,有些诱导剂配方中含有c-Myc基因,有些没有,因此具有较好的代表性。同时他们选择了3株胚胎干细胞作为对照。在45周的观察中,移植胚胎干细胞来源神经干细胞的34只小鼠有4只长出肿瘤。在100只移植胚胎成纤维细胞来源的iPS神经干细胞小鼠中34只发现肿瘤,概率和胚胎干细胞相当。在55只移植成人成纤维细胞来源的iPS神经干细胞小鼠中46只发现肿瘤,概率远高于胚胎干细胞。在36只移植肝细胞来源的iPS神经干细胞小鼠中10只发现肿瘤,概率高于胚胎干细胞。8只移植胃上皮细胞来源的iPS神经干细胞小鼠中未发现肿瘤。病理学检查证实肿瘤均为畸胎瘤,部分为恶性畸胎瘤。  研究还发现,以前认为致瘤性很强的c-Myc在去掉后并没有减少iPS神经干细胞的致瘤性,相反以前认为没有致瘤性的Nanog基因却可以明显增强iPS神经干细胞的致瘤性。  这次试验的另一个意外结果是并未发现在生成的肿瘤细胞中有c-Myc或其他基因的激活。以前的观点认为,转入的癌基因是iPS致瘤性的基础,只要在iPS细胞诱导成功后通过各种方法去除已完成使命的癌基因即可使iPS细胞免于致瘤性。这次试验的结果无疑给这些想法留下了阴影,而且使iPS致瘤的机制更加扑朔迷离。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制