细胞总数计

仪器信息网细胞总数计专题为您提供2024年最新细胞总数计价格报价、厂家品牌的相关信息, 包括细胞总数计参数、型号等,不管是国产,还是进口品牌的细胞总数计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞总数计相关的耗材配件、试剂标物,还有细胞总数计相关的最新资讯、资料,以及细胞总数计相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

细胞总数计相关的厂商

  • 原能细胞科技集团由知名创业企业家瞿建国先生和上市公司开能健康(股票代码:300272)等于2014年创立,实收资本15亿元人民币。原能细胞总部位于上海张江国家科学城药谷核心区域拥有占地60多亩的原能细胞产业园、原能细胞科创园两大园区,同时也是上海张江细胞科技产业园的核心基地。原能细胞科技集团是创业老兵瞿建国先生在成功创办两家上市公司(老八股申华实业(600653)、创业板开能健康(300272)后再次创业,致力于“天下无穷人、地上无病人”的全民健康使命。 原能细胞科技集团下辖上海原能细胞生物低温设备有限公司、上海原能细胞医学技术有限公司、上海原能细胞库有限公司,围绕细胞生物产业构筑细胞生物低温设备、细胞医学技术与新药研发、细胞库等领域产业生态发展圈。原能细胞科技集团与海内外顶尖专家、中国一流研究型医院(复旦大学附属中山医院、上海交通大学附属仁济医院、上海市第一人民医院、海军军医大学附属长征医院等)、著名研究机构(中科院上海免疫所等)、生命科学院、著名生物研发药企等开展了多层面,多方式的合作,建有多个联合实验室和细胞治疗临床中心,开辟了细胞生物产业化发展新局面。 上海原能细胞生物低温设备有限公司是国家高新技术企业并获得ISO90001认证。公司致力于生物医学设备及系统国际前沿领域发展,集研发、设计、生产制造为一体,自主研发的全流程深低温、自动化、信息化、智能存储设备,实现超低温(-80度)、深低温(-196度)等温区全覆盖,实现生物样本与“活细胞”程序降温、冷链运输、存储、入库/出库等全流程自动化、智能化、信息化,广泛应用于分子临床转化医学中心、研究型医院样本中心、生物医药研发企业/CRO/CDMO、生命科学研究机构、大学生命科学院、医学院等。公司BSN系列设备(液氮自动化存储设备)获得CE 认证,BSN200项目获批2020年首批上海市高新技术成果转化项目。公司已申请PCT国际及国外专利、中国专利200+项,获得授权120+项、软件著作权多项。 公司与国际深低温生物顶尖专家等合作,建设业内唯一的低温生物冷冻技术平台,为低温设备研发、冻存技术研发等提供前沿核心技术保障。依托公司自动化、智能化、信息化、临床级低温存储设备及解决方案,原能细胞科技集团在张江细胞产业园打造了全国首家、国际领先的千万级临床“活细胞库”,掀开了细胞存储产业化新篇章。
    留言咨询
  • 留言咨询
  • 留言咨询

细胞总数计相关的仪器

  • 简易型细胞分类计数器10种产品说明:细胞分类计数器是集计数、统计、显示为一体的微电脑控制的十组二位十进制计数仪器。主要特征:细胞分类计数器用十只薄膜开关按键计数,可同时显示十组数据和总数。按动“%”键,仪器可显示各组数据所占百分比的整数位,再按一次则显示各组数据百分比的小数位(此时指示灯亮)。计数准确可靠,符合临床检验血常规结果,并又初步提示分辨细菌感染或病毒感染。仪器造型美观,结构合理,数据清晰,使用方便,特别适用于中、小型医院临床检验血细胞分类计数。简易型细胞分类计数器10种技术参数:产品型号:TYJS-I计数类别:10组每组计数范围:0-99总数计数范围:0-990使用条件: 相对湿度≤90% 温度15℃~45℃电源:AC220V±10% 50Hz±1Hz 功耗:4W净重:600g外形尺寸:220×160×78(mm)细胞计数器和菌落计数器的区别传统的菌落计数器使用时,是将计数笔连接到主机上,打开电源开关,将培养皿放在白光板上,打开白光灯,用计数笔触动计数,LED显示屏显示所计数量;计数完成可用计数笔在稿纸上暂记总数,重新开关电源,LED显示屏自动归零,二次计数与稿纸上一次总数比较,数量相同可得较准确的结果。同时,按照细菌计数检验规程规定,一只培养皿中细菌生长数超过300个时,应将检验样品稀释重作,以保证计数的准确性,所以,一般的菌落计数器仪器显示计为三位数。多功能血细胞计数器是由数字处理芯片、集成电路,以及显示屏、按键组成,与各种显微镜配合使用,由微电脑进行自动分类计数的数字化专用产品,能对骨多功能血细胞计数器髓细胞、外周血细胞、小巨核细胞进行全面的分类计数并自动计算出各项指标,能对细胞化学染色后的积分进行计算,并兼有常用的四则运算。
    留言咨询
  • 血细胞分类计数器 400-860-5168转4907
    产品型号:TYJS-I计数类别:10组每组计数范围:0-99总数计数范围:0-990使用条件: 相对湿度≤90% 温度15℃~45℃电源:AC220V±10% 50Hz±1Hz功耗:4W净重:600g外形尺寸:220×160×78(mm)细胞分类计数器,是由数字处理芯片、集成电路,以及显示屏、按键组成,与各种显微镜配合使用,由微电脑进行自动分类计数的数字化产品。细胞计数器的定义  多功能血细胞计数器是由数字处理芯片、集成电路,以及显示屏、按键组成,与各种显微镜配合使用,由微电脑进行自动分类计数的数字化产品,能对骨多功能血细胞计数器髓细胞、外周血细胞、小巨核细胞进行全面的分类计数并自动计算出各项指标,能对细胞化学染色后的积分进行计算,并兼有常用的四则运算。功能分析/细胞分类计数器  1.骨髓细胞分类计数:能对人体54余种骨髓细胞分类计数、分析,当计数到预定总数时,会发出蜂鸣提示音,并自动分析出完整的各项指标,其中有细胞总计数、各种细胞个数、百分率、粒红比例等,并能对主要指标翻页显示,准确可靠。 2.外周血细胞分类计数:能对外周血中常见的三类8种细胞即中性粒细胞、淋巴细胞、单核细胞、嗜酸性细胞、嗜碱性粒细胞进行分类计数、分析。若出现幼稚细胞也能进行计数分析,检验人员只需将观察到的外周血中的各种细胞输入计数器,即立刻显示出细胞总计数、各种细胞个数、百分率等指标,速度快、方便、准确。 3.细胞化学染色(组化)结果的计算:能对细胞化学染色结果进行计算,自动计算阴性和阳性反应细胞总数、阳性率和积分数等指标。 4.巨核细胞酶标计算:能对9种巨核细胞酶标结果进行计算,自动算出各细胞个数及百分比。 5.计算器功能:本仪器具有简易的计算器功能,能实现加减乘除四则运算,功能方便、快捷。细胞培养技术中,细胞计数是一项基本功,对于标准化培养条件以及需要定量的实验来说都关键。这里介绍使用血细胞计数器对细胞进行计数的经典方法以及中间一些需要注意的细节。制备细胞悬液:对于贴壁生长的细胞,我们需要使用胰酶消化的方法使细胞从培养皿表面脱落根据需要加入合适体积的培养基,将细胞进行中和及稀释,以得到均质的细胞悬液。要求尽可能将细胞吹打散开,不要残留任何细胞团准备血细胞计数器:使用70%乙醇将盖玻片和血细胞计数器清洁干净将将盖玻片润湿(使用水或呼一口气,目的是使盖玻片与血细胞计数器接触更紧密,易于粘连),并覆盖至血细胞计数器上台盼兰染色(可选):如果需要计算细胞的活力,则需要将细胞悬液和0.4%台盼兰等体积混合室温孵育3-5分钟,使台盼兰进入死细胞,使死细胞着蓝色血细胞计数器加样:使用吸管将细胞悬液或细胞/台盼兰混合液滴加到血细胞计数器计数池的边缘。此时液滴将在虹吸的作用下进入盖玻片下方的计数池以同样的方式在另一侧的计数池中也加入细胞悬液将计数板放置几分钟使细胞扩散,同时用吸水纸吸除多余的液体细胞计数:在100倍显微镜下,移动计数板将视野对准计数板的中央大方块,该方块四周有一圈3条平行线包围,中间有密集的网格。中央方块区差不多刚好可以填满整个视野使用手持式计数器记录计数池四个角以及中央方块内的细胞数(1-5号位置,经典的current-protocol推荐每个方块细胞数应不大于20-50),并重复记录另一侧计数池中的细胞数,总计十个方块。计数的方法是只计算上边和左边压线的细胞,而右边和下边压线的细胞不予计算(下图,总体原则是“计上不计下,计左不计右”,判断标准为是否接触三条边线的中间线)。如果有多个细胞没有吹散成团存在,此时只可记为一个细胞。如果团块很多,则可能需要重新吹打甚至消化直至绝大多数细胞为单个细胞
    留言咨询
  • 32种细胞分类计数器 400-860-5168转5977
    32种细胞分类计数器 产品说明:Qi3537血细胞分类计数器是在听取了血液病专家的意见后,根据多家医院血液科医务人员对血细胞分类计数的要求研制开发的,共设有四种计数方式(骨髓、血片、巨核、组化),是目前国内功能较完整的血细胞分类计数器。 THE MAIN CHARACTERISTICS ► ∣主要特征:功能:血细胞分类计数器设置了四种计数方式(血片、单独巨核、简易骨髓、组化),可对32种细胞计数,功能分:粒/红、髓/红比,粒系总数、红系总数、巨系总数及细胞个数和百分比。采用16*2大字符液晶显示,交直流两种供电方式,方便实用。粒系:原粒、早粒、中粒、晚粒、杆状、分叶、嗜酸、嗜碱红系:原红、早红、中红、晚红、巨早、巨中、日晚、其它1巨系:原始、幼稚、颗粒、产板、裸核、小原、小幼、小巨其它:原始、幼稚、浆、网状、淋巴、异淋、单核、其它2组化:-、+、++、+++、++++32种细胞分类计数器 细胞计数器含有 2 个室,每个室充满并盖上盖玻片后总体积为 9x10-3 ml, 每室有 9 个大方格,因此盖上盖玻片后每个大方格的容积为 0.1 mm3 或 1.0x10-4 ml,对计数来讲,9 个大方格再进行分隔没有必要,可以忽略不计。血细胞计数器上有代表性的标记,能够在 Sigma 的有关细胞活力检测的染料台盼蓝的技术信息篇中找到简介:可计数各类型细胞,并且分析血液语言:西班牙语、英语、法语操作菜单屏幕,,排行20个字符显示部分、总量、冲程的或百分比校准后计数在屏幕上记忆后脉冲计数并且识别计血细胞计数器数当按键脉冲时可听到脉冲控制声音,建议达到计数限制每个程序多至14个独立按键输入功率:12V 包括主适配器RS232端口,可下载电脑结果包括如下参数的PC软件:数量、实验室名字、日期、小时、注释和治疗后与之前结果的对比4个程序,包括:LEUC (白细胞)- 白细胞计数- 14个不同类型- 计数的3个按键(不用于后计数中):- 细胞计数总量(计数结束)可在100步骤中选择100-1000MYEL(骨髓细胞)- 骨髓细胞计数- 14个不同细胞类型,可计算总计数量- 细胞计数总量可在100步骤中选择100-1000RETI(网织红细胞/红细胞)- 网织红细胞计数- 从50 - 250中配置细胞数量- 网织红细胞的1个按键- 不包括在后计数中的红细胞的1个按键- 固定在1000的总量(计数结束)
    留言咨询

细胞总数计相关的资讯

  • 著名科学家发表Nature综述:单细胞测序现状
    p   每个细胞都是独一无二的,但我们的研究对象往往是细胞群体,忽略了这些细胞之间的异质性。正因如此,单细胞 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 基因组学 /span /a 研究受到了越来越多的关注。 /p p   单细胞基因组学领域近年来发展得非常迅速,为人们揭示了复杂生物学体系的许多重要线索,包括微生物群落的生态多样性和人类癌症的基因组。一月二十五日Nature Reviews Genetics杂志发表的一篇重要综述,全面介绍了单细胞 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 基因组测序 /span /a 的发展现状。文章的通讯作者是著名科学家、斯坦福大学生物工程系主任Stephen R. Quake。 /p p   Quake也是HHMI 研究员、美国科学院、美国工程院、美国医学院院士。他的主要贡献在于将集成芯片的原理和技术成功地应用于生物学和医学研究,目前名下拥有80项专利,并创办了4家公司。 /p p   这篇文章首先探讨了单细胞基因组测序面临的技术挑战,随后介绍了一些技术进步带来的生物学新发现。重点关注用单细胞基因组测序研究微生物暗物质,评估多细胞生物中遗传嵌合现象的致病作用,尤其是癌症。文章末尾还预测了未来几年单细胞基因组测序可能出现的一些进展。 /p p   前不久,北京大学汤富酬和文路发表的点评被Nature杂志评为了2015年最佳评论文章。这篇文章重点介绍了Hubrecht研究所的单细胞mRNA测序研究,特别是他们开发的RaceID算法。这种聪明的算法能够在复杂的细胞混合物中有效鉴定稀有细胞类型。RaceID假定不同细胞类型强力表达一些特异性的“异常值”基因。只要仔细排除技术和生物学噪音,就可以从测序数据中鉴定到这样的基因。单细胞mRNA测序与RaceID算法结合在一起形成了一个强大的工具,可以帮助人们深入了解健康和病变器官中的各种细胞类型高度表达基因以随机爆发的形式转录,这一现象也被称为转录爆发(Transcriptional bursting)。为了在细菌中研究转录爆发的具体机制,哈佛大学和北京大学生物动态光学成像中心的研究人员开发了一个高通量的单分子分析技术,对各DNA模板的体外转录进行了跟踪研究。这一成果发表在2014年07月的Cell杂志上,文章的通讯作者是著名学者谢晓亮教授(X. Sunney Xie)。谢晓亮教授是单分子生物物理化学和相干拉曼散射显微成像的开拓者之一。近年来他在单细胞测序技术上取得突破,发表了不少重要成果。 /p p   我们知道,单细胞的DNA(大约只有6 pg)无法满足测序的mg级样品量需求。为了从少量样品中获得更多信息,全基因组扩增技术(WGA)应运而生。目前市场上出现了多种扩增试剂盒,但它们的表现还没有一个综合的评估。为此,华大基因的研究人员利用7种试剂盒开展单细胞全基因组扩增,系统地比较了不同WGA方法的优点和缺点,尤其关注变异检测。这项成果于2015年8月发表在《GigaScience》期刊上。 /p
  • 中科院遗传发育所税光厚团队发表单细胞脂质组学综述文章
    2023年2月,中科院遗传发育所、中科脂典的相关研究人员在《Trends in Analytical Chemistry》(IF: 14.9)上发表了题为“Embracing Lipidomics at Single-cell Resolution: Promises and Pitfalls”的综述文章,总结了单细胞脂质组学当前的技术进展和瓶颈,讨论了在单细胞水平分析脂质的独特技术挑战(特别是准确的脂质鉴定和定量的重要性),并例举了单细胞脂质组学在生物学和临床医学中的潜在应用。(中科院遗传发育所王泽华博士和曹明君博士为本文的第一作者,中科院遗传发育所税光厚研究员和中科脂典技术总监Sin Man Lam博士为本文的共同通讯作者。)  1、引言  脂质作为细胞膜和细胞内细胞器(如脂滴)的主要组成部分,发挥着一系列复杂的生物物理、能量储存和信号传导功能,这些功能是细胞机制正常运转的基础。脂质代谢失调涉及多种主要疾病,包括糖尿病、心血管疾病、代谢相关性脂肪肝(MAFLD)、癌症、神经退行性疾病、传染病等。近几十年来,随着脂质组学的蓬勃发展以及分析工具/技术的改进,脂质的结构和生物学复杂性才开始被解开。  质谱(MS)是广泛用于脂质组学领域的主要分析技术,相对于其它方法,它具有更高的灵敏度、更大的选择性、更强的稳定性和更高的特异性。质谱仪的快速发展,伴随着软件和数据库的进步,使得来自不同生物样本的各种生物液体(血浆、血清、尿液、唾液、泪液、痰等)、组织和亚细胞器中的脂质能够以前所未有的分辨率进行表征。脂质组覆盖范围的扩大极大地促进了疾病生物标志物的识别、表型验证以及假设的产生,并在脂质数据分析中提出了可能的系统方法,包括功能脂质模块的构建和脂质通路分析。  脂质组学的典型工作流程和应用  经典的脂质组学给出了构成生物样本的不同细胞群的“平均”图谱,这通常需要一个器官的代表性组织样本,使得最终构建的图谱能够反映一般的生物状态。然而,取一个有代表性的组织切片,忽略了脂质的空间分布,而脂质的空间分布往往具有重要的生物学意义。例如,该研究团队先前对金线鲃属洞穴鱼和地表鱼全脑切片的定量脂质组学研究发现,洞穴鱼中的硫苷脂(髓鞘的主要脂质成分)普遍减少。基质辅助激光解吸电离(MALDI)质谱成像(MSI)进一步揭示了洞穴鱼硫苷脂缺失的区域与中缝5-羟色胺能神经元的位置相对应。因此,金线鲃个体大脑脂质的空间分布图谱有助于证明5-羟色胺能神经元的脱髓鞘是洞穴鱼攻击性行为丧失的基础。  随着光学成像和细胞内电生理学的技术创新,人们得以在单细胞分辨率下深入研究组织的生物结构,细胞异质性的普遍性变得明显起来。单个细胞与邻近细胞以及它们的原生微环境动态地相互作用和交流,最终影响由不同的单细胞脂质组(和代谢组)所反映的细胞内生物化学状态。事实上,早期组学的单细胞革命揭示了细胞异质性在无数生物环境中的普遍性。例如,单细胞蛋白质组学揭示了循环系统中肿瘤细胞表面蛋白在单细胞水平的异质表达,这些蛋白预测了对药物治疗的不同细胞反应,而随着疾病的进展,患者体内这些相同蛋白的平均表达并不能确定真正的治疗效果。在这篇综述中,作者讨论了单细胞水平的脂质组学革命如何从早期的组学开始,揭示细胞内以脂质为中心的见解,以及其潜在的应用和独特的技术挑战。  2、单细胞脂质组学的新兴技术  与单细胞基因组学和单细胞转录组学相比,单细胞脂质组学(和代谢组学)提供了最接近实际表型的数据信息。脂质组学与代谢组学的区别主要在于其关注非极性疏水代谢物,这些代谢物需要不同的提取和分析方案(例如需要不同的溶剂系统)。与信号可以扩增数百万倍的单细胞转录组学不同,高灵敏度对于单细胞脂质组学至关重要。此外,脂质在细胞内和细胞外的不同作用使细胞脂质组具有动态性和多功能性,这需要在采样时极度谨慎和快速,以便收集的细胞能够反映其原始状态。  2.1 单细胞的取样  经典脂质组学侧重于批量分析,以最小化组内的异质性,而单细胞脂质组学则侧重细胞间的差异。因此,收集技术应努力保持细胞异质性,并尽量减少来自邻近细胞和细胞外基质的污染。许多现有的样品处理或细胞分离策略可以扩展到单细胞脂质组学的采样中,包括膜片钳、微量移液、流式细胞荧光分选(FACS)和微流控单细胞阵列等。这些采样技术有其独特的优势和技术瓶颈,应根据组织或细胞类型的性质以及要解决的生物学问题逐案考虑选择。例如,倾向于成团粘附和/或对操纵敏感的细胞在采样过程中可能表现出较高的细胞死亡率,这会混淆数据并导致生物学错误解读。通常,非粘附细胞,如循环中的各种类型的血细胞,更易于进行高通量单细胞处理。组织的细胞外基质(ECM)的组成以及细胞分布各不相同,因此需要获得单分散细胞的优化方案,例如机械切割、酶解或这些方法的组合。特别是,与正常组织相比,病变组织(例如纤维化组织)可能具有明显不同的解离动力学,因此,优化分离方法以确保收集单分散、完整和有活力的细胞用于单细胞脂质组分析是非常重要的。  膜片钳通常用于研究神经元、肌肉纤维和心肌细胞等易兴奋细胞,其优势是在相对原生状态下对细胞进行采样,通常来自新鲜的组织切片。然而,在膜片钳辅助的单细胞脂质组学分析中,在不破坏细胞膜的情况下分离完整的细胞是特别具有挑战性的。例如,使用膜片钳从灌注的小鼠大脑切片中捕获单个神经元细胞体不能完全保存轴突和相关终端的完整性,这可能会影响所得到的单个神经元脂质组数据。考虑到质膜是单细胞脂质组的重要组成部分,在单细胞分离过程中对质膜的损伤对单细胞脂质组分析尤为不利。此外,细胞损伤可能触发膜修复过程,这改变了原生细胞脂质组的特征,并混淆了下游分析。  如果谨慎操作,精密微量移液管可以获得完整的细胞,但它的低通量低且相对耗时,因此更适合于感兴趣的稀有细胞类型的取样。  FACS可将具有不同表型的单个细胞(由特定蛋白质(抗体)的荧光强度定义)排序到用户预定义的特定血管和缓冲液中,以实现相对高通量的单细胞分离,该方法错误率较低(低于1/100),且细胞质膜通常保持完整。FACS的一个主要缺点是需要大量的细胞(超过10,000个),因此不适合分离数量少的稀有细胞类型。悬浮细胞的要求也意味着细胞在采集样品之前不处于其原始状态,单个细胞的空间位置丢失。如果使用非质膜荧光标记物来标记细胞,则需要验证瞬时孔形成对特定质膜脂质和细胞内代谢产物的影响。  微流控装置包括使用阀门、油滴或纳米管对单个细胞进行微型分隔。基于液滴的策略可能不适合单细胞脂质组学,如果单个细胞的包封是在油滴中完成的,这干扰了下游的脂质分析。油包裹的水滴为下游单细胞脂质组学提供了更好的选择,但是在去除油相期间需要谨慎,以获得相对清洁的液滴内细胞提取物用于下游分析。虽然微流控芯片的处理量高,对原料数量的要求较低,但其后的样本处理通常是在现场进行,这限制了 MS 在选择脂质提取方案进行下游分析时的灵活性。此外,有效的脂质提取需要使用有机溶剂,例如氯仿和甲基叔丁基醚(MTBE) ,这些溶剂与大部分用于制造纳米芯片的塑料材料不太相容。  基于探针的电喷雾电离(ESI)也经常用于单细胞采样,这涉及使用直径足够小的探针尖端以插入单细胞(~3-9μm)。提取溶剂连续输送以进行原位代谢物提取,随后将提取物引导到质谱仪中进行直接分析。然而,这种取样策略不能确保每个细胞的完整质膜被输送到下游分析。质膜包括全细胞中一半的磷脂和90%的总胆固醇和鞘磷脂含量,基于探针的采样可能会导致单细胞脂质组学的大量信号损失。  与限制脂质提取程序选择的微流控芯片和基于探针的取样相比,激光捕获显微切割在为下游分析选择样品处理方案方面有更高的灵活性。微解剖的单细胞的空间信息被保留。然而,该方法事先必需用福尔马林或乙醇固定细胞,以确保在显微切割过程中划定单细胞边界时的形态清晰度,而在此过程中脂质和小分子代谢物会大量丢失。此外,即使事先固定,整个细胞的完整性也往往得不到保留,这也使得这种技术不太适合收集单细胞用于下游的脂质组学研究。  无论采用何种细胞采集策略,采集后都应立即对分离的单个细胞进行淬灭和灭活,以停止酶活性并尽量减少细胞脂质的人为改变。    单细胞脂质组学技术  2.2 单细胞脂质的获取  拉曼光谱具有非破坏性和非侵入性的优点,允许进行原位分析,在捕获单个细胞在其自然状态下的脂质方面具有优势,但其无法在分子水平上破译精确的脂质结构,这大大限制了其脂质覆盖范围。而MS由于在区分脂质异构体方面的卓越灵敏度和特异性,已成为单细胞脂质组学中的主要分析技术。除了结构解析,基于MS的方法还允许检查单个细胞内的空间和亚细胞脂质定位,如通过C60二次离子质谱(SIMS)分析海蜗牛Aplysia单个神经元上脂质的异质性分布。尽管与 MALDI-MS 相比,SIMS 的灵敏度较低,但其能够获得亚微米的横向分辨率,由于探针尺寸的限制,其横向分辨率限制在10μm。利用簇离子源的SIMS技术还具有更柔和的电离动力学,有助于检测完整形态的脂质,空间分辨率通常在100nm至1µm之间。  在各种基于MS的技术中,MSI方法在取样细胞的原生微环境方面具有选择性优势,并能保留对生物推断有用的空间信息。目前已经开发了图像引导的单细胞器MALDI-MSI,用以比较来自Aplysia的致密核心囊泡和透明囊泡中脂质含量差异。尽管 MALDI-MSI 具有诸多优点,但是它存在共采样的缺点,即从相邻的细胞产生混淆信号。一些脂质对 MS 扫描过程中可能出现的环境干扰很敏感,通常需要至少一个小时或更长时间才能完成组织切片的检查。此外,MALDI-MSI 单细胞分析也容易因离子抑制而降低灵敏度。最后,精确的脂质定量仍然是 MSI 方法中的一个主要技术挑战,因为同位素内标与内源性脂质均匀混合以进行标准化在技术上是具有挑战性的。  荧光成像在灵敏度以及空间/时间分辨率方面优于基于MS的方法,使其在单细胞成像中具有潜在的用途。然而,基于荧光的技术在单细胞脂质组学中的应用受到其脂质组覆盖范围的限制。在自然界中很少有脂质和小分子代谢物表现出自身荧光,这就需要使用荧光探针。与基于MS的方法不同,亲脂性染料通常可以标记特定的某一类脂质,但无法区分同一类脂质中具有不同酰基链组成的单个脂质种类,或不同的脂质异构体。另一方面,脂质的荧光标记极大地改变了脂质的生化性质,如有些脂质被优先分配到不同的膜微区中,而与荧光基团是在头基还是酰基链上引入无关。因此,目前的脂质荧光染料缺乏特异性,这限制了荧光光学成像在单细胞脂质组学中的更广泛应用。  虽然单细胞取样和基于质谱的技术革新已经实现了单细胞脂质组学分析的可能性,但仍存在一些技术瓶颈,包括:脂质覆盖面相对较窄(通常只有不到一百个具有高置信度的脂质) 缺乏准确的结构鉴定 缺乏可靠的定量数据 以及对单细胞水平的分析可重复性验证不足。为了解决这些技术瓶颈并推动该领域的发展,必须采用新技术来更好地描述细胞的异质性,并以更高的精度和更大的定量准确性来阐明其生物学意义。  3、单细胞脂质组学的技术瓶颈  3.1 迫切需要高覆盖率、准确的识别和定量测量  单细胞脂质组学的一个最终目标是构建单个细胞的精确脂质组图谱,以揭示细胞间的差异。即使在对大量的生物样本进行研究的经典的脂质组学中,与转录组水平的变化相比,具有生物学意义的脂质水平的定量变化通常较小。这使得准确的定量对于解读单细胞水平上微妙但有意义的脂质变化尤为重要。单细胞脂质组学的定量也具有相当大的挑战性,因为脂质的内源丰度会有很大的变化。一个细胞中内源性脂质的高动态范围意味着,在一个特定的样品浓度下,不是所有的脂质都能落入质谱检测器的线性范围。虽然这在大部分脂质组学中通常通过在另一个样品浓度下的额外进样检测来解决,但这又为单细胞脂质组学增加了另一个难度,因为来自单细胞的样品材料数量往往是有限的。内源性脂质丰度的巨大差异也需要色谱系统从其内源性丰富的对应物中有效分离微量脂质,以尽量减少离子抑制,提高次要脂质物种的敏感性,并扩大分析物的覆盖范围。重要的是,为了在单细胞脂质组学中进行准确的脂质定量,应加入稳定的同位素内标。如果没有适当的内标来归一化内源性信号,校正来自不同类别的脂质或携带不同酰基链的同一类别脂质的离子响应变化,产生的单细胞脂质组数据很容易出现错误。  基因组几乎整个区域都可以测序和注释,而仅基于MS/MS数据却很难最大限度地确定高置信度的脂质结构。这一瓶颈部分是由于自然界中脂质结构异构体的广泛存在,其中一些异构体在缺乏专门的预处理(如化学衍生)的情况下很难分离。例如,单个TAG的甘油主链被酯化为三个脂肪酰基链,从而为每个分子式产生无数脂肪酰基链组合。此外,不同脂质类别的结构异构物可能会使脂质鉴定过程更加复杂,例如双(单酰基甘油)磷酸酯(BMP)和磷脂酰甘油(PG),以及半乳糖神经酰胺(GalCer)和葡萄糖神经酰胺(GluCer)等。幸运的是,这些结构异构体中的一些物质在色谱上是可区分的。因此,适当的前期色谱分离的应用极大地促进了某些脂质结构异构体的准确识别和定量,从而实现了更大的脂质覆盖。  虽然脂质组学是组学家族中一个较年轻的分支,但在过去二十年中,它的发展速度很快。基于常规高效或超高效液相色谱(流速为100-1000μL/min)并结合质谱(HPLC/UPLC-MS)的各种经典脂质组学方法已被开发用于多种生物样品。近年来,基于微流量(流速为10-100μL/min)的LC-MS方法获得了更高的灵敏度,并能够以更少的起始材料(例如≈20-1000个细胞)实现全面的脂质代谢。可以想象,通过减小柱直径和流速进一步缩小色谱分离的规模可以提高分析物浓度,从而提高检测灵敏度。因此,基于纳米流(即流速1μL/min)的超灵敏脂质组学方法有望在单个细胞内实现亚微米级的脂质检测和定量。然而,迄今为止报道的纳米流方法的脂质覆盖率仍然相对较低,通常只覆盖一到两个主要类别的脂质,如PCs、PEs和/或TAGs,或者没有适当的结构标识。仅基于一级质谱分析的分子式水平的结构鉴定会导致不准确和低灵敏度,这极大地影响了单细胞脂质组学的分析范围和质量。因此,在单细胞脂质组学能够在基础生物学和转化医学中发挥更大作用之前,通过精确的结构鉴定和精确的定量分析来扩大脂质的有效分析范围是必不可少的。离子迁移率-质谱仪在脂质鉴定中的应用将碰撞截面(CCS)引入到脂类鉴定中,增加了m/z、保留时间和MS/MS谱图上的另一个维度的信息,有望增强单细胞脂质结构鉴定的可信度。  目前,单细胞脂质组学方法大多是低通量的,因此,与早期的单细胞组学研究相比,通常分析的细胞种类要少得多。鉴于与基因组/转录组相比,细胞脂质组的生物学动态范围要大得多,因此,在单细胞脂质组学实现更大速度和更高容量分析之前,建立健全可重复的方法、设定正确的技术基准和构建可靠的单细胞参考脂质组数据库至关重要。    基于LC-MS的单细胞脂质组学的不同模式  3.2 数据分析  正确分析大型数据集是从各种组学技术中收集有用的生物学见解的先决条件。由于单细胞脂质组学仅处于发展的早期阶段,尚未建立系统的数据分析体系。针对海量数据定制的方法通常不直接适用于单细胞数据。这是因为大量数据分析中的分布假设经常不成立,原因是单细胞数据集拥有更高的噪声和稀疏度,存在固有的额外异质性。目前,单细胞脂质组学的出现在某种程度上加剧了在分析和解释脂质组学数据方面的瓶颈。鉴于目前在单细胞脂质组学中脂质覆盖方面的局限性,在单细胞脂组学分析中收集生物学相关的途径改变之前,需要在单细胞脂肪组学的采集和数据分析方面进行长期努力。  4、单细胞脂质组学的生物学和转化前景  在过去的十年里,由于分析化学的技术创新和各种组学技术的出现,生物化学从传统的系综测量转向单分子测量。传统的集合分析可能导致静态异质性,当分子集合包含在观察期内保持稳定或变化不够快的亚群体时,就会出现这种异质性,从而导致“没有明显变化”的误导性结论。生物事件的平均分析数据不会捕捉到与整体行为不同的分子。同样,在任何细胞群体中,细胞间的差异总是不同程度的存在,基于整个群体的批量测量不能完全描述单个细胞的完整表型。通过在种群和单细胞水平上同时进行表型分析,可以破译潜在的有意义的生物学偏差,从而为很多生物学问题提供新的研究方向。  4.1 发育与细胞谱系追踪  多细胞生物体从一个受精卵发育成一个由不同细胞类型和器官系统组成的复杂组织,整个过程被记录在细胞谱系树中,它概述了在发展成多细胞生物体的过程中,从单个母细胞到其不同分支后代的细胞转换。目前已经开发了各种工具来构建单个生物体的细胞谱系树,但大多局限于绘制有限数量的克隆种群。细胞谱系树对于科学家解开生命的错综复杂的工程,以及加深我们对生物体发育、器官生成以及疾病进展和发病的理解非常重要。通过拼凑生物体内单个细胞的发育轨迹,单细胞谱系追踪以前所未有的细节捕捉到整个发育过程中不同的细胞命运,这扩展了我们对细胞分化机制、细胞异质性以及细胞间发育潜力差异的理解。  考虑到生物体的单个细胞携带着由DNA编码的相同的遗传物质,人们通常认为不同的细胞命运是由单个细胞中基因在空间和时间上的差异表达决定的。虽然乍一看,与单细胞转录组学相比,单细胞脂质组学与单细胞谱系追踪的相关性可能不那么直观,但许多科学证据阐明了脂质代谢在决定细胞命运中的作用。例如,脂肪酸氧化产生的乙酰COA是组蛋白乙酰化的前体,组蛋白乙酰化改变染色质结构,从而调节DNA对转录机制的可及性。在不对称细胞分裂过程中,脂筏(富含胆固醇的膜微域)的不对称遗传也被认为是胶质母细胞瘤子细胞不同治疗耐药的基础。真皮成纤维细胞中存在由不同种类的鞘磷脂组成的不同的脂类构型,这触发了不同的转录程序,进而驱动细胞间异质性的不同细胞状态的建立(例如,纤维形成或增殖)。因此,单细胞脂质组学可以增加另一个维度的有用信息,以识别不同细胞命运的分子控制。  4.2 了解肿瘤异质性  构成肿瘤块的细胞是异质性的,在基因表达、细胞代谢、运动性、增殖率以及转移潜能方面具有不同的形态和表型特征。这种现象被称为肿瘤内异质性,它延伸到不同的肿瘤(即肿瘤间异质性),可由遗传和非遗传因素共同引起。肿瘤的异质性可能在一定程度上解释了为什么癌症在临床上仍然难以攻克。研究肿瘤的异质性,特别是增殖能力和转移的来源,将有助于确定新的治疗靶点,以及指导免疫治疗和药物筛选。细胞间脂质代谢的差异对各种癌症的生长和预后有重要影响,如单个胰腺导管肾上腺癌细胞的脂质组学分析观察到胰腺癌特异性脂质代谢失调,这可能是由于介导脂质合成的关键酶ATP柠檬酸裂解酶表达减少所致。单细胞脂组学在加深我们对肿瘤异质性的理解方面有很大的希望。  4.3 剖析对疾病的免疫反应  除癌症外,传染病和新陈代谢疾病也是对公众健康的主要威胁。哺乳动物的免疫系统保护宿主免受各种病原体的入侵。构成宿主免疫系统的免疫细胞表现出巨大的细胞多样性,可以根据各种刺激进行动态调整。例如,对不同严重程度的新冠肺炎患者的单个外周血单核细胞进行scRNA-seq检测,发现存在一种具有增殖和代谢活性的自然杀伤细胞亚群,其代谢活动与疾病的严重程度呈正相关。有趣的是,这一亚群的自然杀伤细胞显示出神经鞘脂代谢的增强,这突显了单细胞脂质组学从以脂质为中心的角度阐明单个免疫细胞对新冠肺炎感染的差异反应的潜力。除感染性疾病外,对从人胰岛分离的单个细胞的scRNA-seq分析表明,在1型糖尿病患者中存在免疫耐受的胰腺导管细胞亚群。这一导管细胞亚群的转录特征类似于耐受性树突状细胞(即缺乏CD80和CD86),导致免疫耐受和抗原呈递时的T细胞抑制。值得注意的是,单细胞分析显示胰腺β-细胞的基因特征与抗谷氨酸脱羧酶(GAD)滴度相关。与GAD水平相关的基因通路富集丰富分析包括许多脂代谢途径,如鞘磷脂代谢和磷脂酰肌醇信号系统。虽然在这些研究中没有进行单细胞脂质组学,但上述结果强调了单细胞中的脂代谢对于破译不同疾病背景下宿主免疫反应的代谢基础的重要性。    单细胞脂质组学的应用  结束语  单细胞脂质组学的发展仍处于起步阶段,我们相信随着该领域的发展,将会有更多的生物学和临床应用。技术突破彻底改变了我们研究生物学的方式,其标志是从整体分析过渡到专注于单分子和单细胞。随着我们以更高的分辨率检查生物结构,细微的差异被揭示出来,这可能会为新的研究方向铺平道路,从而为生物学和临床医学中长期存在的问题提供独特的见解。
  • 单细胞ICP-MS应用:测定单个细菌细胞的铁含量
    细菌是一种单细胞生物体,个体非常小,目前已知最小的细菌只有0.2微米长,因此大多只能在显微镜下被看到。细菌广泛分布于土壤和水中,或者与其他生物共生。人体身上也带有相当多的细菌。据估计,人体内及表皮上的细菌细胞总数约是人体细胞总数的十倍。铁是细菌细胞内部进行各种生物过程所必须的金属辅助因子。通常,铁作为一种可抑制细菌生长的营养元素,细胞中的总铁含量限额取决于细胞的生长状态和代谢需要。细菌的生长和繁殖必须有铁的供给才能得以进行。但细胞内多余的可溶性铁是有毒的。在确定细胞生长条件和应激反应的影响时,实时地测定细菌细胞中的铁含量可提供关于细菌中铁耐受限值的信息。监测单个细胞内的铁含量还可了解细胞中铁的分布情况,从而确定细胞群的同质性。在本次实验中,我们利用单细胞电感耦合等离子体质谱 SC-ICP-MS法分别测定了三种菌株的单个细胞的铁含量。这三个菌株分别是大肠杆菌B株(Eco)、枯草芽孢杆菌168株(BAC) 和红球菌RHA1株(RHA)。样品大肠杆菌B株(Eco),枯草芽孢杆菌168株(BAC) 和红球菌RHA1株(RHA),其菌株的细胞尺寸分别约为2μm、4μm和10μm±2。经过培养后,被等分成1mL样本,并储存在50%的甘油中于-20℃保存。SC-ICP-MS分析的细菌细胞样品实验将细菌细胞样品放入35℃水浴中解冻1min,然后将样品置于冰袋,使用1%磷酸盐缓冲液(PBS) 将样品稀释至含有100,000个细胞/mL的样品稀释液后立即上机SC-ICP-MS分析。NexION 2000 ICP-MS及实验条件通过采用纯氨气通入反应池的模式(反应模式),消除ArO+对56Fe+的干扰。实验结果细胞浓度为50,000个细胞/mL时,大肠杆菌B株、枯草芽孢杆菌168株和红球菌RHA1株的56Fe的信号扫描图。横坐标单位为ag,表明了单个细胞中铁含量的分布情况。其中大肠杆菌B株的单个细胞平均铁含量最低,而红球菌RHA1株的单个细胞平均铁含量最高。为测试细胞重叠现象,将细菌细胞经系列稀释后进行测定。上图表明,将细菌细胞稀释至100,000、75,000和50,000个细胞/mL浓度时,单个细胞的铁平均含量并没有发生变化,反而每次稀释后,细胞数量呈线性变化,结果表明,细胞浓度对细胞重叠无显著影响。结论单细胞ICP-MS法可以准确定量单个细菌细胞中的铁含量,可以提供细菌培养物中的单个细胞内铁分布信息。所建立的分析方法可以为严格控制细菌细胞的总铁含量提供支持。单细胞ICP-MS法还可用于在不同应激条件下生长的细菌细胞中铁含量分布的测定。了解更多应用资料,扫描下方二维码,下载利用SC-ICP-MS法测定单个细菌细胞中的铁含量相关资料。

细胞总数计相关的方案

  • 纯牛奶菌落总数的测定方法
    优质生鲜奶的分为特优级、优级、良级和合格级四个等级,而分级的依据主要是检测判断鲜奶是否品质高的4个核心指标数值,即乳脂率、乳蛋白率、菌落总数和体细胞数。在奶业发达国家的标准里,上述四个核心指标的数值基本要达到牛奶中的乳脂肪含量不低于3.3%,乳蛋白含量不低于3.0%,体细胞数不超过75万个/ML,菌落总数不超过10万CFU/ML。
  • 体细胞分型计数(DSCC)——新参数分析基本原理
    使用新型的Fossomatic 7 DC,引入了一种新型牛奶检测参数,体细胞分型计数(DSCC),用于加大乳腺炎筛查和管理力度。除了确定体细胞总数之外,细胞分型为乳牛的实际乳房炎健康状况提供了更准确的描述和更有价值的附加信息。
  • 利用SC-ICP-MS法测定单个细菌细胞中的铁含量
    ICP-MS 法可以分析成批培养的细菌细胞中的总金属含量,然后根据测得的细胞总数平均算出单个细菌细胞的铁含量。由于平板计数法无法计算死亡细胞或未被培养的完整细胞,导致计数出现误差。然而,由于仪器的限制,目前还未见有方法可直接分析单个细菌细胞中的铁含量。基于单细胞ICP-MS (SC-ICP-MS) 分析技术取得的重大进展,使得直接测定单个细胞内金属含量成为现实。PerkinElmer 公司专利的Asperon™ 单细胞雾室将单个完整细胞引入ICP-MS的等离子体中,结合NexION® 系列ICP-MS 质谱仪瞬时采集速度快的优势,可确定单个细菌细胞内的铁含量。在本次实验中,我们利用SC-ICP-MS 法分别测定了三种菌株的单个细胞的铁含量。这三个菌株分别是大肠杆菌B 株(Eco)、枯草芽孢杆菌168 株(BAC) 和红球菌RHA1 株(RHA)。SC-ICP-MS 技术可直接测定单个细胞的铁含量,并确定每种菌株的铁含量分布情况。铁含量与细菌的细胞大小相关,即最大菌株(RHA)单个细胞的平均铁含量最高,而最小菌株(Eco) 单个细胞的平均铁含量最低。

细胞总数计相关的资料

细胞总数计相关的试剂

细胞总数计相关的论坛

  • 【原创大赛】中国与欧美生乳法规比较---菌落总数和体细胞

    2010年《GB 19301-2010 食品安全国家标准 生乳》发布,该标准出台后即被冠以 “挤奶时相当于苍蝇到处乱飞”、“中国牛奶倒退25年”、“中国生乳标准全球最差”等各种标签。时隔6年,生乳标准被再一次掀起波澜:今年4月份,中国农垦乳业联盟召开《中国农垦生鲜乳生产和质量标准》发布会,会议指出该标准菌落总数与欧盟和美国标准一致,并且按照欧盟标准规定了体细胞数。同期,黑龙江省奶业协会《黑龙江省生乳团体标准》,标准根据蛋白、脂肪、菌落总数、体细胞数对生鲜乳分了特级、一级、二级三个等级,并且提出特级标准已比肩欧美。为什么我国的生乳标准时至今日还被热议,菌落总数和体细胞指标有什么意义,我国和欧美针对这两项的规定到底有什么不同?以下将进行详细分析。[b]1. 指标解读:菌落总数[/b]菌落总数是指在一定微生物培养条件下每克(或每毫升)检样所生长出来的细菌群落总数。生乳中菌落总数的多少是评定质量的重要指标,目前被各国广泛采用。它可用来判定产品被细菌污染的程度及卫生质量,以便做出适当的卫生学评价。造成菌落总数超标的原因很多,挤奶环节控制不严是导致超标的主要原因,如挤奶器具不卫生特别是散户人工挤奶的情况,将会直接导致菌落总数不合格。[b]体细胞数[/b]牛奶体细胞数是指每毫升牛奶中的细胞总数,它是牛奶中的白细胞和脱落上皮细胞的总称。体细胞数是衡量牛乳房健康状况和原料奶质量的重要指标,它的升高可导致乳制品货架期缩短,风味发生改变。体细胞数高说明奶牛乳腺感染了微生物病原菌,通过不同的微生物检测或根据体细胞数升高状况诊断是否患有隐性乳房炎,此外,若奶牛患病也会因为系统免疫反应导致体细胞升高。2。[b] 标准比较:我国标准[/b]我国生乳现行标准GB 19301-2010,标准中对生乳的脂肪、蛋白质等理化指标,及微生物、污染物等指标做了规定,其中菌落总数要求为200万CFU/mL,但是并没有体细胞数的要求。[b]欧盟法规[/b]欧盟拥有完善的乳品质量安全监管体系,在其法规EC 853中对生乳的体细胞和菌落总数做了详细规定。 [table=100%][tr][td=1,1,25%] 类别项目[/td][td=1,1,20%] 生牛乳[/td][td=1,1,21%] 其他动物的生乳[/td][td=1,1,33%] 其他动物的生乳(用于加工乳制品,且加工过程中无加热工序)[/td][/tr][tr][td=1,1,25%] 菌落总数,万CFU/mL[/td][td=1,1,20%] ≤10[/td][td=1,1,21%] ≤15[/td][td=1,1,33%] ≤5[/td][/tr][tr][td=1,1,25%] 体细胞数,万个/mL[/td][td=1,1,20%] ≤40[/td][td=1,1,21%] /[/td][td=1,1,33%] /[/td][/tr][/table]欧盟非常注重标准的科学性,基于牛和其他动物如山羊的养殖条件、养殖规模等不同,分别设定了不同的微生物要求,虽然其他动物的生乳限量表面看来更低一些,但是如果用于生产无加热工艺的产品,则要求非常高。欧盟标准科学性的另一点体现在生产和收奶会设定不同限量。对于到达工厂后经过混合的牛乳,该法规指出其指标限量可以是牧场环节的三倍。因此准备生产乳制品的原料乳菌落总数限量为≤30万CFU/mL(如果该牛乳已经经过一定的加工,那么需要低于10万CFU/mL)。[b]美国法规[/b]美国《联邦法规》(CFR)第7卷对原料乳的指标限量、检测方法、不合格整改措施都做了具体规定,其中包括体细胞数和菌落总数。 [table][tr][td=1,1,155] 类别项目[/td][td=1,1,126] 生牛乳[/td][td=1,1,151] 山羊乳[/td][td=1,1,187] A级原料乳[/td][/tr][tr][td=1,1,155] 菌落总数,万CFU/mL[/td][td=1,1,126] ≤50[/td][td=1,1,151] ≤50[/td][td=1,1,187] ≤10(单个样本)≤30(杀菌前的混合样本)[/td][/tr][tr][td=1,1,155] 体细胞数,万个/mL[/td][td=1,1,126] ≤75[/td][td=1,1,151] ≤150[/td][td=1,1,187] ≤75[/td][/tr][/table]美国是非常提倡实施安全整改措施的国家,联邦法规中就有明显的体现。如对生乳中菌落总数的要求,法规规定每个奶户每月至少要有1次随机抽样,一旦出现不合格就会被警告,如果4次连续抽检中有两次不合格,那么将会在随后的3至21天再抽一个样品,如果仍然不合格,就需要整改直至获得满意的结果才可以继续对外供应牛乳。[b]Grade “A” Pasteurized Milk Ordinance[/b]除了CFR的要求,美国还有一个非常重要的法令《Grade “A” Pasteurized Milk Ordinance》,该标准适用于优级乳制品,标准包含收奶、运输、加工、包装等各环节的规范,可操作性非常强。标准中指出单个奶户的奶中菌落总数不得超过10万CFU/mL,不同奶户的奶经混合后,在杀菌前不得超过30万CFU/mL;体细胞方面,该法令指出单个奶户的奶中不得超过75万个/mL。和CFR一样,该标准也规定了不合格的处理措施。联邦政府以及各州会定期检查工厂,一旦发现问题就会临时吊销生产许可证,此后连续3周每周不少于2次取样检查,直至合格才准予恢复正常生产。[b]总结[/b]1. 我国设定的指标限量低于欧美,这与当时的制定背景息息相关。但实际上,由于最近几年政府和企业对生乳质量意识的提高,我国生鲜乳尤其是自有牧场的生乳的质量远高于国家标准规定。很多牧场逐步开始监控体细胞数量,优质牧场平均体细胞数可达10万个/mL以下。同时部分地区也根据当地生乳的质量优势,制定了一些高于国家要求的标准。2. 我国在指标设定方面的科学性有待提高,如上面提到的欧美在收奶及加工时设定不同指标限量,而我国目前收奶、贮奶都是一个限量,不利用保护奶农利益,更不利于指导企业实际生产。3. 缺乏对奶农的系统监管,如美国政府机构会长期监控每个奶场的生乳,制定整改措施并监控整改效果,这点值得我国学习。

  • 综述:细胞外泌体颗粒表征测量技术新进展

    何为细胞外泌体?  外泌体最早发现于体外培养的绵羊红细胞上清液中,是细胞主动分泌的大小较为均一,直径为40~100纳米,密度1.10~1.18 g/ml的囊泡样小体。细胞外泌体携带多种蛋白质、mRNA、miRNA,参与细胞通讯、细胞迁移、血管新生和肿瘤细胞生长等过程并且有可能成为药物的天然载体,应用于临床治疗。  然而,测量技术手段的局限限制了外泌体在这些领域的研究进展。所以,在这篇文章中,作者总结了外泌体的纯化方法(离心法、过滤离心法、密度梯度离心法、免疫磁珠法以及色谱法),比较了现存各种外泌体测量技术(电子显微镜、动态光散射技术及纳米微粒追踪分析术)在外泌体尺寸和表征研究中的应用。原文点击——综述:细胞外泌体颗粒表征测量技术新进展

细胞总数计相关的耗材

  • 便携式ATP菌落总数荧光快速检测仪
    便携式ATP菌落总数荧光快速检测仪操作简单-使用方便,ATP是一种在所有动、植物、细菌、霉菌、酵母菌等活细胞中均含有的能量单位,所有活的微生物富含ATP,故检测ATP, 可反映所有微生物的多少。样品中微生物的ATP在被萃取出来后,在与荧光素酶(Luciferase)和荧光素(Luciferin)作用下产生荧光,光量与ATP成正比,而该光量可被深芬仪器的手持式ATP荧光检测仪检测出来,活的微生物越多,则ATP就越多,产生的光量越大,从而达到检测出样品中微生物的状况。 产品特点:1、试剂开放:通用国内外一体化采集拭子及分离拭子2、包装精美:配置铝合金包装箱及ATP拭子冷藏盒、表面取样器3、检测准确:具有显著的低背景值更有利于检测痕量ATP,具有良好的重现性4、电源管理:3000mAh大容量充电锂电池供电,通过Mini USB口充电,可选配太阳能充电器、车载电源充电器 5、人机对话:界面简洁,易操作,具备息屏时间设置可调、显示屏亮度可调、语音提示开启和关闭、历史记录关闭及开启6、检测智能:底部检测,内置有高精度倾角传感器,对仪器倾角状态实时监控,提高检测精度,采样速率1000次每秒,15秒检测一个样本7、机壳设计:采用特殊密封性材质,提升避光性,内置有高精度霍尔传感器,检测上盖是否完全闭合,检测仓内是否放置拭子,减小外界干扰,检测结果更为准确、稳定。 技术参数:1、检测准确度:1×10-16 mol ATP2、检测精度:1 RLU(相对发光单位)3、检测范围:0~9999 RLU(相对发光单位) 4、检测下限:检测微生物总量可达到1.4 CFU/ml5、检测时间:标准量15秒、快速测量10秒,二种模式可选6、准确误差:±5%7、屏幕:3.5英寸彩色触摸屏,内置触摸屏较准程序,可直接对触摸屏进行较准9、历史存储:≥20000个数据记录,记录包括检测时间、检测结果、判断结果、检测上限、检测下限等数据10、数据查询:以记录方式查询11、计算机连接:USB 接口,可实时检测并传输检测结果,历史数据下载等12、电源:5V,2A 13、操作温度范围:5℃到40℃14、操作相对湿度范围:20%~80%,15、存放温度范围:-10℃~40℃16、存放相对湿度范围:20%~90%,17、电池:3000mAh充电锂电池18、仪器尺寸(L×W×H):195mm×75mm×40mm19、便携式ATP菌落总数荧光快速检测仪仪器重量:300g
  • 菌落总数测试片
    产品名称:菌落总数测试片 产品规格:12片/包 产品优点: 本品可用于各类食品及饮用水中菌落总数的测定,由细菌营养培养基、吸水凝胶和酶显色剂等组成。与传统方法相比,省去了配制培养基、消毒和培养器皿的清洗处理等大量辅助性工作,随时可以开始进行抽样检测,而且操作简便,通过酶显色剂的放大作用,使菌落提前清晰地显现出来,培养十几小时就开始出现红色菌斑,非常适合于食品卫生检验部门和食品生产企业使用。
  • 菌落总数测试片 5011 24片/包
    菌落总数测试片检测方法方法编号:5011 1 适用范围:可用于各类食品及原料中菌落总数的测定。也可用于与食品接触的容器、操作台和其他设备表面的卫生检测。2 方法原理:将营养培养基、凝胶和氯化三苯基四氮唑(TTC)显色剂等加载在试纸片,经加样、培养后,细菌菌落在测试片上显现出红色菌斑,通过计数报告结果。3 操作方法 3.1样品处理:无菌称取样品25g(或25mL)放入含有225mL无菌生理盐水的采样瓶或均质杯内,经充分振摇(均质)做成1:10的稀释液。用1mL灭菌吸管吸取1:10稀释液1mL,注入含有9mL灭菌生理盐水的试管内,用1mL灭菌吸管反复吸吹制成1:100的稀释液。以此类推,做出1:1000等稀释度的稀释液,每个稀释度更换一支灭菌吸管。3.2接种:一般食品选2~3个稀释度进行检测,含菌量少的液体样品(如食用纯水和矿泉水等)可直接用原液检测。将测试片放在水平台面上,揭开上面的透明薄膜,用灭菌吸管吸取样品原液或稀释液1mL,均匀加到中央的纸片上,轻轻将上盖膜放下,静置5 min使培养基凝固,最后用手轻轻地压一下。每个稀释度接种两片。3.3培 养: 将测试片叠在一起放回原自封袋中,透明面朝上水平置于恒温培养箱内,堆叠片数不超过12片。培养温度为36℃±1℃,培养15~24h。4 结果判断与计数:4.1细菌在纸片上生长后会显示红色斑点,选择菌落数适中(10个~100个)的纸片进行计数,乘以稀释倍数后即为每克(或毫升)样品中所含的细菌菌落总数。菌落数在100以内时,按实有数报告。大于100时,用二位有效数字,二位有效数字后面的数字,以四舍五入方法计算,并以10的指数来表示。4.2计数原则与报告方式4.2.1 通常选择菌落在10个~100个之间的纸片进行计数,乘以稀释倍数报告之(见下表中例次1)。国家标准菌落总数报告方式术语为cfu/g或mL,cfu的含义为菌落形成单位。4.2.2 若有两个稀释度的菌落数在10个~100个之内,两者的比值小于2,则取其平均数,若大于2,则采用稀释度小者报告(见下表中例次2和例次3)。4.2.3 若三个稀释度的菌落数都有在10个~100个之内时,应选择二个低数值的平均数(见下表中例次4)。4.2.4 若三个稀释度的菌落数均小于10个或大于100个时,应重新试用更低或更高的稀释度进行菌落计数;或采用均小于数量标准的最小值,或采用均大于数量标准的最大值(见下表中例次5和例次6)。例次 稀释度两稀释度之比选定计数稀释度报告方式(个/g或个/mL)10-110-210-3123456158208265988295766882505174 51250151106—1.86.1———10-210-2、10-310-210-1、10-210-110-37.6×1039.4×1038.2×1033.0×1038.0×101.1×105 5 表面取样方法:加1mL灭菌生理盐水在测试片上,静置至少1h使培养基凝固;提起上层膜,使中央滤纸部分贴到待测物表面,用手在外侧轻压;然后将上盖膜合上,置培养箱内培养。6 注意事项:使用过的纸片上带有活菌,需及时按照生物安全废弃物处理原则进行处理。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制