当前位置: 仪器信息网 > 行业主题 > >

化工浓量仪

仪器信息网化工浓量仪专题为您提供2024年最新化工浓量仪价格报价、厂家品牌的相关信息, 包括化工浓量仪参数、型号等,不管是国产,还是进口品牌的化工浓量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化工浓量仪相关的耗材配件、试剂标物,还有化工浓量仪相关的最新资讯、资料,以及化工浓量仪相关的解决方案。

化工浓量仪相关的资讯

  • 农业部2.8亿采购大批量仪器设备
    4月21日,农业部网站发布《农业部重点实验室建设项目仪器设备统一招标采购&mdash &mdash 农田观测和实验室分析仪器(第1-36包)招标公告》,将采购大批量仪器设备(465台/套),采购金额2.8亿,其中包含12套质谱系统、15套色谱系统。  项目名称:农业部重点实验室建设项目仪器设备统一招标采购&mdash &mdash 农田观测和实验室分析仪器  招标编号:ZSB-2015-001(FXYQ)  资金来源:中央预算内投资和地方配套资金  招标范围:详见《招标货物一览表》包号品目号设备名称是否进口数量投标保证金(万元)最高限价(万元)标书售价(元)权重11-1(三重四极杆)质谱检测器(代谢)是52713988000.61-2超高效液相色谱仪(二元)是50.21-3质谱检测器(三重四极杆质谱检测器)是10.11-4超高效液相色谱仪是10.122-1(三重四极杆)质谱检测器(农残)是4189088000.72-2超高效液相色谱仪(二元)是40.333-1质谱检测器(线性离子阱)是1105406000.43-2超高效液相色谱仪是10.13-3质谱检测器(气相色谱-四极杆-飞行质谱检测器)是10.43-4近红外分析仪是10.053-5可见近红外分析仪是10.0544-1质谱检测器(四极杆-飞行时间串联质谱检测器)是42010318000.84-2超高效液相色谱仪是40.255-1超高效液相色谱仪(四元)是8136606000.85-2超高效液相色谱仪(二元)是30.266同位素质谱仪是72613378001.077-1同位素质谱仪(用水)是3199558000.67-2同位素质谱仪(带液相色谱接口)是10.27-3同位素质谱仪(气相色谱-稳态同位素质谱联用仪)A是10.2 88-1气相色谱仪(农残)是9157526000.58-2气相色谱仪(温室气体)是100.599-1原子吸收分光光度计是3136976000.29-2原子吸收分光光度计(带氢化物发生器)是90.79-3原子荧光光谱仪是10.11010-1荧光分光光度计是3168008000.210-2近红外分析仪是30.210-3红外成像光谱仪是120.510-4红外成像光谱仪(地物)是20.11111-1全自动定氮仪是12189398000.511-2全自动定氮仪(杜马斯燃烧)是10.111-3离子色谱仪是20.111-4流动分析仪是70.31212-1全自动化学分析仪是4147006000.212-2营养盐自动分析仪是30.212-3营养盐自动分析仪(海水)是10.112-4微波消解仪(超高压大容量)是50.312-5微波消解仪(高通量)是30.21313总有机碳分析仪是13115856001.01414-1植物光合测定仪(带荧光叶室)是192010438000.814-2植物光合测定仪是40.114-3微波消解仪(国产)否10.11515-1野外植物生理生态监控系统是16115786000.915-2叶面积仪(手持式)是20.11616-1光声谱多种气体监测仪是112609.96000.116-2多通道TDR土壤监测系统是30.116-3碳通量观测系统是10.116-4土壤呼吸监测仪是110.516-5自动气象站是60.116-6蒸发蒸腾测量系统是20.11717-1孢子捕捉仪是2189438000.0517-2飞行磨系统否20.0517-3动物行为观测记录系统是40.217-4生物测定用喷雾塔是20.0517-5土壤非饱和导水率测量系统是50.317-6土壤养分速测仪是30.0517-7植物生理生态监测系统(现代装诶)是20.117-8植物生理生态监测系统(信息)是10.0517-9三维立体及样带植物荧光成像系统是10.0517-10环境立体监测设备是20.0517-11环境立体监测设备(水体)是10.051818-1高精度冠层测温仪是6115816000.118-2叶面积仪(便携式)是20.118-3差分GPS定位系统否30.118-4多气体分析仪是30.218-5植物荧光成像仪是100.51919-1多标记微孔板检测系统是1178608000.119-2微生物鉴定系统是50.319-3微生物致病菌药敏鉴定系统是50.62020荧光定量PCR仪是18157566001.0包号品目号设备名称是否进口数量投标保证金(万元)最高限价(万元)标书售价(元)权重2121-1生物大分子分析仪是4178708000.221-2蛋白纯化分析系统是30.121-3双向电泳仪是10.121-4全自动电泳仪是100.62222-1超低温冰箱及冻存管理系统是373954000.322-2低温冰箱否50.122-3细胞破碎仪是60.122-4冷冻干燥机(基因)是50.222-5冷冻干燥机(加工)是10.122-6冷冻干燥机(现代装备)是10.122-7人工气候箱是10.12323多功能酶标仪是16126406001.02424-1超高速冷冻离心机是202412108000.824-2高速冷冻离心机是20.124-3台式冷冻离心机是50.12525-1遗传分析仪(淡水)是2126246000.325-2遗传分析仪是60.72626-1显微镜(超景深)是284244000.326-2活细胞工作站是40.72727-1倒置荧光显微镜A是4105406000.427-2显微镜是10.127-3倒置荧光显微镜B是60.52828激光共聚焦显微镜A是4136806001.02929激光共聚焦显微镜B是62311828001.03030-1GPC净化浓缩系统是1126406000.0530-2显微镜(倒置)是10.0530-3显微镜(正置)是20.0530-4显微镜(体视)是30.0530-5生化自动分析工作站是50.530-6流式细胞仪是10.130-7流式细胞仪(带分选)是10.130-8磁性免疫色谱分析和研发系统是10.13131-1电化学工作站是1189358000.0531-2电化学工作站(Zeta电位仪)是10.0531-3dSPACE快速原型开发系统是20.131-4地面三维激光扫描仪是10.131-5地面三维激光扫描仪(高精度三维激光扫描仪)是20.231-6三维测量仪(现代装备)是20.131-7三维测量仪(信息)是10.131-8高性能海量信息处理系统与服务器(现代装备)是20.131-9高性能海量信息处理系统与服务器(信息)是10.0531-10农业传感器在线测试系统(现代装备)是20.131-11农业传感器在线测试系统(信息)是10.053232-1果蔬加工装备-超高压均质机是121494000.432-2果蔬加工装备-反渗透/超滤系统是10.332-3果蔬加工装备-超高压食品处理装置是10.33333-1超导核磁共振谱仪是12110728000.533-2三重四极杆液质联用仪是10.233-3结构照明超分辨率显微镜是10.33434-1超导核磁共振波谱仪是1115556000.534-2激光光谱元素分析仪是10.53535二维钠升流超高效液相色谱-离子淌度高分辨质谱仪是184244001.03636-1X射线单晶衍射仪是12110858000.336-2等温滴定微量热仪是10.236-3高压冷冻生物样品制备仪是10.236-4液相色谱-四级杆-飞行时间质谱仪是10.3
  • 关于举办“第一届计量仪器装备展(2024)”的通知
    关于举办“第一届计量仪器装备展(2024)”的通知各产业计量测试中心、计量技术机构、仪器仪表与计量器具生产企业、相关单位:为充分展示计量在服务新质生产力方面发挥的基础作用,中国计量协会将主办“第一届计量仪器装备展(2024)”。此次展览致力于搭建供需对接、产业合作的平台,首次全面展示计量服务产业创新发展的新产品,首次全面展示我国计量技术机构研制的计量测试装备,全面展示高端科研仪器国产化成果,集中发布计量仪器仪表最新产品。同时,展览将为地方政府仪器仪表产业园区、高校、技术机构、企业打造招商引资、成果对接的合作平台。中国计量协会举办的“计量技术创新助力中国式现代化系列活动”、中国计量科学研究院举办的“计量服务新质生产力发展推进会”同期进行。现将有关参展事项通知如下。一、活动名称第一届计量仪器装备展(2024)二、展览时间2024年10月30日—31日三、展览地点苏州国际博览中心G馆(苏州工业园区苏州大道东688号) 四、参展范围本届展览初步将设立产业计量测试中心与计量技术机构展区、高端仪器仪表展区、地方省市集中展区、地方政府招商专区、集中发布活动专区。集中展示:1.计量装备:计量测试装备、检定装置、校准装置、检验检测仪器、标准物质等。2.科研仪器:原子吸收光谱仪、质谱仪、色谱仪、电子显微镜、激光干涉仪、各类先进的分析仪器等。3.计量仪器仪表:流量计、压力计、电子测量仪器、水表、燃气表、热能表等。4.其它计量领域新技术、新装备。五、活动及费用活动共分展览展示、论坛研讨等形式。(一)展览展示规格分别为室内光地与标准展位。1.室内光地:(最少36平方米起租)国内企业收费为每平方米1300元人民币。注:“光地”只提供参展空间,不包括展架、展具、地毯、电源等。2.标准展位:每个展位3m×3m。国内企业收费为13000元人民币,每个标准展位包括三面白色壁板、中(英)文楣牌制作、咨询桌一张、折椅二张、地毯满铺、展位照明、220V/1电源插座及废纸篓一个。(参展原则以先报名先安排,以报名先后顺序确认展位。)依据《提信心扩需求稳增长促发展行动方案》与支持会展行业政策,经组委会积极申报和争取,参加本届展会的产业计量测试中心、计量技术机构、仪器仪表展商8月31日前报名,在此基础上将享受8折优惠。(二)论坛研讨展会同期举办新产品推荐会、揭榜挂帅需求发布、计量产学研技术成果转让信息发布会等。同期,苏州国际博览中心G馆还将召开计量技术创新助力中国式现代化系列活动、计量服务新质生产力发展推进会,主办方将协调相关活动对展商开放。届时,有来自全国冶金、石油石化、化工、纺织、医学、智能传感器、计量技术机构、校准企业、仪器仪表企业代表将参加系列活动。六、观众组织主办方将邀请国家级、省级重点研究院所,各级省市计量院、计量所、计量检测机构、第三方检测机构、认证中心、实验室,国内外的能源公共事业单位,水务集团、燃气集团、国家电网、航空航天、石油、化工、钢铁、环境、水利、医疗、工业、农业、采矿业、消费品制造业(包括纺织、服装、日用品等)、建筑业、能源和燃料、水电生产和供应业、化学工业、电子电器行业、汽车业、食品行业、咨询服务业、零售业、科学研究、技术服务业、公共设施管理、卫生管理等行业领导、专家、技术人员参观交流,欢迎各地区计量学、协会组团观展。七、报名参展参会请各单位与相关企业积极参展参会,并在2024年8月15日前填写报名表传真021-50131761或邮件发送至展会会务组,以便我们工作的统一安排。展会具体工作由高计联会展(上海)有限公司承办。组委会联系方式: 中国计量协会联系人:杜硕,010-59196595、13810304365参展参会及商务合作:高计联会展(上海)有限公司电话:021-59757099 传真:021-50131761联系人:朱磊,13916187059E-mail:info@metrologyexpo.com.cn参展报名申请表.docx
  • 华嘉公司成功推广KRUSS高温接触角测量仪
    瑞士华嘉公司代理的德国Kruss 公司的接触角测量仪系列中的高温系列DSAHT系列由于其能具有在达到10-3-10-5 Pa的高真空,最高1750℃高温下测量接触角的独有特点,广州有色金属研究院焊接研究所和中南大学经过两年时间,对市场上多种类似设备的评估,最终选购了kruss公司的高温接触角测量仪产品。我们衷心希望该产品能继续为国内的有色金属行业的高温浸润性研究服务。相关产品信息: 超高温接触角测量仪DSAHT http://www.instrument.com.cn/netshow/SH100150/C13013.htm瑞士华嘉公司(SiberHegner China)是一家著名的国际贸易集团,总部位于瑞士的苏黎世。华嘉公司自1900年以来便与中国进行友好贸易往来,业务范围涉及机器、仪器、消费品、纺织品、化工原料等诸多领域。 华嘉公司仪器部专业提供分析仪器及设备,独家代理众多欧美先进仪器,产品范围包括:颗粒,物理,化学,生化,通用实验室的各类分析仪器以及流程仪表设备,在中国的石化,化工,制药,食品,饮料,农业科技等诸多领域拥有大量用户,具有良好的市场声誉。我们的业务逐年增加,市场不断扩大。华嘉公司在中国设有多个销售,服务网点,旨在为客户提供全方位的产品和服务。 1796年Paul Kruss先生在德国汉堡市成立了KRUSS公司。50年来,公司致力于表面/界面张力和接触角测量技术的创新,开发和应用研究,使之成为全球市场的领导者以及表面/界面张力和接触角测量技术的国际标准。我们开发出众多的实验室仪器和工业在线仪器以满足最苛刻的科学研究需要和严格的工厂质量控制。
  • 山东:提升计量仪器设备研发能力 树立“山东仪表” 品牌
    计量是实现单位统一、保证量值准确可靠的活动,是科技创新、产业发展、国防建设、民生保障的重要基础,是构建一体化国家战略体系和能力的重要支撑。为贯彻落实《计量发展规划(2021-2035年)》有关要求,持续推进山东省计量事业创新发展,更好地发挥计量在经济社会高质量发展中的基础性、支撑性作用,山东省市场监督管理局研究起草了《关于贯彻落实〈计量发展规划(2021-2035年)〉的实施意见(征求意见稿)》(下称《实施意见》),现向社会公开征求意见。《实施意见》提出发展目标,到2025年,全省计量体系和能力建设取得显著成效,计量在服务保障全省经济社会高质量发展、保障高品质生活方面的地位和作用日益突出,现代先进测量体系初步建成,科研创新能力、计量服务保障能力显著提升,计量监管体系更加完善,部分领域达到国内领先水平。建立社会公用计量标准5600项,建设产业计量测试中心20个,培育计量科技创新基地、先进测量实验室、计量数据示范应用基地等计量创新平台5个,研制标准物质300项,编制地方计量技术规范80项,建立诚信计量示范单位1000家。展望2035年,计量科技创新能力大幅提升,关键领域计量 技术取得重大突破,部分领域达到国际先进水平,现代先进测量体系全面建成,计量在保障经济社会高质量发展的积极作用充分凸显。在加强计量技术研究,服务创新驱动发展发面,《实施意见》提出:(一)加快关键核心技术攻关。加强计量测试理论、方法与应用技术研究,重点推进时间频率远程实时溯源技术以及计量器具远程、在线、嵌入式校准技术等研究。针对极端条件、复杂环境和实时工况的计量需求,研究复杂条件下的计量远程溯源、数字计量等共性技术。加强分布式系统和传感器网络计量技术研究,突破动态、在线、原位校准技术瓶颈,解决极端 量、复杂量、微观量等多参量和综合参量的准确测量难题。(二)加强产业计量技术研究。开展重点产业领域的数字 化模拟测量、跨尺度测量、复杂系统综合测量、工况环境监测等测量测试技术研究,高标准建设核电核岛装备、环境监测、高速列车等产业计量测试中心。加强高精度、集成化、微型化、智能化的新型传感技术研究,突破嵌入式、小型化、高可靠性、高环境适应性的新型计量技术,研发小型在线质谱仪、化学传感器、光学传感器等高精度计量器具。推进图像识别、物联网、MEMS 工艺、自动控制以及人工智能等新技术在计量器具中的应用,实现计量标准装置智能化、网络化、数字化。(三)完善计量创新协同机制。整合各方计量优势资源协同攻关解决计量测试难题,在重点产业领域建设先进测量实验室。面向国内经济主战场、面向省内重大战略计量需求,开展计量科研需求采集、联合攻关,推进计量领域科技创新与应用,培育建设计量科技创新基地。推动建立计量、标准、质量、知识产权等融合联动的科技成果转化服务体系。建立黄河流域生态保护和高质量发展计量服务协同平台,协调推进黄河流域计量创新驱动发展。在强化计量应用保障,筑牢高质量发展支撑方面,《实施意见》提出:(一)夯实先进制造业强省根基。强化计量对产业基础高 级化、产业链现代化的支撑引领作用,开展大空间精密测量、 高电压、大力值、太赫兹、防爆、电磁兼容等领域测量方法研 究和测量装备研制,建立一批先进制造业发展急需的计量标准, 提升工业生产基础零部件(元器件)、基础材料、基础工艺的 测量精度和稳定性。结合“十强产业”总体布局和区域优势, 重点在智能制造装备、航空航天装备、高档数控机床与机器人 等领域建设一批产业计量测试中心和产业计量测试联盟。实施 仪器设备质量提升工程,加强高端仪器设备核心器件、核心算 法研究,重点在核电仪表、分析仪器等领域进行技术攻关,推 动量子芯片、云计算、区块链等高新技术应用于计量仪器设备, 提升计量仪器设备研发能力和自主可控水平,树立“山东仪表” 品牌。(二)服务健康山东建设。加快医疗健康、食品安全领域 计量测试基础设施建设,重点建设疾病防控设备、医用冷链装 备、眼科光学仪器等医疗卫生计量器具量传溯源能力。提升全 省医疗卫生机构计量器具的强制检定覆盖率,保障医疗卫生领 域计量准确。推进医用计量器具产品质量检验检测技术研究, 突破临床诊断与精准治疗等关键计量技术,研制检测装备和标 准物质,支撑生命科学、生物医药、医养结合等产业创新发展。(三)强化乡村振兴计量保障。开展“计量服务下乡”活 动,推动计量技术服务向农村地区延伸,缩小计量公共服务的 城乡差距。加强粮食购销和农资经营等涉农领域强制检定计量器具和定量包装商品的计量管理,持续提升农业农村计量保障 水平。围绕农业综合生产能力提升和“新六产”发展,开展现 代高效农业、农机、化肥、农药等农资生产领域测量测试技术 研究,加强农林牧渔产品安全、质量检验的计量能力建设,提 供农产品生产、加工、储备、流通、销售全链条计量服务。强 化农田水利、农业交通物流、农村医疗等农业基础设施的计量 支撑,培育冷链物流产业计量测试中心。(四)服务海洋强省建设。推动建设国家海洋计量科学研 究中心,研究建立海洋领域国家计量基准标准,突破海洋水声、 海洋重磁、海洋温度等方向的量子化、扁平化关键测量技术, 提高海洋计量基础科学研究能力。培育海洋装备产业计量测试 中心,研究用于模拟全海深压力、温度及盐度范围的环境模拟 舱,开展海洋传感器测量测试技术研究,提升海洋装备数字化 测量能力。健全海洋精细化工、海洋药物与生物制品、海洋环 境监测、海洋港口等领域计量保障体系,服务海洋强省战略深 入实施。(五)支撑碳达峰碳中和目标实现。构建“双碳”计量管 理体系、计量技术体系和计量服务体系,为温室气体排放可测 量、可报告、可核查提供计量支撑。加快建设“高耗能、高排 放”行业计量监测体系,开展钢铁、电力、交通运输等重点行 业碳排放直接测量方法和在线监测设备量传溯源技术研究,规 范碳计量器具管理。加力推进能源资源计量服务示范项目建设, 加强能源资源计量数据应用研究。持续开展能源计量审查,强化 能效标识、水效标识产品监督管理。(六)筑牢数字赋能计量基础。在 5G/6G 通信、AR/VR 显示、 数字图像和超高速光通信等领域推进计量科研协同创新,拓展 计量应用领域。推进计量器具自动化、数字化改造升级,建设 计量信息化智能系统,打造智慧计量实验室。开展工业生产领 域自动测量、非接触测量、在线溯源技术研究,培育远程测控 与计量校准等服务新业态。开展计量检测原始数据及其衍生数 据的高效、综合、精细化处理技术研究,推进计量数据防作弊、 防篡改等可靠性技术研究。强化计量数据应用技术研究,培育 一批计量数据应用基地,释放计量数据应用效能。(七)促进新能源、新材料产业提升。研究氢能、太阳能、 风能、煤炭、天然气、石油产品等能源专用计量测试技术。强 化我省氢能产业优势,健全制氢、储(运)氢、加氢、用氢全 产业链计量支撑体系。开展新能源汽车充电桩、加氢机、光伏 专用计量器具、特高压输电装置、智能电网装备等量传溯源技 术研究。加强氢能源新材料、高端铝材、橡胶、石墨烯、生物 医用材料等领域计量技术研究,重点开展新材料结构、性能等 检测方法研究和相关设备研制,满足新材料行业量值传递溯源 需求。加快建设碳纤维产业计量测试中心,开展碳纤维关键材 料组成、结构和性能测量测试技术研究及数据分析,解决生产工艺和质量参数测量难题。(八)提升现代基础设施计量保障能力。建立完善交通、 信息、能源、水利等现代化基础设施计量支撑体系,培育交通 产业计量测试中心,强化公路试验计量能力建设,开展智慧公 路、智慧港航、智慧机场等领域计量关键技术研发和应用。加强轨道交通产业计量测试中心建设,开展轨道交通接触网几何 参数测量仪校准装置、机动车排放污染物遥感检测系统校准装 置等研制与应用。突破极微弱光探测测试技术,研制光通信领 域国际领先的超高灵敏度、超高精度校准装置。推进计量测试 技术在风电、核电、光伏发电、生物质能等清洁能源发电、储 能及分布式智能电网建设中的应用。研制水资源计量专用设备, 建立完善水资源专用大口径、大流量、复杂工况的计量标准。在加强计量能力建设,夯实质量提升基础方面,《实施意见》提出:(一)构建现代先进测量体系。统筹规划建设省、市、县 三级社会公用计量标准,健全完善部门(行业)计量标准,加 快企业计量标准建设,培育建设时间频率、流量等国家计量标 准项目落地山东。满足量值传递扁平化和计量数字化转型需要,逐步建成以省级计量技术机构、计量区域中心为核心的满足经 济社会发展要求的立体化计量保障体系。实施计量标准能力提 升工程,加强超导、高温、低温、流量、大电流等领域计量科 学研究,建设一批高精度、高稳定性的计量标准,填补我省量 值传递溯源体系空白。2025 年全省计量标准数量达到13000项。(二)加大标准物质研制应用。围绕产业链,紧贴测量链, 加快新能源新材料、智慧海洋、医养健康、绿色化工等重点产 业标准物质的研制,拓宽标准物质应用领域。加大标准物质技 术攻关,增强重点领域标准物质核心材料和关键技术自主可控 能力。建立标准物质质量追溯机制,强化标准物质量值和不确 定度水平核查,积极培育标准物质量值核查验证实验室。加强 应急用标准物质实物和生产能力储备,增强战略性、公益性标 准物质供给。2025年全省新研制标准物质数量达到300项。(三)建设与我省现代化水平相适应的计量技术机构体系。 坚持各级法定计量技术机构的独立性、法制性和公益性,加强 普惠性、基础性计量基础设施建设,满足履行计量器具强制检 定等法定职责需要,依法有序推进法定计量技术机构深化改革 创新发展。加快计量技术机构能力建设,分级别、分区域制定 建设标准,推动机构的差异化、专业化发展。加强行业专业计 量技术机构建设,满足交通、气象、电力、水文等行业领域计 量需求,强化专用计量器具的管理和使用。大力发展计量校准、 计量测试等高技术服务新业态,推动计量技术服务市场健康有序发展。(四)促进企业计量能力提升。引导企业建立完善与科研、 生产、经营相适应的计量管理制度和保障体系。加强企业计量 基础设施建设、计量科技创新和测量数据应用,鼓励企业自愿 通过测量管理体系认证。推行企业计量能力自我声明制度,开 展工业计量标杆示范,推广企业计量典型案例。实施中小企业 计量伙伴计划,提升产业链相关中小企业计量保证能力。完善 企业计量促进措施,对企业新购置的、符合国家有关规定的计 量器具一次性计入当期成本费用,在应纳税所得额中相应扣除。(五)打造新时代计量人才聚集高地。实施计量科技创新 人才计划,在计量专业人才中推荐有突出贡献的中青年专家、 享受国务院特殊津贴专家、泰山系列人才、科技领军人才和青 年拔尖人才。建设计量专业技术人才培训平台和实训基地,培 养一批计量领域齐鲁首席技师、齐鲁工匠和技术能手。建立计 量专家人才库,支持技术人员开展计量交流合作。(六)强化质量基础设施协同联动。整合计量、标准、检 验检测、认证认可等质量基础资源,搭建质量基础设施“一站 式”服务平台,在重点产业、关键领域形成全链条整体技术解 决方案。强化检验检测、认证认可领域计量溯源技术研究,丰 富完善检验检测、认证认可内涵和外延,引导计量工作从量值 保障和符合性评价保障向创造性引领转变。
  • 全国电子测量仪器标准化技术委员会将换届
    关于全国电子测量仪器标准化技术委员会换届聘请委员的通知各有关单位: 全国电子测量仪器标准化技术委员会是国家标准化管理委员会批准成立的全国性标准化技术组织。随着高新技术产业的飞速发展,电子测量仪器的技术构成、应用范围都有了很大的变化,也催生了一批在国内及国际上有一定影响的企业及专家。在国家新的标准化政策鼓舞下,越来越多的企业及专家对标准化工作投入了极大的热情,电子测量仪器标准化工作面临良好的发展机遇。在此形势下,我秘书处向国家标准化管理委员会提出了换届申请并获批准。现对换届工作做出如下安排: 1. 换届工作拟定于2011年6月28日之前完成。 2. 请各单位确定参加第四届全国电子测量仪器标准化技术委员会的委员人选(要求具有中级技术职称以上)并填好表格,于6月25日前报到秘书处。 通信地址:北京东城区安定门东大街1号装备中心 邮 编: 100007 联系人:曹玲、黄英华 电 话:010-84029129 传 真:010-84029064 e-mail: caoling@cesi.ac.cn huangyh@cesi.ac.cn 3. 按照国标委要求:标委会委员实行委员注册登记制度,对新确认的委员进行资格注册,并颁发《中华人民共和国全国标准化技术委员会委员证书》。请各单位认真选派委员。 附件:全国专业标准技术委员会委员登记表2011年6月3日
  • 【新品主推】粮食水分测量仪的应用与发展趋势
    点击此处可了解更多产品详情:粮食水分测量仪  随着科技的不断发展,粮食水分测量仪在农业生产中得到了广泛的应用。该仪器利用物理和化学方法,快速准确地测量粮食的水分含量,为农业生产提供了重要的参考依据。    一、粮食水分测量仪的原理    粮食水分测量仪的原理主要基于电学和近红外原理。电学方法主要利用粮食的导电性与其含水量的关系,通过测量粮食的电导率或介电常数来推算其水分含量。近红外原理则是利用近红外光谱技术,通过分析粮食对特定波长光线的吸收和反射特性,来推断其水分含量。    二、电学方法原理    电学方法中,常用的有电阻式和电容式两种。电阻式水分测量仪利用粮食的导电性,通过测量电阻值与水分含量的关系来推算水分。电容式水分测量仪则是利用粮食的介电常数与其含水量的关系,通过测量电容值来推算水分。    三、近红外原理    近红外光谱技术是利用粮食中水分子对近红外光线的吸收特性来推断水分。该技术具有非破坏性、快速准确等优点,但也存在着对样品颜色、颗粒大小等因素敏感的问题。为提高测量的准确性和稳定性,常采用光谱预处理、多元回归等方法进行校正和优化。    四、粮食水分测量仪的应用与发展趋势    粮食水分测量仪在农业生产、粮食储存和加工等领域有着广泛的应用。通过准确测量粮食的水分含量,可以指导农业生产和储粮工作,避免因水分过高导致霉变或水分过低影响口感等问题。未来随着科技的不断进步和应用需求的提高,粮食水分测量仪将向着更加智能化、高精度、快速响应等方向发展。同时,随着物联网技术的普及,粮食水分测量仪将与智能农业系统相结合,实现远程监控和智能化管理,进一步提高农业生产效率和管理水平。    五、结论    粮食水分测量仪作为一种快速、准确的测量方法,对于农业生产具有重要意义。了解其工作原理和应用特点,有助于更好地选择和使用适合的水分测量仪,为农业生产提供科学依据。未来随着技术的不断创新和发展,相信粮食水分测量仪在农业生产和科研领域将发挥更大的作用,为实现农业现代化作出积极贡献。【新品主推】粮食水分测量仪的应用与发展趋势
  • 河北:助力提升国产仪器市场竞争力和占有率,推进测量仪器国产化
    近日,河北省出台了河北省人民政府关于贯彻落实《计量发展规划(2021-2035年)》的实施意见(以下简称《意见》)。《意见》提出发展目标为到2025年,计量工作在服务全省经济社会高质量发展、保障高品质生活方面的地位和作用日益突出,现代先进测量体系初步建立,科研创新能力、计量服务保障能力和计量监管水平显著提升,部分领域达到国内领先水平。到2035年,计量科技创新水平大幅提升,关键领域计量技术取得重大突破,部分领域达到国际先进水平,现代先进测量体系全面建成。《意见》指出要健全应用计量服务保障体系,促进产业转型升级。其中明确指出要服务高端仪器发展和精密制造,支持军民融合发展,加强高端仪器设备核心器件制造技术研究和先进测量仪器及零部件制造。拓展高端仪器设备评测领域和范围,完善仪器评价体系,助力提升国产仪器的市场竞争力和占有率,推进测量仪器国产化。结合全省计量器具制造产业特点和分布,重点推动具有一定产业基础的石家庄、承德、廊坊、保定等地的环境监测仪器、芯片测量仪器、衡器、流量仪表、互感器等制造业发展。以下为《意见》全文:河北省人民政府关于贯彻落实《计量发展规划(2021-2035年)》的实施意见各市(含定州、辛集市)人民政府,雄安新区管委会,省政府有关部门:  为全面贯彻落实《国务院关于印发计量发展规划(2021-2035年)的通知》(国发〔2021〕37号)精神,进一步夯实计量基础,提升计量能力和水平,推动全省经济社会高质量发展,结合我省实际,提出以下实施意见。  一、总体要求  (一)指导思想。以习近平新时代中国特色社会主义思想为指导,深入贯彻党的十九大和十九届历次全会精神,立足新发展阶段,完整、准确、全面贯彻新发展理念,构建新发展格局,以推动高质量发展为主题,坚持创新突破、改革引领,需求牵引、供给提升,政府统筹、市场驱动,协同融合、开放共享基本原则,充分调动社会各方资源和力量,加快构建结构合理、技术先进、特色鲜明的现代先进测量体系,持续提升计量创新能力、服务效能和管理水平,筑牢推动经济社会高质量发展的基础支撑,为建设现代化经济强省、美丽河北提供有力保障。  (二)发展目标。到2025年,计量工作在服务全省经济社会高质量发展、保障高品质生活方面的地位和作用日益突出,现代先进测量体系初步建立,科研创新能力、计量服务保障能力和计量监管水平显著提升,部分领域达到国内领先水平。  到2035年,计量科技创新水平大幅提升,关键领域计量技术取得重大突破,部分领域达到国际先进水平,现代先进测量体系全面建成。  二、筑牢科学计量基础支撑体系,助力关键核心技术攻关  (一)加强计量基础和前沿技术研究。围绕量子技术、生物技术、新材料、新能源、先进制造和新一代信息技术等领域,加强计量测试理论、方法与应用技术研究。充分发挥企业、科研院所和高校等计量优势资源作用,建立一批计量科技创新基地,加快科研成果转化,提升科技创新能力,增强核心竞争力。(责任单位:省市场监管局、省科技厅)  (二)推动计量数字化转型。加强计量数据统计、分析和利用,推动计量产业链条数据融合共享,打造计量数据服务云,为仪器仪表研发升级、现场应用、计量性能实时监控及检定校准频次等提供科学指导。(责任单位:省市场监管局)  (三)探索新型量值传递溯源技术。针对复杂环境、实时工况环境和极端环境的计量需求,开展新型量值传递溯源方法研究。研究数字化模拟测量、工业物联、跨尺度测量、复杂系统综合计量等关键技术。探索开展计量标准智能化、网络化技术的研究和应用。(责任单位:省市场监管局)  三、健全应用计量服务保障体系,促进产业转型升级  (一)实施制造业计量能力提升工程。围绕12个省级主导产业和107个县域特色产业集群发展,建立一批急需的先进计量标准,建设一批省级产业计量测试中心和联盟,化解一批测不了、测不全、测不准等难题,增强促进产业发展的技术支撑能力。实施工业强基计量支撑计划,开展产业计量基础能力提升行动。(责任单位:省市场监管局、省发展改革委)  (二)服务高端仪器发展和精密制造。支持军民融合发展,加强高端仪器设备核心器件制造技术研究和先进测量仪器及零部件制造。拓展高端仪器设备评测领域和范围,完善仪器评价体系,助力提升国产仪器的市场竞争力和占有率,推进测量仪器国产化。结合全省计量器具制造产业特点和分布,重点推动具有一定产业基础的石家庄、承德、廊坊、保定等地的环境监测仪器、芯片测量仪器、衡器、流量仪表、互感器等制造业发展。(责任单位:省市场监管局、省委军民融合办、省工业和信息化厅、省生态环境厅)  (三)服务大众健康与安全。围绕疾病防控、精准医疗、可穿戴设备、体育健身、营养与保健品、诊断试剂、创新中医药等领域,开展关键计量测试技术研究和应用,为人民健康保驾护航。加强危险化学品、矿山、建筑施工、地质勘探等安全生产相关计量器具的研制生产和监督管理。(责任单位:省市场监管局、省卫生健康委、省应急管理厅、省体育局、省药品监管局)  四、构建能源资源计量体系,支撑碳达峰碳中和目标实现  (一)开展碳计量技术研究。围绕煤炭、电力、石油化工等重点行业和领域,开展基础前沿技术、共性关键计量技术和方法研究以及碳计量器具、碳计量监测设备和校准设备研制。实现温室气体监测仪器计量检定/校准能力全覆盖。(责任单位:省市场监管局、省发展改革委、省科技厅、省生态环境厅)  (二)强化能源资源计量管理。积极参与和开展能源计量相关标准、规程规范的制修订。持续开展能源计量审查,实现重点用能单位全部配备和使用能源计量器具。推动企业建立健全碳排放管理体系。开展能效标识、水效标识产品监督检查,增强全社会节能产品使用意识。(责任单位:省市场监管局、省发展改革委、省生态环境厅)  (三)加强碳计量服务。加快能耗在线监测平台和碳排放监测系统建设。加大能源资源、环境和碳计量数据分析挖掘和利用,引导企业在生产活动中通过科学、合理、高效的能源消费结构调整,降低碳排放量。开展重点耗能设备能效测试、节能效果评估、企业减碳评估测试等碳计量服务,将服务链从传统耗能产业延伸到大数据中心、公共服务等领域。(责任单位:省市场监管局、省发展改革委、省生态环境厅)  五、完善法制计量监督管理体系,优化市场计量环境  (一)完善计量政策法规。做好国家计量法律、法规修订后的工作衔接。加强地方计量技术委员会建设,强化地方计量技术规范制修订管理,开展计量技术规范制修订、实施和效果评估。(责任单位:省市场监管局、省司法厅)  (二)推进计量监管制度改革。推动监管重点从管器具向管数据、管行为、管结果的全链条计量监管转变,形成全要素、全流程监管新模式。强化对高校、科研院所、第三方检验检测机构及认证认可机构在用仪器设备的计量溯源性要求,保障科研成果的有效性和测试结果的可信度。完善计量比对机制。积极推行国家法定计量单位,规范量和单位的使用。落实市场主体计量风险管控主体责任,防范化解计量风险。(责任单位:省市场监管局、省教育厅、省科技厅)  (三)创新智慧计量监管模式。运用互联网、大数据、人工智能、区块链等技术,研究以远程监管、移动监管、预警防控为特征的非现场监管模式。推广智慧计量理念,打造智慧计量实验室。鼓励企业开展计量检测设备的自动化、智能化升级改造,提高质量控制与智慧管理水平。(责任单位:省市场监管局)  (四)加强民生计量器具监管。落实计量惠民工程,提升基层民生计量保障能力。聚焦集贸市场、加油加气站、商场、超市、医疗机构、眼镜店等重点领域和场所,持续开展专项监督检查。加强定量包装商品的计量监督。围绕实施乡村振兴战略,强化乡村民生计量保障,加大对涉农物资的计量监管,推动计量技术服务向农村地区延伸。(责任单位:省市场监管局、省农业农村厅、省卫生健康委)  (五)推进诚信计量分类监管。持续加强诚信计量体系建设。在商业、服务业等领域全面开展诚信计量行动,完善信息公开机制。建立市场主体计量信用记录,推进计量信用分级分类监管和“双随机、一公开”监管落实。(责任单位:省市场监管局)  (六)加大计量执法力度。加强计量执法协作,建立健全查处重大计量违法案件快速反应机制和执法联动机制。加强计量作弊防控技术和查处技术研究,严厉查处制造、销售和使用带有作弊功能计量器具的违法行为。加大对网络平台计量违法案件的查处力度。规范计量服务行为,严厉打击伪造计量数据、出具虚假计量证书和报告的违法行为。加强计量业务监管与综合执法衔接、行政执法与刑事司法衔接,加大对计量违法行为的打击力度。(责任单位:省市场监管局)  六、加快计量能力建设,服务高质量发展  (一)强化计量标准建设。统筹技术能力和现实需求,构建以社会公用计量标准、部门行业计量标准、企事业单位计量标准为主的层次分明、链条清晰的计量标准基础设施网络。鼓励和支持企事业单位自主建立*高计量标准,采用先进计量器具,提升生产工艺过程控制、产品质量升级的相关计量技术支撑。(责任单位:省市场监管局、各相关部门)  (二)推进计量技术机构建设。各级计量技术机构围绕法制计量需要建设社会公用计量标准,加强应用计量技术研究,为企业技术研发和质量提升提供计量支持,承担政府部门授权委托的法制计量检定、型式评价和基础保障任务,开展计量风险收集、评估、监测、预警。行业专业计量技术机构立足本行业领域计量需求,强化专用计量器具的管理和使用。大力发展计量校准、计量测试、产业计量等高技术服务新兴业态,培育和壮大专业化计量技术服务市场。(责任单位:省市场监管局)  (三)加强人才队伍建设。建设培训平台和实训基地,培育一批专业技术人才。选拔年轻技术骨干参与创新人才推进计划、燕赵青年科学家计划,培养一批计量学术带头人、青年科技人才。推行计量技术机构首席计量师聘任制度。推进注册计量师职业资格与工程教育专业认证、职称、职业技能等级等制度有效衔接。(责任单位:省教育厅、省人力资源社会保障厅、省市场监管局)  (四)加快提升企业计量能力。引导企业建立完善与其科研、生产、经营相适应的计量管理制度和保障体系,鼓励其通过测量管理体系认证。推行企业计量能力自我声明制度,开展工业企业计量标杆示范。推动中小企业计量伙伴计划落实落地,全面提升产业链相关中小企业计量保证能力。(责任单位:省市场监管局)  (五)推动计量工作协调发展。积极发挥计量、标准、检验检测、认证认可等国家质量基础设施的协同作用,以精准计量推动标准数据和方法的科学验证,为经济社会高质量发展提供一体化质量基础支撑服务。深化实施京津冀协同发展战略,推进计量基础共享、计量规范共建、计量检定和计量行政许可结果互认。进一步优化营商环境,突破计量服务市场的区域壁垒,推动形成有利于公平竞争和要素自由流动的统一开放市场。(责任单位:省市场监管局、省政务服务管理办公室)  七、保障措施  (一)加强组织领导。坚持党对计量工作的全面领导,各市、县政府要高度重视计量工作,把计量事业发展与国民经济和社会发展规划的实施有效衔接,突出计量战略资源地位,按照本实施意见确定的目标、任务和政策措施,结合实际抓紧制定具体落实方案,确保各项任务完成。充分利用计量工作联席会议制度,加强统筹协调和工作推进。(责任单位:各市、县政府,省计量工作联席会议成员单位)  (二)加大政策支持力度。各市、县政府要根据计量工作实际,对社会公用计量标准建设、标准物质研制、强制检定以及计量专项监督抽查工作给予必要保障。公益性计量工作所需经费按规定纳入本级预算。加强对计量重大科研项目和计量科技创新支撑平台的支持,促进计量科技研发和重点科研项目、科研成果的转化和应用。对批准筹建的国家级、省级产业计量测试中心和联盟,统筹利用现有资金渠道和相关政策予以重点支持。健全激励企业增加计量投入的普惠性政策体系,对企业新购置的计量器具,符合国家有关规定的,允许一次性计入当期成本费用,在计算应纳税所得额时扣除。(责任单位:各市、县政府,省科技厅、省财政厅、省税务局)  (三)加快学科和文化建设。加强计量相关学科、专业以及课程建设,将计量基础知识纳入公民基本科学素质培育体系,在义务教育中增加计量基础知识教育内容,开展计量线上教育资源建设与应用。加强计量文化建设、科普宣传,培育计量文化研究及科普基地,推动计量博物馆、科技展览馆建设和开放。积极培育和弘扬新时代计量精神,选树计量先进典型,增强新时代计量工作者的荣誉感和使命感。(责任单位:省市场监管局、省教育厅、省科技厅、省人力资源社会保障厅)  (四)狠抓工作落实。各市、县政府以及各有关部门、行业、企业要建立落实本实施意见的工作责任制,按照职责分工,对本实施意见实施情况进行监督检查。省市场监管局会同有关部门加强对本实施意见实施情况的跟踪监测,通过第三方评估等形式开展中期评估、总结评估,总结推广典型经验做法,发现实施中存在的问题并研究解决对策,重要情况及时报告省政府。(责任单位:各市、县政府,省市场监管局)  河北省人民政府  2022年4月15日  (此件公开发布)
  • 三部门联合部署“双碳”标准计量工作:加强相关计量仪器研制和应用
    国家发展改革委、市场监管总局、生态环境部日前联合印发《关于进一步强化碳达峰碳中和标准计量体系建设行动方案(2024—2025年)》(以下简称《方案》),对“双碳”标准计量工作作出部署。《方案》提出,到2025年,面向企业、项目、产品的碳排放核算和评价标准体系基本建成,关键领域碳计量技术取得重要突破,重点行业和产品能耗能效技术指标基本达到国际先进水平。《方案》明确了16项重点任务,包括加快企业碳排放核算标准研制、加强产品碳足迹碳标识标准建设、加大项目碳减排标准供给、推动碳减排和碳清除技术标准攻关、提高工业领域能耗标准要求、加快产品能效标准更新升级、加强重点产品和设备循环利用标准研制、扩大绿色产品评价标准供给等8项“双碳”标准重点任务,以及加强碳计量基础能力建设、加强“双碳”相关计量仪器研制和应用、加强计量对碳排放核算的支撑保障、开展共性关键碳计量技术研究、加强重点领域计量技术研究、加强碳计量中心建设、完善“双碳”相关计量技术规范、加强能源计量监督管理等8项“双碳”计量重点任务。下一步,三部门将会同有关部门,认真抓好《方案》贯彻落实,加快健全“双碳”标准计量体系,为加快经济社会发展全面绿色转型、如期实现碳达峰碳中和目标提供有力支撑。国家发展改革委 市场监管总局 生态环境部关于进一步强化碳达峰碳中和标准计量体系建设行动方案(2024—2025年)的通知发改环资〔2024〕1046号各省、自治区、直辖市、新疆生产建设兵团发展改革委、市场监管局(厅、委)、生态环境厅(局):为贯彻落实党中央、国务院关于碳达峰碳中和的重大战略决策,深入实施《中共中央、国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》和《国家标准化发展纲要》《计量发展规划(2021—2035年)》,落实《建立健全碳达峰碳中和标准计量体系实施方案》各项任务部署,充分发挥计量、标准作用,有效支撑我国碳排放双控和碳定价政策体系建设,制定本行动方案。现将有关事项通知如下。&emsp &emsp 一、总体目标&emsp &emsp 按照系统推进、急用先行、开放协同的原则,围绕重点领域研制一批国家标准、采信一批团体标准、突破一批国际标准、启动一批标准化试点。2024年,发布70项碳核算、碳足迹、碳减排、能效能耗、碳捕集利用与封存等国家标准,基本实现重点行业企业碳排放核算标准全覆盖。2025年,面向企业、项目、产品的三位一体碳排放核算和评价标准体系基本形成,重点行业和产品能耗能效技术指标基本达到国际先进水平,建设100家企业和园区碳排放管理标准化试点。&emsp &emsp 按照统筹发展、需求牵引、创新突破的原则,加强碳计量基础能力建设,完善碳计量体系,提升碳计量服务支撑水平。2025年底前,研制20项计量标准和标准物质,开展25项关键计量技术研究,制定50项“双碳”领域国家计量技术规范,关键领域碳计量技术取得重要突破,重点用能和碳排放单位碳计量能力基本具备,碳排放计量器具配备和相关仪器设备检定校准工作稳步推进。&emsp &emsp 二、重点任务&emsp &emsp (一)加快企业碳排放核算标准研制。加快推进电力、煤炭、钢铁、有色、纺织、交通运输、建材、石化、化工、建筑等重点行业企业碳排放核算标准和技术规范的研究及制修订,制定温室气体审定核查、低碳评价等相关配套技术规范,支撑企业碳排放核算工作,有效服务全国碳排放权交易市场建设。制定面向园区的碳排放核算与评价标准。&emsp &emsp (二)加强产品碳足迹碳标识标准建设。发布产品碳足迹量化要求通则国家标准,统一具体产品的碳足迹核算原则、核算方法、数据质量等要求。加快研制新能源汽车、光伏、锂电池等产品碳足迹国家标准,服务外贸出口新优势。开展电子电器、塑料、建材等重点产品碳足迹标准研制。研究制定产品碳标识认证管理办法,研制碳标识相关国家标准。&emsp &emsp (三)加大项目碳减排标准供给。开展能效提升、可再生能源利用、余能利用、甲烷减排与利用等典型项目碳减排量核算标准研制工作。条件成熟时,推动将全国温室气体自愿减排项目方法学纳入国家标准体系,支撑全国温室气体自愿减排交易市场建设和企业环境、社会和公司治理(ESG)信息披露等应用场景。&emsp &emsp (四)推动碳减排和碳清除技术标准攻关。加快氢冶金、原料替代、热泵、光伏利用等关键碳减排技术标准研制,在降碳技术领域采信一批先进的团体标准。制定生态碳汇、碳捕集利用与封存等碳清除技术标准,尽快出台碳捕集利用与封存量化与核查、相关术语等通用标准。抓紧构建二氧化碳捕集、运输、地质封存全链条标准体系。 &emsp &emsp (五)提高工业领域能耗标准要求。修订提高钢铁、炼油、燃煤发电机组、制浆造纸、工业烧碱、稀土冶炼等重点行业单位产品能源消耗限额标准,全面提升能效水平,基本达到国际先进水平。修订完善能源计量、监测、审计等节能配套标准。&emsp &emsp (六)加快产品能效标准更新升级。对标国际先进水平,修订升级工业通用设备、制冷和供暖设备、办公设备、厨房电器、照明器具产品能效标准,扩大能效产品覆盖范围,加快研制电动汽车充电桩、第五代移动通信(5G)基站设备等新型基础设施能效标准,将高压电机、服务器等产品纳入能效标识管理,研究出台数据中心能效标识实施细则。&emsp &emsp (七)加强重点产品和设备循环利用标准研制。制定汽车、电子产品、家用电器等回收拆解标准,研究制定农用机械零部件回收利用相关标准。开展退役光伏设备、风电设备、动力电池回收利用标准研制,加大新能源产品设备的绿色设计标准供给,加快研制再生塑料、再生金属标准。按照《清洁生产评价指标体系通则》要求,研制钢铁、化工、建材等重点行业清洁生产评价系列国家标准。&emsp &emsp (八)扩大绿色产品评价标准供给。修订绿色产品评价通则,增加低碳指标,建立分级评价指标体系。研究制定绿证和绿色电力消费相关标准。在消费品基础上,制定钢管、建材、染料等工业品绿色产品评价国家标准,修订卫生陶瓷、建筑陶瓷、纸和纸制品等绿色产品评价标准。充分利用市场资源,将技术领先、市场成熟度高的团体标准纳入绿色产品评价标准清单。&emsp &emsp (九)加强碳计量基础能力建设。面向完善碳排放统计核算和碳监测的需要,布局建设一批计量标准和标准物质,加快碳达峰碳中和相关量值传递溯源体系建设,建立碳达峰碳中和相关计量基准、计量标准和标准物质名录,持续做好碳相关计量器具的检定校准工作。&emsp &emsp (十)加强“双碳”相关计量仪器研制和应用。加快高精度多组分气体快速分析探测仪、光谱仪等碳核算、碳监测相关计量仪器的研制。组织对国产碳排放在线监测系统(CEMS)开展计量性能测试评价。&emsp &emsp (十一)加强计量对碳排放核算的支撑保障。制定重点排放单位碳计量器具配备和管理规范,推动企业碳排放计量器具配备。优化相关行业温室气体排放核算和报告指南,强化碳核算数据优先来源于计量器具的要求。充分发挥国家能耗在线监测系统作用,鼓励企业利用第五代移动通信(5G)、区块链等技术手段建立能源和碳排放数据采集和分析系统。按照国家温室气体排放因子数据库建设需求,探索建立国家温室气体排放因子计量实测验证平台。&emsp &emsp (十二)开展共性关键碳计量技术研究。开展碳排放在线监测计量不确定度评定方法研究,持续开展基于激光雷达、区域和城市尺度反演等碳排放监测计量技术研究与应用,开展烟气捕集端碳捕集利用与封存关键计量技术研究,为碳排放统计核算、碳排放在线监测、低碳技术研究等提供计量支撑。&emsp &emsp (十三)加强重点领域计量技术研究。推动加强火电、钢铁、水泥、石化、化工、有色等重点行业和领域碳计量技术研究,开展碳排放直测方法与核算法的比对研究、天然气排放因子实测研究等,在火电领域研制烟气排放连续监测系统气体浓度校准装置,不断提升碳排放和碳监测数据准确性和一致性。&emsp &emsp (十四)加强碳计量中心建设。推动国家碳计量中心建设,研究制定《关于加强国家碳计量中心建设的指导意见》,强化国家碳计量中心顶层制度设计和建设任务推进。研究制定碳计量能力建设指导目录,指导计量技术机构和重点排放单位加强碳计量能力建设,不断提升碳计量能力水平。&emsp &emsp (十五)完善“双碳”相关计量技术规范。加强“双碳”计量技术规范制修订,编制重点排放单位碳计量审查规范、固定污染源二氧化碳排放连续监测系统校准、煤化工生产企业碳计量器具配置与管理等计量技术规范。 &emsp &emsp (十六)加强能源计量监督管理。组织各地区对建筑建材、石化化工、能源、钢铁等传统行业以及数据中心、公共机构等重点领域开展能源计量审查,帮助用能单位解决节能减排降碳计量难题,不断提升用能单位能源计量管理水平和能力。&emsp &emsp 三、保障措施&emsp &emsp (一)加强统筹协调。国家发展改革委落实“双碳”有关协调职责,会同有关部门在碳达峰碳中和政策文件制定中强化相关计量、标准要求,推动各项政策要求落地见效。充分发挥国家碳达峰碳中和标准化总体组、全国碳达峰碳中和计量技术委员会及全国碳排放管理标准化技术委员会的作用,各有关部门结合分管领域加强协同联动,各司其职、各负其责,集中推进重点任务落实,有效形成工作合力。&emsp &emsp (二)强化宣贯培训。开展碳核算、碳减排相关计量、标准知识的宣贯培训,增强企业计量意识和能力水平,在企业形成学标准、用标准的氛围。推动重点用能和碳排放单位建立碳排放管理制度,设立用能和碳排放管理岗位以及专门的计量、标准化人员。鼓励企业与相关高校、专业机构合作举办碳达峰碳中和计量、标准方面的专业人才培训班。&emsp &emsp (三)开展先行先试。面向企业和园区开展碳排放管理标准化试点,鼓励企业建立碳排放标准管理体系,助力碳排放“算得出、算得准”,引导企业应用先进减排技术,推动碳排放“减得掉、减得下”,到2025年建设100家试点企业和园区。推动企业加强碳计量体系建设,强化碳计量要求,在山东、浙江等地组织200家以上企业开展碳计量审查试点。组织开展零碳园区计量试点和能源资源计量经验交流。&emsp &emsp (四)加大经费支持。各级财政通过设立专项资金等方式加大对碳计量基础能力建设、基础通用和急用先行标准的支持力度。统筹利用资金渠道,积极引导社会资本投入,支持碳排放统计核算和碳监测关键计量技术研究、仪器设备研发和应用、计量技术规范制定等。&emsp &emsp (五)深化国际合作。持续推进应对气候变化计量、标准领域国际合作,充分发挥我国专家在国际计量和标准化组织中关键作用,不断提升我国在应对气候变化领域中的参与度和贡献度。持续开展国际标准适用性分析,在电动汽车、新型电力系统、生态碳汇等领域提出一批国际标准提案,加强新领域新技术国际合作。国家发展改革委市场监管总局生 态 环 境 部2024年7月14日
  • 全国量具量仪标准化委员会第七次会议召开
    近日,全国量具量仪标准化委员会第七次会议在广西自治区桂林市召开。由河南省计量院长度所黄玉珠、贾晓杰等起草的《水平仪检定器》、《水平仪零位检定器》和《方箱》三项行业标准顺利通过全国量具量仪标准化委员会审查。   水平仪检定器是用于测量小角度的精密仪器,具有准确度高、稳定性好、数据直观、操作方便等特点,逐渐被广大客户认同和使用,但目前国内尚无标准可循。该三项标准制定了科学合理的技术要求和检验方法,为产品的生产、销售、使用提供了科学依据,对规范产品市场竞争,产业结构优化,推动行业发展具有重要意义。  国量具量仪标准化技术委员会SAC/TC132(以下简称:全国量标委)是由国家标准化管理委员会委托中国机械工业联合会领导,国家标准化管理委员会颁发印章,在量具、量仪、数显装置专业领域内,从事全国标准化工作的技术工作组织,负责全国量具、量仪、数显装置专业技术领域的标准化的技术归口工作。
  • 土壤温室气体测量仪可以用在什么地方【恒美智造】
    前言 随着全球气候变化问题的日益严峻,温室气体排放成为关注的焦点。土壤作为地球生态系统的重要组成部分,既是温室气体的源,也是其汇。土壤温室气体测量仪应运而生,成为准确检测土壤温室气体排放、助力应对气候变化挑战的重要工具。 产量链接https://www.instrument.com.cn/netshow/SH104275/C557927.htm 一、准确检测温室气体排放 土壤温室气体测量仪能够实时监测土壤中的二氧化碳、甲烷等温室气体的排放通量,为科研人员提供准确的数据支持,有助于深入了解土壤温室气体的排放规律和机制。 二、指导农业生产与土壤管理 通过测量土壤温室气体排放,农业生产者可以了解土壤的健康状况和肥力水平,从而制定科学的耕作和施肥策略,提高农业生产效率,同时减少温室气体排放。 三、预警环境变化 土壤温室气体排放的异常变化往往预示着环境的变化。测量仪的实时监测功能有助于及时发现环境问题,为应对气候变化和生态保护提供预警信息。 四、推动科研与技术创新 土壤温室气体测量仪的应用不仅提升了科研工作的效率,也推动了相关技术的创新与发展,为应对全球气候变化挑战提供了有力的科技支撑。
  • LAUDA光学接触角测量仪入驻安徽工程大学实验室
    近日,LAUDA Scientific OSA60 光学接触角测量仪入驻安徽工程大学生物与化学工程学院唐海教授课题组。唐海教授主要从事亲水膜的研究,亲水膜因其耐污染等性能,成为当前分离膜研究的热点之一。OSA60光学接触角测量仪能够准确测量亲水膜的接触角并计算表面自由能,为亲水膜的研究增添了一大助力。 OSA60光学接触角测量仪是德国Lauda Scientific品牌中功能较全,性价比较高的仪器,它可以准确可靠测量接触角、表面自由能、和表界面张力等常见的测量,其主要测量性能如下: 测量静态接触角 测量动态接触角 测量液体的表面/界面张力 分析液体表面张力及其组成 在线测量表面/界面张力 计算固体的表面自由能及其组成 计算及分析粘附功 记录吸收材料的吸收过程 OSA60光学接触角测量仪结构简单,占用空间小,性价比高,适用于高校和科研院所中与材料和界面化学相关的实验室,以及石油、化工、日化、电子等工业企业的质量控制部门和政府部门所属的官方质检单位。
  • 关于举办“2021首届国际测试与计量仪器展览会”的通知
    各相关单位和企业:为应对计量数字化转型与量子化变革,推进国家现代先进测量体系构建,助力制造业转型升级,推动能源计量和碳排放计量产业发展,助力企业节能减排,落实“碳达峰、碳中和”目标,打造固定、专业、权威、开放的中国计量行业信息交流平台,促进中国计量行业与仪器仪表产业快速、规范、健康、高质量发展,加强计量行业与制造企业的交流与合作,中国计量科学研究院联合中国节能协会定于2021年10月12日至14日在北京举办“2021首届国际测试与计量仪器展览会”。首届国际测试与计量仪器展览会以“计量数字化转型与智慧测量”为主题,展现数字计量、智慧测量、物联网计量等新型计量(测量)方式和创新成果。展览会同期还将举办多场专业论坛及学术报告会,邀请来自全球的权威计量专家以多种形式参与会议与展览,邀请来自国家级、省级重点研究院所、实验室以及大中企业实验室和研究所、中国计量协会、中国计量测试学会、国防计量院所等各级计量技术机构的管理和技术人员做计量发展报告或学术报告,邀请中国科学院、国家电网、水司及水务集团、燃气集团、石油、化工、钢铁、环境、水利、医疗、工业测量、工业园区、制造企业等终端计量用户参加现场交流。现将有关事项通知如下:一、 活动名称:中文名称:2021首届国际测试与计量仪器展览会英文名称:International Testing and Measuring Instrument Exhibition(简称:ITMIE)二、 主办单位:中国计量科学研究院中国节能协会三、 承办单位:北京国兴时代文化传播有限公司四、 展览时间:2021年10月12日-14日五、 展览地点:中国北京亦创国际会展中心六、 展会主题:计量数字化转型与智慧测量七、 展区分布:展区分布共由计量新仪器新技术展区、自主科学仪器展区、标准物质展区、基标准展及计量科技成果展区、产业计量中心展区、民用四表展区、能源计量展区、计量机构与第三方检测认证机构展区、其他展区。八、 报名参展参会:请各单位与相关企业积极参展参会,即日起尽快通过展会官网或展会官方微信公众号报名参会参展,以便统一安排。展位选择以报名缴费顺序先后为准。组委会秘书处联系方式:中国计量科学研究院电话:010-64524181联系人:闫罡 16601366181(微信同号)中国节能协会电话:010-64525339联系人:秦鹏 13717879957(微信同号)北京国兴时代文化传播有限公司电 话:010-64520440 010-64219148联系人:李泽新 16600068768(微信同号)李 念 16601296181(微信同号)
  • 百欧林发布新款光学接触角测量仪AttensionTheta Flex
    日前,瑞典百欧林全球同步上市了一款新型光学接触角测量仪Theta Flex!Theta Flex支持客户在一个仪器上进行所有光学接触角相关的测量,软件中已经包含所有的测量模式。 得益于模块化设计,所有应用均可通过一台仪器完成,仪器可根据您的需求进行定制。该产品除了具有一流的用户界面、优越的分析精度、实时分析、完全自动化、为每个需求提供灵活性、便捷的数据处理和导出、优化工业使用等突出优点!另外Theta Flex可以搭配3D形貌模块和高压腔使用。Theta Flex可以与独特的3D形貌模块相结合,通过在单次测量中同时测量出样品的接触角和表面粗糙度,将润湿性和粘附性分析提升到一个全新的水平。高压腔设计是为了增强石油采收率的润湿性研究而设计的。优化的集成式活塞腔室和样品端口确保了最佳可用性和通用性。大昌华嘉(DKSH)作为百欧林接触角测量仪/表面张力仪在国内的总代理,负责其中国地区产品、技术的推广销售和服务。如果您想深入了解更多关于接触角测量仪的相关应用,我们将会非常高兴地为您提供更多的相关文献和应用实例。
  • 2024年6月份有377份标准将实施 ——农林牧渔食品及化工占据47%
    2024年6月份有377份标准将实施——农林牧渔食品及化工占据47% 我们通过国家标准信息平台查询到,在2024年6月份将有377项与科学仪器及检测行业的国家标准、行业标准和地方标准将实施,具体数量明细如下:6月份新实施标准一览表在6月份新实施标准中,农林牧渔及食品标准独占27%(有103条将要实施),涉及农业设备、农产品规范、蜂蜜饲料等检测,需要引起我们关注的是“GB/T 43448-2023 蜂蜜中 17- 三十五 烯 含量的测定 气相色谱质谱法 ”和“GB 7300. X -2023 饲料添加剂 系列标准 ”。有16条环境环保标准将实施,涉及气体、水质、土壤及废弃污染物标准,发布了气体取样标准“GB/T 43306-2023 气体分析 采样导则 ”、气体检测标准“GB/T 43362-2023 气体分析 微型热导气相色谱法 ”和水处理剂检测方法“GB/T 43098.2-2023 水处理剂分析方法 第 2 部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法( ICP-MS ) ”。在医药卫生实施标准中,有医学实验室质量控制、分子体外诊断 检验、PCR 仪器 检测等。在冶金矿产实施标准中,涉及多款光谱仪器检测方法,如电感耦合等离子体原子发射光谱法 、原子吸收光谱法 、原子荧光光谱法 、分光光度法 ;除此之外还有滴定法、容量法、重量法、库仑法和X 射线荧光光谱法 等。还有19%的化工塑料标准(73条)也将实施,有气相色谱法 、拉曼光谱法 、原子吸收光谱法 、X 射线荧光光谱法 等大量的科学仪器检测方法。具体2024年6月份主要新实施的标准如下:需要相关标准的,点击链接即可下载收藏↓仪器仪表与计量标准(6个)GB/T 26334-2023 燃气表安装配件 DL/T 1133—2023 钢弦式仪器 测量仪表 DL/T 1046—2023引张线式水平位移计DL/T 1047—2023水管式沉降仪DL/T 2687—2023 柔性测斜仪 GB/T 26794-2023 燃气表用计数器 农林牧渔食品标准(103个)GB/T 21397-2023 棉花收获机 GB/T 19794-2023农业灌溉设备 定量阀 技术要求和试验方法GB/T 24671-2023农业灌溉设备 承压灌溉系统图形符号GB/T 27612.1-2023 农业灌溉设备 喷头 第 1 部分:术语和分类 GB/T 18688-2023农业灌溉设备 灌溉阀的压力损失 试验方法GB/T 27612.3-2023 农业灌溉设备 喷头 第 3 部分:水量分布特性和试验方法 GB/T 8586-2023 探鱼仪工作频率分配及其防止声波干扰技术规范 GB/T 27612.4-2023 农业灌溉设备 喷头 第 4 部分:耐久性试验方法 GB/T 23191-2023 美味牛肝菌 GB/T 43448-2023 蜂蜜中 17- 三十五 烯 含量的测定 气相色谱质谱法 GB/T 20392-2023 棉纤维物理性能试验方法 大容量纤维 测试仪法 GB/T 43418-2023 亚麻纤维组成成分的检测方法 GB/T 10645-2023 电热食品烤炉分类和型号编制方法 GB/T 18690.4-2023 农业灌溉设备 微灌用过滤器 第 4 部分:颗粒介质过滤器 GB 7300.504-2023 饲料添加剂 第 5 部分:微生物 嗜酸乳杆菌 GB 7300.503-2023 饲料添加剂 第 5 部分:微生物 屎肠球菌 GB 7300.502-2023 饲料添加剂 第 5 部分:微生物 植物乳杆菌 LS/T 8014-2023 高标准粮仓建设标准 LS/T 1715-2023 粮食仓储基础代码 LS/T 1234-2023 植物油储存品质判定规则 GH/T 1447-2023 农业科技成果转化信息服务平台建设与运 维技术 规范 GH/T 1446-2023 农业科技成果转化信息服务平台资源共享技术指南 GH/T 1445-2023 桐柏玉叶茶 GH/T 1444-2023 速冻荠菜加工技术规程 GH/T 1443-2023 蛹 虫草粉 GH/T 1442-2023 青梗菜热风 干燥技术 规程 GH/T 1441-2023 冻干蛹虫草生产技术规程 GH/T 1440—2023 黑蒜 GH/T 1439—2023 小茴香 DB22/T 3636-2024 玉米品种 长单 551 DB22/T 3635-2024 番茄晚疫病诊断与防治技术规程 DB22/T 3634-2024 玉米 - 大豆轮作模式下大豆覆秸免耕生产技术规程 DB22/T 3633-2024 直播水稻萌发期耐低温和耐低氧性鉴定评价技术规程 DB22/T 3632-2024 花生耐低温绿色高效生产技术规程 DB5308/T 79—2024 普洱咖啡标准化种植示范园建设指南 DB5308/T 78—2024 咖啡鲜果集中加工厂建设规范 DB63/T 2281-2024 察尔汗水采盐田晒矿工艺 DB63/T 2279-2024 铁棒 锤 栽培技术规程 DB63/T 2278-2024 小叶黑柴胡栽培技术规程 DB63/T 2277-2024 五 脉绿绒 蒿 栽培技术规程 DB63/T 2275-2024 湟水河流域水生植物栽培技术规程 DB63/T 2274-2024 枸杞产业标准体系 DB63/T 2273-2024 森林资源保护发展标准体系 DB63/T 2272-2024 天然林数据库 DB63/T 2271-2024 高山天幕毛虫防治技术规范 DB3505/T 15—2024 中国番鸭(永春白番鸭) DB3505/T 13—2024 铁观音茶叶气候品质等级 DB3505/T 11—2024 晋江紫菜区域公用品牌管理规范 DB3505/T 9—2024 淡水养殖资源价值评估技术规范 DB41/T 2668-2024 玉米南方锈病综合防控技术规程 DB41/T 2663-2024 成熟蜂蜜生产技术规范 DB41/T 2661-2024 黄淮稻麦轮作 区灰飞虱 测报和防控技术规程 DB41/T 2659-2024 羊肚 菌 生产技术规程 DB41/T 2658-2024 药用菊花主要病虫害综合防治技术规程 DB41/T 2655-2024 桃 胚培养及移栽技术规程 DB41/T 2654-2024 苹果炭疽病综合防治技术规程 DB41/T 2653-2024 桃 省力化树形管理技术规程 DB41/T 2652-2024 卫矛造型树培育技术规程 DB41/T 2651-2024 花生 秧 青贮生产技术规程 DB41/T 2643-2024 农田地膜残留调查监测技术规程 DB41/T 2642-2024 规模化养猪场臭气防治技术规范 DB41/T 2641-2024豫西黑猪DB41/T 2640-2024 黄瓜杂交制种技术规程 DB41/T 2639-2024 朝天 椒 三系配套制种技术规程 DB41/T 2636-2024 露地韭菜病虫害绿色防控技术规程 DB41/T 2632-2024 小麦种质资源鉴定技术规程 DB41/T 2631-2024 小麦免(少) 耕沟播生产 技术规程 DB41/T 2630-2024 林地生态养鹅技术规范 DB41/T 2627.7-2024 望春玉兰 第 7 部分:花蕾采收贮藏技术规程 DB41/T 2627.6-2024 望春玉兰 第 6 部分:病虫害防治技术规程 DB41/T 2627.5-2024 望春玉兰 第 5 部分:用材林培育技术规程 DB41/T 2627.4-2024 望春玉兰 第 4 部分:药用林栽培技术规程 DB41/T 2627.3-2024 望春玉兰 第 3 部分:园林绿化苗木培育技术规程 DB41/T 2627.2-2024 望春玉兰 第 2 部分:苗木繁育技术规程 DB41/T 2627.1-2024 望春玉兰 第 1 部分:良种选育技术规程 DB41/T 2626-2024 主干树形苹果栽培技术规程 DB41/T 2623-2024 高标准农田气象保障标准体系建设指南 DB41/T 2622-2024 高标准农田示范区气象保障能力建设规范 DB53/T 1236-2024 大球盖菇栽培技术规程 DB53/T 1235-2024 夏播马铃薯栽培技术规程 DB53/T 1234-2024 草莓杂交育种技术规程 DB53/T 1233-2024 芦笋栽培技术规程 DB53/T 1232-2024 罗望子种质资源描述规范 DB53/T 1231-2024 鲟鱼养殖技术规程 DB53/T 1230-2024 烟田蛴螬类地下害虫防控技术规程 DB53/T 1229-2025 暗褐脉柄牛肝菌菌种生产技术规程 DB53/T 1228-2024 番茄潜叶蛾防控技术规程 DB53/T 1227-2024 番茄潜叶蛾监测调查技术规程 DB53/T 1226-2024 马铃薯块茎蛾防控技术规程 DB53/T 1225-2024 马铃薯块茎蛾监测调查技术规程 DB31/T 1039-2024 主要花坛花卉质量等级 DB31/T 348-2024 水产品池塘养殖通用技术规范 DB31/T 1463-2024 蟠桃冷链物流技术规程 DB 5103/T 42-2023 油茶低效林改造技术规程 DB36/T 910-2023 棉花板地精量播种种植技术规程 DB36/T 1909-2023 双季鲜食玉米复种下肥田萝卜栽培技术规程 DB36/T 1908-2023 番茄大棚春提早栽培技术规程 DB36/T 1907-2023 双季稻 “ 两减 一 抗 ” 栽培技术规程 DB36/T 1906-2023 丝瓜设施越夏栽培技术规程 DB36/T 1905-2023 大叶蕹菜良种繁育及早春栽培技术规程 DB36/T 1895-2023 食品生产企业体系检查工作规范 DB36/T 1894-2023 食品小作坊集中加工区建设管理规范 DB36/T 1891-2023 预制 菜冷链运输 配送管理规范 环境环保标准(16个)GB/T 43362-2023 气体分析 微型热导气相色谱法 GB/T 43361-2023 气体分析 道路车辆用质子交换膜燃料电池氢燃料分析方法的确认 GB/T 43098.2-2023 水处理 剂分析 方法 第 2 部分:砷、汞、镉、铬、铅、镍、铜含量的测定 电感耦合等离子体质谱法( ICP-MS ) GB/T 43359-2023 印染废水膜法集成装备 GB/T 28924-2023 钢铁企业 能效指数 计算导则 GB/T 43306-2023 气体分析 采样导则 GB/T 43305-2023 废弃化学品相容性试验规程 DB41/T 2666-2024 工业集聚区地下水环境监测技术规范 DB41/T 2665-2024 大气 挥发性有机物走航自动 监测技术规范 DB41/T 2664-2024 可渗透反应墙地下水监测技术规范 DB41/T 2644-2024 黑膜沼气废水处理工程运行与维护技术规程 DB41/T 2629-2024 污染场地地下水修复技术可行性评估规范 DB41/T 2628-2024 集体土地定级与基准地价评估技术规范 DB41/ 2575-2024 水产养殖尾水污染物排放标准 DB32/T 4630-2023 分散式污水 MBR 处理技术规程 DB63/T 2276-2024 建设项目占用湿地生态影响评价技术规范 医药卫生标准(19个)GB/T 43312-2023 医疗器械用钢丝绳 GB/T 18639-2023 狂犬病诊断技术 GB/T 43279.3-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 3 部分:分离血浆循环游离 DNA GB/Z 43280-2023 医学实验室 测量不确定度评定指南 GB/T 43279.2-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 2 部分:分离基因组 DNA GB/T 43279.1-2023 分子体外诊断检验 静脉全血检验前过程的规范 第 1 部分:分离细胞 RNA GB/T 43278-2023 医学实验室 风险管理在医学实验室的应用 GB/T 43449-2023 法庭科学 毒物分析实验室质量控制规范 GB/T 19267.1-2023 法庭科学 微量物证的理化检验 第 1 部分:红外吸收光谱法 GB/T 20405.1-2023 失禁者用尿液吸收剂 聚丙烯酸酯高吸水性粉末 第 1 部分: pH 值的测定方法 WS/T 828—2023 妊娠期糖尿病妇女体重增长推荐 值标准 YY/T 1818-2022 牙科学 口腔数字印模仪 DB41/T 2656-2024 医疗器械生产企业产品注册自检体系要求 DB36/T 1904-2023 实验动物 支原体荧光定量 PCR 检测方法 DB36/T 1903-2023 实验动物 小鼠肝炎病毒荧光定量 PCR 检测方法 DB36/T 1902-2023 实验动物 嗜肺巴斯 德杆菌荧光定量 PCR 检测方法 GB/T 11748-2023 激光治疗设备 二氧化碳激光治疗机 GB/T 12257-2023 激光治疗设备 氦氖激光治疗机 DB41/T 2657-2024 欧美杨细菌性溃疡病综合防治技术规程 石油天然气标准(3个)GB/T 29021-2023 石油天然气钻采设备 游梁式抽油机 GB/T 29549.1-2023 海上石油固定平台模块钻机 第 1 部分:设计 GB/T 43303-2023 石油天然气钻采设备 抽油杆 冶金矿产标准(51个)GB/T 43349-2023 石灰质材料 中和值的测定 滴定法 GB/T 43321-2023 铜及铜合金钎焊推荐工艺规范 GB/T 43320-2023 焊缝无损检测 超声检测 薄壁钢构件自动相控阵技术的应用 GB/T 25715-2023 离心铸造球墨铸铁 管用管模 GB/T 7731.17-2023 钨铁 钴、镍、铝含量的测定 电感耦合等离子体原子发射光谱法 GB/T 43311-2023 球墨铸铁管设计方法 GB/T 3653.3-2023 硼铁 硅含量的测定 高氯酸脱水重量法 GB/T 3654.8-2023 铌铁 钛含量的测定 变色酸光度法和二安替比林甲烷光度法 GB/T 5686.5-2023 锰铁、锰硅合金、氮化锰铁和金属锰 碳含量的测定 红外线吸收法、气体容量法、重量法和库仑法 GB/T 21837-2023 铁磁性钢丝绳电磁检测方法 GB/T 28417-2023 碳素轴承钢 GB/T 18115.6-2023 稀土金属及其氧化物中稀土杂质化学分析方法 第 6 部分: 铕 中 镧 、 铈 、 镨 、钕、钐、 钆 、 铽 、 镝 、 钬 、 铒 、 铥 、 镱 、 镥 和 钇 量的测定 GB/T 6150.1-2023 钨 精矿化学分析方法 第 1 部分:三氧化钨含量的测定 钨酸铵灼烧重量法 GB/T 2516-2023普通螺纹 极限偏差GB/T 9460-2023 铜及铜合金焊丝 GB/T 5686.9-2023 锰铁、锰硅合金、氮化锰铁和金属锰 锰、硅、磷和铁含量的测定 波长色散 X 射线荧光光谱法(熔铸玻璃片法) GB/T 43412-2023 金属薄板电阻点焊推荐工艺规范 GB/T 43411-2023 电子束选区 熔化增材制造 机床 通用技术条件 GB/T 16457.2-2023 金刚石圆锯片基体 第 2 部分:用于烧结锯片 GB/T 43432.3-2023 金属材料 巴氏硬度试验 第 3 部分:标准硬度块的标定 GB/T 43432.2-2023 金属材料 巴氏硬度试验 第 2 部分:硬度计的检验与校准 GB/T 3260.11-2023 锡化学分析方法 第 11 部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍和 钴含量 的测定 电感耦合等离子体原子发射光谱法 GB/T 42513.2-2023 镍合金化学分析方法 第 2 部分:磷含量的测定 钼 蓝分光光度法 GB/T 42513.4-2023镍合金化学分析方法 第4部分:硅含量的测定 一氧化二氮-火焰原子吸收光谱法和钼蓝分光光度法GB/T 42513.3-2023镍合金化学分析方法 第3部分:铝含量的测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法GB/T 42513.5-2023镍合金化学分析方法 第5部分:钒含量测定 一氧化二氮-火焰原子吸收光谱法和电感耦合等离子体原子发射光谱法GB/T 4437.1-2023 铝及铝合金热挤压管 第 1 部分:无缝圆管 GB/T 3195-2023 铝及铝合金拉(轧)制圆线材 GB/T 32182-2023 轨道交通用铝及铝合金板材 GB/T 4324.2-2023 钨 化学分析方法 第 2 部分:铋和 砷含量 的测定 GB/T 26029-2023 镍钴锰三元素复合氧化物 GB/T 2054-2023 镍及镍合金板 GB/T 43360-2023 增材制造 用 锆及锆合 金粉 GB/T 2882-2023 镍及镍合金管 GB/T 3310-2023 铜及铜合金棒材超声检测方法 GB/T 6150.3-2023 钨 精矿化学分析方法 第 3 部分:磷含量的测定 磷 钼 黄分光光度法和电感耦合等离子体原子发射光谱法 GB/T 43358-2023 稀土矿及稀土产品 总 α 、总 β 放射性的测定 厚源法 GB/T 23947.3-2023 无机化工产品中砷测定的通用方法 第 3 部分:原子荧光光谱法 GB/T 43356-2023 钢筋腐蚀盐溶液周期浸润试验方法 GB/T 43354-2023 铜合金弹性带材平面弯曲疲劳试验方法 GB/T 13296-2023 锅炉、热交换器用不锈钢无缝钢管 GB/T 3286.12-2023 石灰石及白云石化学分析方法 第 12 部分:氧化钾和氧化钠含量的测定 火焰原子吸收光谱法 GB 175-2023 通用硅酸盐水泥 GB 25323-2023 有色重金属冶炼企业单位产品能源消耗限额 GB 21351-2023 变形铝及铝合金单位产品能源消耗限额 GB 21350-2023 铜及铜合金加工 材单位 产品能源消耗限额 GB/T 42536-2023 车用高压储氢气瓶组合阀门 GB/T 9816.1-2023 热熔断体 第 1 部分:要求和应用导则 GB/T 26330-2023 银、银合金 / 铜、铜合金复合带材 GB/T 43302-2023 增材制造 用钛及 钛合金丝材 GB/T 43301-2023 钼 及 钼合金管靶 化工塑料标准(73个)GB/T 43289-2023 塑料 实验室条件下测定暴露于海洋环境基质中塑料材料分解率和崩解程度的试验方法 GB/T 43288-2023 塑料 农业和园艺地膜用土壤生物降解材料 生物降解性能、生态毒性和成分控制的要求和试验方法 GB/T 43287-2023 塑料 在实际野外条件海洋环境中塑料材料崩解度的测定 GB/T 43313-2023 碳化硅抛光片表面质量和微管密度的测试 共焦点微分干涉法 GB/T 43309-2023 玻璃纤维及原料化学元素的测定 X 射线荧光光谱法 GB/T 43308-2023 玻璃纤维增强热塑性单向 预浸料 GB/T 43310-2023 玻璃纤维及原料化学元素的测定 电感耦合等离子体发射光谱法( ICP-OES ) GB/T 41312.2-2023 化工用设备渗透性检测方法 第 2 部分:纤维增强热固性塑料设备 GB/T 13465.12-2023 不透性石墨材料试验方法 第 12 部分:导热系数 GB/T 13871.3-2023 密封元件为弹性体材料的旋转轴唇形密封圈 第 3 部分:贮存、搬运和安装 GB/T 14795-2023 天然橡胶 术语 GB/T 3510-2023 未硫化橡胶 塑性的测定 快速塑性计法 GB/T 4202-2023 玻璃纤维产品代号 GB/T 23986.2-2023 色漆和清漆 挥发性有机化合物( VOC )和 / 或半挥发性有机化合物( SVOC )含量的测定 第 2 部分:气相色谱法 GB/T 23948-2023 无机化工产品 水不溶物测定通用方法 GB/T 7746-2023 工业无水氟化氢 GB/T 3392-2023 工业用丙烯中烃类杂质的测定 气相色谱法 GB/T 3394-2023 工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定 气相色谱法 GB/T 17529.5-2023 工业用 丙烯酸及酯 第 5 部分:工业用丙烯酸 2- 乙 基己酯 GB/T 17529.2-2023 工业用 丙烯酸及酯 第 2 部分:工业用丙烯酸甲酯 GB/T 17529.3-2023 工业用 丙烯酸及酯 第 3 部分:工业用丙烯酸乙酯 GB/T 17529.1-2023 工业用 丙烯酸及酯 第 1 部分:工业用丙烯酸 GB/T 17529.4-2023 工业用 丙烯酸及酯 第 4 部分:工业用丙烯酸正丁酯 GB/T 29419-2023 塑木复合材料 铺板、护栏和围栏体系性能 GB/T 29418-2023 塑木复合材料 挤出型材性能测试方法 GB/T 1964-2023 多孔陶瓷 室温压缩强度试验方法 GB/T 43341-2023 纳米技术 石墨烯的缺陷浓度测量 拉曼光谱法 GB/T 43314-2023 硅橡胶 苯基和乙烯基含量的测定 核磁共振氢谱法 GB/T 43272-2023 唑 草酮原药 GB/T 43274-2023 无机土壤调理剂 总钙和镁含量的测定 GB/T 43273-2023 农药冻融稳定性测定方法 GB/T 22620-2023 联苯菊酯乳油 GB/T 22619-2023 联苯菊酯原药 GB/T 23554-2023 乙烯利可溶液剂 GB/T 24750-2023 乙烯利原药 GB/T 29381-2023 戊 唑 醇悬浮剂 GB/T 22176-2023 二甲戊 灵乳油 GB/T 30000.31-2023 化学品分类和标签规范 第 31 部分:化学品作业场所警示性标志 GB/T 43282.1-2023 塑料 暴露于海水中塑料材料需氧生物分解的测定 第 1 部分:采用分析释放二氧化碳的方法 GB/T 43251-2023 纳米技术 小尺寸纳米结构薄膜拉伸性能测定方法 GB/T 17530.2-2023 工业 丙烯酸及酯的 试验方法 第 2 部分:工业用丙烯酸酯有机杂质及纯度的测定 气相色谱法 GB/T 43282.2-2023 塑料 暴露于海水中塑料材料需氧生物分解的测定 第 2 部分:采用测定密闭呼吸计内需氧量的方法 GB/T 43363-2023 废弃化学品中铜、锌、镉、铅、铬等 12 种元素形态分布的测定 连续提取法 GB/T 43316.6-2023 塑料 耐环境应力开裂( ESC )的测定 第 6 部分 : 慢应变速率法 GB/T 43316.5-2023 塑料 耐环境应力开裂( ESC )的测定 第 5 部分 : 恒定拉伸变形法 GB/T 43316.4-2023 塑料 耐环境应力开裂( ESC )的测定 第 4 部分 : 球压或 针压法 GB/T 43316.3-2023 塑料 耐环境应力开裂( ESC )的测定 第 3 部分 : 弯曲法 GB/T 42918.2-2023 塑料 模塑和挤出用热塑性聚氨酯 第 2 部分:试样制备和性能测定 GB/T 43307-2023 精细陶瓷纤维 单丝室温拉伸性能的测定 GB/T 43296-2023 精细陶瓷室温弯曲疲劳性能试验方法 GB/T 43297-2023塑料 聚合物光老化性能评估方法 傅里叶红外光谱和紫外/可见光谱法GB/T 41312.3-2023 化工用设备渗透性检测方法 第 3 部分:塑料及其衬里设备 GB/T 1965-2023 多孔陶瓷 室温弯曲强度试验方法 GB/T 21461.1-2023 塑料 超高分子量聚乙烯( PE-UHMW )模塑和挤出材料 第 1 部分:命名系统和分类基础 GB/T 13871.4-2023 密封元件为弹性体材料的旋转轴唇形密封圈 第 4 部分:性能试验程序 GB/T 21461.2-2023 塑料 超高分子量聚乙烯( PE-UHMW )模塑和挤出材料 第 2 部分:试样制备和性能测定 GB/T 43450-2023 化学品 急性眼刺激体外细胞试验 TRPV1 活性检测法 GB/T 21617-2023 危险品 固体氧化性试验方法 GB/T 43355-2023 塑料和其他无孔材料表面抗病毒活性的测定 GB/T 43316.2-2023 塑料 耐环境应力开裂( ESC )的测定 第 2 部分 : 恒定拉伸负荷法 GB/T 15231-2023 玻璃纤维增强水泥性能试验方法 GB/T 3519-2023 微晶石墨 GB/T 31402-2023 塑料和其他无孔材料表面抗菌活性的测定 GB/T 43316.1-2023 塑料 耐环境应力开裂( ESC )的测定 第 1 部分 : 通则 GB/T 24692-2023 表面活性剂 家庭机洗餐具用洗涤剂 性能比较试验导则 GB/T 42474.6-2023 爆炸危险化学品汽车运输安全监控系统 第 6 部分:通信中心与监控客户端 间数据 接口 GB/T 42474.4-2023 爆炸危险化学品汽车运输安全监控系统 第 4 部分:监控客户端 GB/T 42474.1-2023 爆炸危险化学品汽车运输安全监控系统 第 1 部分:通用技术要求 GB/T 42474.5-2023 爆炸危险化学品汽车运输安全监控系统 第 5 部分:车载装置与通信中心间数据接口 GB/T 42474.2-2023 爆炸危险化学品汽车运输安全监控系统 第 2 部分:车载装置 GB/T 42474.3-2023 爆炸危险化学品汽车运输安全监控系统 第 3 部分:车载装置安装 GB/T 43300-2023 陶瓷平板膜 纯水通量试验方法 GB/T 4893.4-2023 家具表面漆膜理化性能试验 第 4 部分:附着力交叉切割测定法 轻工纺织标准(1个)GB/T 24168-2023 纺织染整助剂产品中邻苯二甲酸酯的测定 电力半导体标准(36个)DL/T 5869—2023 水电工程安全监测仪器封存与报废技术规程 DL/T 2700—2023 水电站泄水建筑物水力安全评价导则 DL/T 2702—2023 水电站大坝运行安全管理导则 DL/T 2701—2023 水电站水工建筑物水下检查技术规程 DL/T 2713—2023电力用便携式电动绞磨GB/T 43318-2023 燃气轮机联合循环电站 热力性能试验 GB/T 5008.3-2023 起动用铅酸蓄电池 第 3 部分:重载车辆产品品种规格和端子尺寸 GB/T 19520.22-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-110 部分:智慧房屋用住宅机架和机柜 GB/T 5008.2-2023 起动用铅酸蓄电池 第 2 部分:产品品种规格和端子尺寸、标记 GB/T 19520.21-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-109 部分:嵌入式计算设备的机箱尺寸 GB/T 19520.20-2023 电气和电子设备机械结构 482.6 mm ( 19 in )系列机械结构尺寸 第 3-108 部分: R 型插箱 和插件的尺寸 GB/T 43346-2023 起停用铅酸蓄电池 技术条件 GB/T 5008.1-2023 起动用铅酸蓄电池 第 1 部分:技术条件和试验方法 GB/T 30547-2023 高压直流输电系统滤波器用电阻器 GB/T 43344-2023 继电器用磁性材料(铁和钢)规范 GB/T 43342-2023 带有远程操作功能的家用和类似用途电器自动控制器的安全要求 GB/T 43343-2023 高压绝缘电阻表 GB/T 43334-2023 独立型微电网能量管理系统技术要求 GB/T 21218-2023电气用未使用过的硅绝缘液体GB/T 12940-2023 银 石墨电 触头技术条件 GB/T 30553-2023 基于电压源换流器的高压直流输电 GB/Z 6113.404-2023 无线电骚扰和抗扰度测量设备和测量方法规范 第 4-4 部分:不确定度、统计学和限值建模 投诉的统计和保护无线电业务的限值计算模型 GB/Z 40104.103-2023 太阳能光热发电站 第 1-3 部分:通用 气象数据集数据格式 GB/T 17626.11-2023 电磁兼容 试验和测量技术 第 11 部分: 对每相输入 电流小于或等于 16 A 设备的电压暂降、短时中断和电压变化抗扰度试验 GB/Z 17626.33-2023 电磁兼容 试验和测量技术 第 33 部分:高功率瞬态参数测量方法 GB/T 42731-2023 微电网技术要求 NB/T 11404-2023 火力发电工程执行概算编制导则 DL/T 5043-2023 换流站初步设计内容深度规定 NB/T 11403-2023 海上柔性直流换流站设计规程 NB/T 11402-2023 火力发电厂安全设施设计专篇编制导则 NB/T 11401-2023 热电厂储热系统设计规范 NB/T 11400-2023 电力数据中心设计规程 NB/T 11399-2023电源规划研究内容深度规定DL/T 5580.3-2023 燃煤耦合生物质发电生物质能电量计算 第 3 部分:农林废弃残余物蒸汽耦合 GB/T 43266-2023 永磁体磁偏角的测量方法 GB/T 43264-2023 永磁体表面磁场分布测试方法 能源标准(12个)NB/T 11470—2023 采煤工作面瓦斯抽采顶板高位定向长钻孔技术规范 NB/T 11469—2023 可解吸瓦斯含量测定装置 NB/T 11468—2023 水力驱动机械扩孔增 透技术 要求 NB/T 11467—2023 地面钻井 扩孔增抽卸压 瓦斯技术规范 NB/T 11466—2023 采动区 地面瓦斯抽采直井施工技术规范 NB/T 11465—2023 煤矿 采动区 地面 L 型顶板水平井抽采瓦斯技术方法 DB63/T 2282-2024 煤制甲醇二氧化碳尾气生产纯碱技术规程 GB/T 15558.5-2023 燃气用埋地聚乙烯( PE )管道系统 第 5 部分:系统适用性 GB/T 15558.3-2023 燃气用埋地聚乙烯( PE )管道系统 第 3 部分:管件 GB/T 15558.2-2023 燃气用埋地聚乙烯( PE )管道系统 第 2 部分:管材 GB/T 15558.4-2023 燃气用埋地聚乙烯( PE )管道系统 第 4 部分:阀门 GB/T 15558.1-2023 燃气用埋地聚乙烯( PE )管道系统 第 1 部分:总则 机械车辆标准(54个)GB/T 43404-2023 轻型汽车道路负载 底盘 测功机再现 GB/T 18329.1-2023 滑动轴承 多层金属滑动轴承 第 1 部分:合金厚度 ≥0.5mm 的结合质量超声无损检验 GB/T 43325-2023 铸造机械 铸件清理用切割、磨削和精整设备 安全技术规范 GB/T 43324-2023 箔片轴承 气体动压止推轴承性能 静态承载能力、摩擦力矩、摩擦因数和寿命测试 GB/T 25684.14-2023 土方机械 安全 第 14 部分:小型机具承载机的要求 GB/T 43323-2023 涂附磨具 通用安全要求 GB/T 43322-2023 气焊设备 空气焊 炬 GB/T 43319-2023 铸造机械 熔模和消失模铸造设备 安全技术规范 GB/T 43330.1-2023 船舶压载水处理系统 第 1 部分:要求 GB/T 12538-2023 道路车辆 质心位置的测定 GB/T 43232-2023 紧固件 轴向应力超声测量方法 GB/T 43234-2023 成型模 斜导柱 GB/T 25851.2-2023 流动式起重机 起重机性能的试验测定 第 2 部分:静载荷作用下的结构能力 GB/T 17758-2023 单元式空气调节机 GB/T 14910-2023 滑动轴承 厚壁多层轴承衬背技术要求 GB/T 10901-2023 离心机 性能测试方法 GB/T 10894-2023 分离机械噪声测试方法 GB/T 2484-2023 固结磨具 形状类型、标记和标志 GB/T 25622.1-2023 土方机械 司机手册 第 1 部分:内容和格式 GB/T 783-2023 起重机械 基本参数系列 GB/T 29712-2023 焊缝无损检测 超声检测 验收等级 GB/T 2493-2023 磨具回转强度试验方法 GB/T 29711-2023 焊缝无损检测 超声检测 焊缝内部不连续的特征 GB/T 23538-2023 普通磨料 球磨韧性测定方法 GB/T 11345-2023 焊缝无损检测 超声检测 技术、检测等级和评定 GB/T 25774.2-2023 焊接材料的检验 第 2 部分:钢的单面单道焊和双面单道焊焊接接头力学性能试样的制备 GB/T 15622-2023 液压缸 试验方法 GB/T 26949.7-2023 工业车辆 稳定性验证 第 7 部分:双向和多向运行叉车 GB/T 10827.5-2023 工业车辆 安全要求和验证 第 5 部分:步行式车辆 GB/T 18329.2-2023 滑动轴承 多层金属滑动轴承 第 2 部分:合金厚度 ≥2mm 的结合强度破坏性试验 GB/T 43081-2023道路车辆灯泡和光源 尺寸、光电性能要求GB/T 43254-2023 电动汽车用驱动电机系统功能安全要求及试验方法 GB/T 43248-2023电动汽车和混合动力汽车 无线电骚扰特性 用于保护30MHz以下车外接收机的限值和测量方法GB/T 15548-2023 往复式内燃机驱动的三相同步发电机通用技术条件 GB/T 16826-2023 电液伺服 万能试验机 GB/T 23921-2023 三轮汽车 半轴 GB/T 23930-2023 三轮汽车 转向器 GB/T 9081-2023 机动车燃油加油机 GB/T 43398-2023 乘用车行李移动对乘员伤害的安全要求 GB/T 24966-2023 光栅车辆检测器 GB/Z 41082.2-2023 轮椅车 第 2 部分:按 GB/Z 18029.5 测得的尺寸、质量和操作空间的典型值和推荐限制值 GB/T 43388-2023 家用汽车产品严重安全性能故障判断指南 GB/T 42612-2023 车用压缩氢气塑料内胆碳纤维全缠绕气瓶 GB/T 42610-2023 高压氢气瓶塑料内胆和氢气相容性试验方法 JT/T 1483-2023 公共汽车易燃挥发物监测及报警装置 DB41/T 2634-2024 充电设施信息互联互通规范 DB41/T 2633-2024 充电设施统一编码规则 DB41/T 2646-2024 绝缘起重机小车绝缘部件装配技术要求 DB41/T 2645-2024 起重机用防爆抓斗技术要求 DB36/T 743.1-2023 高速公路机电系统维护技术规范 第 1 部分:通用技术要求 DB36/T 596-2023 道路照明施工安装与验收技术规范 DB41/T 2635-2024 县域示范性公用集中式电动汽车充电站建设规范 GB/T 20914.5-2023 冲模 氮气弹簧 第 5 部分:氮气弹簧安全规范 GB/T 43299-2023机动车玻璃电加热性能试验方法其他标准(3个)DB36/T 1893-2023 检验检测数据资产评估认证指南 DB3505/T 10—2024 检验检测机构样品管理规范 GB/T 22553-2023 利用重复性、再现性和正确度的估计值评定测量不确定度的指南 Get√小技巧:在仪器信息网APP里,可以免费下载上述标准→↓ 扫码到APP免费下载 目前仪器信息网资料库 有近80万篇资料,内容涉及检测标准、物质检测方法/仪器应用、仪器操作/仪器维护维修手册、色谱/质谱/光谱等谱图。资料库每月有20多万人访问,上万人下载资料,诚邀您分享手头上的资源,与人分享于己留香!
  • 中国化工拟14亿美元购世界第七大农用化学品公司
    中国化工集团公司向全球最大基因农业化学品生产商Makhteshim-Agan Industries Ltd.提出收购后者控股权的要约。  Makhteshim公司本周二表示,总部位于北京的中国化工已经同意从Koor Industries Ltd.手中购入Makhteshim公司7%的股权,并且提出购买Makhteshim公司全部流通股的要约,从而使其总的持股比例达到60%。如果当前的汇率计算并将部分员工期权考虑在内,中国化工的报价达到了每股19.98谢克尔,这一价格较Makhteshim公司本周一的收盘价格高出了18%。  按照中国化工的收购报价,Makhteshim公司估值将达到24亿美元。  IBI分析师巴山(Guil Bashan)表示:“这桩交易即将结束,我们认为中国化工的报价将被Makhteshim公司股东接受,原因是中国方面报价的溢价率很高。无论对于Makhteshim公司还是Koor公司而言,这都是一个好消息。” 相关新闻:  另据英国金融时报报道,中国化工集团计划斥资14.4亿美元收购以色列马克西姆-阿甘公司(Makhteshim Agan Industries,简称:MA)的控股权。  这笔交易将是中国迄今为止在农用化学品领域开展的最大宗收购之一。MA是一家领先的农作物保护剂(如杀虫剂)生产商,是世界第七大农用化学品公司,在全球拥有逾3000名员工,主要产能位于以色列和巴西,在西班牙、哥伦比亚和希腊拥有规模较小的工厂。  中国化工此举印证了粮食安全对中国的重要性。9月,中化集团(Sinochem)曾考虑竞购加拿大钾肥(PotashCorp),显示出化肥行业对中国的重要性。中国是钾肥的大宗进口国。  中国化工已经收购了澳大利亚塑料生产商Qenos和法国动物营养添加剂生产商安迪苏(Adisseo)。  中国化工于2004年组建成立,业务遍及140个国家,拥有16万名员工。(凤凰财经)
  • 奥地利安东帕推出新一代 CboxQC测量仪
    在饮料的生产过程或实验室成品测量中,一款理想的用于检查CO2 和O2结果的测量设备是不可或缺的。安东帕依托在此领域多年的经验与优势,推出了新一代CboxQC测量仪。无论是在实验室还是生产现场,它都可以快速、精确且可靠地测量出饮料中二氧化碳和氧气的溶解量,为最终产品提供可靠的质量控制并在产品开发阶段提供高精度的实验室测量。 新款CboxQC测量仪将CO2 和O2测量合为一体,实现快速测量&mdash &mdash 直接从生产线、槽、桶中或在实验室测量。新仪器具有小巧、紧凑、和轻便的外观并符合最大限度的灵活性,是作为一款为啤酒厂和碳酸饮料厂量身定做的创新方案。它不但降低了您的拥有和使用成本,还将大幅提升工作效率。生产现场的精密测量CboxQC集成了CO2及O2测试,并能在生产线上直接测量的现场测试设备,是检查啤酒饮料生产过程中CO2 和O2结果的理想选择。- 仅需90秒即可得到CO2 和 O2的数值- 即使是在严酷的条件下,新型密封设计也能保护好仪器- 便携式测量,电池可支持10小时- 可保存500个测量数据- 交互的用户界面&mdash 便于在任何环境下操作- 可选配RFID接口便于更改方法及样品名称实验室内精密测量CO2 和O2CboxQC也可为实验室提供CO2 及O2 的高精密测量结果,从而实现对成品进行可靠的监控并可用于产品开发过程中的最高精度测量。- 安东帕的专利&mdash 二氧化碳的测量方法并不受其他溶解在饮料中的空气或氮气的影响- 最小样品量仅100mL,可以针对非常小的包装而得到可靠的测量结果- CO2重复性标准偏差最高可达0.005vol- O2传感器的重复标准偏差± 2 ppb- 便捷的TPO含量计算方法- 无需样品前处理 CboxQC无需样品前处理。与安东帕PFD穿刺装置联用后,只需点击&ldquo 开始&rdquo ,样品即被传输到测量腔体内,无CO2 和O2的损失。这意味着测量过程中不会发生CO2 和O2含量的改变,从而保证了结果的可靠性。 不论在生产现场还是在实验室,CboxQC模块都能快速且精确地得到结果而不受操作过程或其他溶解气体的影响。拥有了款CboxQC,无论您在哪里,都能简单、精确地测量数据。关于安东帕中国奥地利安东帕有限公司(ANTON PAAR GMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司,直接提供销售和售后服务,在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品在浓度、密度测量仪器仪表行业占全球市场的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于饮料,石油,化工,商检,质检诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。安东帕的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • “高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动
    2月28日,国家重大科学仪器设备开发专项——“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目启动会,在中国计量科学研究院(以下简称“中国计量院”)召开。会议由国家质检总局科技司主持,科技部条财司副司长吴学梯、国家质检总局科技司副司长王越薇、中国计量院副院长宋淑英等领导及项目监理组、总体组、技术专家委员会、用户委员会和管理办公室等近百人参加了本次启动会。 科技部条财司副司长吴学梯在启动会上讲话  启动会上,科技部条财司副司长吴学梯介绍了国家重大科学仪器设备开发专项的设立背景和目标定位,要求“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目组瞄准产品开发目标,积极推进产业化 更加关注产品的知识产权 按照项目管理办法,落实好法人负责制的各项要求 严格进行项目经费管理,并希望相关项目参与单位加强协作,潜心开发,实现科学仪器设备自主创新。同时他对该项目利用信息化系统的创新管理方式表示肯定,并希望其能够得到进一步推广运用。  项目总体组组长、中国计量院副院长宋淑英对与会领导、专家对中国计量院科技事业发展的关心支持和帮助表示感谢。她指出,“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目是近年来中国计量院在重大仪器方面获得的第3个国家支持项目。作为项目牵头单位,中国计量院将继续做好支持和服务工作,与各项目参与单位团结协作,确保项目顺利实施,为我国摆脱高端测量仪器完全依赖进口的局面作出应有贡献。  项目负责人、中国计量院力学与声学研究所所长张跃研究员就项目背景、总体目标、任务分解、预期成果及进度和经费安排等相关情况进行了汇报。项目办公室汇报了项目实施管理办法 各任务负责人分别汇报了任务的研究内容、考核指标、实施方案、进度及经费安排等。  与会专家在认真听取汇报的基础上,展开热烈讨论,对项目进行点评,并提出实施意见建议。  高端动力装备在装备制造业中占有举足轻重的地位,是各种重大成套技术装备的核心组成部分,例如,风力发电机组、大型舰船推进系统、高速列车动力系统及转向架、航空发动机、高档数控机床等。高端动力装备对国民经济的发展起着突出的作用,同时也代表了我国先进制造业,特别是装备制造业的能力和水平。  而目前,我国大量的扭矩和速度参数测量系统,包括功率、最大扭矩、最高车速、加速度等,尤其是高端测量仪器依赖进口,并无法在国内溯源,严重制约了我国自主动力扭矩和速度测量仪器的可靠计量、研发与应用,从而制约了我国高技术含量、高国际竞争力的核心工业产品的自主研制和生产,开展具有自主知识产权的高端动力装置扭矩和速度测量仪器设备的研制需求迫切。  国家重大科学仪器设备开发专项“高端动力装置扭矩和速度测量仪器设备的研发与应用”项目总体目标为:开展高端动力装置机械功率关键参数扭矩和速度精密测量技术的研究,攻克扭矩标准装置中高精密空气轴承支撑部件的核心技术及双天线雷达测速收发模块的关键技术。研究建立具有自主知识产权的高端动力装置的扭矩测量仪器(20kNm扭矩标准机)、高端动力装置速度测量仪器(双天线雷达测速仪器)和加速度计动态特性校准装置,填补国内空白,达到高端动力装置扭矩测量和速度测量的国际先进水平。  据介绍,项目研制成果将有望为我国高端动力装备扭矩与速度等功率测量建立可靠的计量溯源体系,并将在仪器开发、产业化示范、节能减排等方面起到重要的推动作用。  该项目的组织实施单位为国家质检总局,由中国计量科学研究院牵头,并负责其中4个任务,任务承担单位还包括清华大学、中国船舶重工集团第七〇四研究所、浙江省计量科学研究院、北京化工大学、辽宁省计量科学研究院、湖南省计量科学研究院、苏州苏试试验仪器股份有限公司与长沙普德利生科技有限公司等8家单位。项目起止时间为2012年10月至于2016年9月。主要包括12个任务:20kNm高准确度扭矩标准装置的研发、高准确度大质量参数测量装置的研制、高精度宽量程多普勒雷达测速技术的研究及其测量装置的研制、加速度计动态特性计量技术的研究与校准装置的建立、空气轴承支撑技术的研发、无扰动质量参数自动测量技术的研发、加速度计动态模型及参数辨识的研究、测速测距雷达测速仪在交通领域的应用研究、空气轴承支撑技术在高准确度扭矩标准机及船舶装配质量控制中的应用、安全气囊加速度计校准装置在汽车行业的应用以及双天线雷达测速仪在高铁行业的应用研究等。
  • 盘点|压力测量仪器与技术大全
    压力是工业生产中的重要参数,如高压容器的压力超过额定值时便是不安全的,必须进行测量和控制。在某些工业生产过程中,压力还直接影响产品的质量和生产效率,如生产合成氨时,氮和氢不仅须在一定的压力下合成,而且压力的大小直接影响产量高低。此外,在一定的条件下,测量压力还可间接得出温度、流量和液位等参数。伴随经济、技术的进步,压力测试在实际的生产工作中发挥着至关重要的左右,为生产活动提供了大量有价值的参考信息,使生产和科研活动的质量和效率都得到了实质性的提升。而压力测量仪表是用来测量气体或液体压力的工业自动化仪表,又称压力表或压力计。压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。类别原理仪器种类液柱式根据流体静力学原理,将检测压力转换成液柱高度进行测量U形管压力计、单管压力计、斜管压力汁等弹性式利用各种形式的弹性元件,在被测介质的作用下,使弹性元件受压后产生弹性形变的原理弹簧管压力计、波纹管压力计及膜片式压力计等电测式将压力转换成电信号进行传输及显示电阻式压力计、电容式压力计、压电式压力计和压磁式压力计等负荷式直接按照压力的定义制作。这类压力计误差很小,主要作为基准仪表使用常见的有活塞式压力计、浮球式压力计和钟罩式压力计仪器信息网特盘点各类常见压力检测仪器,以供读者参考。液柱式压力计 液柱式压力计是利用液柱所产生的压力与被测压力平衡,并根据液柱高度来确定被测压力大小的压力计。所用的液体叫封液——水,酒精,水银等. 液柱式压力计结构简单,灵敏度和精确度都高,常用于校正其他类型压力计,应用比较广泛。液柱式压力计按照结构形式可大致分为U形管压力计、单管压力计、斜管压力汁等。U形管压力计是根据流体静力学原理用一定高度的液柱所产生的静压力平衡被测压力的方法来测量正压、差压和负压既真空度的。由于其结构简单、坚固耐用、价格低廉、使用寿命长若无外力破坏几乎可永久使用、读取方便、数据可靠、无需外接电力既无需消耗任何能源。故在工业生产各科研过程中得到非常广泛的应用,广泛用于测量风机和鼓风机的压力、过滤器阻力、风速、炉压、孔压差、气泡水位、液体放大器或液压系统压力等,也可用于燃烧过程中的气比控制和自动阀门控制,以及医疗保健设备中的血压和呼吸压力监测。斜管压力计 在测量微小压差时,由于h值较小,用U形管或单管液柱式压力计测量时的相对误差极大,此时可休用斜管式压力计,斜管式压力计分墙挂式和台式两种。  在许多实验中往往需要同时测量多点的压力,例如压力分布实验。这时就要采用多管式压力计,多管式压力计的工作原理与斜管压力计相同,实际就是多根斜管压力计,由于多管压力计各测压管的内径不可能一样,因此,由毛细现象所造成的各测压管的初读数也不一致,测量前必须读出每根测压管的初读数,并作适当的修正。弹簧管压力计 弹簧管压力计又称波登管压力计。它是一种常见的也是应用最广泛的工程仪表,主要组成部分为一弯成圆弧形的弹簧管,管的横切面为椭圆形,作为测量元件的弹簧管一端固定起来,通过接头与被测介质相连,另一端封闭,为自由端,自由端借连杆与扇形齿轮相连,扇形齿轮又和机心齿轮咬合组成传动放大装置。当被测压的流体引入弹簧管时,弹簧管壁受压力作用而使弹簧管伸张,使自由端移动,其移动距离与压力大小成正比,或者带动指针指示出被测压力数值,适用于对铜合金不起腐蚀作用的气体和液体。波纹管压力计 波纹管压力计的波纹管由金属片折皱成手风琴风箱状,当波纹管轴向受压时,由于伸缩变形产生较大的位移,故一般可在其自由端安装传动机构,带动指针直接读数,从而测量出介质压力。波纹管压力计可广泛应用于石油、化工、矿山、机械、电力及食 品行业,直接测量不结晶体,有腐蚀性的气体、液体的压力。波纹管压力计的特点是低压区灵敏度高,常用于低压测量,但迟滞误差大,压力位移线性度差,精度一般只能达到1.5级,常在其管内安装线性度较好的螺旋弹簧。膜片式压力计 膜片压力计适用于测量无爆炸危险、不结晶、不凝固、有较高粘度,但对铜和铜合金无腐蚀作用的液体、气体或蒸汽的压力。 膜片压力计耐腐蚀性能取决于膜片材料。不锈钢耐腐膜片压力计的导压系统和外壳等均为不锈钢,具有较强的耐腐蚀性能。主要用于化学、石油、纺织工业对气体、液体微小压力的测量,尤其适用于腐蚀性强、粘稠介质(非凝固非结晶)的微小压力测量。 膜片压力计的工作原理是基于弹性元件(测量系统上的膜片)变形。在被测介质的压力作用下,迫使膜片产生相应的弹性变形——位移,借助连杆组经传动机构的传动并予放大,由固定于齿轮上的指针将被测值在度盘上指示出来。压阻式压力计 压阻式压力计是基于单晶硅的压阻效应而制成。采用单晶硅片为弹性元件,在单晶硅膜片上利用集成电路的工艺,在单晶硅的特定方向扩散一组等值电阻,并将电阻接成桥路,单晶硅片置于腔内。当压力发生变化时,单晶硅产生应变,使直接扩散在上面的应变电阻产生与被测压力成正比的变化,再由桥式电路获相应的电压输出信号。 具体来讲,当力作用于硅晶体时,晶体的晶格产生变形,使载流子从一个能谷向另一个能谷散射,引起载流子的迁移率发生变化,扰动了载流子纵向和横向的平均量,从而使硅的电阻率发生变化。这种变化随晶体的取向不同而异,因此硅的压阻效应与晶体的取向有关。硅的压阻效应不同于金属应变计,前者电阻随压力的变化主要取决于电阻率的变化,后者电阻的变化则主要取决于几何尺寸的变化,而且前者的灵敏度比后者大50~100倍 压阻式压力计是电阻式压力计的一种。采用金属电阻应变片也可制成压力计,测量原理以金属的应变效应为主。电容式压力传感器 电容式压力传感器,是一种利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力计。特点是,输入能量低,高动态响应,自然效应小,环境适应性好。 电容式压力传感器一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。压电式压力传感器 压电式压力传感器是基于压电效应的压力传感器。它的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。 这种传感器的特点是体积小、动态特性好、耐高温等。现代测量技术对传感器的性能出越来越高的要求。例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料最适合于研制这种压力传感器。目前比较有效的办法是选择适合高温条件的石英晶体切割方法。而LiNbO3单晶的居里点高达1210℃,是制造高温传感器的理想压电材料。压磁式压力传感器 压磁式压力传感器是利用铁磁材料的压磁效应制成的,即利用其将压力的变化转化成导磁体的导磁率变化并输出电信号。压磁式的优点很多,如输出功率大、信号强、结构简单、牢固可靠、抗干扰性能好、过载能力强、便于制造、经济实用,可用在给定参数的自动控制电路中,但测量精度一般,频响较低。 所谓压磁效应就是在外力作用下,铁磁材料内部发生应变,产生应力,使各磁畴之间的界限发生移动,从而使磁畴磁化强度矢量转动,因而铁磁材料的磁化强度也发生相应的变化,这种由于应力使铁磁材料磁化强度变化的现象,称为压磁效应。 若某一铁磁材料上绕有线圈,在外力的作用下,铁磁材料的导磁率发生变化,则会引起线圈的电感和阻抗变化。当铁磁材料上同时绕有激磁绕组和测量绕组时,导磁率的变化将导致绕组间耦合系数的变化,从而使输出电势发生变化。通过相应的测量电路,就可以根据输出的量值来衡量外力的作用。霍尔式压力计 霍尔式压力计是利用霍尔效应制成的压力测量仪器。当被测压力引入后,弹簧管自由端产生位移,从而带动霍尔片移动,改变了施加在霍尔片上的磁感应强度,依据霍尔效应进而转换成霍尔电势的变化,达到了压力一位移一霍尔电势的转换。 霍尔压力计应垂直安装在机械振动尽可能小的场所,且倾斜度小于3°。当介质易结晶或黏度较大时,应加装隔离器。通常情况下,以使用在测量上限值1/2左右为宜,且瞬间超负荷应不大于测量上限的二倍。由于霍尔片对温度变化比较敏感,当使用环境温度偏离仪表规定的使用温度时要考虑温度附加误差,采取恒温措施(或温度补偿措施)。此外还应保证直流稳压电源具有恒流特性,以保证电流的恒定。活塞式压力计 活塞式压力计又称为静重式压力计,是利用流体静力平衡原理及帕斯卡定律工作的的一种高准确度、高复现性和高可信度的标准压力计量仪器。 流体静力平衡是通过作用在活塞系统的力值与传压介质产生的反作用力相平衡实现的。活塞系统由活塞和缸体(活塞筒)组成,二者形成极好的动密封配合。活塞的面积(有效面积)是已知的,当已知的力值作用在活塞一端时,活塞另一端的传压介质会产生与已知力值大小相等方向相反的力与该力相平衡。由此,可以通过作用力值和活塞的有效面积计算得到系统内传压介质的压力。在实际应用中,力值通常由砝码的质量乘以使用地点的重力加速度得到。 活塞式压力计也常简称活塞压力计或压力计,也有称之为压力天平,主要用于计量室、实验室以及生产或科学实验环节作为压力基准器使用,也有将活塞式压力计直接应用于高可靠性监测环节对当地其它仪表的表决监测。浮球式压力计 浮球式压力计是以压缩空气或氮气作为压力源,以精密浮球处于工作状态时的球体下部的压力作用面积为浮球有效面积的一种气动负荷式压力计。 压缩空气或氮气通过流量调节器进入球体的下部,并通过球体和喷嘴之间的缝隙排入大气。在球体下部形成的压力将球体连同砝码向上托起。当排除气体流量等于来自调节器的流量时,系统处于平衡状态。这时,球体将浮起一定高度,球体下部的压力作用面积(即浮球的有效面积)也就一定。由于球体下部的压力通过压力稳定器后作为输出压力,因此输出压力将与砝码负荷成比例。钟罩式压力计 钟罩式压力计的作用原理,是直接从压强定义出发,用一台天平对压力在液封受力器上 的垂直作用力F进行测定。这个受力器是一只几何形状有一定要求的钟罩,根据对钟罩几何 尺寸的精密测量和理论分析,求出其受力有效面积S后,待测压强p可由公示p=F/S求出。 因为钟罩式压力计有独特的结构原理,并具有、足够高的精度,这就可以通过与其他基准压力仪器比对,发现未知的系统误差。同时,钟罩式压力计在测量压强差时,其单端静压强可以根据需要调整,直至单端压强为零,即可以测量绝对压强。另外,该仪器还具有操作简单、受外界干扰小等优点。在高新科技快速发展的现今,静态的压力测量方法已获得了较大的优化,成为了各领域中常用的测量体系,并逐渐朝着动态的压力校准趋势发展。由此,相关技术人员针对压力计量检测方法的进步展开了深入的探究。简而言之,压力计量检测的未来趋势表现在测试精度等级、测试响应速率、测试可靠性与智能化水平这几个方面的提高。比如,在活塞式仪表测试中融进了智能加码与操作部位激光监测方法,如此不仅提升了检测效率,并且提高了测试的精准性,同时为绝压式仪表与活塞式仪表智能测试体系的进步打下了良好的基础。针对数字式仪表及压力变送器和压力传感器等设备的量传任务有了精良的全智能压力控制其能够用作量传标准,利用1台控制器配置若干个压力模块能够操作许多量程范围,随意确定测试点的高精度检测任务,而且能够选用气介质来工作,如此防止了采用液体介质在检测压力时引起的诸多问题,大幅度提升了数字式仪器的测试效率与智能化程度。
  • 海大学子发明测量仪成本不到35元 专利已获授权
    设计者蔡维入围&ldquo 全国大学生年度人物&rdquo 评选  蔡维率领的海大团队设计的便携式橡胶树皮厚度电子测量仪  从小对发明创造感兴趣的蔡维,在海南大学求学期间,参加了十几项竞赛,其团队作品《便携式橡胶树皮厚度电子测量仪的研制》曾获&ldquo 挑战杯&rdquo 全国大学生课外学术科技作品竞赛海南省第一名。近日,蔡维入围第九届全国大学生年度人物评选。蔡维(图片由本人提供)  老师眼中最勤奋的学生别人午休时他在图书馆  2010年,蔡维被海南大学机电学院录取。在辅导员何映敏老师眼中,蔡维是最勤奋的学生之一。每天夜里十点半,很多教学楼开始熄灯,别的同学收拾课本回宿舍,蔡维却奔向另一幢熄灯较晚的教学楼,为的是能多看一会儿书。  &ldquo 我要成功,必须花更多的时间学习,那就只有牺牲睡眠时间了。&rdquo 蔡维说,各种机器的工作原理,对他有着致命的吸引力。大二整个学期的午休,他都是在图书馆度过的。平时他一般是在凌晨一点睡觉。为交论文或参加科研比赛,更是到凌晨三四点才睡。  上大学期间,蔡维带着同学们先后参加过第七届全国大学生信息技术应用水平大赛等十余项国内的科技大赛,获得十余个奖项。被同学们打趣为&ldquo 比赛狂人&rdquo 。而在众多比赛中,能在&ldquo 挑战杯&rdquo 中夺得头筹是令他最感自豪的。&ldquo 挑战杯&rdquo 全国大学生课外学术科技作品竞赛被誉为中国大学生科技的&ldquo 奥林匹克&rdquo 盛会。蔡维率领的海大团队去年参加第十三届比赛,以作品《便携式橡胶树皮厚度电子测量仪的研制》夺得海南省第一名。蔡维本人也因此被海南大学评选为&ldquo 最具创新精神和实践能力大学生&rdquo 。  买不到零件就亲手制作申请专利已获授权  海南是我国最大的天然橡胶生产基地,割胶是一项极需要技术和经验的工作。此外,橡胶树皮厚度不仅能够预测病虫危害、林木生长和遗传变异,还能预测橡胶产胶量,是一个极其重要的参数。目前国内对于树皮厚度的测量多采用凿取树皮,用卡尺直接测量的方法,这样随机性误差大、效率低,而据蔡维所知,由瑞典研发的唯一一款在国内销售的&ldquo 机械式&rdquo 树皮厚度测量器价格昂贵,读数不便。  为解决这个难题,蔡维和同学组成团队,研制了这款成本低、精密度高、稳定性好、效率高的电子式树皮厚度测量仪。这款仪器能够帮助农民更好地掌握下刀厚度,保证割出胶水的同时不割伤橡胶树,既能提升农民工作效率,又能降低对树木的损伤,从而达到提高农民收入的目的,属国内首创。与手工测量相比,效率提高了17-19倍,精确度方面也比瑞典的仪器提高了10倍,在价格上,瑞典的仪器要2000多元,而他的测量仪成本还不到35元。  回顾发明的过程,蔡维说,当时面临的最大难题是海大实验室的设备无法对特殊零件进行精确加工,为此他和队友跑遍了海口市大大小小的五金店、加工厂,却连一个合适的弹簧也没有买到。最终,他们在网上找到了弹簧批发商,但每个特殊定制的弹簧都要价不菲。蔡维不甘心,他决心自己动手亲自做。他买来了钢丝和简单器具,每日在闷热的车间里手工制作需要的零部件。功夫不负有心人,其实用新型专利《一种快速高精度高度检测仪》已获得授权。那些日以继夜为理想奋斗的时光,成了蔡维大学最美好的记忆。  目前,蔡维已经身处重庆大学的科研室,提前接触研究生的工作,研究环保与节能领域的课题。
  • 如何检测称量仪器的超差与不确定度?
    天平称量的一般要求,包括超差的结果及其影响、称量对流程质量的影响、称量不确定度和最小称量值、安全因子、称量仪器的日常测试(频率、砝码、最小称量值评估、自动校正等)等要求 1. 介绍 在制药实验室中,称量仅是药物开发和质量控制的整个分析链中的一个步骤;但它却对最终结果的整体质量和完整性有着重要影响。此外在生产中,称量对获得批次的统一性和一致性(例如,在分装或配方过程中)具有决定性作用。在食品行业,准确的称量过程对该行业的两个最严峻的挑战具有重要作用:提高公众健康和消费者安全,以及提高生产力和竞争力。其它行业(例如化工、香料或汽车工业)也普遍存在相同或类似的问题,此外,检测实验室以及研发外包和代加工的企业也出现此类问题。在全球各地,准确称量对确保始终符合预设定的过程要求并避免频繁出现不合格结果 (OOS) 而言至关重要。 2. 超差结果及其影响 多年来,制药行业一直深受不合格结果的困扰,自 1993 年 Barr Labs 法院裁决后尤为严重。在该案例中,法院判决 Barr Labs 一方获胜,该实验室坚持认为 OOS 结果不一定会导致批次不合格,应查明是否存在诸如实验室错误等其他原因。2006 年 10 月,FDA 对其有关如何处理 OOS 结果以及如何进行正确调查的指南进行了修订。自此,FDA 已发出了大量 483 缺陷调查警告信。由此看来,即使在该指南发表 7 年后以及 Barr 裁决过去 20 年后的今天,我们在这方面仍有大量工作要做。 此外,FDA 在上述指南中还声明:“实验室错误应该是极少发生的。经常发生的错误更可能是由于分析员培训不足、维护不当或设备未正确校准或工作粗心而导致。” 在我们看到大量有关 FDA 483 缺陷调查警告信后,罕见的实验室错误可能就不会像我们所希望的那么罕见了。遗憾的是,由于没有公开数据显示所获得的每个 OOS 结果,因此存在更多没有导致 OOS 结果的小错误。这些错误可能被分类为“注意记录”,或只是简单地在实验室记事本上记录为错误。即使这些错误可能预示分析方法或过程将出现更严重的问题,许多企业也不会对其进行调查。应强调,OOS 也可能导致因调查引起的正常运行时间减少、批次释放延迟,或甚至可能导致成本昂贵的召回事件,这将对公司的效率和生产力产生负面影响,并可能会影响其声誉。不只是制药行业面临上述问题。食品行业也是如此,近几年食品安全和质量管理条例要求越来越严格。GMO(基因改造生物)或纳米技术的开发给食品安全和质量带来了新的挑战;此外,国际供应和食品交易以及供给的增加,预计也会使这一趋势更加明显。随着这些趋势的发展,以及国际和国家法律发生相应变化,标准和检查过程会进行定期修订。近期一个影响行业的立法案例就是于 2011 年 1 月开始实施的《美国食品安全现代化法案》(FSMA) 该法案将联邦监管机构的工作重心由应对安全问题转为预防问题的出现。该新法目前正在实施中,其中包括加强预防控制以及增加 FDA 强制性检查的频率。 3. 称量对过程质量的影响 称量是大多数实验室中的关键环节,但始终未得到足够的重视,其复杂性也经常被低估。由于称量质量对最终结果质量的影响很大,美国药典 (USP) 特别要求在定量分析过程中应获取准确度较高的称量结果 “应利用准确称量或准确测量的分析物制备定量分析溶液 如果规定测量值应为‘准确测量’ 或‘准确称量’,则应遵守相应的通则:容器 和天平 中的规定。” 上述通则中的要求非常严格,而其它仪器通常不执行类似标准,最常见的情况是由分析开发团队制定方法要求。与实验室相比,在生产环节中大部分情况下都低估了称量结果的重要性。天平和秤被视为生产工具,受到卫生状况、防护等级、腐蚀、火灾或爆炸风险,操作人员的健康和安全,以及生产力等外界因素的影响。在当前天平和秤的选择和操作标准中,相比其他计量要求,需更优先考虑所有这些因素。因此,未能充分考虑计量标准。通常情况下,生产环节中的操作人员资质等级低于实验室技术人员。这将导致生产过程中的操作错误比实验室更加频繁。因此,可以预料到生产过程中出现不合格结果的频率要高于实验室。 另一种做法是重新调配现有天平,把它们用于其他用途,而非其原有的应用。在这种情况下也一样,原有天平的功能可能无法满足新应用中的计量要求。生产中的不合格结果不仅预示质量可能存在风险,而且预示可能对消费者的健康和安全带来实际风险,可能违反贸易规则并给公司造成经济损失。一旦某个过程中出现低质量产品,会增加原材料、人力和资产损耗。产品必须重新加工或处置。在许多情况下,发生错误可能会导致漫长且昂贵的召回行动,给品牌带来负面影响。 4. 测量不确定度和最小称量值 4.1 称量系统的测量不确定度 满足始终准确且可靠的称量要求的最新策略包括:采用科学方法选择和测试仪器 。这些方法也解释了在行业中普遍存在的称量误解。 “我想购买读数精度为 0.1 mg 的分析天平,因为这是我的应用所需的精度。” 在制定设计认证时,经常会听到类似这样的表述。按照这一要求,用户可能会选择量程为 200 g 且读数精度 为0.1 mg 的分析天平,因为用户认为该天平“精确度达到 0.1 mg。”这是一种常见的误解,原因很简单:仪器的读数精度不等于其称量准确度。 称量仪器技术参数中的几大可测量参数限制了其性能。这些重要参数是重复性 (RP)、偏载 (EC)、非线性 (NL) 以及灵敏度 (SE)要回答这个问题,必须先讨论术语“测量不确定度”这一术语。《测量不确定度表示指南》(GUM) 将不确定度定义为“测量结果与被测变量实际值之间合理的数值分散特性”。 称量不确定度(即称量物体时的不确定度)可通过天平或秤的技术参数(一般在进行设计认证时),以及仪器安装后通过称量仪器的校准(一般通过操作认证中的初始校准,之后通过性能认证过程中的定期校准)测算得出。《非自动称量仪器国际准则》规定了称量不确定度评估的详细说明 [9, 10]。相关校准证书中清楚地阐明了校准结果。 一般来说,称量仪器的测量不确定度是一条特殊斜线 — 天平或秤上的载荷越高,测量不确定度(绝对值)越大4.2 天平参数与称量不确定度的关系 称量不确定度的表现特性更加明显,图中显示了导致量程为 200 g 分析天平的称量不确定度的各个因素(重复性、偏载、非线性和灵敏度)。可根据样品质量将不确定度分为三个独特的区域: 1. 区域 1 的样品质量小于拐点下限质量(即不确定度主要受重复性因素影响的最大样品质量)。在该具体示例中,样品质量大约为 10 g,以红色标示。此区域中,由于重复性受总载荷(如果有的话)的影响极小,因此相对不确定度与样品质量成反比。 2. 区域 2 的样品质量大于拐点上限质量(即不确定度主要受灵敏度偏置和偏载因素影响的最小样品质量)。在该具体示例中,该数值约为 100 g, 以绿色标示。此区域中,相对不确定度不受样品载荷的影响;因此,合起来的相对不确定度基本上仍保持不变。 3. 区域 3 是过渡区,样品质量在拐点质量下限和上限之间,相对不确定度由反比变为常量。 此外,对于大部分实验室天平而言,由于非线性在整个样品质量范围内对相对不确定度的影响小于其它因素,因此对相对不确定度几乎不起作用。秤所遵循的原理与天平一样,但其所使用的技术会产生一些额外的限制。大多数秤都采用分辨率比天平低的应变片式称重传感器。某些情况下,化整误差可能是主要原因,但对于分辨率较高的秤来说,重复性也是仪器在小量程段中测量不确定度的决定性因素,即计算出的标准偏差通常大于 0.41d。 线性偏差通常也被认为是一大因素,但是在称量小样品时,通常会被忽略。鉴于在称量较大样品时相对测量不确定度逐渐变小,我们可以推断,非线性在将仪器的测量不确定度保持低于规定工艺允差中仅起到很小的作用。我们需要重点关注重复性,以规定高精度工业秤的临界限值,实验室天平也是如此。 4.3 关于最小称量值的常见误解 最后,我们想指出行业中普遍存在的一个主要误解:许多企业错误地认为,是否可以加上去皮容器的重量以符合最小称量值的要求。换而言之,这些企业认为如果去皮容器的重量大于最小称量值,则可以添加任何重量的物质,而最小称量值要求也会自动满足。这将意味着,您甚至可以使用足够大的去皮容器在量程为 3 吨的工业地磅上称量一克的物质,并仍能够获得要求的过程准确度。由于称量示值的化整误差是仪器的最低不确定度限值,因此,显然无论在任何去皮容器中称量如此小的物质都不会获得满意的准确度结果。这个极端例子表明,这种普遍理解是错误的。同样,假如在一个去皮容器中称量不止一个样品(例如,作为配方过程的一部分),每一个样品均必须符合最小称量值要求。 修订版 USP 通则 中也阐述了这一误解: “在称量样品时,为了满足规定的称量允差,样品质量(即净重)必须等于或大于最小称量值。最小重量是指样品净重量,而不是皮重或毛重。” 最近,我们遇到的另一个误解是关于最小称量值约 100 千克磅秤的分装应用和所测量的最小称量值。该公司称,他们每次分装 20 千克的物质,然而为了遵照最小称量值要求,往往会在容器中留下超过 100 千克的物质。该公司不明白,为了符合自己的准确度度要求,他们需要称量至少 100 千克(而不是 20 千克)的物质。 简而言之,不论是称量前或称量后,在配方、分装和类似应用过程中,每一个组件都必须符合最小称量值要求。为了强调必须考虑样品净重,皮重与是否符合最小称量值标准无关,最小称量值通常指最小样品净重量。
  • 四川省“十四五”生态环境监测规划出炉,释放大量仪器需求
    近日,四川生态环境厅公布《四川省“十四五”生态环境监测规划(征求意见稿)》(以下简称《规划》)。为加快构建新时期四川生态环境监测体系,进一步提升本省生态环境监测的公共服务能力,为深入打好污染防治攻坚战提供坚实的技术支撑,为环境管理提供更加科学、全面、精准、及时的决策支撑,《规划》从逐步开展碳监测评估,深化大气环境监测,拓展水生态环境监测,完善土壤和地下水监测,推进声、辐射和新污染物监测,完善生态质量监测,强化污染源和应急监测,拓展监测数据成果运用,打造产学研用创新优势,推进生态环境监测现代化十个方面部署了36条具体措施。环境监测离不开分析仪器的助力,《规划》多处提及新增或更换环境监测仪器设备,开展多项分析技术研究,完善环境监测网络,建立省级特色专业实验室与专项实验室等,释放大量仪器需求。本文根据《规划》全文摘录如下:一、支撑低碳发展,逐步开展碳监测评估逐步提升温室气体监测能力,充分发挥成都市碳监测评估试点引领示范作用,逐步推进并落实《碳监测评估试点工作方案》,构建省级温室气体监测网络,构建温室气体背景本底监测能力。在9个城市开展N2O、CH4、CO2、ODS及含氟温室气体试点监测。重建九寨沟省级背景站,并升级改造为大气和温室气体综合背景站。二、聚焦协同控制,深化大气环境监测巩固城市空气质量监测,升级改造空气质量自动监测站,分批完成327个城市环境空气自动监测站和10个省控区域(农村)环境空气质量自动监测站老旧设备更换。优化降水监测网络,在川南地区试点安装酸雨自动监测装备,逐步实现自动采集大气降水样品,实现酸度、电导率等指标自动化测量。构建重点区域大气复合污染自动感知网络,21个地级及以上城市开展非甲烷总烃(NMHC)自动监测,分批在全省15个地级城市建设大气复合污染自动监测站,在PM2.5超标城市开展颗粒物组分监测,在O3超标和其他VOCs排放量较高城市开展VOCs组分监测。拓展大气污染溯源监测,提升四川省臭氧前体物走航感知能力,构建全省质量保障体系,省级新增19套组分在线分析设备和质控设备,新增1辆移动式方舱监测车和1辆光化学走航监测车,完善VOCs走航、单颗粒飞行时间质谱、颗粒物激光雷达等自动监测能力,分批新增18台便携式VOCs监测仪(LDAR)。强化重点工业园区污染物监测监控,工业园区设立园区站、边界站、传输站,开展空气、水等特征污染物监测,开展重点工业园区红外遥测、走航监测和视频监控。在全省20个重点工业园区(集中区)新建空气质量常规六参数自动监测站,在全省10个涉重金属重点工业园区(集中区)建设空气质量常规六参数和重金属指标的自动监测站,在化工园区建设大气复合站,在重点化工园区下游监控断面建设水质自动监测站。三、推动三水统筹,拓展水生态环境监测组建统一的四川省地表水环境监测网络,拓展自动监测覆盖范围,在沱江、岷江等重点治理流域,嘉陵江、黄河等重点保护流域新建37个左右水质自动站,在省界、重点流域交界增加重金属、有机物、营养化指标等水质自动监测指标,在涉铊、涉锑行业企业密集区域下游,依托水质自动监测站逐步加装铊、锑等特征重金属污染物自动监测系统。定期升级改造国、省考水质自动监测站,分批完成37个原有地表水水站(省控及国家上收站)老旧设备更新、升级改造。建设重点湖库“水华”预警体系,通过试点构建12套湖库富营养化自动监测体系,实时反应水域内藻类生长状态,遏制水体富营养化趋势。构建集中式饮用水水源地预警体系,开展水质预警监控,在市级或县级集中式饮用水源地新建和升级改造水质自动监测站200个左右,补充部分水质监测站的重金属自动监测能力。拓展水污染溯源监测,建设入河排污口自动监测监控网络,流域规模以上入河排污口试点建设自动监测设备和视频监控系统,覆盖主要污染物监测指标。四、聚焦风险防范,完善土壤和地下水监测加强土壤环境质量监测网能力建设。开展国家网54个背景点和1123个基础点监测(点位数还需国家最后落实),每5-10年完成一轮次,说清全省土壤环境状况及变化趋势。将491个国家网风险监控点位纳入省控网,每1-3年完成一轮监测,其中95个高风险监控点每年监测一次,其余396个一般风险监控点位每2-3年监测一次,及时跟踪发现土壤环境污染问题。完善四川省地下水环境监测网络。设置83个国家地下水环境质量考核点位,并根据需要适时增补完善,覆盖地级及以上城市、重点风险源和饮用水水源地,配合国家开展相关监测工作;布设地下水质监测省控网络点位,开展重点污染企业(区域)和集中式地下水型饮用源保护区地下水质试点监测工作;在地下水敏感区域增补约50个地下水在线监测站点,实现地下水自动监测预警功能。加强农村环境监测。“十四五”期间,逐步实现全省所有的县开展农村环境质量监测,涵盖各种类型的特色村庄,监测地表水、饮用水水源地、空气、土壤等环境要素,整体反应农村环境质量现状和变化趋势。五、强化人居健康,推进声、辐射和新污染物监测完善声环境质量感知网建设。在21个市(州)政府所在城市的192个省控声环境功能区建设噪声自动监测系统;在10个城市的主要交通干道两侧,设置噪声自动监测子站共60个站点; 完善工业园区边界噪声感知网络建设,建设噪声自动监测子站系统共40个站点。完善全省辐射环境监测网络。优化辐射环境质量监测点位和监测项目,加强城市集中饮用水源水质监测,完善电磁辐射监测手段,提升电磁辐射监测能力,加强辐射环境自动监测站建设以及现有老旧自动监测站的升级换代。开展调查性与研究性监测。加强重要饮用水源地抗生素、重点流域持久性有机污染物、内分泌干扰物、微塑料等有毒有害新型污染物等监测技术研究和应用,加强基于高分辨率质谱的非靶标化合物筛查技术、污染成因与溯源监测技术研究和应用。六、深化测管协同,强化污染源和应急监测规范排污单位自行监测。重点强化石化、化工、工业涂装、包装印刷等行业VOCs在线监测和无组织排放监测,加强农药、化工、化学合成类制药、电子等行业和化工园区污水集中处理设施的特征有机物监测,优化电镀、有色金属冶炼等行业重金属排放监测,完善涉重、涉持久性有机污染物行业厂区和危险废物填埋处置场土壤、地下水监测。鼓励污水处理、垃圾处理、制药、橡胶等涉恶臭重点行业实施电子鼻监测,铅锌冶炼企业对排放口和周边环境进行定期监测。推进环境应急监测体系建设。差异化配置应急监测设备,结合区域流域特征,为21市(州)配置便携式分光光度计、便携式测油仪、便携式有毒气体检测仪、便携式水质多参数仪、发光细菌毒性分析仪、可见紫外分光光度计、红外测油仪、紫外烟气分析仪、便携式气相色谱等应急监测设备,提升应急监测快速响应能力。针对大渡河流域存在的危险化学品、重金属等潜在风险,建设雅安市环境应急监测中心,提升大渡河流域的环境应急处置能力。七、筑牢质量底线,拓展监测数据成果运用做好生态环境智慧监测创新应用试点工作。按照试点工作方案要求,规范监测基础能力,开展传感器、量子点等新型监测技术、仪器、装备探索应用。八、增强科技公关,打造产学研用创新优势强化外部协作科研水平。以省级生态环境监测总站为主导,汇集全省优质监测实验室(包括第三方社会机构)、科研院所、国内重要仪器设备厂商等单位通过合作、协作或参与等形式,以生态环境质量、污染源监测技术、分析测试技术、质控技术、高新监测技术装备研究、空气质量预测预报技术、大气遥感监测技术、碳监测试点研究为重点,组织专家团队合力攻关,全面加强四川省生态环境监测技术研发引领能力。健全监测技术规范体系。加强四川省特定行业或企业特征污染物和新型污染物的监测新技术的研发与应用,逐步扩大生态环境保护领域先进适用团体和企业标准供给。九、坚持深化改革,推进生态环境监测现代化建立健全新时期的环境管理制度体系,规范驻市(州)监测机构工作程序、仪器设备配置和管理。加强监测能力建设。依托省级站、科研院所现有的基础,补充部分硬件设备和软件条件,建立省级特色专业实验室。建立持久性有机污染物监控分析、环境健康、土壤重金属污染防控与修复、环境司法鉴定、水生态监测、辐射环境应急处置专业实验室,逐步扩大生态环境监测领域。其中,四川省土壤重金属污染防控与修复重点实验室增加配备先进的土壤前处理及分析仪器设备,四川省水生态监测重点实验室配置浮游生物自动鉴定系统、研究级显微镜、无人机等设备,辐射环境应急处置实验室,配备移动核物理测量车等24台(套、辆)仪器设备(车辆)。持续提升驻市(州)站专项业务能力。根据驻市(州)站现有条件,拟划分一类站和二类站。在划分的一类站中选建2家生态生物监测实验室、3家土壤监测专项实验室、3家重金属分析实验分中心、2家地下水监测专项实验室、1家新污染物监测专项实验室等专项实验室。其中,重金属分析实验分中心配备重金属项目测定需要的仪器设备、样品前处理装置,新污染物监测专项实验室配备新污染物筛查与分析设备,环境保护核与辐射安全重点实验室增加配备现代化的核与辐射实验室分析设备共计60余(台/套)。提升辐射监测能力。全面推进省级、市(州)辐射环境监测能力建设,重点提升成都、绵阳、宜宾、广元、乐山、南充等6个区域站监测能力。为绵阳市、广元市、乐山市、宜宾市辐射环境监测站配备电离辐射监测与实验室分析设备共计40余(台/套),各配备1~2套选频式电磁辐射监测设备、1套电磁环境快速测量分析系统。为驻成都市、南充市生态环境监测中心站配备电离辐射监测与实验室分析设备共计40余台/套。建设、升级改造广元等重点涉核市州辐射环境监测站实验室,为全省其他驻市(州)生态环境监测中心站配备电离辐射监测设备共计60余(台/套),各配置1套选频式电磁辐射监测设备,提升我省辐射环境机构辐射环境监测及应急处置能力。
  • 国家流量仪表评价计量测试联盟主席张涛教授一行调研四方光电
    3月25日,国家流量仪表评价计量测试联盟主席张涛、秘书长张建娣、副秘书长周轶一行莅临成员企业——四方光电进行调研。陪同调研的还有天信仪表总裁仇梁、特瑞斯能源装备董事长李亚峰、国家天然气管网武汉计量研究中心专家闫文灿等联盟成员。   四方光电董事长熊友辉博士向联盟主席张涛教授等来宾介绍了四方光电的基本情况,重点介绍了公司在超声波流量传感器、智能超声波燃气表、天然气热值计量等领域的研发和产业化工作;随后陪同张涛教授一行参观了四方光电超声波传感器生产线、气体标准流量室、高低温和实流实验室、超声波燃气表实验室等产线和装置,并根据公司在新型超声波流量计量设备研发和产业化中碰到的问题,向联盟提出推动行业发展的意见和建议。  四方光电是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司构建了包括光学(红外、紫外、光散射、激光拉曼)、超声波、金属氧化物半导体 (MOx)、高温固体电解质等原理的气体传感技术平台,产品广泛应用于空气品质、环境监测、工业过程、安全监测、健康医疗、智慧计量等领域。  四方光电在2008年进入超声波气体传感器领域,依托工信部物联网发展专项等项目的长期研究,公司已经掌握超声波燃气表模块的核心技术,产品系列从G2.5、G4到G65,覆盖民用、商用、工商用等应用领域。   △ 参观音速喷嘴气体流量标准装置  △ 参观超声波燃气表高低温实流检测装置  △ 基于公司超声波流量传感器核心模块开发的G2.5-G65智能燃气表
  • 众瑞仪器发布ZR-D13E型 阻容式烟气含湿量测量仪新品
    详细介绍产品简介ZR-D13E型阻容式烟气含湿量测量仪是一款利用阻容法原理测量烟气湿度的设备。仪器能够适用于高温、高湿、高粉尘、高腐蚀、静电等复杂恶劣的测量环境。其主要应用于工业现场测量、火力发电、湿法脱硫检测、石油化工气体排放检测、热电气体排放检测、烟草工业、烘干箱、环境试验箱等。执行标准HJ836-2017固定污染源废气 低浓度颗粒物的测定 重量法GB/T 11605-2005 湿度测量方法 JJF1272-2011阻容法露点湿度计校准规范技术特点利用阻容法测量原理,采用进口传感器,确保测量准确性和稳定性,响应时间快。自主专利技术的抽取式测量,可单独使用,也可和其他在线测量设备或手持式设备配套使用。对测量探头进行特殊防护,可以适应高温高湿高粉尘、高腐蚀、静电等复杂恶劣的测量环境,确保测量精度,有效延长测量探头使用寿命。彩色触摸屏和按键双控操作,实时反馈,双重保障。采用316不锈钢管,标配有效长度1m,选配加长管适应不同厚度烟道。主壳一体化模具设计,方便快捷,稳定性高。具有存储、查询、蓝牙打印、USB导出, RS485通信功能,选配蓝牙通讯。带锂电池,方便随时查看、打印数据。创新点:1、利用阻容法测量原理,采用进口传感器,确保测量准确性和稳定性,响应时间快;2、自主专利技术的抽取式测量,可单独使用,也可和其他在线测量设备或手持式设备配套使用;3、对测量探头进行特殊防护,可以适应高温高湿高粉尘、高腐蚀、静电等复杂恶劣的测量环境,确保测量精度,有效延长测量探头使用寿命;4、采用316不锈钢管,标配有效长度1m,选配加长管适应不同厚度烟道;5、采样管全程伴热,有效防止传感器结露。ZR-D13E型 阻容式烟气含湿量测量仪
  • 403万!蓝田县人民医院计划采购光学生物测量仪等医疗设备
    一、项目基本情况项目编号:SCZC2022-ZB-1988-001项目名称:蓝田县人民医院2022年光学生物测量仪等医疗设备采购项目(二次)采购方式:公开招标预算金额:4,030,500.00元采购需求:合同包1(2022年光学生物测量仪等医疗设备采购项目):合同包预算金额:4,030,500.00元合同包最高限价:4,030,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1医用光学仪器光学生物测量仪等医疗设备1(项)详见采购文件4,030,500.00-本合同包不接受联合体投标合同履行期限:90天二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:合同包1(2022年光学生物测量仪等医疗设备采购项目)落实政府采购政策需满足的资格要求如下:本项目为非专门面向中小企业的项目3.本项目的特定资格要求:合同包1(2022年光学生物测量仪等医疗设备采购项目)特定资格要求如下:3.1供应商在递交投标文件截止时间前被“信用中国”网站(www.creditchina.gov.cn)和中国政府采购网(www.ccgp.gov.cn)上被列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的,不得参加投标;3.2供应商应授权合法的人员参加投标,其中法定代表人直接参加,须出具法人身份证,并与营业执照上信息一致。法定代表人授权代表参加,须出具法定代表人授权书及授权代表身份证;3.3供应商不得存在下列情形之一:(1)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加本次采购活动;(2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动;3.4(1)投标人为代理商的应出具医疗器械经营许可证或医疗器械经营备案凭证,投标人为制造厂家应出具医疗器械生产许可证;(2)投标产品属于医疗器械管理的提供医疗器械注册证;(2)若所投产品为进口产品,投标人需提供进口产品厂家或国内总代理针对本项目投标的授权书。三、获取招标文件时间: 2022年12月26日 至 2023年01月03日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间)途径:全国公共资源交易平台(陕西省西安市)网站【首页电子交易平台陕西政府采购交易系统企业端】方式:在线获取售价: 0元四、提交投标文件截止时间、开标时间和地点时间: 2023年01月17日 09时30分00秒 (北京时间)提交投标文件地点:全国公共资源交易平台(陕西省西安市)网站【首页电子交易平台陕西政府采购交易系统企业端】开标地点:西安市公共资源交易中心开标室312五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜 1、落实政府采购政策:1.1 《关于进一步加大政府采购支持中小企业力度的通知》(财库〔2022〕19号)、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)、《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)。1.2 财政部、国家发展改革委《关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号)、财政部、国家环保总局联合印发《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号)、国务院办公厅《关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号)、财政部、国家发改委、生态环境部、市场监督总局联合印发《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、《关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)、《关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)。1.3 《财政部 农业农村部 国家乡村振兴局关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19 号)、《财政部农业农村部国家乡村振兴局 中华全国供销合作总社关于印发关于深入开展政府采购脱贫地区农副产品工作推进乡村产业振兴的实施意见的通知》(财库〔2021〕20 号)。1.4 《陕西省财政厅关于加快推进我省中小企业政府采购信用融资工作的通知》(陕财办采〔2020〕15 号)、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23 号)。若享受以上政策优惠的企业,提供相应声明函或品目清单范围内产品的有效认证证书。2.开标形式:本项目将采用“不见面开标”形式。操作说明详见平台〖首页〉服务指南〉下载专区〗中的《西安公共资源交易不见面开标大厅投标人操作手册》。3.招标文件获取方式:全国公共资源交易平台(陕西省西安市)网站〖首页〉电子交易平台〉陕西政府采购交易系统〉企业端〗免费下载本项目电子招标文件(*.SXSZF)4.政府采购信息发布媒体:陕西省政府采购网、全国公共资源交易平台(陕西省西安市)5.其他本项目为电子化政府采购项目,投标人初次使用电子交易平台时,请先阅读【全国公共资源交易平台(陕西省西安市)】(http://sxggzyjy.xa.gov.cn)网站〖首页〉服务指南〉下载专区〗中的《西安市市级单位电子化政府采购项目投标指南》,并按要求完成诚信入库登记、CA认证及企业信息绑定.办理CA认证:电子交易平台现已接入陕西CA、深圳CA、西部CA、北京CA四家数字证书公司,各投标人在交易过程中登录系统、加密/解密投标文件、文件签章等均可使用上述四家CA公司签发的数字证书。办理须知及所需资料详见:http://www.sxggzyjy.cn/fwzn/004003/20220701/6972fe02-f996-4928-951e-545dab02e53c.html。请投标人务必及时下载招标文件并做好备份,逾期下载通道将关闭,未及时下载招标文件将会影响投标文件编制及后续投标活动。制作电子投标文件(*.SXSTF)需要使用专用制作工具进行编制,编制完成后使用CA锁对电子投标文件进行签章、加密递交电子投标文件。软件下载及操作说明详见西安市公共资源交易平台〖首页〉服务指南〉下载专区〗中的《政府采购项目投标文件制作软件及操作手册》。提交电子投标文件:在提交投标文件截止时间前及时提交加密后电子投标文件,逾期提交的,系统将会拒收。因投标人自身设施故障或自身原因导致无法完成签到、解密或投标的,由投标人自行承担后果。提交投标文件截止时间前,投标人应随时留意【陕西省政府采购网〗、【全国公区资源交易平台(陕西省西安市)〗上可能发布的变更公告。本项目采用“不见面开标”形式,投标人可登录全国公共资源交易平台(陕西省西安市)网站〖首页〉不见面开标〗系统,在线参加开标过程。操作手册详见〖首页〉服务指南〉下载专区〗中的《西安公共资源交易不见面开标大厅投标人操作手册》。按照陕西省财政厅《关于政府采购投标人注册登记有关事项的通知》中的要求,投标人应通过陕西省政府采购网(http://www.ccgp-shaanxi.gov.cn/)注册登记,加入陕西省政府采购供应商库。(7)投标人于招标文件发售时间内登录全国公共资源交易平台(陕西省西安市)系统(http://sxggzyjy.xa.gov.cn/),选择本项目点击“我要投标”,参与投标活动。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:蓝田县人民医院地址:蓝田县蓝水路与滋水路交汇处东南角联系方式:029-827202092.采购代理机构信息名称:陕西省采购招标有限责任公司地址:西安市高新二路2号山西证券大厦8层招标三部联系方式:029-852575053.项目联系方式项目联系人:王伟、王莉电话:029-85257505陕西省采购招标有限责任公司2022年12月26日
  • 石油化工行业分析检测技术与仪器交流暨培训会隆重召开!
    由中国仪器仪表学会主办,为期两天的石油化工行业分析检测技术与仪器交流暨培训会(2019 年 7 月 26 日-27 日)在辽宁盘锦隆重召开,本次会议的主题为“创新驱动 共享发展”,进一步促进分析检测技术与仪器在“政、产、研、学、用” 等各方的有效交流,力争把最新的政府决策、最前沿的行业市场信息、最新的技术发展趋势呈现给大家。现场座无虚席,干货满满!辽宁及周边省市石油、化工、炼化行业生产企业、科研院所、设计单位、高校等分析检测技术人员、实验室管理人员、质量负责人、计量技术人员、仪器维护维修技术人员等参加了本次会议。大昌华嘉作为专业的仪器应用专家,携智能化闪点测试仪、蒸汽压测试仪、中红外光谱燃料油分析仪、微量蒸馏仪、激光粒度粒形分析仪、光学接触角测量仪、密度计等石油、石化领域相关仪器亮相本次会议。本次会议主要内容1.2019 年成品油市场的分析及石油化工行业“十三五”发展重点及未来方向分析; 2.智能制造环境下石油化工企业安全生产、安全管理、实验室安全管理及标准化等内容。3.原油、成品油分析检测新标准宣贯; 4.原油、成品油检测前沿技术、评价、优化及其进展等; 5.创新技术促新旧动能转换成果技术,石油化工行业过程控制技术、数字车间、智能炼厂的研究与探讨; 6.石油、化工行业分析检测技术与仪器的最新进展,包括色谱(含色质)、光谱、电化学、油品常规分析检测等等; 7.石油化工行业分析检测技术专题培训; 8.石油化工行业中疑难检测问题最新解决方案; 9.大型地炼企业现场参观; 10.仪器生产厂家参观。 仪器介绍奥利地Grabner仪器公司是世界上领先的石油石化产品检测仪器仪表制造厂商。公司凭借“持续创新、质量至上、用户满意”的价值理念,20多年来不断为全球石油、石化领域的客户提供领先、精准、方便的实验室/在线检测仪器仪表。智能化闪点测定仪蒸汽压测试仪中红外光谱燃料油分析仪微量蒸馏仪激光粒度粒形分析仪光学接触角测量仪密度计元素分析仪X射线荧光光谱仪流式颗粒成像分析系统
  • 全新V2.0亚洲版SevenMulti双通道多参数测量仪表隆重上市
    梅特勒-托利多SevenMulti多参数测量仪表以其开创性的模块组合设计理念为实验室pH、电导率、离子浓度、ISFET(离子场效应)测量带来了全新的解决方案;其双通道仪表与四种测量模块可按需进行灵活组合,可为制药、日化、生物、化工、食品、环境、检验机构、教科研等各行各业的用户提供更加专业的测量方案。 全新V2.0亚洲版SevenMulti双通道多参数测量仪表具有了以下特点:• 独一无二的模块组合设计,一表多用,测量功能随时拓展;• 新增中文菜单,界面更友好;• 数字字母键盘,操作更简便;• 完全符合USP/EP超纯水测量标准;• 引入全新测量稳定性概念,更多终点方式可选,令测量更灵活;• 全新校准概念、更多标准液组可供选择,满足各种校准需求;• 新增电极验证测试功能;• 全新ID输入概念,多达12位可输入字符,灵活输入样品、电极、用户ID;• 多达1000组测量数据储存;• 配合全新LabX direct pH软件可以Excel、Access等多种格式进行数据传输; 梅特勒托利多始终致力于技术的不断革新并为客户提供完美解决方案,全新V2.0版SevenMulti多功能专业仪表秉承梅特勒托利多一贯的精湛工艺,融入了梅特勒托利多品牌仪表优雅的外观和便捷的操作设计,结合品质优异的电极,我们相信全新V2.0版SevenMulti多功能专业仪表必将给您的日常电化学测量带来更多方便!
  • 培安受邀参加“第一届全国石油化工分析测试技术暨第十一届全国石油化工色谱学术报告会”——助力石化提质增效、低碳绿色发展
    2018年10月25日,“第一届全国石油化工分析测试技术暨第十一届全国石油化工色谱学术报告会”在潍坊蓝海大饭店召开。本次大会旨在为业界同行提供一个更宽广的交流平台、分享石油化工分析技术的最新成果和经验体会。 此次会议由中国石油学会石油炼制分会主办,北京理化分测试技术学会和中国石化石油化工科学研究员承办,200余名石化分析人齐聚于此,围绕“全面提升石油化工分析测试能力,为中国石油炼制与化工提质增效、绿色低碳发展助力”的主题,除就石油化工分析技术领域取得的最新分析技术成果进行交流外,还将就汽柴油质量升级、车用燃料质量安全、油化结合、智能化炼厂建设涉及的分析问题进行研讨,以促进全国石油化工分析技术水平的整体提升。培安公司受邀携中红外汽柴油分析仪、蒸气压测量仪,闪点仪等石油分析仪器参加了此次会议。针对中红外汽柴油检测方法以及国标GB/T 33648汽油中非法添加剂与用户进行了深刻的沟通交流,引得业界众多专家学者、用户莅临培安仪器展区参观交流。ERASPEC 中红外汽柴油分析仪(快速辛烷值测试仪)ERASPEC 便携式中红外汽柴油分析仪突破性红外技术符合国标GB/T 33648-2017,获多项专利,使测试更准确更稳定可靠。数据库超过2100个油样,1分钟完成50多项理化测试,开机即用,无需热机,无需环己烷标定。为市场质量监控等快速检验提供了保证,成为石油公司成品油快速质量控制指定仪器,受到各方高度评价。ERAVAP全自动蒸汽压测量仪ERAVAP全自动蒸汽压测量仪,可用于对汽油、原油、LPG、航煤、试剂和聚合物等样品的蒸汽压测定,无需水浴和恒湿空气饱和,涵盖含氧化合物蒸汽压测定,测试时间短,准确性高,广泛应用于中石化中石油系统、炼油厂、检验检疫局、分析中心、研究所、第三方检测机构、汽车公司等领域,得到使用者的高度评价。ERAFLASH全自动闪点仪ERAFLASH全自动闪点仪拥有多项专利技术,采用CCCFP技术是真正连续密闭,电弧激发,安全无明火的全自动闪点仪,高重复性、高再现性,更安全可靠,符合各项相关标准,广泛应用于炼油厂、检验检疫局、质检所、危险品分类实验室、高校、研究所、香精香料公司、电力公司、机场等,得到使用者的一致认可。
  • 工信部发文:推动在线检测、计量仪器仪表升级
    工业和信息化部办公厅关于印发《制造业质量管理数字化实施指南(试行)》的通知制造业质量管理数字化是通过新一代信息技术与全面质量管理融合应用,推动质量管理活动数字化、网络化、智能化升级,增强产品全生命周期、全价值链、全产业链质量管理能力,提高产品和服务质量,促进制造业高质量发展的过程。为推动制造业质量管理升级,以数字化赋能企业质量管理,强化产业链质量协同,优化质量创新生态,特制定本指南。一、总体要求推进制造业质量管理数字化是一项系统性工程,要以提高质量和效益、推动质量变革为目标,按照“围绕一条主线、 加快三大转变、把握四项原则”进行布局。企业要发挥主体作用,强化数字化思维,持续深化数字技术在制造业质量管理 中的应用,创新开展质量管理活动。专业机构要以提升服务为重点,加快质量管理数字化工具和方法研发与应用,提供 软件平台等公共服务。各地工业和信息化主管部门要以完善 政策保障和支撑环境为重点,做好组织实施。(一)围绕一条主线。把数字能力建设作为推进质量管理数字化发展的主线,加快数字技术在质量管理中的创新应 用,优化重构质量管理业务流程,打破不同管理层级、职能部门以及企业间的合作壁垒,赋能企业多样化产品创新、精 细化生产管控、高附加值服务开发、个性化体验提升,快速 有效应对不确定性变化,不断构建差异化竞争优势。(二)加快三大转变。加快重塑数字时代质量发展理念,推动质量管理范围从企业质量管控向生态圈协作转变,加强对产品全生命周期、产业链供应链乃至生态圈协作质量的管 理;推动质量管理重点环节从以制造过程为主向研发、设计、 制造、服务等多环节并重转变,深化质量数据跨部门跨环节 跨企业采集、集成和共享利用,促进质量协同和质量管理创 新;推动质量管理关注焦点从规模化生产为主向规模化生产与个性化、差异化、精细化并重转变,积极协同生产模式和组织方式创新,主动适应动态市场变化需求。(三)把握四项原则。注重价值牵引和数据驱动。把提升发展质量与效益作为出发点和落脚点,深化全过程全链条 数据挖掘,驱动质量变革。注重深化实践和创新应用。发挥 数字化系统作用,深化推广质量管理理论方法和实践活动, 依托信息化平台在全产业链、价值链推动质量管理创新应 用。注重分类引导和示范带动。引导企业结合自身条件制定 方法路径,通过树立一批典型场景、质量标杆企业加强方向 指引。注重开放合作和安全可控。完善覆盖全产业链、生态 圈的质量协作机制,把握安全和发展的关系,加强企业信息 安全保护。二、明确质量管理数字化关键场景(四)面向企业重点业务环节的质量管理数字化。处于数字化起步期的企业要根据实际需求,选择研发、设计、采购、生产、检测、仓储、物流、销售、服务中的重点业务环节,着力推进数字技术应用。充分运用数字化工具加强对业务环节质量信息的采集、分析和利用,开展数字化设计验证、 质量控制、质量检验、质量分析和质量改进,提升质量过程 控制的精细化、智能化水平,提高企业质量管理的效率和效益。(五)面向产品全生命周期和全产业链的质量协同。已较好实现数字化并实现业务集成运作的企业,要推进基于数 字化产品模型的研发、设计、生产、服务一体化,加强产品 全生命周期的质量信息追溯,提升产业链供应链各环节质量 数据共享与开发利用,推进数据模型驱动的产品全生命周 期、全产业链的质量策划、质量控制和质量改进,加强产业 链供应链上下游质量管理联动,促进多样化、高附加值产品 服务创新。(六)面向社会化协作的质量生态建设与知识分享。具备平台化运行和社会化协作能力的企业,要推进质量管理相 关资源、能力、业务的在线化、模块化和平台化,与生态圈合作伙伴共建质量管理平台,加强质量生态数据的收集整 理、共享流通和开发利用,推动质量管理知识经验对外输出和迭代优化,构建客户导向、数据驱动、生态共赢的质量管理体系和商业模式,逐步打造形成质量共生共赢新生态。重点行业质量管理数字化关键场景原材料行业。面向钢铁、石化、化工、建材等行业,推进生产制造数字化质量管控。基于传感器、机器视觉、自动化控制、先进测量仪器等技术在生产环节深度应用,加强企业内部管控精细化程度,推进生产环节质量数据自动采集与处理,开展全流程质量在线监测、诊断与优化,以市场、过程质量指标为牵引设置智能预警的管控限制,持续提升质量控制水平。强化供应链上下游质量管理联动,联合上下游企业共建供应链管理系统及平台,打通供应链上下游企业间质量信息传递渠道,基于数据互联互通与有序流通共享,提升从采购寻源到生产销售的全过程质量协同管控、全生命周期质量追溯管理等水平。装备制造行业。面向机械、交通设备制造等行业,推进基于数字模型的产品质量设计。推进人工智能、仿真等技术在产品研发设计环节应用,搭建产品级、部件级数字仿真模型,开展失效模式分析预防、装配及物流仿真,识别最优设计方案,通过智能化质量策划提升质量设计水平,降低质量损失风险。推进生产制造数字化管控,基于传感器、机器视觉、自动化控制、先进测量仪器等技术在生产环节深度应用,提升精益生产过程质量控制水平。推进基于产品全生命周期管理的服务质量提升。基于线上平台连接实现整机及零部件状态识别与跟踪,开展产品故障预警预测,保养服务预警提示等延伸服务,促进产品高端化。消费品行业。面向轻工、纺织行业推进生产制造环节数字化质量管控。推广传感器、机器视觉、自动化控制技术等在轻纺生产环节广泛应用,提高在线监控水平。面向医药、食品等行业,推进产品全生命周期质量追溯。联合上下游共建产品唯一标识规范,开展质量追溯体系建设,提供信息实时追溯和查询服务,强化全生命周期质量协同管控,让消费者放心消费。三、完善企业质量管理数字化工作机制(七)加强质量管理数字化组织领导。企业应结合两化融合的发展目标和规划部署,优化质量方针、质量目标,制定质量管理数字化的提升路径。明确推进质量管理数字化工作的责任部门、职责和权限,创新质量部门与业务部门协同 推进组织模式,统筹规划并选择质量管理数字化关键场景,确定资源保障,分步推动实施。在质量管理体系运行管理中应定期评估数字化能力的提升效果,并向最高管理者报告。(八)加强质量管理数字化活动策划。企业应以用户需求为导向,梳理关键场景的质量管理要求,运用两化融合管理体系等方法,开展包括流程优化、装备升级、信息系统集 成、数据资源利用、操作规程更新在内的质量管理数字化活 动策划,运用数字技术打通流程断点,加强业务流程状态跟踪、在线监控和动态优化,强化质量目标和质量活动的闭环管控。(九)推动质量管理数字化资源整合。鼓励企业依托工业互联网平台、数据集成平台等,建设统一质量管理平台, 实现质量管理知识、方法、经验等模型化、平台化。加强数字设计工具的开发利用,运用数字分析建模、数字孪生、可靠性设计与仿真、质量波动分析等技术提高产品用户体验和质量设计水平。鼓励龙头企业建设产业链质量协同平台,推动企业间质量信息共享与知识共创,探索产业链质量管理联动新模式,提升产业链质量协同发展水平。四、增强企业质量管理数字化运行能力(十)提高岗位数字化作业技能。企业应加强质量管理数字化活动的全员参与,完善评价和激励机制,将推进质量 管理数字化转变为员工主动创新、有能力创新的现实行动。结合数字化转型的发展需要,对影响质量的相关岗位人员制定数字化技能提升计划,提高运用信息化系统以及在数字化 条件下应用质量管理技术方法的能力。对有重要影响的岗位人员实施适当的考核评价,以确保相关人员具有在数字化条 件下履行质量职责的能力。(十一)推进装备数字化改造升级。企业应按照质量管 理数字化核心能力建设需求,加强必要的生产制造装备改 造,提高工艺控制自动化、智能化、精准化水平,保证工艺 稳定,减少质量波动。结合装备数字化改造过程,设计开发 相应的质量管理系统平台,形成以数据为驱动的在线质量控制和自主决策能力,为工艺改进和产品创新夯实基础。(十二)实施全流程物料数字化管理。企业应建立与数字化制造相适应的仓储物流系统,在采购、生产、仓储、物 流、交付及售后服务全过程提高物料数字化追溯管理水平。与重要供应商建立协同的数字化管理系统,共享采购产品质 量、批次、交期等信息。有条件的企业应对关键物料实施一物一码管理,实现全流程质量追溯。(十三)强化检验测试数字化管理。企业应根据质量管理数字化要求,完善检验测试的方法和程序。推动在线检测、计量等仪器仪表升级,促进制造装备与检验测试设备互联互通,提高质量检验效率,提升测量精密度和动态感知水平。运用机器视觉、人工智能等技术,提升生产质量检测全面性、精准性和预判预警水平。五、加强产品全生命周期质量数据开发利用(十四)加强质量数据管理。企业应将质量数据纳入数据资产管理范畴,加强质量数据标准化管理,开展企业数据管理能力建设。加强质量数据采集、管理、处理、分析、应用等全过程管理,明确各环节的职责和权限,强化跨部门及部门内数据管理机制建设。完善数据架构设计,促进质量数据在业务活动之间高效率交换共享。(十五)深化质量数据建模分析。企业应基于质量知识库的质量管控模型,开展基于大数据的全过程、全生命周期、全价值链质量分析、控制与改进,推进数据模型驱动的产业链供应链质量协同,深入挖掘质量数据价值,及时洞察质量风险和机遇。开发部署基于数据的质量控制和质量决策模型,提高质量响应和处理的及时性,降低质量业务决策风险,实施更加有效的质量预防和改进,提升用户体验,强化对不 确定性的柔性响应能力和水平。(十六)提升质量数据安全管理水平。企业应落实《数据安全法》和有关行政法规要求,强化数据安全意识,履行 数据安全保护义务。加强态势感知、测试评估、预警处置、灾难备份等安全能力建设,保障企业自身和用户的质量数据安全,构筑涵盖网络安全、系统安全、业务安全等的多方位质量数据安全保护屏障。六、创新质量管理数字化公共服务(十七)培育推广系统解决方案。鼓励装备制造商、软件服务商、企业、科研院所等围绕质量管理数字化发展需求, 联合研制推广关键亟需的方法和工具,分行业、分场景开展联合攻关和测试验证,形成集架构设计、方案咨询、关键装备、核心软件、数据集成、流程优化、运营评估于一体的系统性解决方案并进行推广。鼓励各地工业和信息化主管部门组织开展质量管理数字化系统解决方案试点示范,分行业、 分场景遴选和支持一批解决方案最佳应用实践,建设解决方案体验和推广中心,促进市场服务资源与企业需求精准对接。(十八)探索平台化数据共享服务。在生物医药、新材料、航空航天、船舶与海洋工程、电子制造、新能源与智能网联汽车等领域,鼓励相关行业协会和龙头企业建设产品质量大数据公共服务平台,提供质量信息在线查询、质量风险分析、质量成本分析和质量追溯等服务。鼓励专业机构基于平台提供质量管理数字化水平测评、诊断等服务,不断构建和完善诊断对标模型,加强对中小企业质量管理数字化的诊断、培训和辅导,提升质量管理整体绩效。(十九)完善标准和检测认证服务。在现有领域已发布的相关标准规范基础上,鼓励标准化组织、行业协会、社会团体、重点企业围绕质量管理数字化建立标准和规范,加强标准宣贯、应用服务和实施效果评估。面向产业集聚区,推动建立和完善面向质量管理数字化的标准研制、产业计量、 检测认证等公共服务体系,培育提供咨询诊断、项目实施和运行维护等全流程质量管理数字化提升服务的专业机构。七、完善政策保障和支撑环境(二十)加强组织落实。各地工业和信息化主管部门要结合本地区实际,加强与市场监管等相关部门在质量管理数 字化发展中重大问题、重大政策和重大工程等方面的协调配 合,建立健全政府、行业、企业、科研院所和专业机构的协 同推进机制。充分利用现有财政资金、产业投资基金,加大对制造业质量管理数字化薄弱环节和公共服务平台的支持力度。(二十一)强化宣贯引导。鼓励各地工业和信息化主管 部门加大质量管理数字化推进力度,加强政策宣贯解读,普及质量管理数字化知识,提高企业推进质量管理数字化的意识和实践能力,持续扩大企业质量管理数字化的影响力。支 持行业协会、产业联盟与企业共同推广质量管理数字化相关产品、技术、标准、服务,推动系统解决方案对外输出。(二十二)创建标杆示范。鼓励产业联盟、行业协会、专业机构等分行业建设质量管理数字化场景清单,持续开展质量管理数字化新模式遴选。总结提炼质量管理数字化的典型案例,培育和发现一批带动性强、可复制可推广的典型经 验。加强交流推广,以成效显著的企业标杆引领推动行业整体质量水平提升,营造良好质量管理数字化发展氛围。(二十三)加强人才培养。推动产业联盟、行业协会与 高校、科研院所等深化合作,共建质量管理数字化创新联合实验室,开展数字化质量先进方法体系培训。鼓励校企联合建设一批数字技能实训基地,培养知识型、技能型、创新型的质量管理人才。
  • LI-COR新产品介绍——LI-710蒸散测量仪
    蒸散(Evapotranspiration)是地表水分循环和能量平衡中的重要组成部分,也被称为蒸散发,由地表水分蒸发和植物蒸腾耗水两部分组成。它在分析气候干燥度、评估水资源利用、管理草坪/作物灌溉以及研究区域生态环境变化(如荒漠化)等方面发挥着关键作用。蒸散的两个组分:地表蒸发和植物蒸腾(图源/Wikipedia)目前,有两种方法可用于获取蒸散数据:间接获取法和直接测量法。间接获取蒸散量的方法往往需要获取两个参数:作物系数和潜在/参考蒸散量,这无疑增加了数据估算的不确定性。涡度相关通量测量技术可用于直接测量地表蒸散量,但由于方法复杂性等原因,一直没有得到广泛应用。为解决这一问题,LI-COR公司开发了LI-710蒸散测量仪,该仪器基于得到广泛认可的涡度相关通量测量技术,可直接测量地表与大气之间的水汽交换通量,成为直接测量样地蒸散的理想选择。LI-710蒸散测量仪的主要特点可验证的精准度LI-710采用涡度相关通量测量技术,以10Hz的频率测量垂直方向上的风速和水汽浓度。通过成熟的涡度相关通量数据算法,每30分钟得到水汽通量数据和蒸散量。与传统涡度相关仪器采集的数据以及根据彭曼公式计算得到的潜在蒸散量数据相比,LI-710数据显示出很好的一致性(详见下图)。直接输出计算完毕的蒸散数据LI-710内嵌计算模块,直接输出计算完毕的蒸散数据,这使得用户无需花费额外时间和精力进行数据处理和分析。不仅如此,该模块的算法遵循成熟的涡度相关通量数据处理方法,确保了蒸散数据的准确性和可靠性。方便快捷的安装极简式设计,即连即用。这大大减少了用户的野外工作时间,降低了安装和操作的门槛,即便是非专业人士也能轻松上手。SDI12数据输出采用一根线缆输出数据,方便数据采集和集成到现有测量系统中。低功耗1.5w的低功耗设计,方便在野外部署。无需校准,维护量极低可方便地进行多点布设,无需校准和频繁维护。选择 LI-710 ,还是传统涡度相关通量测量系统?先看下面的对比表综上所述,如果您需要简便地获取蒸散量数据,LI-710 是更适合的选择;如果您需要同时获取CO2通量数据,或者对涡度相关数据有专业需求,传统涡度相关测量系统可能更适合您。应用案例(一): 安装在US-PAS站点(美洲通量网)的LI-710 US-PAS站点(美洲通量网)位于佛罗里达坦帕东南的牧场上。站上配备了一套完整的LI-COR涡度相关通量观测仪器(以下简称EC)。Bracho-Garrillo是该站的首席调查员,同时也是佛罗里达大学的老师。他对LI-710蒸散传感器进行了测试。对比数据显示,LI-710和EC取得的蒸散结果一致性非常高。US-PAS站点的LI-710(左),右侧是LI-COR涡度相关通量测量系统Bracho-Garrillo表示:“LI-710布设起来非常容易,耗电少,不需要额外的电源配置,这对于野外台站来说太方便了。”他认为LI-710能有效指导人们进行灌溉管理。“人们习惯于使用作物系数来估算ET,因为不是实测,这会带来较大的误差。”他解释道,“LI-710能非常方便的实测ET,这是一个巨大的技术进步。”应用案例(二):Land IQ 公司科学家们利用 LI-710 分析加州地区的农业需水Land IQ 公司总部位于加利福尼亚州首府萨克拉门托,是一家专注于提供农业科学咨询和遥感服务的企业。他们推出了Land IQ ET,这是一款基于数据驱动的实地用水模型,利用了来自80多个气象站的地面数据。Land IQ 公司的主要客户是当地的水资源管理部门,其中包括近40个地下水可持续发展机构(GSA)。这些机构监测着35-40种不同作物的蒸散量,总面积达300多万英亩,主要覆盖Stanislaus、Madera、Fresno、Tulare、Kings和Kern六个农业县。该公司的科学家Frank Anderson每月收集并分析来自气象站的数据,作为蒸散量ET模型的数据基础。他表示:“我们致力于为客户收集全面且准确的蒸散量数据。”自2022年11月以来,Land IQ公司已在其研究网络中安装了5套LI-710蒸散测量仪,这些新设备安装在现有气象站旁边。Anderson表示:“我们计划在不同覆盖类型的样地上部署LI-710,包括休耕地、开心果树林、杏树林、柑橘林和苜蓿地等。特别是对于苜蓿地,由于其需要定期插播,这使我们能够分析蒸散量数据的变化。”他们选择在蒸散量ET较低的时段安装LI-710。Anderson对LI-710采集的数据很满意,他说:“LI-710在蒸散量较低的情况下采集的数据可靠性很高。”在一家奶牛场旁的苜蓿样地上,他们安装的LI-710在高粉尘环境中运行。Anderson表示:“这是一个挑战,因为样地空气中存在氨、挥发性有机化合物和灰尘颗粒等。”为此,LI-COR公司开发了一个工具,可以帮助用户轻松更换过滤器。Anderson认为,LI-710的安装和维护非常简单。两个人花了不到一个小时就将LI-710安装到了现有的气象站系统中。他对LI-710采集的数据非常满意,表示:“我们的整个数学模型都需要建立在可靠的蒸散实测数据基础上。我们希望能够在更多地点部署LI-710并实现联网观测。”
  • 依工测试测量仪器(上海)有限公司隆重开业
    仪器信息网讯 2012年7月19日,世界财富500强ITW集团全资子公司“依工测试测量仪器(上海)有限公司”(以下简称“依工测试”)在上海漕河泾高新技术开发区举行了隆重的开业典礼仪式。 ITW集团高层,标乐、威尔逊及英斯特朗等兄弟公司事业部总经理,依工测试全国代理商,上海漕河泾开发区领导以及依工测试部分员工共约200多人共同见证了此次开业盛典。依工测试总经理王志勇先生、上海漕河泾开发区经济技术发展有限公司总裁张黎明先生、ITW集团测试测量全球总裁YAHYA先生发表了热情洋溢的讲话。开业典礼现场依工测试测量仪器(上海)有限公司总经理王志勇先生  依工测试总经理王志勇先生在致辞中提到,依工测试在漕河泾浦江园区的顺利开业是公司发展过程中的又一里程碑,新工厂的建立不仅是依工测试在更加紧密靠近客户,不断提升本地化方面持续投入,更是体现了集团对于中国市场的强烈信心和对此所作出的重要承诺。王志勇总经理表示,密切关注市场和应用,全员参与提升客户服务,以及以客户为中心的业务流程是ITW集团总裁YAHYA先生提出的三大战略,依工测试将不断努力为客户提供更有价值的产品,服务和支持。最后,王志勇总经理借此机会感谢所有客户、供应商和代理商、园区领导、ITW集团领导、英斯特朗、标乐等兄弟公司以及所有员工对依工测试一如既往的信任、理解和支持。ITW集团测试测量总裁YAHYA先生  ITW集团测试测量总裁YAHYA先生在致辞中提到,ITW有一个非常不同于其他公司的哲学,一个分散经营模式的企业更容易使其员工具有自由灵活的思想,以便更加关注于市场。为了让大家了解ITW在中国的成长,YAHYA先生列举了ITW在中国的主要成就。截止到2012年6月,ITW在中国已经拥有超过50个业务单位,其销售额达到了7亿5千万美元,而且所有的业务单位都有健康的财务业绩。但是,这对于ITW仅仅是一个开始,在接下来的5年时间,ITW将更加积极扩张在中国的业务。例如:在过去的12个月中,ITW的子公司在苏州和华南地区都进行了收购当地公司,同时ITW在中国也有在汽车等方面新的巨大投资,在接下来的几个月里大家将会看到ITW焊接事业部在青岛进行一个非常大的投资,主要是生产焊接材料。  据YAHYA先生介绍,5年前收购依工测试时,面临许多挑战,当时最需要解决的问题是使生产的产品与ITW在世界任何其它地方生产的产品具有同样的高品质 虽然经过几次改革的挫折,但是ITW幸运地拥有了非常有才华的王志勇先生,他在依工测试已经建立了一个年轻而很有才华的团队。YAHYA先生还特别提到了ITW另一子公司——世界上最大的材料测试公司英斯特朗,SOLOMON先生使英斯特朗在中国业务从零开始发展到今天的规模,现在仍然创造着令人惊讶的业绩。  最后,YAHYA先生表示,从70年代进入中国开始,始终相信中国市场的潜力,很早就打算为中国市场服务并一直延续至今 可以这样说,中国是继美国之后ITW在全球的最大的市场,特别感谢所有的客户,代理商和员工,是他们的帮助和努力才能使ITW有如此巨大成功。上海漕河泾开发区经济技术发展有限公司总裁张黎明先生  上海漕河泾开发区经济技术发展有限公司总裁张黎明先生出席开幕式并致辞。张黎明总裁首先代表漕河泾技术开发有限公司对依工测试新工厂的开业表示诚挚的祝贺。2011年11月28号,漕河泾迎来了具有百年历史的依工测试测量的入驻,作为ITW的子公司,依工测试面向的市场包括汽车、钢铁、航空航天及科研等众多领域。从签约到开业庆典的半年多得时间里,双方密切配合,顺利完成了开业前的各项准备,在合作的过程中,更进一步增进了彼此的了解。  漕河泾园区致力于发展生产型园区,打造完整的产业链。漕河泾将一如既往地为依工测试提供全方位的服务,积极推动项目在浦江园区的发展。将致力营造一个环境优美、设施完整、交通便捷的一流科技园区,以更加优化的园区环境,完善的服务支持、提供专业的服务队伍、为像依工这样优秀的企业来提供全方位的支持和服务。ITW领导层及嘉宾共同转动象征未来蓬勃发展的钥匙  ITW是世界500强企业,到2012年已经整整走过了100年。从2007年成立到现在,依工测试已经在上海走过了5年的历史,今天依工翻开了新篇章,ITW领导层及嘉宾共同转动象征未来蓬勃发展的钥匙。  庆典仪式最后,ITW集团六位事业部负责人:标乐事业部全球总经理MICHELE女士、标乐及威尔逊国际业务总经理MIKE、英斯特朗中国区总经理SOLOMON先生、英斯特朗工业产品事业部全球总经理Jack Bowen先生、依工测试上海有限公司总经理王志勇先生、ITW测试测量全球总裁YAHYA先生接受仪器信息网等专业媒体的采访,部分采访内容摘录如下。  媒体:在材料测试领域,多数的国际领军品牌都把自己的生产制造基地设在美国和欧洲,ITW为什么要在中国设立自己的生产制造和研发基地呢?为什么会选址在漕河泾开发区?  YAHYA先生:首先这是由我们的战略计划所决定的,我们的战略是希望我们的产品线更加靠近我们的客户,为客户提供更加完善的服务,就是我们在美国、欧洲和中国建立工厂的原因。  王志勇先生:我们选择上海的原因:第一是漕河泾的品牌优势,作为国家级高新技术开发区,漕河泾在上海,华东乃至全国以其卓越的服务和支持享有很高的声誉,有众多的国际知名跨国公司,因此选择漕河泾。第二是上海的区位优势,作为全国最早开发开放的城市,上海拥有极为丰富的各类资源以及所有业务开展所需的各种服务。第三是人才优势,上海有高素质的人力资源,允许我们能够找到企业发展所需的人才。  媒体:从2007年开始,整个中国的经济环境都不是很好,近期又有欧债危机及中国经济增长的趋缓等因素,为什么会选择在这个时刻选择投资决策?  YAHYA先生:中国是一个非常有发展潜力的市场,我们希望为我们的用户提供更优质的技术和支持,虽然目前经济有所下滑,但是我们相信中国市场仍然有很大的发展潜力。  媒体::ITW有很多子公司(据官方介绍是825个),请问ITW能够在全球范围内给予Wilson哪些支持?  YAHYA先生:ITW总公司会在资金、人才、信息、管理等方面给予子公司全方位的支持,子公司之间也有很好的合作。例如英斯特朗、标乐等,虽然他们都是相对独立的,但是一些基础的技术以及资金方面可以共享。  媒体:中国不断加大了创新的力度,威尔逊如何应对来自这方面的挑战?  Mike先生:虽然我们在全世界都有竞争对手,但是我们始终坚持我们的原则,更加贴近我们的客户,更好的为客户服务,我们在全球范围内设立的区域研发、技术支持和服务团队,就是应对来自竞争方面的挑战。  媒体:威尔逊和标乐正在进行整合,请问这样整合能为客户带来哪些好处?  MICHELE:标乐和威尔逊的客户特点是都具有国际性,这些客户需要整体的实验室解决方案,而威尔逊和标乐的整合能够带给客户一整套的解决方案,客户不需为了应对测试测量中遇到的问题而花费更多的时间,只要找到一家就可以解决所有问题,这也是我们整合标乐和威尔逊的原因。  媒体:在传统的认识中,中国制造和国外制造的产品在质量上还是有一定程度的差异,您是如何面对这方面的挑战?  王志勇先生:我认为中国完全能够生产出高品质的产品,众多国际知名品牌能够在中国生产大量的高品质的产品,这就是最好的例证。我们如何做到这一点,我觉得主要通过以下三个方面:第一是产品设计,我们在中国有自己的研发团队,但是我们和全球有垂直联系,所以我们开发产品的流程、论证等,都是采用全球共同的流程 第二是生产制造工艺,我们在上海的生产制造工艺和在欧洲和在美国,没有任何区别 第三是零部件的生产,我们会选择高品质的供应商,有严格的筛选和考核程序,保证能够为我们提供稳定质量的零部件,中国的工业基础非常完善,所以我们的供应链是非常稳定的。基于以上三个原因,即使开始会有一些困难,我们完全能够生产出和世界任何其他地方同样品质的产品。  媒体:请问硬度测试产品近期有哪些技术发展趋势?Wilson 的硬度测试产品技术优势体现在哪些方面?  王志勇先生:大量的新的电子技术、控制技术和光学技术应用于硬度测试行业,由过去模拟测试向数字化、自动化方面转变,硬度测试产品越来越追求高的可靠性,尽量减少人为的干预,大量的自动化设备应用于生产控制实验室。  威尔逊的硬度测试技术优势主要体现在如下三点:(1)历史悠久,美国威尔逊集团主要包括来自美国和德国的三个品牌:Wilson、Wolpert和 Reicherter,它们都有超过一百年的历史,因此,我们相当于有超过“三百年”的历史经验 (2)技术实力扎实,美国威尔逊拥有软件、硬件、测试技术、工程等所有硬度测试环节的核心技术,没有贴牌 (3)人才优势,我们在中国拥有强大的研发、应用、售后团队,并且与中国多所科研院所进行合作,这些可以使我们更好地了解用户的需求,在硬度测试方面为中国的广大用户提供方便。  媒体:请您谈谈硬度测试产品在全球和在中国的市场发展情况?  王志勇先生:硬度测试产品大量的用于失效分析、尤其是在汽车、航天、船舶等都有大量的应用。虽然这些高端制造业过去很多在国外,但是中国在过去几十年以来取得了长足的发展,中国政府在这方面不断地加大投入。在最近几年,越来越多的国内外企业对于硬度测试提出了更高的要求。各位嘉宾参观依工测试应用实验室依工测试工程师正在现场讲解  关于依工测试测量仪器(上海)有限公司  依工测试测量仪器(上海)有限公司是美国依工集团在亚洲地区设立的从事材料物理性能研究和检测的研发、销售及技术服务中心。其中威尔逊硬度计隶属于美国ITW集团,是提供全方位硬度测试方案和可信赖的硬度测试专家。  作为全球硬度计行业的技术领先者,威尔逊硬度计以其优越的产品质量为全球用户提供包括洛氏、维氏、布氏、努氏、邵氏和里氏在内的全系列产品和服务,在硬化层梯度分析、焊接质量分析以及研究开发应用方面为汽车、钢铁、航空、石油、化工等领域提供服务。  威尔逊硬度计提供硬度块、附件、夹具等硬度计的配套产品 Wilson的校准实验室经过资质认证,公认世界领先,生产高精度硬度块和压头 提供世界一流的校准、校验及售后服务。  威尔逊硬度计的销 售、生产、研发基地遍及美国、欧洲和亚洲。 作为ITW家族的一员,威尔逊在硬度测试仪器的设计、生产及支持等方面是真正意义上的全球领跑者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制