当前位置: 仪器信息网 > 行业主题 > >

显微强定仪

仪器信息网显微强定仪专题为您提供2024年最新显微强定仪价格报价、厂家品牌的相关信息, 包括显微强定仪参数、型号等,不管是国产,还是进口品牌的显微强定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合显微强定仪相关的耗材配件、试剂标物,还有显微强定仪相关的最新资讯、资料,以及显微强定仪相关的解决方案。

显微强定仪相关的资讯

  • 2020福布斯亚洲10亿美元以下200强 Park原子力显微镜公司上榜
    福布斯日前公布亚洲收入十亿美元以下企业200强榜单,韩国Park原子力显微镜公司榜上有名。 福布斯亚洲收入10亿美元以下企业200强榜单收录了年收入10亿美元以下的上市公司,上榜企业是从亚太地区18,000家符合条件的企业中选出的,此标准确保了亚太地区企业的地域多样性。 入选公司净利润必须为正,且公开交易至少一年以上,营业额与净利持续增长。 根据福布斯亚洲的文告,榜上的公司都拥有出色的纪录,在销售、盈利增长、债务水平和企业监管方面的综合排名,都高于同行。 《福布斯》亚太区10亿美元以下最佳企业的名单也显示了它们在面对疫情时的实力,通过迅速适应当今的商业环境,在逆境中茁壮成长。 “在10亿美金的名单中做到最好并非易事。对这些中小企业来说,疫情是对它们在逆境中生存甚至发展的真正考验。”这些被选中的公司表现出了迅速适应新的具有挑战性的商业环境的韧性。Park公司2020年的收益持续增长,订单渠道健康。Park Systems(以下称为Park公司)首席执行官兼创始人Sang-il Park博士评论道:“Park公司很荣幸被《福布斯》亚洲评选为2020年10亿美金以下最佳企业。”“我们在全球范围内发展原子力显微镜业务的战略计划一直坚定不移,且股价和投资者信心持续上升,公司估值超过5亿美元。” Park公司由Sang-il Park博士于1997年创立,是原子力显微镜(AFM)行业的全球市场领导者。Park公司拥有32项与AFM技术相关的专利, 是全球首家推出商业原子力显微镜产品的上市公司。Park公司始终致力于纳米领域的形貌&力学测量和半导体先进制成工艺的计量的新技术新产品的开发。Park独有的技术是将XY和Z扫描器分离,实现探针与样品间的真正非接触,避免形貌扫描过程中因探针磨损带来的图像失真,快速成像还可以大大提高测试效率,降低实验测试成本。Park公司成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park公司的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可。 为了给客户提供高效便捷的售后服务, Park公司在中国区建立有售后服务中心并配有备件仓库。 此外Park还开启了Park AFM奖学金项目,最近还扩大了一个在线学习项目,提供公司网络研讨会、现场演示,并开展纳米科学研讨会,以促进应用和技术发展。可关注“Park原子力显微镜”公众号,查看公众号文章并阅读福布斯新闻原文。
  • 叶恒强:电子显微世界求索路
    在叶恒强看来,让中国的&ldquo 准晶&rdquo 研究在短时间内追赶甚至超越国际先进水平,已是很大的成就。   在大炼钢铁的时代,懵懂的他选择了金属物理作为自己科学人生的起点   40岁时第一次出国,他深知自己的科研旅程其实才刚刚起步   作为我国最早从事固体原子相研究的科学家之一,他与合作者对&ldquo 准晶&rdquo 的独立发现,在很短的时间内便完成了对世界先进水平的追赶甚至超越。   他,就是中国科学院院士、中科院金属研究所研究员叶恒强。   在前不久召开的两院院士大会期间,《中国科学报》记者见到了这位已年过七旬的学者。在他低调、质朴的身影背后,是一段无怨无悔的人生之路。   书房内外的世界   尽管在沈阳生活了近半个世纪,但毕竟是乡音难改。与叶恒强交谈,你不难分辨出他的普通话里隐约夹杂着粤港口音。   祖籍广东番禺,1940年出生在香港。自来到这个世界起,叶恒强的生命旅程似乎已经注定要与汹涌奔腾的&ldquo 大时代&rdquo 纠葛在一起。   叶恒强出生前,其父母携子女家眷从广东举家迁往香港,投奔亲属以躲避抗日战火。家里人原本以为,当时作为英国殖民地的香港不会卷入战事。没有想到,叶恒强出生一年后,香港沦陷。在异地他乡的生活日渐艰难,叶家决定重返故里,回到广州。   如今想起广东的老家,叶恒强最难忘的还是阁楼二层那间不到20平方米的书房,高高大大的书架围转一圈,上面摆满了父亲的藏书。叶恒强的父亲毕业于复旦大学文学系,后在一所中学任教,家中藏书虽以文史类为主,但其实非常之&ldquo 杂&rdquo :商务印书馆排印的《丛书集成》占据不少空间,还有当年风行一时的《语丝》和《生活》周刊、光怪陆离的武侠小说《蜀山剑侠传》,当然也少不了《水浒传》《红楼梦》等名著。   到了读书的年纪,这个书房便成了叶恒强的精神乐土,&ldquo 整天没事就泡在里面&rdquo 。他最喜欢看的是《隋唐演义》这样的历史小说,还有杂志上的那些图片。   念中学时,叶恒强学起文科来可谓驾轻就熟,反倒是理科需要更下功夫。周围的同学大都有着明确的志向,文科好的开始当&ldquo 小记者&rdquo 写文章,理科好的已经开始自学微积分。   &ldquo 文理两方面都有比自己强很多的同学在努力。&rdquo 叶恒强争强好胜,每一门课程都丝毫不敢马虎。   在浓厚的文学家风中长大,在外人看来,&ldquo 学文科&rdquo 似乎是摆在叶恒强面前再自然不过的选择。然而,在他人生中的第一个重要岔路口,&ldquo 大时代&rdquo 再度为他的人生之路留下刻痕。   1955年开始&ldquo 肃反&rdquo ,1956年发出&ldquo 向科学进军&rdquo 的号召,1957年&ldquo 反右&rdquo 如火如荼,1958年&ldquo 大跃进&rdquo 拉开序幕&hellip &hellip 一系列政治运动如洪流般席卷而来,加之看到满腹经纶的父亲未能得志,叶恒强对文科之路有些望而却步。   叶恒强高中毕业那年,恰逢国家号召&ldquo 大炼钢铁&rdquo 。深知钢铁是国家富强之急需,但他内心里却并不满足于&ldquo 仅仅是去炼钢炼铁&rdquo ,还希望能够学到更多的科学知识。叶恒强最终为自己找到了一个&ldquo 两全其美&rdquo 的解决方案&mdash &mdash 报考北京钢铁学院(现北京科技大学)的金属物理专业。   &ldquo 这个专业既是物理,又跟钢铁相关。&rdquo 谈及当初的选择,叶恒强笑言自己只是&ldquo 小孩子想法&rdquo 。   最好的年华   1958年,叶恒强如愿考入北京钢铁学院金属物理专业,告别家人北上求学。作为新中国成立后筹建的第一个金属物理专业,被誉为&ldquo 四大名旦&rdquo 的著名金属物理学家柯俊、张兴黔、肖纪美、方正知均任教于此,叶恒强有幸聆听大师教诲。   大学毕业前,来自中科院金属研究所的物理冶金和晶体学家郭可信,带来的一场关于透射电子显微镜的学术报告让叶恒强印象深刻:&ldquo 电镜在当时还是很稀罕的东西。&rdquo   1964年大学毕业,叶恒强考入中科院金属研究所攻读研究生。入学时,因最初选择的导师受命率团前往&ldquo 三线&rdquo 参与铀提炼工作,他被分配给了此前曾有一面之缘的郭可信,由此结缘电子显微学。   自温暖的南方迁徙至冰天雪地的东北,年轻的叶恒强对异乡的环境和气候并没有感到不适,每月定向供应的15斤细粮足以填饱肚子,&ldquo 冷根本不是个事儿&rdquo 。   然而在那个特殊的年代,跟绝大多数的中国知识分子一样,叶恒强同样无法侧身书斋,安心学术,各种社会和政治运动才是不得不面对的&ldquo 主业&rdquo 。入学第二年,叶恒强随导师郭可信前往沈阳市法库县开展&ldquo 四清运动&rdquo ,回头想来,&ldquo 接触到一个真实的社会&rdquo 恐怕是这个年轻学子深入穷乡僻壤最大的收获。1966年5月,师徒二人返回位于沈阳的金属所,不久之后,&ldquo 文革&rdquo 爆发。   &ldquo 文革&rdquo 期间,金属所划归国防科工委,叶恒强1967年研究生毕业后的去向与科研全然无关。作为知识青年,他与国防科工委所属应届毕业生一起,开始&ldquo 上山下乡接受工农兵再教育&rdquo ,被派往地处辽东半岛腹地的海城县种起了水稻。这一去,又是两年半。   事实上,从1958年上大学,一直到1976年&ldquo 文革&rdquo 结束,近20年的时间里,叶恒强的学术之路在&ldquo 大时代&rdquo 的背景中蜿蜒曲折,布满荆棘。   &ldquo 现在想来,我们这代年轻人最宝贵的年华都晃悠过去了。&rdquo 叶恒强的语气中并无悔恨,这句轻描淡写的话语,旁人听来却是唏嘘。   幸运的是,在读研期间有限的学习时间里,叶恒强还是掌握了对晶体材料的组织结构缺陷进行电子束衍射分析的理论和方法,&ldquo 虽然都不是很完整,也没有发表论文,但毕竟算是入道了&rdquo 。   郭可信的&ldquo 大弟子&rdquo   要说那段被荒废的时光中叶恒强最大的人生收获,那一定是他与郭可信缔结下的深厚师生情谊。尽管并非郭可信的入门弟子,但叶恒强却是当之无愧的&ldquo 大弟子&rdquo 。自研究生入学算起,他始终未离开过金属所,且一直在郭可信的指导下学习、工作,两人成为至交。   在外人眼里,郭可信看起来总是那么严厉,甚至有些不近人情,然而在叶恒强的心中,恩师始终对学生怀有满满的爱意。   1978年,中国迎来&ldquo 科学的春天&rdquo ,改革开放让中国科学家有机会再次走出国门交流学习。郭可信觉得自己的学生应该练好英语口语,便拿出著名的《林肯在葛底斯堡的演讲》让大家背诵。   &ldquo 我说普通话都有口音,更不要说英文了。&rdquo 叶恒强一边打趣,一边回忆说,尽管两人已成同事,但郭可信仍要求叶恒强每天早上提前一小时到达他家练习口语,并亲自指导。   1980年6月,叶恒强前往美国亚利桑那州立大学做访问学者,首次走出国门接触高分辨电子显微术的发展前沿。此时,他已年届四十。   到了美国,对方教授自然需要了解一下这个远道而来的中国学者的学术基础。令叶恒强感到尴尬的是,尽管自己以科研人员的身份工作了十余年,但能够拿出手的成果,也仅有最近两年发表在国内期刊上的两篇中文文章。   对方甚为不解,问道:&ldquo 那你们都去干什么了呢?&rdquo 叶恒强有些无言以对,因为不知该如何说清楚中国科学家在过去十余年的坎坷命运和遭遇。   事实上,在&ldquo 文革&rdquo 末期科研工作逐渐得以恢复时,叶恒强很快就完成了一项重要工作。在对高温合金材料的故障分析中,他发现了冲击韧性随硅含量出现马鞍形变化的规律,为冶金产品的质量改进作出了贡献。   在这项能够转化为工业应用的基础研究中,其实包含了叶恒强科研工作的目标逻辑&mdash &mdash 经由电子显微镜进入材料的微观世界,在细微至原子的尺度上,架设起材料组织结构与材料性能之间相互关联的&ldquo 桥梁&rdquo 。   没有遗憾的过往   上世纪70年代起,国际学界掀起利用高分辨率电子显微术进行合金相研究的热潮。然而我国的相关研究,在很长时间内缺乏先进设备和技术手段。   1980年,郭可信向中科院领导立下&ldquo 军令状&rdquo ,申请引进当时最为先进的JEM200CX高分辨率电子显微镜,保证拿到设备后&ldquo 三年内必出成果&rdquo 。1980年秋,郭可信的申请得到批准。   正是这台电子显微学研究的&ldquo 利器&rdquo ,为叶恒强的科研生涯带来了他至今最为满意的成果。   1984年,叶恒强与合作者在高温合金的晶体块体中,发现了传统晶体学所不允许的五次对称性。就在他们着手进行深入研究时,以色列科学家达尼埃尔· 谢赫特曼在《物理评论快报》上发表了与该研究相似的成果和结论,并将出现该独特现象的化合物命名为&ldquo 准晶&rdquo 。   谢赫特曼的论文发表于1984年年底,而早在1982年,他其实就已经观察到&ldquo 准晶&rdquo 现象。由此,谢赫特曼独享了2011年的诺贝尔化学奖。   直到这项研究获颁&ldquo 诺奖&rdquo ,叶恒强及其合作者在郭可信指导下对&ldquo 准晶&rdquo 的研究历程才重新浮出水面。1984年,郭可信的学生张泽与郭可信、叶恒强依据拓扑密堆相中二十面体取向有序的思路,在镍钛合金中也观测到了二十面体&ldquo 准晶&rdquo 相。   &ldquo 我们的发现是独立的,并且与国外的研究属于不同的思路和体系。&rdquo 叶恒强说,&ldquo 准晶&rdquo 动摇了晶体周期性的规律,拓展了对物质基本结构的认识。   此后,叶恒强又与合作者发现并研究了八次对称、立方对称等&ldquo 准晶&rdquo 相,我国的&ldquo 准晶&rdquo 实验研究由此跃居国际前列。这一系列研究,获得1987年国家自然科学奖一等奖。   说起&ldquo 准晶&rdquo ,有人为中国科学家&ldquo 错失诺奖&rdquo 扼腕叹息。而在叶恒强看来,让中国的&ldquo 准晶&rdquo 研究在短时间内追赶甚至超越国际先进水平,已是很大的成就,&ldquo 没有什么遗憾,因为科学就是这样&rdquo 。   上世纪90年代起,叶恒强的工作重心逐渐转向科研管理,除了先后担任中科院金属所副所长、所长,还兼任中国电子显微镜学会理事长、&ldquo 973&rdquo 计划顾问专家组成员等职。   &ldquo 出差比较频繁,人就跟&lsquo 开关&rsquo 似的来回拨,每周都在不同的地方。&rdquo 叶恒强坦陈,他很难在自己的科研工作和管理工作间做到很好的平衡。   即便如此,叶恒强始终保持着对科研的专注和热情,发表论文400余篇,并与人合作出版了《电子衍射图》《高分辨电子显微学》《高空间分辨分析电子显微学》等6部著作。   如今,少了很多兼职的叶恒强能够更加从容地回归到他所钟爱的电子显微世界。   借助先进的像差校正电子显微镜,科学家们对材料组织结构的观察已经能够深入&ldquo 亚埃米尺度&rdquo 。&ldquo 走进亚埃世界&rdquo ,叶恒强期待与年轻的科学家们一起,揭示出更多物质的奥秘。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量)的羟丙甲基纤维素用于片剂包衣材料,高分子量(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 自动乌氏黏度仪在羟丙甲基纤维素中的应用
    羟丙基甲基纤维素(hydroxypropyl methyl cellulose),亦有简化作羟丙甲纤维素(缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于工业助剂、眼科学用润滑剂,又或在口服药物中充当辅料或赋型剂。在工业领域中,羟丙甲基纤维素的主要用途是为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、化妆品等产品生产中,羟丙甲基纤维素也可作增稠剂、稳定剂、保水剂、成膜剂等。在合成树脂领域,添加羟丙甲基纤维素可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点。羟丙甲基纤维素在生产和研发中关键的指标是分子量,根据分子量不同,羟丙甲基纤维素制品可用于不同的用途,低分子量级别(分子量100000)的羟丙甲基纤维素可用作片剂骨架的阻滞剂、有延缓药物释放的作用。目前羟丙甲基纤维素分子量常用的测试方式是乌氏毛细管法,乌氏毛细管法实验操作简单,数据重复性好,在大多数高分子材料研发及相关质量控制中都起到关键作用,尤其是ZVISCO自动乌氏黏度仪因其自动化程度高,节省人力的同时进一步提高了实验数据的可靠性。以IV2000系列自动乌氏黏度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例: 实验流程:1. 智能配液过程使用ZPQ智能配液器进行配液,点击配液功能后,直接输入浓度和质量(可通过连接天平直接获取),可直接计算出所需要的目标体积进行移液并且精度可达0.1%。可避免因手动配液方法导致的精度差、效率低及数据误差等问题。ZPQ智能配液器还具有密度计算功能,移取液体体积后,输入质量(可与天平通讯,直接获取),即可自动计算出密度值。2. 溶样过程MSB系列多位溶样块,采用金属浴的方式进行加热溶样并具有自动搅拌功能,同时可容纳15个样品。溶样效率快、转速可调、溶样时间可调、溶样温度可调、溶样温度可达180℃。3. 测试过程IV2000系列自动乌氏黏度仪可实现自动连续测量,全程无需人员看管。并且采用的智能红外光电传感器,保证测量时间可达到毫秒级,可有效确保实验数据的精度,避免人工实验导致误差。4. 测试结果:IV2000系列自动乌氏黏度仪连接电脑端,得出结果可在计算机上直接显示,并有数据储存、多样化粘度分析报表等多种功能。
  • 1150万!北京理工大学低温磁场扫描隧道显微镜、多功能针尖增强拉曼光谱仪采购项目
    一、项目基本情况1.项目编号:0873-2301HW2L0473项目名称:北京理工大学低温磁场扫描隧道显微镜采购预算金额:800.000000 万元(人民币)采购需求:采购低温磁场扫描隧道显微镜1套;用于科研,接受进口产品投标,详见附件合同履行期限:合同签订后2个月内出具图纸,采购人批复图纸后8个月交付。本项目( 不接受 )联合体投标。2.项目编号:CFTC-BJ01-2311049项目名称:北京理工大学多功能针尖增强拉曼光谱仪预算金额:350.000000 万元(人民币)采购需求:采购标的用途数量是否接受进口产品投标简要技术参数或要求描述多功能针尖增强拉曼光谱仪教学及科研1套是详见招标文件第四章“货物需求一览表及技术规格”合同履行期限:签订合同之日起至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月04日 至 2023年12月11日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:北京中教仪国际招标代理有限公司512室,北京市海淀区文慧园北路10号方式:建议采用汇款形式进行报名(节假日、工作日均可),请按本公告“其他补充事宜”所述账户信息汇款(不接受个人账户汇款),请您在本公告页面最下方附件自行下载“报名登记表”,填写完成后以word文本形式和汇款底单一起发送至shige@china-didac.com,工作日可以现场登记报名,招标文件售后不退。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京理工大学     地址:北京市海淀区中关村南大街5号        联系方式:林老师,010-68917981      2.采购代理机构信息名 称:北京中教仪国际招标代理有限公司            地 址:北京市海淀区文慧园北路10号            联系方式:施歌、李璟琨、卢琛曦、杨硕,010-59893121、010-59893127、010-59893109            3.项目联系方式项目联系人:施歌、李璟琨、杨硕、蒋旭、谢杰、韩寿国电 话:  010-59893121、010-59893129
  • 陈良怡/李浩宇合作团队发明:稳定提升荧光显微镜2倍分辨率
    2014年诺贝尔化学奖授予了荧光超分辨显微技术,利用荧光分子的化学开关特性(PALM/FPALM/STORM)或者物理的直接受激辐射现象(STED),实现超越衍射极限的超分辨成像。尽管如此,活细胞中的超分辨率成像仍然存在两个主要瓶颈:(1)超分辨率的光毒性限制了观察活细胞中精细生理过程;(2)受限于荧光分子单位时间内发出的光子数,时间和空间分辨率不可兼得。受限于这个瓶颈,为了在活细胞上达到60 nm空间分辨率极限,现有超分辨率成像手段需要强照明功率(kW~MW/mm2)、特殊荧光探针和长曝光时间( 2 s)。强照明功率引起的强漂白会破坏真实荧光结构的完整性,长曝光时间在图像重构时导致运动伪影,降低有效分辨率。迄今为止,基于光学硬件或者荧光探针的改进无法进一步提升活细胞超分辨率的时空分辨率,实现毫秒尺度60 nm的时空分辨率成像。2021年11月16日,哈尔滨工业大学李浩宇教授团队与北京大学陈良怡教授团队合作在Nature Biotechnology上发表论文Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy【1】。他们另辟蹊径,发明基于新计算原理的荧光超分辨率显微成像,进一步拓展荧光显微镜的分辨率极限。通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号空时连续性先验知识【2】,他们发明了两步迭代解卷积算法,即稀疏解卷积(Sparse deconvolution)方法,突破现有荧光显微系统的光学硬件限制,首次实现通用计算荧光超分辨率成像。结合自主研发的超分辨率结构光(SIM)系统,实现目前活细胞光学成像中最高空间分辨率(60nm)下,速度最快(564Hz)、成像时间最长(1小时以上)的超分辨成像。结合商业的转盘共聚焦结构光显微镜,实现四色、三维、长时间的活细胞超分辨成像。1、应用举例:DNA折纸标准样本验证为了在已知结构样本中验证分辨率的提升,研究者设计并合成了两个荧光标记位点的DNA折纸样本,每个位点用4~5个Cy5标记。当这些分子间距为60 nm、80 nm和100 nm时,它们在TIRF-SIM下几乎无法区分,但在经过稀疏解卷积重建后(Sparse-SIM,图1)可以很好地区分它们中间的距离。整体结果可以用单分子定位显微镜ROSE【3】交叉验证,与Sparse-SIM得到的DNA折纸的荧光对间距以及不同间距荧光对在玻片上的分布一致。图1:Sparse-SIM解析不同距离DNA折纸样本。(a)在相同视场下,用配对Cy5标记不同距离(60 nm, 80 nm, 100 nm, 120 nm)的DNA折纸样品,用TIRF(左)、TIRF-SIM(中)和Sparse-SIM(右)成像。(b)在TIRF、TIRF-SIM和Sparse-SIM下,黄色(60 nm)、蓝色(80 nm)(80 nm)、绿色(100 nm)和红色(120 nm)框包围的放大区域。比例尺:(a)2 μm;(b)100 nm。2、应用举例:Sparse-SIM超快活细胞成像揭示核孔结构和胰岛素囊泡早期融合孔道在活细胞成像中,稀疏结构光显微镜(Sparse-SIM)可以解析标记不同核孔蛋白(Nup35, Nup93, Nup98,或Nup107)的环状核孔结构,而它们在传统结构光显微镜(2D-SIM)下形状大小与100 nm荧光珠类似(图2c, 2d)。由于相机像素尺寸与孔径直径类似,测量的核孔拟合直径与Sparse-SIM的分辨率相当。校正后Nup35和Nup107孔的直径分别为~66 ± 3 nm和~97 ± 5 nm,而Nup98和Nup93直径大小处于这个范围中(图2e, 2f),结果与以前用其他超分辨成像方法在固定细胞中获得的直径相符【4】。有趣的是,12分钟超分辨成像可以显示活细胞中核孔形状变化,这可能反映了核膜上的单个核孔复合物动态重新定向到焦平面或远离焦平面(图2g),这是其他超分辨方法难以观察到的。图2:Sparse-SIM解析核孔蛋白动态过程。(c)用Sparse-SIM观察活COS-7细胞中以Nup98-GFP标记的动态环状核孔的典型例子,持续时间超过10分钟。上下区域分别显示2D-SIM和Sparse-SIM下的图像。(d)比较(c)中青色框中的核孔结构快照与100 nm荧光珠在不同重建方法(2D-SIM、20次RL解卷积后、50次RL解卷积后、Sparse-SIM)下的结果。(e)由于核孔的大小与Sparse-SIM的分辨率和像素大小相当,按照Supplementary Note 9.1的协议(详情请见文章),分别推导出Nup35-GFP(红色)、Nup98-GFP(黄色)、Nup93-GFP(绿色)和Nup107-GFP(青色)标记的核孔结构的实际直径。(f)Nup35(66 ± 3 nm, n=30)、Nup98(75 ± 6 nm, n=40)、Nup93(79 ± 4 nm, n = 40)、Nup107(97 ± 5nm ,n = 40)的平均直径环。左右两幅蒙太奇分别为传统Wiener重构或稀疏解卷积后的结果。(g)在6个时间点对 (c)中的品红色方框放大并显示。比例尺:(c)500 nm;(d, g, f)100 nm。通过滚动重建,Sparse-SIM的时间分辨率可达564 Hz,识别出来INS-1细胞中VAMP2-pHluorin标记的、更小的胰岛素囊泡融合孔道(如~61 nm孔径)。它们在囊泡融合的早期出现,孔径小(平均直径~87 nm),持续时间短(9.5 ms),不能被之前传统的TIRF-SIM所识别【2】。另一方面,鉴别出来的稳定融合孔在囊泡融合的后期出现,孔径大(平均直径~116 nm),持续时间长(47 ms),是之前看到的结构【2】。值得一提的是,虽然这里发现的囊泡早期融合孔状态很难被其他的超分辨率成像手段所直接验证,但是它们的发生频率与30多年前用快速冷冻蚀刻电子显微镜所观察到的“小的融合孔发生概率远低于大的融合孔”现象相吻合【6】。3、应用举例:稀疏解卷积是提升荧光显微镜分辨率的通用方法与当下热门的深度学习超分辨率显微重建不同,信号的空时连续性、高空间分辨率导致的荧光图像相对稀疏性这两个先验知识,是荧光显微成像的通用先验知识,不依赖于样本的形态以及特定的荧光显微镜种类。因此,稀疏解卷积是通用荧光显微计算超分辨率成像算法,可被广泛应用于提升其他荧光显微模态分辨率,观察不同种类细胞器的精细结构及动态(图3)。图3 | 稀疏解卷积广泛应用于提升不同显微成像模态空间分辨率,揭示各类细胞器精细结构动态。比如稀疏解卷积增强的商业超分辨转盘共焦结构光显微镜(SD-SIM)【7】,可以实现XY方向90纳米,Z方向250 纳米的空间分辨率,清晰记录分裂期7 μm深度内的全细胞内所有线粒体外膜网络(图4)。同样,若稀疏解卷积增强与商业SD-SIM结合,可以很容易实现活细胞上的三维、四色超分辨率成像。稀疏解卷积可以与膨胀显微镜(ExM)【8】结合,解析细胞膨胀后的复杂结构;也可以与宽场、点扫描的共聚焦、受激辐射损耗显微镜(STED)【9】以及微型化双光子显微镜(FHIRM-TPM 2.0)【10】结合,实现近两倍的空间分辨率提升。因此,稀疏解卷积的提出,将帮助使用各种各样荧光显微镜的生物医学研究者更好地分辨细胞中的精细动态结构。图4 | Sparse SD-SIM解析活细胞三维线粒体外膜网络。(k)活体COS-7细胞的线粒体外膜(Tom20-mCherry标记)的三维分布,颜色表征深度。(l)SD-SIM原始数据与Sparse SD-SIM的水平(左)和垂直(右)的白色框区域放大展示。比例尺:(k)5 μm;(l)1 μm。总之,通过稀疏解卷积算法(Sparse deconvolution)来实现计算荧光超分辨率成像,与目前基于特定物理原理或者特殊荧光探针的超分辨率方法都不相同。与超快结构光超分辨显微镜结合形成的Sparse-SIM是目前活细胞光学成像中,分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨光学显微成像手段。它也可以与现有的多数商业荧光显微镜结合,有效提升它们的空间分辨率,看到更清楚的精细结构动态。
  • 牛津仪器Vero原子力显微镜荣获R&D百强奖和2024年全球显微镜最佳实践新产品创新奖
    牛津仪器采用干涉仪技术的新一代原子力显微镜(AFM)Vero 近期连续获得三项全球知名奖项!Vero AFM获得了权威科学技术杂志《R&D Magazine》授予的2024年R&D 百强奖(2024 R&D 100 Award)和市场颠覆者特别认可铜奖(2024 Market Disruptor Special Recognition Bronze Award)。该奖项由来自世界各地的专业人士组成的评审团选出,以表彰过去一年中100个最具技术意义的新产品。Frost & Sullivan最佳实践奖旨在表彰在领导力、技术创新、客户服务和战略产品开发等领域表现卓越的颠覆性企业和产品。Vero AFM被授予2024年全球显微镜行业最佳实践新产品创新奖(2024 Best Practices New Product Innovation Award)。 牛津仪器 Asylum Research首席技术官Roger Proksch博士表示:“很荣幸牛津仪器原子力显微镜能够获得这些受人尊敬的奖项。在过去的25年里,牛津仪器Asylum Research一直在用其产品重塑AFM行业,这些奖项是我们承诺持续推进AFM技术进步的证明。”Vero 是牛津仪器 Asylum Research于2023年11月在材料研究学会上发布的新一代原子力显微镜,由Asylum Research与法国里昂大学合作开发。Vero的高级产品营销经理Ben Ohler博士说:"Vero这个名字是基于拉丁词根‘ver’,意思是真理。Vero采用的正交相位差分干涉(QPDI)检测技术,能精准地测量探针的真实竖直位移,从而提高纳米材料测量的准确度和精密度。Vero AFM重新定义了AFM的极限,开创了材料科学研究的新时代。”
  • 上海高研院在量子增强的超分辨显微成像机制研究中取得进展
    中国科学院上海高等研究院王中阳课题组提出新型的基于荧光量子相干的超分辨显微成像方法,研究成果以Breaking the diffraction limit using fluorescence quantum coherence为题,近日发表在 《光学快报》(Optics Express)上。 在经典光学成像中,显微镜的空间分辨率受阿贝衍射极限限制为?λ/2NA,其中λ为光波长,NA为显微物镜的数值孔径。近二十年来,各种超分辨荧光显微成像技术的出现打破了光学衍射极限,将空间分辨率提高到纳米尺度,主流技术包括随机光学重构超分辨成像技术(STORM)、结构光照明显微技术(SIM)和受激辐射损耗技术(STED)。其中STED和STORM通过不断提升测量精度极限来提高分辨率,如STED利用非线性受激辐射损耗机制来压制衍射受限的埃里斑尺寸再通过点扫描获得超分辨成像,而STORM通过统计荧光分子中心位置的定位精度来超衍射极限分辨,其分辨率由测量精度即统计分辨率极限? ?N?1/2决定,?N?为探测到平均光子数。 在量子光学中,现有研究表明利用光的量子性质能够突破经典的空间分辨率限制,从而进一步提升分辨率。例如,利用N个纠缠光源的光子干涉能够将分辨率提升到海森堡极限?1 / N。而在荧光显微镜中,同样可以利用荧光光源的量子特性来实现分辨率的提升。单个荧光分子或原子的发射具有单光子辐射源的性质,在一次脉冲激发下仅发出单个光子,因此光子发射统计概率不同于热辐射光源的一簇一簇的光子辐射,而是一个接一个发出,体现了明显的反聚束统计特性,并且理想的单光子源发出的光子在光谱、偏振上完全相同,即具有高的光子不可区分特性。上述荧光的量子性质已被实验证明存在于荧光显微成像常用的荧光染料中,例如单个有机染料分子、单个量子点以及单个金刚石色心,为发展新型的超分辨荧光显微成像技术带来了新的量子信息维度。 基于此,王中阳课题组提出了基于荧光光源的量子性质的超分辨成像方法,并对成像机制展开研究。研究者从荧光光源的发光机制出发,考虑了大多数荧光染料所包含的退相和光谱扩散机制,构建了通用的单光子波函数并考虑其在显微系统中的时间和空间维成像变换;通过计算双光子干涉的时间和空间的探测概率分布,从而获得荧光量子相干统计模型。该模型为宏观部分相干理论与荧光微观辐射机制提供了桥梁。基于此模型,研究者还提出了一种基于荧光量子相干性的超分辨荧光显微成像方法。利用新型的单光子雪崩探测器(SPAD)阵列统计荧光光子的时间和空间涨落p(r, t)。为了提取荧光光子相干性,通过引入时间门Tg作为光子到达时间的后选择窗口来提取高度相干的光子并沿Tg积分构造时间相干调制函数p(r, Tg),如图1所示。 时间相干调制函数与荧光光源空间分离量s有关。因此,通过准确测量时间相干调制函数,并预先确定其它变量,可从中准确提取出衍射极限内荧光光源空间分离距离s。此时,分辨率(即光源分离距离s)取决于荧光时空相干性的测量精度,而相干性测量精度又与探测到的光子数和空间采样率有关,如图2所示,仿真结果表明,当探测到的光子数达到104时,分辨率可以达到50 nm。该新型量子增强成像技术能够发掘荧光量子时空涨落特性及量子相干性,有助于实现荧光弱信号下的快速超分辨成像。  论文链接   图1.基于荧光量子相干的超分辨荧光显微成像方法示意图。(a)实验装置图;(b)传统成像方式和SPAD阵列探测方案对比图;(c)成像过程时序图;(d)荧光光子时空相干性概率分布;(e)引入时间门调制后荧光光子时空相干性概率分布。 图2.不同累计光子数下p(0, Tg)的测量精度(荧光光源距离s分别为50和100 nm)
  • 迅捷高效!全新增强现实显微镜系统SZX-AR1问世
    在医疗器械和电子等行业中,产品结构复杂种类繁多,且低产量生产,难以实现自动化,大量的装配和检查工作是通过体式显微镜手动操作完成。产线工作面临着效率低下,以及对人体造成损伤的风险。而AR技术的出现,似乎为以上的痛点,提供了非常好的解决思路。正因如此,我们的AR1模块,应运而生。AR1模块与我们的SZX系列体式显微镜配合使用,将后者转变为增强现实工具,从而提高基于显微镜的制造任务和培训的速度和效率。改变工作方式 AR1显微镜系统使您能够将文本和数字图像投影到显微镜的视野中,使组装人员可以轻松地遵循指示、阅读笔记,甚至观看视频,而无需将眼睛从目镜移开。AR1模块与奥林巴斯SZX系列体式显微镜配合使用,将其转化为增强现实工具,提高基于显微镜的制造任务的速度和效率,并培训新员工。更快、更高效的组装过程传统的制造过程中,工人需要反复将目光从目镜移开去检查装配说明,或在开始工作前记住这些说明,这两种方法都效率低下,可能会导致错误。有了AR功能,就可以将装配说明、指导手册、图像、十字线、量表或注释投影到显微镜的视野中,可以帮助工人降低工作的错误,并使他们更舒适地工作,这样工人就可以专注于自己的任务,而不必反复看向别处,提高了工作效率。如果在制造过程中出现问题,装配人员可使用Microsoft Teams等第三方协作软件,与场外经理或工程师分享目镜中的实时视图,从而获得相应指导,及时解决问题。让新员工快速成长在传统的培训工作流程中,现场培训师会指导新员工组装过程的每个步骤,并展示正确组装后的组件外观。受训者必须将目光从目镜移开,看看培训师在说什么,然后在显微镜下操作练习。使用AR1系统后,受训者可以在眼睛不离开目镜的情况下接受培训,从而保持注意力集中,使得培训更高效,更灵活。如果培训师需要前往不同的地点,这会增加培训过程的时间和成本。有了AR1系统,培训师可以远程开展工作,而无需出差。这样更高效,省去了差旅费用,使其更具成本效益。因为指令可直接投影到显微镜视野中的样品上,制造商也可选择使用录制好的视频来培训新员工,无需聘请现场培训师。与客户现有体式显微镜无缝配合全新SZX-AR1增强现实系统可轻松加装到现有的SZX系列体式显微镜上,从而简化复杂的基于显微镜的制造任务以及装配人员的培训。我们还为体式显微镜提供多种人体工程学组件,让您在工作时保持舒适。符合人体工学的倾斜式三目镜筒和眼点调节器使用户能够调整显微镜,以便在工作时保持舒适、自然的姿势。
  • 中科科仪国产高端场发射枪扫描电子显微镜亮相高交会
    11月15日-19日,第二十五届中国国际高新技术成果交易会(以下简称“高交会”)在深圳隆重举办。中科科仪作为国科控股与国科科仪高端装备制造版图中的重要组成部分,携众多前沿技术及硬核产品亮相国科控股高端装备板块。16日上午,中科科仪总经理助理兼科仪光电总经理孟祥良在高交会(福田展区)新产品新技术精品发布活动中进行了《场发射枪扫描电子显微镜》的精彩报告,带来了具有自主知识产权的国产高端场发射枪扫描电子显微镜KYKY-EM8100并进行详细介绍。【发布现场】扫描电子显微镜是一种用于高分辨率微区形貌分析的大型精密仪器,具有景深大、分辨率高、成像直观、立体感强、放大倍数范围宽以及待测样品可在三维空间内进行旋转和倾斜等特点,是中国科技发展中不可或缺的高端科学仪器。中科科仪具有50多年的电镜研制历史,具备深厚的电子光学技术基础,是国内率先实现扫描电子显微镜产业化的企业,在产品的研发和制造方面拥有丰富的经验。针对基础科学研究和高精尖工业制造对国产场发射枪扫描电子显微镜的迫切需求,2013年,北京中科科仪股份有限公司牵头,联合北京大学、中科院微电子所、中科院生物物理所、国家环境分析测试中心、清华大学等单位,承担国家重大科学仪器设备开发专项“场发射枪扫描电子显微镜开发和应用”,在2014年成功推出了国内首台肖特基场发射枪扫描电子显微镜KYKY-EM8000,并在此基础上提升电子光学系统综合性能,于2017年推出了国产高端场发射枪扫描电子显微镜产品KYKY-EM8100,分辨率优于0.9nm@30kV,3nm@1kV,解决了高分辨率电子光学成像系统、系统集成调试等关键技术,成为国内首创、达到国际同类产品技术水平、具有完全自主知识产权的肖特基场发射枪扫描电子显微镜。KYKY-EM8100型扫描电子显微镜是中科科仪承担科技部国家重大科学仪器设备开发专项“场发射枪扫描电子显微镜开发和应用”研制成果的一部分,具有自主设计制造了低像差物镜、突破了电子束镜筒加速技术、自主研制了电子光学智能化控制系统等三大技术优势。目前该设备已完成科技成果转化及产业化落地,并形成批量销售,深受各行业用户好评,为我国纳米科技、材料分析、分子生物学研究与半导体检测领域提供技术支撑,取得了显著的经济效益和社会效益。场发射枪扫描电子显微镜是纳米技术、生物技术、医学、化学、物理学研究的重要工具,在半导体集成电路加工、微机电系统、微型传感器等信息技术支撑领域和环境保护领域也发挥着重要作用,广泛应用于金属、陶瓷、矿物、冶金、高分子、复合材料、微生物、新能源材料的表面形貌进行观察及微区的点、线、面成分分析 同时,场发射枪扫描电子显微镜在虫害的防治、灾害(火灾、失效分析)鉴定、产品质量鉴定等方面也有广泛的应用,在我国的基础科学研究、生产工艺控制、各分类学科研究的过程中发挥着不可或缺的重要作用。场发射枪扫描电子显微镜的研制成功,是我国电子光学研究水平的集中体现,是我国电子光学领域的重要成果,对摸索我国高端大型科学仪器的发展模式具有重要意义。当前,紧随科研需求和市场热点,中科科仪积极推进电子束等光学仪器设备的研究制造,加速高端仪器设备国产化替代进程,满足更多的科研及产业客户的特殊需求,助力中国高新技术产业高质量发展。未来,中科科仪将加快推进电子光学高端科学仪器装备的研制进程,提升国产化替代水平,不断解决高端仪器装备的问题,高质量引领重大科学仪器攻关及产业化发展,为强化国家战略科技力量、实现高水平科技自立自强做出新的贡献。
  • 中华口腔医学会口腔生物医学专业委员会《生命的艺术》——首届年度显微图片展提名作品公布
    本文中所有显微摄影作品皆使用EXAKT硬组织切磨系统制片-前 言-医学与艺术的交集,实际上是生命的馈赠。医学是人学,性命相托,仁心仁术。艺术也是人学,明心见性,直指生命。因此二者在求真和求美的探索中,自然拥有了共同的价值诉求。中华口腔医学会口腔生物医学专委会是我国口腔医学领域高水平科学研究、学科交叉融合以及优秀杰出人才聚集的重要学术“社区”,其学术年会已成为我国口腔医学各专业从事生物医学和基础研究的专家学者、青年医师研究生和博士后等学术交流的重要平台。为促进科学文化发展,活跃专委会的科技人文氛围,培养科研工作者的创新意识,激发他们发现美、创造美的热情和兴趣,本次年会特别增加了一项“生命的艺术——首届年度显微图片展”活动。在专委会发出征稿通知之后,来自全国近20 所院校的师生积极响应,共投稿显微摄影作品125 幅。经以王松灵院士为主席的九位审读专家组成员在线上线下的认真审阅和讨论,从图片的原创性、科学性和艺术性三个方面进行综合考量,最终确定年度图片1 幅,年度提名图片20 幅。在此汇集成册,与各位同仁分享、交流。这些作品几乎均为创作者在日常科研工作中以不同的技术手段捕捉到的微观生命瞬间,科学的“透镜”似乎为我们展现出一幅幅艺术的“魔幻”,一边是细胞、分子层面的微观抵达,另一边好似一块既陌生又熟悉的“优诗美地”。这里,本是科学严谨的领地,因为其关乎生灵,便开启人们自由逸放的审美思绪。在此,我们惊叹中国古代哲学体系中“天人合一、道法自然”的天道规律。原来早于现代科学,这种“尽精微而致广大”的宇宙观便已根植于我们生存的大地。感谢各位作者以他们现代技术的视野,为我们定格生命律动的瞬间,张扬蓬勃的艺术活力。换一个视角,生命的风景便呈现“天地人”的和谐和统一,换一种思路,生命的哲学便更能诠释苦难与幸福的非凡境遇。现代医学巨匠奥斯勒曾断言:“医学是不确定的科学,可能性的艺术。”医学与艺术的对话,可以互相汲取生命的感悟、培育生命的灵感与技术的创造力。德国后现代艺术大师波依斯也说过:“人人都是艺术家。”用自己的感动,去感动别人,这不仅是艺术的追求,也是医者尊重自然、敬畏生命的意义。中华口腔医学会口腔生物医学专委会2021 年10 月23 日中华口腔医学会口腔生物医学专业委员会生命的艺术 首届年度显微图片展-年 度 图 片--作品审读现场花絮--其他投稿作品名录-
  • 爱丁堡仪器显微拉曼新品在京全球首发
    p    strong 仪器信息网讯 /strong 2019年7月23日,天美(中国)科学仪器有限公司及爱丁堡仪器公司在北京举办爱丁堡仪器2019年稳态瞬态光谱最新技术及应用研讨会暨新品发布会,150余位行业领导、专家、用户等出席本次会议。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/50b966f5-dc9c-438d-96c0-4758fad8e566.jpg" title=" IMG_8841.JPG" alt=" IMG_8841.JPG" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/b1a7d9f4-fc8b-44b9-a4d8-af26bcddf2b5.jpg" title=" IMG_8824.JPG" alt=" IMG_8824.JPG" / /p p style=" text-align: center " strong 会议现场 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/2d4d4a41-7287-4e76-b660-ce6f17bc3bb4.jpg" title=" IMG_8845.JPG" alt=" IMG_8845.JPG" / /p p style=" text-align: center " strong 天美(中国)科学仪器有限公司副总裁张海蓉主持会议 /strong /p p   会议期间,爱丁堡仪器重磅发布了一体化全自动显微拉曼光谱仪新品RM5。据悉,此次发布会也是RM5全球发布的第一站。新品发布会由天美(中国)科学仪器有限公司副总裁张海蓉主持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ed57d85d-2a2a-4eae-b8d4-6ed6550346c6.jpg" title=" 微信图片_20190723200916.jpg" alt=" 微信图片_20190723200916.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/a3affda3-acf7-48fe-8d82-50f9742d8ab7.jpg" title=" IMG_8895.JPG" alt=" IMG_8895.JPG" / /p p style=" text-align: center " strong 新品揭幕仪式 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/1b83b7f8-155a-4792-b4c1-cc37507c6494.jpg" title=" IMG_8906.JPG" alt=" IMG_8906.JPG" / /p p style=" text-align: center " strong 天美(中国)科学仪器有限公司总裁付世江致辞 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/4fbd91a6-1cd4-40d0-8600-9cb94613705b.jpg" title=" IMG_8937.JPG" alt=" IMG_8937.JPG" / /p p style=" text-align: center " strong 爱丁堡仪器CEO Dr. Roger Fenske致辞 /strong /p p   30多年来,天美经历了从代理、代工到自主研发的发展历程。近年来,更是在国际化的道路上“走”出了自己的风采,从法国Froilabo、瑞士Precisa、美国IXRF、英国爱丁堡仪器,到布鲁克GC和SQ两条产品线,天美将一个个国际知名品牌或产品线纳入麾下,特别是英国爱丁堡仪器公司的成功收购和运营更是为行业所乐道。 /p p   2013年,爱丁堡仪器公司被天美控股全资收购,正式成为中国仪器公司旗下的品牌,天美对其的研发投入也呈逐年增长趋势。自被收购以来爱丁堡仪器不断推出新品,2014年初推出一体化瞬态稳态荧光光谱仪FS5,2015年推出升级款瞬态吸收光谱仪LP980,2017年推出瞬态稳态荧光新品FLS1000。 /p p   此次重磅推出的RM5也是爱丁堡仪器酝酿多年的成果。据悉,天美为了这次显微拉曼的推出,前期投入了多年的精力,做了很多准备与投入,包括用户及市场需求的调研,人员准备,机械设计和软件设计等。而此次新品选择在北京进行全球首发,也体现了对中国市场的重视。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/35b88b03-b839-43a0-9f0b-05348415f086.jpg" title=" IMG_8947.JPG" alt=" IMG_8947.JPG" / /p p style=" text-align: center " strong 中国仪器仪表行业协会常务副理事长李跃光致辞 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/ec3c4790-aeac-4ed6-b195-64cdc452b4ce.jpg" title=" IMG_8990.JPG" alt=" IMG_8990.JPG" / /p p style=" text-align: center " strong 中国仪器仪表学会分析仪器分会常务副理事长刘长宽致辞 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/2e30a51b-96c3-4186-8b5e-001506d1a15a.jpg" title=" IMG_9017.JPG" alt=" IMG_9017.JPG" / /p p style=" text-align: center " strong 仪器信息网副总经理赵鑫致辞 /strong /p p   中国仪器仪表行业协会常务副理事长李跃光、中国仪器仪表学会分析仪器分会常务副理事长刘长宽、仪器信息网副总经理赵鑫分别致辞,各位在肯定天美多年来成绩的同时,也对爱丁堡仪器的拉曼新品充满了期待。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/2f5a09a5-59fe-412a-a473-d2c14fc6b87a.jpg" title=" IMG_9025.JPG" alt=" IMG_9025.JPG" / /p p style=" text-align: center " strong 爱丁堡仪器研发总负责人 Dr. Dirk Naether /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/9559bdf9-570a-471b-8d87-8f936292e0a5.jpg" title=" IMG_9060.JPG" alt=" IMG_9060.JPG" / /p p style=" text-align: center " strong 爱丁堡仪器拉曼产品研发负责人 Dr. Graeme McNay /strong /p p   爱丁堡仪器研发总负责人 Dirk Naether博士幽默风趣地介绍了爱丁堡仪器从荧光到拉曼仪器的设计理念,他形象的称呼它们为“荧光小姐”和“拉曼先生”。爱丁堡仪器拉曼产品研发负责人Graeme McNay博士详细介绍了RM5显微拉曼的特点。 /p p   与高端荧光一样,RM5秉承了爱丁堡仪器一贯的设计风格和理念,虽然是一款紧凑型的台式拉曼,但最大限度的提供和保留了灵活性,可以针对不同的客户和应用需求做相应的定制化服务。据相关负责人介绍,对于太大规模的公司来说,很难支持定制,规模很小的公司研发力量又不足以支持定制,而爱丁堡仪器的规模刚刚好,有足够的研发力量来支持定制化。爱丁堡仪器希望自己的产品可以紧随时代的步伐,适应日益变化的科研需求。因此,在拉曼的研发上也继承了可定制化这一特点。 /p p style=" text-align: center" a href=" https://www.instrument.com.cn/netshow/sh100322/c332599.htm" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/8fecfa77-bb2d-4548-a1d3-9b96db11765d.jpg" title=" IMG_9069.JPG" alt=" IMG_9069.JPG" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/sh100322/c332599.htm" target=" _blank" style=" text-decoration: underline " strong 一体化全自动共聚焦拉曼光谱仪RM5 /strong strong /strong /a /p p   发布会中,RM5的“2,3,4,5”吸引了很多与会者的关注:可同时配置2个探测器 多至3个可由软件自动控制的激光器 4位拉曼滤光片塔轮 可配置多达5块不同光谱色散的光栅。 /p p   据介绍,RM5采用独特的真共聚焦设计,可调狭缝结合多位置可调的共焦针孔,使系统具有更高的图像清晰度,更好的荧光背景抑制,且可根据应用进行灵活优化 光谱分辨率1.4cm sup -1 /sup ,光谱覆盖范围高达4000cm sup -1 /sup ,可分辨低至 1μm 的微区 仪器配有高质量光学元件和滤光片,通过选择合适的激光波长,可探测低于 50cm sup -1 /sup 的拉曼信号 此外,该仪器还支持包括 Mapping功能 、全自动样品台、偏振拉曼以及外置相机等多种附件和功能的实现,并且均可通过Rmancle软件直接控制(包括设置,测试及数据分析等)。 a href=" https://www.instrument.com.cn/netshow/sh100322/c332599.htm" target=" _blank" style=" text-decoration: underline " 更多仪器详情,请点击仪器图片查看。 /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/5678a7da-499e-42a7-a94f-f0ddc99893a1.jpg" title=" 微信图片_20190723211416.jpg" alt=" 微信图片_20190723211416.jpg" / /p p style=" text-align: center " strong 新品演示 /strong /p p   发布会之后,主办方还安排了4位拉曼光谱专家进行了相关的报告。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/6343b1be-62ca-4888-aad2-0dd9187cf91f.jpg" title=" IMG_9087.JPG" alt=" IMG_9087.JPG" / /p p style=" text-align: center " strong 报告题目:拉曼光谱仪器的现状和未来 /strong /p p style=" text-align: center " strong 报告人:厦门大学任斌教授 /strong /p p   厦门大学任斌教授分享了科研级别、便携、手持拉曼光谱仪,及拉曼光谱联用系统的仪器现状,并指出未来拉曼光谱仪的重点发展方向,包括高的灵敏度和分辨率、超低波数、超高成像速度等。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/7e4ce2ad-31d7-45a1-a629-7a4fe8b0fd29.jpg" title=" IMG_9104.JPG" alt=" IMG_9104.JPG" / /p p style=" text-align: center " strong 报告题目:表面增强拉曼散射技术及其在分析检测领域的应用探索 /strong /p p style=" text-align: center " strong 报告人:吉林大学赵冰教授 /strong /p p   吉林大学赵冰教授从表面增强拉曼散射(SERS)现象、意义和优势讲起,分享了SERS在肝癌早期检测、非标记生物检测、衍生技术结合SERS以及细胞活性分析方面的应用探索。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/8b4de31e-8cef-4d20-ae16-3fe37912f8ec.jpg" title=" IMG_9133.JPG" alt=" IMG_9133.JPG" / /p p style=" text-align: center " strong 报告题目:表面增强拉曼光谱的进展与应用 /strong /p p style=" text-align: center " strong 报告人:中山大学陈建研究员 /strong /p p   中山大学陈建研究员介绍了表面增强拉曼光谱的进展与应用,并给出了多个案例分享,比如基于金-银核壳纳米棒的SERS基底制备及其在血糖检测中的应用 表面等离子体共振在光-电-热协同催化的应用及机理研究等。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/38a55b2b-bcd7-4924-b082-f338eea1362d.jpg" title=" IMG_9146.JPG" alt=" IMG_9146.JPG" / /p p style=" text-align: center " strong 报告题目:表面增强拉曼光谱: 从基底调控到高灵敏度传感 /strong /p p style=" text-align: center " strong 报告人:苏州大学姚建林教授 /strong /p p   苏州大学姚建林教授在报告中详细介绍了其课题组在基底调控制备方面开展的研究工作,包括二聚体的制备及研究 二维热点集合体制备及研究等,并分享了热点集合体SERS基底在高灵敏检测中的应用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201907/uepic/1e3c6a33-2182-456a-8031-cf5ab8d60f63.jpg" title=" IMG_9077.JPG" alt=" IMG_9077.JPG" / /p p style=" text-align: center " strong 参会代表合影 /strong /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   strong  后记: /strong /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   多份市场研究报告明确指出,拉曼光谱已然成为分子光谱领域发展最快的一类仪器。在种种利好因素的驱使下,众多仪器公司纷纷布局。有自主研发拉曼新产品的,也有通过收购手段“新”迈入拉曼领域的,而爱丁堡仪器公司属于前者。 /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   不过,面对既有的市场格局,作为一个后来者,如何快速拓展市场值得大家关注。据介绍,RM5可满足高端科研及分析工作的需求,主要面向研究者用户,其中不乏与爱丁堡荧光有重叠的用户,这是其既有的优势。再加上吸引客户的一体化全自动设计,以及可定制化的灵活性,对于其未来市场的拓展我们拭目以待。 /span /p
  • 光电所暗场显微增强介质微球超分辨成像质量研究取得进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   在光学成像领域中,由于受到衍射极限的限制,常规成像分辨率难以突破200nm。生物医学、集成电路等领域对提高成像分辨率有迫切要求,如何实现更高成像分辨率成为近年来的热门研究方向之一。 /p p   受自然界微滴可提高成像分辨率的启发,2011年科学家提出将直径在微米级的介质微球直接放置于待测样品表面,在普通白光显微下即可达到50nm的分辨能力。介质微球超分辨显微方式以其简单灵活的特点,受到国内外广泛关注,但微球的成像对比度一直有待提高。 /p p   近日,中国科学院光电技术研究所研究团队发展出一种利用暗场显微有效提高成像高频成分含量的方法,具有降低成像低频成分的特点,结合微球超分辨能力,可实现更高对比度的微结构超分辨显微。该方法通过时域有限差分法模拟分析微球在不同浸没方式、浸没深度情况下的半高宽及光强值等得到更优化的超分辨能力,模拟结果如图1所示。在此基础上,通过二氧化硅和钛酸钡微球在不同浸没情况下观察特征尺寸为139nm的硅光栅结构,实验结果如图2所示。可以看出,在暗场显微时成像对比度明显得到增强。 /p p   研究工作得到国家自然科学基金和中科院科研装备研制项目的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122565441349485.png" src=" http://img1.17img.cn/17img/images/201711/uepic/73b00051-a008-40d3-94d5-c45458140124.jpg" / /p p style=" text-align:center " 不同浸没深度的微球聚焦特性分析 /p p style=" text-align:center " img alt=" " oldsrc=" W020171122569039673281.png" src=" http://img1.17img.cn/17img/images/201711/uepic/f335b35f-486d-4a12-91b4-35f95acbb34a.jpg" uploadpic=" W020171122569039673281.png" / /p p style=" text-align: center " 不同照明方式的微球成像质量对比 /p
  • 太原市中心医院279.36万元采购Zeta电位仪,生物显微镜,自动电位滴定,气体流量计
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网络体系建设项目便携式彩色多普勒超声诊断仪、能量代谢车等医疗设备公开招标采购的采购公告山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号:1401992023AGK00987 项目名称:太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网络体系建设项目便携式彩色多普勒超声诊断仪、能量代谢车等医疗设备公开招标采购 资金来源: 财政资金预算金额:2,793,600元最高限价:2,793,600元采购需求:共一包,具体以第四部分采购需求为准。采购清单 序号 名称 数量 预算单价(元) 金额小计(元) 对应的中小企业划分标准所属行业 1 便携式彩色多普勒超声诊断仪 1台 900,000 900,000 工业 2 能量代谢车 1台 690,000 690,000 工业 3 相差显微镜 1台 550,000 550,000 工业 4 血气分析仪 1台 150,000 150,000 工业 5 台式高速恒温离心机 1台 112,800 112,800 工业 6 超低温冷冻储存箱 2台 95,000 190,000 工业 7 尿液分析仪 1台 55,000 55,000 工业 8 生物显微镜 1台 53,000 53,000 工业 9 自动电位滴定仪 1台 92,800 92,800 工业 总价(元) 2,793,600 产品描述 序号 名称 参数要求 1 便携式彩色多普勒超声诊断仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、设备用途: 用于神经阻滞可视化引导,心肺功能监测及血流动力学评估应用,以及介入操作的可视化引导,血管通路搭建,诊断和治疗引导等2、主要技术及系统概述:2.1 ≥15英寸高分辨率LED 显示器,可视角度≥170度 (左/右),主机重量≤4kg(含电池)2.2 触控面板操作,防泼溅、防尘、防异物 2.3 ≥12英寸触摸操作屏,按键支持自定义设置,包括移动、增加、删除,支持手写及带橡胶手套操作2.4 可自定义物理按键≥3个2.5 低平的物理按键,完全密封边缘2.6 电源接头为磁吸式2.7 机器内置超声教学助手,可用于神经阻滞的练习、操作,同时也可用于腹部、心脏及小器官的教学指导2.8 成像模式2.8.1 二维灰阶模式2.8.2 组织谐波成像技术2.8.3 穿刺针显影增强技术2.8.4 彩色多普勒模式2.8.5 能量多普勒模式2.8.6 脉冲多普勒模式(PW)2.8.7 连续多普勒模式(CW)2.9 穿刺针显影增强技术,提供最佳角度提示信息,实时自动及半自动追踪角度,支持凸阵探头、线阵探头并支持双幅对比显示 2.9.1 支持凸阵探头、线阵探头2.9.2 提供最佳角度提示信息2.9.3 支持双幅对比显示2.10 B模式成像2.10.1 组织谐波成像模式2.10.2 组织特异性成像2.10.3 多角度空间复合成像技术,支持≥2条偏转线,多级可调,支持线阵和凸阵探头2.10.4 斑点噪声抑制成像2.10.5 回波增强技术,提高心脏图像质量2.10.6 增强局部分辨率2.11 彩色多普勒成像(包括彩色、能量、方向能量多普勒模式)2.11.1 高分辨率血流成像2.11.2 双实时同屏对比显示2.11.3 自动调节取样框的角度及位置2.12 频谱多普勒成像2.12.1 脉冲多普勒、高脉冲重复频率2.12.2 连续多普勒2.13 探头2.13.1 凸阵探头,频率范围1.5MHz-6.0MHz2.13.2 线阵探头,频率范围6.0MHz-23.0MHz2.13.3 相控阵探头,频率范围:1.5MHz-4.5MHz3、技术参数及要求3.1二维灰阶模式3.1.1 扫描频率:电子凸阵:超声频率 1.5MHz-6.0MHz,支持扩展成像;电子相控阵:超声频率1.5MHz-4.5MHz,扫描角度≥90°;电子线阵:超声频率6.0MHz-23.0MHz3.1.2 最大显示深度:≥40cm3.1.3 TGC: ≥8段,LGC: ≥8段(非拨杆调节)3.1.4 动态范围: 30dB-350dB,可视可调3.1.5 增益调节: B/M/D分别独立可调,≥1003.1.6 伪彩图谱: ≥8种3.2彩色多普勒成像3.2.1 包括速度、速度方差、能量、方向能量显示等3.2.2 显示方式:B/C、B/C/M、B/POWER、B/C/PW3.2.3 取样框偏转: ≥±30度 (线阵探头),取样框可根据探头血流方向自动调节3.2.4 支持B/C 同宽3.3频谱多普勒模式3.3.1 显示控制:反转、零移位、B刷新、D扩展、B/D扩展等3.3.2 PW最大速度: ≥7m/s3.3.3 最小速度: ≤5mm/s3.3.4 取样容积: 0.5mm-20mm 3.3.5 偏转角度: ≥±30度 (线阵探头)3.3.6 快速角度校正3.4测量分析和报告3.4.1 常规测量软件包3.4.2 多普勒测量(自动或手动包络测量,自动计算测量参数)3.4.3 神经专用测量软件包3.4.4 心脏功能专用测量软件包3.4.5 急重诊应用测量软件包3.5连通性和外部数据管理3.5.1 具备DICOM基础功能,可通过网络将图像传输到DICOM服务器3.5.2 ≥4个USB 3.0端口3.5.3 以太网端口,内置无线网卡,借助网络,可在机器上一键将动态或静态图像传输至移动应用端群组内;超声设备上具备可自行设置的隐私数据脱敏传输开关,用户可选择传输图像是否包含病人信息3.5.4 HDMI、S-Video视频输出接口3.6电源供应3.6.1 系统通过电池或交流电源运行3.6.2 可充电锂电池,连续使用时间≥90分钟3.7配备专用台车3.8免费与医院信息系统联网,实现患者数据传输。 2 能量代谢车 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、货物用途:临床需要营养治疗的患者的营养评估2、技术参数要求:2.1 测量原理:呼气法或间接测热法等;2.2 测试方式:开放式测量;2.3 数据更新显示方式:每口气;2.4 分析计算参数:每分钟摄氧量(VO2,mL/min)、每分钟产生二氧化碳量(VCO2,mL/min)、呼吸商、静息能量消耗量、三大主要营养物质(糖类、脂类和蛋白质)的消耗量和氧化供能比例;2.5 数据解析:代谢速度评价、代谢底物评价、测量状态分析、营养素均衡供给建议;2.6 具有RMR快速测量功能,根据稳定状态自动结束测量;2.7 测试过程稳定程度分析:具有自动识别稳定状态的功能,无需人工识别;2.8 操作流程:具有一键标定功能;2.9 测量精度:流速测量范围应为20LPM-100LPM,相对误差应≤3%;氧气浓度测量范围19.00%-21.00%,测量误差应≤±0.03%,响应时间应≤400ms;二氧化碳浓度测量范围0-5.50%,测量误差应≤±0.03%,响应时间应≤400ms;2.10 传感器:使用氧化锆氧气传感器或流速传感器等;2.11 数据储存:至少10000条测量记录,可用USB导出数据;2.12 显示屏:≥12英寸薄膜液晶显示屏; 2.13 外部接口: USB从接口1个,LAN接口(10T)1个,蓝牙接口1个、无线接口1个; 2.14 测试时间:≤20分钟即可完成测试; 2.15 兼容打印机:激光/喷墨打印机;2.16 免费与医院信息系统联网,实现患者数据传输。 3 相差显微镜 1、货物用途:用于形态学检查及相关等诊断,并拍摄清晰的图片,形成一体化的图文报告。2、高级研究级正置相差显微镜技术要求:2.1 光学系统:无限远光学系统。2.2 管径焦距:180≤管镜焦距<200mm,螺纹RMS标准。2.3 齐焦距离:必须为国际标准≤45mm。2.4 调焦:低位固定载物台通过物镜转盘聚焦,聚焦行程15mm,带聚焦粗调限位器,粗调旋钮扭矩可调,微调旋钮最小调节精度1微米。2.5 与显微镜同一品牌超宽视野三目观察镜筒:可上下调节移动倾角,可调节三目铰链式镜筒,视场数≥26。屈光度可调。铰链式观察筒可以根据不同观察者进行瞳距调节且不改变屈光度,可升级前后拉伸上下升降观察筒。2.6 照明装置:长寿命透射光柯勒照明器,光量预调开关,转换物镜倍率的同时,光亮可以自动调节到预设光强,无需随着倍率的变化而手动调节照明强度。转换物镜倍率时不需要再调节光强度。2.7 与显微镜同一品牌高级半复消色差FN26.5 相差物镜:10X、40X、100X2.8 载物台:具低位置同轴驱动选钮的陶瓷覆盖层载物台。2.9 与显微镜同一品牌目镜:10X宽视野目镜,视野数为≥26.5;2.10 物镜转换器:五孔编码物镜转盘2.11 与显微镜同一品牌聚光镜:孔数≥7孔 ,N.A≥1.1与不同放大率的相差物镜内的相板相匹配。转盘前端朝向使用者一面有标示窗(孔),转盘上的不同部位有0、1、2、3和4或0、10、20、40和100字样。3、应用范围:用于临床检验,在相差显微镜下对于尿液标本做形态学检查及相关等诊断,并拍摄清晰的图片,形成一体化的图文报告;图像输入部分:视窗平台,配备1600万或以上高像素彩色数码成像装置,最大分辨率1500万或以上高速传输口,色彩还原和拍摄功能。支持动态压缩录像和定时间隔自动采集,同时可以对采集下来的图片进行相应的编辑,如色彩、裁剪、尺寸调整、组合、平衡、清晰、柔化、及各种图片、文字标记等,可与各种型号电脑和显微镜相匹配;信息输入:基本信息录入,如患者详细信息、送检相关信息、标本相关信息等登记;病例统计功能:数据检索功能、统计、查询功能,可以根据已填的病人资料进行查询,也可以进行复合条件查询,同一条件内的分段查询,如按年龄段进行查询统计,可按任意条件组合查询,并打印统计结果;也可进行多病种查询统计,并可自定义万能查询设计;常用词库/模板:具备专家系统词库/模板,提供尿液红细胞位相检查分级分类词库,包括所有常用词汇,并编辑对应的部位和内容的模板;无需使用汉字输入方法,即可在专家系统的帮助下,迅速完成诊断报告;其中的专家词库和常用模板可以根据具体需要随时进行修改和补充。开放式图文报告格式:报告格式任意调整,可通过简单的鼠标拖拉,设计任意多种报告格式,并根据选择的报告格式自动生成彩色图文一体化的报告,支持图文报告批量打印功能,可选择某天或某段时间内的报告统一打印;工作界面及流程:支持工作流程编辑及工作界面调整,可以根据自己的操作习惯编辑工作流程及工作界面;权限设置及网络连接:支持权限设置;支持各诊断室电脑互连,支持病例、数据库等的资源共享,支持各诊断工作站病例资料的互相访问;支持后续升级连接LIS/HIS及PACS系统;数据备份和数据库维护功能:数据备份和数据库维护功能,可设定数据自动备份,进行备份和数据刻录操作,同时刻录后的病例离线查询和统计;图像处理与测量分析功能:支持多种专业尿液红细胞位相形态学图像分析及测量功能。教学及示教功能:支持教学示教、读片以及幻灯片制作功能,支持连接投影仪、液晶电视并可播放实时动态影像,也可以将采集到的图片制作成幻灯片,利用电脑多媒体功能进行病理资料的阅读示教和学术交流;4、免费与医院信息系统联网,实现患者数据传输。 4 血气分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》技术参数及要求1.1一体化电极及离子电极,室温存储。1.2试剂规格从最小25测/包到2000测/包多规格可选,上机有效期≥40天;1.3室温存储乳酸/血糖一体化电极,常温运输,上机有效期≥30天1.4全彩色液晶触摸屏≥8寸,支持中文病人信息输入1.5测量参数 : PH,PCO2,PO2,K,Na,Cl,Ca,Hct,Lac和Glu。1.6最大计算项目:pH(TC)、PCO2(TC)、PO2(TC)、HCO3、SBC、BE、BEecf、TCO2、sO2%、P50、AG、A-aDO2、Rl、TCa、nCa,THb(c)等测量项目和计算项目等≥40项1.7支持动静脉结合进样方式,输出ScvO2、PCO2(gap)等参数1.8内置不间断电源,断电后满足30分钟以上的工作时间1.9同时支持注射器、毛细管、安瓿瓶、试管等容器测量1.10样本量:全参数样品量≤170uL样品1.11具有远程诊断功能HL7协议的LAN口网络连接1.12分析时间全项目测试进样后≤90s'1.13免费与医院信息系统联网,实现患者数据传输。 5 台式高速恒温离心机 1、货物技术指标要求:1.1 微电脑控制、LCD液晶显示1.2 采用交流变频电机驱动。1.3 ≥10种升、降速率选择,≥10种自定义工作模式选择,可自由编程、调用1.4 转速/离心力互设、同步显示1.5 两种计时模式可选:运行开始计时和到达设定转速开始计时1.6 门盖采用双锁杆设计,磁感应门锁,电动开门1.7 运行中可随时更改参数,无需停机1.8 风冷排风设计1.9 自动识别转子1.10 转头使用记忆功能,转头达到使用寿命后机器汇报警提示1.11 主机最高转速:≥18000rpm1.12 配置:角转子带生物安全罩1.13 转速精度:≤±10rpm1.14 定时范围:1min-99:59:59(hh:mm:ss)1.15 噪音:≤55dB 6 超低温冷冻储存箱 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、技术要求及配置: 1.1 样式:立式 。1.2 有效容积:≥530L。1.3 温度控制:高精度微电脑温度控制系统,适用范围在-40℃至--86℃范围内,控温精度0.1℃。1.4显示:≥7寸高性能LCD电容触摸屏,显示精度0.1℃,动态实时显示箱内温度、系统设定温度、环境温度、报警状态、时间等参数信息,且可连接蓝牙与WiFi,具备样本存取管理,温度数据查看及数据曲线,设置与留言板功能。1.5具备状态运行指示。1.6 安全存储:≥10种声光报警系统(高低温报警、传感器故障报警、高环温报警、开门报警、电压异常、断电报警、冷凝器脏报警、电池电量低报警、系统故障等)。1.7开机延时和停机间隔保护功能;屏幕锁定和密码保护功能。1.8压缩机,整机稳定运行功率≤500W。冷凝器散热风机可根据压缩机运行状态智能开停。1.9 25℃环温时,单日耗电量≤8KW.h/24h。 1.10 箱内温度均匀性要求,25℃环境,设定-80℃测试,整机≥20点测试,最高温度与最低温度的差小于10℃。1.11 25℃环温时,空载降温到-80℃时间≤5.1h。 1.12多重门锁设计:机械锁(配2把钥匙)+外挂锁(可挂2把)1.13有多种登录权限设置1.14 保温材料:真空绝热材料,保温板厚度≥20mm,箱体发泡层≥130mm。2个发泡压紧内门,双层发泡保温外门,外门4道密封,内门两道门封,整机6道门封。 1.15低噪音,稳定运行噪音≤52分贝。1.16 25℃环温,空载稳定运行断电回温至-50℃时间≥270min。1.17 箱体材料:钢板。 1.18 内胆材料:镀锌板喷涂。1.19 大面积翅片式冷凝器。 1.20 自动加热门体平衡孔设计,短时间内连续多次开门。 1.21 2个及以上温度测试孔。 1.22 标配USB模块,可记录箱内实际温度、故障报警等数据。1.23 标配蓄电池,断电状态可持续为温度报警、USB端口供电。 7 尿液分析仪 ★提供所投产品的生产企业《医疗器械生产许可证》、《医疗器械注册证》1、货物技术指标要求:1.1 仪器类别 :1.1.1 测试速度 ≥300个测试/小时1.1.2 测试方法 终点法、动力学法、两点法1.1.3 试剂模式 试剂全开放模式,兼容进口和国产试剂1.1.4 同时测定项目 ≥40个(单试剂),≥20个(双试剂)1.1.5 同时测定样本 ≥40个1.1.6 最小反应体积 150μL1.1.7 携带污染率 ≤0.005%1.1.8 耗水量 ≤6.5升/小时1.1.9 最长反应时间 15分钟(单试剂);12分钟(双试剂)1.1.10 最大反应体积 500μL1.1.11 测试原理 比色法、透射比浊法1.1.12 检测模式 普通模式(单、双试剂),高速模式(单试剂)1.1.13 测试顺序 急诊优先、任意插入,连续测定式、随机任选式,按样本顺序测定1.1.14 稀释功能 检测底物过剩和钩状效应,全自动稀释重测1.2样本/试剂/搅拌杆单元:1.2.1 样本量 2-50μL,0.1μL递增1.2.2 样本盘 圆盘式,≥40个样本位1.2.3 样本/试剂针 样本针和试剂针共针,具备液面检测、立体防撞、随量跟踪功能,试剂余量实时检测功能1.2.4 样本管 兼容多种规格(13mm×100mm,13mm×75mm,12mm×100mm,12mm×75mm)一次性采血管、尿管、微量杯、塑料试管等1.2.5 试剂量 R1:150μL-450μL,R2:10-300μL,1μL递增1.2.6 试剂盘 圆盘式,内外圈共不少于40个试剂位,半导体致冷水循环散热,24小时4℃-12℃不间断冷藏1.2.7 试剂瓶 兼容主流试剂瓶规格1.2.8 搅拌杆 独立1根搅拌杆,加入样本或第二试剂后立即搅拌1.3光学系统:1.3.1 光源 卤钨灯,12V20W,液体水循环制冷,≥2000小时1.3.2 分光方式 1.3.3 波长范围 340nm-670nm, 8波长1.3.4 分辨率0.0001Abs1.3.5 线性范围 0Abs-3.5Abs1.3.6 吸光度准确性 0.5A: <±0.02Abs 1.3.7 OA: <±0.05Abs1.3.8 杂散光≥4.5(以吸光度表示)1.3.9 吸光度稳定性 <0.01Abs1.3.10 吸光度重复性 <1.5%1.3.11 波长准确度<±2nm1.3.12 检测器光电二极管探测器阵列 8 生物显微镜 1、货物主要技术指标:1.1 光学系统:无限远光学矫正系统,齐焦距离必须为国际标准45mm。1.2 载物台:钢丝传动,无齿条结构1.3 调焦机构:有粗调限位,可以进行张力调节,避免标本或物镜的损伤。1.4 聚光镜:带有孔径光阑的聚光镜1.5 照明系统:≥20000小时寿命LED光源1.6 观察筒:双目观察筒,瞳距调整范围50mm-75mm,倾斜角度30°,带屈光度调节,360°可旋转,铰链式,眼点高度≥420mm,视场数≥201.7 目镜:10X,带眼罩,视场数≥201.8 物镜转盘:与显微镜机身固定的内旋式4孔物镜转盘,便于放置标本等操作。1.9 物镜:平场消色差物镜4X、10X、40X、100X 1.10 双目观察筒、目镜、物镜都具备防霉处理功能1.11 光学元件均为环保无铅玻璃 9 自动电位滴定仪 1、技术指标要求:1.1 滴定装置 容量滴定单元 1.2滴定分析重复性≤0.2%1.3滴定容量允许误差 10mL滴定管:±0.025mL;20mL滴定管:±0.035mL;滴定管分辨率 1/140001.4测量装置 1.4.1 电位滴定模块 1.4.2 测量范围(-1800.0-1800.0)mV,(0.00-14.00)pH1.4.3 分辨率 0.1mV,0.01pH1.4.4 基本误差pH:±0.01pHmV:±0.05%FS1.4.5 稳定性 ±0.3mV/3h1.4.6 温度补偿 测量范围(-5.0℃-105.0℃)1.4.7 分辨率≤0.1℃1.4.8 基本误差 ±0.3℃1.5电源 AC(220±22)V;频率(50±1)Hz 注:1.所有招标内容除特别标注为“进口产品”外,均采购国产产品,即非“通过中国海关报关验放进入中国境内且产自关境外的产品”,投标货物及服务各项技术标准应当符合国家强制性标准。2.招标内容标注为“进口产品”的,满足需求的国产产品和进口产品按照公平竞争原则实施采购。合同履行期限:签订合同之日起30日历天内完成。本项目不接受联合体投标。二、投标人资格要求:=105695" width="160" 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:Zeta电位仪,生物显微镜,自动电位滴定,气体流量计 开标时间:2023-10-19 09:00 预算金额:279.36万元 采购单位:太原市中心医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:太原市公共资源交易中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网络体系建设项目便携式彩色多普勒超声诊断仪、能量代谢车等医疗设备公开招标采购的采购公告 山西省-太原市-小店区 状态:公告 更新时间: 2023-09-28 招标文件: 附件1 一、项目基本情况项目编号:1401992023AGK00987 项目名称:太原市中心医院高质量发展“人人享有肾病管家”区域肾脏病管理网
  • 中国化学会纤维素专业委员会完成换届,傅强任新一届主任
    根据中国化学会《关于分支机构换届的通知》(化会字〔2022〕16号),各学科/专业委员会换届工作陆续完成。2022年10月19日,中国化学会纤维素专业委员会(以下简称“委员会”)成立大会在线上召开,来自全国高校、科研院所及企业的46个单位的60位代表参加。傅强教授向与会代表汇报了中国化学会纤维素专业委员会的相关工作报告。经与会代表无记名投票,选举四川大学傅强教授为委员会新一届主任委员,中国科学院化学研究所张军研究员、南京林业大学金永灿教授、华中科技大学杨光教授、武汉大学蔡杰教授为副主任委员。聘任武汉大学常春雨教授为秘书长。共有60人当选新一届委员会委员。中国化学会纤维素专业委员会委员会按照换届要求完成换届,新届期将自2022年至2026年。新一届委员会委员信息如下:主任:傅强副主任:张军、金永灿、杨光、蔡杰秘书(长): 常春雨委员:委员姓名工作单位蔡杰武汉大学常春雨武汉大学陈朝吉武汉大学陈礼辉福建农林大学陈文帅东北林业大学邸勇泰安赛露纤维素醚技术研究所段博武汉大学房桂干中国林业科学研究院林产化学工业研究所付时雨华南理工大学傅强四川大学贺盟盐城工学院黄进西南大学化学化工学院、软物质材料化学与功能制造重庆市重点实验室黄翔芬欧汇川(中国)有限公司黄勇中国科学院理化技术研究所蒋兴宇南方科技大学金永灿南京林业大学廖兵广东省科学院刘瑞刚中国科学院化学研究所刘石林华中农业大学刘守新东北林业大学罗晓刚武汉工程大学彭新文华南理工大学祁海松华南理工大学邵自强北京理工大学石志军华中科技大学孙剑北京理工大学孙平川南开大学陶友华中国科学院长春应用化学研究所田卫国中国科学院化学研究所王立军浙江科技学院王林格华南理工大学王莎南京林业大学王天富上海交通大学王小慧华南理工大学王志国南京林业大学吴凯四川大学吴敏中国科学院理化技术研究所伍强贤华中师范大学谢海波贵州大学徐坚深圳大学徐敏华东师范大学许凤北京林业大学闫立峰中国科学技术大学杨光华中科技大学杨桂花齐鲁工业大学杨鹏陕西师范大学杨全岭武汉理工大学应广东山东太阳纸业股份有限公司于海鹏东北林业大学余龙华南理工大学张凤山山东华泰纸业股份有限公司张建明青岛科技大学张军中国科学院化学研究所张振华南师范大学赵大伟沈阳化工大学郑明远中国科学院大连化学物理研究所钟春燕海南椰国食品有限公司周金平武汉大学朱宏伟岳阳林纸股份有限公司朱锦中科院宁波材料技术与工程研究所
  • 技术线上论坛|5月25日《如何实现自动化、高通量单细胞力谱测量?单细胞显微操作技术一步搞定!》
    [报告简介]单细胞粘附力作为生物机械学分支的重要组成部分,是细胞与外周相互作用的直观体现,能够有效的反映出细胞与基质或细胞之间相互作用能力。细胞与基质之间的作用力十分微小,一般都在nN别,过去通常使用原子力显微镜才能够进行测量。但是原子力显微镜方案往往具有通量低,操作繁琐等问题,使得单细胞力谱的研究非常繁琐。基于此,Cytosurge推出的全新多功能单细胞显微操作FluidFM技术给细胞力谱测量带来了新的希望。该技术结合了的原子力显微镜探测技术与微流体控制系统,能够直接通过使用中空的原子力探针将细胞通过负压抓取在探针表面,并不需要激活细胞的任何通路信号,为粘附力的测量带来了大的优势。一方面,这种方法能够提供远比蛋白结合牢固的多的粘附力,能够将细胞牢固的固定在探针上并且无需包被探针。另一方面,由于没有生物化学处理,这种方法不会改变任何细胞表面的通路,从而能够得到接近细胞原生的数据。该系统具备高度自动化,能够快速,全自动的完成力学的测定,让单细胞力谱研究变得十分容易。本报告将介绍FluidFM单细胞显微操作技术的原理和发展,并结合多篇发表在期刊Nature、Cell、Bioactive Materials等上的近科研成果,深入阐述这种技术在单细胞力谱测量方面的新进展。[直播入口]请扫描下方二维码进入FluidFM单细胞显微操作技术群,届时会在微信群中实时更新直播入口,无需注册!扫码进群,即刻获取直播链接,无需注册![报告时间]05月25日 下午15:00-16:00 [主讲人介绍]Tamás Gerecsei 亚太区席应用科学家,高FluidFM解决方案工程师,Cytosurge AGTamás是一位生物物理学家,毕业于Etvs Loránd(ELTE罗兰大学)。 在与FluidFM在学术环境中合作多年后,他加入了Cytosurge公司,成为了一名训练有素的微纳米系统工程师。在Cytosurge AG,Tamás不断推动并拓展FluidFM技术的应用边界,并使FluidFM技术应用于各地研究人员的课题中。您可以经常发现他在各种专业的学术会议上传播关于Cytosurge和FluidFM技术的信息。 郭亚茹 北京大学口腔医院,口腔医学中心,获中国博士后科学基金,并入选北京大学医学部 2021年博雅博士后项目,在Advanced functional materials、Bioactive Materials、Journal of dental research等杂志上以作者或共同作者的身份发表5篇。 2021年,在Bioactive Materials发表了题为:Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis的研究文章,报道了基质硬度通过p-PXN-Rac1-YAP信号轴调节细胞形成,这项工作不仅有助于在组织工程和再生医学中寻找佳材料,也为肿瘤治疗和病理性血管再生提供了新的治疗策略。在生物材料设计和治疗一些病理情况方面具有特殊意义。本实验研究人员采用了多功能单细胞显微操作系统——FluidFM技术,实现了单个细胞的分离,单个细胞粘附力的测量。 [原理&应用简介]FluidFM技术如何测定细胞粘附力?众所周知,细胞在基质上进行单层培养时,吸附在基质表面时主要会产生两种不同类型的力,一种是细胞与基质之间的粘附力,另一种是细胞与细胞之间的粘附力。因此对于细胞粘附力来说,单个细胞的粘附力就是细胞与基质之间的作用力。而单层细胞的细胞粘附力则是细胞之间相互作用力和细胞基质与细胞之间作用力之和。如下图所示:因此只要同时测定单个细胞粘附力即可得到细胞与基质之间的相互作用力,而细胞间的相互作用力则可以通过同时测量单层细胞的细胞粘附力和单个细胞的粘附力做差得到,如下公式所示:Force cell-cell ≌ Force Monolayer – Force Indiv.cellFluidFM测量力学步骤与一般的原子力显微镜十分类似,但是操作却远比原子力显微镜简单,这得益于FluidFM有的中空探针。这种探针无需像普通原子力探针一样对探针进行修饰或者将细胞提前粘连在探针上,可以直接在液体中原位抓取细胞,完成粘附力测定,并且在测量后探针仍然可以继续进行测试,并且无需对探针进行更换或再修饰。FluidFM技术测量单细胞力谱的基本流程。仅需操作鼠标系统即可自动完成对细胞的抓取和粘附力的测量。此外FluidFM系统会自动记录探针运动轨迹和力学曲线,如上图中所示当探针开始靠近细胞后,探针表面开始出现压力变化,当系统达到设定力学值后系统会自动停止下降并开始施加负压抓住细胞。随着探针开始上升,细胞给予探针的拉力随之增高,并逐渐达到临界,随后细胞脱离基质,探针受力趋近于零,而这一过程中探针受力的大值即为细胞粘附力。FluidFM技术测量HeLa细胞核CHO细胞的粘附力。能够高通量测量单细胞粘附力谱FluidFM测量粘附力十分智能化,仅需5分钟即可完成单个细胞的粘附力测定,一天可完成上百个细胞的测量,能够大幅度提升单细胞力谱测量的通量,让单细胞力谱研究变得简单、快速、高通量。 应用举例一:FluidFM技术测定衰老内皮细胞的力谱内皮细胞衰老导致细胞表型的改变与心血管疾病有着密切关系。随着细胞的衰老,细胞的粘附力等机械属性会有很大改变,因此对于细胞粘附力的研究将有助于理解细胞衰老的变化。Nafsika Chala等人利用FluidFM技术对血管内皮细胞与基底之间的粘附力进行研究发现,衰老的细胞与正常细胞存在着nN别粘附力差异。如下图所示:FluidFM技术用于衰老与正常细胞的单细胞粘附力测定。对比衰老小、大和正常细胞的细胞尺寸(a)、细胞粘附力(b)和细胞周长(c)及单细胞粘附力/面积(e)和单细胞粘附力/周长(f)的变化。研究者认为,衰老内皮细胞的粘附力增加是与细胞的粘着斑增加有关,表明衰老细胞能够加强与基质的相互作用从而防止内皮剥脱,但是受制于血流的影响这种能力受到了很大限制。 应用举例二:FluidFM揭示应力依赖性酵母交配中的分子相互作用性凝集素是芽殖酵母酿酒酵母介导细胞聚集交配的关键蛋白。交配细胞表达的互补凝集素类“a”型和“α”型的结合是促进细胞的凝集和融合的关键。Marion Mathelié-Guinlet等通过测量“a”型和“α”型结合的单个特定键的强度(~100 pN),发现延长细胞间的接触能够大地增加了交配细胞间的粘附力,而这种增强可能是由于凝集素的表达。FluidFM技术用于酵母属间交配过程单细胞力谱测量。MATa与MATα相互作用的示意图(a)和Fluid测量细胞间相互作用示意图(b)及测量结果(c);用DTT和DEPC药物刺激研究二硫键和His273对粘附的影响(d)、其示机制意图(e)和无粘附、DTT和DEPC粘附发生的概率(f);以及物理应力增强MATa和MATα细胞之间的粘合力(g)、发生频率(h)及破裂长度(i)。此外,研究组发现凝集素二硫键在粘附过程中起到了关键作用,而这一作用主要来自于α-凝集素的组氨酸残基His273。更为有趣的是,作者发现机械张力增强了相互作用的强度,这可能是由于激诱导凝集素构象从弱结合折叠状态转换成强绑定伸展状态导致。这项研究很好地展现了一种理解控制酵母性别的复杂机制的可能方法。 总结 细胞粘附力测定在细胞生命科学研究中起着至关重要的作用,然而传统手段中有着各种各样的局限性,主要原因是缺乏一种能够有效抓取细胞并进行力学测定的手段。现如今FluidFM技术在细胞粘附力测定中的使用,使得研究者们有了一种能够有效、低损的方式抓取细胞,配合原子力显微镜的测量的特性,真正意义上做到、无损、快速的测量单细胞粘附力,帮助研究者寻找细胞粘附力与细胞生命发展、肿瘤细胞转移之间的关系。
  • 2019年全国电子显微学学术年会大会及分会报告抢先看!
    p   2019年全国电子显微学学术年会将于10月15-19日(20日离会)在合肥市丰大国际酒店召开。 br/ /p p   本届年会的主题是“中国电子显微学快速发展的新时代”,本届年会将设立材料科学与生命科学分会场,材料科学分会场包含:1.显微学理论、技术与仪器发展 2.原位电子显微学表征 3.能源、环境和信息等功能材料的微结构表征 4.结构材料及缺陷、界面、表面,相变与扩散 5.先进显微分析技术在工业材料中的应用 6.扫描探针显微学分会场(STM/AFM等) 7.扫描电子显微学(EBSD)。8. 低温电子显微学表征分会场 9. 生命科学显微成像技术研究分会场 10. 中国电子显微镜运行管理开放共享实验平台分会场。 /p p    strong 报名方式 /strong :详细情况请登录中国电子显微镜学会官方网站,参见2019年全国电子显微学学术年会会议二轮通知并及时在官网注册。 /p p    span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " strong 大会报告篇 /strong /span /p p    strong 大会报告人:朱静 中国科学院院士 /strong /p p strong   报告题目:原子尺度多种序参量的协同测量及耦合 /strong /p p   朱静,清华大学教授,中国科学院院士,发展中国家科学院院士,长期从事材料科学和工程的基础和应用基础研究、教学和人才培养,培养的研究生中,多位获全国百篇、北京市和清华大学优秀博士学位论文奖。她曾获国家及部委级奖十项、何梁何利奖一项。发表学术论文300余篇。她曾获全国先进工作者、全国三八红旗手、冶金系统劳动模范、冶金系统和清华大学优秀共产党员、钢铁研究总院爱院模范、清华大学良师益友等称号。 /p p   曾任中国科学院学部主席团执行委员会成员(2004-2008)、技术科学部主任和副主任等职(2002-2008)。中国分析电子显微学领域的学术带头人,长期从事材料的显微结构、缺陷、界面等的形成和演变及其与性能关系的研究,应用现代显微分析技术在研制新材料和材料科学的基础研究中做出创新性工作。主编和合作者共同撰写了中国第一部分析电子显微学专著《高空间分辨分析电子显微学》。 /p p    strong 大会报告人:叶恒强 中国科学院院士 /strong /p p strong   报告题目:走进亚埃世界之后 /strong /p p   叶恒强,中国科学院院士,曾任中国科学院沈阳金属所所长(1998-2001)、中科院固体原子像开放实验室第一、二届主任、第五届所学术委员会委员和博士生导师。1991年11 月当选为中科院学部委员。他是辽宁省第六、七届政协常委,曾任中国电子显微镜学会理事长(2000-2004),国家高技术计划新材料领域专家组及专家委员会委员(1987-2000),国家自然科学基金会委员(1998-2003)和国务院学位委员会学科评议组成员。1990年,被授予国家级有突出贡献的中青年专家称号。他享受国家发放的政府特殊津贴。现任第三届973计划专家顾问组成员,北京大学电子显微镜实验室兼职教授、专家小组组长,学术委员会主任。 /p p    strong 大会报告人:张泽 中国科学院院士 /strong /p p strong   报告题目:使役条件下材料性能与显微结构关系 /strong /p p   张泽,材料科学晶体结构专家,中国科学院院士。浙江大学材料科学与工程学院教授,浙江大学学术委员会主任。1980年毕业于吉林大学物理系,1983年、1987年在中国科学院金属研究所,师从著名晶体物理学家郭可信院士,先后获得硕士、博士学位。1987年和1990年分别被晋升为副研究员和研究员。2001年当选为中国科学院院士。全国政协第九届、第十届、第十一届委员。2008-2016年任中国电镜学会理事长 2007-2016年任中国分析测试协会理事长 2012年2月张泽院士被推选为新一届亚太显微学会理事长。 /p p   张泽院士主要从事先进材料的电子显微结构研究,特别着重显微结构与材料性能间关系的基础性研究。将原子层次显微结构分析与材料中存在的关键科学问题相结合,系统研究发现并解决了准晶、低维纳米材料等国际材料科学界关注的一些重要问题,取得了创造性研究成果。主要研究成果曾获“国家自然科学一等奖”、“中国青年科学家奖”、“求是杰出青年奖”、“何梁何利奖”等9项国家及部门级科技奖励。 /p p    strong 大会报告人:黄晓旭 国家“千人计划”特聘教授 /strong /p p strong   报告题目:Correlative dislocation tomography and in situTEM aging study in Al-Cu-Mg alloy /strong /p p   黄晓旭,重庆大学材料科学与工程学院院长,国家“千人计划”特聘教授,丹麦可持续能源国家实验室高级研究员,丹麦-中国纳米材料中心主任,日本京都大学和丹麦技术大学兼职教授。其主要研究领域为金属结构材料的塑性变形、位错结构和力学行为、固态相变及晶体、宏观力学性能与微观结构的相互关系等。发表论文200余篇,其中SCI收录160余篇。代表作包括:Science 4篇、Nature 1篇、Proceedings of The Royal Society A: Mathematical, Physical& amp Engineering Sciences2篇、Proceedings of theNationalAcademy of Sciences of the United States of America (PNAS):1篇、Philosophical Magazine 9篇、Acta Materialia 26篇等。2004年荣获中国科学院金属研究所李薰研究奖,2011年在三维透射电子显微方面的研究入选美国材料研究学会(MRS)材料科学十大研究亮点(highlight)之一,2012年获美国Microscopy Today 2012 Innovation Award(创新奖),同年荣获日本学术振兴促进会(JSPS)Invitation Fellow(荣誉会员),2014年荣获中国新侨创新人才奖。 /p p    strong 大会报告人:潘晓晴 加州大学欧文分校 教授 /strong /p p strong   报告题目:Real Space Charge Density Imaging with Sub-?Resolution by 4D STEM /strong /p p   潘晓晴教授现为加州大学欧文分校(UCI)化学工程与材料科学教授、物理与天文学教授、Henry Samueli工程院主席、加州大学欧文分校Irvine材料研究所(IMRI)首任主任。在加入UCI之前,潘晓晴教授为Richard F.和Eleanor A. Towner Endowed讲座教授,材料科学与工程教授,以及密歇根大学安娜堡分校电子微束分析实验室主任。潘晓晴教授在南京大学获得物理学学士和硕士学位,在德国萨尔大学获得物理学博士学位。他是美国陶瓷学会,美国物理学会,美国显微学会和材料研究学会委员。潘晓晴教授长期致力于原子尺度的精细结构以及与物性之间关系的研究。尤其是在氧化物电子学领域,他领导的研究小组是国际上处于领先地位的几个研究小组之一。潘晓晴教授在国际高影响力学术期刊上发表论文400余篇,包括Nature, Science, Nature 子刊, Science Advances, Advanced Materials, PNAS, Journal of theAmerican Chemical Society, Physical Review Letters等,他发表的论文现已被引用20000余次,h-factor 为76(Google Scholar)。近年来,潘晓晴教授应邀在一些国际重要研究机构以及国际会议上作邀请报告250余次。 /p p    strong 大会报告人:Andreas Heinrich 教授 /strong /p p strong   报告题目:Quantum Nanoscience:Atoms on Surfaces /strong /p p   Heinrich教授长期致力于固体原子尺度量子测量相关研究,处于该领域世界领先位置,利用扫描隧道显微镜开创了自旋激发和单原子自旋共振光谱学,从而实现了表面原子和纳米结构的量子态高分辨率分析表征。Heinrich教授于1998年从哥廷根大学获得博士学位,然后加入Donald Eigler研究团队从事博士后研究。Heinrich教授在IBM Research有长达18年的工作经验,这使他能够同时满足工业研究和学术界的科研需求,具有重要桥梁作用 期间发展了纳秒扫描隧道电子显微镜,将时间分辨率提高十万倍,并结合X射线吸收光谱和自旋激发光谱。Heinrich 教授是马克斯· 普朗克固体研究所科学顾问委员会成员,美国物理学会会员,于2016年8月成为梨花女子大学的杰出教授,并于2017年1月作为负责人成立了基础科学研究所(IBS)的量子纳米科学中心(QNS)。 /p p    strong 大会报告人:饶子和 中国科学院院士 /strong /p p strong   报告题目:非洲猪瘟病毒组装机制 /strong /p p   饶子和,中国科学院院士,中国科学院学部主席团成员,清华大学/南开大学教授,南开大学原校长,中国科学院生物物理研究所原所长。饶子和院士长期从事新发、再发传染性疾病病原体的三维结构与功能研究,以及相应靶向创新药物的开发。工作涉及流感病毒、引起严重急性呼吸系统综合症(SARS)的冠状病毒、人类免疫缺陷病毒(HIV)、甲型肝炎病毒(HAV)、手足口病病毒(HFMDV)、寨卡病毒(Zika Virus)、埃博拉病毒(Ebola virus)、疱疹病毒(Herpesvirus)及结核分枝杆菌(Mycobacteriumtuberculosis)等威胁人类健康的重要病原体。截至目前,饶子和院士团队已先后在国际学术期刊上发表研究论文359篇,其中12篇研究成果发表在Cell,Nature,Science等三大国际顶级学术期刊,合计获引用逾15,000次。 /p p   2003年以来,饶子和教授先后当选为中国科学院院士, 第三世界科学院院士、牛津大学赫特福德学院研究员、国际欧亚科学院院士及爱丁堡皇家学会通讯院士,哥拉斯哥大学和香港浸会大学荣誉博士。 /p p   strong  大会报告人:高福 中国科学院院士 /strong /p p strong   报告题目:待定 /strong /p p   高福,中国科学院院士,第三世界科学院院士,美国微生物科学院院士,欧洲分子生物学组织外籍院士,美国科学促进会会士,爱丁堡皇家学会外籍院士,非洲科学院院士。中国疾病预防控制中心主任,国家自然科学基金委员会副主任。 /p p   1983年高福从山西农业大学毕业后进入北京农业大学就读研究生 1986年硕士毕业后留校任教 1991年前往英国牛津大学攻读生物化学博士 1995年获得博士学位后先后在加拿大卡尔加里大学、英国牛津大学,美国哈佛医学院从事博士后研究工作 2001年担任英国牛津大学讲师、实验室主任、博士生导师 2004年入选中国科学院百人计划,并进入中国科学院微生物研究所工作,担任研究员、博士生导师,所长 2005年获得国家杰出青年科学基金资助 2008年出任中国科学院病原微生物与免疫学重点实验室主任 2010年担任英国牛津大学客座教授 2013年当选中国科学院院士 2014年当选第三世界科学院院士 2015年担任中国科学院大学存济医学院院长 2017年担任中国疾病预防控制中心主任 2018年被任命为第八届国家自然科学基金委员会副主任 2019年,当选美国国家科学院外籍院士。 /p p   高福主要从事病原微生物跨宿主传播、感染机制与宿主细胞免疫研究以及公共卫生政策与全球健康策略研究。领导的研究组在流感病毒流行病学、跨种传播分子机制研究领域建树颇多,首次证实野生迁徙鸟能够群体感染高致病性H5N1禽流感病毒,改变了野生迁徙鸟只是流感病毒贮存宿主的结论 发现H7N9禽流感病毒是一种新型的重配病毒,与长江三角地区迁徙鸟和家禽有关,呼吁关闭活禽市场以预防病毒的进一步传播和可能的全球大流行,为国家制定禽流感防控政策提供了重要基础。率领首批中国疾病预防控制中心移动实验室检测队赴塞拉利昂抗击埃博拉,描绘出埃博拉病毒的进化图,在抗击埃博拉病毒的国际援助行动中发挥了关键作用。对流感病毒、埃博拉、MERS-CoV和寨卡等多种囊膜病毒的入侵机制进行研究,阐明其分子机制,并研发抗体、药物等抗病毒手段,为新发突发传染病防控提供重要支撑。 /p p    strong 大会报告人:徐涛 中国科学院院士 /strong /p p strong   报告题目:超分辨光镜-电镜关联成像技术 /strong /p p   徐涛,中国科学院院士,发展中国家科学院院士,万人计划、长江学者特聘教授、国家杰出青年基金、百人计划获得者,现任中国科学院大学副校长,中国科学院前沿科学与教育局局长,生物大分子国家重点实验室主任。 /p p   徐涛院士长期从事生物显微成像关键技术前沿科学问题研究,带领的团队在自然科学基金国家重大科研仪器研制项目、中国科学院科研仪器设备研制项目支持下,先后研制了偏振单分子干涉成像、冷冻单分子定位成像以及超分辨光电融合成像系统。利用这些新型仪器设备开发了新的超分辨显微成像算法、探针和技术,并广泛应用于细胞生物学研究,支撑团队在该领域取得了系统性产出,成果发表于Nature Cell Biology,Cell Metabolism,Nature Methods,JCB,Nature Communication,Cell Research,PNAS,eLife等学术期刊,并获国家自然科学二等奖和何梁何利科学与技术进步奖等。 /p p    strong 大会报告人:王宏伟 清华大学 教授 /strong /p p strong   报告题目:单颗粒冷冻电镜解析生物大分子结构的方法学探索 /strong /p p   清华大学生命科学学院教授、博士研究生导师、清华大学生命科学学院院长、国家杰出青年基金获得者。中国生物物理学会冷冻电子显微学分会理事长 中国生物物理学会理事 中国电子显微镜学会低温电镜专业委员会主任 中国电子显微镜学会常务理事。主要研究方向为冷冻电子显微学对生物大分子复合体的结构与分子机理研究。1996年毕业于清华大学生物科学与技术系,2001年7月于清华大学获得生物物理博士学位。同年8月赴美,于劳伦斯伯克利国家实验室先后从事博士后研究和担任研究科学家 2009年1月在美国耶鲁大学任Tenure-Track助理教授 2010年12月受聘清华大学生命科学学院教授职务,全时回国工作 2016年4月至今担任清华大学生命科学学院院长。曾获2005年国家自然科学奖二等奖(第二完成人) 2005年美国劳伦斯伯克利国家实验室杰出成就奖 2009年美国Smith Family Award for Excellence inBiomedical Research 2012年入选国家“青年千人”计划 2016年清华大学第十五届“良师益友”荣誉称号 2017年年北京市优秀教师 2018年清华大学第十六届“良师益友”荣誉称号 2018年度国家杰出青年科学基金 2018年第十一届“谈家桢生命科学创新奖” 2018年北京市师德榜样 2019年入选第四批国家“万人计划”科技创新领军人才。 /p p    strong span style=" background-color: rgb(255, 0, 0) color: rgb(255, 255, 255) " 十大分会场篇 /span /strong /p p    strong 会场1——显微学理论,技术与仪器发展分会报告邀请函 /strong /p p   分会主题: /p p   思索成像源头理论,发展电镜前沿技术,发挥仪器极限潜力 /p p   分会主席: /p p   陈江华(湖南大学) /p p   分会副主席: /p p   田鹤(浙江大学), /p p   周武(中国科学院大学), /p p   王鹏(南京大学) /p p   秘书处: /p p   明文全(湖南大学),E-mail:suokesi_ming@163.com /p p   刘中然,E-mail:liuzr12345@126.com /p p   王梅雨(南京大学),E-mail:mywang@nju.edu.cn /p p   许名权(中国科学院大学),E-mail:xumingquan18@mails.ucas.edu.cn /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场2——原位电子显微学表征 /strong /p p   分会主题: /p p   破解科学之谜,原位还你真相 /p p   分会主席: /p p   孙立涛(东南大学) /p p   单智伟(西安交通大学) /p p   分会副主席: /p p   王建波(武汉大学) /p p   郑士建(河北工业大学) /p p   秘书处: /p p   郑士建(河北工业大学),E-mail:sjzheng@imr.ac.cn /p p   郑赫(武汉大学),E-mail:zhenghe@whu.edu.cn /p p   解德刚(西安交通大学),E-mail:dg_xie@xjtu.edu.cn /p p   尹奎波(东南大学),E-mail:yinkuibo@seu.edu.cn /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场3——能源,环境和信息功能,热电材料等微结构表征 /strong /p p   分会主题: /p p   研讨材料的物理性能与化学行为背后的微观结构与机理 /p p   分会主席: /p p   于荣(清华大学) /p p   分会副主席: /p p   谷林(中国科学院物理研究所) /p p   王勇(浙江大学) /p p   彭勇(兰州大学) /p p   葛炳辉(安徽大学) /p p   秘书处: /p p   曹国平(清华大学),E-mail:guopingtsao@gmail.com /p p   张庆华(中国科学院物理研究所),E-mail:zhqh_wl@163.com /p p   张军伟(兰州大学),E-mail:zhangjunwei@lzu.edu.cn /p p   程峰(安徽大学),E-mail:chengfeng769@126.com /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场4——结构材料及缺陷,界面,表面,相变与扩散 /strong /p p   分会主题: /p p   解析经典探索前沿:原子尺度下的精准认知 /p p   分会主席: /p p   马秀良研究员(中国科学院金属研究所) /p p   分会副主席: /p p   禹日成研究员(中国科学院物理研究所) /p p   郭俊杰教授(杭州电子科技大学) /p p   李吉学教授 (浙江大学) /p p   秘书处: /p p   郭俊杰老师(杭州电子科技大学),E-mail:guojunjie1980@126.com /p p   沈希(中国科学院物理研究所),E-mail:xshen@aphy.iphy.ac.cn /p p   唐云龙(中国科学院金属研究所),E-mail:yltang@imr.ac.cn /p p   郝晓东(西安交通大学),E-mail:hao.xiaodong@sust.edu.cn /p p   刘攀(上海交通大学),E-mail:panliu@sjtu.edu.cn /p p   陈厚文(重庆大学),E-mail:hwchen@cqu.edu.cn /p p   郑赫(武汉大学),E-mail:zhenghe@whu.edu.cn /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场5——先进显微分析技术在工业材料中的应用 /strong /p p   分会主题: /p p   应用现代显微分析技术助力先进工程材料的设计开发 /p p   分会主席: /p p   沙刚(南京理工大学) /p p   杜勇(中南大学) /p p   分会副主席: /p p   李凯(中南大学) /p p   胡蓉 (南京理工大学) /p p   秘书处: /p p   李凯(中南大学),E-mail:leking@csu.edu.cn /p p   靳慎豹(南京理工大学),E-mail:Jinshenbao@njust.edu.cn /p p   谢盼(湖南大学),E-mail:xppanda@126.com /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场6——扫描探针显微学表征 /strong /p p strong    /strong 分会主题: /p p   对称性破缺:表面物理和化学 /p p   分会主席: /p p   贾金锋(上海交通大学) /p p   分会副主席: /p p   王兵(中国科学技术大学) /p p   迟力峰(苏州大学功能纳米与软物质研究院) /p p   马旭春(清华大学) /p p   吴凯(北京大学) /p p   郑浩 (上海交通大学) /p p   秘书处: /p p   郑浩(上海交通大学),E-mail:haozheng1@sjtu.edu.cn /p p   付英双(华中科技大学),E-mail:yfu@hust.edu.cn /p p   谭世倞(中国科学技术大学),E-mail:tansj@ustc.edu.cn 13966661520 /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场7——扫描电子显微学(EBSD)表征 /strong /p p   分会主题: /p p   由表及里:从形貌、成分和取向信息探索结构新知 /p p   分会主席: /p p   王卫国(福建工程学院) /p p   分会副主席: /p p   辛仁龙(重庆大学) /p p   陈忠伟(西北工业大学) /p p   曾毅 (中国科学院上海硅酸盐研究所) /p p   秘书处: /p p   辛仁龙(重庆大学),E-mail:rlxin@cqu.edu.cn /p p   王柯(重庆大学),E-mail:study_ke@cqu.edu.cn /p p   郭宁(西南大学),E-mail:guoning_1000@163.com /p p   郑婵(福建工程学院),E-mail:zcfjut@163.com /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场8——低温电子显微学表征 /strong /p p   分会主题: /p p   冷冻电镜的技术革新与应用 /p p   分会主席: /p p   丛尧(中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)) /p p   李雪明(北京大学) /p p   分会组委会: /p p   王宏伟(清华大学),尹长城(北京大学),孙飞(中国科学院生物物理研究所),高宁(北京大学),王培毅(南方科技大学),朱平(中国科学院生物物理研究所),祝建(上海同济大学),杨勇骥(上海第二军医大学),蔡刚(中国科技大学),何勇宁(中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)),雷建林(清华大学),张兴(浙江大学),沈庆涛(上海科技大学),张勤奋(广州中山大学),王素霞(北京大学第一医院),颜晓东,刘红荣(湖南师范大学),何万中(北京生命科学研究所),武一(兰州大学) /p p   秘书处: /p p   蔡 刚(中国科技大学),E-mail:gcai@ustc.edu.cn /p p   沈庆涛(上海科技大学),E-mail:shenqt@shanghaitech.edu.cn /p p   郭振玺(北京大学),E-mail:guozhenxi9999@163.com 电话:15901400988 /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场9——生命科学显微成像技术研究 /strong /p p   分会主题: /p p   将生命科学细胞形态研究精准定位在细胞器及蛋白质上 /p p   分会主席: /p p   林金星(北京林业大学) /p p   杨勇骥(上海第二军医大学) /p p   孙育杰(北京大学) /p p   毕国强(合肥中国科技大学) /p p   洪健(浙江大学) /p p   分会组委会: /p p   何其华(北京大学医学部) /p p   王素霞(北京大学第一医院) /p p   边玮 (中国科学院上海生化细胞研究所) /p p   王世强 (北京大学) /p p   纪伟(中国科学院生物物理研究所) /p p   陈文列(福建中医药大学) /p p   官阳(武汉大学人民医院) /p p   张仲凯(云南农业科学院) /p p   祝建(上海同济大学) /p p   徐信兰(中国科学院华南植物园) /p p   贺新强(北京大学) /p p   王学东(东北林业大学) /p p   秘书处: /p p   崔亚宁(北京林业大学),E-mail:cuiyaning@bjfu.edu.cn /p p   电话:15117967446 /p p   纪伟(中国科学院生物物理研究所),E-mail:jiwei@moon.ibp.ac.cn /p p   电话:13811422031 /p p   本次分会报告主要采取邀请方式,同时欢迎工作出色且近期刚回国的青年教师自荐。 /p p   学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p p    strong 会场10——中国电子显微镜运行管理开放共享实验平台 /strong /p p   会议背景: /p p   2014年,国家颁布了《国务院关于国家重大科研基础设施和大型科研仪器向社会开放的意见》(国发〔2014〕70号),要求加强大型科研仪器专业化服务能力,加快推进大型科研仪器向社会开放,进一步提高大型科研仪器利用效率。2018年,科技部、财政部和教育部联合开展了中央级高校和科研院所大型科研仪器开放共享评价考核专项工作。在本次考核总结大会上,科技部领导明确要求未来评价考核工作要在现有考核体系的基础上,增加电镜、质谱类仪器的单独考核,树立若干技术典型团队,逐渐由对仪器的评价考核向对技术工程师的考核过度。 /p p   主题:电镜实验平台的发展模式与技术进展 /p p   专题:1.电镜平台管理与技术支撑队伍建设 2.电镜运行管理 3.前沿电镜技术 4.自主创新技术 /p p   会议组委会主席: /p p   韩玉刚(中国科学院生物物理研究所) /p p   会议组委会副主席: /p p   张文娟(中国科学院分子细胞科学卓越创新中心) /p p   张书胜(郑州大学) /p p   李 勇(军事科学院) /p p   李文奇(清华大学) /p p   洪 健(浙江大学) /p p   徐信兰(中国科学院华南植物园) /p p   孟令杰(西安交通大学) /p p   郭振玺(北京大学) /p p   委 员:李丽萍(中国科学院武汉病毒研究所),高秀丽(中国科学院上海微系统与信息技术研究所),赵长征(中国科学院植物研究所) ,王晓东(中国科学院半导体研究所) ,孙兴伟(中国科学院上海硅酸盐研究所) ,谭福涛(中国科学院物理所) ,郝雪梅(北京大学),谢利萍(厦门大学),张斌(重庆大学),吴波(中国科学院金属研究所),黄春娟(中国科学院生物物理研究所),王亚林(西湖大学),张 磊(西安交通大学) /p p   秘书处: /p p   黄春娟(中国科学院生物物理研究所) /p p   E-mail: cjhuang@moon.ibp.ac.cn /p p   电话:18612968380 /p p   张 斌(重庆大学) /p p   E-mail: xinyun2017@cqu.edu.cn /p p   电话:15201585493 /p p   分会报告报名方式:8月20日前发邮件至秘书处老师。本分会报告欢迎工作出色且近期刚回国的教师报名。学生报告:5个名额(博士以上在学),欢迎广大同学报名,会议择优录选,并有机会获优秀报告奖。 /p
  • SZX-AR1增强现实体式显微镜系统在医疗器械行业中的应用
    随着经济的发展、人口的增长、社会老龄化程度的提高,以及人们保健意识的不断增强,全球医疗器械市场需求持续快速增长,医疗器械行业成为当今世界发展最快最活跃的行业之一。同时,众多医疗器械制造商的产线上,大量体式显微镜应用于医疗设备的组装和检查。医疗设备关乎人的生命安全,医疗器械制造行业面临着日趋严格的质量管理体系,有好多复杂制造任务需要在体式显微镜下手动完成。SZX-AR1增强现实显微镜的优势方便远程协作产线上用体式显微镜组装医疗设备,有必要进行现场检查,以便在出现问题时确定原因。如果引入了SZX-AR1显微镜,当制造过程中出现问题,装配人员就可以使用Microsoft Teams等第三方协作软件,与场外经理或工程师分享目镜中的实时视图,从而获得相应指导,及时解决问题。专注于操作医疗设备产品种类多且组装要求非常严格,装配人员需要不时地查看显示器上的操作指导,但当视线从显微镜移动到显示器时,施加在零件上的力就会发生变化,可能导致装配错误。如果有了SZX-AR1显微镜,操作指导就可以直接投影到显微镜视野中,装配人员只需专注工作而无需移动视线,尽可能规避操作失误。共享视野,易于培训还有,对医疗器械制造商来说,装配人员的培训是一项费力费时的大工程。传统模式下,培训师通过显示器对学员讲解操作说明,学员再去显微镜下进行操作。因为培训师在教学时不能直接检查学员的工作,而等学员完成后,培训师还需要到显微镜下观察产品,并针对存在的问题进行再培训。若使用SZX-AR1显微镜,培训师与学员就可以共享显微镜视野,使用注释功能直接在视野内给出说明。此外,有了培训视频,可以投影到显微镜视野中,学员就可以在没有培训师的情况下自学和练习。SZX-AR1增强现实显微镜系统的出现,对基于显微镜的复杂制造任务来说,提高工作效率,降低成本十分重要。其受益的不仅是医疗器械制造商,更是广大的电子行业客户群。对于大量使用体式显微镜的产线设计,引入SZX-AR1显微镜,会更好的对产线上的装配和检查工作带来有益的帮助。
  • 2020亚太区高成长500强企业榜单揭晓,Park原子力显微镜入围
    p style=" text-indent: 2em " span style=" text-indent: 2em " & nbsp /span strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 2020年5月11日,原子力显微镜制造商Park原子力显微镜公司(Park Systems)宣布,该公司入选了英国《金融时报》 /span span style=" text-indent: 2em " (FT) /span span style=" text-indent: 2em " 近日发布的 /span span style=" text-indent: 2em color: rgb(0, 112, 192) " “ strong 2020亚太区高成长500强企业榜单” /strong /span span style=" text-indent: 2em " 。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 237px " src=" https://img1.17img.cn/17img/images/202005/uepic/821f4ef6-098e-4eb2-8abf-97832f31f245.jpg" title=" AC9137350E58DAB46A1725C45DB0471E3E7BA11C_size21_w640_h337.jpeg" alt=" AC9137350E58DAB46A1725C45DB0471E3E7BA11C_size21_w640_h337.jpeg" width=" 450" height=" 237" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " 《金融时报》(FT)依据各企业2015至2018年的年复合成长率(CAGR)排名,选出亚太地区500家成长最快的企业,他们分别来自亚太区域11个经济体,包括新加坡、马来西亚、印度尼西亚、菲律宾、澳大利亚、新西兰、印度、日本、韩国等。数据显示,今年上榜企业的最低平均增长率为8.3%。据悉,所有上榜企业的相关数据都通过了国家统计局的核查,不符合上榜标准的企业会被剔除。 span style=" text-indent: 2em " 榜单由德国统计数据门户Statista编制。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 从榜单中企业行业分布来看,上榜最多的是科技行业企业,约有四分之一的上榜公司属于这一类别。 /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " 《金融时报》表示,亚太企业和其他地区一样,深受全球疫情蔓延的影响,尽管榜单评选时尚未把疫情列入考虑,但仍有助判断哪些企业的缓冲能力较强,足以在疫情之中幸存下来。那些反应最灵敏、最具创造力的企业,将化危机为“创新的催化剂”,中期内有望各自快速发展。 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/8e360a03-e5ef-40d5-933d-fec9e1f6d238.jpg" title=" 帕克原子力显微镜.jpg" alt=" 帕克原子力显微镜.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " Park原子力显微镜公司总部位于韩国水源 /span /p p style=" text-indent: 2em " 2015年,Park原子力显微镜公司在KOSDAQ上市自首次公开募股以来,其销售额每年都创新高,Park原子力显微镜公司在2020年新冠疫情大流行的情况下,业绩再创新高,在英国《金融时报》500强韩国企业的排名中, span style=" color: rgb(0, 112, 192) " 排名第25位 /span 。 /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " Park原子力显微镜副总裁Keibock Lee /span /strong 评论道:“我们很高兴能跻身亚太地区增长最快的公司前10%的行列。随着我们对原子力显微镜系统的创新设计,以及在资本资产、研发和人员方面的不断加大投入,相信我们能够在我们所服务的快速发展的纳米技术行业实现高速增长。 /p p style=" text-indent: 2em " 我们在提供最精确、最高纳米分辨率的AFM技术优势方面有着悠久的历史,这一直是我们持续增长的不竭动力。” /p p style=" text-indent: 2em " Park原子力显微镜成立于1997年,是AFM行业的全球市场知名品牌。公司拥有多项与AFM技术相关的专利,产品涵盖从用于研究的桌面AFM到用于半导体制造质量保证的带有机械臂的全自动AFM系统。Park原子力显微镜的主要客户包括全球数千所知名大学、国家实验室和行业领先企业,以及几乎所有领先半导体公司的AFM的主要供应商。 /p p style=" text-indent: 2em " 近来,Park原子力显微镜推出系列新计划来推广期AFM产品,包括设立研究基金、奖学金等。如提供Park AFM奖学金项目;最近扩大在线学习项目,提供公司网络研讨会、现场演示和用户聊天;举办纳米科学研讨会,以推广应用和技术,促进科学发现等。 /p p style=" text-indent: 2em " strong 关于Park原子力显微镜 /strong /p p style=" text-indent: 2em " Park原子力显微镜公司是目前世界上发展最快的原子力显微镜(AFM)制造商之一,为化学、材料、物理、生命科学、半导体和数据存储行业的研究人员和工程师提供了一系列完整的产品。 Park的客户包括20多家全球最大的半导体公司,以及亚洲、欧洲和美洲的国立研究型大学。Park 原子力显微镜是韩国证券交易所(KOSDAQ)的上市公司,公司总部位于韩国水原,地区总部位于美国加州圣克拉拉、德国曼海姆、中国北京、日本东京、新加坡和墨西哥墨西哥城。 /p p br/ /p
  • 天美公司携爱丁堡共聚焦显微拉曼光谱仪助力第二十二届全国光散射学术会议
    2023年9月22日-26日,天美仪拓实验室设备(上海)有限公司(以下简称天美公司)携爱丁堡共聚焦显微拉曼光谱仪RM5/RMS1000赞助参加第二十二届全国光散射学术会议。此次会议由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办。会议邀请了国内外光散射,以及相关光谱原理和技术领域的诸多知名专家,共同探讨光散射领域的最新研究成果和发展趋势,为拉曼光谱领域的研究学者提供了一个良好的交流平台。天美公司应邀作为赞助商之一,全程参加了此次会议。光散射学术会议是聚焦于光散射与相关光谱原理与技术等领域的学术交流盛会,每两年举办一次,到目前为止已经成功举办了21届。会议期间,天美公司还受邀进行会议报告,来自英国爱丁堡仪器公司的Matthew Berry为大家介绍《材料表征的多模式显微光谱技术:拉曼光谱及其它光谱技术应用》。首先讨论了拉曼光谱仪如何用于分析2D过渡金属二硫族化合物、表面增强拉曼散射-纳米结构材料、多晶型药物和矿物等样品。然后,将不同的光谱成像技术集成到拉曼光谱仪中,如二次谐波、双光子荧光、荧光寿命成像和电致发光,用于分析生物组织、钙钛矿太阳能电池和有机发光二极管等材料。在会议间隙,专家及学者们莅临天美公司展台,进一步了解天美旗下爱丁堡共聚焦显微拉曼光谱仪RM5/RMS1000的新技术以及新应用;同时,现场针对爱丁堡仪器的老客户们提出的各类仪器使用问题进行解答。与会的专家及学者们,对爱丁堡仪器表示了认可。通过为期5天的会议,天美公司与各位专家及学者们进行了深入的交流,更加深了彼此的相互了解。天美公司作为仪器行业的知名供应商,将始终秉承助力科研领域的发展,一如既往的支持研究学者在光散射领域的创新研究,为广大用户提供更加优质的服务。
  • 1300万!厦门市计量检定测试院透射电子显微镜及配套装置采购项目
    一、项目基本情况项目编号:[350201]HRC[GK]2024003项目名称:透射电子显微镜及配套装置采购方式:公开招标预算金额:13,000,000.00元采购包1(透射电子显微镜及配套装置采购项目):采购包预算金额:13,000,000.00元采购包最高限价: 13,000,000.00元投标保证金: 0元采购需求:(包括但不限于标的的名称、数量、简要技术需求或服务要求等)品目号品目编码及品目名称采购标的数量(单位)允许进口简要需求或要求品目预算(元)中小企业划分标准所属行业1-1A02120800-光学计量标准器具透射电子显微镜及配套装置1(套)是1.分辨率: 1)点分辨率:≤0.25nm; 2)线分辨率:≤0.10nm; 3)信息分辨率:≤0.12nm; 4)二次电子分辨率:≤1.0nm。 2.加速电压: 1)加速电压:20kV-200kV,加速电压连续可调; 2)加速电压稳定度:≤ 1ppm/1min。 3.电子枪: 1)超稳定、高亮度肖特基场发射电子枪; 2)束流:1nm束斑电流 ≥ 1.5 nA。 4.TEM放大倍率: 1)TEM最大放大倍率:≥1.05M×。 5.相机长度范围不小于:15 mm~2000 mm。 6.物镜:采用恒功率透镜设计。 7. 扫描透射系统(STEM): 1)分辨率:≤0.16 nm; 2)探头:可以配置三个探头,包括高角环形暗场(HAADF)探头,明场(BF)和环形暗场(DF)探头; 3) HRTEM和HRSTEM之间切换后稳定时间短,仅需点击鼠标即可在TEM与STEM模式间相互切换,可在几秒种之内完成。 8.样品台: 1)样品移动范围:X/Y:≥± 1mm;Z ≥±0.375 mm; 2)高视野低背底双倾样品杆最大倾斜角度:α: ±35°,β:±30°。 9.具备能谱仪(EDS)功能。 10.数字化成像系统: 1)≥1600万像素CMOS相机 2)具有大动态范围可以满足拍摄衍射花样,高读取速度(25fps),适合拍摄动态录像。 3)安装位置:底部安装。 11.真空系统: 1)真空度:电子枪真空度≤5 *10-6 Pa;样品区真空度≤2 *10-5 Pa (冷阱); 2)换样时间≤90秒。13,000,000.00工业本采购包不接受联合体投标合同履行期限:自合同签订之日起270日二、获取招标文件时间: 2024-06-04 至 2024-06-12 ,(提供期限自本公告发布之日起不得少于5个工作日),每天上午00:00:00至12:00:00,下午12:00:00至23:59:59(北京时间,法定节假日除外)地点:招标文件随同本项目招标公告一并发布;投标人应先在福建省政府采购网(zfcg.czt.fujian.gov.cn)免费申请账号在福建省政府采购网上公开信息系统按项目下载招标文件(请根据项目所在地,登录对应的(省本级/市级/区县))福建省政府采购网上公开信息系统操作),否则投标将被拒绝。方式:在线获取售价:免费三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:厦门市计量检定测试院地址:福建省厦门市思明区湖滨南路170号四楼联系方式:0592-26994282.采购代理机构信息(如有)名称:华睿诚项目管理有限公司地址:厦门市湖里区湖里大道6号北方商务大厦211单元联系方式:0592-57307313.项目联系方式项目联系人:郑维琳、许荣、屈涛、王彩华电话:0592-5730731网址: zfcg.czt.fujian.gov.cn开户名:华睿诚项目管理有限公司
  • 我4个创新主体进入全球碳纤维产业技术创新十强
    p   日前,八月创新研究院在京发布了《全球碳纤维产业技术创新200强报告》,报告显示,我国4个创新主体进入全球碳纤维产业技术创新十强,表明中国在碳纤维产业技术创新方面达到了较高的活跃度和强度。 /p p   根据报告评测结果,全球碳纤维产业技术创新200强中,东丽株式会社居于首位,第2名为帝人株式会社,第3名为波音公司,第4至第10名依次为三菱化学株式会社、东华大学、哈尔滨工业大学、福特全球技术公司、中国国家电网公司、三菱瓦斯化学株式会社和山东大学。 /p p   报告显示,美国14个创新主体进入200强,平均得分0.225 日本有29个创新主体进入200强,平均得分0.175 中国有139个创新主体进入200强,平均得分0.151。“这一方面表明我国碳纤维技术创新在全球横向比较中呈现较高的活跃度,另一方面表明我国碳纤维技术创新总体上与世界先进水平仍有不容忽视的差距。”八月瓜创新研究院有关负责人指出。 /p p   报告分析,在我国技术创新主体结构的特点方面,在200强前100强中,我国高校院所居多 200强后100强中,企业居多。中国碳纤维技术创新布局中有三点值得关注:一是中国技术创新主体创新实力优劣分化明显 二是中国创新主体海外专利布局十分薄弱 三是高校碳纤维技术科研实力明显高于企业,但同时意味着技术成果产业化有巨大市场空间。 /p p br/ /p
  • 未发布的新技术、新仪器抢先看 北京激光共聚焦超高分辨显微学年会不容错过
    p    strong 仪器信息网讯 /strong 2018年3月20日,一年一度由北京理化分析测试技术学会和北京市电镜学会共同主办的“北京市2018年度激光共焦及超高分辨显微学学术研讨会”在北京天文馆举行。大会旨在推动北京市及周边省市激光共焦超高分辨显微学的进步和发展,提高广大相关工作者的学术及技术水平,促进上述学科在生命科学等领域中的应用。北京市理化分析测试技术学会秘书长 桂三刚作简短致辞,北京市电镜学会秘书长张德添及何其华、王素霞、张丽娜等多位业内专家主持会议。大会共安排16个报告, 李建奇、孙异临、邓平晔、孙飞、周涛、宋敬东、高鹏、席鹏等200多名专家、学者和厂商技术人员等参加了本次研讨会。热门的超高分辨显微技术——单分子荧光检测成为会议的热点,精彩的专家报告、多款新品新技术的首次“剧透”,成就了本次会议的饕餮盛宴。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/c7a83414-e443-4da8-85a1-e2a3d2b0f1fb.jpg" title=" 会场.jpg" / /p p style=" text-align: center " 会议现场 /p p   单分子荧光检测技术是一种在单分子层次上揭示组装基元/生物分子间相互作用的精妙方法,能够提供隐藏在系综实验中的分子结构与功能之间的丰富信息,如何保证在衍射极限范围内只有1个分子发光,以及荧光标记选择、光漂白、光毒性等许多问题困扰单分子荧光检测技术及应用发展。针对这几年非常热门的超高分辨技术——单分子荧光检测,会议特别安排了专家报告:北京大学工学院生物医学工程系教授陈匡时作《单分子成像技术在RNA研究中的应用》、北京大学陈良怡作《Ultrasensitive Hessian structured illumination microscopy enables ultrafast and long-term super-resolution imaging》、中国科学院生物物理研究所研究员徐平勇作《基于单分子定位的超高分辨成像探针与技术》。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/e71cb6e9-db40-4d33-ad43-185852804c7b.jpg" title=" 秘书长.jpg" style=" width: 400px height: 267px " width=" 400" vspace=" 0" hspace=" 0" height=" 267" border=" 0" / /p p style=" text-align: center " 秘书长张德添与报告专家的学术交流互动 /p p   陈匡时在报告中讲到,传统的MB容易被细胞核吸收,并被核内的核酸酶降解或与蛋白结合,此类非特异性作用可造成报告荧光基团和淬灭基团分离从而引起假阳性信号,因而在单分子成像单一RNA方面能力有限。为此,从2007年考虑把分子信标存留在细胞质中(QD-MB)以提高其稳定性以避免假阳性信号出现开始,介绍了10年来自己在单分子成像技术的研究历程,期间分子信标历经2010年优化MB直接让分子信标(SIRNA-MBs)更稳定的尝试,直到2016年开发出2Me/PS loop MBs,与MS2比较,具有强荧光信号、低背景、质量数小、MB标签更短的优势。 /p p   SR技术追求更高的分辨率就需要更多的光子,更多的光子需求导致更多的光损伤,更多的光子需要更多的时间。为此陈良怡团队研发了PALM/STROM SR技术。这项技术拥有85 nm的空间分辨率,而光照度少于点扫描共聚焦显微镜1~3个数量级 10分钟连续成像可以获得18万张超高分辨率图像 拥有最长时间的超高分辨率成像 能够观察活细胞内的新结构动态 定量活细胞动态过程。徐平勇在报告讲到,mEos3.2在光活化荧光蛋白(PAFPs)中具有最高的光子数,是PALM成像中最好的FPs SIMBA技术适用于TIRFM、PALM和STORM显微镜的live SR技术成像中。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/cd2c49cb-1b26-4dda-acdc-d2b9be90ea0c.jpg" title=" 专家.jpg" / /p p style=" text-align: center " 报告专家 /p p   此外,会议还安排了清华大学生命科学学院教授欧光朔作《线虫神经前体细胞发育机制的成像和遗传学研究》、中国科学院生物物理研究所研究员李岩作《神经分子机制研究中显微成像技术的应用与需求》、中国科学院微生物研究所研究员孔照胜作《解码微管精准切割机制》报告、北京大学生物动态光学成像中心蒿慧文作《高尔基关联微管为E-cadherin囊泡运输提供特化轨道且参与细胞定向迁移的维持》、中国医学院阜外医院心血管疾病国家重点实验室副教授聂宇作《急性炎症在心机再生中的作用与机制》。这些报告带来了激光共聚焦超高分辨显微学在各研究前沿的应用,得到现场观众的高度关注 同时,作为毕业仅仅几年就找到了自己科研方向的年轻学者,聂宇详细分享了自己在“急性炎症在心机再生中的作用与机制”研究中的选题、研究思路确定等科学研究经验,精彩内容同样不容错过。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/fdcd8ced-5f9f-4e36-bea2-b71b3fb86f75.jpg" title=" 茶歇.jpg" / /p p style=" text-align: center " 学术交流不仅在三尺讲坛 /p p   作为激光共聚焦超高分辨显微学仪器设备的供应方,相关生产企业同样是本次会议的主角 生产企业带来多款从未公开发布的产品和技术,本次会议也成为不少企业发布新品、新技术的第一平台。徕卡显微系统(上海)贸易有限公司王怡净女士作《光谱式共聚焦的最新进展》,第一次在公开场合介绍了即将在4月发布的新品——SP8 FALCON。尼康仪器(上海)有限公司北京分公司应用工程师周建春女士作《To See To Believe——尼康活细胞成像解决方案》,介绍了新型倒置显微镜(Ti2,H-TIRF)、转盘共聚焦显微镜(CSU)和快速高分辨率共聚焦显微镜(A1+),其中一款是尚处于用户试用阶段、未正式上市的产品,据透露正处于等待新产品进关、布置展馆的阶段。东方科捷代表、ISS公司孙元胜先生作《时间超分辨显微技术》,带来了ISS最新单分子检测STED显微镜——ISS Alba。奥林巴斯(中国)有限公司戚少玲女士作《SpinSR10:活细胞超高分辨成像系统》。卡尔蔡司(上海)管理有限公司张然女士作《激光片层扫描显微系统(Lightsheet Z1)在组织透明化样品成像中的应用》。德国JPK Instruments AG樊友杰作《原子力及其与光学技术联用》。蒂姆温特远东有限公司李小煜先生作《高灵敏低损伤光片显微镜技术探讨》。新加坡GE公司席鹏(Jaron Liu)作《n OMX SR Blaze-SIM made it a reality for live-cell imaging at super resolution》。北京世纪桑尼科技在展位上展示了国内具有自主核心知识产权的SUNNY ASM。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/6b868369-c432-40b6-ba94-637dbacd1a03.jpg" title=" 会场-展位.jpg" / /p p style=" text-align: center " 厂商展位一览 /p
  • 国家重大仪器专项“场发射枪扫描电子显微镜开发和应用”通过科技部验收
    p    strong 仪器信息网讯 /strong 2019年12月6日,由北京中科科仪股份有限公司承担的国家重大科学仪器设备开发专项“场发射枪扫描电子显微镜开发和应用”项目技术综合验收会在北京外国专家大厦召开,科技部专家组成员、项目牵头单位、合作和应用单位代表参加了本次会议。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201912/uepic/12c61986-7256-46e1-96d0-5c32fcd33ee9.jpg" title=" 验收.jpg" alt=" 验收.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p   会上,验收专家组现场听取了中科科仪项目完成情况汇报,观看了项目视频,听取了异地测试情况汇报。与会专家组成员对项目完成情况给予高度评价,一致建议通过验收。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 224px " src=" https://img1.17img.cn/17img/images/201912/uepic/aa7c05ae-5295-49d6-b65c-ff0a014dc18b.jpg" title=" 场发射.png" alt=" 场发射.png" width=" 600" height=" 224" border=" 0" vspace=" 0" / /p p   场发射枪扫描电子显微镜是纳米科技研究不可缺少的工具,为前沿科技研究提供重要支撑,提升高端科学仪器研制水平,促进精密制造业发展,满足半导体技术、生命科学、环境保护等领域的迫切需求。该项目突破了高分辨电子光学成像系统设计、场发射枪工程化设计制造、电子束加速镜筒设计制造等多项关键技术,成功开发出具有自主知识产权的肖特基场发射枪扫描电子显微镜,分辨率指标分别达到和优于3nm@1kV和1nm@30kV,达到国际一流水平,极大促进了我国电子光学仪器产业的发展,使我国扫描电镜实现台阶式飞越,有效解决当前“卡脖子”问题,打破了国外产品垄断局面,促进国家、民族工业发展。极大推动和提高我国前沿科学研究、重大工程和战略型新兴产业高端装备的国产化和自主化水平。 /p p br/ /p
  • 350万!清华大学高稳定超高分辨显微成像系统采购项目
    项目编号:清设招第2022118号项目名称:清华大学高稳定超高分辨显微成像系统采购项目预算金额:350.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高稳定超高分辨显微成像系统1套是设备用途介绍:观察固定/活细胞或组织内部超微结构和形态变化(包括但不限于各种细胞的亚细胞器、分泌囊泡、突触、染色体以及包括蛋白质在内的大分子等)的超高分辨率水平(≤50nm)图像;研究亚细胞和分子水平定性,定量和定位分布检测;并在细胞及分子生物学,神经科学,组织及病理学、病毒及微生物学,免疫及肿瘤学等领域具有广泛用途。简要技术指标:1)高稳定超高分辨显微成像模块,生物分子可实现XY方向分辨率≤50nm;2)点扫描激光共聚焦显微成像模块,生物分子可实现XY方向分辨率≤200nm;3)科研级全电动倒置荧光显微镜,超高分辨专用100X油镜,数值孔径NA≥1.45。合同履行期限:合同签订后90日内交货本项目( 不接受 )联合体投标。
  • HORIBA JY与AIST-NT签订协议 分销扫描探针显微镜
    HORIBA Jobin Yvon,即HORIBA Scientific,日前高兴地宣布其与AIST-NT签订协议,在欧洲、中国和南美分销AIST-NT的扫描探针显微镜(SPM)产品。   AIST-NT是一家先进的SPM制造商,其SPM系统专门为光谱仪器的集成所设计的。多年来,AIST-NT一直是HORIBA Scientific的AFM-Raman 和针尖增强拉曼光谱系统 (TERS) 业务的合作伙伴。   HORIBA Scientific是一个领先的光谱设备制造商,是显微拉曼的领导者。随着人们对纳米光谱和TERS的兴趣不断增长,HORIBA Scientific已经与几个SPM制造商进行合作,提供一个广泛的联合解决方案。HORIBA Scientific的解决方案将会继续支持第三方的SPM系统,HORIBA Scientific整合了AIST-NT SPM技术的协议将获得HORIBA Scientific业务网络的全力支持。   AIST-NT扫描探针显微镜产品的独特硬件与软件技术,结合HORIBA Scientific著名的光谱技术将组成功能全面、强大和易于使用的AFM-Raman解决方案,杰出的长期稳定性和分析速度对共聚焦测量和TERS成像带来可靠的结果。 编译:刘丰秋
  • 布鲁克收购拉曼显微镜企业 Nanophoton 增强分子显微镜产品解决方案
    布鲁克公司近日宣布收购纳米光子公司(Nanophoton Corporation)。Nanophoton 公司总部位于大阪,提供广泛的先进拉曼显微镜产品组合,主要服务于日本的学术和工业研究客户。此次收购填补了布鲁克公司分子显微镜产品组合的空白,布鲁克公司期待在全球范围内为生命科学、生物制药、先进材料、半导体和聚合物领域的研究与开发提供快速、灵活和灵敏的 Nanophoton 拉曼显微镜系统。Nanophoton 提供各种先进的拉曼显微镜系统,这些系统具有超高的速度、灵敏度和空间分辨率,并结合用户友好的工作流程设计,可为用户带来卓越的使用体验,从而增强了布鲁克光学部门的分子显微镜产品组合。其应用包括检测先进的半导体和纳米材料、电池、有机和液晶显示器、纳米碳材料、识别有机成分、绘制片剂中活性药物成分和辅料的分布图以及组织中疾病模式的临床研究。Nanophoton RAMANtouch™ 高速拉曼显微镜可同时测量 400 个高质量拉曼光谱,实现高分辨率光谱成像(图片:Business Wire)纳米光子公司创始人、首席执行官 Satoshi Kawata 教授评论说: "我们最近刚刚庆祝了 Nanophoton 成立 20 周年,很高兴能与布鲁克公司一起翻开我们历史的新篇章。布鲁克公司是 Nanophoton 理想的合作伙伴,它将加速我们的发展,将我们独特的拉曼系统带给全球客户,并共同开发无与伦比的拉曼成像技术。布鲁克光学部总裁 Andreas Kamlowski 博士补充说:"我们热烈欢迎 Nanophoton 团队加入布鲁克公司,并对他们在拉曼显微镜创新方面的杰出业绩和专业知识表示认可。我们期待着这一新的机遇,在全球支持下为我们的全球研究客户带来与众不同的 Nanophoton 拉曼成像系统。交易的财务条款没有披露。2023 年,Nanophoton 公司的收入约为 500 万美元,接近盈亏平衡。关于纳米光子Nanophoton 公司成立于 2003 年,是全球唯一一家拉曼显微镜专业制造商。Nanophoton公司开发、制造并销售了独特的激光扫描拉曼显微镜,包括可将测量时间缩短数百倍的线照共焦拉曼显微镜,以及采用基于随机过程和信息理论的独特光束扫描方法的拉曼显微镜。Nanophoton 已实现商业化的其他产品包括深紫外拉曼显微镜、30 厘米晶片拉曼显微镜和长焦距成像拉曼显微镜。公司还销售独特的光学元件,如斑点减弱器和径向/方位偏振器。Nanophoton 公司得到了许多客户的大力支持,尤其是日本和韩国客户。关于布鲁克公司布鲁克公司帮助科学家们取得突破性发现,并开发出提高人类生活质量的新应用。布鲁克公司的高性能科学仪器和高价值分析诊断解决方案使科学家们能够在分子、细胞和微观层面探索生命和材料。通过与客户的密切合作,布鲁克公司在生命科学分子和细胞生物学研究、应用和制药、显微镜和纳米分析以及工业应用等领域实现了创新,提高了生产力,并帮助客户取得了成功。布鲁克公司在临床前成像、临床表型组学研究、蛋白质组学和多组学、空间和单细胞生物学、功能结构和凝集生物学以及临床微生物学和分子诊断等领域提供差异化、高价值的生命科学和诊断系统及解决方案。延伸阅读:Nanophoton开启全球化进程中国拉曼阵营再添一员——访Nanophoton总裁兼CEO Michael B. Verst先生
  • 专家点评NBT| 陈良怡/李浩宇合作团队发明计算超分辨图像重建算法,稳定提升荧光显微镜2倍分辨率
    2014年诺贝尔化学奖授予了荧光超分辨显微技术,利用荧光分子的化学开关特性(PALM/FPALM/STORM)或者物理的直接受激辐射现象(STED),实现超越衍射极限的超分辨成像。尽管如此,活细胞中的超分辨率成像仍然存在两个主要瓶颈:(1)超分辨率的光毒性限制了观察活细胞中精细生理过程;(2)受限于荧光分子单位时间内发出的光子数,时间和空间分辨率不可兼得。受限于这个瓶颈,为了在活细胞上达到60 nm空间分辨率极限,现有超分辨率成像手段需要强照明功率(kW~MW/mm2)、特殊荧光探针和长曝光时间( 2 s)。强照明功率引起的强漂白会破坏真实荧光结构的完整性,长曝光时间在图像重构时导致运动伪影,降低有效分辨率。迄今为止,基于光学硬件或者荧光探针的改进无法进一步提升活细胞超分辨率的时空分辨率,实现毫秒尺度60 nm的时空分辨率成像。2021年11月16日,哈尔滨工业大学李浩宇教授团队与北京大学陈良怡教授团队合作在Nature Biotechnology上发表论文Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy【1】。他们另辟蹊径,发明基于新计算原理的荧光超分辨率显微成像,进一步拓展荧光显微镜的分辨率极限。通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号空时连续性先验知识【2】,他们发明了两步迭代解卷积算法,即稀疏解卷积(Sparse deconvolution)方法,突破现有荧光显微系统的光学硬件限制,首次实现通用计算荧光超分辨率成像。结合自主研发的超分辨率结构光(SIM)系统,实现目前活细胞光学成像中最高空间分辨率(60nm)下,速度最快(564Hz)、成像时间最长(1小时以上)的超分辨成像。结合商业的转盘共聚焦结构光显微镜,实现四色、三维、长时间的活细胞超分辨成像。1、应用举例:DNA折纸标准样本验证为了在已知结构样本中验证分辨率的提升,研究者设计并合成了两个荧光标记位点的DNA折纸样本,每个位点用4~5个Cy5标记。当这些分子间距为60 nm、80 nm和100 nm时,它们在TIRF-SIM下几乎无法区分,但在经过稀疏解卷积重建后(Sparse-SIM,图1)可以很好地区分它们中间的距离。整体结果可以用单分子定位显微镜ROSE【3】交叉验证,与Sparse-SIM得到的DNA折纸的荧光对间距以及不同间距荧光对在玻片上的分布一致。图1:Sparse-SIM解析不同距离DNA折纸样本。(a)在相同视场下,用配对Cy5标记不同距离(60 nm, 80 nm, 100 nm, 120 nm)的DNA折纸样品,用TIRF(左)、TIRF-SIM(中)和Sparse-SIM(右)成像。(b)在TIRF、TIRF-SIM和Sparse-SIM下,黄色(60 nm)、蓝色(80 nm)(80 nm)、绿色(100 nm)和红色(120 nm)框包围的放大区域。比例尺:(a)2 μm;(b)100 nm。2、应用举例:Sparse-SIM超快活细胞成像揭示核孔结构和胰岛素囊泡早期融合孔道在活细胞成像中,稀疏结构光显微镜(Sparse-SIM)可以解析标记不同核孔蛋白(Nup35, Nup93, Nup98,或Nup107)的环状核孔结构,而它们在传统结构光显微镜(2D-SIM)下形状大小与100 nm荧光珠类似(图2c, 2d)。由于相机像素尺寸与孔径直径类似,测量的核孔拟合直径与Sparse-SIM的分辨率相当。校正后Nup35和Nup107孔的直径分别为~66 ± 3 nm和~97 ± 5 nm,而Nup98和Nup93直径大小处于这个范围中(图2e, 2f),结果与以前用其他超分辨成像方法在固定细胞中获得的直径相符【4】。有趣的是,12分钟超分辨成像可以显示活细胞中核孔形状变化,这可能反映了核膜上的单个核孔复合物动态重新定向到焦平面或远离焦平面(图2g),这是其他超分辨方法难以观察到的。图2:Sparse-SIM解析核孔蛋白动态过程。(c)用Sparse-SIM观察活COS-7细胞中以Nup98-GFP标记的动态环状核孔的典型例子,持续时间超过10分钟。上下区域分别显示2D-SIM和Sparse-SIM下的图像。(d)比较(c)中青色框中的核孔结构快照与100 nm荧光珠在不同重建方法(2D-SIM、20次RL解卷积后、50次RL解卷积后、Sparse-SIM)下的结果。(e)由于核孔的大小与Sparse-SIM的分辨率和像素大小相当,按照Supplementary Note 9.1的协议(详情请见文章),分别推导出Nup35-GFP(红色)、Nup98-GFP(黄色)、Nup93-GFP(绿色)和Nup107-GFP(青色)标记的核孔结构的实际直径。(f)Nup35(66 ± 3 nm, n=30)、Nup98(75 ± 6 nm, n=40)、Nup93(79 ± 4 nm, n = 40)、Nup107(97 ± 5nm ,n = 40)的平均直径环。左右两幅蒙太奇分别为传统Wiener重构或稀疏解卷积后的结果。(g)在6个时间点对 (c)中的品红色方框放大并显示。比例尺:(c)500 nm;(d, g, f)100 nm。通过滚动重建,Sparse-SIM的时间分辨率可达564 Hz,识别出来INS-1细胞中VAMP2-pHluorin标记的、更小的胰岛素囊泡融合孔道(如~61 nm孔径)。它们在囊泡融合的早期出现,孔径小(平均直径~87 nm),持续时间短(9.5 ms),不能被之前传统的TIRF-SIM所识别【2】。另一方面,鉴别出来的稳定融合孔在囊泡融合的后期出现,孔径大(平均直径~116 nm),持续时间长(47 ms),是之前看到的结构【2】。值得一提的是,虽然这里发现的囊泡早期融合孔状态很难被其他的超分辨率成像手段所直接验证,但是它们的发生频率与30多年前用快速冷冻蚀刻电子显微镜所观察到的“小的融合孔发生概率远低于大的融合孔”现象相吻合【6】。3、应用举例:稀疏解卷积是提升荧光显微镜分辨率的通用方法与当下热门的深度学习超分辨率显微重建不同,信号的空时连续性、高空间分辨率导致的荧光图像相对稀疏性这两个先验知识,是荧光显微成像的通用先验知识,不依赖于样本的形态以及特定的荧光显微镜种类。因此,稀疏解卷积是通用荧光显微计算超分辨率成像算法,可被广泛应用于提升其他荧光显微模态分辨率,观察不同种类细胞器的精细结构及动态(图3)。图3 | 稀疏解卷积广泛应用于提升不同显微成像模态空间分辨率,揭示各类细胞器精细结构动态。比如稀疏解卷积增强的商业超分辨转盘共焦结构光显微镜(SD-SIM)【7】,可以实现XY方向90纳米,Z方向250 纳米的空间分辨率,清晰记录分裂期7 μm深度内的全细胞内所有线粒体外膜网络(图4)。同样,若稀疏解卷积增强与商业SD-SIM结合,可以很容易实现活细胞上的三维、四色超分辨率成像。稀疏解卷积可以与膨胀显微镜(ExM)【8】结合,解析细胞膨胀后的复杂结构;也可以与宽场、点扫描的共聚焦、受激辐射损耗显微镜(STED)【9】以及微型化双光子显微镜(FHIRM-TPM 2.0)【10】结合,实现近两倍的空间分辨率提升。因此,稀疏解卷积的提出,将帮助使用各种各样荧光显微镜的生物医学研究者更好地分辨细胞中的精细动态结构。图4 | Sparse SD-SIM解析活细胞三维线粒体外膜网络。(k)活体COS-7细胞的线粒体外膜(Tom20-mCherry标记)的三维分布,颜色表征深度。(l)SD-SIM原始数据与Sparse SD-SIM的水平(左)和垂直(右)的白色框区域放大展示。比例尺:(k)5 μm;(l)1 μm。总之,通过稀疏解卷积算法(Sparse deconvolution)来实现计算荧光超分辨率成像,与目前基于特定物理原理或者特殊荧光探针的超分辨率方法都不相同。与超快结构光超分辨显微镜结合形成的Sparse-SIM是目前活细胞光学成像中,分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨光学显微成像手段。它也可以与现有的多数商业荧光显微镜结合,有效提升它们的空间分辨率,看到更清楚的精细结构动态。哈尔滨工业大学博士生赵唯淞、北京大学博士后赵士群、李柳菊为共同第一作者,哈尔滨工业大学仪器科学与工程学院李浩宇教授和北京大学未来技术学院陈良怡教授为论文共同通讯作者,共同作者还包括哈尔滨工业大学谭久彬院士、刘俭教授,北京大学毛珩博士,生科院成像平台单春燕博士和华南师范大学刘彦梅教授。参与合作的实验室包括武汉大学宋保亮教授、北京大学陈兴教授、中科院国家纳米科学中心丁宝全教授和生物物理所纪伟教授等。该项工作得到北京大学膜生物学重点实验室、麦戈文脑研究所、北大-清华生命科学联合中心、北京智源人工智能研究院的支持,也是多模态跨尺度国家生物医学成像设施建设过程中的重要成果。专家点评徐平勇(中科院生物物理所)自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。在固定细胞中,以MINFLUX、SIMFLUX以及ROSE等为代表的超分辨成像技术利用调制光照射单分子定位的方法实现了小于10纳米的空间分辨率。然而,在活细胞中进一步提高成像的空间分辨率仍然面临挑战。一个主要原因是活细胞成像的时空分辨率是互相关联的,为了减少活细胞里的运动伪影,需要通过提高采样频率来提高时间分辨率,但是采样频率或者时间分辨率的提高会减少记录的光子数,使得空间分辨率下降。在现有超分辨成像技术中,结构光照明成像SIM技术具有最高的时间分辨率,但是受限于成像原理本身和所采用的维纳反卷积等算法,空间分辨率进一步提高遇到了挑战。陈良怡和李浩宇团队合作发展的稀疏结构光超分辨显微成像技术(Sparse-SIM),保留了陈良怡团队前期发展的海森-SIM的高时间分辨率的优点,并进一步将SIM的空间分辨率提高到60纳米。该技术属于计算超分辨率成像方法,主要包括两步迭代解卷积求解算法。其核心是将Richardson–Lucy反卷积算法应用到SIM成像中,通过前期发展的基于信号的时空连续性的先验知识重建图像的方法减少或者消除Richardson–Lucy反卷积应用中的噪声问题;并利用提出的“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个先验知识作为约束条件,建立通用的计算框架——稀疏解卷积技术。该工作有几个方面的突破和创新:1)解决了Richardson–Lucy反卷积应用到生物成像中的噪声和先验知识问题,拓展了它在生物成像中的实际应用;2)利用稀疏结构光超分辨成像在活细胞中实现了同时高时空分辨率长时程成像;3)方法具有普适性,可以广泛用于宽场成像和其它超分辨成像技术,提高这些成像方法的分辨率。目前发展的Sparse-SIM主要是基于二维结构光 (2D-SIM) 系统,实现了活细胞中空间分辨率60nm、时间分辨率564Hz、成像时间1小时以上的超分辨成像。这是目前活细胞成像中同时具有的最高时空分辨率。其空间分辨率可与非线性SIM相媲美,但是时间分辨率更高,成像设备上的复杂程度也相对要低一些。将来Sparse-SIM技术也有望能用于三维结构光成像,尽管受限于3D-SIM成像方法本身成像的时间分辨率会有所下降。总之,Sparse-SIM技术同时具有高的时间和空间分辨率,其在活细胞成像中的应用有望带来诸多生物学中的重要发现。尤其重要的是,稀疏解卷积技术框架适用于目前多数荧光显微镜成像方法,并将这些成像的空间分辨率提升了近两倍,将大大促进这些荧光成像方法的发展和它们在生物学中的广泛应用。刘兴国(中科院广州生物医药与健康研究院)以SIM、STORM/PALM、STED为代表的的超分辨成像技术,成功突破了光学衍射极限,极大推动了亚细胞结构和细胞器互作动态等微观结构研究,获得了2014年诺贝尔化学奖。然而超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高——在超分辨成像技术中,SIM技术具有最好的时间分辨率,然而空间分辨率也是3种主流技术中最低的,缺乏对100nm以下尺度的亚细胞器结构的解析力。在充分利用SIM技术的时间分辨率的基础上,如何提高空间分辨率是一个重要的研究方向。北京大学陈良怡团队与哈尔滨工业大学李浩宇教授在Nature Biotechnology 杂志报道最新开发的Sparse deconvolution算法,并成功结合SIM技术开发出Sparse-SIM,在时空分辨率上成功将SIM技术的空间分辨率从110nm提高到60nm,同时保持毫秒级的时间分辨率。同时,陈良仪团队研究显示,本技术同样可以提高SD-SIM、STED等超分辨技术的轴向分辨率,甚至可以使普通宽场显微镜获得更好的信噪比。这一精彩的工作不但是领域的重要技术进展,而且具有广阔的应用空间。 陈良怡团队之前的工作,在硬件和软件水平挖掘SIM技术的时空分辨率,成功开发了高时空分辨率的Hessian SIM技术;本次研究再次在软件算法上取得突破,进一步推动了SIM技术在活细胞超分辨成像在时空分辨率的极限。应用Sparse-SIM技术,同时检测了核孔复合物结构、网格蛋白(clathrin)动态、溶酶体和内质网相互作用、内质网对线粒体内嵴动态的调控等重要过程,显现出Sparse-SIM强大的应用能力和应用前景。如何易于操作的提高超分辨成像技术的时空分辨率是亚细胞器结构和动态研究方面的一个重要方向,Sparse deconvolution算法或者Sparse-SIM提供了一个重要的生命科学研究工具,去探索更微观的生命科学过程。参考文献[1] Weisong Z, Shiqun Z, Liuju L, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy [J]. Nature biotechnology, 2021: DOI: https://doi.org/10.1038/s41587-021-01092-2.[2] Huang X, Fan J, Li L, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy [J]. Nature biotechnology, 2018, 36(5): 451-459.[3] Gu L, Li Y, Zhang S, et al. Molecular resolution imaging by repetitive optical selective exposure [J]. Nature Methods, 2019, 16(11): 1114-1118.[4] Szymborska A, Marco A d, Daigle N, et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging [J]. Science, 2013, 341(6146): 655-658.[6] Ornberg R L, Reese T S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes [J]. The Journal of Cell Biology, 1981, 90: 40 - 54.[7] Schulz O, Pieper C, Clever M, et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy [J]. PNAS, 2013, 110(52): 21000-21005.[8] Sun D-E, Fan X, Shi Y, et al. Click-ExM enables expansion microscopy for all biomolecules [J]. Nature Methods, 2021, 18: 107–113.[9] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782.[10] Zong W, Wu R, Chen S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging [J]. Nature Methods, 2021, 18(1): 46-49.
  • 昆士兰大学显微中心投资亿元搭建电镜顶尖平台 日立HF5000亮相
    p    strong 仪器信息网讯 /strong 近日,澳大利亚昆士兰大学显微镜和微量分析中心在显微技术基础设施方面进行了系列投资建设,投资金额超过1亿元人民币,其中包括耗资500万美元的日立HF5000球差校正透射电子显微镜,550万美元用于Hawken设备的翻新,450万美元用于澳大利亚研究理事会量子工程卓越中心(EQUS)的纳米光刻套件等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/a04cd6e0-93d5-418e-b493-206ea9dfe84f.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 日立集团的中村先生(Kuniyasu Nakamura)与昆士兰大学教授Roger Wepf展示了日立全自动球差校正透射电子显微镜HF5000的内部工作原理 /span /p p   目前,HF5000已安装完毕,并在微观创新方面取得获得巨大回报。9月7日,昆士兰大学显微镜和微量分析中心新成立的霍肯显微镜团队取得新的发现:通过日立200kV透射电子显微镜HF5000可以观察到比最小原子还小的物体 - 一个氢原子。这个发现会推动先进的医药工具,电池技术和纳米材料领域潜在的新发展。 /p p    strong 昆士兰大学的显微镜和微量分析中心Roger Wepf /strong strong 教授 /strong 表示,“这项新技术将有助于将量子物理学和分子生物学的研究人员聚集在一起,从而带来突破性技术发展的可能。 /p p   这个显微镜有足够的能力可以观测到人类头发直径的百万分之一,这意味着你甚至可以看到金属和半导体中原子晶格间距的微小变化。这个极小的微观层面将开启健康领域,合成生物学,先进材料和独特电子设备领域的新发现。” /p p   他还表示,“想象一下,能够实时操作超薄电子或磁性材料,测试纳米级电池模型,或者看看药物如何在分子或原子的范围上传递给细胞。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/5b1d1579-14d0-4bf0-86f1-e0423cebc1ce.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图中(从左-右):教授Aidan Byrne,日立高新技术公司 执行役常务高木幹夫,Kim Richards MP和教授Roger Wepf正式推出HF5000球差校正透射电子显微镜 /span /p p   本次合作中,日立集团将与包括New Spec在内的其他科学设备专家一起合作,共同推动技术界限,以协助昆士兰加入第六技术浪潮的中心,即所谓的可持续“Green Wave”。 /p p   据悉,日立集团基于“通过开发先进的自主技术和产品为社会做贡献”这一企业理念,实现可持续发展社会的目标。此次,与澳大利亚顶尖学府昆士兰大学显微镜和微量分析中心的强强联手,日立将其先进的电镜技术和丰富的解决方案,在科学创新研发方面得到更深入应用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/dc76d4e0-16da-4954-8271-92b6002e6f9e.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 全自动球差校正透射电子显微镜HF5000在昆士兰大学显微镜和微量分析中心 /span /p p    strong 更多关于日立HF5000: /strong /p p   1、高度自动化球差校正,尽量减少人员介入,适用于繁忙的分析测试中心或设备平台 /p p   2、三位一体呈现(TEM、STEM、SEM),内部结构成像和表面结构成像可同时进行同时获取 /p p   3、EDS超大球面角,无窗口探头。可实现快速,高灵敏度化学成分分析 /p p   4、前瞻性平台总体设计,为性能扩增预留选项,例如可扩增为气体环境电镜。 /p
  • 中国纤维素乙醇技术标准正在制定
    全球最大的工业酶制剂生产商诺维信全球执行副总裁托马斯那奇昨日透露,中国国家标准委已经通过行业协会推进纤维素乙醇技术标准的制定。这无疑是加速中国纤维素乙醇商业化运营的一大利好消息。   那奇昨日在京面对媒体时介绍说,目前中国每年有7亿吨农业废弃物,其中2亿吨将用于纤维素乙醇的制造,若以1/5-1/4的转化比率来讲,中国将具备4000万-5000万吨的产能,但目前中国生物质能源却还处在“襁褓”阶段。专家则指出,2011年第三季度诺维信与中粮和中石化两大央企巨头在华合作运营的乙醇示范工厂能否展示足够商业化可行性才是关键,而标准的建立对大规模的投产更有推动作用和行业意义。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制