当前位置: 仪器信息网 > 行业主题 > >

限位传感器

仪器信息网限位传感器专题为您提供2024年最新限位传感器价格报价、厂家品牌的相关信息, 包括限位传感器参数、型号等,不管是国产,还是进口品牌的限位传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合限位传感器相关的耗材配件、试剂标物,还有限位传感器相关的最新资讯、资料,以及限位传感器相关的解决方案。

限位传感器相关的资讯

  • 大连化物所制备出基于光子纤维素纳米晶的柔性汗液传感器
    近日,大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队设计并制备了一种用于汗液中钙离子传感的可持续、不溶性和手性光子纤维素纳米晶体贴片。该研究为纤维素纳米晶(CNC)的功能化研究提供了一种新思路。   在低碳循环经济的倡导下,CNC作为一种生物基材料被迅速地开发,在电子、生物塑料、能源等领域被广泛的应用,有望加速推进各领域的可持续发展。特别的是,CNC可以自发组织形成手性向列液晶结构,产生绚丽的光子结构色,这对可持续性光学和光学传感的发展非常重要。然而,此类材料在潮湿或液体环境中的功能失效,不可避免地损害了它们在生物医学、膜分离、环境监测和可穿戴设备中的发展。因此,通过简单有效的手段使得CNC在液体环境下稳定存在,并实现功能化的应用非常重要。本工作中,团队发展了一种制造不溶性CNC基水凝胶的简单且有效的方法,利用分子间氢键重构,热脱水使优化的CNC复合光子膜在水溶液中形成一个稳定的水凝胶网络。研究发现,该水凝胶在干湿状态之间可以可逆转换,便于进行特定的功能化处理。团队通过在液体环境下吸附溶胀引入功能化分子,得到了具有抗冻性(–20℃)、强粘附性、良好生物相容性、对Ca2+高灵敏度和高选择性感应的水凝胶。该工作有望促进利用可持续纤维素传感器监测其他代谢物(即葡萄糖、尿素和维生素等)的应用,并为在环境监测、膜分离和可穿戴设备中运行的数控水凝胶系统奠定了基础。   卿光焱团队长期致力于CNC手性功能化相关研究,开展了一系列工作:通过整合CNC自组装工艺和DMF溶剂中的紫外光引发的有机聚合,实现高性能光子材料的合成,从而增强CNC基复合材料的弹性变形概念(Small,2022);将强手性的CNC系统与强发光的稀土配合物进行结合,制备出携带四种光学信息的手性光子复合膜(Adv. Funct. Mater,2022)等。   相关研究成果以“Sustainable, Insoluble, and Photonic Cellulose Nanocrystal Patches for Calcium Ion Sensing in Sweat”为题,于近日发表在Small上。该工作的第一作者是大连化学物理研究所1824组博士研究生李琼雅。上述工作得到国家自然科学基金、辽宁省兴辽英才计划、大连化学物理研究所创新基金等项目的支持。
  • 精密位移传感器技术比较
    精密位移传感器技术比较PIEZOCONCEPT 在其压电级中使用什么类型的位移传感器?为什么它优于其他传感器技术?PIEZOCONCEPT 使用单晶硅传感器,称为Si-HR 传感器。尽管它是应变仪传感器大系列的一部分,但它的性能优于其他两种常用技术(电容式传感器和金属应变仪)。这两种位置传感技术有其自身的特定缺点。 电容式传感器与 PIEZOCONCEPT 公司Si-HR 传感器的比较电容式传感器非常常用。他们提供了不错的表现,但他们对以下情况很敏感:• 气压变化:空气的介电常数取决于气压。电容测量将受到任何压力变化的影响。• 温度变化:同样的,空气的介电常数会随温度变化• 污染物的存在以上所有都会导致一些纳米级的不稳定性,因此如果您想实现真正的亚纳米级稳定性,则需要将它们考虑在内。即使可以对气压和温度进行校正,也无法校正其他因素(污染物、脱气)的影响。这解释了电容式传感器在真空环境中性能不佳的原因。此外,电容式传感器非常昂贵且体积庞大。因此,带有电容传感器的位移台不可能做的有像的 BIO3/LT3 这样薄,即使设计的好也会在稳定性方面进一步牺牲性能。因为它是一种固态技术,所以Si-HR 传感器的电阻不依赖于气压或污染物的存在。其次,温度变化会对测量产生影响(主要是因为材料的热膨胀),但这可以通过使用传感器阵列来纠正。基本上,我们为每个轴平行使用 2 个硅传感器 - 一个用于测量,另一个用于考虑由于温度变化导致的材料膨胀。金属应变计与 PIEZOCONCEPT Silicon HR 技术的比较金属应变计与我们的 Silicon HR 技术(也是应变计)之间的差异更大。金属应变计和硅传感器应变计之间存在两个巨大差异。竞争对手试图说所有的应变仪都具有相同的性能,因为它们测量的是应变。这是不正确的。半导体应变计在稳定性方面与金属应变计有很大不同。金属应变计和Si-HR 传感器(PIEZOCONCEPT 使用)之间的第yi个区别是应变系数:半导体应变仪(Si-HR)的应变系数大约是金属应变仪的 100 倍。更高的规格因子导致更高的信噪比,最终导致更高的稳定性。 更重要的是,第二个区别是金属应变计不能直接安装在弯曲本身上(即实现运动的地方):金属应变计必须安装在某种“背衬”上。因此,它必须安装在执行器本身上,因为您没有足够的空间将其安装在挠性件上。仅在执行器上测量的问题是压电执行器有很多缺陷......存在蠕变或滞后等现象。因此,由于压电执行器的伸长不均匀,因此仅测量执行器的部分伸长率并不能精确地扣除其完全伸长率。通过对弯曲本身进行测量,我们不会遇到这种“不均匀”问题。由于上述原因,如果您比较应变计(金属)和 PIEZOCONCEPT 的Si-HR 传感器,在信噪比和稳定性方面存在巨大差异。 关于法国PIEZOCONCEPT公司 PIEZOCONCEPT 是压电纳米位移台领域的领宪供应商,其应用领域包括但不限于超分辨率显微镜、光阱、纳米工业和原子力显微镜。其产品已被国内外yi流大学和研究所从事前沿研究的知名科学家使用,在工业和科研领域受到广泛好评。 多年来,纳米定位传感器领域电容式传感器一直占据市场主导地位。但这项技术存在明显的局限性。PIEZOCONCEPT经过多年研究,开发出硅基高灵敏度位置传感器(Silicon HR)技术,Si-HR传感器可以实现更高的稳定性和线性度,以满足现代显微镜技术的更高分辨率要求。 PIEZOCONCEPT的目标是为客户提供一个物美价廉的纳米或亚纳米定位解决方案,让客户享受到市面上蕞高的定位准确性和稳定性的产品使用体验。我们开发了一系列超稳定的纳米定位器件,包含单轴、两轴、三轴、物镜扫描台、快反镜和配套器件,覆盖5-1500um行程,品类丰富,并提供各类定制化服务。与市场上已有的产品相比具有显着优势,Piezoconcept的硅传感器具有很好的稳定性、超本低噪声和超高的信号反馈,该技术优于市场上昂贵的高端电容传感器。因此,我们的舞台通过其简单而高效的柔性设计和超本低噪声电子器件提供皮米级稳定性和亚纳米(或亚纳米弧度)本底噪声。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。
  • 透明电极指纹传感器问世
    p   让手机屏任何位置都能识别身份 /p p   科技日报北京7月8日电 (记者张梦然)英国《自然· 通讯》杂志近日发表了一项材料科学新突破:韩国科学家团队用超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极,进而产生一种透明的指纹传感器。在智能手机屏幕上的演示表明,这种传感器可以让用户将手指放在屏幕的任何位置进行身份识别,而不需要使用指纹激活按钮。 /p p   指纹传感器是电子设备实现指纹自动采集的关键器件。其需要在一颗不足0.5平方厘米的晶片表面集成10000个以上的半导体传感单元,因此尽管指纹采集现在已很常见,但指纹传感器的制造仍属于一项综合性强、技术复杂度高、制造工艺难的高新技术。 /p p   消费电子市场一直大力追求透明的指纹传感器。不过,现阶段的技术受限于关键性的设计限制,比如需要开发出具有光传输和电子导电功能高的透明电极。而此次,科学家终于推出了制造智能手机的指纹传感器阵列,这些阵列可以同步检测触觉压力和手指皮肤温度。 /p p   韩国蔚山国立科技研究所科学家团队设计了一种新方法,来制造柔性透明的多功能传感器阵列。该设计的秘诀在于根据由超长银纳米纤维和纯银纳米线组成的随机混合网络纳米结构,创造出新型透明电极。 /p p   这种混合网络表现出较高的光传输力和低电阻,极耐机械弯折。将其融入指纹传感器阵列后,就得到一个高分辨率装置,能够准确可靠地检测触摸条件下指纹的脊谷区域。 /p p   研究团队将指纹传感器阵列、压敏晶体管和温度传感器集成至智能手机显示屏,借此展示了这项新技术在移动设备上的可应用性。这也意味着,这种传感器有望在未来取代指纹激活按钮。 /p p   总编辑圈点 /p p   手机迭代升级的速度太快,快到让人难以记起几年前的它,更难以想象几年后的它。如今我们对手机指纹解锁、指纹支付习以为常,简直都忘了曾经每天输入密码千百遍。这种“进化”还在继续:新上市的全面屏手机,正在用屏下指纹识别替代指纹识别键,只是指纹采集的位置依然固定。也许再过几年,随意触摸手机任何位置都能解锁。但愿那时,你还记得它曾经有个指纹识别键。 /p p br/ /p
  • 世界最小超声波传感器问世
    英国研究人员16日说,他们制造出了世界上最小的超声波传感器。它是如此微小,以至于可以在一根头发丝上排成队列。这一成果可广泛用于探索细胞内部等微观环境。   英国诺丁汉大学当天发布公报说,该校应用光学研究小组制造出了这种微型超声波传感器。它比现有的超声波传感器要小许多,500个这种传感器排在一起才会达到一根头发丝的宽度。它同时具有超声波特性和光学特性,在感知到超声波时会微微变形,这种变形可以被照射它们的激光所探测到,从而获得超声波的信息 反过来,如果对它发出一个激光脉冲,它也可以受激向外发出超声波,探测目标对象。   研究人员马特克拉克说,纳米技术的兴起带来了对微型超声波探测器的需求,他们开发的新设备将超声波探测技术推广到了纳米尺度上。目前人们比较熟悉的超声波应用是医疗检查,这种新型设备就可以用来对一个细胞的内部进行超声波检查,提供过去难以获得的生理信息。   此外,这种超声波传感器的分辨率也很高,它所用的声波频率超出了可见光的频率,因此在理论上它可以获得比最好的光学显微镜还要清晰的图像。
  • 基于SERS技术的新型可穿戴超薄传感器
    目前的可穿戴传感器,已经可以实现在日常条件下跟踪佩戴者的运动和生命体征,例如步数、血压、血氧和心率,并且也已逐渐发展出以非侵入性方式对佩戴者的生物流体(如汗液、唾液、眼泪和尿液)进行原位化学传感(in situ chemical sensing)的技术。但是,传统的可穿戴传感器通常无法在一次测量中同时区分不同的化学物质。如果想要设计成可用于测量多种化学物质,则需要更大的尺寸和非常昂贵的成本。能够检测多种化学分子和生物标志物对及时、准确和全面了解佩戴者复杂的生理和病理状况至关重要。为此,东京大学的研究团队开发出一种基于表面增强拉曼光谱(SERS,Surface-Enhanced Raman Spectroscopy)技术的新型可穿戴超薄传感器。该研究成果发表在6月22日的Advanced Optical Materials杂志,题为“高度可扩展、可穿戴的表面增强拉曼光谱”(Highly Scalable, Wearable Surface-Enhanced Raman Spectroscopy)。拉曼技术对可穿戴生物监测具有重要意义,因为它们拥有无需分子标记即可进行灵敏和多路化学分析的能力。困难在于,生物系统的固有的拉曼信号较为微弱,需要将目标分子结合到合适的底物上,以放大拉曼响应。研究团队选择了黄金作为基底。金是一种已知可有效用作SERS基底的材料,多个研究项目已经研究了在实际SERS平台中使用金属的不同方法。研究团队的灵感来自于制造镀金聚乙烯醇 (PVA) 纳米纤维的最新进展,该纳米纤维用于可长时间佩戴在人体皮肤上的电子传感器。团队成员 Limei Liu 解释,“这些 PVA 装置由涂有金的超细线纺制而成,因此可以毫无问题地附着在皮肤上,因为金不会以任何方式与皮肤发生反应或刺激皮肤。”这种可穿戴传感器由纳米网格状的PVA纤维制成,在纤维上覆盖150纳米的金层,将涂覆的纤维纳米网附着到目标表面(例如人体皮肤),然后用水将 PVA 溶解掉,只留下完整的金纳米网在目标表面。纳米线的尖锐边缘作为局部SERS效应的“热点”(hot spot),研究人员通过减小纳米线的直径来优化单位体积中的热点数量,同时保持足够的机械强度以实现耐磨性。在概念验证试验中,志愿者佩戴该贴片,并暴露在不同的化学物质中,然后用商用785纳米拉曼光谱仪进行检测。实验证明,该系统能够检测尿素和抗坏血酸等生物分子,并识别水中的微塑料污染。还可以检测到常见的滥用药物,以及应用于执法。该系统目前需要外部光源和光谱仪配合使用,但研究人员未来将把半导体纳米激光器和纳米光谱仪通过直接键合的方式,集成到可穿戴式SERS传感器中。助理教授Tinghui Xiao表示:“目前,我们的传感器需要进行微调以检测特定物质,我们希望在未来进一步提高灵敏度和特异性。有了这个,我们认为像血糖监测这样的应用是可能的,非常适合糖尿病患者,甚至可以用于病毒检测。”
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 常见的温湿度传感器有哪些?
    过去的温湿度传感器都比较简单,而随着技术的成熟,科技的进步,如今温湿度传感器发展也是越来越好。由于温度与湿度不管是从物理量本身还是在实际人们的生活中都有着密切的关系,所以温湿度一体的传感器就会相应产生。 温湿度传感器是指能将温度量和湿度量转换成容易被测量处理的电信号的设备或装置。 市场上的温湿度传感器一般是测量温度量和相对湿度量。结合目前市场上的传感器类型,即使是温湿度传感器,这一类型的传感器,还会分为很多种类,有很多的类型。当然它们的应用领域也是千差万别的。下面具体来看下湿度传感器的种类都有哪些?温湿度传感器按监测方法分有接触式和非接触式两种接触式: 接触式温度传感器的检测部分与被测对象有良好的接触,又称温度计。温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。非接触式: 它的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。温湿度传感器也分分体式和一体式两种,上面介绍了一体式,下面介绍分体式。分体式又温度传感器和湿度传感器组成。温度传感器通过感温元件来分类可以大致分成铂热电阻温度传感器、热电偶温度传感器、热敏电阻温度传感器三大类。1:铂热电阻温度传感器铂热电阻是利用铂丝的电阻值随着温度的变化而变化这一基本原理设计和制作的,按0℃时的电阻值R(℃)的大小分为10欧姆(分度号为Pt10)和100欧姆(分度号为Pt100)等,测温范围均为-200~850℃。利用PT100铂热电阻作为感温元件的型号有铠装式、装配式、插座式、端面热电阻。主要应用了需要温度误差小的行业或者是精密仪器仪表。2:热电偶温度传感器热电偶是温度测量中常用的温度传感器。其主要好处是宽温度范围和适应各种大气环境,而且结实、价低,无需供电,也是便宜的。热电偶由在一端连接的两条不同金属线(金属A和金属B)构成,当热电偶一端受热时,热电偶电路中就有电势差。通过电势的变化来得出相应的温度变化。热电偶是简单和通用的温度传感器,但热电偶并不适合高精度的的测量和应用。3:热敏电阻由金属氧化物陶瓷组成,是低成本、灵敏度高的温度传感器。热敏电阻是用半导体材料, 大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。热敏电阻在两条线上测量的是温度, 有较好的精度,但它比热偶贵, 可测温度范围也小于热偶。一种常用热敏电阻在25℃时的阻值为5kΩ,每1℃的温度改变造成200Ω的电阻变化。注意10Ω的引线电阻仅造成可忽略的 0.05℃误差。它非常适合需要进行快速和灵敏温度测量的电流控制应用。尺寸小对于有空间要求的应用是有利的,但必须注意防止自热误差。湿度传感器的湿敏元件分为电阻式和电容式 两种。湿敏电阻的特点是在基片上覆盖一层用感湿材料制成的膜,当空气中的水蒸气吸附在感湿膜上时,元件的电阻率和电阻值都发生变化,利用这一特性即可测量湿度。湿敏电容一般是用高分子薄膜电容制成的,常用的高分子材料有聚苯乙烯、聚酰亚胺、酪酸醋酸纤维等。当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比。常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和形形色色的电子式传感器法。
  • 传感器的科普知识来啦!
    传感器(Sensor)是一种常见的却又很重要的器件,它是感受规定的被测量的各种量并按一定规律将其转换为有用信号的器件或装置。对于传感器来说,按照输入的状态,输入可以分成静态量和动态量。我们可以根据在各个值的稳定状态下,输出量和输入量的关系得到传感器的静态特性。传感器的静态特性的主要指标有线性度、迟滞、重复性、灵敏度和准确度等。传感器的动态特性则指的是对于输入量随着时间变化的响应特性。动态特性通常采用传递函数等自动控制的模型来描述。通常,传感器接收到的信号都有微弱的低频信号,外界的干扰有的时候的幅度能够超过被测量的信号,因此消除串入的噪声就成为了一项关键的传感器技术。  物理传感器  物理传感器是检测物理量的传感器。它是利用某些物理效应,把被测量的物理量转化成为便于处理的能量形式的信号的装置。其输出的信号和输入的信号有确定的关系。主要的物理传感器有光电式传感器、压电传感器、压阻式传感器、电磁式传感器、热电式传感器、光导纤维传感器等。作为例子,让我们看看比较常用的光电式传感器。这种传感器把光信号转换成为电信号,它直接检测来自物体的辐射信息,也可以转换其他物理量成为光信号。其主要的原理是光电效应:当光照射到物质上的时候,物质上的电效应发生改变,这里的电效应包括电子发射、电导率和电位电流等。显然,能够容易产生这样效应的器件成为光电式传感器的主要部件,比如说光敏电阻。这样,我们知道了光电传感器的主要工作流程就是接受相应的光的照射,通过类似光敏电阻这样的器件把光能转化成为电能,然后通过放大和去噪声的处理,就得到了所需要的输出的电信号。这里的输出电信号和原始的光信号有一定的关系,通常是接近线性的关系,这样计算原始的光信号就不是很复杂了。其它的物理传感器的原理都可以类比于光电式传感器。  物理传感器的应用范围是非常广泛的,我们仅仅就生物医学的角度来看看物理传感器的应用情况,之后不难推测物理传感器在其他的方面也有重要的应用。  比如血压测量是医学测量中的最为常规的一种。我们通常的血压测量都是间接测量,通过体表检测出来的血流和压力之间的关系,从而测出脉管里的血压值。测量血压所需要的传感器通常都包括一个弹性膜片,它将压力信号转变成为膜片的变形,然后再根据膜片的应变或位移转换成为相应的电信号。在电信号的峰值处我们可以检测出来收缩压,在通过反相器和峰值检测器后,种传感器外形我们可以得到舒张压,通过积分器就可以得到平均压。  让我们再看看呼吸测量技术。呼吸测量是临床诊断肺功能的重要依据,在外科手术和病人监护中都是必不可少的。比如在使用用于测量呼吸频率的热敏电阻式传感器时,把传感器的电阻安装在一个夹子前端的外侧,把夹子夹在鼻翼上,当呼吸气流从热敏电阻表面流过时,就可以通过热敏电阻来测量呼吸的频率以及热气的状态。  再比如最常见的体表温度测量过程,虽然看起来很容易,但是却有着复杂的测量机理。体表温度是由局部的血流量、下层组织的导热情况和表皮的散热情况等多种因素决定的,因此测量皮肤温度要考虑到多方面的影响。热电偶式传感器被较多的应用到温度的测量中,通常有杆状热电偶传感器和薄膜热电偶传感器。由于热电偶的尺寸非常小,精度比较高的可做到微米的级别,所以能够比较精确地测量出某一点处的温度,加上后期的分析统计,能够得出比较全面的分析结果。这是传统的水银温度计所不能比拟的,也展示了应用新的技术给科学发展带来的广阔前景。  从以上的介绍可以看出,仅仅在生物医学方面,物理传感器就有着多种多样的应用。传感器的发展方向是多功能、有图像的、有智能的传感器。传感器测量作为数据获得的重要手段,是工业生产乃至家庭生活所必不可少的器件,而物理传感器又是最普通的传感器家族,灵活运用物理传感器必然能够创造出更多的产品,更好的效益。  光纤传感器  近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能,绝缘、无感应的电气性能,耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。  光纤传感器是最近几年出现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,还可以完成现有测量技术难以完成的测量任务。在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了独特的能力。目前光纤传感器已经有70多种,大致上分成光纤自身传感器和利用光纤的传感器。  所谓光纤自身的传感器,就是光纤自身直接接收外界的被测量。外接的被测量物理量能够引起测量臂的长度、折射率、直径的变化,从而使得光纤内传输的光在振幅、相位、频率、偏振等方面发生变化。测量臂传输的光与参考臂的参考光互相干涉(比较),使输出的光的相位(或振幅)发生变化,根据这个变化就可检测出被测量的变化。光纤中传输的相位受外界影响的灵敏度很高,利用干涉技术能够检测出10的负4次方弧度的微小相位变化所对应的物理量。利用光纤的绕性和低损耗,能够将很长的光纤盘成直径很小的光纤圈,以增加利用长度,获得更高的灵敏度。  光纤声传感器就是一种利用光纤自身的传感器。当光纤受到一点很微小的外力作用时,就会产生微弯曲,而其传光能力发生很大的变化。声音是一种机械波,它对光纤的作用就是使光纤受力并产生弯曲,通过弯曲就能够得到声音的强弱。光纤陀螺也是光纤自身传感器的一种,与激光陀螺相比,光纤陀螺灵敏度高,体积小,成本低,可以用于飞机、舰船、导弹等的高性能惯性导航系统。如图就是光纤传感器涡轮流量计的原理。  另外一个大类的光纤传感器是利用光纤的传感器。其结构大致如下:传感器位于光纤端部,光纤只是光的传输线,将被测量的物理量变换成为光的振幅,相位或者振幅的变化。在这种传感器系统中,传统的传感器和光纤相结合。光纤的导入使得实现探针化的遥测提供了可能性。这种光纤传输的传感器适用范围广,使用简便,但是精度比第一类传感器稍低。  光纤在传感器家族中是后期之秀,它凭借着光纤的优异性能而得到广泛的应用,是在生产实践中值得注意的一种传感器。  仿生传感器  仿生传感器,是一种采用新的检测原理的新型传感器,它采用固定化的细胞、酶或者其他生物活性物质与换能器相配合组成传感器。这种传感器是近年来生物医学和电子学、工程学相互渗透而发展起来的一种新型的信息技术。这种传感器的特点是机能高、寿命长。在仿生传感器中,比较常用的是生体模拟的传感器。  仿生传感器按照使用的介质可以分为:酶传感器、微生物传感器、细胞器传感器、组织传感器等。在图中我们可以看到,仿生传感器和生物学理论的方方面面都有密切的联系,是生物学理论发展的直接成果。在生体模拟的传感器中,尿素传感器是最近开发出来的一种传感器。下面就以尿素传感器为例子介绍仿生传感器的应用。  尿素传感器,主要是由生体膜及其离子通道两部分构成。生体膜能够感受外部刺激影响,离子通道能够接收生体膜的信息,并进行放大和传送。当膜内的感受部位受到外部刺激物质的影响时,膜的透过性将产生变化,使大量的离子流入细胞内,形成信息的传送。其中起重要作用的是生体膜的组成成分膜蛋白质,它能产生保形网络变化,使膜的透过性发生变化,进行信息的传送及放大。生体膜的离子通道,由氨基酸的聚合体构成,可以用有机化学中容易合成的聚氨酸的聚合物(L一谷氨酸,PLG)为替代物质,它比酶的化学稳定性好。PLG是水溶性的,本不适合电机的修饰,但PLG和聚合物可以合成嵌段共聚物,形成传感器使用的感应膜。  生体膜的离子通道的原理基本上与生体膜一样,在电极上将嵌段共聚膜固定后,如果加感应PLG保性网络变化的物质,就会使膜的透过性发生变化,从而产生电流的变化,由电流的变化,便可以进行对刺激性物质的检测。  尿素传感器经试验证明是稳定性好的一种生体模拟传感器,检测下限为10的负3次方的数量级,还可以检测刺激性物质,但是暂时还不适合生体的计测。  目前,虽然已经发展成功了许多仿生传感器,但仿生传感器的稳定性、再现性和可批量生产性明显不足,所以仿生传感技术尚处于幼年期,因此,以后除继续开发出新系列的仿生传感器和完善现有的系列之外,生物活性膜的固定化技术和仿生传感器的固态化值得进一步研究。  在不久的将来,模拟生体功能的嗅觉、味觉、听觉、触觉仿生传感器将出现,有可能超过人类五官的敏感能力,完善目前机器人的视觉、味觉、触觉和对目的物进行操作的能力。我们能够看到仿生传感器应用的广泛前景,但这些都需要生物技术的进一步发展,我们拭目以待这一天的到来。  红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量 (2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪 (3)热成像系统,可产生整个目标红外辐射的分布图象 (4)红外测距和通信系统 (5)混合系统,是指以上各类系统中的两个或者多个的组合。  红外系统的核心是红外探测器,按照探测的机理的不同,可以分为热探测器和光子探测器两大类。下面以热探测器为例子来分析探测器的原理。  热探测器是利用辐射热效应,使探测元件接收到辐射能后引起温度升高,进而使探测器中依赖于温度的性能发生变化。检测其中某一性能的变化,便可探测出辐射。多数情况下是通过热电变化来探测辐射的。当元件接收辐射,引起非电量的物理变化时,可以通过适当的变换后测量相应的电量变化。  电磁传感器  磁传感器是最古老的传感器,指南针是磁传感器的最早的一种应用。但是作为现代的传感器,为了便于信号处理,需要磁传感器能将磁信号转化成为电信号输出。应用最早的是根据电磁感应原理制造的磁电式的传感器。这种磁电式传感器曾在工业控制领域作出了杰出的贡献,但是到今天已经被以高性能磁敏感材料为主的新型磁传感器所替代。  在今天所用的电磁效应的传感器中,磁旋转传感器是重要的一种。磁旋转传感器主要由半导体磁阻元件、永久磁铁、固定器、外壳等几个部分组成。典型结构是将一对磁阻元件安装在一个永磁体的刺激上,元件的输入输出端子接到固定器上,然后安装在金属盒中,再用工程塑料密封,形成密闭结构,这个结构就具有良好的可靠性。磁旋转传感器有许多半导体磁阻元件无法比拟一款电磁传感器的外形的优点。除了具备很高的灵敏度和很大的输出信号外,而且有很强的转速检测范围,这是由于电子技术发展的结果。另外,这种传感器还能够应用在很大的温度范围中,有很长的工作寿命、抗灰尘、水和油污的能力强,因此耐受各种环境条件及外部噪声。所以,这种传感器在工业应用中受到广泛的重视。  磁旋转传感器在工厂自动化系统中有广泛的应用,因为这种传感器有着令人满意的特性,同时不需要维护。其主要应用在机床伺服电机的转动检测、工厂自动化的机器人臂的定位、液压冲程的检测、工厂自动化相关设备的位置检测、旋转编码器的检测单元和各种旋转的检测单元等。  现代的磁旋转传感器主要包括有四相传感器和单相传感器。在工作过程中,四相差动旋转传感器用一对检测单元实现差动检测,另一对实现倒差动检测。这样,四相传感器的检测能力是单元件的四倍。而二元件的单相旋转传感器也有自己的优点,也就是小巧可靠的特点,并且输出信号大,能检测低速运动,抗环境影响和抗噪声能力强,成本低。因此单相传感器也将有很好的市场。  磁旋转传感器在家用电器中也有大的应用潜力。在盒式录音机的换向机构中,可用磁阻元件来检测磁带的终点。家用录像机中大多数有变速与高速重放功能,这也可用磁旋转传感器检测主轴速度并进行控制,获得高画面的质量。洗衣机中的电机的正反转和高低速旋转功能都可以通过伺服旋转传感器来实现检测和控制。  这种开关可以感应到进入自己检验区域的金属物体,控制自己内部电路的开或关。开关自己产生磁场,当有金属物体进入到磁场会引起磁场的变化。这种变化通过开关内部电路可以变成电信号。  更加突出电磁传感器是一门应用很广的高新技术,国内、国外都投入了一定的科研力量在进行研究,这种传感器的应用正在渗透入国民经济、国防建设和人们日常生活的各个领域,随着信息社会的到来,其地位和作用必将。  磁光效应传感器  现代电测技术日趋成熟,由于具有精度高、便于微机相连实现自动实时处理等优点,已经广泛应用在电气量和非电气量的测量中。然而电测法容易受到干扰,在交流测量时,频响不够宽及对耐压、绝缘方面有一定要求,在激光技术迅速发展的今天,已经能够解决上述的问题。  磁光效应传感器就是利用激光技术发展而成的高性能传感器。激光,是本世纪六十年代初迅速发展起来的又一新技术,它的出现标志着人们掌握和利用光波进入了一个新的阶段。由于以往普通光源单色度低,故很多重要的应用受到限制,而激光的出现,使无线电技术和光学技术突飞猛进、相互渗透、相互补充。现在,利用激光已经制成了许多传感器,解决了许多以前不能解决的技术难题,使它适用于煤矿、石油、天然气贮存等危险、易燃的场所。  比如说用激光制成的光导纤维传感器,能测量原油喷射、石油大罐龟裂的情况参数。在实测地点,不必电源供电,这对于安全防爆措施要求很严格的石油化工设备群尤为适用,也可用来在大型钢铁厂的某些环节实现光学方法的遥测化学技术。  磁光效应传感器的原理主要是利用光的偏振状态来实现传感器的功能。当一束偏振光通过介质时,若在光束传播方向存在着一个外磁场,那么光通过偏振面将旋转一个角度,这就是磁光效应。也就是可以通过旋转的角度来测量外加的磁场。在特定的试验装置下,偏转的角度和输出的光强成正比,通过输出光照射激光二极管LD,就可以获得数字化的光强,用来测量特定的物理量。  自六十年代末开始,RC Lecraw提出有关磁光效应的研究报告后,引起大家的重视。日本,苏联等国家均开展了研究,国内也有学者进行探索。磁光效应的传感器具有优良的电绝缘性能和抗干扰、频响宽、响应快、安全防爆等特性,因此对一些特殊场合电磁参数的测量,有独特的功效,尤其在电力系统中高压大电流的测量方面、更显示它潜在的优势。同时通过开发处理系统的软件和硬件,也可以实现电焊机和机器人控制系统的自动实时测量。在磁光效应传感器的使用中,最重要的是选择磁光介质和激光器,不同的器件在灵敏度、工作范围方面都有不同的能力。随着近几十年来的高性能激光器和新型的磁光介质的出现,磁光效应传感器的性能越来越强,应用也越来越广泛。  磁光效应传感器做为一种特定用途的传感器,能够在特定的环境中发挥自己的功能,也是一种非常重要的工业传感器。  压力传感器  压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。  我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应 当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。  压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。  在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。  压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。  压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别压电传感器的外形是航空和宇航领域中更有它的特殊地位。压电式传感器心乂  也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。  压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。  除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。  相关控制系统  继电器控制  继电器是我们生活中常用的一种控制设备,通俗的意义上来说就是开关,在条件满足的情况下关闭或者开启。继电器的开关特性在很多的控制系统尤其是离散的控制系统中得到广泛的应用。从另一个角度来说,由于为某一个用途设计使用的电子电路,最终或多或少都需要和某一些机械设备相交互,所以继电器也起到电子设备和机械设备的接口作用。  最常见的继电器要数热继电器,通常使用的热继电器适用于交流50Hz、60Hz、额定电压至660V、额定电流至80A的电路中,供交流电动机的过载保护用。它具有差动机构和温度补偿环节,可与特定的交流接触器插接安装。  时间继电器也是很常用的一种继电器,它的作用是作延时元件,通常它可在交流50Hz、60Hz、电压至380V、直流至220V的控制电路中作延时元件,按预定的时间接通或分断电路。可广泛应用于电力拖动系统,自动程序控制系统及在各种生产工艺过程的自动控制系统中起时间控制作用。  在控制中常用的中间继电器通常用作继电控制,信号传输和隔离放大等用途。此外还有电流继电器用来限制电流、电压继电器用来控制电压、静态电压继电器、相序电压继电器、相序电压差继电器、频率继电器、功率方向继电器、差动继电器、接地继电器、电动机保护继电器等等。正是有了这些不同类型的继电器,我们才有可能对不同的物理量作出控制,完成一个完整的控制系统。  除了传统的继电器之外,继电器的技术还应用在其他的方面,比如说电机智能保护器是根据三相交流电动机的工作原理,分析导致电动机损坏的主要原因研制的,它是一种设计独特,工作可靠的多功能保护器,在故障出现时,能及时切断电源,便于实现电机的检修与维护,该产品具有缺相保护,短路、过载保护功能,适用于各类交流电动机,开关柜,配电箱等电器设备的安全保护和限电控制,是各类电器设备设计安装的优选配套产品。该技术安装尺寸、接线方式、电流调整与同型号的双金属片式热继电器相同。是直接代替双金属片式热继电器的更新换代的先进电子产品。继电器技术发展到现在,已经和计算机技术结合起来,产生了可编程控制器的技术。可编程控制器简称作PLC。它是将微电脑技术直接用于自动控制的先进装置。它具有可靠性高,抗干扰性强,功能齐全,体积小,灵活可扩,软件直接、简单,维护方便,外形美观等优点 以往继电器控制的电梯有几百个触点控制电梯的运行。  而PLC控制器内部有几百个固态继电器,几十个定时器/计数器,具备停电记忆功能,输入输出采用光电隔离,控制系统故障仅为继电器控制方式的10%。正因为如此,国家有关部门已明文规定从97年起新产电梯不得使用继电器控制电梯,改用PLC微电脑控制电梯。  可以看出,继电器技术在日常生活中无所不在,而且和电脑的紧密结合更加增强了它的活力,使得继电器为我们的生活更好地服务。  液压传动控制系统  液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。  从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。  液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。  液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。  液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。  除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。  根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。  液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。  液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。
  • 自供电视觉传感器:触觉与声学的新突破!
    【研究背景】随着物联网(IoT)的快速发展,视觉传感器作为关键技术受到了广泛关注。然而,当前视觉传感器在高感知精度和自供电能力方面仍面临诸多挑战。传统的人工感知系统通常依赖于电气传感器,这些系统不仅电路复杂,还容易受到电磁干扰,从而限制了其在大多数IoT应用中的实用性。因此,开发一种既能实现高性能又具备自供电能力的视觉传感器显得尤为重要。为此,东北大学秦皇岛分校控制工程学院赵勇教授携手中国科学院北京纳米能源与系统研究所所长王中林院士以及香港科技大学Yunlong Zi教授合作提出了一种基于摩擦电致发光(TIEL)技术的自供电视觉触觉-声学传感器(SVTAS)。该传感器在水平滑动模式下实现了0.5 mW cm&minus 2(32 cd m&minus 2)的高亮度,并在0.5 kPa的检测限下表现优异。此外,SVTAS还能够在接触-分离模式下将声波转换为TIEL信号,对44.07 Hz声波的响应表现出色,信噪比达8.7 dB&minus 1,响应时间为0.8 ms。这些结果不仅为实现高效的自供电视觉传感系统奠定了基础,还为无线通信提供了一种无电磁干扰的解决方案。【表征解读】本文通过多种表征手段深入探讨了自供电视觉触觉-声学传感器(SVTAS)的性能与机制,揭示了其在高灵敏度和高响应速度方面的潜力。首先,使用场发射扫描电子显微镜(SEM)对SVTAS的微观结构进行了观察,确认了不同层次之间的界面特性及其对电荷捕获能力的影响。这一观察结果表明,网状电极增强层和高光致发光ZEPM层的结合极大地提高了发光效率,进而提升了传感器的整体性能。针对SVTAS在接触-分离(CS)模式下的声学响应现象,本文通过光谱仪对TIEL发射光谱进行测量,得到了实时光发射与机械刺激之间的直接关系。这一微观机理的揭示,使作者了解到摩擦电效应和电致发光效应的协同作用在轻微声波刺激下如何实现高效光发射,从而推动了对声学传感技术的进一步探索。此外,借助压力传感器对触觉响应的评估,作者得到了SVTAS在水平滑动(HS)模式下的高灵敏度数据,记录到的最低检测限为0.5 kPa,且在300 lux环境照明下仍能保持高亮度的可视性。这一发现强调了SVTAS在多种环境条件下的可靠性,展示了其广泛的应用前景。在此基础上,通过不同的表征手段,包括光电探测器与示波器的结合,进一步探讨了SVTAS在不同频率声波下的响应特性。作者观察到,在44.07 Hz的声波下,SVTAS表现出最高的响应,且信噪比达到8.7 dB&minus 1,响应时间仅为0.8 ms。这一性能标志着SVTAS在超快速声学感知领域的领先地位,并为未来可穿戴设备的应用奠定了基础。【图文速递】图1. SVTAS的结构设计与应用。图2. 网状电极增强层的几何设计。图3. SVTAS在水平滑动(HS)工作模式下的触觉-TIEL响应性能。图4. SVTAS在接触-分离(CS)工作模式下的声学-TIEL响应性能。图5. SVTAS的语音识别应用。【科学启迪】本文的研究成果为自供电视觉感知系统的发展提供了新的思路。通过摩擦电致发光(TIEL)技术,SVTAS传感器实现了高亮度和超低检测限,使其在触觉和声学信号检测中表现出色。这一创新展示了如何有效将轻微的机械刺激转换为实时的光信号,解决了传统传感器在精度和能效方面的瓶颈。此外,SVTAS的可伸缩性为其在可穿戴设备和电子皮肤等新兴领域的应用开辟了广阔前景,表明自供电传感器可以在多种场景中实现高效、稳定的性能。这项研究不仅丰富了自供电视觉传感器的技术路线,也为未来无线通信技术的发展提供了重要参考,特别是在需要避免电磁干扰的应用中。原文详情:Li Su et al. ,Self-powered visualized tactile-acoustic sensor for accurate artificial perception with high brightness and record-low detection limit.Sci. Adv.10,eadq8989(2024).DOI:10.1126/sciadv.adq8989
  • 传感器:智能时代的“慧眼”
    如果把智能系统比作“人”,那么传感器就是“人”的感觉器官。不同类型的传感器,感知周围环境并把数据传递给系统进行计算,对情况进行实时分析、判断和应对。随着数字化智能化不断深入,各式各样传感器的用武之地大为拓宽,为人类创造美好生活发挥着巨大作用。一部智能手机里有上百个传感器:有用于摄像的CMOS图像传感器,有用于检查环境明暗的环境光传感器,还有用于导航的地磁传感器、陀螺仪,等等。正是基于这些传感器,手机里的各种应用软件才能流畅工作,手机才能成为集工作、生活、娱乐于一体的便携式智能设备,带来人们生活方式的巨大变化。风云卫星上的可见和红外光电传感器,能够不分昼夜地获取大气信息,精准预测天气,甚至在月球上、火星上都有传感器工作,帮助人类探索宇宙奥秘。比人的感官更敏锐、更强大传感器是信息系统的“慧眼”。它就像人类的眼睛、耳朵、皮肤等器官一样,感知周围环境,帮助我们认识多姿多彩的世界。不同之处在于,传感器比人的感官更敏锐、更强大。客观世界所包含的信息多样程度,远远超出我们感官的能力范围。人的眼睛无法观察红外辐射和紫外辐射,耳朵听不见次声波和超声波,对于“不见踪影”却时刻产生影响的磁场也无法感知。这些超出感官范围的信息,传感器都能“感受”到。随着生产力发展,人类越来越需要全方位地感知世界。1821年,科学家利用材料因温差产生电压的原理,研制出世界上第一个传感器——温度传感器。最初,人们直接利用光、热、电、力、磁等物理效应制备各种传感器,这些传感器尺寸大、灵敏度低、使用不方便。上世纪70年代,出现了将敏感元件与信号电路进行一体化设计的集成传感器,如热电偶传感器、霍尔传感器、光敏传感器等。这类传感器由半导体、电介质、磁性材料等固体元件构成,输出模拟信号。上世纪末开始,数字化传感器快速发展,通过“模拟/数字”转换模块,实现数字信号输出。数字化传感器集成智能化处理单元,可以自动采集、处理数据,并能根据环境自动调整工作参数,数码相机中的光敏元件就是其代表产品。总的来说,传感器的工作原理是某些物质的电学特性会随环境因素变化。例如铂在不同温度下电阻率不同,硅在可见光照射下电阻会减小,石英受到压力后表面会产生电荷,等等。利用电阻与温度的对应关系,可以制成温度传感器,进一步给敏感元件添加隔热结构,依据敏感元件温度变化与红外辐射能量之间的关系,可以制成红外传感器。在此基础上,还可以根据目标温度与红外辐射能量之间的关系,制造出非接触测温传感器。人们熟悉的用来测量体温的额温枪就利用了这一原理。借助丰富的物理和化学效应,人们制备出灵敏度比狗鼻子高1000倍、可以“闻到”气体分子的“电子鼻”,以及可以在黑夜中观察物体的红外相机等种类丰富、功能强大的传感器。没有传感器就没有数字化、智能化数字化是对事物属性的量化,并用数字将其表达为抽象结果。借助现代信息技术,人们可以存储、处理、传播各种数字化信息。传感器可以将事物蕴含的各种信息转换成电信号,并利用数模转换电路将电信号用数字表达,是数字化的有效工具。当你拿出手机拍照片或视频时,光敏传感器会将接收的光强度信号转换成电信号,再按一定的规则用数字表达、存储,最终形成手机屏幕上的影像。数字化基于传感器获取信息。数字化系统需要处理的信息量非常庞大,仅靠人工或者传统设备无法获取,凭借传感器则能够实时、高效、精准、快速地获取,于是有了城市大数据、天气大数据、医疗大数据、农业大数据等。利用各类传感器,人们可以召开远程会议、学习网络课程、扫码支付甚至直播带货,由此发展出数字经济业态。数字经济涉及的云计算、物联网、人工智能、5G通信等各类技术,都与传感器息息相关。没有传感器就没有数字化和智能化。传感器是智能化系统的第一关,它的水平决定了智能化系统及其仪器设备的水平。传感器技术已经成为国际上信息高端器件领域的研究前沿,在人工智能、智慧城市、5G通信、航空航天、生命健康等领域均发挥着不可替代的作用。比如一辆汽车会安装压力、温度、位置、声音、光、电等超过100种传感器,由车载电脑进行处理,帮助驾驶员作出判断。对数据的智能化分析降低了驾驶汽车的难度,让汽车变得更安全、更好开。更进一步,无人驾驶汽车通过传感器实时获取道路信息,一旦发现障碍物,便通过智慧分析及时避让。城市中高楼大厦、桥梁、隧道等建筑,也需要通过视频、温度、压力和烟雾等传感器实时监控安全状况,当数据汇总到一起,智能化系统便会及时分析,凝练出少量关键信息供使用者作出决策。甚至在未来,人类的感官也可以借助传感器变得更加强大,构建起智能化系统。智能传感器开拓新应用场景当前,各类传感器都处在进一步提升性能、降低成本,向数字化、智能化、小型化微型化、绿色低碳、可穿戴等方向进化,呈现出蓬勃发展态势。其中,智能传感器、柔性传感器、新原理传感器的研发具有代表性意义,有望塑造新的工作生活方式。发展智能传感器是重要趋势。借助智能传感技术,人们设计制造出具备获取、存储、分析信息功能的各种传感单元及微系统,实现低成本、高精度信息采集。智能传感器广泛应用在机器人、无人驾驶、智能制造、运动定量监测等方面,还可用于开发无创或微创健康监测器件等。近年来流行的动态血糖仪是个很好的例子。糖尿病患者将柔性传感器无痛置入身体,传感器每5分钟测一次血糖值,并传送到手机应用中。患者可以观察血糖曲线变化,及时通过饮食和运动等方法调节血糖,有的患者甚至由此告别了药物和胰岛素治疗。此外,人们还在研发可降解电子器件,让智能传感器更好助力低碳环保生活。发展柔性传感器是另一趋势。许多应用场景要求传感器制备在柔性基质材料上,并具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。目前制备柔性传感器的常用传感材料有碳基材料(炭黑、碳纳米管和石墨烯等)、金属纳米材料(金属纳米线、金属纳米颗粒等)、高分子聚合物和蛋白纤维等。例如一种具有可拉伸、抗撕裂和自我修复能力的交联超分子聚合物薄膜电极材料,可用于制造下一代可穿戴和植入式柔性电子器件。将集成多功能的柔性传感器与柔性印制电路结合,可以制成“智能带”,把它穿戴在身体的不同部位,可实时监测与分析生理信息,帮助人们特别是感官退化的群体了解自身健康状况。新原理传感器也在不断出现。在基础研究领域,新的规律陆续被发现,人们正利用这些科学新认知制备传感器。同时,技术进步也对基础研究提出新要求。在生活中,人们希望提高相机的像素、灵敏度、速度等性能参数;在高速实验中,需要可以记录飞秒尺度信息的条纹相机;在量子通信中,需要灵敏度达到单光子的光电探测器;在空天科技中,需要实现对高速运动物体和冷目标的探测,等等。这就要求科学家们进一步探索物理世界,发现新现象新规律,提升传感器性能。随着科技快速发展,新材料新工艺不断投入应用,性能更强、种类更丰富、智能化水平更高的传感器将创造更多工作生活新场景,帮助人们“感受”美好生活。(作者:褚君浩,系中国科学院院士、中国科学院上海技术物理研究所研究员)
  • 基恩士【传感器】中文版新登场!
    【传感器中心】中文版新登场 FA业界百科大全! "什么是传感器?" "传感器是怎样工作的?" "怎样才能选到合适的传感器?" 点击登录【传感器中心】, 获得以上及其他问题的答案! 网站截图: 关于基恩士: 基恩士自创建以来,一直致力于新产品的研发和设计,以创造高附加值为目标,不断创新。每年发布的新产品超过70%都是行业首创。基恩士坚持的直销经营方式,使得基恩士能够更快、更准确的了解和掌握客户在自动化方面的潜在和显在需求,把握市场动向。基恩士自1974年以来一直稳步成长,现已成为开发与制造传感设备的世界领先者,产品范围包括传感器、测量仪器、视觉系统、激光刻印机以及数码显微镜等全面的工业自动化产品线。 欢迎访问基恩士官方网站。
  • 新型硅纳米传感器助力实时生理监测!
    【研究背景】生物力学监测技术是指通过各种设备实时测量和分析生物组织的力学特性,因其在医学诊断、治疗监测和生物材料研究等领域的重要应用而备受关注。与传统的生物传感器材料相比,基于超薄单晶硅纳米带(Si-NR)的设备具有高灵敏度、良好的生物相容性和适应性等优点,能够在动态环境中进行精确的生物力学测量。然而,这类设备在可穿戴性、耐用性及与生物组织的接触适应性等方面仍存在一定挑战。为了克服上述问题,复旦大学纳米与薄膜实验室宋恩名、大连理工大学李锐,北京大学Mengdi Han,复旦大学材料科学系梅永丰课题组携手在软组织生物力学监测领域取得了新进展。该团队设计了一种新型的基于超薄Si-NR的全方向应变传感器(OSG设备),能够在复杂的生物环境中实现高精度的应变分布监测。通过对设备材料的优化与结构设计,研究人员利用该设备显著提高了应变传感器的性能,成功获取了心脏、皮肤等组织在不同生理状态下的动态生物力学数据。该设备的核心优势在于其超薄设计和生物降解特性,使其能够在体内环境中稳定工作,并与软组织紧密接触。研究表明,这种新型传感器在监测生物体的机械生理状态(如心律失常和心肌梗死)时,展现出了优越的响应能力和高灵敏度。这一研究成果为未来的临床应用提供了新的技术路径,尤其在患者术后监测及病理诊断方面,具有广阔的应用前景。【表征解读】本文通过电化学工作站(CHI660e)和有限元分析(FEA)等仪器和表征手段,发现了基于超薄单晶硅纳米棒(Si-NR)的光学应变传感器(OSG)在动态应变检测中表现出的优异性能,从而揭示了其在生物相容性机械生理监测中的应用潜力。具体而言,本文针对应变灵敏度与方向特异性响应的现象,通过微观机理表征,得到了应变传感器在不同方向和强度下的响应特性,进而挖掘了其在实时监测机械生理信号(如脉搏和眼内压波动)中的重要性。在此基础上,通过电阻变化测量和数字信号处理技术,研究人员不仅确定了OSG设备在施加应变(εappl.)下的灵敏度,还揭示了该传感器的最小应变检测灵敏度为0.1%。这些发现为OSG设备在生物医用传感器领域的应用提供了新的视角,并强调了其在监测心脏异常方面的有效性。此外,采用荧光显微镜和细胞毒性评估等表征手段,研究团队深入分析了OSG设备的生物相容性,证实了该设备在与L929细胞共同培养过程中表现出的良好细胞活力。这一结果为OSG设备的实际应用提供了重要的生物安全性数据,进一步增强了其作为植入式传感器的可行性。总之,经过多重表征手段的综合分析,本文深入探讨了Si-NR基OSG设备在动态应变检测中的各项性能指标,并成功制备了一种新型的生物相容性机械生理监测平台。这些研究结果不仅推动了传感器技术在医学领域的进步,而且为未来可穿戴设备和植入式传感器的开发提供了新的技术基础。【图文速递】图 1. 基于超薄 Si-NR 的 OSG 设备用于软组织生物力学监测。图 2. Si-NR 基 OSG 设备的传感特性。图 3. 生物降解、可拉伸且生物相容的 Si-NR 基 OSG 设备。图 4. 人体和动物模型的机械生理监测可穿戴应用。图 5. 体内心脏机械生理监测。【科学启迪】本文的研究不仅揭示了超薄单晶硅纳米棒(Si-NR)作为光学应变传感器的优越性能,还为未来的生物医学传感器设计提供了重要启示。首先,通过电化学工作站和有限元分析等多种表征手段,深入理解了Si-NR在不同应变条件下的响应特性,这为优化传感器性能提供了理论基础。其次,研究结果表明,合理设计和微观结构调控能够显著提高材料的灵敏度和响应速度,这为新型传感器材料的开发指明了方向。此外,本文强调了跨学科方法的重要性,结合材料科学、电子工程和生物医学等领域的知识,可以更好地应对复杂的传感需求。最后,本研究为未来的临床监测和健康管理提供了新的技术路径,展现了纳米材料在生物传感器中的广阔应用前景。通过本研究的启示,科研人员可以在纳米材料的制备和应用中,探索更多的创新思路,为生物医学领域的进步贡献力量。原文详情:Bofan Hu et al. ,Ultrathin crystalline silicon–based omnidirectional strain gauges for implantable/wearable characterization of soft tissue biomechanics.Sci. Adv.10,eadp8804(2024).DOI:10.1126/sciadv.adp8804
  • 光纤传感器助力物联网发展市场容量将近万亿
    近年来,传感器朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能 尽缘、无感应的电气性能 耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区或者对人有害的地区,如核辐射区),起到人的线人作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。   基本工作原理及应用领域   光纤传感器的基本工作原理是将来自光源的光经过光纤送进调制器,使待测参数与进进调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位、偏正态等)发生变化,称为被调制的信号光,在经过光纤送进光探测器,经解调后,获得被测参数。   光纤传感器的应用于对磁、声、压力、温度、加速度、陀螺、位移、液面、转矩、光声、电流和应变等物理量的丈量。光纤传感器的应用范围很广,几乎涉及国民经济和国防上所有重要领域和人们的日常生活,尤其可以安全有效地在恶劣环境中使用,解决了很多行业多年来一直存在的技术困难,具有很大的市场需求。主要表现在以下几个方面的应用:   1、市建设中桥梁、大坝、油田等的干涉陀螺仪和光栅压力传感器的应用。光纤传感器可预埋在混凝土、碳纤维增强塑料及各种复合材料中,用于测试应力松驰、施工应力和动荷载应力,从而评估桥梁短期施工阶段和长期营运状态的结构性能。   2、电力系统,需要测定温度、电流等参数,如对高压变压器和大型电机的定子、转子内的温度检测等,由于电类传感器易受电磁场的干扰,无法在这类场合中使用,只能用光纤传感器。分布式光纤温度传感器是近几年发展起来的一种用于实时丈量空间温度场分布的高新技术,分布式光纤温度传感系统不仅具有普遍光纤传感器的优点,还具有对光纤沿线各点的温度的分布传感能力,利用这种特点我们可以连续实时丈量光纤沿线几公里内各点温度,定位精度可达米的量级,丈量精度可达1度的水平,非常适用大范围交点测温的应用场合。   在实际生活中,光纤传感器种类是非常多的,但是,我们将这些传感器类型归结为两大类型,即传感型与传光型。和传统电传感器进行比较,光纤传感器具有很多的优点,例如抗干扰能力较强、绝缘性好、灵敏度偏高,所以,当前在各个领域都有光纤传感器的身影。   光纤传感器助力物联网发展市场容量将近万亿   自出现光纤传感器后,它的优势与应用引起了各个国家人们的高度关注。并且对光纤传感技术进行了深入的研究。现如今,通过光纤传感器可以对位移、温度、速度、角度等物理量进行测量。现如今,很多西方发达国家将对光纤传感器研究的重点放在光纤控制系统、核辐射监控、民用计划等多个方面,同时已经取得了可喜的成绩。   我国对光纤传感器的研究起步较晚,有很多研究所、企业等对光纤传感器的深入研究促进了光纤传感技术的发展。在2010年,张旭平的关于&ldquo 布里渊效应连续分布式光纤传感技术&rdquo 通过了专家的鉴定。专家组都认为此技术有很强的创新性,技术已达到世界先进水平,因此,有广阔的发展前景。此技术的发展主要是应用了物联网技术,从而加速了我国物联网的发展。   传感器成为物联网极其重要的一组成部分。因此,传感器性能好坏决定了物联网的性能好坏。可以说,物联网获得信息的主要手段为传感器。这样一来,传感器所采集信息的可靠性与准确性都会对控制节点处理和传输信息产生一定影响。由此看来,传感器的可靠性、抗干扰性等都会对物联网应用性能发挥举足轻重的作用。   光纤传感技术在物联网中的应用   通过上述分析得知,物联网的发展必须要借助大量传感器获得各种环境参数,从而为物联网更可靠的数据信息,再经过系统的处理,得到人们需要的结果。以下是对光纤传感技术在物联网中的应用进行详细的探讨。   目前应用最广的光纤传感器有四种,分别是光纤陀螺、光纤水听器、光纤光栅传感器和光纤电流传感器。其中,光纤陀螺有干涉型、谐振型和布里渊型三种类型,干涉型光纤陀螺是技术上很成熟的第一代商品化阶段,谐振光纤陀螺是处于实验室研究阶段的第二代,布里渊型光纤陀螺是在理论研究阶段的第三代光纤陀螺传感器 光纤水听器是在光纤、光电子技术基础上的一种水下声音信号传感器,这种传感器通过高度灵敏的光纤相干检测,把水中的声音信号转换成光信号,再通过光纤传到信号处理系统转换为声音信号,这种传感器按原理可以分为干涉型、强度型、光栅型等类型 在光纤光栅传感器的产品中包括应变传感器、温度传感器和压力传感器,其中光纤bragg光栅传感器是这几年的研究热点,它们大部分属于光强型和干涉型,并且各有利弊。自今年来电力的发展是突飞猛进的,这种情况下,面对着强大电流的测量问题,光纤电流传感器可以很好的避免一些由于电力过强而引发的事故。
  • Queensgate仪器推出双传感器技术 实现亚纳米级分辨率
    【2013年1月10日,上海】Elektron Technology公司旗下品牌Queensgate近日宣布推出其革命性新款双传感器技术(Dual Sensor Technology)。这一尖端的控制技术与以往相比,可实现更快、更准确以及更稳定的显微镜物镜聚焦。 全新双传感器技术克服了传统纳米定位系统的限制,可提供更快的阶跃响应,提高有效载荷出现变化时的稳定性,并且显著增加自动显微术应用时的机械带宽。       NPC-A-1110DS 独立式模拟单轴闭合环路传动装置   Queensgate推出的双传感器技术彰显了纳米定位技术领域的阶跃性变化是目前业内最尖端的控制技术之一。目前Queensgate的OSM-Z- 100B 100μm目标扫描机构以及NPC-A -1110DS独立式模拟单轴闭合环路传动装置已率先采用这一革命性创新技术系统。其中最新的OSM-Z-100B 100μm目标扫描机构,它将双传感器技术与Queensgate著名的电容纳米传感器(NanoSensors?)的卓越性能结合在一起,以非凡的聚焦稳定性实现亚纳米级分辨率。这项突破性的技术能够应用于各种袖珍模拟和数字控制器,其操作简便,为用户提供顶尖性能。 OSM-Z-100B 100 μm 目标扫描机构   Queensgate 是Electron Technology公司的下属品牌,成立于1979年的英国伦敦,是一家为高科技为工业领域提供纳米定位和感应技术的解决方案商。公司服务于全球客户并为其提供技术领先且质量卓越的纳米定位技术已超过30年。公司设计团队将领先的研究成果运用到具有革命性意义的全新纳米定位系统中。 即使在当今这个全球新技术瞬息万变的环境下,Queensgate 依然处于该领域的前沿地位。凭借着卓越的技术,出色的品质为诸多领域,例如微系统、通信、半导体技术、生物技术以及航空航天技术等领域提供相关支持,并与扫描电子显微镜完美结合,实现微纳米尺度的操纵。
  • 北京怀柔着力发展高端仪器装备和传感器产业
    记者5月25日从北京市怀柔区获悉,北京怀柔将着力发展高端仪器装备和传感器产业,打造高端科学仪器装备产业集聚区和科技成果转化示范区。  在近日举行的怀柔区高端仪器装备和传感器产业推介会暨重点企业新品发布会上,怀柔区重点企业北京卓立汉光仪器有限公司、中科艾科米(北京)科技有限公司、北京中科长剑环境治理技术有限公司等6家公司现场发布新品。  中科艾科米(北京)科技有限公司发布闭循环无液氦扫描探针显微镜系统等10余款新产品。该公司创始人郇庆介绍说:“闭循环无液氦扫描探针显微镜系统可完美替代湿式的杜瓦系统,具有减震效果好、温度稳定性高、任意角度安装、扩展性强等优势,可以长时间维持稳定的低温环境,保证连续实验。氦气循环系统也解决了氦气来源的问题,仅需要极少量的氦气即可实现液氦制冷的效果。其关键性能指标超越了国外同类型产品。”  高能脉冲紫外线消毒机器人是北京中科长剑环境治理技术有限公司发布的新一代消毒机器人产品。该机器人采用可升降紫外消毒灯,可满足人机共存下空气循环消毒,无人情况下环境物表消毒。“高能脉冲紫外线消毒系统专利技术,解决了传统紫外线消毒设备能耗高、强度低、消毒耗时长效率低且产生臭氧的缺点,具有高能、高效、快速、无臭氧、无污染的消毒特点,同时兼有去除挥发性有机化合物和除味儿功能,应用场景广泛,填补了国内空白,达到国际先进水平。”公司总经理朱金才表示。  北京市怀柔区经信局局长杨惠芬透露,目前,《北京怀柔国家高端科学仪器装备产业示范区建设方案》编制完成,并已启动申报建设工作。怀柔区以怀柔科学城建设为重要契机,把科学城建设过程作为科技创新成果转化的过程,通过实施龙头企业领航工程、“专精特新”企业锻造工程、“苗圃”企业培育工程,形成企业梯次化发展格局。
  • 新型传感器可诊断神经退行性疾病
    瑞士洛桑联邦理工学院(EPFL)研究人员在诊断帕金森病和阿尔茨海默病等神经退行性疾病(NDD)方面取得了重大进展。他们开发了一种名为“ImmunoSEIRA”的新型生物传感器,能够检测和识别与NDD相关的错误折叠的蛋白质生物标记物。  12日发表在《科学进展》杂志上的这项研究还利用了人工智能(AI)技术,使用神经网络来量化疾病的阶段和进展。为了创建这种先进的NDD生物标志物传感器,研究人员将蛋白质生物化学、光流变学、纳米技术和AI等多个学科和多种技术整合在一起。  ImmunoSEIRA传感器采用了表面增强红外吸收(SEIRA)光谱技术,使科学家能检测和分析与NDD相关的生物标志物的形式。该传感器配备了独特的免疫分析,就像分子探测器一样,能高精度地识别和捕获这些生物标志物。  ImmunoSEIRA的特点是采用金纳米棒阵列,带有可检测特定蛋白质的抗体,能够对极小样本中的目标生物标志物进行实时特异性捕获和结构分析。而AI算法的子集神经网络可识别特定错误折叠蛋白形式、寡聚体和纤维状聚集体的存在,可跟踪疾病的进展,实现了前所未有的检测精度。  研究进一步证明,ImmunoSEIRA可在生物体液等实际临床环境中使用,即使在人脑脊液这样的复杂液体中,该传感器的检测也同样准确。
  • 第十一届全国化学传感器学术会议分会场报告摘录二
    仪器信息网讯 2011年10月23日,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议在湖南长沙市芙蓉华天大酒店成功召开。此次会议盛况超前,学术报告及参会人员都超过预期。本次会议最后统计共包括了11个大会报告,42个分会邀请报告,58个口头报告,以及100多篇论文报展。   2011年10月23日下午,第二分会场,湘园厅。 会议现场 朱俊杰教授(南京大学) 报告题目:量子点功能化与电化学生物传感   朱俊杰教授在报告中介绍了课题组近期在量子点的组装、功能化和电化学生物传感等方面的研究工作。主要内容:构建了核壳型结构的CdSeTe/ZnS量子点,表现出很强的电致化学发光(ECL)行为;制备了石墨烯-CdSe复合材料并构建ECL生物传感器,主要应用于人免疫球蛋白的检测;发展了石墨烯-金点ECL生物传感器并将其用于过氧化氢的检测;构建了同时检测两种心脏标志物的电化学免疫传感器用于cTnI和CRP的测定;制备核壳结构的SiO2@ CdTe量子点纳米复合物,构建了新型的凝集素功能化的纳米探针等。 蒋兴宇教授(国家纳米科学中心) 报告题目:基于微纳尺度技术传感器的应用研究   蒋兴宇教授在报告中主要介绍了微纳尺度材料和技术的应用研究。将功能化的纳米材料与微流控技术相结合,可降低检出限,缩短反应时间。主要研究内容:基于金纳米颗粒表面修饰螺吡喃分子用于水相中铜离子的检测;正电荷修饰的金纳米颗粒高灵敏度的检测水相中的汞离子等。蒋教授在报告中还提到,希望将这类基于颜色变化的离子检测方法与芯片技术结合,实现芯片上的分析。 许丹科教授(南京大学) 报告题目:生物微阵列芯片检测新方法的研究   许丹科教授在报告中介绍了课题组在生物微阵列芯片检测新方法的特点,并介绍了课题组相关工作。许教授课题组建立了基于纳米银的电化学阵列芯片检测新方法,并开展了四种病毒DNA片段的同时电化学检测方法。在蛋白质微阵列检测方法的研究中,制备了金属荧光增强机制的新型生物探针,降低了检测限。此外该课题组还将纳米银生物检测探针成功应用于可视化蛋白芯片的检测方法中,建立了一种基于蛋白质微阵列的药物多靶点筛选方法。 由天艳研究员(中国科学院长春应用化学研究所) 报告题目:电纺碳纳米纤维及其复合材料在电分析化学中的应用   由天艳研究员在报告中主要介绍了采用静电纺丝技术与热处理方法制备的碳纳米纤维及其复合材料在电分析化学中的应用。主要介绍了以下三个方面的内容:电纺碳纳米纤维在电化学传感器中的应用;电纺Pd纳米粒子/碳纳米纤维复合材料在电分析中的应用;电纺Ni纳米粒子/碳纳米纤维复合材料在无酶传感器中的应用。 刘清君副教授(浙江大学) 报告题目:中华蜜蜂化学感受蛋白阻抗传感器的研究   刘清君副教授主要介绍了中华蜜蜂CSP3阻抗传感器的原理及特点。可以利用此传感器测量环境中的微量配体物质,并可用来检测不同昆虫的化学感受蛋白与不同物质间的反应,便于对化学感受蛋白进行更深入的研究。这对于阐明昆虫与环境化学信息联系规律及昆虫行为本质原因等具有重要的理论和实践意义。   此外,来自南京大学的夏兴华教授等也在本会场做了精彩的报告。
  • 大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
    近日,中国科学院大连化学物理研究所研究员冯亮团队在纸基光化学传感器的信号放大研发中取得进展。团队构建了新型介孔二氧化硅功能化纸基传感器,通过柱芳烃超分子识别系统,实现了农药百草枯的高效捕获和分析。该工作为纸基光化学传感器痕量食品安全危害因子快速筛查技术的产业化应用提供了新的思路。   纸基光化学传感器基于其成本低、便携、操作简单等优点,在痕量食品安全危害因子的实际检测方面具有广阔应用前景。然而,传统纸基光化学传感器由于缺少合适的信号放大技术,检测灵敏度相对较低,难以实现低丰度目标物检测。该工作中,团队通过原位生长二氧化硅颗粒,在纸纤维表面构建了大量介孔通道,提高了比表面积,同时限制了目标物扩散,进而提升了结合效率,有效提高了纸基传感器的检测灵敏度。   冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过蛋白功能化修饰的纸基对荧光信号的生物正交富集,实现对病毒核酸阴阳性的快速区分(Anal. Chem.,2022);通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建硅胶溶胶凝胶微孔通道,实现农药残留的微量检测(Food Chem.,2022;Sens. Actuators B: Chem.,2023)等。   相关研究成果以Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor为题发表在《分析化学》(Analytical Chemistry)上。大连化物所提出基于功能化纸基比色传感器的百草枯农残快检新策略
  • 大连化物所提出基于功能化纸基比色传感器的农残快检新策略
    近日,中科院大连化学物理研究所化学传感器研究组(106组)冯亮研究员团队在纸基光化学传感器的信号放大研发中取得新进展。团队构建了新型介孔二氧化硅功能化纸基传感器,通过柱芳烃超分子识别系统,实现了农药百草枯的高效捕获和分析。该工作为纸基光化学传感器痕量食品安全危害因子快速筛查技术的产业化应用提供了新的思路。纸基光化学传感器基于其成本低、便携、操作简单等优点,在痕量食品安全危害因子的实际检测方面具有广阔的应用前景。然而,传统纸基光化学传感器由于缺少合适的信号放大技术,检测灵敏度相对较低,难以实现低丰度目标物检测。本工作中,团队通过原位生长二氧化硅颗粒,在纸纤维表面构建了大量介孔通道,提高了比表面积,同时限制了目标物扩散,进而提升了结合效率,有效提高了纸基传感器的检测灵敏度。冯亮团队长期致力于传感器敏感膜的表界面调控及分析物分子的高效捕获研究,在纸基传感器快速检测方面进行了深入探究并部分取得了产业化应用:通过蛋白功能化修饰的纸基对荧光信号的生物正交富集,实现对病毒核酸阴阳性的快速区分(Anal. Chem.,2022);通过静电吸附作用固载显色底物,在纸纤维表面形成敏感薄膜,基于酶介导过氧化氢显色实现赭曲霉毒素的可视化检测(Anal. Chem.,2022;Biosens. Bioelectron.,2021);通过化学交联方式在纸纤维表面构建硅胶溶胶凝胶微孔通道,实现农药残留的微量检测(Food Chem.,2022;Sens. Actuators B: Chem.,2023)等。相关研究成果以“Novel Paraquat Detection Strategy Enabled by Carboxylatopillar[5]arene Confined in Nanochannels on a Paper-Based Sensor”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是中科院大连化学物理研究所106组博士研究生王枫雅。上述工作得到中科院科研装备研制等项目的资助。
  • 第11届全国化学传感器学术会议日程
    第十一届全国化学传感器学术会议第三轮通知   各位参会代表:   2011年是国际化学年。好消息!金秋时节,由中国仪器仪表学会分析仪器分会化学传感器专业委员会主办,湖南大学、上海师范大学和江苏江分电分析仪器有限公司联合承办的2011年第十一届全国化学传感器学术会议定于10月22-25日在湖南长沙市芙蓉华天大酒店召开。现将有关与会的具体安排通知如下:   一、大会学术安排   10月22日:全天报到   10月23日:大会开幕式,大会报告   10月24日:大会报告,闭幕式   10月25日:代表离会或参加考察   二、大会报告安排   1、陈洪渊 院士 南京大学 细胞图案化与细胞传感研究   2、张玉奎 院士 中科院大连化学物理研究所 色谱分离与蛋白质组学的最新研究进展   3、庄乾坤 国家自然科学基金委员会 (NSFC) 国家自然基金委分析化学学科发展战略与项目资助情况   4、杨秀荣 中科院长春应用化学研究所 双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子   5、周飞艨 加利福尼亚州州立大学洛杉矶分校,中南大学电化学和光谱学方法用于生命体系中动态过程研究   6、王柯敏 湖南大学 基于氧化石墨烯的DNA聚合酶检测新方法   7、周道民、章宗穰 美国Second-Sight公司,上海师范大学 生物医学植入器件的刺激电极和传感电极   8、陶农建 Arizona State University,USA Plasmonic-Based Electrochemical Current and Impedance Imaging and Applications   9、鞠熀先 南京大学 纳米生物传感新策略   10、钟传健 State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes   11、庞代文 武汉大学 量子点标记多靶单病毒示踪研究流感病毒侵染动态过程   12、谭蔚泓 湖南大学 生物传感的基石:分子识别   三、会务安排   1. 报到   报到时间:10月22日8:00—22:00, 会议代表在报到处确认注册后,领取代表证、会议指南、论文集、就餐券、纪念品等。   报到地点:芙蓉华天大酒店,地址:长沙市湖南省 芙蓉区五一大道176号   电话:(0731)84401888。   2. 住宿   会议期间与会人员住宿费用自理,住宿费标准:芙蓉华天大酒店单人间,标准间:268元/间 银河大酒店双标间:160元/天,豪华双标:200元/天。   四、会议注册   与会代表的食宿统一安排,差旅、住宿费用自理。注册费包括资料费、会务费和餐费等,报到时以现金交付。会议代表每位900元(在读研究生代表每位600元,注册时请出示学生证件)。   五、会议日程安排   请见本通知附件及会议网站,如有疏漏、问题或希望调整,望及时反馈,谢谢!   六、会议联系方式   会议主页(http://huiyi114.cn)   联系人:吴海龙 庞新宇   联系方式:0731-88821848 传真:073188821848   E-mail:cbsc@hnu.edu.cn   七、会议考察   会议协助旅行社安排三条考察线路,费用自理。   八、友情提示   1. 由于参会代表较多,会务组无法安排接送,对此我们深表歉意。   2. 提供交通信息如下:   (1)、从火车站乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟   (2)、从高铁火车站乘148路公交车至终点火车站,乘坐 113路(或 7, 118, 104, 105, 111, 117, 12), 乘2站在 曙光路口站 下车 或沿五一路步行约10分钟 打出租车约25-30元。   (3)、从机场乘坐机场大巴到终点站:民航大酒店,步行横穿五一路人行通道即到。打出租车约70元。   中国分析仪器学会化学传感器专业委员会   第十一届全国化学传感器学术会议组委会   2011年10月 10日 第十一届全国化学传感器学术会议 会 议 程 序 初 步 安 排 2011年10月22日 星期六 全天 报到注册 时间 内容 地点 08:00-22:00 注册 芙蓉华天大酒店 18:30- 晚餐 (自助餐) 21:00- 学术委员会会议 2011年10月23日 星期天 上午 时间 内容 地点 07:00- 早餐 08:20-08:50 会议开幕式 主持人:章宗穰 芙蓉华天大酒店---华天全厅 08:50-09:20 合影酒店正门前 主持人:杨秀荣、王柯敏 时间 类型 报告人 单位 报告题目 09:20-09:45 PL1 陈洪渊 院士 南京大学 细胞图案化与细胞传感研究 09:45-10:10 PL2 张玉奎 院士 中科院大连化学物理研究所 色谱分离与蛋白质组学的最新研究进展 10:10-10:35 PL3 庄乾坤 国家自然科学基金委员会 (NSFC) 国家自然基金委分析化学学科发展战略与项目资助情况 10:35-11:00 PL4 杨秀荣 中科院长春应用化学研究所 双偏振干涉测量技术研究生物分子相互作用:基于功能化脱氧核酸实时无标检测小分子 11:00-11:25 PL5 周飞艨 加利福尼亚州州立大学洛杉矶分校,中南大学 电化学和光谱学方法进行生命体系中的动态过程研究 11:25-11:50 PL6 王柯敏 湖南大学 基于氧化石墨烯的DNA聚合酶检测新方法 11:50-12:15 PL7 周道民、章宗穰 美国Second- Sight公司,上海师范大学 生物医学植入器件的刺激电极和传感电极 12:10- 午餐 (自助餐) 14:00-18:00 报展 I (尺寸为 高120厘米、宽90厘米) 2011年10月23日 星期天 下午 第一分会场: 主持人:李根喜、于聪 时间 类型 报告人 单位 报告题目 14:00-14:20 IL1 李根喜 南京大学 基于蛋白质电化学研制的若干生物传感器 14:20-14:40 IL2 于 聪 中国科学院长春应用化学研究所 核酸诱导的小分子探针的集聚及自组装 14:40-15:00 IL3 郑建斌 西北大学 生物电化学与生物传感器的研究 15:00-15:20 IL4 王进义 西北农林科技大学 微流控芯片细胞分析 15:20-15:30 OP1 贾能勤 上海师范大学 基于有序介孔材料的生物传感应用 15:30-15:40 OP2 李钟卉 南京大学 基于蛋白质芯片的雌激素受体药物多靶点筛选方法 15:40-15:50 OP3 赵伟洁 浙江大学 基于多孔硅光子晶体的微流控体系实现细胞的实时非标记分析 15:50-16:00 OP4 赖国松 湖北师范学院 基于银沉积电化学溶出分析的高灵敏多通道免疫传感 16:00-16:10 茶歇 主持人:叶邦策、袁若 时间 类型 报告人 单位 报告题目 16:10-16:30 IL5 袁 若 西南大学 电化学蛋白质生物传感器的研究 16:30-16:50 IL6 叶邦策 华东理工大学 生物纳米传感器设计及在生化分析中的应用 16:50-17:10 IL7 胡乃非 北京师范大学 可开关的生物电催化与生物传感 17:10-17:20 OP5 董俊萍 上海大学 基于硅钼酸柱撑水滑石复合材料的电化学传感器研究 17:20-17:30 OP6 李珏瑜 浙江大学 HA修饰对细胞捕获的影响 17:30-17:40 OP7 甘 峰 中山大学 基于镍纳米线的过氧化氢传感器的研究 17:40-17:50 OP8 汪庆祥 漳州师范学院 基于一步电沉积壳聚糖-ZrO2-CeO2复合膜的DNA电化学传感器 17:50-18:00 OP9 陈建平 漳州师范学院 基于富勒烯衍生物修饰玻碳电极的电化学免疫传感器 18:00-18:10 OP10 李周敏 南京大学 基于纳米银生物探针的IgE可视化检测方法的研究 第二分会场: 主持人:由天艳、朱俊杰 时间 类型 报告人 单位 报告题目 14:00-14:20 IL8 朱俊杰 南京大学 量子点功能化与电化学生物传感 14:20-14:40 IL9 蒋兴宇 国家纳米科学中心 基于微纳尺度技术传感器的应用研究 14:40-15:00 IL10 许丹科 南京大学 生物微阵列芯片检测新方法的研究 15:00:15:20 IL11 由天艳 中国科学院长春应用化学研究所 电纺碳纳米纤维及其复合材料在电分析化学中的应用 15:20-15:30 OP11 刘清君 浙江大学 中华蜜蜂化学感受蛋白阻抗传感器的研究 15:30-15:40 OP12 孙兆辉 华侨大学 基于石墨烯增敏的印迹电化学传感器的制备 15:40-15:50 OP13 荆 莉 华东师范大学 基于链接反应的碳纳米管功能化及其应用 15:50-16:00 OP14 曹 忠 长沙理工大学 钆掺杂纳米二氧化钛修饰平板金电极测定火腿肠中微量亚硝酸根 16:00-16:10 茶歇 主持人:施国跃、王坤 时间 类型 报告人 单位 报告题目 16:10-16:30 IL12 牛 利 中国科学院长春应用化学研究所 石墨烯纳米组分电化学传感器应用 16:30-16:50 IL13 王 坤 江苏大学 基于介孔TiO2修饰电极实现多巴胺的选择性测定 16:50-17:10 IL14 施国跃 华东师范大学 新型复合纳米材料的电催化行为研究及其在活体分析中的应用 17:10-17:20 OP15 吴 硕 大连理工大学 虾中4-己基间苯二酚的高灵敏电化学检测 17:20-17:30 OP16 崔 亮 厦门大学 基于变构探针设计的荧光偏振技术用于小分子的高灵敏检测 17:30-17:40 OP17 彭 晖 华东师范大学 PEDOT修饰的微通道硅电极用于多巴胺、抗坏血酸及尿酸的同时测定 17:40-17:50 OP18 孙芳洁 大连理工大学 基于YSZ和Au敏感电极的混合电位型NO2传感器的特性 17:50-18:00 OP19 赵 路 南京师范大学 氯霉素复合分子印迹膜的制备及电化学研究 18:00-18:10 OP20 羊小海 湖南大学 一种基于G四聚体自身猝灭能力的新型单标记DNA探针用于Hg2+及半胱氨酸的检测 第三分会场: 地址: 主持人:杨黄浩、屠一锋 时间 类型 报告人 单位 报告题目 14:00-14:20 IL15 王振新 中国科学院长春应用化学研究所 功能化金纳米粒子的合成与应用 14:20-14:40 IL16 何治柯 武汉大学 规模合成水溶性低毒量子点用于疾病诊断及可视化检测 14:40-15:00 IL17 杨黄浩 福州大学 基于切刻内切酶的荧光型核酸适体传感器用于放大检测蛋白质 15:00-15:20 IL18 屠一锋 苏州大学 基于纳米增敏电化学发光的氧传感技术 15:20-15:30 OP21 姜大为 华东师范大学 氮掺杂二氧化钛/石墨烯复合材料的制备及其光催化性能的研究 15:30-15:40 OP22 王 颖 南京大学 一种新颖的基于银纳米粒子荧光增强的适配体传感器 15:40-15:50 OP23 张 妍 福州大学 多壁碳纳米管表面茶碱印迹材料的制备与吸附性能 15:50-16:00 OP24 代 昭 天津工业大学 固相有机合成对基于无机纳米材料的荧光DNA探针微结构的控制作用 16:00-16:10 茶歇 主持人:冯锋、赵睿 时间 类型 报告人 单位 报告题目 16:10-16:30 IL19 赵 睿 中国科学院化学研究所 以石英晶体微天平研究尿液中三聚氰胺与三聚氰酸层层自组装相互作用 16:30-16:50 IL20 徐静娟 南京大学 新型电致化学发光生物传感器研究 16:50-17:10 IL21 冯 锋 山西大同大学 基于表面等离子体共振技术用鸡蛋黄抗体IgY测定转铁蛋白 17:10-17:20 OP25 姜 晖 东南大学 CdSe纳米颗粒的电化学发光动力学及其检测应用 17:20-17:30 OP26 李 慧 南京大学 聚合纳米银荧光探针检测人IgE的新方法 17:30-17:40 OP27 李 娟 福州大学 以氧化石墨烯为平台研究多肽和蛋白质的相互作用 17:40-17:50 OP28 王 荣 上海师范大学 基于TPAA载体的Fe3+离子选择性电极研究 17:50-18:00 OP29 陈荣生 武汉科技大学 核壳结构TiO2/C纳米纤维阵列的制备、微观结构及电化学行为 18:00-18:10 OP30 杨海峰 上海师范大学 钯纳米粒子修饰电极对过氧化氢电催化性能研究 时间 内容 地点 14:00-18:00 报展 I (尺寸为 高120厘米、宽90厘米) 18:30-20:00 欢迎晚宴 20:30- 专业委员会和刊物编委会联席会议 2011年10月24日 星期一 上午 时间 内容 地点 07:00- 早餐 8:00-12:00 报展 II (尺寸为 高120厘米、宽90厘米) 第一分会场: 地址: 主持人:双少敏、张文 时间 类型 报告人 单位 报告题目 08:00-08:20 IL22 张 文 华东师范大学 双酶传感器对大鼠血清与腹腔巨噬细胞内葡萄糖和胆固醇的同时检测 08:20-08:40 IL23 双少敏 山西大学 基于酶固定的新型抗坏血酸传感器的研究 08:40-09:00 IL24 王利兵 湖南出入境检验检疫局 一种测定双酚A的弛豫开关免疫传感器09:00-09:20 IL25 王升富 湖北大学 电化学生物传感器用于Fenton反应产生羟自由基对蛋白质损伤的监测研究 09:20-09:30 OP31 刘文娟 山西大学 基于酶固定的新型抗坏血酸传感器的研究 09:30-09:40 OP32 韩根亮 甘肃省科学院传感技术研究所 碳纳米管增强的谷氨酸生物传感器 09:40-09:50 OP33 艾仕云 山东农业大学 基于石墨烯-纳米金-锁核酸修饰的分子信标及酶催化放大反应的电化学microRNA传感器的设计 09:50-10:00 OP34 李 臻 浙江大学 用于微生物快速检测的微通道免疫分析芯片 10:00-10:10 茶歇 主持人:夏兴华、何品刚 时间 类型 报告人 单位 报告题目 10:10-10:30 IL26 夏兴华 南京大学 生物分子的界面行为及生物传感 10:30-10:50 IL27 杨小弟 南京理工大学 石墨烯和碳纳米管修饰电极间接测定生物体液中的铝 10:50-11:10 IL28 何品刚 华东师范大学 基于重氮功能化直立碳纳米管阵列的核酸适配体传感器的制备及其应用于凝血酶的检测 11:10-11:20 OP35 丁应涛 漳州师范学院 基于靛蓝胭脂红为杂交指示剂的高选择性电化学DNA传感器 11:20-11:30 OP36 胡涌刚 华中农业大学 伪狂犬病毒抗体磁性免疫传感器的研制 11:30-11:40 OP37 刘志敏 河南工业大学 基于石墨烯-纳米金复合物的乙酰胆碱酯酶生物传感器于马拉硫磷的测定 11:40-11:50 OP38 高峰 安徽师范大学 A DNA Sensor Based on FRET between Fluorescent Silica Nanoparticles and Gold Nanoparticles 11:50-12:00 OP39 张旋 漳州师范学院 空心球状CeO2–ZrO2–壳聚糖在金电极表面的一步电沉积及DNA传感分析应用 12:00-12:10 OP40 嵇海宁等 湖南大学 基于纳米金颗粒增强/猝灭荧光效应的多目标物检测及其逻辑门操作 第二分会场: 地址: 主持人:刘松琴、李景虹 时间 类型 报告人 单位 报告题目 08:00-08:20 IL29 李景虹 清华大学 石墨烯的电化学传感器研究 08:20-08:40 IL30 刘松琴 东南大学 掺氮碳空心微球制备及其电催化性质 08:40-09:00 IL31 胡文平 中国科学院化学研究所 自组装纳米材料与纳米器件/分子器件的研究? 09:00-09:20 IL32 宋世平 中国科学院上海应用物理研究所 生物传感器与生物芯片在现代分子诊断学中的应用? 09:20-09:30 OP41 陈旭 北京化工大学 新型石墨纳米材料修饰电极电化学生物传感研究 09:30-09:40 OP42 何婧琳 长沙理工大学 结合金纳米的层层自组装膜用于致癌基因c-myc蛋白的检测 09:40-09:50 OP43 丁亚平 上海大学 基于石墨烯氧化钴萘酚膜修饰玻碳电极的L-色氨酸电流型传感器 09:50-10:00 OP44 杨园园 西南大学 基于聚甲基丙烯酸-聚咔唑杂化型分子印迹聚合物的手性电化学传感器 10:00-10:10 茶歇 主持人:杜丹、杨荣华 时间 类型 报告人 单位 报告题目 10:10-10:30 IL33 杨荣华 湖南大学 茎部可控核酸探针设计策略 10:30-10:50 IL34 徐国宝 中国科学院长春应用化学研究所 三联吡啶钌电化学发光免疫分析和核酸测定? 10:50-11:10 IL35 杜丹 华中师范大学 磷化蛋白phospho-p5315的电化学免疫传感器 11:10-11:20 OP45 龚静鸣 华中师范大学 纳米增效型固相提取剂在典型环境污染物的净化和电化学检测中的应用 11:20-11:30 OP46 华亮 上海师范大学 碳纳米管复合材料修饰电极对芦丁和抗坏血酸的同时检测 11:30-11:40 OP47 王海霞 山西大学 基于β-环糊精接枝的磁性纳米共聚物修饰电极对色氨酸的化学传感器研究 11:40-11:50 OP48 费俊杰 湘潭大学 葡萄糖氧化酶在-环糊精共价键修饰SWCNTs/CTAB复合膜中的直接电化学及电催化 11:50-12:00 OP49 亓秀娟 福州大学 一种简单、快速、高灵敏检测痕量铜离子传感器的研制 12:00-12:10 OP50 马嘉悦等 湖南大学 基于大孔/中空碳球修饰玻碳电极的硝基苯高灵敏电化学传感研究 第三分会场: 地址: 主持人:杨朝勇、赵书林 时间 类型 报告人 单位 报告题目 08:00-08:20 IL36 杨朝勇 厦门大学 An Agarose DropletMicrofluidic Approach for Highly Efficient Single Molecule mplification and Its Application to Aptamer Selection 08:20-08:40 IL37 赵书林 广西师范大学 基于CdTe/CdS量子点与金纳米粒子的荧光共振能量转移测定三聚氰胺 08:40-09:00 IL38 肖丹 四川大学 金纳米颗粒的绿色制备及其在生物传感器中的应用 09:00-09:20 IL39 李向军 中国科学院研究生院 表面等离子共振法研究β淀粉样蛋白和金属离子相互作用 09:20-09:30 OP51 秦利霞 华东理工大学 CdTe/ZnS 量子点的表面修饰及在细胞中的应用 09:30-09:40 OP52 徐章润 东北大学 PDMS气动喷射混合器用于微流控芯片量子点合成 09:40-09:50 OP53 卢丽敏 江西农业大学 基于电聚合荧光素的高灵敏度和高选择性亚硝酸盐电化学传感器的研究 09:50-10:00 OP54 张海娟 浙江大学 基于离子液体修饰的多孔硅光学气体传感器 10:00-10:10 茶歇 主持人:谢青季、卢小泉 时间 类型 报告人 单位 报告题目 10:10-10:30 IL40 卢小泉 西北师范大学 Photoelectrochemical Study Based On The Functionalized-Metalporphyrin 10:30–10:50 IL41 谢青季 湖南师范大学 生物传感和生物燃料电池研究 10:50-11:10 IL42 徐景坤 江西科技师范学院 基于导电高分子复合材料的抗坏血酸氧化酶电化学生物传感器的开发和农业应用 11:10-11:20 OP55 汪海燕 华东理工大学 基于纳米通道传感技术对老年痴呆症致病蛋白的结构特性研究 11:20-11:30 OP56 马 巍 华东理工大学 选择性识别糖-蛋白作用的荧光传感器 11:30-11:40 OP57 余 刚 湖南大学 交流电沉积自组装金铂和金钯合金纳米线及传感性能 11:40-11:50 OP5, 8 邬建敏 浙江大学 基于多孔硅的光学传感器研究 11:50-12:00 OP59 魏广芬 山东工商学院 基于压缩传感的气体传感器检测技术新框架 12:00-12:10 OP60 张晓兵 湖南大学 新型荧光化学生物探针研究 12:10- 午餐(自助餐) 时间 内容 地点 8:00-12:00 报展II (尺寸为 高120厘米、宽90厘米) 2011年10月24日 星期一 下午 主持人:谭蔚泓、鞠熀先 时间 类型 报告人 单位 报告题目 15:00-15:25 PL8 陶农建 Arizona State University,USA Plasmonic-Based Electrochemical Current and Impedance Imaging and Applications 15:25-15:50 PL9 鞠熀先 南京大学 纳米生物传感新策略 15:50-16:15 PL10 钟传健 State University of New York at Binghamton Biomolecular Recognition with Functional Nanoprobes 16:15-16:40 PL11 庞代文 武汉大学 量子点标记多靶单病毒示踪研究流感病毒侵染动态过程 16:40-17:05 PL12 谭蔚泓 湖南大学 生物传感的基石:分子识别 17:05-18:00 会议闭幕式 主持人:吴海龙 总结、颁奖、下一届代表发言 18:30- 晚餐 (自助餐) 2011年10月25日 星期二 全天 时间 内容 地点 06:20- 早餐 市外考察: 7:00 出发 选项 项目 备注1.市外考察I 韶山 (1天) 详见会议网站 2.市外考察II 凤凰 (2天) 详见会议网站 3.市外考察III 张家界 (3天) 详见会议网站 4.市内考察 长沙市内 附件:报展目录.doc
  • 一篇文章看懂:什么是SENIS集成3轴磁传感器?
    一篇文章看懂:什么是SENIS集成3轴磁传感器?为了测量电磁铁和永 jiu磁铁产生的从 10-6 到 102 T 的非均匀磁通密度,通常使用带霍尔探头的特斯拉计。为了同时测量磁通密度的三个正交分量,需要使用三轴霍尔探头。根据目前传统的的技术水平,三轴霍尔探头由三个霍尔板组成,这三个霍尔板分别位于一个小立方体的三个相互正交的面上。单个霍尔板的尺寸及其定位公差严重限制了可实现的空间分辨率和测量磁通密度矢量的角度精度。此外,连接霍尔装置的导线中的电磁感应也限制了这种霍尔探头的有用带宽。此外,平面霍尔效应通常会产生额外的误差。在基于量子阱的霍尔板中,平面霍尔效应很弱,但问题依然存在。 为了解决这个问题,在一个点上检测三个方向的磁性。SENIS开发了一种划时代的“集成3轴磁传感器",使之成为可能。这就是“集成的三轴磁传感器"。 该传感器可以在所有情况下测量精确的3D矢量,例如永磁体的邻近磁场、小线圈产生的磁场和时间变化,这在过去是不可能的。图1. 传统的霍尔片3轴探头(左)和SENIS集成3轴磁传感器(右)3轴磁性探头的配置传统的霍尔片3轴探头SENIS集成3轴磁传感器磁化位置3个位置一个位置(单点)磁感应位置的错位量取决于传感器位置(约0.5mm~10mm)无错位传感器的相对角度误差通常不标注(过大)±0.1°以内温度传感器无安装在传感器芯片中探头形状约1~2种8种类型+定制自由一、 专li技术的SENIS集成3轴磁传感器二、 SENIS集成三轴磁传感器的功能除了磁传感器外,集成的3轴磁传感器还集成了偏置电路和放大器,以提高频率特性和抗噪性,甚至在宽度仅为 0.64 m 的单个芯片上集成了温度传感器,用于因温度变化而进行灵敏度校正。1.敏感区域仅为0.15mm × 0.1mm × 0.15mm2.3个方向相对角度误差在±0.1以内3.频率响应:高达25Khz(-3db)4.温度特性±100ppm/°C三、 SENIS集成三轴磁传感器放大图四.SENIS集成三轴磁传感器详细信息图2. 磁性传感器内部有5个感磁区域。通过取BZ1和BZ2的平均值,虚拟地求出By传感器位置的Bz磁场。同样地,通过取Bx1和Bx2平均值来求出By传感器位置的Bx磁场,可在同一点上收集Bx、By、Bz。五.搭配SENIS集成三轴磁传感器的霍尔探头类型:六.搭配SENIS集成三轴磁传感器的高斯计/特斯拉计汇总类型: SENIS数字特斯拉计/高斯计基于SENIS® 的模拟磁场传感器电子设备,其顶部添加了数字模块,具有显示器,通信端口,数字数据校正等。SENTIS提供不同类型的特斯拉计,具有不同的磁性分辨率,精度,f带宽,噪声水平和功能和处理选项(手持式,台式,机架式)3MH3特斯拉计,适用于工业和实验室应用,具有良好的精度,分辨率和f带宽3MH6台式特斯拉计,用于实验室应用,具有非常高的分辨率和精度以及良好的f带宽3MTS 手持式特斯拉计,探头支架坚固,精度高1 轴、2 轴或 3 轴 Nanoteslameter 3NTA1,用于极低磁场SENIS® 已通过ISO 9001和ISO 22301(业务连续性管理)认证。我们的校准实验室已通过ISO17025:2017认证。上海昊量光电作为SENIS公司在中国大陆地区主要的代理商,为您提供专业的选型以及技术服务。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 基于抗体和分子印迹构建HAS检测生物传感器
    该研究首次提出了一种聚合物多模波导,其特征在于开创性的匙形几何形状,用于设计表面等离子体共振(SPR)生化传感器。通过在匙形波导上层叠约60nm的金纳米膜来实现等离子体元激发。由于波导的特殊几何结构,确定了两个不同的传感区域:一个位于勺子颈部的平面传感区域和一个位于碗上具有倾斜表面的凹面传感区域。体感度(Sn)与传感器发射/收集光的方式(平行或垂直于波导的主轴)和被询问的感测区域(平面颈部或角碗)相关,表明传感器的性能可以根据所选的测量配置方便地调整。SPR传感器的特性表明,颈部的Sn为750nm/RIU,碗部的Sn为950nm/RIU。为了进一步检查特殊的传感特征并评估应用环境,这两种受体都对人血清白蛋白(HSA)具有特异性:碗区的抗体(高Sn);颈部区域(低Sn)上的分子印迹纳米颗粒(纳米MIP)。实验结果表明,免疫传感器的检测限(LOD)为280 pm,纳米MIP传感器的检测极限(LOD),为4.16fm。HSA多传感器的总体响应包含八个数量级,表明匙形波导提供多尺度检测,并具有设计多分析物传感平台的潜力。图1(A)匙形光波导的几何形状(B)碗面角度的细节(C)等离子体传感平台的设置(D)光导效应的变化可以在未涂覆波导上被理解为光散射的变化。图2基于匙形聚合物波导的实验SPR传感器配置。图3(A)共振波长变化。图4是(A)纳米MIP的功能化感测区域的表面形貌的原子力显微镜3D视图;(B)抗体功能化传感区。图5(A )具有抗体受体的等离子体光谱,获得的HSA浓度范围为0.53-5300nm。(B)相对于空白的共振波长变化的绝对值,绘制为HSA浓度的函数(半对数标度);(C)具有纳米MIPS受体的等离子体光谱,HSA浓度范围为0.53–530 fM。(D)相对于空白的共振波长变化的绝对值。原文题目:Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude.原文链接:https://doi.org/10.1016/j.bios.2022.114707
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 日本研制出柔性压力传感器,有望协助肿瘤检测
    提起肿瘤,相信大多人都是惧怕的,因为它在大多数时候都代表了痛苦与死亡,至今,人们对于大部分肿瘤依旧束手无策。  而传感器的功能相信大家都是了解的,是人工智能硬件的必备品,越小越灵敏的传感器也就意味着可以办成更多的事。  由于生产方法的限制,人类还很难制造出厚度在100位微米以下的传感器。但是日前却传来了好消息,日本东京大学的研究人员研发了一种由纳米纤维材料制成的超薄柔性压力传感器,仅80微米厚,可以很准确地感知圆形物体表面的压力,甚至可以一次性测量出144个点的压力。  利用碳纳米管、石墨烯和高分子弹性聚合物等制成了300-700纳米厚的纳米纤维材料,再形成透明、轻薄的多孔结构。  研究人员将这一传感器放进人造血管之中进行测试,发现可以测量出极其微小的压力变化,同时还可以检测出压力在这种环境中传播的速度。  由此,研究人员表明,未来是有希望利用搭载这种传感器的橡胶手套来检测出乳腺癌或是肿瘤的。  我们相信时间的力量,有一天,肿瘤再不会成为一个可怕的代名词。
  • 电化学VOCs气体传感器等两项行业标准编制完成 为首次发布!
    p   近日,工业和信息化部发布公告称,根据行业标准制修订计划,相关标准化技术组织已完成《钢制化工容器设计基础规范》等10项化工行业标准、《合成纤维厂供暖通风与空气调节设计规范》等10项石化行业标准、《有色金属矿山井巷工程质量检验评定标准》1项有色行业标准、《霍尔元件 通用技术条件》等62项机械行业标准、《纺织品 定量化学分析 牛皮纤维与某些其他纤维的混合物》等37项纺织行业标准、《工业用温轮胶》等17项轻工行业标准、《增雨防雹炮弹生产安全技术条件》1项民爆行业标准的制修订工作。 /p p   在以上138项行业标准批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2020年8月20日。 /p p   我们注意到,在138项行业标准中,有《JB/T 13999—2020 电化学VOCs气体传感器》和《JB/T 14000—2020 光学粉尘传感器》两项标准。 /p p   《JB/T 13999—2020 电化学VOCs气体传感器》规定了电化学VOCs气体传感器的术语和定义、分类、要求、试验方法、检验规则、标志、包装、运输和贮存。标准中传感器按所测气体类型给出了醛类传感器系列、醇类传感器系列、苯系物传感器系列、其他VOCs传感器系列(以环氧乙烷最为常用)的技术参数。 /p p   《JB/T 14000—2020 光学粉尘传感器》规定了光学粉尘传感器的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 /p p   两项标准的起草单位相同,包括:郑州炜盛电子科技有限公司、沈阳仪表科学研究院有限公司、汉威科技集团股份有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心。 /p p   两项标准均为首次发布。 /p p   详情如下: /p p    a href=" https://www.instrument.com.cn/download/shtml/954054.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《JB/T 13999—2020 电化学VOCs气体传感器》; /span /a /p p span style=" color: rgb(0, 112, 192) "    /span a href=" https://www.instrument.com.cn/download/shtml/954056.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《JB/T 14000—2020 光学粉尘传感器》。 /span /a /p
  • 德国成功研发氮原子大小量子传感器 可用于测量微磁场
    p   量子技术为电子元件小型化开辟了新的途径。近日,德国弗劳恩霍夫应用固体物理研究所(IAF)和马普固体研究所发布消息称,其科研人员共同研发出一种量子传感器,未来可用于测量微磁场,如硬盘磁场和人脑电波。 /p p   集成电路越来越复杂,目前一台奔腾处理器可容纳约3000万个晶体管,因而硬盘的磁性结构可识别的范围仅为10至20纳米,比直径为80至120纳米的流感病毒还小,该量级的尺寸规格只有量子物理技术可触及。新研发的量子传感器则可精确测量这类用在未来硬盘上的微小磁场。新型量子传感器仅有氮原子的大小,作为载体物质的是一种人造金刚石。金刚石具有很好的机械和化学稳定性以及超强的导热性能,可通过引入硼、磷等外来原子,将晶体制成半导体,且非常适用于光学电路。 /p p   IAF的研究人员在近几十年中研制并优化出用于生产金刚石的设备,一种专用的椭圆形等离子体反应堆模具。在800-900摄氏度的高温下,在金刚石底物上从导入甲烷气和氢气中可长出金刚石层,再将边长3-8mm的晶体从底物剥离并抛光,最后制造出具备量子物理用途的、仅含碳原子稳定同位素C12的超纯单晶金刚石晶体。所用的甲烷气经锆过滤器净化,氢气经其它手段净化。 /p p   研究人员制做磁场检测器有两种途径:直接植入单个氮原子,或在制造金刚石的最后一步加入氮。之后,在超净室内采用氧等离子体蚀刻法均可制作出类似于原子力显微镜的纤细金刚石尖。关键点是导入的氮原子以及晶格中的相邻空位。该氮空位中心就是实际的传感器,用激光和微波照射时会发光,发出的光可随附近磁场的强度变化而变化。专家们将这项创新与光学探测磁共振(ODMR)相提并论。 /p p   这种传感器不仅能准确检测到纳米级的磁场,还能确定其强度,应用潜力惊人。例如,可监控硬盘质量,检测出密集存储数据中的小错误和发现有缺陷的数据片段,在刻写和读取前即将其去除。因此,可减少随着小型化的加速而迅速增加的废料,降低生产成本。IAF的专家称,这种量子传感器还可用于测量很多微弱磁场,包括脑电波。与目前使用的脑电波传感器相比,不仅更准确,而且在室温下即可使用,无需经液氮冷却。 /p
  • 3D打印的基于环偶极子的高性能太赫兹传感器及其应用
    在各种各样的超表面应用中,太赫兹传感凭借着高灵敏度和太赫兹波的非电离性质为分析物的无损检测提供了强大的潜力,尤其受到了广泛的关注。为持续提高太赫兹传感器的灵敏度,基于多种物理机制,包括Fano共振、连续域束缚态共振和环偶极子共振,科研人员开发了多款太赫兹传感器。其中,环偶极子谐振传感器因其微弱的辐射特性,使得电磁能量在近场范围内受到高度的局域,因此受到广泛的关注。然而,目前的环偶极子谐振传感器的灵敏度受到分析物和局域增强电磁场之间有限的空间重叠的极大限制。此外,加工这些微米级的结构也是一个挑战。 近日,基于上述问题,西安交通大学张留洋老师课题组提出了一种面外太赫兹传感器,通过面外结构,增强了光和物质的空间重叠,从而增强传感性能。该传感器通过摩方精密提供的nanoArch S130设备进行了加工,并通过实验验证了传感器的高灵敏度。图 1 (a)三步制备法示意图,包括(1)衬底制备,(2)3D打印,和(3)金属膜沉积 最右边的面板描绘了设计的传感器的原型。(b)所制传感器的SEM图像。沿传感器x轴(c)和y轴(d)的表面轮廓。图1(a)显示了基于面投影微立体光刻(PSL)3D打印技术(nanoArch S130,摩方精密)的三步制备方法示意图。与传统的微纳制造技术相比,这种方法简单有效,是面外微结构通用制造的实用候选方法。采用这种三步制备方法,成功制备了具有30×30个超分子阵列的太赫兹传感器,其扫描电镜图像如图1(b)所示。为了表征所制作传感器的三维轮廓,分别沿x轴[图1(c)]和y轴[图1(d)]测量了其表面轮廓,数据表明打印样品的测得轮廓总体上与设计模型吻合较好。 此外,分别通过阻抗匹配理论(图2)和近场分析、多偶极子散射理论(图3)解释了传感器的共振机理。 图 2 (a)传感器在x偏振和y偏振入射下的模拟(实线)和实验(虚线)反射谱。(b)y偏振入射下传感器阻抗。图 3(a)归一化散射功率。(b)电场分布(轮廓轮廓)和表面电流分布(箭头)。(c)磁场的分布。在传感器的应用方面,选择了三种类型的粉末——乳糖,半乳糖和葡萄糖——作为检测分析物。首先,将粉末经过适当研磨后均匀撒在传感器上,如图 4(a)显微镜图像所示。然后通过THz-TDS测量了相应的反射谱,如图 4(b)给所示,可观察到半乳糖的共振频率与其他分析物相比有明显的红移。 此外,为避免测量误差,采用C扫描获得面积为6×6 mm2的区域的反射谱曲线,分别提取各点对应谐振频率处的强度和谐振频率。然后,随机选择每种分析物的500个点的计算平均谐振频率,重复此过程10次,结果如图 4(f)所示。实验结果表明,所提出的传感器能够准确地检测出葡萄糖、乳糖和半乳糖粉末。 图 4 (a)被分析物粉末覆盖的传感器的显微镜图像。(b)测定的三种分析电解质粉末的反射光谱。(c)有或没有传感器下的乳糖粉末的反射谱。(d)乳糖粉加载时各点电场(传感器)的共振强度和(e)共振频率。(f)三种分析物的频移分布。
  • 尤政院士:为什么高端传感器是一项至关重要的“卡脖子”技术?
    从茫茫星空,到浩瀚海洋,再到广袤大地,作为信息获取的源头,传感器是物理世界与数字世界连接的桥梁,已经成为信息化社会最为重要的基石之一。传感器主要功能是将各种物理量、化学量或生物特征等待感知量转换为可检测与数字化的电信号,是我们感知世界的首要工具。传感器在科学研究、工业生产、国防安全、医疗健康等现代社会的方方面面扮演着至关重要的角色,发挥着不可或缺的关键作用。当前,传感器已经从早期由敏感元件与处理电路构成的分立式装置,演变成集信息获取、处理、传输、供电等功能于一身的智能传感微系统,也就是我们常说的高端传感器,其数字化、微型化、智能化的特色十分突出。然而,也正是由于高端传感器的高精尖属性,它又成为我们目前面临的一项核心“卡脖子”技术。高端传感器是一项至关重要的“卡脖子”技术那么,为什么高端传感器是一项至关重要的“卡脖子”技术?高端传感器究竟能带给我们什么?我国距离传感器强国还有多远?首先,传感器的特点十分鲜明:一是传感器涉及很多新原理、新材料、新器件,所以它和很多基础科学、基础技术的创新关联十分密切。而且传感器又是直接应用于整机设备,或服务于终端用户,与各行各业、各个领域的关联同样紧密,如集成电路(IC)装备中的许多高端传感器就被列为关键核心技术。二是传感器往往汇集了物理、化学、电子、机械、设计、制造、测试等各个学科领域的前沿尖端技术,学科交叉融合的特点十分明显;同时传感器产业的投入也非常大,高端传感器的敏感结构基本都是采用MEMS(微机电系统)制造技术,高端传感器的技术、资金双密集特点尤为突出。三是由于传感器的应用十分广泛,使得传感器的技术门类十分庞杂,相应的产品、产业分布非常广,比如仅仅一个压力传感器在水利水电、交通运输、工业生产、自动控制、航空航天、电力电子、石油、化工、勘探等众多行业就有上千种方案,且每一种解决方案都有其特殊要求。其次,传感器在工业技术体系中的定位是“基础零部件和元器件”,因为传感器是信息获取的源头,是物理世界与数字世界的接口,其重要意义体现在:它是“工业基石”,是各类现代工业赖以生存和发展的基础;它又是“性能关键”,直接决定重大装备和整机产品的性能和质量。正是由于传感器的基础性与关键性,又造成了瓶颈问题与依赖性:即高度依赖外国技术或产品,对我国产业造成严重影响,甚至威胁到国家安全和战略利益。高端传感器这样一个对我国关键产业、经济发展与国防安全至关重要,但又存在重大技术瓶颈或依赖进口的技术,已经成为“卡脖子”技术,亟待攻克。高端传感器究竟能带给我们什么在科技前沿创新中,传感器是“先行官”。纵观科技发展史,历次世界科学中心的形成都得益于核心传感器技术突破以及以此为基础的重要科学仪器的诞生。有统计表明,在诺贝尔奖的获奖名单中,72%的物理学奖、81%的化学奖、95%的生理学或医学奖都是借助于尖端传感器与仪器完成的,且已有38项、60余人次由于发明了新原理的科学仪器而直接获奖。而科学仪器对事物进行检测表征,获得科学数据的关键就是高端传感器:比如X射线衍射仪、X射线断层扫描仪、超分辨率荧光显微镜、电子显微镜等仪器中的光电探测器、电子探测器、温度传感器,质谱仪、扫描隧道显微镜中的位移传感器、力传感器等等。而现代科学仪器中,高端传感器是决定性的,直接代表了分析、检测和表征的水平。在国民经济主战场,传感器是“倍增器”。传感器的应用领域非常广泛,几乎渗透到社会生产生活的各个层面。例如:在仅有通讯功能的传统手机,集成了大量传感器:图像传感器、陀螺仪、加速度计、距离传感器、环境光传感器、磁强计、电容传感器、温度传感器、湿度传感器、气压传感器……,使得传统手机摇身一变成了智能终端,手机的功能、性能都增强了很多,特别是与人的互动能力大大提升,手机行业的发展不仅得到“倍增”,而且进入了全新的时代。当然,传感器行业本身也具有不容低估的市场规模。根据德国Statista数据分析公司数据,2022年全球传感器市场规模为2512.9亿美元(约1.79万亿人民币)。其中我国传感器市场规模为3096.9亿元人民币,2019—2022年均复合增长率为12.26%。尽管我国传感器市场增速相对稳定,但全球龙头企业如爱默生、西门子、博世、意法半导体、霍尼韦尔等跨国公司占据约60%的国内传感器市场份额,尤其在高端传感器市场,我国约80%的传感器依赖进口。特别需要说明的是,传感器除了自身的万亿级市场之外,有研究表明,传感器带动的上下游产业链所创造的产值大约是传感器行业产值的6倍左右。传感器在国家战略工程中是“胜负手”传感器的性能、质量,直接决定重大装备和战略产品的性能、质量。高铁现在已经成为我国的一张名片,传感器就发挥了不可或缺的作用,高端传感器在高铁上有六大应用场景:一是列车监测与维护,二是轨道健康监测,三是列车安全防护,四是乘客信息交互,五是能源管理,六是环境综合监测。以和谐号380AL高铁列车为例,一辆列车里的传感器数量超过1000个,平均每40个零部件里就有一个传感器,它们承担着状态监视、故障报警、车载设备控制等功能,被认为是轨道交通运营安全的保障性技术和装备持续升级的关键性技术。未来,传感器与人工智能等新兴技术将实现深度融合,中国高铁将更智能、更安全。在医疗健康中,传感器是“金刚钻”。现代医疗离不开各种检测,各类医疗仪器就是通过各类传感器获取与病人病理相关的各种医疗数据,来为医生诊疗提供依据。例如用于测量血管内外径、血流速度、血压、心内压、体温等多种生理参数各类位移、速度、振动(加速度)、力、流量、压强和温度传感器;用于检测血液中的离子(如K+、Na+、Ca2+ 等)和气体(如O2、CO2)的浓度的化学传感器;利用选择性识别来测定生化物质的酶传感器、微生物传感器、免疫传感器、组织传感器和DNA传感器等;通过测量细胞或组织的微弱电信号的变化来监测生理状态的心电(EKG)、脑电(EEG)、肌电(EMG)等生物电传感器,这些传感器在诊断心脏疾病和肌肉功能状态中非常重要。传感器是医疗领域中不可或缺的技术,它们对疾病的预防、诊断和治疗起着至关重要的作用。在国防安全中,传感器是“战斗力”。现代战争从某种程度上来讲,打的就是传感器。在最近的乌克兰危机中,有统计表明80%的毁伤效果是由占全部弹药总量20%的精确制导弹药,也就是导弹、制导炸弹等造成的。这些高精度的惯性、无线电、激光、光电、红外、卫星等精确制导技术中,惯性测量单元(IMU)、激光传感器、红外传感器、毫米波传感器、光电传感器、雷达等各类高端传感器发挥了决定性的关键作用。除此之外,隐身战机、航母舰队、卫星星座等武器装备,更加需要由各类高端传感器组成的信息感知网络提供数据,进行态势感知、目标打击、体系作战等各项行动。装备有各类高端传感器的无人系统已经开始在现代战场崭露头角,未来战场的无人机、无人车、机器人系统等武器装备将更加趋于常态化,这些“机器战士”的千里眼、顺风耳则完全要依靠高端传感器。而且,随着传感器等先进技术的快速发展和进一步赋能,各种新概念武器装备也将涌现出来,传感器技术在国防安全事业中将发挥更大作用。我国距离传感器强国还有多远传感器这么重要,市场规模也很大,我国一定要发展高端传感器。但是,我国高端传感器的发展现状不容乐观。我国的高端传感器,尤其是中高端传感器的MEMS芯片还大量依赖进口,被“卡脖子”之外,我国高端传感器行业创新生态、设计工具与研发平台、先进材料与核心器件、高端芯片与工艺设备、系统集成与转化应用等方面,还存在差距。我国要成为传感器强国,需要在如下几个方面持续发力。第一是要关注“产教融合”,也就是人才培养与产业发展深度关联融合。前面讲过传感器是一个多学科交叉、技术密集,且与应用紧密关联的领域,高端人才与技术创新的重要性不言而喻。创新人才培养和原创技术开发相结合的产教融合,是发展传感器,成为传感器强国的首要条件。第二是要强化协同创新,前面还讲了传感器行业是投资密集,产品应用广但产业分散的行业,因此,政府、企业、高校、科研院所、用户、金融机构等各个创新要素必须统筹规划、合理布局、协同创新。通过公共研发平台建设与共性技术开发与共享机制,来实现传感器全行业的高效运行,持续、健康、快速发展。第三是加大示范应用,可以围绕国家的重大工程任务、国家亟须的重要战略装备以及有代表性的社会经济生活需求,有组织地开展创新,体现新型举国体制的优势,通过传感器赋能,形成新质生产力,推动产业集聚,形成传感器产业的生态链。
  • 有了这款丝绸传感器,穿衣服就能监控身体状况?
    p   从智能袜子、运动衣服计算消耗已经成为可穿戴人体传感器最新的必备技术,研究人员正在采用用世界上最理想的织物丝绸,开发出一种更灵活、灵敏的新一代多功能设备可以实时监控许多身体功能。 /p p   这项技术在美国化学协会(ACS)创办全国会议及博览会上展示,美国化学协会是全球最大的科学协会,此次展会是越过9400演示大范围的科学主题活动。 /p p   人体传感器由半导体组成,在人体健康监测领域有巨大潜力。但它还有一些挑战性难题。例如在应变传感器力测量变化时,敏感度不足、可伸缩性不强等。 /p p   丝绸是天然材料,比钢灵活比尼龙更强大,可以克服这些问题,且纤维还具有良好的生物相容性和轻量化特点。然而,丝绸不能导电。为解决这一障碍,研究员通过找到一种方法来增加丝绸的电导率,有效地应用于体感设备。 /p p   研究人员计划尝试两种不同的策略。在一个方法中,他们把丝绸置于温度在1112° F到5432° F的惰性气体环境中,在此温度丝绸成为充满氮和碳的石墨颗粒,这种状态下是导电的。使用这种方法,这个团队开发了压力传感器、应变传感器和一个可以同时测量温度和压力的双模传感器。 /p p   另一种方法中,团队对家蚕喂碳纳米管和石墨烯,通过蚕把这些纳米粒子添加到丝绸。到目前为止,这种技术还没有产生导电纤维,但研究人员继续试验这种方法,并相信它们能使其发挥作用。 /p p   研究者热衷于探索如何开发一套由纳米发电机运行组成的基于丝绸的传感器,研究员还建议丝绸传感器用来构造更实用的机器人,可以感知温度、触觉或湿度,甚至可以辨别不同人的声音。 /p
  • 简化水中微塑料检测流程,南华大学团队研发出这个光电化学传感器
    近日,南华大学化学化工学院 " 低维纳米材料光电技术实验室 " 团队成功研制了一种基于蛋白质冠诱导聚集效应的便携式光电化学传感器,用于水生环境中聚苯乙烯微塑料的检测。相关研究成果以 " 基于蛋白质冠诱导聚集效应的水生环境微塑料检测平台 " 为题,在高水平 SCI 期刊《生物传感器和生物电子学》上发表研究论文。微塑料是指直径小于 5 mm 的塑料颗粒。它们广泛分布于河流、湖泊、海水和沉积物中,常被称为水中的 "PM 2.5"。微塑料具有较大的表面积,可携带致病菌,使人出现感染、头晕、呼吸困难等症状,甚至引起死亡。为了解决微塑料带来的不可预测的威胁," 低维纳米材料光电技术实验室 " 团队创新性地运用蛋白质冠诱导聚集效应,设计了一种检测微塑料的便携式光电化学传感器。在不破坏微塑料结构的前提下,该传感器可选择性快速捕捉水生环境中的微塑料,实现对微塑料灵敏地原位检测。该传感器具有灵敏度高、重现性好、检测能力强等优点。在 0.5 ~ 500 μ g/mL 的线性范围内,其方法检出限为 0.06 μ g/mL,定量限为 0.14 μ g/mL。该传感器在真实水样中的表现也十分出色,其日内精度和日间精度的相对标准偏差分别为 0.56% ~ 4.63% 和 0.84% ~ 3.36%,平均相对回收率为 100.39% ~ 104.48%。此外,该团队对光电化学传感系统进行集成,可以通过蓝牙或无线传输的手段将检测数据实时传输到智能手机上,大大提升了检测效率。这种创新方法解决了传统检测方法对大型仪器设备过度依赖的问题,简化了检测流程。相关研究成果为微塑料的现场实时检测提供了新的方法,并在水生环境的微塑料污染分析中具有广阔的应用前景。南华大学在读硕士生肖子祯为第一作者,南华大学张也教授为该研究论文的通讯作者,南华大学化学化工学院为第一单位。该研究得到了南华大学科研启动经费、国家自然科学基金等项目的支持。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制