当前位置: 仪器信息网 > 行业主题 > >

芯片烧录器

仪器信息网芯片烧录器专题为您提供2024年最新芯片烧录器价格报价、厂家品牌的相关信息, 包括芯片烧录器参数、型号等,不管是国产,还是进口品牌的芯片烧录器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合芯片烧录器相关的耗材配件、试剂标物,还有芯片烧录器相关的最新资讯、资料,以及芯片烧录器相关的解决方案。

芯片烧录器相关的论坛

  • 基因芯片相关软件介绍

    1、基因芯片综合分析软件ArrayVision 7.0 一种功能强大的商业版基因芯片分析软件,不仅可以进行图像分析,还可以进行数据处理,方便protocol的管理功能强大,商业版正式版:6900美元。 Arraypro 4.0 Media Cybernetics公司的产品,该公司的gelpro, imagepro一直以精确成为同类产品中的佼佼者,相信arraypro也不会差。phoretix™ Array Nonlinear Dynamics公司的基因片综合分析软件。J-express 挪威Bergen大学编写,是一个用JAVA语言写的应用程序,界面清晰漂亮,用来分析微矩阵(microarray)实验获得的基因表达数据,需要下载安装JAVA运行环境JRE1.2后(5.1M)后,才能运行。2、 基因芯片阅读图像分析软件 ScanAlyze 2.44 斯坦福的基因芯片基因芯片阅读软件,进行微矩阵荧光图像分析,包括半自动定义格栅与像素点分析。输出为分隔的文本格式,可很容易地转化为任何数据库。 3、 基因芯片数据分析软件 Cluster 斯坦福的对大量微矩阵数据组进行各种簇(Cluster)分析与其它各种处理的软件。 SAM Significance Analysis of Microarrays 的缩写,微矩阵显著性分析软件,EXCEL软件的插件,由Stanford大学编制。4.基因芯片聚类图形显示 TreeView 1.5 斯坦福开发的用来显示Cluster软件分析的图形化结果。现已和Cluster成为了基因芯片处理的标准软件。FreeView 是基于JAVA语言的系统树生成软件,接收Cluster生成的数据,比Treeview增强了某些功能。 5.基因芯片引物设计 Array Designer 2.00 DNA微矩阵(microarray)软件,批量设计DNA和寡核苷酸引物工具。

  • 芯片上的实验室------微流控芯片

    芯片上的实验室------微流控芯片

    微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。  廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。 我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。现如今在网站中搜寻“微流控芯片”,便可以找到研发生产微流控芯片的企业和相关资料,

  • 【原创】简介介绍L7800系列芯片

    L7800系列芯片三端可在TO - 220和TO - 220FP和TO - 220FM的TO - 3和D2PAK封装和几个固定的输出电压。这些稳压器能够提供本地卡上调节,消除了分布规律与单点问题。每种类型采用内部电流限制,热关断和安全区的保护,使得它基本上不被出现意外情况。如果有足够的散热提供,他们可以提供超过1A输出电流。虽然主要设计为固定电压调节器,这些器件可用于获得与外部元件的电压和电流调节。对于L7800芯片的详细介绍可以参考库IC网关于L7800的介绍。

  • 何谓微流控芯片技术

    微流控芯片技术(Microfluidics)是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上, 自动完成分析全过程。由于它在生物、化学、医学等领域的巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。报告介绍微流控芯片技术领域国际最新发展,结合报告人多年微流控芯片研发成果,介绍一套完整而独特的芯片制造工艺技术,以及多种不同应用的微芯片。

  • 谈谈芯片设计公司为什么要做芯片测试?

    谈谈芯片设计公司为什么要做芯片测试?

    [img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311221551418573_4784_6253876_3.jpg!w690x690.jpg[/img]对于芯片设计公司来说,测试至关重要,不亚于电路设计本身。设计公司主要目标是根据市场需求来进行芯片研发,在整个设计过程中,需要-直考虑测试相关的问题,主要有下面几个原因:1)随着芯片的复杂度原来越高, 芯片内部的模块越来越多,制造工艺也是越来越先进,对应的失效模式越来越多,而如何能完整有效地测试整个芯片,在设计过程中需要被考虑的比重越来越多。2)设计、 制造、甚至测试本身,都会带来-定的失效, 如何保证设计处理的芯片达到设计目标,如何保证制造出来的芯片达到要求的良率,如何确保测试本身的质量和有效,从而提供给客户符合产品规范的、质量合格的产品,这些都要求必须在设计开始的第一时间就要考虑测试方案。3)成本的考量。 越早发现失效,越能减少无谓的浪费 设计和制造的冗余度越高,越能提供最终产品的良率 同时,如果能得到更多的有意义的测试数据,也能反过来提供给设计和制造端有用的信息,从而使得后者有效地分析失效模式,改善设计和制造良率。芯片的测试离不开可靠的测试工具-1C测试座,凯力迪公司致力服务于各大芯片设计、封测公司,为其提供性能可靠,极具性价比的IC测试座产品,封装种类齐全,产品线覆盖范围广,对于非标的新型芯片,更可提供测试座的一件起定制服务。

  • 【分享】生物芯片原理

    生物芯片原理生物芯片技术是应人类基因组计划而发展起来的一项高新技术。从1992年美国人Stephen Foder 研制出第一块基因芯片起,生物芯片技术飞速发展:从基因芯片到蛋白质芯片、组织芯片、细胞芯片、芯片实验室,从表达谱芯片到诊断芯片、药物筛选芯片、生物传感器,从寡核苷酸芯片到cDNA 芯片、基因组芯片,新兴的生物芯片技术层出不穷,生物芯片的应用领域也在不断扩展,生物芯片发挥的作用也越来越大,特别是在 2003年人类与SARS病毒的决战中发挥了至关重要的作用:科学家借助基因芯片技术迅速而及时地发现了病原体,并查明病原体的本质,为最终战胜SARS 奠定了基础。生物芯片技术的实质是进行生物信号的平行分析。它利用微点阵技术,将成千上万的生物组分(细胞、蛋白质和DNA等)集中到一小片固相基质上,从而使一些传统的生物学分析手段能够在尽量小的空间范围内,以尽量快的速度完成。与传统的仪器检测方法相比,生物芯片技术具有高通量、微型化、自动化和成本低等特点。生物芯片按照其上所进行的生物化学反应有无外加场力的干预,分为主动式和被动式两大类。被动式芯片是指芯片上进行的生物化学反应在无外加场力的情况下,通过分子的扩散运动完成,如已在研究和临床应用的微阵列芯片,包括DNA芯片,蛋白质芯片等。这也是目前最普遍的生物芯片,但这类芯片存在如下缺点:生产和检测过程人为干扰因素多、难以标准化,生化反应条件和过程不可控、反应效率较低,检测结果重复性较差等。主动式芯片是在芯片的构建和生化反应中直接引入外力或场的作用,它具有快速、高效、自动化和重复性好的特点,是构建芯片实验室、实现过程集成化的基本部件。主动式芯片技术已成为生物芯片技术研究的重点。随着新兴技术和新设计思想的不断产生,各种新型的主动式芯片必将陆续推出,他们的发展与完善将对生命科学与医学的研究与应用产生深远的影响。本项目旨在开发一种新型的主动式生物芯片(主动式蛋白芯片),减少蛋白芯片生产和检测过程中的人为干扰因素,标化芯片的生产和检测过程,并使芯片上的生化反应可控、高效、快速地进行,最终改善芯片检测结果的重复性和准确性。同时,这一技术也可应用于其他种类芯片(如基因芯片、组织芯片、细胞芯片)的升级换代。

  • 【原创】生物传感器/生物芯片/微流控芯片-不断增加中

    现在做生物传感器的,生物芯片的,微流控芯片的人非常多,有的时候觉得大家对于这些东西的界限似乎不是分得很开,希望自己对于这个领域的小小体会能够给大家帮助!生物传感器:利用生物元件(酶、核酸、细胞、组织等)对特定物质的生物识别功能,通过将这种识别转化成声光电磁信号,对该物质进行分析的器件。个人感觉现在做生物传感器大部分局限在电化学上面,可能是因为电化学的仪器比较容易集成。生物芯片/微流控芯片:似乎现在有的人对于生物芯片与微流控芯片的区别不是很明白,特此将比较一下两者的区别:生物芯片和微阵列芯片的意思应该是一样的,但是生物芯片并不是一个被广大学者认同的名词,主要是一些媒体在报道的时候为了简单和通俗使用了这个词,所以专业上来讲,生物芯片应该叫做微阵列芯片。其发展历史比较悠久,而且现在已经有商品化的产品。微流控芯片是通过微加工的方法制作出微米级别的通道,通过通道的设计将分析的各种基本过程如样品前处理,分离,分析检出集成在一个小小的基片上,她也叫做芯片实验室。这个的发展要晚于微阵列芯片,现在有很多的研究不仅仅局限在分析化学领域。对于微尺度上的流体行为,流体的操作也是物理学研究的热点,是一个交叉了物理、化学、生物、计算机、微加工等领域的学科。国内做的比较好的是浙江大学的方肇伦院士,国外有很多组,以后我会不断增加!

  • 小的不能再小的微型实验室,微流控芯片实验室

    中国在微流控芯片领域的水平和国外相差不大,而且中国已经有微流控芯片研发生产企业,在网上直接搜索“微流控芯片”便可以找到生产企业和微流控芯片相关资料文章。 微流控分析芯片最初在美国被称为“芯片实验室”(lab-on-a-chip),在欧洲被称为“微整合分析芯片”(micrototal analytical systems),它是微流控技术(Microfluidics)实现的主要平台,可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。有着体积轻巧、使用样品及试剂量少,且反应速度快、可大量平行处理及可即用即弃等优点的微流控芯片,在生物、化学、医学等领域有着的巨大潜力,近年来已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新研究领域。 微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的最大特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等 。其中电压驱动的毛细管电泳(Capillary Electrophoresis , CE) 比较容易在微流控芯片上实现,因而成为其中发展最快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。自1992 年微流控芯片CE 首次报道以来,进展很快?首台商品仪器是微流控芯片CE ( 生化分析仪,Aglient) ,可提供用于核酸及蛋白质分析的微流控芯片产品。 微流控芯片的特点  芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以 大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。  廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。  我国在微流控分析方面的研究虽然起步较国外晚了四到五年,但在多个相关的学科领域都具有足够的积累与优势,我国具有世界上最大的微流控芯片市场,用中国的芯片产品占领这一市场是我国科学家责无旁贷的使命。3月26日多名微流控领域的专家也将参加在上海举办的2015(第三届)先进体外诊断技术峰会,共同对微流控的先进技术进行总结和分析,对我国的微流控芯片研究领域进行更多的解读。相信经过不懈的努力,微流控芯片蓬勃的发展在我国很快将会到来。

  • 生物芯片入门:生物芯片及应用简介

    一、简介生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因组计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。二、应用领域1、基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。2、基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3、药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再cDNA表达文库得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。还有,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。4、个体化医疗临床上,同样药物的剂量对病人甲有效可能对病人乙不起作用,而对病人丙则可能有副作用。在药物疗效与副作用方面,病人的反应差异很大。这主要是由于病人遗传学上存在差异(单核苷酸多态性,SNP),导致对药物产生不同的反应。例如细胞色素P450酶与大约25%广泛使用的药物的代谢有关,如果病人该酶的基因发生突变就会对降压药异喹胍产生明显的副作用,大约5%~10%的高加索人缺乏该酶基因的活性。现已弄清楚这类基因存在广泛变异,这些变异除对药物产生不同反应外,还与易犯各种疾病如肿瘤、自身免疫病和帕金森病有关。如果利用基因芯片技术对患者先进行诊断,再开处方,就可对病人实施个体优化治疗。另一方面,在治疗中,很多同种疾病的具体病因是因人而异的,用药也应因人而异。例如乙肝有较多亚型,HBV基因的多个位点如S、P及C基因区易发生变异。若用乙肝病毒基因多态性检测芯片每隔一段时间就检测一次,这对指导用药防止乙肝病毒耐药性很有意义。又如,现用于治疗AIDS的药物主要是病毒逆转录酶RT和蛋白酶PRO的抑制剂,但在用药3~12月后常出现耐药,其原因是rt、pro基因产生一个或多个点突变。Rt基因四个常见突变位点是Asp67→Asn、Lys70→Arg、Thr215→Phe、Tyr和Lys219→Glu,四个位点均突变较单一位点突变后对药物的耐受能力成百倍增加。如将这些基因突变部位的全部序列构建为DNA芯片,则可快速地检测病人是这一个或那一个或多个基因发生突变,从而可对症下药,所以对指导治疗和预后有很大的意义。5、测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。据未经证实的报道,近年有一种不成熟的生物芯片在15分钟内完成了1.6万个碱基对的测定,96个这样的生物芯片的平行工作,就相当于每天1.47亿个碱基对的分析能力!

  • 【资料】集成毛细管电泳芯片微流控芯片系统的检测器研究和应用

    一篇讨论集成毛细管电泳芯片微流控芯片系统的检测器的综述文章,很不错,是清华大学罗国安教授小组写的,大家可以看看![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=25688]集成毛细管电泳芯片微流控芯片系统的检测器研究和应用[/url]

  • 【原创大赛】福禄克17B万用表软封装主板芯片的更换

    【原创大赛】福禄克17B万用表软封装主板芯片的更换

    Fluke15B、17B、18B(2014年后升级为15B+、17B+、18B+)数字万用表,功能齐全,测量准确,使用2节5#电池,非常方便耐用,市场占有率较大。 Fluke系列万用表做工精细,质量可靠,很少出现故障。早期生产的Fluke15B、17B万用表主板电路上焊接一枚台湾富晶公司生产的FS9721_LP3带微处理的3/4位AD转换芯片,这种硬封装电路,集块损坏后可以直接更换芯片,后期生产的Fluke15B、17B主板电路,主板和芯片软封装在一起,这种电路,芯片损坏后只能更换整块主板。 本文讲述的是在测量过程中因行扫变压器高压放电导致Fluke17B万用表主板上软封装芯片损坏(电阻档、毫伏档失去测量功能),不更换主板的一种修复方法。修复过程如图所示:[img=,601,311]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241727197475_8553_2156493_3.png!w601x311.jpg[/img] 图1 因高压放电损坏的Fluke 17B万用表(电阻档) 正常电阻档位:屏幕应显示“OL”(无穷大)[img=,600,393]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241728322328_9322_2156493_3.png!w600x393.jpg[/img] 图2 因高压放电损坏的Fluke 17B万用表(mv档) 正常毫伏档位:屏幕应显示数字(0.003mv左右)[img=,607,305]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241728395425_8834_2156493_3.png!w607x305.jpg[/img] 图3 Fluke 17B万用表软封装主板电路(芯片损坏)我们看福禄克万用表软封装主板电路,芯片周边预留了FS9721_LP3集块引脚焊接走线,只要我们去除掉损坏的软封装芯片,就可以修复主板。[img=,600,319]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241735000761_2918_2156493_3.png!w600x319.jpg[/img] 图4 用砂轮磨掉主板电路上的黑色软封装芯片 小心操作!不要损伤外围元件!这一步是关键![img=,597,391]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241735568861_9368_2156493_3.png!w597x391.jpg[/img] 图5 精细打磨掉多余引线,减小分布电容,吹净后,用烙铁在预留引脚上上锡[img=,599,373]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241737547011_4500_2156493_3.png!w599x373.jpg[/img] 图6 从网上购买集块FS921_LP3(连邮费我花了45元)[img=,603,381]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241738572525_8500_2156493_3.png!w603x381.jpg[/img] 图7 焊接芯片(注意引脚方向1-100)[img=,599,301]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241739541855_8251_2156493_3.png!w599x301.jpg[/img] 图8 修复好的Fluke 17B数字万用表[img=,600,478]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241740469745_7608_2156493_3.png!w600x478.jpg[/img] 图9 校准器具,VICTOR15+,福禄克287(比对)[img=,606,490]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241742005822_2863_2156493_3.png!w606x490.jpg[/img] 图10 主板内各校准电位器功能说明 R35和R49温度校准,R18直流电压校准,R8交流电压校准,R11电容校准,R64电阻校准(2个大箭头指向点之间电阻9.9-10MΩ),R27毫安电流校准,R29大电流A校准,电压、电流、电容校准电位器调整顺时针旋转—增加数值,逆时针调整—减小数值。[img=,598,366]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241742095971_1277_2156493_3.png!w598x366.jpg[/img] 图11 DC电压校准(校准前,发生100.00mv,显示98.7mv)[img=,597,395]http://ng1.17img.cn/bbsfiles/images/2018/07/201807241742160948_9853_2156493_3.png!w597x395.jpg[/img] 图12 校准后(发生100.00mv,显示100.0mv) 交流电压、电流、电阻、电容档校准不再叙述,从整个校准过程结果看,误差不大,如果没有校准条件,也可以不校准。 小结:正常情况下,电路中的集成电路很少损坏,损坏多为雷击、高压放电、静电或人为原因引起。本文为大家介绍了软封装集成电路损坏的一种修复方法,相比更换整块主板节省了许多费用。

  • 生物传感器芯片

    在纳米传感器上,每平方厘米阵列能同时并连续监控数千个蛋白结合事件。这种新的传感器芯片比现有芯片有着更高的灵敏度,且能更快提供结果。文章的通讯作者,斯坦福大学材料科学和工程学王善祥教授表示:“你可以在单个芯片上放上数千甚至数万个不同蛋白,并运行蛋白结合实验。” 纳米传感器芯片的优势在于两方面。首先,磁性纳米标签(nanotag)与待研究的蛋白结合,大大提高了监控的灵敏度。其次,研究人员开发出一种分析模型,能够帮助他们根据仅仅几分钟的监控数据来监控相互作用的最终结果。目前的技术一般同时监控不超过4个相互作用,且过程需要几小时。 此研究小组在几年前曾开发出磁性纳米传感器技术,并在微量的小鼠血液中检测到癌症相关的生物标志物。此技术所能检测的血液浓度为其他技术的千分之一,显示出它的灵敏度。 研究人员将纳米标签与待研究的特定蛋白结合。当带标签的蛋白与纳米传感器上固定的其他蛋白结合时,磁性纳米标签改变了纳米传感器周围的磁场,这可被检测器检测到。

  • 【分享】生物芯片行业分析(新!!)一(整理别人的材料)

    生物芯片的市场分析全球市场总额很小企业收入增长缓慢 全球的市场有多大?国内的市场又有多大?前景如何?现在国内没有公开的文章回答这些问题。国内的市场小,人们对生物芯片的技术和应用还没有普遍的认识。介绍生物芯片技术的论文、报告和新闻唾手可得,前几年投资炒作的文章也能找到几篇大作,但关于生物芯片的市场,现在国内还看不到一篇专题文章,也没有一家芯片公司或咨询公司做过有意义的市场调查;曾有公司在网上做过消费者调查,响应者却寥寥无几。我从网上找到了3家国际知名市场研究公司的公开数据,翻译过来,列举如下:2003年7月24日,国际知名的市场研究和数据分析公司Research and Markets公司发布了定价998美元的159页的报告《美国生物芯片和设备的市场和业务》,这份报告认为,2002年的全球生物芯片市场规模是11亿美元,将以19.5%的年平均增长率增长,2007年将达到27亿美元。2003年底,雷曼兄弟(Lehman Brother)公司发布的分析报告指出,全球芯片市场约有8亿美元的规模。2004年3月30日,英国伦敦的大型国际咨询公司Frost & Sullivan公司出版了价值4,950美元的关于全球芯片市场的分析报告:《世界DNA芯片市场的战略分析》。报告认为,全球DNA生物芯片市场每年平均增长6.7%,2003年的市场总值是5.96亿美元,2010年将达到9.37亿美元。 比较这3家公司估计的2003年生物芯片市场的市场规模:Frost & Sullivan公司仅考虑了生物芯片市场中的DNA芯片市场,为6亿美元;雷曼兄弟估计为8亿美,Research and Markets公司估计为13亿美元,我们发现,这3家单位估计的全球生物芯片市场总额的数据相差不远,在8-13亿美元,他们估计的数据体现了这个产业的客观市场规模应该在这个范围内。台湾生物芯片协会估计的市场是2003年为2.2亿美元,其中医疗芯片销售额6,500万美元,研究芯片销售额1.55亿美元,数额偏低,估计没有包括生物芯片仪器市场。 全球生物芯片霸主是以医药个体化为目标的Affymetrix公司,今年继续在全球市场上领先,很多专家估计其市场份额占全球1/3至1/2。如果我们清楚了Affymetrix公司的市场情况,也就知道了全球一半的市场。根据Affymetrix公司《2003年年度报告》披露的信息,我们能看到这个霸主的一些市场业绩。假设市场份额正如专家们所估计的那样,Affymetrix公司占了全球1/2至1/3的市场,按Affymetrix公司的营业额估算,2003年全球市场也就6-9亿美元左右。如果最近5年的市场增长速度保持下去,今后5年的全球市场增长2倍,至2008年,全球市场达到20亿美元左右,2010年可能增至30亿美元左右。最近5年来,Affymetrix公司的总收入只升不降,增长了2倍,但是净收入和每股收益起落幅度较大,2002年差点亏损。2003年是Affymetrix公司的转折点,第一次实现全年盈利,全年总收入3亿美元,净收入1,400万美元,每股获利0.24美元。这么好的业绩,主要是因为日本市场表现出色。日本是Affymetrix公司的第三大市场,位居北美和欧洲之后。这三块市场都是由Affymetrix公司自己销售,其它地区的市场是代理经销,如中国市场就是由总部设在香港的基因有限公司代理。2003年,Affymetrix公司把20多种新产品推向了市场。在市场上,生物芯片和试剂的销售额与2002年持平,占了总销售额的一半,生物芯片仪器的销售增长幅度很大。 总部位于美国加州的安捷伦是全球第二大生物芯片经营企业,一个季度的芯片产量是2万片。安捷伦是一家跨110个国家和地区的大型通信、电子和生命科学公司,前年收入60亿美元,去年收入61亿美元。由于安捷伦的主营业务不是生物芯片,所以这部分业务被淹没在众多产品和服务之中,甚至在其年报中都没有提到生物芯片业务。虽然这个巨头进入生物芯片领域的时间不长,知名度也不高,不是专门的生物技术企业,也不是专门的生物芯片公司,但其提供的小小一块业务也占居了行业第二的位置。可以看出,这个产业跟其他产业比起来,总规模还非常小。虽然安捷伦科技公司在1977年就进入了中国市场,但其生命科学部门近两年才进入国内市场,在国内生物芯片市场上的份额不多,与其在全球市场上的份额相比,还有天壤之别。但是,安捷伦总公司的生命科学与化学分析仪器部总裁将于今年秋天来中国访问,将对国内市场进行布局,安捷伦的生物芯片整体解决方案和客户定制服务将在国内市场占有应有的份额。

  • 各个领域的“基因芯片”

    基因芯片及其在病原微生物检测中的应用基因芯片是近年来迅速发展的一门生物高新技术,它以其能够快速、高效、大规模地同步检测生物遗传信息的卓越功能而得到发展。在基因测序、基因表达分析、药物筛选、基因诊断等领域显示出重要的理论和实用价值。基因芯片是指应用大规模集成电路的微阵列技术。在固相支持物表面(常用的固相支持物有玻璃、硅片、尼龙膜等载体)有规律地合成数万个代表不同基因的寡核苷酸“探针”或液相合成探针后由点样器有规律地点样于固相支持物表面;然后将要研究的目的材料中的DNA、RNA或用cDNA同位素或荧光物标记后,与固相支持物表面的探针进行杂交,通过放射自显影或荧光共聚焦显微镜扫描,对这些杂交图谱进行检测;再利用计算机对每一个探针上的杂交信号作分析处理,便可得到目的材料中有关基因表达信息。该技术可将大量的探针同时固定于支持物上,所以一次可对大量核酸分子进行检测分析。基因芯片分类基因芯片按其片基不同可分为无机片基芯片和有机合成片基芯片:如果按其应用不同,可分为表达谱芯片、诊断芯片、检测芯片;如果按其结构不同可分为DNA阵列和寡核苷酸芯片;如果按其制备方法不同可分为原位合成芯片和合成后交联芯片。目前,常用于基因芯片制作的固相支持物主要包括半导体硅片、普通玻璃片、尼龙膜等基质。它们各有优缺点,可根据不同的用途和目的选择使用。用硅片制作的芯片,其DNA探针排列的密度高,在1.28cm芯片上,可达40万点阵。检测灵敏度高但专一性差。用玻璃制作的芯片,可用于双色荧光标记杂交,便于杂交信号的检测,但其灵敏度低,而且对玻璃片的处理要求高。尼龙膜主要用于制作eDNA芯片,即将不同的eDNA片断点阵于尼龙膜上,它可用同位素标记检测,灵敏度高,专一性好,但是DNA阵列的密度低。DNA探针的制备及固化探针的制备及固化有2种方法:①在片基上原位合成寡核苷酸;②在片基以外制备DNA探针,并以显微打印等手段将其固化于片基上。作者介绍了待测DNA样品的制备、标记样品与基因芯片杂交、杂交信息的检测与分析、操作过程中存在的问题及解决办法。基因芯片可以对病原细菌检测、病毒的检测及其他方面如支原体检测等。问题和展望基因芯片在病原微生物检测中具有快速、灵敏、高通量、自动化等特点。但目前仍面临一些问题有待解决,这些问题主要体现在硬件和软件2个方面。在硬件方面,DNA芯片技术需要昂贵的尖端仪器,如生产原位合成芯片需要光刻机器和寡核苷酸合成仪;构建DNA微集阵列的自动仪器约需8万美元以上,而检测芯片则要激光共聚焦显微镜、落射荧光显微镜等设备,费用较高。在软件(即技术)上也存在一些问题。首先,探针制备的环节上,原位合成寡核苷酸技术复杂,且有专利保护,合成过程中有可能插入错误核苷酸或混入杂质,降低了特异性和信噪比;显微打印技术较灵活,易实现,但需收集或合成大量探针,且阵列的集成度不高。其次,在样品和芯片杂交的环节上 ,因为杂交在固相上进行,空间因素会对杂交造成不利影响;还有,在一个芯片上存在多种探针,这对杂交条件是个挑战,因为这种探针的最适条件未必适合另一种探针;而且,复杂的探针如长寡核苷酸容易自身形成二 、三级结构,影响与靶序列的杂交或给出错误的阴性信号,当然在其它技术环节上也存在着一些难题,如样品准备复杂、检测的灵敏度低等。虽然基因芯片技术在多个环节上有待提高,但它在生命科学及相关领域中已呈现出广阔的应用前景,相信随着研究的不断深入和技术的更加完善,基因芯片会成为基础研究和临床应用的强有力工具。

  • 生物芯片及应用简介

    生物芯片及应用简介一、简介 生物芯片(biochip)是指采用逛到原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(比如玻璃、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与标记的待检测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分心,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有原件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片、如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量的探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将及其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization,SBH)等,为“后基因计划”时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给要个性等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。

  • 【转帖】关于1553B总线控制器芯片

    现代航空航天系统内电子设备越来越多、越来越复杂,武器系统的数字化、信息化程度也在迅速提高,系统内各种设备之间非常需要获得具有高传输速率,高管理效率和高可靠性的数据互联方式。MIL-STD-1553B总线作为一种具有较高数据传输性能和管理效率、传输可靠的数据总线,已经发展为十分成熟并被广泛应用的通用化数据传输技术,在航空航天、武器装备等系统中广泛应用。  航天测控公司已掌握了1553B总线控制器数据链路层芯片内核技术,研制出了具有自主知识产权的1553B总线控制器芯片。该芯片能够工作在BC、RT、BM三种模式下,主要功能与DDC公司的BU-61580芯片兼容,但其数据传输速率比国外芯片大幅度提高,大大提高了数据传输性能和系统实时性,应用范围更加广阔。该芯片的研制成功将彻底改变1553B芯片及控制器产品依赖进口的局面,为建立新型武器装备机内高效率、高可靠总线信息传输与控制提供了技术支撑和保障。

  • 用于微流控芯片的多通道正负压力控制器解决方案

    用于微流控芯片的多通道正负压力控制器解决方案

    [color=#000099]摘要:在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的压力控制器。本文特别针对微流控芯片进样对多通道压力控制器的技术要求,提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#000099]一、背景介绍[/color][/size]在微流控芯片进样、化学反应进样和长时间药物注射领域,都需要能提供正负气压可精密控制的多通道压力控制器,并且通过气体压力来控制流体的流量或流速。图1所示为这种压力控制器在微流控芯片进样中的典型应用。[align=center][img=微流控芯片用压力控制器,690,318]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559098143_8354_3384_3.png!w690x318.jpg[/img][/align][align=center]图1 多通道压力控制器在微流控芯片进样中的典型应用[/align]在微流控芯片进样中,要求压力控制器需具备以下几方面的功能:(1)多通道,每个通道可独立控制和操作。(2)每个通道都可按照编程设定输出相应的正负压力。(3)正负压力控制范围:绝对压力1Pa~0.5MPa(表压-101kPa~0.6MPa)。(4)压力控制精度:0.1%~1%。 针对上述微流控芯片进样对压力控制器要求,本文提出了相应的解决方案,并详细介绍了方案中多通道气路结构、控制方法、气体流量调节阀、压力传感器和PID控制器等内容和技术指标。通过此解决方案,完全能够满足各种微流体控制对多通道压力控制器的要求。[size=18px][color=#000099]二、解决方案[/color][/size]本文所提出的解决方案是实现在1Pa~0.7MPa绝对压力范围内的精密控制,控制精度极限可达到0.1%。即提供一个可控气压源解决方案,采用双向控制模式的动态平衡法,结合高精度步进电机和微小流量电动针阀、高精度压力传感器和多通道PID控制器,气压源可进行高精度的各种真空压力的可编程输出,同时也可用于控制不同的流体流量。本文所涉及的解决方案,主要针对用于微流控芯片进样用多通道正负压力控制器,这主要是因为微流控芯片所用压力基本在一个标准大气压附近变化,相应的多通道压力控制器相对比较简单。而对于更低压力,如气压小于1kPa绝对压力的多通道控制,要实现精密控制则整个压力控制器将十分复杂。微流控芯片进样用多通道压力控制器工作原理如图2所示。[align=center][img=微流控芯片用压力控制器,690,350]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271559436818_6219_3384_3.png!w690x350.jpg[/img][/align][align=center]图2 微流控芯片进样用多通道压力控制器工作原理图[/align]微流控芯片进样用多通道压力控制器的工作原理为:(1)多通道压力控制包括多个控制通道,每个控制通道包括正压气源、进气调节阀、出气调节阀、抽气泵和PID控制器单元。其中的正压气源和抽气泵提供足够的负压和正压能力,并且可以多通道公用。同样,多通道压力控制器也公用一个进气调节阀。需要注意的是,由于微流控进样所需的负压气压值较大并接近一个标准大气压,对于微流控芯片进样的压力控制,只需固定进气调节阀的开度,近靠调节出气阀开度极可实现正负压的精密控制,因此可以公用一个进气调节阀。如果要进行较低负压气压值(较高真空度)的精密控制,配置恰恰相反,每一通道配置的进气阀进行调节,但可以公用一个抽气阀。(2)精密压力控制原理基于密闭空腔进气和出气的动态平衡法。多通道压力控制器的每一个通道都是典型闭环控制回路,其中PID控制器的每一通道采集相应通道的真空压力传感器信号并与此通道的设定值进行比较,然后调节相应通道的进气和抽气调节阀开度,最终使此通道传感器测量值与设定值相等而实现该通道真空压力的准确控制。(3)为了覆盖负压到正压的所要求的真空压力范围,需要配置一个测试量程覆盖要求范围内的高精度绝对压力传感器,如果一个压力传感器无法覆盖全量程,则需要增加压力传感器数量来分段覆盖。采用绝对压力传感器的优势是不受各地大气气压变化的影响,无需采取气压修正,更能保证测试的准确性和重复性。(4)绝对压力传感器对应所覆盖的真空压力范围输出数值从小到大变化的直流模拟信号(如0~10VDC)。此模拟信号输入给PID控制器,由PID控制器调节进气阀和排气阀的开度而实现压力精确控制。(5)当控制是从负压到正压进行变化时,一开始的进气调节阀开度(进气流量)要远小于抽气调节阀开度(抽气流量),通过自动调节进出气流量达到不同的平衡状态来实现不同的负压控制,最终进气调节阀开度逐渐要远大于抽气调节阀开度,由此实现负压到正压范围内一系列设定点或斜线的连续精密控制。对于从正压到负压压的变化控制,上述过程正好相反。[size=18px][color=#000099]三、方案具体内容[/color][/size]解决方案中所涉及的正负压力控制器的具体结构如图3所示,主要包括正压气源、电动针阀、密闭空腔、压力传感器、高精度PID控制器和抽气泵。[align=center][img=微流控芯片用压力控制器,690,393]https://ng1.17img.cn/bbsfiles/images/2022/06/202206271602023624_9954_3384_3.png!w690x393.jpg[/img][/align][align=center]图3 微流控芯片进样用多通道正负压力控制器结构示意图[/align]在图3所示的正负压力控制器中,每个通道都对应一密闭空腔,每个密闭空腔上的外接接口作为此通道的压力输出口。密闭空腔左右安装两个NCNV系列的步进电机驱动的微型电动针阀,电动针阀本身就是正负压两用调节阀,其绝对真空压力范围为0.0001mbar~7bar,最大流量为40mL/min,步进电机单步长为12.7微米,完全能满足小空腔的正负压精密控制。由此,压力控制器中的每个通道可实现正负压任意设定点的精确控制,也可以从正压到负压的压力线性变化控制,也可以从负压到正压的压力线性变化控制。微流控芯片进样过程中一般要求微小正负压控制,要求是在标准大气压附近的真空压力精确控制,如控制精度为±0.5%甚至更小,一般都需要采用调节抽气阀的双向动态模式,即通过控制器使得进气口处电动针阀的开度基本不变,同时根据PID算法来调节排气口处的电动针阀开度。由于进气阀的开度基本处于固定状态,使得微流控芯片进样所用的多通道压力控制器可以公用一个调节进气流量的电动针阀。另外,所有通道都需要具备抽气功能,抽速也是一固定值,因此多通道压力控制器也可以公用一个抽气泵。在微流控芯片进样过程中压力控制,除了上述恒定进气流量调节抽气流量的控制方法之外,决定压力控制精度的因素还有压力传感器、PID控制器和电动针阀的精度。本方案中的PID控制器采用的是24位AD和16位的DA,电动针阀则是高精度步进电机,因此本解决方案的测试精度主要取决于压力传感器精度,一般至少要选择0.1%精度的压力传感器。在微流控芯片进样过程中,往往会要求密闭容器在正负压范围内进行多次往复变化和按照设定曲线进行控制,因此本方案采用了可存储多个编辑程序的PID控制器,每个设定程度是一条多个折线段构成的曲线,由此可实现正负压往复变化的自动程序控制。在本文所述的解决方案中,为实现正负压的精密控制,如图3所示,针对负压的形成配置了抽气泵。抽气泵相当于一个负压源,但采用真空发生器同样可以达到负压源的效果,负压源采用真空发生器的优点是整个系统只需配备一个正压气源,减少了整个系统的造价、体积和重量,真空发生器连接正压气源即可达到相同的抽气效果。[size=18px][color=#000099]四、总结[/color][/size]本文所述解决方案,完全可以实现微流控芯片进样系统中压力的任意设定点和连续程序形式的精密控制,并且可以达到很高的控制精度和速度,全程自动化。本方案除了自动精密控制之外,另外一个特点是系统简单,正负压控制范围也可以比较宽泛,整个系统小巧和集成化,便于形成小型化的检测仪器。本文解决方案的技术成熟度很高,方案中所涉及的电动针阀和PID控制器,都是目前特有的标准产品,其他的压力传感器、抽气泵、真空发生器和正压气源等也是目前市场上常见的标准产品。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • MPI-M型微流控芯片化学发光检测仪

    技术参数 1.MPI-M型电致化学发光检测仪—多功能化学发光检测仪: * 测量动态范围:大于5个数量级 * 测量精度优于0.05% 2.MPI-A/B型多功能化学发光检测器: * 波长范围:300—650nm * 灵敏度:SP1000A/Lm 3.MPI-M型微流控芯片化学发光检测仪—数控多路高压电源: * 输出路数:4路(BF型) * 输出电压:0—2000V/路 * 输出电流:0—2mA/路 * 高压接出方式:输出、断开、接地 * 输出电流保护控制:0—2mA * 设置程序步:10步 技术文章 此仪器没有任何技术文章 主要特点 应用领域: * 微流控芯片化学发光分析。 仪器介绍 微流控洗片发光检测是近几年发展迅速的一种新型检测方法,它将微流控芯片进样与化学发光检测相结合,可用于微流控芯片化学发光等科学试验。 MPI-M型微流控芯片化学发光检测仪系结合微流控芯片进样与化学发光检测于一体的多测试界面、多分析参数、多控制部件系统集成仪器。它可同时对被测样品实现微流控芯片进样控制与化学发光实时检测,并同步显示化学发光信号、微流控芯片进样状态并对其进行详细分析。

  • Luminex sd液相芯片仪控制器维修

    Luminex sd[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]芯片仪控制器维修[img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204120828442154_303_3430718_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204120828440145_4778_3430718_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204120828442594_8974_3430718_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204120828439999_4569_3430718_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/04/202204120828442232_7794_3430718_3.png[/img]

  • 荧光芯片扫描仪

    荧光芯片扫描仪   由于杂交时产生序列重叠,会有成百上千的杂交点出现在图谱上,形成极为复杂的杂交图谱。序列重叠虽然可为每个碱基的正确读出提供足够的信息,可提高序列分析的可靠性,但同时信息处理量也大大增加了。一般说来,这些图谱的多态性处理与存储都由专门设计的软件来完成,而不是通过对比进行人工读谱。用计算机处理即可给出目的基因的结构或表达信息。扫描一张10cm2的芯片大概需要2-6分种的时间。目前专用于荧光扫描的扫描仪根据原理不同大致分为两类:一是激光共聚焦显微镜的原理, 是基于PMT(photomultiplier tube,光电倍增管)的检测系统(另文介绍);另一种是CCD(charge-coupled devices,电荷偶合装置)摄像原理检测光子。CCD一次可成像很大面积的区域,而以PMT为基础的荧光扫描仪则是以单束固定波长的激光来扫描,因此或者需要激光头,或者需要目的芯片的机械运动来使激光扫到整个面积,这样就需要耗费较多的时间来扫描;但是CCD有其缺点:目前性能最优越的CCD数字相机的成像面积只有16×12mm(像素为10μm),因此要达到整个芯片的面积20×60mm的话,需要数个数码相机同时工作,或者也可以以降低分辨率为代价来获得扫描精度不是很高的图像。由于灵敏度和分辩率较低,比较适合临床诊断用。   生产商业化扫描仪的公司包括:Genomic Solutions公司、Packard公司、GSI公司、Molecular Dynamics、Genetic Microsystems公司、Axon ?Instruments公司等。其中GSI Lumonics 公司ScanArray 系列一直是生物芯片扫描检测系统中的领头产品。2000GSI并入著名的Parkard公司后ScanArray的软、硬件都得到进一步加强。   ScanArray利用其专利的激光共聚焦光学系统,通过计算机控制,对生物芯片的荧光杂交信号进行全自动的扫描采集,并通过分析软件对数据结果进行定量分析。  最高灵敏度高:0.1荧光分子/μm  扫描精度可从5μm-50μm分级调整  全范围扫描时间仅需5分钟,快速方便  多达十种检测滤光片,涵盖所有生物芯片荧光染料的检测,适用于多种荧光标记探针   不同波长依次扫描避免交叉光污染  扫描后的图像还需要进一步的处理,这要求一定的软件支持。现有的分析软件包括:Biodiscovery的ImaGene系列,Axon Instruments的GenePix系列,GSI的QuantArray等  3. 基因芯片上各克隆荧光信号的分析原理   用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5)(2),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到到有关基因图谱。美国GSI ?Lumonics 公司开发出专专业基因芯片检测系统(ScanArray 系列),采用激光共聚焦扫描原理进行荧光信号采集,由计算机处理荧光信号,并对每个点的荧光强度数字化后进行分析。利用QuantArray软件包对扫描的荧光信号进行分析,比  较每个克隆在不同组织间表达水平的差别。软件具体分析步骤如下:   首先,同时导入同一区域两个channel扫描的图像文件;将两个channel扫描的图像用不同的颜色显示并重叠;选择拟分析的区域,输入矩阵的行数及列数以及矩阵的个数等参数;在计算机给出的该区域信号图片上标定网格,使得网格中所包含的横线和竖线的交点个数同每个区域点样的克隆数相同,调整网格,使每个交点均位于点样克隆信号的中心;信号的中心确定后,计算机将自动以交点为中心,按照设定的半径圈定各克隆,并将其内部区域作为待分析的信号,同时在圈定的各克隆周围再按照预设的值圈定一定范围的区域,将该区域内的信号作为背景噪音;计算机分析每个克隆扣除背景噪音后的信号强度,并按照不同的要求对数据进行分析;利用GenePie方式对两个channel信号的进行定量比较分析,此时计算机根据各克隆两个channel扫描的信号,以饼图的形式给出两个channel信号强度的相对比例,同时可以逐个克隆读取计算机分析出的两个channel信号的值及所占的比例,进而确定各克隆在两种组织间的表达差异。  4. Microarray数据分析   Microarray数据分析简单来说就是对Microarray高密度杂交点阵图象处理并从中提取杂交点的荧光强度信号进行定量分析,通过有效数据的筛选和相关基因表达谱的聚类,最终整合杂交点的生物学信息,发现基因的表达谱与功能可能存在的联系。   Microarray数据分析主要包括图象分析(Biodiscovery Imagene 4.0\Quantarray分析软件)、标准化处理(normalization)、Ratio值分析、基因聚类分析(Gene Clustering)。   1. 图象分析:激光扫描仪Scaner得到的Cy3/Cy5图象文件通过划格(Griding),确定杂交点范围,过滤背景噪音,提取得到基因表达的荧光信号强度值,最后以列表形式输出。   2. 标准化处理(Normalization):由于样本差异、荧光标记效率和检出率的不平衡,需对cy3和cy5的原始提取信号进行均衡和修正才能进一步分析实验数据,Normalization正是基于此种目的。Normalization的方法有多种:一组内参照基因(如一组看家基因)校正Microarray所有的基因、阳性基因、阴性基因、单个基因。   3. Ratio分析(Ratio Analysis):cy3/cy5的比值,又称R/G值。一般0.5-2.0范围内的基因不存在显著表达差异,该范围之外则认为基因的表达出现显著改变。由于实验条件的不同,此域值范围会根据可信区间有所调整。处理后得到的信息再根据不同要求以各种形式输出,如柱形图、饼形图、点图、原始图象拼图等。将每个Spot的所有相关信息如位标、基因名称、克隆号、PCR结果、信号强度、Ratio值等自动关联并根据需要筛选数据。每个Spot的原始图象另存文件,可根据需要任意排序,得到原始图象的拼图,对于结果分析十分有利。   4. 聚类分析(Clustering Analysis):实际是一种数据统计分析。通过建立各种不同的数学模型,可以得到各种统计分析结果,确定不同基因在表达上的相关性,从而找到未知基因的功能信息或已知基因的未知功能。Gene Clustering就是根据统计分析原理,对具有相同统计行为的多个基因进行归类的分析方法,归为一个簇的基因在功能上可能相似或关联。目前以直观图形显示GeneCluster结果的程序已有人开发出来,可将抽象的数据结果转化成直观的树形图,便于研究人员理解和分析。  尽管基因芯片技术受到了广泛关注,但在基因表达谱分析中起着关键作用的生物信息学却没能引起大家的足够重视,认为简单人工处理一下原始数据就可以得到有价值的生物学信息,大量有价值的信息就这样被浪费和湮没了。可以肯定地说,没有生物信息学的有效参与,基因芯片技术就不能发挥最大效能。加大基因芯片技术中生物信息学的研究开发力度已成为当务之急。国内外已经进行了有益的尝试,初步开发出供芯片平台管理实验数据的软件包,就目前实际情况来看,生物信息学在基因芯片研究开发中介入的程度已经越来越深,主要涉及基因表达信息分析管理系统及其分析工具和分析方法,简单概括为以下几个方面:

  • 【分享】基因芯片的制备

    1 原位光刻合成寡聚核苷酸原位光刻合成技术是由Affymetrix公司开发的,采用的技术原理是在合成碱基单体的5'羟基末端连上一个光敏保护基。合成的第一步是利用光照射使羟基端脱保护,然后一个5'端保护的核苷酸单体连接上去,这个过程反复进行直至合成完毕。使用多种掩盖物能以更少的合成步骤生产出高密度的阵列,在合成循环中探针数目呈指数增长。某一含n个核苷酸的寡聚核苷酸,通过4×n个化学步骤能合成出4n个可能结构。例如:一个完整的十核苷酸通过32个化学步骤,8个小时可能合成65,536个探针。  2 原位喷印合成 芯片原位喷印合成原理与喷墨打印类似,不过芯片喷印头和墨盒有多个,墨盒中装的是四种碱基等液体而不是碳粉。喷印头可在整个芯片上移动并根据芯片上不同位点探针的序列需要将特定的碱基喷印在芯片上特定位置。该技术采用的化学原理与传统的DNA固相合成一致,因此不需要特殊制备的化学试剂。  3 点样法 点样法是将合成好的探针、cDNA或基因组DNA通过特定的高速点样机器人直接点在芯片上。采用的机器人有一套计算机控制三维移动装置;多个打印/喷印针的打印/喷印头;一个减震底座,上面可放内盛探针的多孔板和多个芯片。根据需要还可以有温度和湿度控制装置;针洗涤装置。打印/喷印针将探针从多孔板取出直接打印或喷印于芯片上。直接打印时针头与芯片接触,而在喷印时针头与芯片保持一定距离。打印法的优点是探针密度高,通常1平方厘米可打印2,500个探针。缺点是定量准确性及重现性不好, 打印针易堵塞且使用寿命有限。喷印法的优点是定量准确,重现性好,使用寿命长。缺点是喷印的斑点大,因此探针密度低,通常只有1平方厘米400点。国外有多家实验室和公司研究开发打印/喷印设备,目前有一些已经商品化。军事医学科学院目前正在利用打印/喷印技术进行生物芯片的研究和开发,预计2年内将有用于实验室研究或临床诊断的基因芯片产品问世。  4 电子芯片电子芯片是由美国Nanogen公司开发的,目前国内清华大学和复旦大学也在开发这一技术。这种芯片为带有阳电荷的硅芯片、芯片经热氧化,制成1mm(1mm的阵列、每个阵列含多个微电极,在每个电极上通过氮化硅沉积和蚀刻制备出样品池。将链连接亲和素的琼脂糖覆盖在电极上,在电场作用下生物素标记的探针即可结合在特定电极上。电子芯片的最大特点是杂交速度快,可大大缩短分析时间。制备复杂、成本高是其不足。  5 三维芯片三维芯片是由美国的Packard、摩托罗拉、Argonne国家实验室三家机构与俄罗斯Engelhardt分子生物学研究所合作开发的一种芯片技术。三维生物芯片的实质上是一块显微镜载玻片,其上有10,000个微小聚乙烯酰胺凝胶条,每个凝胶条可用于靶DNA,RNA和蛋白质的分析。先把已知化合物加在凝胶条上,用3cm长的微型玻璃毛细管将待测样品加到凝胶条上。每个毛细管能把小到0.2nl的体积打到凝胶上。以上几家机构构合作研究的生物芯片系统具有其它生物芯片系统不具有的几个优点。一是凝胶条的三维化能加进更多的已知物质,增加了敏感性。二是可以在芯片上同时进行扩增与检测。一般情况下,必须在微量多孔板上先进行PCR扩增,再把样品加到芯片上,因此需要进行许多额外操作。本芯片所用凝胶体积很小,使PCR扩增体系的体积减小1,000倍(总体积约纳升级),从而节约了每个反应所用的PCR酶(约减少100倍)。三是以三维构象形式存在的蛋白和基因材料可以其天然状态在凝胶条上分析,可以进行免疫测定,受体-配体研究和蛋白组分析。  6 流过式芯片(flow-thru chip) Gene Logic 正在开发一种在芯片片基上制成格栅状微通道,Gene Logic设计及合成特定的寡核苷酸探针,结合于微通道内芯片的特定区域。从待测样品中分离DNA或RNA并对其进行荧光标记,然后,该样品流过芯片,固定的寡核苷酸探针捕获与之相互补的核酸,采用Gene Logic's信号检测系统分析结果。流通式芯片用于高通量分析已知基因的变化,其特点在于(1)敏感性高:由于寡核苷酸吸咐表面的增大,流过式芯片可监测稀有基因表达的变化;(2)速度快:微通道加速了杂交反应,减少了每次检测所需时间;(3)价格降低:由于采用了特殊的共价化学技术将寡核苷酸吸咐于微通道内,使每一种流过式芯片可反复使用多次,从而使其成本降低。

  • 半导体芯片高低温测试机中真空泵的使用说明

    半导体芯片高低温测试机在运行的过程中,每个配件的性能都是很关键的,无锡冠亚的半导体芯片高低温测试机中真空泵一旦发生故障的话,就需要及时维修以及保养,这些都是不可少的。  半导体芯片高低温测试机真空泵完好标准是机体整洁,零部件完整齐全,质量符合要求。真空表、电流表等仪表齐全、灵敏、准确,并有定期检验标志。基础稳固可靠,地脚螺栓和各部螺栓连接紧固、齐整,丝扣外露长度符合规定。管线、阀门等安装合理,标志分明,符合要求。各零部件的安装间隙应达到规定要求。半导体芯片高低温测试机真空泵运行性能要求要注意半导体芯片高低温测试机的润滑良好,油质符合要求,实行“五定”,设备运转平稳无杂音,其振动和噪声不应超过有关规定,设备负荷运转时,温度、压力、流量、电流等参数应符合相关标准。  半导体芯片高低温测试机真空泵设备及环境要求需要注意泵体清洁,外表无尘灰、油垢。基础底座表面及周围无积水、废液及其他杂物等。阀门及管件接头等处不得有泄漏。填料密封处泄漏不超过规定。  半导体芯片高低温测试机真空泵日常维护需要注意半导体芯片高低温测试机周围环境应保持清洁、干燥,通风良好,检查冷却水路是否畅通,检查各润滑部位的润滑油是否符合规定。每班必须检查各部紧固螺栓,不得有松动现象,经常检查真空罐中的液位是否正常有效,并进行必要紧固。随时检查真空表、电流表的读数是否正常。随时注意观察半导体芯片高低温测试机运转有无异常声响或振动,必要时可报告有关部门进行状态。操作人员必须严格按《操作规程》进行操作,巡回检查发现问题必须及时处理。  半导体芯片高低温测试机中真空泵的故障解决也是影响整个半导体芯片高低温测试机运行的效果的,以及后期真空泵的保养也是很重要的,这些都是不可忽视的,望悉知。

  • 什么是芯片解密?

    [url=https://www.szcxwdz.com]芯片[/url]解密是从已加密的芯片之上复制代码。嵌入程序代码的芯片有很多种,单片机只是其中的一种。微控制器(。MCU&#41。通常有一个外部的EEPROM/FLASH供用户存储程序和工作数据。为了防止未经授权访问或复制的单片机计算机程序,大多数单片机都有加密锁定位或加密字节来保护片之上程序。如果在编程过程之中启用了加密锁定位(。Lock)。不能用一般程序员间接读取单片机之中的程序,这叫单片机加密或芯片加密。单片机攻击者用专用设备或自制设备,利用单片机设计之上的漏洞或软件之上的缺陷,通过各种技术手段,可以从芯片之中提取关键信息,获取单片机程序这就是所谓的芯片解密。目前,芯片破解的方法主要有:利用软件进行攻击、利用电子检测攻击、采用故障产生技术、利用探针技术进行解密。[url=https://www.szcxwdz.com]创芯为电?[/url]要从事各类电?元器件的销售。提供 [url=https://www.szcxwdz.com]BOM配单[/url]服务,减少采购物料的时间成本,在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,免费供样!

  • 3D打印微流控芯片的研究进展

    微流控芯片具有液体流动可控、消耗试样和试剂极少、分析速度成十倍上百倍地提高等特点,它可以在几分钟甚至更短的时间内进行上百个样品的同时分析,并且可以在线实现样品的预处理及分析全过程。用于制作微流控芯片的加工技术大多继承自半导体工业,其加工过程工序繁多,且依赖价格高昂的先进设备。采用3D打印技术,可以显著简化微流控芯片的加工过程,在打印材料的选择上也非常灵活。http://www.whchip.com/upload/201702/1487123319960727.jpg3D打印基于毛细驱动的微流控芯片 浙江大学贺永及其研究团队提出了一种基于毛细驱动的3D打印微流控芯片(μ3DPADs),其无泵驱动的特点与现有的纸基微流控芯片类似。对于纸基微流控芯片来说,毛细驱动的优点是不需要外界泵驱动,体积小,成本低,非常适合于Point-of-Care(POC)系统等资源紧缺的应用场合。但毛细驱动的缺点是流动场都被动的由毛细力控制,无法实现复杂的流动控制及流场的可编程。通过3D打印可以将2D的纸基微流控芯片扩展到3D尺度。维数的增大带来的优势是我们可通过调控其流道深度来实现流速的可控(流场的可编程)。一系列的实验证实该微流控芯片是目前2D纸基微流控芯片的有效补充,该微流控芯片适合于希望以无驱方式简化流体驱动的同时又希望能实现一些复杂的流动控制。3D打印结合微流控芯片加速药物检测 弗吉尼亚理工大学-维克森林大学生物医学工程学院和科学研究所以及再生医学机构的助理教授Aleksander Skardal博士和Adam R Hall博士通过3D打印结合微流控芯片加速药物检测。具体来说,研究人员建立了一个三维装置,将肝细胞包围在一个可以模仿ECM的生物聚合物中。肝细胞被UV交联水凝胶溶液混合在一起,放入装置内,实施定域光聚合技术,在原位生成组织结构。使用水凝胶是因为它能“特殊模仿自然ECM的特性,”根据研究显示。该结构在装置内可保持7天稳定。研究人员随后用0-500mM的乙醇,与上述结构混合进行毒理学分析。研究人员发现,乙醇的量对细胞活力有系统的影响。此外,对肝功能的分析评估表明,增加乙醇暴露后,人体血清白蛋白和尿素的输出量有显着减少。3D打印“器官芯片”此外,生物3D打印技术在制造复杂3D人体组织结构方面具有潜力。微流控系统可以为3D 组织提供营养、氧气和生长因子,在实验室环境下重现各种疾病的微环境,可广泛应用于药物研发、致病机理研究、细胞发育机制探讨等领域。未来,先进的生物3D打印机不仅可以打印微流控平台,还可以同时在微流控平台中直接打印出定制化的微观人体组织。美国康涅狄格大学等机构的科学家在Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing(通过3D打印技术进行器官生物芯片的一步制造)一文中描述到,传统的微流控芯片制造技术是劳动密集型的产业,不利于实验室进行芯片设计的快速迭代和快速制造。将3D打印技术用于制造微流控生物芯片则可以在几个小时内实现微型流体通道的快速制造,有利于设计的快速迭代,提高了基于微流控研究的跨学科性,并加速创新。

  • 安捷伦9000气相保护芯片

    安捷伦9000型[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],保护芯片要多久换一次,推荐只有200次太少了。

  • 生物芯片入门:应用

    基因芯片技术及其研究现状和应用前景生物芯片技术是随着“人类基因组计划”(human genome project,HGP)的进展而发展起来的,它是90年代中期以来影响最深远的重大科技进展之一,它融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。生物芯片技术包括基因芯片、蛋白质芯片、细胞芯片、组织芯片、以及元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。本文主要讨论基因芯片技术,它为“后基因组计划”时期基因功能的研究提供了强有力的工具,将会使基因诊断、药物筛选、给药个性化等方面取得重大突破,该技术被评为1998年度世界十大科技进展之一。1、基本概念基因芯片(gene chip)也叫DNA芯片、DNA微阵列(DNA microarray)、寡核苷酸阵列(oligonucleotide array),是指采用原位合成(in situ synthesis)或显微打印手段,将数以万计的DNA探针固化于支持物表面上,产生二维DNA探针阵列,然后与标记的样品进行杂交,通过检测杂交信号来实现对生物样品快速、并行、高效地检测或医学诊断,由于常用硅芯片作为固相支持物,且在制备过程运用了计算机芯片的制备技术,所以称之为基因芯片技术。2、技术基本过程2.1 DNA方阵的构建选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针;或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定量点样于带正电荷的尼龙膜或硅片等相应位置上,再由紫外线交联固定后即得到DNA微阵列或芯片。2.2 样品DNA或mRNA的准备从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须进行扩增提高阅读灵敏度。Mosaic Technologies公司发展了一种固相PCR系统,好于传统PCR技术,他们在靶DNA上设计一对双向引物,将其排列在丙烯酰胺薄膜上,这种方法无交叉污染且省去液相处理的繁锁;Lynx Therapeutics公司提出另一个革新的方法,即大规模平行固相克隆(massively parallel solid-phase cloning)这个方法可以对一个样品中数以万计的DNA片段同时进行克隆,且不必分离和单独处理每个克隆,使样品扩增更为有效快速。在PCR扩增过程中,必须同时进行样品标记,标记方法有荧光标记法、生物素标记法、同位素标记法等。2.3 分子杂交样品DNA与探针DNA互补杂交要根据探针的类型和长度以及芯片的应用来选择、优化杂交条件。如用于基因表达监测,杂交的严格性较低、低温、时间长、盐浓度高;若用于突变检测,则杂交条件相反。芯片分子杂交的特点是探针固化,样品荧光标记,一次可以对大量生物样品进行检测分析,杂交过程只要30min。美国Nangon公司采用控制电场的方式,使分子杂交速度缩到1min,甚至几秒钟。德国癌症研究院的Jorg Hoheisel等认为以肽核酸(PNA)为探针效果更好。2.4 杂交图谱的检测和分析用激光激发芯片上的样品发射荧光,严格配对的杂交分子,其热力学稳定性较高,荧光强;不完全杂交的双键分子热力学稳定性低,荧光信号弱(不到前者的1/35~1/5),不杂交的无荧光。不同位点信号被激光共焦显微镜,或落射荧光显微镜等检测到,由计算机软件处理分析,得到有关基因图谱。目前,如质谱法、化学发光法、光导纤维法等更灵敏、快速,有取代荧光法的趋势。3、应用3.1 测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速而具有十分诱人的前景。Mark chee等用含135000个寡核苷酸探针的阵列测定了全长为16.6kb的人线粒体基因组序列,准确率达99%。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCA1基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性在98.2%到83.5%之间,提示了二者在进化上的高度相似性。3.2 基因表达水平的检测用基因芯片进行的表达水平检测可自动、快速地检测出成千上万个基因的表达情况。Schena等采用拟南芥基因组内共45个基因的cDNA微阵列(其中14个为完全序列,31个为EST),检测该植物的根、叶组织内这些基因的表达水平,用不同颜色的荧光素标记逆转录产物后分别与该微阵列杂交,经激光共聚焦显微扫描,发现该植物根和叶组织中存在26个基因的表达差异,而参与叶绿素合成的CAB1基因在叶组织较根组织表达高500倍。Schena等用人外周血淋巴细胞的cDNA文库构建一个代表1046个基因的cDNA微阵列,来检测体外培养的T细胞对热休克反应后不同基因表达的差异,发现有5个基因在处理后存在非常明显的高表达,11个基因中度表达增加和6个基因表达明显抑制。该结果还用荧光素交换标记对照和处理组及RNA印迹方法证实。在HGP完成之后,用于检测在不同生理、病理条件下的人类所有基因表达变化的基因组芯片为期不远了。3.3 基因诊断从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。通过比较、分析这两种图谱,就可以得出病变的DNA信息。这种基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。例如,Affymetrix公司,把P53基因全长序列和已知突变的探针集成在芯片上,制成P53基因芯片,将在癌症早期诊断中发挥作用。又如,Heller等构建了96个基因的cDNA微阵,用于检测分析关节炎、风湿性关节炎(RA)相关的基因,以探讨DNA芯片在感染性疾病诊断方面的应用。现在,肝炎病毒检测诊断芯片、结核杆菌耐药性检测芯片、多种恶性肿瘤相关病毒基因芯片等一系列诊断芯片逐步开始进入市场。基因诊断是基因芯片中最具有商业化价值的应用。3.4 药物筛选如何分离和鉴定药的有效成份是目前中药产业和传统的西药开发遇到的重大障碍,基因芯片技术是解决这一障碍的有效手段,它能够大规模地筛选、通用性强,能够从基因水平解释药物的作用机理,即可以利用基因芯片分析用药前后机体的不同组织、器官基因表达的差异。如果再用mRNA 构建cDNA表达文库,然后用得到的肽库制作肽芯片,则可以从众多的药物成分中筛选到起作用的部分物质。或者,利用RNA、单链DNA有很大的柔性,能形成复杂的空间结构,更有利与靶分子相结合,可将核酸库中的RNA或单链DNA固定在芯片上,然后与靶蛋白孵育,形成蛋白质-RNA或蛋白质-DNA复合物,可以筛选特异的药物蛋白或核酸,因此芯片技术和RNA库的结合在药物筛选中将得到广泛应用。在寻找HIV药物中,Jellis等用组合化学合成及DNA芯片技术筛选了654536种硫代磷酸八聚核苷酸,并从中确定了具有XXG4XX样结构的抑制物,实验表明,这种筛选物对HIV感染细胞有明显阻断作用。生物芯片技术使得药物筛选,靶基因鉴别和新药测试的速度大大提高,成本大大降低。基因芯片药物筛选技术工作目前刚刚起步,美国很多制药公司已开始前期工作,即正在建立表达谱数据库,从而为药物筛选提供各种靶基因及分析手段。这一技术具有很大的潜在应用价值。[/

  • 中国生物芯片的骄傲————博奥生物跻身全球生物芯片产业领跑者阵营

    [b]博奥生物跻身全球生物芯片产业领跑者阵营[/b] “每次只要是来自中国的代表发言,只要是关于中国的话题,会场里总是座无虚席,连走廊里也挤满了人。而我们发完言,不管接下来是隔壁的印度还是同场的日本专题报告,马上就没多少人了!”   回忆起4月9日作为中国代表团一员在美国芝加哥举行的“BIO2006”大会上所受到的礼遇时,博奥生物有限公司(以下简称博奥生物)高级副总裁孙英豪颇为自豪。BIO2006,即“全球生物技术工业组织2006年度年会”,全球生命科学产业领域最高规格的会议,来自各个国家的代表通常都会在此会议上介绍自己国家生命科学领域的最新进展,因此那些在该领域走在全球前列的国家(企业)自然会成为会议的“明星”,其发言备受来自全球的圈内人士的关注。   而处在生命科学最前沿的中国生物芯片产业所受到的关注和“礼遇”,已远远不只是局限在圈子里。孙英豪介绍,在去参加此次年度大会之前,美国俄亥俄州的州长就提前预约,希望届时能与博奥生物方面人士会晤。果然,4月10日下午,该州长先生就专门带了一干人马到博奥生物展位参观,并与博奥生物进行了深入的洽谈,原来他是在“牵线搭桥”,其目的是希望博奥生物能与该州的某个大型世界知名企业建立战略合作关系。   正是博奥生物,从零开始,仅仅用短短的5年时间,就跻身了全球生物芯片产业领跑者阵营,书写了真正的跨越式发展的传奇;也正是博奥生物,作为中国生命高技术企业的旗舰和代表,异军突起,为中国生命科学在全球领先阵营中赢得了一席之地,就像一朵“奇葩”,开在了全球生命科学领域的花园里,灿烂而夺目。或许在外人看来,它是以迅捷而奇异的方式盛开的,但这丝毫不会影响它的光彩,而只会更添一份神奇魅力。 [url=http://www.instrument.com.cn/download/search.asp?sel=admin_name&keywords=quanbaogang]欢迎到我的资料库下载[/url]

  • 【转帖】基因芯片技术进展!

    基因芯片技术进展及应用 作者:刘炎 [关键词] 基因芯片;核酸探针序列;杂交 1 基因芯片概述  随着人类基因组计划( Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代( Postgenome Era)向基因的功能及基因的多样性倾斜[1,2]。通过对个体在不同生长发育阶段或不同生理状态下大量基因表达的平行分析,研究相应基因在生物体内的功能,阐明不同层次多基因协同作用的机理,进而在人类重大疾病如癌症、心血管疾病的发病机理、诊断治疗、药物开发等方面的研究发挥巨大的作用。它将大大推动人类结构基因组及功能基因组的各项基因组研究计划。  基因芯片的工作原理与经典的核酸分子杂交方法(southern 、northern)是一致的,都是应用已知核酸序列作为探针与互补的靶核苷酸序列杂交,通过随后的信号检测进行定性与定量分析,基因芯片在一微小的基片(硅片、玻片、塑料片等)表面集成了大量的分子识别探针,能够在同一时间内平行分析大量的基因,进行大信息量的筛选与检测分析[3,4]。基因芯片主要技术流程包括:芯片的设计与制备;靶基因的标记;芯片杂交与杂交信号检测。  基因芯片的设计实际上是指芯片上核酸探针序列的选择以及排布,设计方法取决于其应用目的,目前的应用范围主要包括基因表达和转录图谱分析及靶序列中单碱基多态位点(single nucleotide polymorphism,SNP)或突变点的检测,表达型芯片的目的是在杂交实验中对多个不同状态样品(不同组织或不同发育阶段、不同药物刺激)中数千基因的表达差异进行定量检测,探针序列一般来自于已知基因的cDNA 或EST库,设计时序列的特异性应放在首要位置,以保证与待测目的基因的特异结合,对于同一目的基因可设计多个序列不相重复的探针,使最终的数据更为可靠。基因单碱基多态检测的芯片一般采用等长移位设计法[5],即按靶序列从头到尾依次取一定长度的互补的核苷酸序列形成一探针组合,这组探针是与靶序列完全匹配的野生型探针,然后对于每一野生型探针,将其中间位置的某一碱基分别用其它三种碱基替换,形成三种不同的单碱基变化的核苷酸探针,这种设计可以对某一段核酸序列所有可能的SNPs位点进行扫描。  芯片制备方法主要包括两种类型:(1)点样法:首先是探针库的制备, 根据基因芯片的分析目标从相关的基因数据库中选取特异的序列进行PCR扩增或直接人工合成寡核苷酸序列[6],然后通过计算机控制的三坐标工作平台用特殊的针头和微喷头分别把不同的探针溶液逐点分配在玻璃、尼龙以及其它固相基片表面的不同位点上,通过物理和化学的方法使之固定,该方法各技术环节均较成熟,且灵活性大,适合于研究单位根据需要自行制备点阵规模适中的基因芯片。(2)原位合成法[7~10]:该法是在玻璃等硬质表面上直接合成寡核苷酸探针阵列,目前应用的主要有光去保护并行合成法,压电打印合成法等,其关键是高空间分辨率的模板定位技术和高合成产率的DNA化学合成技术,适合制作大规模DNA探针芯片,实现高密度芯片的标准化和规模化生产。待分析样品的制备是基因芯片实验流程的一个重要环节, 靶基因在与芯片探针结合杂交之前必需进行分离、扩增及标记。标记方法根据样品来源、芯片类型和研究目的的不同而有所差异。通常是在待测样品的PCR扩增、逆转录或体外转录过程中实现对靶基因的标记。对于检测细胞内mRNA表达水平的芯片,一般需要从细胞和组织中提取RNA,进行逆转录,并加入偶联有标记物的dNTP,从而完成对靶基因的标记过程[11],对于阵列密度较小的芯片可以用同位素,所需仪器均为实验室常规使用设备,易于开展相关工作,但是在信号检测时,一些杂交信号强的点阵容易产生光晕,干扰周围信号的分析。高密度芯片的分析一般采用荧光素标记靶基因,通过适当内参的设置及对荧光信号强度的标化可对细胞内mRNA的表达进行定量检测。近年来运用的多色荧光标记技术可更直观地比较不同来源样品的基因表达差异,即把不同来源的靶基因用不同激发波长的荧光素标记,并使它们同时与基因芯片杂交,通过比较芯片上不同波长荧光的分布图获得不同样品间差异表达基因的图谱[12,13],常用的双色荧光试剂有Cy3- dNTP和Cy5- dNTP。对多态性和突变检测型基因芯片采用多色荧光技术可以大大提高芯片的准确性和检测范围,例如用不同的荧光素分别标记靶序列及单碱基失配的参考序列,使它们同时与芯片杂交,通过不同荧光强弱的比较得出靶序列中碱基失配的信息[14]。  基因芯片与靶基因的杂交过程与一般的分子杂交过程基本相同,杂交反应的条件要根据探针的长度、GC碱基含量及芯片的类型来优化,如用于基因表达检测,杂交的严格性较低,而用于突变检测的芯片的杂交温度高,杂交时间短,条件相对严格。如果是用同位素标记靶基因,其后的信号检测即是放射自显影,若用荧光标记,则需要一套荧光扫描及分析系统,对相应探针阵列上的荧光强度进行分析比较,从而得到待测样品的相应信息。由于基因芯片获取的信息量大,对于基因芯片杂交数据的分析、处理、查询、比较等需要一个标准的数据格式,目前,一个大型的基因芯片的数据库正在构建中,将各实验室获得的基因芯片的结果集中起来,以利于数据的交流及结果的评估与分析。

  • 新加坡研发出病毒检测芯片

    新华社新加坡4月13日电(记者陈济朋)据新加坡媒体日前报道,新加坡研究人员研发出一种病毒检测芯片,可一次性快速检验上万种病原体。 据介绍,这种病毒检测芯片由新加坡基因组研究所的研究团队研制,通过快速分析病患DNA样本,可在24小时内详细检测出患者感染何种病毒或细菌。 研究人员表示,这种检测芯片可以一次性检测高达7万种病毒和细菌等病原体,其中包括最新出现的H7N9禽流感病毒。 相比之下,传统的病毒或细菌测试方法,一般针对某一种特定的病原体进行测试,难以同时检测多种病原体。 研究人员说,这种新的检测手段可以尽快明确病因,减少确诊时间,并且成本也不高。目前这种病毒检测芯片还只用于实验用途,研究人员希望该芯片通过相关部门批准后尽快投入市场。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制