当前位置: 仪器信息网 > 行业主题 > >

混结构密仪

仪器信息网混结构密仪专题为您提供2024年最新混结构密仪价格报价、厂家品牌的相关信息, 包括混结构密仪参数、型号等,不管是国产,还是进口品牌的混结构密仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合混结构密仪相关的耗材配件、试剂标物,还有混结构密仪相关的最新资讯、资料,以及混结构密仪相关的解决方案。

混结构密仪相关的资讯

  • 仪器情报,科学家制备表征新型卤化物钙钛矿/2D半导体混合异质结构!!
    【科学背景】二维(2D)半导体和范德瓦尔斯(vdW)异质结构是新兴的纳米材料,因其在设计纳米电子学、光电子学和纳米光子学方面的巨大潜力而成为了研究热点。在众多混合维度异质结构中,卤化物钙钛矿/2D半导体异质结构因其独特的光电和光子特性而脱颖而出。卤化物钙钛矿具有大的吸收系数和折射率、低陷阱密度、高光致发光量子产率、可调节的带隙等优点,这些特性为2D光电和光子器件提供了有效的补救措施。然而,实现高质量单晶卤化物钙钛矿/2D半导体混合维度异质结构仍然具有挑战性,主要问题包括材料结构在外部应力下的超敏感性和碘的复杂反应性。为了应对这些挑战,湖南大学段曦东教授团队提出了一种通用的范德瓦尔斯异质外延策略,通过这一方法成功合成了一系列高质量的单晶卤化物钙钛矿/2D半导体异质结构。通过选择特定的钙钛矿外延层和2D半导体,可以按需调整异质结构,涵盖从全无机到有机-无机混合类型的钙钛矿以及不同的2D半导体。这种方法展示了高晶面和对齐选择性,实验结果表明,这些异质结构具有显著降低的缺陷密度和均匀的能量景观,从而提供了增强的光增益特性和超低阈值且稳定的单模激光。此项研究拓展了范德瓦尔斯异质结构的应用前景,为片上光源和集成光电设备的发展提供了新的思路和方法。【科学亮点】(1)实验首次展示了通用的范德瓦尔斯异质外延策略,用于合成一系列晶面特异性的单晶卤化物钙钛矿/二维(2D)半导体(多重)异质结构。通过这种方法,可以在不同维度和成分的基础上,灵活地定制异质结构,包括从全无机到有机-无机混合的钙钛矿,以及单独的过渡金属二硫化物或2D异质结。(2)实验通过以下步骤和方法取得了一系列显著结果:&bull 方法:采用了范德瓦尔斯异质外延方法,将特定的钙钛矿外延层与2D半导体耦合,实现了高质量单晶异质结构的合成。该方法对CMOS兼容基板(如SiO2/Si)和光子兼容平台(如Si和LiNbO3)具有普遍适用性。&bull 结果一:通过选择不同的耦合层,可以广泛调整所获得的异质结构,从而实现可编程的异质结构,优化材料特性和设备性能。&bull 结果二:实验发现,外延的钙钛矿表现出高晶面和对齐选择性,这可能归因于热力学上有利的界面形成能及其在底层单层半导体的三重对称下形成的简并态。&bull 结果三:由于弱的范德瓦尔斯相互作用在异质界面产生不共晶/非相干的平面内晶格,实现了无键集成,最小化了失配引起的应变和缺陷。&bull 结果四:范德瓦尔斯外延钙钛矿半导体表现出显著降低的缺陷密度和均匀的能量景观,从而提供了增强的光增益特性和超低阈值且稳定的单模激光。&bull 结果五:实验合成的CsPbI2Br/WSe2异质结构展示了超高的光增益系数、降低的增益阈值和延长的增益寿命,归因于降低的能量无序。【科学图文】图1:卤化物钙钛矿/二维半导体异质结构的外延生长。图2:外延异质结构的界面能量。图3:单层WSe2和外延CsPbI3的原子结构图案。图4:晶面选择性外延生长的机制。图5:能量无序景观。图6:光增益响应。图7:卤化物钙钛矿/二维半导体异质结构的增强激光能力。【科学启迪】以上文章展示了通过范德瓦尔斯异质外延方法成功合成高质量的卤化物钙钛矿/二维半导体异质结构,并在光子学领域取得显著进展。这一研究不仅为开发新型光电子和光子器件提供了创新的材料平台,还突破了传统材料集成的限制。通过优化材料的光学性能和结构设计,实现了具有超低阈值和稳定性的单模激光器,为光通信和传感等领域的应用提供了新的解决方案。特别是,引入的单层半导体在促进钙钛矿的选择性外延生长和作为传输层方面发挥了关键作用,为电驱动片上激光器的实现奠定了基础。这项研究不仅推动了光子学领域的技术进步,还为理解和利用材料的光电特性提供了深刻见解,为未来量子光子学和光电子一体化系统的发展开辟了新的研究方向。原文详情:Zhang, L., Wang, Y., Chu, A. et al. Facet-selective growth of halide perovskite/2D semiconductor van der Waals heterostructures for improved optical gain and lasing. Nat Commun 15, 5484 (2024). https://doi.org/10.1038/s41467-024-49364-0
  • 青岛能源所提出混合物组分分离及结构确证的新方法
    混合物组分分离及结构确证一直是分析化学面临的重要任务。近日,中国科学院青岛生物能源与过程研究所公共实验室黄少华等利用核磁共振(nmr)技术在该领域取得了新进展,提出了一种全新的能够同时实现组分分离和结构确证的简易通行分析方法,相关成果于9月4日在线发表于《德国应用化学》( angewandtechemie)。 传统混合物组分分离及结构确证方法通常利用色谱学工具与波谱学工具进行联用,比如gc-ms、hplc-ms、hplc-nmr等。近年来,nmr方法学家们开发了一种被称之为&ldquo 核磁共振中色谱技术&rdquo 的dosy技术,能够无需进行实际色谱分离就能同时实现混合物组分分离及结构确证,大幅节约了分析时间与成本。但是,纯dosy技术需要在&ldquo 虚拟色谱固定相&rdquo 辅助下,才能在实际应用中显示出其优势。 黄少华带领的研究小组经过两年时间的摸索,发现了一种适用于dosy技术的通用&ldquo 虚拟色谱固定相&rdquo &mdash &mdash 聚二甲基硅氧烷(pdms)。该物质结构简单、成本低廉,并且其nmr信号接近于tms,不干扰其它分析物的信号,是天然的理想&ldquo 虚拟色谱固定相&rdquo ,可广泛应用于分析化学的各个领域。研究表明,pdms拥有强大的分离能力,所分离的化合物类型基本包括了大部分有机化合物类型。例如,pdms能够轻松基线分离氘代氯仿中的苯、萘和蒽混合物,并且能够同时得到每个组分的nmr信号。这些特点使得基于pdms的dosy技术具有重要的理论研究意义和实际应用价值。 在此基础上,合成化学家们可以用该技术部分代替tlc技术,实时跟踪目标化合物,了解化合物的组成与结构信息,而无需进行大量的分离提纯工作。同时,还可利用此技术部分代替经典色谱工具对复杂混合物进行分析,节约大量分析时间和成本。 上述研究得到了国家自然科学基金项目支持。   氘代氯仿溶液(0.6 mL)中苯(5 mg)、萘(5 mg)和蒽(5 mg)的1H DOSY(600 MHz)谱图。左图为溶液中没有添加PDMS的DOSY谱图;右图为溶液中添加PDMS的DOSY谱图。实验温度:298K。
  • 沈阳工业大学张贺课题组《Micromachines》:基于Pμ SL 3D打印的微混合器芯片用于研究单元连接对混合性能的影响
    被动式微混合器,是一种用于样品预处理的关键微流控器件。常见的两种微混合器有两个入口呈现180°的T型微混合器和呈现任意角度(通常小于180°)的Y型微混合器。这两类混合器结构简单、易于制备,但是混合时间比较长、混合效率比较低,很少单独使用,通常同另一种微混合器一起使用。为了提高微混合器的混合效率,科研工作者尝试进行微混合器入口、混合腔室结构的优化设计研究。在混合腔室的结构设计方面,常见的设计方案是在微通道中周期性的添加障碍物;另外,弧形微通道的引入、分流合并结构的设计以及微通道底部交错结构的设计等方案也极大地提高了混合效率。上述混合腔室的设计方案具有一个共同特点,即采用周期性重复混合单元结构提高混合效率。其中,两个混合单元的连接处既是前一个单元的出口,同时也是下一个单元的入口。然而,在设计过程中,关于单元连接的研究并没有得到重视。近日,沈阳工业大学张贺课题组基于面投影微立体光刻(PμSL) 3D打印技术制备了微混合器芯片,通过模拟结果与测试结果的对比,研究了单元连接对微混合器芯片性能的影响。该团队基于PμSL (nanoArch P150,摩方精密) 技术打印了一种具有重复结构的微混合器。微混合器是由平面T型入口通道和混合腔室组成,其中混合腔室是由6个立方混合单元以及单元之间的连接组成。最初设计的结构是一种研究中常见的微混合器结构,连接通道位于立方混合单元的几何中心,且微混合器的入口和出口位置同立方混合单元的连接通道位置重合。微混合器总长度为12.3mm;立方混合单元的边长是1mm;单元连接通道的长度是500μm,截面是边长为200μm的正方形。 图1. 最初设计的具有重复结构的微混合器图2.具有不同连接位置的微混合器的混合指数(模拟结果)图3.两种不同连接位置组合的微混合器的混合指数(模拟结果)图4. 可视化测试系统以及3D打印的微混合器的显微图像(Location 5) 图5. 3D打印的两种不同连接位置组合的微混合器在不同时间的显微图像 根据单元连接位置的不同分为九种微混合器,分别命名为Location 1- Location 9;该九种微混合器的混合指数模拟结果表明单元连接位置对微混合器的混合性能有显著的影响。在此基础上,将两种不同单元连接位置进行组合,用以提高混合器的混合效率。基于PμSL 技术制备了三种微混合器并进行了可视化测试。测试结果同模拟结果一致,表明单元连接位置对微混合器的性能确实有显著的影响,并且仅通过改变单元连接的位置,可以极大地改善微混合器的性能。该研究成果为优化微混合器的结构设计、提高微混合器的性能提供了新思路,以“The Influence of the Unit Junction on the Performance of a Repetitive Structure Micromixer”为题发表在Micromachines上。官网:https://www.bmftec.cn/links/10
  • 新品上市|拓赫多功能迷你混匀仪MIX-VS/VST
    新品上市MIX-VS/VST迷你混匀仪 MIX-VS/VST迷你混合仪应用于生命科学和理化分析领域,用于样品组织、细胞、菌液、化学试剂等的振荡、混匀和搅拌工作。多种适配器可适用0.2-50ml微量管和直径小于108mm的试管或小容器。产品特点01 外形迷你小巧,功能强大,操作简单,适合高速工作。02 特有的红外感应模式,全息投影显示,实力强劲也有优美外观。03 多种混匀模式,有点动模式和连续运行模式。还可设定运行时间。04 转速可调,速度范围广,0-3000rpm/min,电机无级调速,低速平稳,高速强劲。05 振动模块安装方便,产品稳固可靠,偏心轴承设计经久耐用。06 有多种振动模块适配器可供选择(可用于Eppendorf管等),标配赠送4个模块。操作细节全息投影显示1 操作便捷,读数清晰一目了然2 转速、定时显示,实验更方便 红外感应模式1 人性化设计,当人离开仪器会自动停机2 此功能仅MIX-VS支持 多种混匀模式1 Cont. 灯亮为连续模式2 Touch 灯亮为点动模式 无极调速1、MIX-VS 0-3000rpm MIX-VST 300-3000rpm2、3mm圆周振荡直径,样品混匀更充分 振动模块1、模块采用EVA环保材质,坚固不易变形,无需手扶。并且有顶部螺母固定,高速混匀模块依旧稳固。 多种振动模块适配器1、标配4个模块,满足各种实验需求。
  • 贵金属纳米结构组装及其表面增强拉曼散射应用研究获进展
    近期,中国科学院合肥物质科学研究院固体物理研究所研究员孟国文课题组和美国西弗吉尼亚大学教授吴年强研究小组合作,在贵金属纳米结构组装及其表面增强拉曼散射(SERS)应用研究方面取得新进展,相关结果以封面论文发表在《纳米研究》(Nano Res. 2015, 8, 957-966)上。  由于电磁增强作用,位于贵金属纳米结构表面的分子拉曼信号会得到数量级的增强,从而产生表面增强拉曼散射效应。表面增强拉曼散射技术具有分子“指纹”识别能力,在化学和生物分析等领域拥有广泛的应用前景。贵金属纳米结构表面具有大幅度增强局域电磁场的位置(一般位于10nm的间隙处)称为表面增强拉曼散射“热点”,是表面增强拉曼散射信号的主要来源。因此,在三维空间内增加“热点”的密集度将有效提高表面增强拉曼散射灵敏度。目前,构筑三维SERS基底的主要方式是将球形贵金属颗粒组装到非金属纳米结构阵列上。相关理论和实验研究表明,与球形贵金属纳米颗粒相比,带有棱角或尖端的贵金属纳米结构能够产生更强的局域电磁场,因而其组装体在间隙处更易产生“热点”。如果将这些纳米结构组装成三维SERS基底,有望得到高灵敏度SERS基底。  该研究团队以ZnO纳米锥阵列作为牺牲模板,使用含有贵金属离子和特定表面活性剂的电解液,采用电沉积方法构筑多种贵金属纳米结构单元组装的纳米管阵列,例如由银纳米片、金纳米棒、铂纳米刺和钯纳米锥等结构单元组装的纳米管阵列。这些纳米结构单元具有显著的棱角和/或尖端 由其组装的纳米管阵列具有大量间隙,在三维空间内产生高密度的“热点”。因此所构筑的纳米管阵列具有很高的表面增强拉曼散射灵敏度。例如,银纳米片组装的纳米管阵列能够灵敏地检测浓度低至10fM的罗丹明6G (R6G)。这种银纳米片组装的三维SERS基底对高毒性有机污染物多氯联苯也表现出高表面增强拉曼散射灵敏度,并能够检测两种多氯联苯的混合物,表明该三维SERS基底在检测环境中高毒性有机污染物方面具有应用前景。  相关工作得到科技部“973”计划、“中国科学院、国家外国专家局创新团队国际合作伙伴计划”和国家自然科学基金等项目的支持。图1. 论文的相关图片被选作期刊封面  图2. (a)银纳米片组装的纳米管阵列的扫描电镜(SEM)照片 (b)折断的纳米管的SEM照片 (c)不同浓度R6G的SERS光谱 (d) 20μ M多氯联苯-77 (PCB-77)和10μ M多氯联苯-1 (PCB-1)的混合物溶液(曲线I) 以及30μ M的 PCB-1溶液(曲线II)的SERS光谱。
  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 新鲜上市 | IKA 恒温混匀器,加热、制冷、混匀三合一
    不管是血液标本、药物制剂、DNA/RNA样本还是ELISA样品,甚至最小体积的实验室应用,Matrix 恒温混匀器产品都可实现均匀混合及温控。两款新的恒温混匀器:MATRIX Orbital Delta Plus 和 MATRIX Delta Plus 以及 13 种适配不同大小反应管和反应板的配件充实了 IKA MATRIX 产品线:Matrix Delta Plus 可进行加热、冷却,Matrix Orbital Delta Plus 可进行混匀、加热和冷却。两者都具有卓越的产品性能:1. 大屏显示更直观易懂。有好的界面设计和菜单结构,让用户一目了然2. 坚固设计便于快速方便地更换插件和配件,具备模块自动检测功能3. 程序控制可编程升温速率,允许自动执行混合、加热和冷却任务4. 控温范围RT-15* ~ 100°C * 或 RT-30** ~ 110°C**5. 稳固安全铝压铸外壳具有优异的稳定性和坚固性,确保了安全性,并加固了整个仪器设备6. 充分混匀3000 rpm 高转速轨道运行,最大 3 mm的混匀直径,保证液体可以快速充分混匀*多种配件,选配灵活IKA 提供一系列适配不同反应管和反应板的可更换配件,用户可根据要求和应用灵活选择。Matrix 新机型可自动识别用户选用的模块。一个稳定的快速释放紧固件使它更容易更换附件,同时确保他们是最佳的有效温度转移固定。牢固耐用的锁扣把手允许轻松更换配件,同时可加固配件并确保有效的温度传递。*MATRIX Orbital Delta Plus**MATRIX Delta Plus关于IKA IKA是工业和科研领域世界知名的实验室仪器设备, 分析仪器设备和加工技术制造商之一。总部位于德国施陶芬, IKA的产品和技术服务于超过160个国家的客户。公司拥有超过900多名员工, 致力于为客户提供优异的技术, 帮助客户获得成功。同时,IKA还与世界知名大学和科学家进行着密切的合作, 支持其在科研道路上不断探索。除了位于德国的总公司, IKA现在在美国, 中国, 马来西亚, 日本, 印度, 巴西, 韩国, 越南, 英国和波兰均设有独立运营的全资子公司。
  • 所见即所测!当拉曼光谱仪遇上混凝土水合过程!
    当拉曼光谱技术遇上混凝土的水合过程,会发生什么?麻省理工学院的这一研究成果,给你惊喜!拉曼光谱需要将高强度激光照射到材料上,并测量其被构成材料的分子散射时的强度和波长,来创建出一幅特殊的图像。由于不同的分子和分子键,都具有各自独特的散射“指纹”,因而这项技术也可用于制作有关创建材料内部分子结构和动态化学反应的图像。有关报告指出,混凝土中使用的水泥,占据了全球二氧化碳排放总量的8%左右,已经与大多数国家产生的排放量不相上下,降低碳排放是当今时代及未来的发展趋势。今年两会上,“碳达峰”、“碳中和”被首次写入政府工作报告。“碳达峰”是指我国承诺2030年前,二氧化碳的排放不再增长,达到峰值之后逐步降低。“碳中和”是指通过各种节能减排的形式,抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”。随着对水泥化学性质的深入了解,科学家们就能够改进生产流程或配方成分,从而让混凝土产生更少的排放,或者添加其它能够主动吸收二氧化碳的成分。为达成这一目标,麻省理工学院使用了显微拉曼光谱技术,来仔细观察混凝土在水合期间发生的特定化学反应的动态过程。研究期间,MIT科学家们使用这套装置观察了一个放置在水下的普通混凝土样品,并努力模拟了真实世界的环境条件。该团队总结道:通常情况下,混凝土的水合过程,是从硅酸盐水合产物的无序相开始的,之后它会渗透到整个材料并产生结晶。此前,科学家们只能研究具有平均体积特征、或某个时间节点的混凝土水合快照。但在拉曼光谱仪新技术的加持下,他们几乎可以连续地观察所有变化,并提升了他们的时间和空间尺度上的图像分辨率。如上图所示,水合作用期间,白色的硅酸三钙(alite)形成了蓝色的水合硅酸钙(CSH)与红色的硅酸盐(portlandite)。剩余绿色部分为二钙硅酸盐(belite),而黄色部分则是方解石(calcite)。
  • 科学家成功操控任意纳米结构,可用于夜视技术和医学检测等领域
    “我们证实了利用硅基光学超表面通过三次谐波在红外成像上的潜力,为通过非线性硅基纳米光子学来研发下一代红外成像技术迈出了重要一步。”英国诺丁汉特伦特大学教授徐雷表示。图 | 徐雷(来源:徐雷)当前,刚好也是光学超表面研究,从理论向应用转向的一个过程,因此本次成果非常及时。同时,在本次课题的理论设计上,徐雷等人利用连续体中的束缚态概念,来实现任意品质因子纳米结构的操控,这为降低光源强度依赖性提供了很好的思路。首先,本次成果可被用于夜视技术,从而集可见光、以及红外光成像于一体,利用普通的硅基探测器直接实现高性能的夜间红外探测。其次,本次成果可被用于医学检测,通过将红外光转到到可见光波段,根据光学探测蛋白质结合和构象变化、药物分子与靶标分子之间的相互作用等,从而在检测端口实现对于红外光背底噪声的完全抑制,进而助力于提高医学检测的灵敏度和性能。再次,本次成果可被用于食品检测和国防安全,即结合非线性超表面、以及可调谐非线性超表面,有望实现红外波段的超分辨成像技术。(来源:Opto-Electronic Advances)让红外图像转换为可见光一直以来,红外探测被广泛用于各个领域,比如通过测量材料对红外辐射的吸收,可以提供关于分子结构和化学键的信息,故在医学诊断、视频质量控制、环境监测、夜视和安全等领域都有着很大潜力。红外探测的不断创新和发展,将有望推动其在医疗、食品、环保和安防等方面的应用。然而,红外探测技术的当前挑战在于:红外探测器大部分基于热探测器,尽管成本较低但是速度较慢,而且灵敏度不足,严重限制了其性能。半导体探测器作为另一种选择,虽然具有高灵敏度的优势,但其常常需特殊冷却、以及复杂的处理工艺,要么就是需要极低温度来维持适当的性能水平。这些技术难题限制了红外成像系统的灵活性和可靠性,影响了其在各种应用场景下的性能。因此,红外成像领域迫切需要创新性解决方案,以克服当前技术的局限性。而这可能涉及新型材料的研发、更高效探测器技术的研发、以及新型冷却和处理方法的研发。过去十多年中,由亚波长尺度介质谐振器组成光学超表面结构,受到广泛关注。这种结构可以增强光电磁场的局域效应。通过巧妙设计这些结构,就能调控入射光的相位、振幅、偏振以及近场光局域的程度。同时,光学超表面具有高度的灵活性和功能性,并已经在光学领域取得许多新成果,例如替代传统光学元件的透镜、棱镜和偏振器,这不仅减小了传统光学系统的体积,还能带来性能的提高。通过非线性过程,可以实现红外光的频率转换,为将红外转换为可见光提供手段。这样一来,只需使用普通且廉价的硅基探测器,就能实现红外成像。此外,不同的非线性混频过程可以提高能量利用效率,为实现高效红外成像系统提供可能性。而对于超表面来说,它在微型化、灵活性和轻量化方面展现出的独特潜力,更是为实现新一代红外成像技术提供了很好的平台。以上,也是徐雷团队本次课题的出发点。研究中,他们利用结合非线性光学超表面的方法,通过非线性光学这一过程,可以让红外图像转换为可见光,从而让普通硅基探测器直接探测红外图像成为可能。(来源:Opto-Electronic Advances)当亲眼看到绿光的时候......据介绍,徐雷对于成像技术和非线性光学一直充满兴趣。此前在澳洲工作时,他就曾与当时的合作者使用二次谐波和频过程实现红外探测。在当时,他们是第一个开展该类尝试的科研团队。自 2016 年起,徐雷开始深入研究非线性纳米光子学。彼时,Mie 共振机制和理论,在纳米光子学领域的发展越来越快,这不仅为各种体系的应用提供了框架,还能为预测光的传播特性带来指导。期间,徐雷积累了不少关于非线性纳米光子学方面的知识。2020 年 9 月,他来到英国诺丁汉特伦特大学,与该校的莫赫森拉赫曼尼(Mohsen Rahmani)教授以及应翠凤讲师,共同组建了先进光学与光子学实验室。“Rahmani 教授偏重于样品加工,他对于材料领域以及相关应用的研究有着很深的功底。应翠凤女士则在纳米光学和生物探测上具有很丰富的经验。我们仨的技能正好互为补充、各有所长。”徐雷表示。在研究材料属性、结构设计、以及 Mie 共振等手段,在实现非线性光场增强和光场的操控之后,他们三位以及博士生郑泽开始考虑如何将非线性光学与解决实际问题相结合,随后不久启动了本次课题。结构材料与参数设计,是摆在面前的第一个问题。要想最终实现应用化,必须从非线性材料的角度,考虑后期器件的集成化。鉴于硅材料本身具有良好的非线性效应,再加上硅的加工工艺相对成熟,于是他们选择硅作为研究材料。原因在于:这样不仅能够考虑到非线性效应,还能充分利用硅的加工工艺,从而加工复杂的结构,进而增强红外光到可见光的转化效率。证明上述方案的可行性之后,他们开始进入实验阶段。由于徐雷自身的研究方向,介于理论与实验之间。因此,他一般会在实验前先进行理论模拟。但是,实验并非一帆风顺,尤其是最初得到的信号与预期不符。徐雷说:“可能大部分人会在这时候觉得比较受挫。但是,这些看似不成功的实验数据,实际上是我最感兴趣的部分,因为它们或许可以指出理论和实验上的待改善之处。”在他看来,如果所有实验结果都和理论预期保持一致,反而并不是最好的。科学史上的很多关键性进步,都是基于一些失败的实验数据启发而来。举例来说,他们在最初设计器件结构时,曾尝试通过高品质因子的结构来实现光局域增强。然而,实验结果显示高品质因子并非最佳选择。这种意外的实验结果,也促使他们进一步完善理论模型、以及改进实验方案,进而也引发了他们对于使用连续光和超快光,在成像以及传感上的思考,并为研发红外成像技术带来了一定启发。(来源:Opto-Electronic Advances)同时,完成本次课题组的过程,也是徐雷培养自己第一个博士生的过程。这名博士生便是前面提到的郑泽。研究中,师生之间形成了互相学习的良好互动。徐雷也有意识地让郑泽更多地参与光路搭建,以培养独立设计实验的能力。“尤其重要的是,我一直注重培养他的科研自信心,鼓励他提出独立的想法,以及相信自己的能力。”徐雷说。搭建非线性测试系统的时候,郑泽是第一次涉足这类系统的搭建。当他第一次看到非线性信号产生,并能亲眼看到绿光的时候,郑泽的兴奋之情感染了整个实验室。徐雷说:“作为导师,看到他如此投入和满足的表情,让我和 Mohsen 教授还有应翠凤女士都感到无比欣慰。”在三位老师以及郑泽的努力之下,本次成果显示了硅基光学超表面在非线性纳米光子学领域的应用前景,这不仅为非线性光学的实际应用提供了新思路,也为后续开展更深入的研究奠定了基础。最终,相关论文以《谐振硅膜超表面的三次谐波产生与成像》(Third-harmonic generation and imaging with resonant Si membrane metasurface)为题发在 Opto-Electronic Advances(IF 14.1)。郑泽是第一作者,英国诺丁汉特伦特大学的徐雷教授和莫赫森拉赫曼尼(Mohsen Rahmani)教授担任共同通讯作者。图 | 相关论文(来源:Opto-Electronic Advances)接下来,他们将在理论方面继续深入发掘,以期增强红外光的转换效率,同时不断压缩红外成像对于光源能量的要求。同时,也将重点考虑器件的集成化和多功能性、探索如何将图像信号处理和光谱信息提取等功能结合起来、以及如何利用超表面实现多功能成像芯片器件,从而更好地走向应用。徐雷继续表示:“另外,我想提到一点的是,每个人的技能不一样,对事物的看法不一样。有时一个纯实验工作者随口的一句话,可能会激发理论工作者的重要灵感。”而一个纯理论的学者,可能也会为实验方案起到画龙点睛的作用。就以数学研究和物理研究为例:物理中有很多不同的现象和机制。但是,一个数学家可能不会去关注不同的现象,而是直接从公式上看到各个现象和机制的关联之处。同时,这些关联往往也是实现物理突破的关键点。“有时候我们以为的非专业人士,反而给出更深刻的见解。因此,和不同知识背景的人合作,对于科研来说非常重要。”徐雷最后表示。
  • 赛默飞世尔科技Antaris Target混合过程分析仪获06最佳微/纳米技术奖
    中国,北京(2007年6月29日):服务科学,世界领先的赛默飞世尔科技(Thermo Fisher Scientific Inc. 原热电公司) 宣布最新推出一款极具创新的近红外光谱仪,命名为“Antaris Target”的近红外混合过程分析仪专为制药工业中混合过程质量控制的需求而设计,能够实时监测产品研究和生产的混合过程,极大地改善了药物生产的质量稳定性。Antaris Target近红外混合过程分析仪被美国著名杂志《研究与发展》(R&D Magazine)的《微/纳米通讯》(MICRO/NANO Newsletter)评为2006年度25个最佳微/纳米技术产品之一。获得该奖项的产品均为各行业内最具创新性、最新颖的发明,这将可能极大推动工业和社会的发展。 混合过程是固体制剂生产过程的重要环节,对于保证批次内所有药片均匀地含有各种药效成分具有重要意义,混合不充分将导致药片质量不均一,而混合过久则是极大地浪费能源。传统的混合过程监测方法是在每一批次间人工收集约30个样品,送往实验室进行HPLC或其他均匀性测试,该方法需要较长的时间和较高的检测费用,且不能及时有效地实时反映混合过程的变化趋势。 Antaris Target混合分析仪可以为GMP生产环境提供完全解决方案。采用了先进的微电子机械系统(Micro-Electro-Mechanical Systems, MEMS)技术,使得该分析仪具有一流的光谱分辨率和分析性能;混合分析仪能够直接安装于不同大小的混合罐上,无需事先建立分析模型,采用移动窗口法直接分析光谱偏差变化,实时判别混合终点。该分析仪采用一体式设计,尺寸紧凑,并配置了无线通讯技术和大容量充电电池,能够方便地在多个混合罐间移动使用,提高了利用率,节约投资成本。
  • 中科院武汉岩土所杨春和院士团队与西南科技大学等《Energy》:天然致密砂岩孔隙结构的3D打印与流体
    流体在岩石孔隙中的运移规律及其流固耦合效应是地下油气储备与开发的核心科学问题,也是导致不同工程灾害或工程难题的重要因素。精确表征岩石微观孔隙结构,揭示微观孔隙结构与流体输运特性的内在关联,是开展深部岩体相关工程研究的基础。近期,中国科学院武汉岩土力学研究所的宋睿副研究员、刘建军研究员、杨春和研究员联合西南科技大学的汪尧博士等人提出了一种利用3D打印和微CT成像技术实现致密砂岩复杂孔隙结构定量表征和多相流体输运特性的可视化研究方法。研究团队利用新型的面投影微立体光刻技术(PμSL,nanoArch S130,摩方精密)实现了致密砂岩孔隙模型的原位尺度打印(~2μm光学分辨率),再现了致密砂岩复杂孔隙系统的三维拓扑结构特征与空间连通性。研究人员对比分析了3DP岩心与数字岩心(DRP)模拟得到的孔径分布(PSD)、孔隙度和绝对渗透率的差异;同时结合原位CT成像技术开展了3DP岩心可视化CO2驱油实验,并与实验基准数据进行了比较。研究成果为定量表征岩石复杂孔隙结构特征及其中多相流体输运机制提供了新的工具,具有广阔的应用前景。论文研究工作得到国家自然科学基金,武汉市知识创新专项(基础研究)和四川省自然科学基金等项目的支持。相关研究成果以“3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties”为题发表在《Energy》期刊上。图1. 基于CT图像与面投影微立体光刻技术的致密砂岩微观孔隙结构提取与3D打印制备流程(a)天然致密砂岩的微CT扫描;(b)数字图像处理与岩心重建;(c)面投影微立体光刻3D打印成型该研究中所采用的天然岩心样本为海相致密砂岩。通过从原始岩心中钻取直径约为5mm的小岩心柱塞样本,利用蔡司Xradia MICROXCT-400三维成像系统进行微CT扫描成像,获取天然岩心孔隙结构的微CT图像(如图1a所示),并将其用于孔隙空间提取、数字岩心重建与模拟(如图1b);然后,基于数字图像处理转化为3D打印通用的.stl文件,利用BMF公司的面投影微立体光刻成型技术完成孔隙模型的3D打印(如图1c所示)。图2. 3D打印岩心与天然岩心微观孔隙结构的对比分析(a)基于偏光显微镜和CT成像得3DP岩心孔隙结构表征;(b)基于图像校准的3DP岩心与原始岩心孔隙结构拓扑形态特征的对比分析;(c)孔隙结构特征参数的计算与分析为表征3D打印岩心在复刻天然岩心孔隙结构特征方面的准确性,该团队分别采用偏光显微镜和微CT成像对3DP岩心的2D/3D微观孔隙结构特征进行了定量表征(如图2a所示)。基于团队自行开发的数字图像处理与模型重建技术,分别研究了3DP岩心孔隙分布特征,并与天然样品的实验室测试结果进行了对比分析,结果表明3DP岩心和原始样品的PSD分布总体上一致(如图2c所示)。在对3DP岩心和原始岩心CT图像手动校准的基础上,团队采用开源图像处理软件(Fijiyama)中的块匹配算法(Block-Matching Algorithm)实现了3DP岩心CT图像与原始样品CT图像的自动配准,并作为后续分析的基准数据(如图2b所示)。结果表明,3DP岩心与原始岩心孔隙特征吻合较好,验证了3DP岩心在微米尺度下再现岩石微观结构的可行性和适用性。在此基础上,团队以分割的微CT图像为数据蓝本,引入峰值信噪比(peak signal-to-noise ratio, PSNR)和结构相似性指数度量(structural similarity index measure, SSIM)两个关键参数对3DP岩心孔隙结构特征进行表征,以量化3DP岩心与原始岩心孔隙结构的保真度(如图2c所示)。PSNR用于衡量相同空间位置上孔隙特征参数(大小和坐标位置)的绝对误差。SSIM用于测量两个图像之间的相似性,用于评估相应位置上的孔隙是否由3D打印机识别。计算结果表明:本文中3DP岩心的PSNR值介于[9.010,14.983]之间,其SSIM值介于[0.870,0.925]之间。大多数孔隙特征被打印识别,但一些孔隙并不在原始尺寸或位置上。由于后处理过程中,样品近端部的液体树脂更容易被去除,因此顶/底部结构的打印精度优于其他部分,显示出更高的SSIM值。图3. 基于原位CT成像的微观可视化多相渗流试验(a)团队自行设计的用于原位CT成像的微观可视化渗流试验系统;(b)3DP岩心饱和油状态(上部)和CO2驱油后(下部)3DP岩心中油相分布的微CT图像;(c)CO2驱油后3DP岩心中CO2分布及对应的孔隙网络模型,以及3DP岩心和原始岩心中残余油相原位润湿角计算结果的对比在3DP岩心与原始岩心孔隙结构特征对比分析的基础上,团队针对3DP岩心的流体输运特性开展了进一步的研究。利用自行设计的基于原位微CT成像的可视化渗流试验系统分别进行了3DP岩心的饱和油和CO2驱油试验(如图3a所示)。分别采集了饱和油状态与驱替完成时3DP岩心的微CT图像(如图3b所示)。为了消除不同扫描阶段样品放置的人为误差,研究人员对获取的CT图像也进行了手动校准和图像配准操作。分析结果表明:注入CO2气体主要沿孔隙中部流动,导致颗粒表面出现大规模残余油。考虑到制备3DP岩心使用的HTL树脂是强油湿性,残余油相优先附着到固体表面。当注入流体发生突破时,样品中会留下很大部分以油膜形式分布的残余油。在油湿性岩心中,毛细管压力是注入CO2的阻力,导致大量残留油块被毛管力卡断在小孔中。此外,研究团队对3DP岩心和原始岩心的原位接触角进行了计算与对比分析,讨论了微观润湿性在残余流体捕获机制中的影响(如图3c所示),并进一步提取了CO2驱替后3DP岩心的孔隙网络模型,对驱替过程中CO2气体的主要渗流通道以及微观赋存状态进行了讨论与分析。结果表明,注入气体主要沿3DP岩心的左侧分布,注入CO2沿优先通道突破,与剩余油分布一致。考虑到注入CO2的操作压力低于最小混相压力,驱替过程为不混相气-液流,界面张力和注入流体粘度的降低有助于提高波及效率和采收率。(如图3c所示)。
  • 德国Eppendorf最新推出多功能混匀小精灵MixMate!
    德国Eppendorf公司最新推出的MixMate混匀小精灵,整合了混匀与震荡的功能和智能的操作理念,可以混匀各种5 μl-2 ml微量体积,特别是混匀96/384孔板、微孔板、深孔板时具有无可比拟的优点。采用独特的2Dcontrol 2维可控混匀模式,无溅射,无交叉污染,混匀后无需离心。影响混匀的因素除了速度还有混匀模式、混匀半径、混匀时间等,而MixMate混匀小精灵完美综合考虑各种影响因子,使混匀既高效又充分。 MixMate刚一上市就受到了广泛关注和好评,美国Artel公司在做了一系列的比较得出:MixMate是市场上最有效的混匀384孔板的混匀工具,MixMate把以前不能实现的高效率混匀384孔板变成了一种可能。 登陆获取更多产品信息:www.eppendorf.com
  • 破译蛋白质结构的秘诀:利用富含炔基的羧基选择性交联剂增加交联覆盖率
    大家好,本周为大家分享一篇发表在Anal. Chem.上的文章,Alkynyl -Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures,该文章的通讯作者是中国科学院大连化学物理研究所的赵群和张丽华研究员。化学交联结合质谱技术 (CXMS) 的交联覆盖范围对于决定其破译蛋白质的结构的能力具有重要意义。目前,交联质谱技术中最常用的交联剂的类型为针对赖氨酸侧链的N-羟基琥珀酰亚胺 (NHS) 酯基交联剂。然而,此种交联剂存在一定的局限性,尤其是对于含有赖氨酸数目较少的蛋白质;其他类型的氨基酸残基,如羧基等,也可以进行交联反应,以补充赖氨酸残基的局限性并提高 CXMS 的交联覆盖率,然而,羧基的低固有化学反应活性损害了羧基选择性交联剂在复杂样品中的应用。鉴于此,本文开发了三种具有不同反应基团(如酰肼、氨基和氨氧基)的富含炔基的羧基选择性交联剂,以此提高针对酸性残基的交联效率并实现复杂样品的深入交联分析。文章要点:(1)本工作系统地评估了三种交联剂的交联效率,给出了氨基功能化交联剂 BAP 的最佳反应性。此外,结合BAP交联剂于高效的交联富集策略对大肠杆菌裂解物进行交联分析。在 ≤1% 的错误发现率 (FDR) 下,共鉴定出 392 种蛋白质中涉及到的 1291 个 D/E-D/E 交联。(2) 研究结果显示,BAP 与赖氨酸靶向交联剂具有明显的结构互补性,这提高了CXMS 进行蛋白质结构解析的能力。本工作是羧基选择性交联剂首次实现全细胞裂解物的全蛋白质组交联分析。总的来说,这项工作不仅扩展了一个针对酸性残基的十分具有前途的 CXMS 工具包,同时还为提高羧基选择性交联剂的性能提供了有价值的指导。图1 三种交联剂BHP、BAP和BOP的化学性质。(A) 三功能交联剂的化学结构:两个反应性基团用红色表示,一个可修饰的手柄用橙色表示。三种交联剂的Cα原子之间的最大距离约束利用软件Chem3D 19.0计算得出。(B) 利用软件pLink 2.0分析三种交联剂与蛋白质进行交联质谱实验的MS/MS谱。(C) 三种交联剂的反应效率直方图。(D) 酰胺化反应的机理。图2 三种交联剂BHP、BAP和BOP在BSA蛋白质、六蛋白混合物和E. coli 70S ribosome结构分析中的性能。(A) 三种交联剂与BSA的反应中鉴定出的交联的维恩图。(B) 交联的Cα−Cα 距离分布的直方图,通过映射到BSA的晶体结构来验证。(C) BSA中交联残基分布的二维 (2D) 热图。颜色插入表示交联的距离分布。(D) 六蛋白混合物的环形二维交联图。黑线表示蛋白质内的交联,红线表示蛋白质间的交联。(E) 将交联映射到TXN2 (UniProtID:Q99757,PDB:1W4V)、CA2 (UniProtID:P00921,PDB:6SKS)和E. coli 70S ribosome (PDB:5KCS)的X射线晶体结构上,由BAP(红线)和BSP(黄线)鉴定。图3 基于BAP的交联平台,用于大肠杆菌裂解液的全蛋白质组分析,包括蛋白质复合物交联、点击化学、链霉亲和素富集、分馏和LC-MS/MS分析。图4 通过BAP对大肠杆菌裂解液的全蛋白质组分析。(A)富集前后鉴定的谱图数目的比较。黑色和红色分别对应于常规肽和交联肽的谱图。(B)将由BAP(红线)和BSP(黄线)鉴定的交联映射到蛋白质的X射线晶体结构上。(C)将交联映射到由BAP专门鉴定的蛋白质的X射线晶体结构上。 (D)使用Xplor-NIH软件包对hns (UniProtID:P0ACFID) 和grcA (UniProtID:P68066) 的AF2预测结构进行细化。用BAP和BSP鉴定出的交联分别用红色和黄色标记。在本工作中,作者开发并表征了三种新的可富集的羧基选择性交联剂,它们具有不同的反应基团酰肼、氨基和氨基氧基。其中,氨基功能化交联剂 BAP 对于所有不同复杂度的蛋白质样品均表现出最佳的交联反应活性和鉴定覆盖率。此外,BAP扩展到大肠杆菌裂解液的交联分析与高效的交联富集相结合。本工作首次使用羧基选择性交联剂,以实现全细胞裂解液的全蛋白质组范围内的交联分析。因此,以上所有结果表明,本工作开发的 BAP 是一个很有前途的工具包,可以提高蛋白质结构分析的交联覆盖率。此外,本项工作还可以为提高羧基选择性交联剂的性能提供有价值的指导。参考文献:Gao H, Zhao Q, Gong Z, et al. Alkynyl-Enrichable Carboxyl-Selective Crosslinkers to Increase the Crosslinking Coverage for Deciphering Protein Structures [published online ahead of print, 2022 Aug 29]. Anal Chem.2022 10.1021/acs.analchem.2c02205. doi:10.1021/acs.analchem.2c02205
  • 清华大学新成果:同时实现深亚埃分辨的原子结构成像和亚纳米分辨的晶体取向成像
    近日,清华大学材料学院于荣教授课题组与李千副教授课题组在晶体取向成像方法和位错三维结构研究中取得进展。该研究基于课题组近期发展的自适应传播因子叠层成像方法,在自支撑钛酸锶薄膜中同时实现了深亚埃分辨的原子结构成像和亚纳米分辨的晶体取向成像,并揭示了钛酸锶中位错芯在电子束方向的结构变化。晶格缺陷是材料中的重要组成部分。相对于完美基体,缺陷处的对称性、原子构型、电子结构都发生变化,在调节材料整体的力学、电学、发光和磁性行为方面发挥着关键作用。然而,缺陷处的对称破缺和原子的复杂构型也给缺陷结构的精确测量带来障碍。比如,位错附近不可避免存在局域应变和晶体取向变化,但是用高分辨电子显微学表征晶体中的原子构型又要求晶带轴平行于电子束,否则分辨率会显著降低。这个矛盾一直是位错原子结构的实验分析中难以克服的困难。研究组通过自适应传播因子多片层叠层成像技术研究了钛酸锶中位错芯的原子结构。如图1所示,研究成功地将晶体倾转从原子结构成像中分离出来,同时实现了达到深亚埃分辨率的原子结构成像和亚纳米分辨率的晶体取向成像。图1. SrTiO3中位错的结构像和取向分布。a、叠层成像的重构相位。b、图a中相位图的衍射图,黄色虚线表示0.3Å的信息极限。c、叠加相位图的晶体倾转分布,白色箭头表示[001]方向在平面内的投影,黄色箭头表示位错核的横向移动。d、晶体在[100]和[010]方向的倾转的分布。标尺长1nm在图1中,位错芯看起来范围很小,只有一两个单胞。这种衬度在位错的高分辨成像中很普遍,人们通常认为这样的位错是沿着电子束方向的直线。然而,应用多片层叠层成像的深度分辨能力,可以看出该位错并不是一根直线,而是随着样品深度发生横向位移,形成位错扭折,如图2所示。图2. 刃位错的三维可视化。a、刃位错的相位图;标尺长5Å。b、图a中用A-B标记的分裂原子柱相位强度的深度变化。c、Sr、TiO和O原子柱的相位强度的深度分布。d、深度分别为2.4nm、6.4nm和12.0nm的相位图;标尺长5Å。e、图d中标记的原子柱的相位随样品深度的变化。f、位错扭折示意图该研究还比较了叠层成像和iCOM技术(其简化版即常见的iDPC技术),结果显示叠层成像在横向和深度方向的分辨率都显著优于iCOM和iDPC,如图3所示。图3.多片层叠层成像和系列欠焦iCOM的深度切片。a、多片层叠层成像和iCOM的深度切片;从上到下,切片深度分别为1nm、4nm和11nm;标尺长5Å。b、沿着位错扭折的势函数和相位图的横截面;从左到右分别是用于生成模拟数据集的势函数、多片层叠层重构的相位和系列欠焦iCOM相位;可以看出,iCOM的模糊效应显著大于叠层成像。c、图b中所示的原子柱的相位随样品深度的变化。黑色垂直虚线表示沿原子柱的转折点的真实位置(与图b中白色虚线所示位置相同);可以看出,iCOM在深度方向的模糊效应也大于叠层成像研究总结了多个位错芯的深度依赖结构与晶体取向分布,揭示了位错移动与薄膜形变方式的相互关系。如图4所示,当薄膜绕位错的滑移面法线方向扭转时,位错滑移;当薄膜绕位错的滑移面法线方向弯曲时,位错攀移。图4. SrTiO3中多个位错的晶体倾转分布。a、包含三个位错的区域的相位图。b、对应图a中区域的晶体倾转分布,其上叠加了相位图;黄色箭头表示位错的横向移动方向。图a和b中的标尺为15Å。c、晶体倾转与位错横向位移的相互关系;晶格矢量c由于倾斜矢量t变为c’,即c’=c+t;黑色方块用于说明应变状态;左边为扭转,右边为弯曲;在两种形变模式中,薄膜上部和下部的应变都是反向的,对应位错向相反方向的横向移动。图b中左上角的位错和图2中的位错对应于扭转模式;图b的中心和右上方的位错对应于两种模式的混合研究结果以“晶体取向的亚纳米尺度分布和钛酸锶位错芯的深度依赖结构”(Sub-nanometer-scale mapping of crystal orientation and depth-dependent structure of dislocation cores in SrTiO3)为题于1月11日发表在学术期刊《自然通讯》(Nature Communications)上。清华大学材料学院2018级博士生沙浩治、2022级博士生马云鹏、物质科学实验中心工程师曹国平博士、2019级博士生崔吉哲为共同第一作者,于荣教授与李千副教授为共同通讯作者。物质科学实验中心程志英高级工程师在实验数据采集中提供了重要帮助。该研究获得国家自然科学基金基础科学中心项目的支持。
  • 我国成功研发燃煤锅炉混氨燃烧技术
    1月24日,国家能源集团在京召开技术发布会,正式对外发布燃煤锅炉混氨燃烧技术。该技术日前顺利通过中国电机工程学会与中国石油和化学工业联合会组织的技术评审。 专家一致认为,该技术在40兆瓦燃煤锅炉实现混氨燃烧热量比例达35%属世界首次,项目为我国燃煤机组实现二氧化碳减排提供了具有可行性的技术发展方向,对我国实现碳达峰碳中和目标有重大促进作用,建议在更大容量的煤粉锅炉上进行工业示范。 燃煤发电的二氧化碳排放量巨大,目前占我国总二氧化碳排放量的34%左右,因此,减少燃煤发电的二氧化碳排放是我国顺利实现碳达峰碳中和目标的关键。 与氢相比,氨体积能量密度高,单位能量储存成本低,大规模储存和运输基础设施与技术成熟完善,是一种极具发展潜力的清洁能源载体和低碳燃料。 国家能源集团所属烟台龙源电力技术股份有限公司(以下简称龙源技术)相关负责人表示,考虑到目前可再生能源生产氨的能力有限,短期内不可完全替代煤炭,因此,采用氨与煤在锅炉中混燃的方式降低燃煤机组的二氧化碳排放,是现阶段更加可行的技术发展方向。 然而,目前全球范围内将氨作为低碳燃料的研究仍处于起步阶段,且皆集中在实验室小尺度研究,还未能在工业尺度条件下验证将氨作为低碳燃料大规模使用的可行性。 国家能源集团通过对氨煤混燃机理实验研究、40兆瓦燃煤锅炉混氨燃烧工业试验研究,验证了燃煤锅炉混氨燃烧的可行性,开发了燃煤锅炉混氨燃烧技术,为我国未来燃煤机组实现大幅度碳减排探索出了一条有效技术路径,将会有力地支撑国家碳达峰碳中和目标的顺利实施。 “该技术成果首次以35%掺烧比例在40兆瓦燃煤锅炉上实现了混氨燃烧工业应用,开发了可灵活调节的混氨低氮煤粉燃烧器,并配备多变量可调的氨供应系统,完成了对氨煤混燃技术的整体性研究,为更高等级燃煤锅炉混氨燃烧系统的工业应用提供了基础数据和技术方案。”龙源技术相关负责人说。 研究已初步表明,燃煤锅炉混氨燃烧对机组运行的影响很小,燃料燃尽和氮氧化物排放优于燃煤工况,表明现有燃煤机组只需进行混氨燃烧系统改造,而锅炉主体结构和受热面无需进行大幅改造,即可实现混氨燃烧,达到大幅降低二氧化碳排放的目标。 专家组认为,该项技术成果将改变传统高碳排放的燃煤发电方式,逐步实现化石燃料替代,大幅度缩减燃煤机组碳排放,为我国未来燃煤机组实现大幅度碳减排探索出一条有效技术路径,为推动我国化石能源高效清洁高效利用,国家“双碳”目标的实现提供了有力的技术支撑。 中国工程院院士黄其励表示,该项目的第一完成单位龙源技术在二十年前自主开发的等离子体点火及稳燃技术,通过技术鉴定后迅速在全国推广,节约了大量的锅炉点火和低负荷稳燃用油,为我国燃煤机组节油作出了巨大的贡献。国家能源集团作为“大国重器”,勇担社会责任,科技创新引领强企之路的步伐从没有间断,在国际上首次开发出了高比例混氨燃烧技术,走在了世界前列。
  • 试论晶圆关键尺寸量测手段和设备的“三体”混动时代
    电子束光刻(EBL)手段,自从其超级高手MAPPER和EUV光刻PK完败之后,一直怀才不遇地降维转战至量测领域,凭借其高贵的光刻血统,完成量测可以说是“手拿把掐”;晶圆Fab发展到65nm技术节点阶段,对以栅极宽度为典型对象的量测技术上,电子束手段以其独树一帜的分辨率、自动化、稳定性和高通量的特征,是无可争议,不能替代的独门武艺;电子束关键尺寸(Critical Dimension)量测设备厂家的竞争也到了白热化阶段;异军突起的中国人技术和设备-汉民微测HMI,凭借扎实的技术创新和对用户痛点的逐一攻克,借助一次Intel晶圆厂验证试机的良机,大秀肌肉,赢得了接下来多家IDM大厂的八成以上设备采购,竟将KLA这样的量测设备巨兽挤出了电子束市场,迫使他们暂时关闭了电子束量测部门。近年来随着半导体行业步伐的加快,由于今天的量测要求比历史上的关键尺寸测量要全面得多,所以半导体晶圆制造行业已经采用了具有各种尺寸量测能力的手段:非电子束光源的量测技术从物理规律的前后两端夹击,不断缩短靠近电子束的分辨率领地:从下方而来的光学量测OCD设备,凭借激光器技术的突破和晶圆光刻光源EUV的降维下放量测(日本公司技术),还有在不需要真空和对环境干扰比起电子束不敏感的先天优势,已经在28nm节点量测稳定发挥(以色列公司技术),并利用和飞秒等离子光刻技术(FPL)一个思维路线的脑洞,突破至14nm量测(新加坡公司技术30mW-1340nm/1320nm/1064nm),逐步挑衅逼近,最终和电子束量测领地短兵相接;而从上方而至的物理探针量测AFM等工具,借助其天然的分辨特长,和来自隧道探针显微术(STM)量子力学的底气,借助其与纳米压痕光刻技术(NIL)一样的思维角度,轻松完成了已经成为电子束瓶颈的极限尺寸量测任务。明眼人不难看出,只用一类量测手段和工具无法在线量测工艺规范所要求的所有关键尺寸。为了规避这种情况,工艺开发通常使用破坏性量测手段 - 横截面电子显微术(X-SEM),透射电子显微术(TEM)等进行尺寸表征(Thermo Fisher主要供货)。这些离线工具速度慢、成本高昂,并且采样和量测的整体通量低下,是不得已的选择。先进的工艺需要精确量测复杂结构上的多个复杂细节,随着FinFET、3D-NAND、Multi-Pattern、DRAM等令人乍舌的复杂沟槽结构的出现,以及IBM骤然发布的GAA 2nm变态制程节点,例如侧壁角度(Side Wall Angle),轮廓(Profile),垫片宽度(Sapcer Widths),垫片下拉(Spacer Pull-Down),外延接近(Epitaxial Proximity),基础/底切(footing /undercut),溢出/底部填充(overfill /underfill )等,而且所有这些特征的尺寸都需要控制在单微束埃的精度水平。为了应对这些不断增长的量测挑战,晶圆厂没有比任何时候更加需要通过引入混合量测技术(Hybrid Metrology),合体使用来自多种设备类型的量测手段,以实现或改进一个或多个关键参数的测量,来彻底改变这一怪兽级别行业的尺寸量测功能的需求。图中描述了量测对象及虚拟混合量测生态系统设想。现在是时候电子束量测低下高贵的头颅了,因为只有合体混动式量测技术和设备,才能把从不同工具获得的数据集合在一起,拿到量测对象的关键的优质的信息,更好地全面细致地了解晶圆的光刻及整体制造过程。以OCD,SEM和AFM这“三体”集成的横跨光源分辨率限制的混合式量测手段和设备,可以毫不夸张地成为晶圆量测的“革命性”方法,通过焊接三类工具的强项,从而可以分离每个单项工具中严重耦合的参数。混合量测技术对晶圆关键尺寸这朵小花实施了几种不同技术维度的交叉施肥。特别需要承认的是:一个量测手段可以提供另两个无法拿出的样品信息,反之亦然。这样的“三体”手段既可以从所有工具上获得相对独立的通用信息,也可将这“三体”相互交叉、引用以提高最终数据的准确性。换句话说就是:参数之间的干扰相关性降低,从而获得了更好的准确性。让我们把这个脑洞接着开大,就是发挥“三体”量测技术和设备工具的平衡术:由于混动量测技术结合了来自不同手段的信息,因此通常有一种更有效率的方法可以将每个手段按其所长分配给样品,来自一类工具和手段的数据可以与另一类交换,并以互补或协同的方式使用,在速度和测量精度方面提高其整体性能。图中的仿真模拟算法为我们显示了混合量测技术的引入是如何解耦两个几何参数的(SWA和TCD),对比这两个参数在没有混合量测技术的情况下是如何以非物理方式耦合的。综上所述,混合量测技术和设备使晶圆厂能够成功量测目前难以使用单个工具可靠量测的复杂结构;通过执行混合量测技术,可以获得增强的量测性能,重拾晶圆量测顶到技术天花板而逐渐失去的信心,是晶圆量测手段和设备的未来。
  • 阿拉巴马大学研究人员设计出一种混合超高分辨率干涉仪
    近日,阿拉巴马大学亨茨维尔分校 (UAH) 的研究人员设计了一种超高分辨率干涉仪,它基于混合设计,结合了双路径配置和光学谐振器两者的优点,灵敏度非常高,可以检测到其他传感器无法检测的微弱声学信号。 该项目的主要研究者Nabil Md Rakinul Hoque将基于光学谐振器的法布里-珀罗干涉仪嵌入道双路径马赫-曾德尔干涉仪之中,并把该设备称之为马赫曾德尔-法布里珀罗(MZ-FP)干涉仪。 类似于法布里-珀罗之类的基于光学谐振器的干涉仪,它们可以使特定的谐振频率通过干涉仪或从干涉仪反射。尽管其尺寸非常紧凑,但由于反射镜的高反射率,它们的光路长度非常长,从而在光流之间建立了可测量的干涉模式。 第二种干涉仪基于公共路径或双路径结构,它的灵敏度取决于其干涉臂的长度,最长可达数十甚至数百米,导致干涉仪体积较为笨重。马赫-曾德尔干涉仪和迈克耳逊干涉仪就是典型的传统双路径干涉仪。 MZ-FP 干涉仪的混合方案使得研究人员能够将传统的双路径配置与光纤谐振器相结合。Hoque 和他的同事研发了一种紧凑型干涉式光纤传感器,可在热噪声水平下工作,同时使用现成的商用二极管激光器进行检测。图1 Nabil Md Rakinul Hoque 的新型干涉仪结合了马赫-曾德尔干涉仪和迈克耳逊干涉仪的优点。该设备结构紧凑,灵敏度高,可在各种生物医学和物理领域中使用。 Hoque 表示,新型干涉仪的主要优点是其前所未有的高信号分辨率。 团队使用相同的光纤法布里-珀罗干涉仪作为光路倍增器,使 MZ-FP 干涉仪能够在一系列频率范围内达到破纪录的应变分辨率。在测试中,MZ-FP 干涉仪实现了1飞秒应变的分辨率,探测精度达到微米级。 据该团队称,如果适当放大干涉仪,MZ-FP的应变分辨率可以扩展到超声波范围。阿拉巴马大学的教授Lingze Duan表示,他们的传感器分辨率在次声波到超声波的频率范围内创造了最高记录。设备检测超弱信号的能力在将来有望应用于预测环境事件、武器检测、控制气候变化研究等领域。 此外,基于 MZ-FP 干涉仪的光学传感器可用于辅助声学医学诊断。“比如,基于我们的混合干涉仪的声学传感器能够检测非常微弱的生理声学信号,从而反映人体健康状况,然而目前的传感器是无法检测到这些信号的”,Hoque 讲到。 “在我看来,这项研究最重要的影响是它为无源光纤传感器达到前所未有的应变分辨率水平找到了一条可行的道路,”Lingze Duan说。“如此高的传感分辨率使得光纤传感器可以接收比现在更弱的信号,大大拓宽了应用范围。” 该研究发表在Scientific Reports(www.doi.org/10.1038/s41598-022-16474-y)。
  • 180万!清华大学超精细结构脂质分析仪采购项目
    项目编号:CMEETC-227XO133KK599(清设招第20221585号)项目名称:清华大学超精细结构脂质分析仪采购方式:竞争性谈判预算金额:180.0000000 万元(人民币)最高限价(如有):180.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01超精细结构脂质分析仪4套否设备用途介绍: 该设备能够完成脂质碳碳双键异构体疾病标志物的筛选和鉴定,支持复杂样品体系中脂质的全范围高通量筛选和鉴定,并能完成不饱和脂质中碳碳双键精准定位和异构体鉴定。使用该设备一方面能够用于各类肿瘤组织的脂质标志物的发现与研究,为疾病的诊断以及药物研发等提供依据;另一方面,能够通过对中药材、中药饮片质量控制和地道药材研究,用于中药体内药物代谢分析及中医药治疗机理研究中生物标志物的筛选、鉴定和定性定量分析 。简要技术指标: 流速精密度:0.070%RSD,自动进样器可进行编程进样,用于进行柱前衍生,柱前样品自动稀释,自动混合等复杂进样方式 ,详见公告附件。合同履行期限:合同签订后30日内到货,到货后15日内完成安装调试,合同货物整体质量保证期为验收合格之日起12个月。本项目( 不接受 )联合体投标。
  • 大桥垮塌致43人死亡!FLIR远程巡检混凝土,安全效率两手抓!
    大桥垮塌致43人死亡还记震惊中外的意大利热那亚莫兰迪公路桥垮塌事故吗?事故造成43人死亡,多人受伤,600多名居民被迫撤离,据悉造成公路桥突然坍塌的原因,主要是对桥梁的维护保养不善,养护的缺陷直接缩短了桥梁的使用寿命。当时央视新闻报道在基础设施的建设中以高速公路为代表,混凝土结构安全非常重要在经济高速增长的情况下混凝土结构的建设得到了进一步的推动然而,随着时间的推移这些结构会老化和腐烂当混凝土和其他建筑材料脱落成碎片并散落时它们就会开始妨碍安全因此,各大部门需要对混凝土结构进行定时检测传统混凝土检测弊端明显之前传统的维护对策,是对高速公路桥梁和其他混凝土结构的整个表面进行锤击试验。在此类工作中,检查员使用锤子在现场检查是否存在问题,特别是钢筋锈蚀导致混凝土构件脱落的迹象。但这种测试方法有缺点,包括由于高空作业设置、搭建和移动脚手架所需的时间以及检查员数量的不足而产生的安全问题。随着社会基础设施系统老化成为一个紧迫的问题,日本一家高速公路工程公司依托FLIR A6701sc红外热像仪,开发了一种名为“IrBAS”的技术。目前,包括Matsuda先生、Hashimoto先生和hayashi先生在内的团队,正在使用IrBAS作为维护混凝土结构,发现老化并提供对策。红外热成像技术的优势红外热成像技术用于远程检测混凝土结构中的缺陷,无需直接访问建筑物。使用该方法,可以将缺陷导致的内部结构差异显示为混凝土表面的温差,并对温差拍摄记录。“IrBAS能够通过热成像技术一次拍摄和诊断大面积区域,这大大减少了检查的时间和精力,”Hashimoto先生说。在检测时,将所有的检查点逐一锤击在混凝土表面(覆盖数千到数万平方米)非常耗时。而IrBAS在锤击前可以大致分辨结构的健康部位和异常部位,只对诊断为异常的部位进行锤击试验。这一程序大大减少了检查点的数量。另外,拍照后的数据可以保留,以备后期的老化检查。检测重点红外图像分析图像观察注意警告有了IrBAS,即使目标很远,检查员也可以站在地面上用长焦镜头进行拍摄。这种机制减少了高空作业的数量,大大提高了检查员的安全性。“IrBAS将异常部位分为三个阶段——警告、注意和观察,这三个阶段用三种不同的颜色来区分,”Hashimoto先生说。“通过一种独特的算法,对图像数据进行温差、形状、区域和其他因素的分析,以确定问题所在。”选择:FLIR红外热像仪为了寻求检测方法,研究小组研究了非制冷和制冷热成像仪之间的差异、用于测量的波长差异以及不同类型硬件(如探测器和镜头)之间的参数差异对诊断结果的影响,这些检查结果是对热成像本身的研究。从对非制冷型的实证研究开始,继而研究小组研究了制冷型量子阱探测器QWIP,选择了对中波长敏感的锑化铟型。同一波段下,制冷型比非制冷型更敏感。在长波波段,同一制冷类型的某些装置比其他非制冷装置受到来自天空或相对表面的反射的影响更大,这些反射会对采集的图像数据造成干扰,从而影响诊断结果。天空反射的比较可见光图像红外图像Insb(1.5-5.1μm)红外图像QWIP(8-9μm)温差(A-B)1.0°CFLIR A6700中波红外锑化铟热像仪FLIR A6700中波红外热像仪能在3.0–5.0µm波段(另有1.0–5.0µm宽波段可选)工作,能生成细节丰富的327,680像素热图像,同时它也是敏感型红外热像仪,可探测物体间最细微的温差,因此这款热像仪非常适合执行各种各样的无损测试。
  • Nanoscribe客户成就 |3D打印微流控混合器研发
    研究背景微流控技术广泛应用于不同领域,例如分析化学、微生物分析和即时医疗应用的芯片实验室设备(lab-on-chip)等,来帮助控制微小流体。集成化是微流控设备的关键所在,而小型化的微流体系统不能实现液体的湍流混合,扩散式混合作为主要的混合流程则需要借助很长的微通道来实现。这会占用设备的面积,或者实施耗时的微纳加工技术来制造复杂的混合元件。Nanoscribe微纳加工技术助力微流控混合器研发近日,来自不来梅大学微型传感器、致动器和系统(IMSAS)研究所的科学家们发明了一种全新的微流道混合方式,即通过堆叠彼此交替的液流来减少扩散长度,并提出了微流控混合的新概念:多级互换混合器。科学家们使用Nanoscribe公司的3D打印系统,将自由形式3D微流控混合元件集成到预制的晶圆级二维微流道中。该微型混合器可以处理高达100微升/分钟的高流速样品,适用于药物和纳米颗粒制造,快速化学反应、生物学测量和分析药物等各种不同应用。上图:在预制的二维微流道中3D打印制作壁厚约为2 µm的螺旋状结构三级微流控混合器。图片来自于Martin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen通过使用Nanoscribe的 Photonic Professional系列打印系统制作的微流控元件完全嵌入进预制的二维微流道系统中,换句话说,科学家们运用3D微纳加工技术将自由形式的3D微流体混合器直接做成微流体芯片。每个微纳混合器都能在30秒内制作完成,从而确保了在一小时内完成加工整个晶圆。这要归功于3D微纳加工技术,可以实现混合器的快速制作,即从电脑模型设计(CAD)到打印样品的一步式操作流程。当双光子聚合原理应用到传统光刻技术互换式混合器是通过Nanoscribe的双光子聚合技术(2PP)结合光刻技术来实现制作的。第一步,使用SU-8光刻胶在硅晶圆上利用光刻技术制作二维微通道系统;第二步,运用双光子聚合技术将3D混合器元件集成到开放式为通道中;打印结束后在显影阶段将残留的未聚合材料冲洗掉,除去通道中所有抗蚀剂残留物;最后,通过将聚二甲基硅氧烷(PDMS)片压在微通道的顶部来密封微流体装置。这种制造方法将3D微纳结构集成到了预制的晶圆级二维微流体通道中,突出了传统光刻和双光子聚合技术的完美兼容性和卓越性能。研究人员能够利用系统的高设计自由度和超高精度的特点,将复杂形状的3D微流体混合器定位到二维微流体通道中。使用Nanoscribe微纳加工技术打印的三阶微流控混合器电镜图。图片来自于MMartin Oellers, Frieder Lucklum and Michael J. Vellekoop, University of Bremen了解更多双光子微纳3D打印技术和产品信息请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • 锦玟发布DMT-2500多管旋涡混合仪 上海锦玟 新品
    DMT-2500实验室多管漩涡振荡器 涡旋混匀器混合仪多管漩涡混合仪产品结构图:DMT-2500多管旋涡混合仪产品特点:●采用全新独特的一键式旋钮操作模式,简单易用。●1min ~ 99h59min范围内任意设定定时时间,运行结束后自动发出提示音。●多种海绵试管架可选,用途广泛。●软启动,加速均匀,有效避免样品飞溅。●直流无刷电机驱动,速度精确、长寿命、免保养。●最多可以一次处理50个试验样品,让实验高效快捷。●操作面板简洁,微处理器精确控制,LED实时显示速度和时间。●人性化的程序设计,内置点动和定时两种操作模式。DMT-2500多管旋涡混合仪技术参数:泡沫试管架图:上海锦玟DMT-2500多管漩涡混合仪操作面板介绍:创新点:1、将原有的多按键设置重新设计为一键式旋钮操作模式,更加简单易用。 2、将原来的有刷电机改进为直流无刷电机驱动,免保养,速度精确、使用寿命延长3-5倍。 DMT-2500多管旋涡混合仪 上海锦玟
  • HunterLab测色仪在色素炭黑中的应用
    一、炭黑的特性 1、黑度与粒径 黑度直接与炭黑的粒径相关,粒径越小,比表面积愈大,炭黑的黑度越高。这是因为尽管原生粒子已熔合成原生聚集体,但是其比表仍能起作用,原生粒子细,则凝聚体的比表面积越大。所显现的颜色更黑,防紫外线作用更佳。由于细粒子炭黑的吸光率比粗粒子炭黑的更高,所以着色力更强。但是当粒径减小时,由于蓝光被优先吸收,为此色调变成棕相。细微原生粒子赋予炭黑更大的比表面积,同时增加分散难度,一般通过表面处理可调整润湿性和改善分散性。 2、结构 炭黑粒子不仅以原生粒子形式存在,而且在生产熔结成凝聚体。这种凝聚体是由原生粒子经化学键结合。在凝聚过程中,由大量链枝的原生凝聚体构成的炭黑称为高结构炭黑。而原生凝聚体由较少链枝原生粒子组成的炭黑,则称为低结构炭黑。 3、表面化学性 炭黑的生产方法不同其表面化学性能各异。炭黑表面具有不同的含氧官能团(如羧基、内脂基、酚基、羰基等)。一般含氧官能团高的炭黑,挥发份高,其色调可调性能好,其流动度也较高。炭黑样品加热至825± 25oC后以百分重量损失表示炭黑挥发份。炭黑含氧基因越多,挥发份也越大。 4、吸湿性和密度 炭黑是一种表面积大的物质,因此有一定的吸湿性。炭黑的吸湿量主要由表面积大小来决定。可加强措施,尤其在包装、贮存和运输的过程采取办法以减少产品的吸湿性。因为水分(吸湿量)过高会对加工过程带来麻烦,所以要求对某些品种炭黑有特殊包装。粉状的色素炭黑还是粒状的色素炭黑用于给定的塑料掺混物取决于分散的类型和树脂的特性,但加工能力也是很重要的因素,目前多数分散设备都能发挥剪切力,足以将粒状分散均匀。 二、炭黑在塑料行业中的应用 在选择之前,必须确定其用途,例如用于着色、防紫外光、或导电等等。 1、着色用炭黑 色素炭黑一般都能较好的给塑料着色,可根据着色特性或物化性能选用色素炭黑,着色用炭黑的品种的选择基本上都是随成品必须达到的黑度而定。 用极细的色素炭黑可以完成黑度要求特别高的着色; PE垃圾袋,塑料袋,电缆材料之类产品只需中等水平黑度,可以用比表面积较低,结构较高的炭黑品种;塑料调色时,炭黑称量和配料时出现的微小误差,均会导致明显的色差,因此,宜采用粒径较大,着色力较差的低色素炭黑,这样炭黑用量可以稍大,称量误差相对小些,并有分散性较好、价格较低的优点。对于灰色塑料,采用细粒色素炭黑往往呈现棕相灰色,而采用粗粒子色素炭黑可产生蓝相灰色。与其它有机颜料相比,炭黑除分散较困难外,其他性能均较好。科学的炭黑配合量,可提供较好的抗静电或导电性。 炭黑基本上是无毒的,但较易飞扬和污染,故常以色母粒形式供塑料行业使用,在消除污染的同时也改善了炭黑在塑料中的分散。炭黑作为塑料用颜料,常用的剂型有粉状和粒状。粒状炭黑飞扬较少,但分散较难,故在塑料着色中采用粉状炭黑。 2、紫外线防护性的应用 炭黑在塑料工业中用途之一是防紫外光老化,由于炭黑有较高的吸光性,因而能有效的防止塑料受阳光照射而产生光氧化降解。炭黑作为紫外光稳定剂在塑料中所起的作用有:把光能转化为热能;保护塑料表面而免遭一定波长的射线照射;截取原子团而产生防老化作用,从而阻止催化降解。紫外线对聚烯烃特别有害,试验证明当一定细度的炭黑的浓度为百分之二时可以达到完美的紫外线屏蔽作用。炭黑对塑料的紫外线老化的防护作用,取决于炭黑的粒径、结构和表面化学性。炭黑的粒径较小时,因表面积增大,其吸收光或遮光能力增加,故紫外线防护作用增强,但粒径小于20nm,其防护作用趋于同一水平,原因是当粒径过小时,逆向散射减小,而继续向前的光会威胁聚合物的稳定性。结构较低,即聚集体尺寸较小时,因聚集体几何体积较小,会增强对聚合物的防护作用,这也是结构较低的炭黑较黑的原因。炭黑表面含氧基团较多,即挥发份较高时,能消除聚合物分解时产生的基因,因此防护作用也增强。 三、HunterLab测色仪(着色强度测定仪)在炭黑中的应用 1、表面特征的影响 在测配色时,光泽和表面平整度对色差的影响最大。当光线照射到凹凸不平的表面时,在表面产生反射、散射和吸收。粗糙的表面散射大,反射和吸收少,所以人眼的反应光泽就低,而高光的涂料表面平整,反射大,散射少,人眼对光泽就特别敏感,光泽就高。从实际生产的经济性考虑,我们根据用途选择合适粒径的消光剂,它决定了消光剂的用量,一般消光剂用量越多,光泽越低。HunterLab测色仪(0o/45o或45o/0 o)对黑颜色和白颜色光泽的敏感性特强。以高色素炭黑为例,光泽从20降到10时,△E要相差1左右(用类似人眼的0o/45 o测量),而其他品牌的测色仪测相同的黑板时,△E误差在0.3以内。其他颜色光泽在± 1.0度范围内变化时,△E一般在允许误差范围以内。当然在生产中颜料的耐高温性和烘烤的时间和温度也会对△E产生较大影响,这是在实际生产中要特别当心的问题。 2、台式、手提式设备一应俱全 台式测色仪LabScan XE和新款手提式测色仪MiniScan EZ,他们有其独特的优势,测试结果保持与人眼一致, MiniScan EZ轻巧、携带方便,可直接测量读取数据,也可以连接到电脑上输出数据。特别在生产线或与客户交流时,可以充分发挥其携带方便的优势。
  • 中科院高强度稳态磁场混合磁体研制成功
    11月13日下午,中国科学院强磁场科学中心磁体实验大厅一片欢呼,我国自主研制的混合磁体装置调试获得成功,实现了任务目标——40万高斯稳态磁场。  “这台混合磁体装置也正式成为磁场强度在世界排名第二高的稳态强磁场装置,不久还有望冲击45万高斯稳态磁场的世界纪录。”中国科学院合肥物质科学研究院院长兼强磁场中心主任匡光力告诉《中国科学报》记者。  匡光力介绍,混合磁体由外超导磁体和套在其中的水冷磁体组合而成。一个月前,水冷磁体单独调试成功,能够产生30万高斯的稳态磁场 一周前,低温孔径达920毫米的大型高场超导磁体调试成功,能够产生10万高斯的稳态磁场。今天,两个磁体成功合体,共同产生了40万高斯的稳态磁场,终于圆了相关科研人员奋斗了八年的梦想!  强磁场是支持科学前沿探索的一种极端实验条件,磁场越高,科学发现的机遇越多,因此,强磁场装置必然追求更高的磁场。匡光力说:“追求极高的磁场就像攀登珠穆朗玛峰,到达极限之前,需要克服许多困难方能成功。”  混合磁体是国际上产生最高稳态磁场的主要选择,但选择它就意味着选择了一系列重大技术挑战——其水冷磁体必须解决材料和结构的优化选择问题,面临巨大电磁力和严峻的发热问题,差之毫厘,失之千里,且给它供电的数千万瓦级的稳态直流电源本身也是一项重大技术挑战 其超导磁体孔径巨大,导体的材料选择、结构选择和磁体生产工艺以及与之配合的低温冷却技术等都是技术难题,此前国际上已有多个大型高场超导磁体因技术问题而失败,而我国在高场超导磁体技术方面原有基础薄弱。  混合磁体研制难度大不仅体现在上述方面,看似简单的磁体安装稍有偏差即可能导致巨大破坏,两个磁体的磁中心面或磁轴如不能重合,即便相差一毫米,磁体也将面临数吨的相互作用力。一位著名的国际强磁场技术专家此前曾一再感叹:“世界上还没有真正完全研制成功的混合磁体装置。”  刚调试成功的混合磁体装置是中国科学院强磁场科学中心承担的国家“十一五”重大科技基础设施——稳态强磁场实验装置项目所包含的九台磁体装置中产生磁场最高的磁体,也是最后研制成功的磁体,此前研制成功的水冷磁体中有三台创造了单项世界纪录。  这次混合磁体的调试成功标志着强磁场中心承担的稳态强磁场装置项目的主要任务已经完成,它的研制成功是我国强磁场技术发展的重要里程碑。据悉,混合磁体装置将主要用于新型功能材料的量子行为研究。
  • 清华大学李晓雁教授课题组《Small》:混合多层级点阵材料的构筑设计与力学性能
    自然界中的许多轻质生物材料同时具有多种优异的力学性能,例如高模量、高强度、高断裂韧性和损伤容限等。研究表明,这些生物材料优异的力学性能与其多层级的结构密切相关。近些年,多层级的设计策略被成功地应用到三维力学超材料的构筑设计和制备中,但是目前这些三维多层级力学超材料主要是采用桁架作为材料的基本单元。另一方面,在许多无法事先判断载荷方向的应用场景下,人们往往期望结构材料具有各向同性,原因在于各向异性较强的结构可能仅在某一方向或某些方向上承载能力较强,而在其他方向的载荷作用下则很容易失效。因此,对于多层级点阵材料而言,研究其各向异性的程度并设计出各向同性的多层级点阵材料具有十分重要的意义。近期,清华大学李晓雁教授课题组采用桁架和平板单胞作为基本单元构筑设计了多种新型的混合多层级点阵结构(图1),并采用面投影微立体光刻设备(microArch S240,摩方精密BMF)制备了相应的多层级微米点阵材料。有限元模拟表明,通过在不同层级上选取合适的单胞结构,混合多层级点阵可以达到期望的弹性各向同性,并且具有比已有的自相似octet桁架多层级点阵更高的模量(图2)。对制备的不同取向的多层级微米点阵材料的原位力学测试表明,相比于各向异性的自相似octet桁架多层级微米点阵,混合多层级微米点阵在相同相对密度下具有更高的杨氏模量和压缩强度,并且可以更接近弹性各向同性,与有限元预测的结果一致(图3)。对于表现出弹性各向同性的ISO-COP混合多层级点阵材料,研究团队通过理论分析建立了其杨氏模量及失效模式与各层级结构几何参数的依赖关系,并给出了其失效模式相图(图4),有助于进一步理解多层级结构各层级之间力学性能的传递关系并据此进行结构几何参数的优化设计。相比于单一层级的平板点阵,桁架-平板混合多层级点阵具有密度更低、易于制备的优点;并且这种混合多层级的设计策略可以扩展至不同尺度和不同组分材料,在构筑轻质且具有优异力学性能的新型结构材料方面具有重要的应用前景。图1. 混合多层级点阵材料的构筑设计 图2. 多层级点阵结构的有限元模拟结果。(a-b)单轴压缩和剪切变形下的应力分布;(c-d)不同结构杨氏模量及各向异性度随相对密度的变化;(e-f)不同方向的杨氏模量 图3. 不同取向的多层级微米点阵材料的应力-应变曲线 图4. ISO-COP混合多层级微米点阵材料杨氏模量及失效模式的理论预测
  • 福建物构所3D打印仿生结构研究获进展
    具有复合特征的仿生结构因独特的机械性能,为各种工程应用开发设计优异性能的结构提供了设计思路。然而,在仿生制造和设计这些复杂精细结构时,在模具成型和复杂结构验证等方面常常受到加工条件限制。3D打印可快速制造各种复杂结构,为仿生结构的设计、制造和验证提供了新方法。   中国科学院福建物质结构研究所研究员吴立新团队面向轻量化3D打印结构在鞋业和汽车等领域的应用开展研究。受自然界生物结构兼具刚度和柔韧性的特征启发,科研人员通过分级弯曲和拉伸主导的结构来设计混合架构的晶格。   进一步,该工作使用纯树脂及高二氧化硅固含的复合材料,采用3D打印方式制备了以上晶格结构,并将结果与理论分析数据进行比较以验证设计合理性。结果表明,该结构设计比单一晶格拓扑结构的模量和应变能量密度提高了7倍。添加填料进一步将结构的刚度提高12倍以上,且减少了结构屈曲。此外,该工作还评估了带有石墨烯基涂层表面的混合晶格设计特性。该研究设计的晶格结构具有良好的弹性恢复能力,且功能化特性也得到了拓展。   相关研究成果发表在Additive Manufacturing上。研究工作得到福建省“揭榜挂帅”重大专项和闽都创新实验室自主部署关键技术攻关项目的支持。   之前,科研人员将3D打印用于防滑鞋底设计。仿照树蛙等动物的足底结构进行仿生设计,结合材料研发和有限元计算,通过3D打印获得在潮湿表面仍有良好摩擦力的结构。上述成果表明,3D打印可用于具有优异性能的仿生结构制造和验证。仿生(a)兼具刚硬和韧性结构来设计(b)分级弯曲和拉伸主导的混合晶格结构
  • 仪器表征,科学家制备表征效率高达25.7%的高熵混合钙钛矿电池!
    【科学背景】高熵材料的概念源于对于混合熵增益的探索,即通过增加材料成分的多样性和复杂性,从而引入更高的熵值,这些材料在极端条件下展现出了出色的单相保持能力、惰性动力学特性以及优化的力学性能。最初,高熵合金和氧化物作为典型代表,其熵增益主要归因于混合无机组分的构型失序,如近等摩尔比的多元元素混合。然而,尽管高熵材料在合金、氧化物、氮化物、碳化物等领域有了广泛应用,有机基团在构建高熵结构中的潜力仍未被充分探索。有机物质具有丰富的化学多样性和结构灵活性,但其在高熵材料中的作用和应用尚属未知。为了填补这一研究空白,浙江大学薛晶晶教授,西湖大学王睿教授团队合作通过将多种类型的A位有机阳离子与各种烷基链混合,作者成功构建了一系列高熵有机-无机混合钙钛矿结构。这些结构通过引入无序的有机基团,显著增加了材料的熵值,从而提升了其在高温下的稳定性和光电转换性能。具体而言,作者通过详细的单晶结构分析和柱形装配模型的建立,系统研究了在不同A位阳离子组合下材料熵增益的机制和影响因素。在太阳能电池应用方面,作者展示了这些高熵有机-无机混合钙钛矿材料在反转器件架构下的显著改进,其光电转换效率提升至25.7%,并展示了超过5,000小时的稳定运行能力。【科学亮点】(1)本研究首次探索了有机-无机混合高熵钙钛矿材料的构建方法及其性能表现。通过将多种类型的A位有机阳离子与不同烷基链混合,作者成功构建了一种高熵混合钙钛矿(HEHP),其结构中融合了有序的无机框架和无序的有机基团。(2)实验结果显示,HEHP具有单相结构和显著的熵增益,使其在高温环境下表现出更好的稳定性。单晶结构分析揭示了其独特的混合晶体结构,这为进一步理解和优化高熵材料的设计提供了重要见解。(3)应用于太阳能电池时,HEHP展现出了高达25.7%的光电转换效率(PCE),在反转器件结构下表现出长达超过5,000小时的稳定性,保持了其初始PCE的90%以上。【科学图文】图1 | 高熵混合钙钛矿HEHPs薄膜构造。图2 | 钙钛矿相的熵增益影响因素研究。图3 | 高熵混合钙钛矿HEHP材料的理论模型示意图。图4 | 高熵混合钙钛矿HEHPs的光伏应用。【科学启迪】本研究利用有机基团的无序性构建了一类新型的高熵混合钙钛矿(HEHP),这种材料结合了有序的无机框架和无序的有机成分。通过混合多种A位有机阳离子,作者展示了HEHP在光伏电池中表现出的优异性能,包括提高的光电转换效率和卓越的器件稳定性。这一研究揭示了高熵材料的设计新思路,即利用有机无序性增加材料的熵,从而改善其在极端环境下的稳定性和性能。HEHP的通用构建策略不仅适用于不同的钙钛矿组成和器件结构,还展示了在工业化生产中提高产量的潜力。此外,有机基团丰富的化学性质和混合构型的灵活性为进一步优化和拓展高熵混合材料的应用奠定了基础,可能在太阳能电池和其他光电器件领域引发新的设计范式和创新策略的探索。原文详情:Tian, Y., Zhang, X., Zhao, K. et al. High-entropy hybrid perovskites with disordered organic moieties for perovskite solar cells. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01468-1
  • 高效混合 一键搞定丨MTV3000多管涡旋混合仪新品上市
    在科研的道路上,每一步都很重要MTV3000多管涡旋混合仪您的前处理“加速器”让实验前处理变得简单快捷作为一款理想的可以进行大批量样品处理的混合设备,主要用于快速、均匀地批量混合各种液体,一次最多可处理66个样品(2mL EP管)。多种不同规格海绵架子以适配不同规格的容器。通量高、应用范围广、操作简单✔ 7寸彩色触摸屏控制,实时显示当前运行的速度、剩余时间等✔ 预约启动,循环设置,多段不同速度及时间运行,可根据应用需要设置不同的方法✔ 三种运行模式,满足不同性状样品✔ 通量高,最多可同时处理66个样品✔ 可选配100mL、50mL、15mL等多种规格样品架,以满足不同应用,样品架可定制应用领域食品农兽残、致病菌检测等样品提取、溶液快速混匀等食品理化检测溶液混匀、提取等生物实验室:蛋白质溶液混合、细胞培养实验中,用于混合培养基、细胞悬浮液等化学实验:用于混合试剂、催化剂等应用标准举例◆《中华人民共和国药典(2020年版)》2341农药残留量测定法 第五法 药材及饮片(植物类)中禁用农药多残留测定法◆GB23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱法-质谱联用法◆GB23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气质联用法◆GB23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱-质谱联用法 ◆GB 31613.1-2021 食品安全国家标准 牛可食性组织中氨丙啉残留量测定 液相色谱-串联质谱法和高效液相色谱 ◆GB 31613.2-2021食品安全国家标准 猪、鸡可食性组织中泰万菌素和 3-乙酰泰乐菌素残留量的测定液相色谱-串联质谱法◆GB 31656.1-2021 食品安全国家标准 水产品中甲苯咪唑及代谢物残留量的测定 高效液相色谱法 ◆GB 31656.11-2021 食品安全国家标准 水产品中土霉素、四环素、金霉素和多西环素残留量的测定 ◆GB 5009.208-2016 食品安全国家标准 食品中生物胺的测定
  • 上海沪析发布上海沪析Vortex-2旋涡混匀仪新品
    产品应用:● 旋涡混匀仪具有结构简单可靠,仪器体积小,耗电省,噪音低等特点,广泛应用于生物化学,基因工程,医学等实验需求。对液液、液固、固固(粉末)混合,它能将所需混合的任何液体、粉末以高速旋涡式快速混合,混合速度快、均匀、彻底。 主要特征:● 采用无极调速,可达2800RPM。● 偏心球轴设计,震动头安装方便。● 柔软硅胶脚垫,防止仪器在高速震动时移动,外形小巧,防震,适合高速工作。● 体积小,耗电省,噪音低。● 机体均采用增强型工程塑料成型技术,机体无油漆喷涂,耐酸碱,耐碰撞。● 工作台面全部为耐腐,耐磨,安全的TPU材料,改变原海绵台面易破损的特点。● 仪器集成了连续,点震,连续,调速等功能,为实验提供了快速的操作平台。产品参数:型号上海沪析Vortex-2旋涡混匀仪电压200~240V/100~120V(选配)频率50Hz,60Hz功率60w震荡方式圆周运行方式点动/连续运转周转直径4mm电极类型罩极电机电机输入功率60w电机输出功率11w转速范围0-2800rpm转速显示刻度外观尺寸170x120x140(mm)重量3.5kg允许环境温度5-40℃允许相对温度80%外壳防护等级IP21标配耐磨标准头选配铝制手撑杆(V1,V2),Φ100平板圆盘,适配器(V2)可选配件:标准头标准头,用于直径小于30mm的试管和小容器φ100mm通用圆头,100mm圆形平板支架,与试管适配器、垫片配用。手持撑杆手持支撑杆,与试管适配器配用48孔/6mm48孔试管适配器,与φ100通用圆头和手持撑杆连用48孔,6mm试管15孔/10mm15孔试管适配器,与φ100通用圆头和手持撑杆连用孔,10mm试管12孔/12mm12孔试管适配器,与φ100通用圆头和手持撑杆连用12孔,12mm试管8孔/16mm8孔试管适配器,与φ100通用圆头和手持撑杆连用8孔,16mm试管8孔/20mm8孔试管适配器,与φ100通用圆头和手持撑杆连用8孔,20mm试管平板垫片平板垫片,与φ100通用圆头连用,用于直径小于99mm试管或小容器相关产品汇总:型号 Vortex-1Vortex-2转速范围(rpm)28000-2800电机输入功率(W)6060电机输出功率(W)1111转速显示无刻度标配耐磨标准头耐磨标准头创新点:1)工作台面全部为耐磨天然橡胶,改善原来海绵台面容易破损的特点 2)体积小巧、耗电省、噪音低 3)硅胶脚垫避免在高速震动时移动 上海沪析Vortex-2旋涡混匀仪
  • 科学家提出“固态溶剂法”制备混合基质膜
    南京工业大学教授金万勤团队在分离膜领域取得新进展,提出“固态溶剂法”制备出超薄超高掺杂量的混合基质膜。9月22日,相关研究成果在线发表在《科学》上。  据介绍,膜技术具有分离能耗低等优势,但其发展普遍受限于渗透性和选择性的制约关系,将高性能无机填料掺杂在聚合物中制备混合基质膜,有望突破这一瓶颈,成为近年来国际研究前沿。然而,面临填料团聚和界面缺陷的重大挑战,混合基质膜仍未大规模应用。金万勤团队是国际上较早开展混合基质膜研究的团队之一,长期以来一直致力于解决这两大难题。  “我们提出将聚合物作为固态溶剂,溶解填料的前驱体并将其涂覆在多孔载体表面形成超薄膜层,而后将聚合物中的前驱体原位转化成填料。”论文第一作者、南京工业大学博士陈桂宁介绍,区别于传统的“合成填料—分散填料—填料与聚合物混合”制备混合基质膜的复杂工艺,该方法仅需在聚合物中溶解高含量前驱体,即可实现高含量填料的均匀超薄化掺杂,同时以填料为主体相的新型混合基质膜结构有利于填料之间形成贯穿孔道,为分子提供超快传输通道。  实验表明,“固态溶剂法”制备的混合基质膜厚度仅为50纳米,填料掺杂量高达80%以上,实现了膜渗透性和选择性数量级的提升。基于超薄膜层和填充的贯穿筛分孔道,该混合基质膜表现出类无机膜(纯填充相)的优异分离性能,氢气/二氧化碳分离性能高出现有聚合物膜和混合基质膜1~2个数量级。  “‘固态溶剂法’主要依靠聚合物膜的加工制备技术,因此易于放大制备成超薄的平板型和中空纤维型混合基质膜。”论文的共同通讯作者、南京工业大学教授刘公平说,该方法适用于不同类型的填料和聚合物基质,表现出良好的规模化制备前景与膜材料普适性。  “研究首次从实验上证明了超薄超高掺杂混合基质膜的可行性,也为发展基于纳米材料的超薄分离膜及功能涂层提供了新思路和理论技术基础。”论文通讯作者金万勤介绍,该混合基质膜在碳捕集等过程极具应用潜力,有望助力我国双碳战略目标的实施。在国家重点研发项目的资助下,团队正在开展混合基质膜的放大制备与应用技术研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制