当前位置: 仪器信息网 > 行业主题 > >

混汽吸附仪

仪器信息网混汽吸附仪专题为您提供2024年最新混汽吸附仪价格报价、厂家品牌的相关信息, 包括混汽吸附仪参数、型号等,不管是国产,还是进口品牌的混汽吸附仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合混汽吸附仪相关的耗材配件、试剂标物,还有混汽吸附仪相关的最新资讯、资料,以及混汽吸附仪相关的解决方案。

混汽吸附仪相关的资讯

  • 康塔仪器发布首台吸附穿透曲线分析仪
    2015年9月,全球粉体及多孔材料分析检测仪器领导者,美国康塔仪器正式发布dynaSorb BT系列吸附穿透曲线分析仪。这款开创性的仪器,凭借其独特的安全性设计,可以便捷地研究任意复杂的吸附过程。在宽泛的温度和压力范围内,可以调节气体流速并很好地定义气体组分。这样,就可以调查或研究在真实工艺条件下的吸附剂技术状况。dynaSorb BT系列吸附穿透曲线分析仪可广泛应用于: 穿透曲线的测定对吸附剂的动力学性能研究共吸附和位移现象的调查选择性吸附测定技术分离工艺的合理比例缩小动态吸附和解吸实验单一和多组分吸附数据的测定沿吸附床层的温度分布曲线调查 完整地理解发生在固定床反应器的复杂过程是获得最佳分离性能的关键,穿透曲线的预测是固定床吸附过程设计与操作的基础。 dynaSorb BT系列动态吸附穿透分析仪具备强实的吸附器设计,防护门,工作区照明和结构清晰的PC控制界面,确保安全和方便的仪器操作。吸附器压力是永久性测量的,即使仪器关机,压力也会显示在仪器的前面板上。当加热包温度超过用户设定值时,信号灯将亮起。在所有dynaSorb BT仪器上,检测可燃气体的安全保护传感器是标准配置。在气体泄漏的情况下,仪器会跳回到空闲状态,并自动关闭。 除卓越的安全设计外,dynaSorb BT系列还具备诸多无与伦比的优点:穿透(突破)曲线测定, 单和多组分吸附数据测定顺序吸附与解吸实验的自动化流程, 逆向气流能力自动吸附器压力调控可高达10bar, 沿吸附器轴向监测压降自动内置气体混合,可配置最多4个高精度质量流量控制器入口和出口气体组分测量, 入口气体温度监测吸附床内的热谱测定(用四个温度传感器)沿吸附器轴向监测压降 美国康塔仪器美国康塔仪器(Quantachrome Instruments)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及最佳的性能价格比。康塔公司不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、真密度、堆密度、开/闭孔率、粒度粒形、Zeta电位、孔隙率、压汞仪、大孔分析 、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以 满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问 题的根源 通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。 康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。 康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 竞争性吸附仪SAA8100荣获2019年度科学仪器新品奖
    近期,仪器信息网举办的2020(第十四届)中国科学仪器发展年会(ACCSI2020)落幕,现场颁发2019科学仪器“优秀新品奖”。麦克仪器公司推出的竞争性吸附仪SAA8100凭借独特的创新技术,在众多厂商仪器的激烈竞争中脱颖而出,荣获2019年度科学仪器优秀新品奖。 科学仪器“优秀新品奖” 竞争性吸附仪SAA8100 SAA-8100竞争性吸附仪其创新独有的特色及应用优势,使其成为市面众多竞争性吸附仪中的一枝独秀。SAA8100广泛应用于气体分离,储存和纯化,突破曲线分析到二氧化碳捕获,吸附选择,储能,材料研究等领域,通过质量平衡提供高精度、可靠的、选择性气体/蒸汽混合物吸附数据,成为评估下一代吸附剂性能的高效工具。 关于麦克仪器公司麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。公司同时具备丰富的科学知识库和一流内部生产制造,为石油加工、石化产品和催化剂、食品和制药等多个行业,以及下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等表征提供高性能产品。公司设有Particle Testing Authority(PTA)实验室,可提供商业测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。
  • 应用麦克仪器,表征金属有机框架中的水蒸气吸附
    金属有机框架的混合特性提供了金属簇和有机配体之间几乎无限可能的组合,使这些多孔材料具有很大的应用前景,例如甲烷储存1、二氧化碳捕获2、氢气储存3和气体分离4。由于金属有机框架(MOFs)在空气除湿6、低湿度捕水7和储水8等方面的潜在应用,MOFs 的水吸附5引起了越来越多的关注。随着越来越多的具有动力学和热力学水稳定性的 MOFs9,10 的设计和合成,通过水蒸气吸附仪器对材料进行表征的需求变得至关重要。Micromeritics 的 3Flex 三站多用气体吸附仪是公认的气体吸附材料表征领域先进的仪器,广泛应用于研究型大学、政府实验室和私营部门的研发机构。除了惰性气体(如氮气、氩气和氪气)的物理吸附、静态化学吸附、动态化学吸附(TCD 或质谱仪作为检测器),蒸汽吸附是 3Flex 三站多用气体吸附仪上另一个广泛使用且值得信赖的选项。* Micromeritics 3Flex 三站全功能型多用气体吸附仪蒸汽吸附分析具有以下优点:1.实验速度更快:重量吸附分析仅需数小时或数天即可完成实验,而不需要数周;2.更高的吞吐量:3Flex 具有多达三个工作站,即使是不同的压力表,也可以同时分析三个样品;3.样品处理更容易:对于湿敏材料,只需使用手套箱里的密封块即可简单地将样品从瓶中转移到样品管中。样品无需暴露在空气中,这在重量吸附分析仪上很难实现。在此,我们给出了 HKUST-1(Cu-BTC)11 和 MIL-1019 这两种典型 MOFs 的水蒸气吸附等温线,该等温线在 Micromeritics 3Flex 三站多用气体吸附仪上获得。HKUST-1,Cu3[C6H3(COO)3]2,是由均苯三酸三阴离子连接的铜(II)桨轮二聚体组成,可商购。图1. HKUST-1的氮吸附等温线(红色),HKUST-1 的水蒸气吸附等温线(蓝色)图 2. MIL-101 的氮吸附等温线(红色),MIL-101 的水蒸气吸附等温线(蓝色)图 3. HKUST-1 在 77K 时的氮等温线对数图图 4. MIL-101 在 77K 时的氮等温线对数图MIL-101,Cr3XO[C6H4(COO)2]3 (X = F, OH), 具有三核铬(III)金属簇和对苯二甲酸二价阴离子。之所以选择这两个 MOFs,是因为 HKUST-1 和 MIL-101 都具有配位不饱和金属位点,在保持其结构完整的同时,对水分子具有很高的亲和力。在 298K 的温度下,在同一台 3Flex 仪器上,采用不同的压力表设置(P/P0 = 0.001- 0.90),同时进行两种材料的水蒸气吸附实验。HKUST-1 材料由 NuMat 科技公司的科学家提供,MIL-101 材料的结晶度由供应商确认。SEM 图像是在颗粒测试机构使用 Phenom ProX 台式扫描电镜获得的(图 5 及图 6)。样品在 170℃ 下进行真空脱气过夜。图 5. HKUST-1 的 SEM 图图 6.MIL-101 的 SEM 图HKUST-1 和 MIL-101 的 BET 比表面积分别为 1574 m2/g 和 1379 m2/g。图1中低 P/P0 区域的陡峭吸附和随后的氮气吸附等温线表明了 HKUST-1 的微孔性。图 3 中 HKUST-1 的氮气等温线对数图表现出阶跃特征,显示了 HKUST-1 与具有强四极性气体分子间的相互作用12,13。而图 2 的氮气吸附等温线表明,MIL-101 中存在两种类型的介孔,内径分别接近2.9 nm 和 3.4 nm9。在 3Flex 上精确注气 10 cm3/g STP 后,HKUST-1 在配位不饱和金属位点和随后的微孔吸附在图 1 的水蒸气吸附等温线(P/P0 0.35,这与其介孔性质相一致。MIL-101 在 P/P0 = 0.3 时的水容量为 96.2 cm3/g STP (7.7 wt. %),在 P/P0 = 0.90 时 的水容量为 850.5 cm3/g STP (68.3 wt. %)。尽管 MIL-101 可能不适合于低湿度环境下的水捕集应用,但它可以用于静态条件下的除湿,例如用于干燥剂中。回滞环是由于毛细管凝聚引起的孔填充造成的。在 P/P0 = 0.35 到 0.5 的较窄的相对湿度范围内,630cm3/g STP (50.6 wt. %) 吸水量的巨大差异揭示了其在吸附式热泵或冷水机的潜在应用14。在较高的压力和温度下,可以消除滞后现象,从而产生更窄的相对湿度范围,使其更适合上述应用。除了典型的水蒸气吸附和解吸等温线外,带有蒸汽选项的Micromeritics 3Flex 配备了广泛的常用蒸汽的流体性质的数据库,用于进行吸附剂的再生性和循环性研究、吸附热研究等。Micromeritics 3Flex 三站全功能型多用气体吸附仪是广大高校及学术机构的可靠合作伙伴。想以更具优势的价格体验领先的气体吸附技术,欢迎关注 Micromeritics 2023 学术奖助计划。
  • iPoreDFT正式发布,国产高端吸附仪迎来重大利好
    近日,理化联科(北京)仪器科技有限公司发布其首款基于非定域密度函数理论(NLDFT)的物理吸附等温线数据处理软件,结束了国外吸附分析软件在这一领域的长达20年的主导地位,填补了国内这一科研领域的空白,并取得了突破性的进展。基于统计力学发展起来的NLDFT吸附分析法,在微观分子结构层面上描述吸附剂的吸附现象,是目前最先进的微介孔分析方法。这种方法具有获得微介孔材料真实比表面及孔径的能力,并且可以在微介孔全范围内区分微孔面积和外表面积。在科研领域,该方法已被公认为最流行的物理吸附分析方法,并得到广泛的应用。iPoreDFT具有自主知识产权,弥补了现有国外分析软件将孔径分布模型人为划区组合的缺陷,可以在吸附等温线全域范围内找到相应孔型,并确定其含量比例。本次发布的iPoreDFT1.0版本拥有6个基础模型:1. 基于碳材料,氮气在77K温度下的裂隙孔模型2. 基于碳材料,氮气在77K温度下的柱状孔模型3. 基于碳材料,氮气在77K温度下的球形孔模型4. 基于分子筛,氩气在87K温度下的裂隙孔模型5. 基于分子筛,氩气在87K温度下的柱状孔模型6. 基于分子筛,氩气在87K温度下的球形孔模型上述模型提供任意两种或三种基础模型的混合模型,如氮气在77K温度下的裂隙孔+柱状孔混合模型。混合模型的加入可以大大减小拟合误差,获取更加真实的孔径分布及比表面值。因此,这些基础模型实际可组合出至少16种孔径分布模型。上图:生物碳材料选取裂隙孔+筒形孔复合模型拟合曲线,拟合误差小于1%上图:上述生物碳材料选取裂隙孔+筒形孔复合模型下的孔径分布图上图:一种氧化物材料选取裂隙孔+筒形孔+球形孔复合模型拟合曲线,拟合误差小于1%上图:上述氧化物材料选取裂隙孔+筒形孔+球形孔复合模型下的孔径分布图理化联科(北京)仪器科技有限公司拥有近30年气体吸附分析仪器领域的专业团队,通过国际合作及自主创新,以革命性的新一代iPore系列物理吸附分析仪为先导,工以匠心,追求极致,引领比表面分析的重复性和准确性达到崭新的高度。理化联科将不断开发新的DFT模型,以满足沸石分子筛和MOF/COF孔径分布研究的需要。
  • 一文带你走入物理吸附的天地
    p style=" text-align: justify text-indent: 2em " 在工作中,我们经常会遇到比表面积这个概念。比表面积的测定对粉体材料和多孔材料有着极为重要的意义,它可能会影响材料很多方面的性能。例如催化剂的比表面积是影响其性能的主要指标;药物的溶解速度与比表面积大小有直接关系;物理吸附储氢材料多为比表面积较大的多孔材料,土壤的比表面积会影响其湿陷性和涨缩性。 /p p style=" text-align: justify text-indent: 2em " 影响材料比表面积的因素主要有颗粒大小、颗粒形状以及含孔情况,其中孔的类型和分布对比表面积影响是最大的。常规测定材料比表面积和孔径的方法有气体吸附法、压汞法、扫描电镜以及小角X光散射等等,其中气体吸附法是最普遍也是最佳的测试方法,尤其是针对具有不规则表面和复杂的孔径分布的材料。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 500px height: 325px " src=" https://img1.17img.cn/17img/images/201906/uepic/d35f3ecb-de71-46ec-ad8f-94fe24a2882c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 500" height=" 325" border=" 0" vspace=" 0" / & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: justify text-indent: 2em " 气体吸附有物理吸附和化学吸附两类,由分子间作用力(范德华力)而产生的吸附为物理吸附,化学吸附则是分子间形成了化学键。物理吸附一般情况下是多层吸附,而化学吸附是单层吸附。 /p p style=" text-align: justify text-indent: 2em " 在物理吸附中,发生吸附的固体材料我们称之为吸附剂,被吸附的气体分子为吸附质,处于流动相中的与吸附质组成相同的物质称为吸附物质。 /p p br/ /p p style=" text-align: justify text-indent: 2em " & nbsp /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/184f6781-8d9a-4823-94c9-62247baceeb6.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " 根据材料的孔径,材料可分为微孔材料(孔径小于2nm)、介孔材料(孔径在2nm到50nm)以及大孔材料(孔径大于50nm)。 /p p style=" text-align: justify text-indent: 2em " 在吸附过程中,随着压力从高真空状态逐渐增加,气体分子总是先填充最小的孔,再填充较大的孔,然后是更大一点的孔,以此类推。& nbsp 以即含有微孔又含有介孔的样品为例,在极低压力下首先发生微孔填充,低压下的吸附行为主要是单层吸附,中压下发生多层吸附,当相对压力大于0.4时,可能会出现毛细管凝聚现象,直到最后达到吸附饱和状态。 /p p style=" text-align: justify text-indent: 2em " 多孔材料的表面包括不规则表面和孔的内部表面,它们的面积无法从颗粒大小等信息中得到,但是可以通过在吸附某种不活动的或惰性气体来确定。我们用已知截面积的气体分子作为探针,创造适当的条件,使气体分子覆盖于被测样品的整个表面,通过被吸附的分子数目乘以分子截面积即认为是样品的比表面积。因此比表面积值不是测出来的,而是计算得到的。 /p p style=" text-align: justify text-indent: 2em " 物理吸附仪测试吸附量主要通过以下几种方式:静态体积法(测定吸附前后的压力变化),流动法(使用混合气体通过热导池测定热导系数的变化)以及重量法(测定吸附前后的质量变化)。其中静态体积法应用最为广泛。 /p p style=" text-align: justify text-indent: 2em " 下面是静态体积法的物理吸附仪器示意图:真空泵、一个或多个气源、连接样品管的金属或玻璃歧管、冷却剂杜瓦、样品管、饱和压力测定管、压力测量装置(压力传感器)。其中歧管的体积经过校准,并含有温度传感器。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/0a23586e-b60b-4eb0-bb98-11447a4bcf39.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 2em " 1 :样品管 & nbsp 2:低温杜瓦 & nbsp 3:真空泵 & nbsp 4:压力传感器 & nbsp 5: 歧管 /p p style=" text-align: center text-indent: 2em " 6: 饱和蒸汽压测定管 & nbsp 7 : 吸附气体 & nbsp 8 :死体积测定气体He /p p style=" text-align: justify text-indent: 2em " 静态体积法测试主要流程(以氮气吸附为例):首先将样品进行脱气净化处理,之后测量死体积(样品池)空间,然后将样品冷却到液氮温度,将氮气注入到已知体积的歧管中,记录压力与温度,之后样品池与歧管之间的阀门打开,氮气扩散到样品池,由于空间体积增大和样品对氮气的吸附作用,压力下降,通过压力的下降来计算气体吸附量。计算过程基于克拉柏龙方程:PV = nRT。其中P是气体的压强,V为气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度; R为理想气体常数。吸附量由下面公式得到: /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/81d0c349-bbb5-414a-ad42-095759c73754.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " 如果温度和压力恒定,气体(吸附质)和表面(吸附剂)的作用能是不变的,在一个特定表面的吸附量也是不变的,因此在恒定温度下,可以用平衡压力对单位重量吸附剂的吸附量作图。而这种在恒定温度下,吸附量对压力变化的曲线就是特定气-固界面的吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体是作为吸附探针来分析材料比表面积和孔径分布的,它应该满足几个条件: 1) 气体相对惰性,不与吸附剂发生化学反应; 2) 物理吸附一般是弱的可逆吸附,为了使足够气体吸附到固体表面,测量时固体须冷却到吸附气体的沸点; 3) 符合或满足理想气体方程的使用条件。 /p p style=" text-align: justify text-indent: 2em " N2(77 K)是最常见的吸附气体,可满足常规分析;Ar(87 K)为微孔分析提供更准确的分析结果、更快的分析速度、更高的起始压力;CO2(273 K)对微孔碳材料具备最快的分析速度,分析孔径可低至0.35 nm;Kr (77 K)适用于超低比表面积分析;Kr(87 K)适用于薄膜样品的孔径分析。我们可根据样品特点来选择最合适的吸附气体。 /p p style=" text-align: justify text-indent: 2em " 在进行比表面积分析时,我们经常会用到Langmuir 和BET方程,其中Langmuir 方程是基于单分子层吸附理论,而BET 方程式基于多层分子吸附理论,也是目前最流行的比表面分析方法,适合于大部分样品。 /p p style=" text-align: justify text-indent: 2em " 在进行孔径孔容分析时,可选择的理论模型会更多,不同的理论模型假设条件不同,给出的计算结果也是不同的,所以我们应选择最适合样品性质的理论模型。根据经验,BJH、DH模型适用于介孔材料分析, DA、DR、 HK、SF模型适用于微孔材料分析,NLDFT、QSDFT适用于微孔/介孔材料分析。NLDFT 是非定域密度泛函理论,研究表明,NLDFT 计算出的比表面值最接近真实值,并且该理论适用于微孔和介孔材料。 /p p style=" text-align: right text-indent: 2em " strong 作者:安东帕研发团队 /strong /p p style=" text-align: left text-indent: 2em " (注:本文由安东帕供稿,不代表仪器信息网本网观点) /p
  • 精微高博成功研发JW-SEL200型特种气体选择性吸附仪
    北京精微高博科学技术有限公司与北京化工大学通过艰苦努力,已经成功研发出当今国内外最新技术JW-SEL200型选择性气体吸附仪,与2016年4月正式上市,它是目前国内外应用了最多新技术,新理念的全新仪器,相信一定会引领此类产品的潮流和方向。  (JW-SEL200型特种气体选择吸附仪)  当前,市场上所有的吸附仪均只能测量多孔材料对纯组分气体的吸附等温线,而无法测量混合气体的选择性吸附性能。实际上,我们接触到的都是气体的混合物例如大气,工业尾气等,它们都不是纯组分气体,而是多种气体的混合物,如图1 所示。  图1 工业尾气常常是包含CO2/N2,CO2/Nox等的混合气体  研究发现,单纯通过纯组分气体的吸附量来判断纳微多孔材料的环保性能是不够的,因为多孔材料对混合气体中的不同组分常常产生选择性吸附,即喜好吸附某一种气体,而不喜欢吸附另外一种气体,表明该多孔材料对某种气体具有特殊的优先吸附,只有在得到选择性吸附特性之后,才可能对吸附剂在净化环境方面的作用有一个更准确可靠的判断。如何得到气体的选择性吸附特性参数,国内外尚无确定的方法。为此,北京化工大学曹达鹏教授根据分子模拟的方法,成功的解决了这一问题,提出了DIH理论模型,并得到了学术界的认可。北京精微高博通过和北京化工大学合作,创制了首台JW-SEL200“选择性气体吸附仪”,成功引进了DIH理论模型,实现了纳微多孔材料对混合气体选择性的预测。一旦测量了混合气中两个纯组分的吸附等温线及其吸附热,就能一键式获得不同组成的混合气体的选择性吸附特性,为材料科学家、化学家、环境及化工科学家提供了快捷方便的工具,为气体环境净化领域提供了非常有意义的测试分析方法。
  • 【高校设备更新实施方案】来了!焕新国产—气体吸附仪器助力科研
    【高校设备更新实施方案】来了!焕新国产—气体吸附仪器助力科研点击填写【高校设备更新】采购需求市面上的气体吸附产品庞杂,如何挑选更适合您的仪器1. 产品功能稳定,数年间持续为您提供准确数据2. 产品自动化程度高,方便操作3. 售前售后为您排忧解难,有问题随时解决4. 线上丰富资料库,学习机器使用技巧,了解更多应用发展静态法产品优势:介孔系列的一体化集装式真空管路系统,有效提高系统极限真空度和测试精度微孔系列的高真空不锈钢微焊管路系统配套 VCR 接口和气动阀,系统内壁电抛光处理,可以保证系统的低漏气率,配合分子泵,达到更高真空度高精度数字化压力测量及数据采集系统,抗干扰能力强,可扩展性高,多量程压力传感器分段测量确保微孔低压力测量准确性采用国际同类知名品牌一致的仪器检测及验收标准,确保测试数据与国际接轨。测试数据经多家权威国家级计量院计量认证,获得计量认可证书动态法产品优势:优质的不锈钢管路系统,密封性更好,可靠性更强,降低热导池温漂误差,提高仪器使用寿命实时调节 P/P0 在 0.03~0.35 范围内任何比例的混合气体可满足客户不同的测试需求多样品测试速度快,同时对于小表面积测试结果准确度高、重复性好真密度产品优势:大热容量的集装式恒温系统,确保全程温度的均匀性和缓变性,针对特殊样品可以按需进行控温,满足不同测试需求高精度数字量采集系统,抗干扰能力更强,可扩展性高。采用高精度计算模型,提高测试精度样品仓底部安装过滤装置,有效防止样品吸入管路系统。测试腔体底部进气方式,有效防止样品飞溅高温高压气体吸附仪产品优势:高压及真空通用的不锈钢微焊管路系统,确保高压和高真空下极低的漏气率,提高仪器稳定性和使用寿命可定制的防飞溅不锈钢微焊样品管,确保高压测试安全,提高仪器使用寿命及可靠性微型标准腔体(参考腔体),结合高密封性管路系统,少量样品量(毫克级至几克级)可达到传统仪器采用几十克样品量测试结果同等精度测试完成后无任何数据二次误差消除操作,确保测试结果的一致性和可靠性
  • 【ISCO泵】ECBM:在现实条件下的重力吸附测量
    01 摘要煤层气作为传统天然气的有力补充,拥有广阔的开发前景。增强型煤层气(ECBM)技术不仅显著提升了甲烷的采收效率,同时还实现了二氧化碳的地下封存。该技术的研究可通过利用 Rubotherm IsoSORP 系统配备的磁悬浮天平对吸附等温线进行重力测量来深入进行。在策划 ECBM 项目时,精确的气体吸附数据是必不不可少的。02 关键词&bull 天然气&bull 增强型煤层气 (ECBM),二氧化碳 (CO2)&bull 煤层气&bull 重力测量法*图片来自互联网03 引言受能源价格不断攀升的驱动,对油气替代资源的开发探索具有极其重要的经济价值。众多天然气资源以煤层气(CBM)的形态赋存于煤层之中。增强型煤层气(ECBM)技术通过注入二氧化碳来提升从煤层中提取甲烷的效率[1]。除增加天然气提取量外,ECBM 还具备另一项优势:即能将碳捕集与封存(CCS)过程中产生的 CO2 安全地贮存于地下,避免其排放至大气中[2]。但是,甲烷被 CO2 取代的过程极为复杂:气体不仅会在煤的表面发生吸附作用,还会被吸收进入煤的内部结构,导致煤样体积膨胀。因此,发展 ECBM 技术必须在真实条件下,对不同煤样进行细致的研究[3]。本应用说明阐述了如何运用 Rubotherm IsoSORP 系统通过重力测量方法研究 ECBM 过程。04实验Rubotherm IsoSORP 系统采用磁悬浮天平(MSB)技术来精确测定吸附等温线。一套气体定量供应系统用于在特定实验条件下提供纯净或混合气体。煤层气通常存在于压力介于 30 至 300 bar,温度介于 30 至 100℃ 的煤层中。实验室级别的测量必须能够覆盖这些压力与温度范围。在较高压力下用二氧化碳创建一个特定的气体环境并非简单任务:需要通过柱塞泵将二氧化碳从钢瓶压力(60 bar)加压[4],同时需对整个供气系统包括所有阀门和管道加热以防凝结。图 1 展示了完整的 IsoSORP 系统的示意图。图1. 配备 MSB 和 SC HP 静态气体定量系统的 IsoSORP 仪器流程图05结果在意大利南部撒丁岛的苏尔西斯煤田采集的煤样上开展了 ECBM 研究。图 2 展示了在 45℃ 和 60℃ 条件下,二氧化碳的吸附等温线:观察到二氧化碳的吸附量超过了甲烷,这对于 ECBM 技术来说是一个至关重要的条件[5]。图2. 在 45℃ 和 60℃ 下,甲烷和二氧化碳在撒丁岛煤样上的绝对吸附量下一步是测量二氧化碳和甲烷混合物的吸附量。在此过程中,利用磁悬浮天平重力测定总体吸附等温线。依据这些数据,通过对气相中未被吸附的混合气体进行气相色谱(GC)分析,可以得出各单一组分的吸附数据。在降压步骤后,可以将气体样品通过六通气体采样阀采集用于 GC 分析。另一种分析手段是利用质谱(MS)进行分析。图3. 在 45℃ 下,两种甲烷/二氧化碳混合物在撒丁岛煤上的总吸附量和组分选择性吸附量这些实验获得的数据(图3)显示,在混合气体中即使二氧化碳含量较少,其在煤中的吸附量也超过甲烷[6]。这证明了通过注入二氧化碳可以从煤层中置换出甲烷。为了制备成分精确的气体混合物,Rubotherm 开发了MIX-模块作为附加配置选项:MIX 仪器配备了经过校准体积的储罐、一个气体循环泵以及一个带有采样阀的气体采样体积用于分析(图4)[7]。图4. 用于气体混合物高准确度吸附分析的 IsoSORP SC MIX 静态系统06 结论煤层气(CBM)是未来替代传统天然气的宝贵资源。增强型煤层气开采技术(ECBM)通过注入二氧化碳来提高天然气的采收率,并具有长期封存二氧化碳的额外优势。研究表明,Rubotherm IsoSORP 仪器能够为 ECBM 项目的规划和设计提供关键数据,包括气体储存容量以及甲烷被 CO2 置换的动力学过程。Rubotherm为这一应用所需配置:IsoSORP MSB 系统&bull 高测量负载,高达 60 克&bull 流体密度测量&bull 压力范围 HP II 高达 350 bar&bull 温度范围从环境温度到 150℃SC-HP II 静态定量给料系统&bull 加热至 100℃ 以避免凝结&bull Teledyne ISCO 柱塞泵用于输送二氧化碳&bull 可选:MIX 模块参考1. R. Pini, D. Marx, L. Burlini, G. Storti, M. Mazzotti: Coal characterization for ECBM recovery: gas sorption under dry and humid conditions Energy Procedia, Vol. 4 (2011) 2157-21612. Ch. Garnier, G. Finqueneisel, T. Zimny, Z. Pokryszka, S. Lafortune, P.D.C.Défossez, E.C. Gaucher: Selectionof Coals of different maturities for CO2 Storage by modelling of CO2 and CH4 adsorption isotherms Inter-national Journal of Coal Geology, Vol. 87 (2011) 80-863. J.S. Bae, S.K. Bhatia: High-Pressure Adsorption of Methane and Car-bon Dioxide on Coal Energy & Fuels, Vol. 20 (2006) 2599-26074. Supercritical Fluid Applications in Manufacturing and Materials Pro-duction, Teledyne ISCO, Syringe Pump Application Note AN15. S. Ottiger, R. Pini, G. Storti, M. Mazzotti, R. Bencini, F. Quattrocchi, G.Sardu and G. Deriu: Adsorption of Pure Carbon Dioxide and Methane on Dry Coal from the Sulcis Coal Province (SW Sardinia, Italy) Environ-mental Progress, Vol. 25 (2006), 355-3646. S. Ottiger, R. Pini, G. Storti and M. Mazzotti: Competitive adsorption equilibria of CO2 and CH4 on a dry coal Adsorption, Vol. 14 (2008)7. FlexiDOSE Series Gas & Vapor Dosing Systems, Rubotherm 2013作者:Frieder Dreisbach 拥有机械工程热力学博士学位,是德国波鸿 Rubotherm GmbH 的董事总经理。Thomas Paschke 拥有分析化学博士学位,是德国波鸿 Rubotherm GmbH 的应用专员。
  • 酶联免疫吸附法检测瘦肉精
    摘 要:介绍了竞争酶联免疫吸附法测定猪肉中的盐酸克伦特罗的方法。利用盐酸克伦特罗试剂盒,对猪肉组织中残留的盐酸克伦特罗经抽提、竞争后,用酶标仪进行检测分析。此法较适用于现场检验,检测速度快、灵敏度高,是保证肉品卫生安全的较好监控方法。 酶联免疫吸附法是目前最佳的检测方法。ELISA 检测方法有双抗体夹心法测抗原、间接法测抗体、竞争法测抗体等。该文是利用酶联免疫吸附法中的竞争法测抗体,其原理是利用多克隆抗体既能与盐酸克伦特罗结合,也能与包被抗原结合。这些包被抗原被固定在酶标板孔壁上,当样品中含有瘦肉精时,它与包被抗原竞争结合抗体中有限量的结合位点。由于每一个孔中抗体的结合位点数相同,当样品中瘦肉精浓度低时,就有更多抗体的位点与包被抗原结合,更多的抗体被固定在酶标板壁上,就会与更多的酶标二抗结合,所以结果就呈现深兰色。相反,样品的瘦肉精浓度高,结果就呈现浅兰色。加入终止液后,兰色相应变成黄色,然后用酶标仪进行测定。利用竞争酶联免疫吸附法检测瘦肉精,具有速度快,灵敏度高的特点,适用于现场检测,对以后瘦肉精检测工作的发展具有指导作用。 1  实验材料与方法 1.1  原料的准备 抽取具有一定批量的有代表性的无皮猪肉,剔除杂质、脂肪。将精肉用高速捣碎机捣碎混合均匀,放置冰箱冷冻备用。取捣碎的样品5g ,加入25mL ,50mmolHCl 振动1.5h ,以达到均质。称取5g均质物(相当于1g 肝脏或肌肉),加入离心管中,10000r/min 离心15min。取上清液至另一个离心管中, 加1mol NaOH 300ul , 混合15min。加入4mL ,500mmol KH2PO4 (pH3.0),迅速混匀置于4摄氏度的冰箱内保存至少1.5h。10000 r/min 离心15min ,分离上清液。 1.2  试剂 盐酸克伦特罗&mdash 酶联免疫试剂盒 1.3  仪器 电热恒温水浴锅、酶标仪、离心机、匀浆机(HFJ系列内切式匀浆机,厂家:天津恒奥)、微量加样器。 1.4  方法 1.4.1  洗板 所有试剂回温至室温。将浓缩洗涤液用蒸馏水稀释10 倍。将酶联免疫板取出,放在室温下平衡5min。每孔加入300uL 洗液,放置1min ,再甩掉洗涤液,重复3 次,将板内残留洗涤液在吸水纸上甩干。 1.4.2  竞争 试剂盒中的抗体按1∶1000 倍稀释。加样时在板上按1 到3 的顺序加入标样,每孔100uL ,重复两次,其它孔加入待测样品,每孔100uL 抗体,注意加入抗体时不要让枪头沾染孔里的样品与标准样,然后将酶标板放入湿盒里,在37摄氏度下竞争30min。 1.4.3  加二抗 试剂盒中的二抗标记酶按1 :1000 稀释。在酶联板上每孔加200&mu L 配制好的二抗标记酶,将其放入湿盒,置37摄氏度、30min。 1.4.4  加底物显色 取底物A、底物B 按等体积混匀,在酶标板上每孔加200&mu L 配好的底物显色板显色,显色后每孔加入50uL 的终止液终止反应。在酶标仪上测定各标准样和各样品450nm 处的光密度(OD)值,用瘦肉精标准液200ng/mL 孔作为0孔。 2  讨论 2.1  试剂盒的贮存 试剂盒在4摄氏度贮存。抗体和酶标二抗(IGg-HRP)在常温下容易变性,须冷冻保存,使用时直接拿出按比例稀释。 2.2  加样 实验中有3 次加样步骤,即加标本、酶结合物和底物。加样时应将所加物用微量加样器加在ELISA板孔的底部,可用左手扶住微量加样器的中部,避免加在孔壁上部,并防止溅出和产生气泡,导致实验误差。加酶结合物应用液和底物应用液时可用定量多道加液器,使加液过程迅速完成。 2.3  保温 在实验中有两次抗原抗体反应,即加标本和加酶结合物后。抗原抗体反应的完成需要有一定的温度和时间,这一保温过程称为温育(incubation)或孵育。因为ELISA 属固相免疫测定,抗原、抗体的结合只在固相表面上发生,加入板孔中的标本,其中的抗原并不是都有均等的和固相抗结合的机会,只有最贴近孔壁的一层溶液中的抗原直接与抗体接触。这是一个逐步平衡的过程,因此需经扩散才能达到反应的终点。在其后加入的酶标记抗体与固相抗原的结合也同样如此。温育的温度通常是37摄氏度,也是大多数抗原抗体结合的合适温度。两次抗原抗体反应一般在37摄氏度经1~2h ,产物的生成可达顶峰。为加速反应,可提高反应的温度,但最高不要超过43摄氏度。保温的方式采用水浴,将板置于不锈钢电热恒温水浴锅中,注意可将ELISA 板置于水浴箱中,ELISA 板底应贴着水面,使温度迅速平衡。为避免蒸发,板一次不宜多于两块板同时测定。 2.4  洗涤 洗涤在ELISA 法过程中是很关键的一步。ELISA 就是靠洗涤来达到分离游离的和结合的酶标记物的目的。通过洗涤以清除残留在板孔中没能与固相抗原或抗体结合的物质,以及在反应过程中非特异性地吸附于固相载体的干扰物质。聚苯乙烯等塑料对蛋白质的吸附是普遍性的,而在洗涤时又应把这种非特异性吸附的干扰物质洗涤下来。如果洗板被污染或洗涤用水被游离的酶标记物污染、洗涤次数不够或注水量不足、洗板后间隔时间太久致使板孔干燥等都会直接影响检测的最终结果,严重者实验不产生颜色致使实验失败。 2.5  显色和比色 显色是ELISA 中的最后一步温育反应,此时酶催化无色的底物生成有色的产物。反应的温度和时间仍是影响显色的因素。在一定时间内,阴性孔可保持无色,而阳性孔则随时间的延长而呈色加强。适当提高温度有助于加速显色进行。在定量测定中,加入底物后的反应温度和时间应按规定力求准确。酸性终止液H2SO4 会使蓝色转变成黄色,此时可用特定的波长(450nm)测读吸光值。比色前应先用洁净的吸水纸拭干板底附着的液体,然后将板正确放入酶标比色仪的比色架中。以软板为载体的试验,需先将板置于标准96 孔的座架中,才可进行比色。并在加底物液显色前将软板边缘剪净,以使软板完全平妥坐入座架中。比色时应以200ng/mL 校零点,且孔在边缘。然后依次测量不同浓度下的OD 值。
  • 膜分离或变压吸附?氮气发生器的原理对比
    克里斯.哈维,总经理-毕克气体仪器贸易(上海)有限公司众所周知,毕克科技拥有当前市场上最广泛的氮气发生器种类,同时,我们不断地研发出新的产品满足日新月异的氮气的需求,来给新的应用设备供气。我们不仅仅有市面上种类最多的氮气发生器来满足液质联用仪的用气需求,同时,我们给气相色谱仪,总有机碳分析仪,傅里叶红外光谱仪,样品蒸发仪,通风橱,手套式操作箱,电感耦合等离子体光谱仪,核磁共振仪,蒸发光散射检测仪等实验室设备供气的气体发生器种类也很全面和广泛-实际上,你实验室里几乎是所有需要用气的设备,都可以让我们的气体发生器来供气。为什么我们的气体发生器能够覆盖您的实验室里大部分应用设备?因为,我们二十年如一日,专注于实验室里气体发生器的研发和生产,专心于给您提供稳定可靠的实验室气源。另外一个广为人知的事实就是:我们所采用的气体分离技术成熟可靠。在我们的氮气发生器上,我们用膜分离技术和变压吸附技术来生产氮气,如果我们的顾客对某一种技术青睐有加,我们可以根据客户的喜好来推荐合适的型号。但是,对于某些特定的应用设备,使用其中的一种分离技术比另一种更有优势。膜分离技术让压缩空气通过中空纤维膜,当空气通过膜的时候,空气中的氧气,二氧化碳,一氧化碳和水蒸汽 会通过中空纤维膜管道上的小孔,进而排到大气中去。在膜的出口,大尺寸的氮气分子和惰性气体氩气都收集起来,输送到应用设备。这种氮气分离提取技术简单有效,无需任何移动部件。分离提取出来的氮气最高纯度能达到99.5%,不含任何杂质。变压吸附技术是通过固体介质来分离气体混合物中的单一组分,用变压吸附技术来分离空气中的氮气,所需的固体介质是碳分子筛,碳分子筛对空气中的氧气选择性吸附,从而在加压的情况下分离了空气中的氮气和氧气。 碳分子筛其实就是多孔疏松的棒状碳颗粒,当对填充满了碳分子筛颗粒的氮气纯化密封柱中充入压缩空气(主要成分是氮气,氧气和惰性气体氩气和少量水汽)时,碳分子筛会吸附水汽,氧气,但是,氮气不会被吸附。这主要是因为氮气和氧气的分子尺寸不一样,碳分子筛颗粒上的小孔能让分子尺寸小的氧气进入,却不能让氮气进入,因为氮气的分子尺寸大于氧气;从而,氮气和氧气被分离开了。变压吸附这一过程包含两个步骤和阶段:1.吸附阶段,压缩空气中氧气,水汽,二氧化碳被碳分子筛柱子吸附,氮气被收集起和储藏起来。2.重生阶段,将碳分子筛柱的压力释放到大气中去,吸附了氧气,二氧化碳,水汽的碳分子筛颗粒释放掉吸附的氧气,二氧化碳和水汽,从而为下一次吸附做好准备。变压吸附这一个过程需要维持一个稳定的温度,这个温度通常情况下和实验室的环境温度接近(20-25℃)。变压吸附技术生产出来的氮气,纯度最高能达到99.999%,纯度越高,生产过程中需要消耗的空气就越多。变压吸附技术和膜分离技术来生产氮气,各有利弊。具体使用哪种方法来生产氮气要取决于应用和流速要求。在市面上,某些人说氮气膜和碳分子筛是消耗品,需要定期更换,这是不对的。如果用户的除油和除水过滤器效果不佳,碳分子筛和氮气膜的分离效果会随着使用年限的增加而慢慢失效。液质联用仪应用对于液质联用仪而言,氮气纯度高于95%就可以大多数的质谱仪的用气要求了,即使一些非常高端和灵敏的质谱仪也没有问题。关键是气体里面不能含有任何粉尘,水汽和碳氢化合物及油滴,所以,高性能的过滤系统尤为重要,过滤系统的除尘规格要小于0.01微米,同时,油滴和水汽也必须除掉。由于过滤系统一旦饱和,它们的过滤吸附效果也会大打折扣,所以,每年对过滤器进行维护也十分有必要。对于液质联用仪而言,分别利用膜分离技术和变压吸附技术来生产氮气的产品我们都有,但是,对于一些小型和中型的实验室而言,选用膜分离的氮气发生器有一些非常明显的优势维护和服务膜分离技术涉及到很少的移动部件,通常情况下,一台氮气发生器里面的氮气膜重3公斤(而变压吸附模块的重量能达到100公斤),这就让维护变得十分简单。目前,毕克中国的服务团队能保证在48小时内97%的首次修复率。一旦发生器出了问题,小而轻的氮气膜占用空间小,让发生器的维护以及零配件的更换都非常方便,同时,也降低了维护和维修成本,节约了时间。氮气膜的工作无需很多电子部件的管理和控制,那么,我们可以将更多的电子部件用于监控核心技术参数,同时,让我们的工程师在维修时可以更快找到症结。尺寸和重量由于氮气膜尺寸小,重量轻,这也就意味着我们能设计出更轻盈小巧,结构更紧凑的气体发生器,同时,让发生器能放在标准实验台下,发生器机底脚轮设计,方便移动。这些气体发生器对于那些空间很有限的实验室而言,无疑是完美的选择。噪音水平膜分离技术不产生任何噪音,变压吸附技术在碳分子筛柱泄压放气的时候,会有很大的放气的声音产生,这也就意味着膜分离氮气发生器能放在应用仪器旁边,安静地工作。无需将发生器放在另外一个房间,从而增加了管道延长所产生的额外费用。变压吸附技术对于大型实验室而言,优势十分明显,在我们的iFlow产品里,我们应用变压吸附技术,它能:生产出更高流速的氮气在一些拥有20-30台质谱仪的大型实验室里,我们已经安装了一些利用变压吸附技术来生产氮气的发生器。一台氮气发生器就足够给整个实验室来供气了。将成本降至最低由于一台氮气发生器的氮气流速就足够给实验室里所有的应用设备来供气,这种集中供气方案无疑比单台小流量气体发生器给单台应用设备来供气的性价比要高很多。气相色谱仪应用利用变压吸附技术所生产出来的氮气,非常适合给气相色谱仪来供应载气。给气相色谱仪做载气,不仅要求氮气的纯度特别高,还要求氮气中的碳氢化合物含量特别低。利用碳分子筛变压吸附技术来生产氮气是唯一的选择,在空气进入到碳分子筛之前,空气经过过滤,然后再经过催化裂解炉将所有的微量碳氢化合物催化氧化除掉。所生产出来的氮气纯度特别高,能给所有的气相色谱仪做载气,包括电子捕捉检测器所需要用到的载气。这不是变压吸附技术应用的典型案例,我们所采用的碳分子筛变压吸附技术,能将移动部件的数量降到最低,同时,变压吸附柱在工作时没有噪音,在发生器出现故障时,维修也很方便。毕克在全世界各地售出的气体发生器超过5万台,有4000台在实验室。我们所有的气体发生器都经过知名质谱仪和气相色谱仪生产商的检验和认证,同时,OEM供应商可以销售我们的气体发生器。基于我们对气体发生器的专注和丰富的经验,我们开发出来了很多优秀的产品,诸如NM32LA,NM3G, AB3G,Precision 系列氢气发生器,零级空气和氮气发生器,以及IFlow系列产品。若您想了解与您的应用相匹配的气体发生器和实验室集中供气,欢迎联系我们。
  • 大连化物所开发新型金属有机框架吸附材料
    近日,我所节能与环境研究部(DNL09)王树东研究员团队与沙特阿拉伯国王科技大学赖志平教授团队合作,提出了一种通过原位氟化合成Fe基金属节点的策略,设计合成了一种新型全氟节点金属有机框架(MOFs)——DNL-9(Fe),该材料是一种具有螺旋氟桥金属节点结构的Fe-MOFs吸附剂,可用于潮湿条件下的C2H2/CO2吸附分离。C2H2/CO2具有相同的动力学尺寸(3.3Å)、相似的极化率(29.1×1025/cm3至33.3×1025/cm3)和相近的沸点(189K至194K),在潮湿的工业环境中吸附分离C2H2和CO2具有挑战。MOFs是一种孔道丰富,结构可调的多孔材料,但是其稳定性、耐水性相比于活性炭和分子筛较差,这也限制了其在C2H2潮湿环境下分子的吸附和C2H2/CO2的分离。相比于在MOFs中引入不饱和金属位点、有机配体功能化等调控手段,构筑含氟阴离子等氢键受体提供了另一种途径来增强客体分子与骨架间的相互作用。该方法通过强化C2H2与MOFs限域孔道内的氢键作用实现C2H2的选择性吸附,同时可以提升材料的耐水性和抗水气吸附干扰能力。然而,在MOFs的合成中难以对金属节点进行原位氟化配位,目前构筑含氟MOFs单元通常采用SiF62-,TiF62-,GeF62-阴离子盐,或含氟有机配体等价格昂贵的商业试剂,这也阻碍了含氟MOFs的低成本生产与实际应用。   本工作中,研究团队另辟蹊径,在DMF溶剂高温分解条件下构造出还原性合成环境,促进了F原子与金属Fe的直接配位络合。团队采用简单的HF试剂,实现了Fe-MOFs的金属节点的原位氟化和螺旋结构拓扑链的生长,从而开发出具有混合变价的[Fe6(μ-F)6F8]配位节点的全氟Fe基材料DNL-9(Fe)。DNL-9(Fe)的结构区别于常见的[Fe3(μ3-O)(μ-OH)3]或[Fe2MII(μ3-O)(μ-OH)3]节点,其由生物质基呋喃二甲酸作为配体合成原料,取代了传统对苯二甲酸等难降解的有机物,是一种环境友好型吸附剂。该材料还具备优异的耐水性和化学稳定性,在潮湿环境中可以高效分离C2H2CO2,一次提浓后的C2H2纯度即可达到99.9%。同时,氟化的金属位点Fe-F-Fe有效降低了H2O和C2H2分子的吸附热,在真空条件下即可循环再生,可以应用于变压吸附(PSA)和真空解吸(VSA)工艺。因此,本工作为多孔材料结构设计、MOFs的氟化改性和吸附分离提供了新的思路。   近年来,王树东团队在C2H2/CO2协同吸附机理探究(Chem. Mater.,2022),潮湿CO2捕集(Fuel,2023;Chem. Eng. J.,2022;J. Energy Chem.,2022),混合配体MOFs调控(Chem. Eng. J.,2022),果糖直接合成MOFs(ACS Sustain. Chem. Eng.,2021)等相关方面开展了多孔材料设计与吸附分离工作,致力于开发低成本、高效、疏水等综合性能的多孔材料吸附剂。   相关研究成果以“Fluorido-Bridged Robust Metal-Organic Frameworks for Efficient C2H2/CO2Separation under Moist Condition”为题,发表在《化学科学》(Chemical Science)上,该工作第一作者是我所DNL0901组博士毕业生顾一鸣。上述工作得到国家自然科学基金等项目的资助。
  • 500亿空间|VOCs吸附材料评价如何评价?
    p style=" text-indent: 2em text-align: justify " VOCs(VolatileOrganicCompounds)学名挥发性有机物,按照世界卫生组织的定义,沸点在50—250℃的化合物,室温下饱和蒸气压超过133.32Pa,在常温下以蒸气形式存在于空气中的一类有机物为挥发性有机物(VOCs)。 /p p style=" text-indent: 2em text-align: justify " VOCs危害大,不容小觑:VOCs成分复杂,目前已经监测出的VOCs有300多种,主要来自建筑装饰、有机化工、石油石化、包装印刷、表面涂装等行业。VOCs四大大气污染物之一,属于形成PM2.5和光化学烟雾的重要因素,能够损害人体神经系统、血液成分和心血管系统,对人体健康和社会环境影响极大。 /p p style=" text-indent: 2em text-align: justify " VOCs污染源监测需求市场空间将达468亿元,受益于法律法规重视度增加、排污费的征收以及政府部门补贴的激励作用,最高激活539亿市场空间;截至目前,VOCs治理行业已发生空间约为50亿元,主要集中在石油化工业以及印刷行业。到2020年VOCs治理行业的剩余市场空间约为500亿元,具有相当大的增长潜力。 /p p span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/60ce5a25-b35c-4199-9e1d-7a7ff6bb148c.jpg" title=" AAA.jpg" alt=" AAA.jpg" / /p p /p p style=" text-indent: 2em text-align: justify " 物理吸附法是目前去除VOC的重要方法,因此吸附材料对VOC的吸附性能评价就成为其中重要的一环。传统方法采用测试材料比表面积的方法,即通过在低温下吸附氮气的方法来计算材料比表面积,比表面积越大吸附能力越强,此方法只能给出定性的方向性分析,弊端是不能定量分析吸附材料对某种VOC的吸附量。对于目前客户越来越严格的要求,传统方法已经无法满足客户的需求,而进口仪器能满足要求的也很少,而且价格昂贵,测试缓慢,又由于使用复杂,真正能正常使用的用户少之又少。 /p p style=" text-indent: 2em text-align: justify " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 417px " src=" https://img1.17img.cn/17img/images/201906/uepic/b928f466-182f-4aee-a1f0-4a4a0b02a45c.jpg" title=" BBB.jpg" alt=" BBB.jpg" width=" 500" height=" 417" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 针对目前的市场现状,贝士德仪器的研发人员在2013年投入大量人力物力,联合复旦大学龙英才教授(龙老师是中国分子筛材料吸附VOCs应用的专家和先驱)共同开发,历经三年时间,推出国内首款重量法蒸气吸附仪,这也是全球唯一一款超过三分析站同时测试的重量法蒸汽吸附仪。他的主要优势特点是: /p p style=" text-indent: 2em text-align: justify " 1. 相比容量法,不采用任何折中近似处理,不存在无温区分布、气体非理想化校正等误差来源。 /p p style=" text-indent: 2em text-align: justify " 2.弥补了容量法无法测试实时等压吸附速度、无法准确描述材料吸附动力学特性的缺陷。 /p p style=" text-indent: 2em text-align: justify " 3.作为多站真空重量法蒸汽吸附仪,可支持1-8个分析站同时分析。 /p p style=" text-indent: 2em text-align: justify " 经过三年的市场检验,3H-2000PW重量法蒸汽吸附仪通过优良的性能和高效率的测试能力获得了用户的肯定,这其中包括:复旦大学,北京交通大学,西安交通大学,天津理工,中国石化南京催化剂分公司等等,此外,它也作为科研工作者的有力助手,多次出现在国内外高水平期刊中,其中最为引人注目的就属郑州大学臧双全课题组发表在顶级期刊《Nature-Chemistry》的文章,其中有应用我公司两种类型的物理吸附仪,3H-2000PS1比表面及孔径分析仪和3H-2000PW重量法蒸气吸附仪测试的数据,这也从侧面说明顶级期刊对国产仪器测试数据的认可。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 198px " src=" https://img1.17img.cn/17img/images/201906/uepic/add57183-e9fb-4545-8f24-1c5bda47212d.jpg" title=" CCC.jpg" alt=" CCC.jpg" width=" 500" height=" 198" border=" 0" vspace=" 0" / /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 500px height: 226px " src=" https://img1.17img.cn/17img/images/201906/uepic/03cf6f1b-eca9-43fd-bf64-bb4f53c0d01d.jpg" title=" DDD.jpg" alt=" DDD.jpg" width=" 500" height=" 226" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify " 贝士德仪器的研发团队没有满足于眼前的成果,因为更多的客户提出了更高的要求,比如在实际应用中,VOCs不是纯组分气体,而是多种组分的混合,多组分蒸汽的竞争吸附这一更加复杂的难题摆在了我们的面前,令人振奋的是贝士德仪器在2018年将多组分竞争吸附分析仪+联用在线质谱系统正式推出,将为更多用户的科研,实验提供强有力的解决方案。 /p p style=" text-indent: 2em text-align: justify " 2019年国际贸易摩擦升级,美国的技术壁垒和技术封锁手段再次抬头,虽然没有在风口浪尖上的华为那么直面巨大压力的挑战,但是作为国产仪器厂家的我们也是感同身受,国产仪器需自强,贝士德仪器一直在努力,我们以实际行动来打动用户,只要用户愿意了解我们的仪器,我们将提供完善的售前服务,提供不逊色于国外仪器的测试结果和解决方案。 /p p style=" text-indent: 2em text-align: right " strong 作者:贝士德研发团队 /strong /p p style=" text-indent: 2em text-align: left " (注:本文由贝士德供稿,不代表仪器信息网本网观点) /p
  • “超级沙”可高效吸附水中重金属离子
    据英国广播公司(BBC)6月24日报道,美国科学家将普通沙子涂上便宜且来源丰富的氧化石墨,使其变身为“超级沙”,能有效地除去水中的汞和染料分子,普通沙子过滤10分钟就会饱和,而“超级沙”吸收重金属可超过50分钟,净水能力提高了5倍。这种成本低廉的实用产品可广泛应用于发展中国家,相关论文发表在美国化学学会出版的《应用材料与界面》杂志上。   参与此项研究的美国莱斯大学的高薇(音译)表示,当水被病原体、有机污染物和重金属离子污染时,普通粗沙的净化效率比细沙低,但细沙存在过滤速度慢的缺点。他们将具有很强吸附能力的氧化石墨同普通粗沙混合在一起放入水中,然后将混合物加热到105摄氏度,待水挥发掉,就得到了这种水流通过量大、净水效率更高“超级沙”。   该研究的领导者、莱斯大学的普利克尔阿加延表示,为了使该“超级沙”能有针对性地吸附污水中的某些有机污染物或特定金属,可对氧化石墨进行修改。   澳大利亚莫纳什大学的梅耐克马巨德表示,这项技术的另一优势是便宜,“超级沙”的性能可与市面上的活性炭相媲美,但却使用的是便宜且储量丰富的氧化石墨,如果能在室温下制造,会更具成本优势。   世界卫生组织(WHO)表示,撒哈拉以南非洲国家仅有60%的居民、大洋洲仅有50%的居民能方便地获得饮用水。用沙子净化水已有6000多年的历史了,这种涂了氧化石墨的“超级沙”有望让这些国家和地区的人民更方便地获得饮用水。
  • 关于物理吸附行业“吸附速度”与“吸附速率”的区别
    在物理吸附行业,经常有不少学生、老师甚至业内的专家,不确定自己要测试的物理量该叫“吸附速度、脱附速度、解吸速度”还是“吸附速率、脱附速率、解吸速率”;不少硕士、博士论文中,甚至较专业的一些技术文章,也经常出现不统一的叫法。由于“速度”相对“速率”偏口语化,”速率“比”速度“更显“学术”,因此经常发现不少专业的人,把本该叫“吸附速度、脱附速度、解吸速度”等的参数,叫成了“吸附速率、脱附速率、解吸速率”。要搞清楚到底该叫“吸附速度”还是“吸附速率”,首先要搞清楚“速度”和“速率”的区别。速度为矢量,有方向和大小;速率为标量,只有大小,没有方向。举例说明:对于位于边长为100m的等边三角形3个角的A、B、C 3点,某物体以匀速10m/秒的速度大小从A经C到达B点,耗时20秒;对于这个情况,该物体从A到B的速度为5m/秒,整个过程其移动速率为10m/秒。再例如,对于悬浮于气体中一个做布朗运动的气体分子或灰尘,其不规则运动的即时速度大小或速率是很大的,但是,在我们我们讨论其从A点运动到B点的速度时,我们是用AB的直线距离除以时间来表示,而速率就不需要考虑其方向性,“只看大小”。在我们讨论吸附质在吸附剂表面的物理吸附现象中,由于吸附和脱附时同时并存发生的两种现象。大家都知道,当处于吸附平衡状态,吸附速率和脱附速率都不是零,只是相等,但吸附速度和脱附速度是零。再比如,对于其它所有条件都相同只是温度不同的两个吸附平衡状态下,温度高的状态的吸附速率或脱附速率有可能相对温度低的都大,但是吸附速度或脱附速度都是零。“吸附速率”或“脱附速率”,更多的偏向于表征吸附质分子单纯聚集于吸附剂表面或单纯离开固体表面的速度大小;而“吸附速度”或“脱附速度”,则更多的偏向于表征在一定时间内由于吸附速率和脱附速率差造成的“净聚集”或“净离开”吸附剂表面的吸附质的量,由于有“方向性”,偏向于表征“效果”。在目前市面的大多数涉及“吸附速度、解吸速度”测试的仪器,测试的其实是一段时间内吸附剂表面吸附质的增加量或减少量,那么,此类仪器就应该叫做吸附速度测试仪或解吸速度测试仪是更恰当的,而不应该叫做吸附速率测试仪或解吸速率测试仪、分析仪等,因为其分析的不是“速率大小”。其实,关于类似这些“专有”名词或概念的普及,主要一方面来自课本,也有不小一部分来自于相关商家或研究单位。假若理解不对的人过多,且一时没有权威单位给予纠正和说明时,商家就有可能从商业利益出发,跟随“潮流”而“被迫”舍弃“严谨”;像“吸附速度”这个词,可能不少国内外商家其实是明白应该怎么个叫法,但是从商业角度考虑,为了更好的可接受性和被认识被发现,而跟随大众。尤其在网络搜索占主要推广方式的当下,这种情况更明显。不少通俗易懂但又不严谨的词语,就是这么产生的。贝士德仪器作为从事气体吸附、蒸汽吸附类分析仪器的制造商和研究单位,有责任给出科学的说明,并倡导正确使用“吸附速度”和“吸附速率”等此类名词。
  • 日开发吸附土壤放射性物质新方法
    新华社东京7月14日电 人工沸石在水质净化和土壤改良等领域早有应用,它还有吸附放射性铯的功能。日本研究人员日前宣布,他们在人工沸石的这一性能基础上,通过化学合成使其带有磁性,这一技术可在清除土壤放射性物质时派上用场。   据日本《每日新闻》报道,人工沸石可由火电站发电副产品粉煤灰制成,原料价廉易得。爱媛大学农学部教授逸见彰男等研究人员在人工沸石的合成过程中混入铁化合物,成功地获得了带有磁性的人工沸石。将这种沸石铺敷在被放射性物质污染的土壤上,沸石会吸附放射性物质,由于这种沸石带有磁性,最后可用磁铁将吸附了放射性物质的沸石与土壤分离。   据介绍,这一技术可以将每千克被污染土壤中的放射物污染程度从数千至1万贝克勒尔降低到每千克500贝克勒尔以下。他们期望两年内将这一技术实用化。
  • 浅谈比表面积分析方法之气体物理吸附技术
    固体表面积分析测试方法有多种,其中气体吸附法是最成熟和通用的方法。其基本原理是测算出某种气体吸附质分子在固体表面物理吸附形成完整单分子吸附层的吸附量,乘以每个分子覆盖的面积(分子截面积,molecular cross-sectional area),即得到样品的总表面积。吸附剂的总表面积除以其质量称为比表面积(specific surface area,m2/g),它是表面积的常用表示方式。实验测定吸附等温线的原则是,在恒定温度下,将吸附剂置于吸附物气体中,待达到吸附平衡后测定或计算气体的平衡压力和吸附量。基于在恒定低温下测量气体的吸附和脱附曲线,并通过对等温线的进行计算,可获取样品的孔径分布、比表面积、孔隙度和平均孔径等固体材料性质。测定方法分为静态法和动态法。前者有容量法(体积法)、重量法等;后者有重量法、流动色谱法等。在此介绍常用的静态容量法和动态流动色谱法。静态容量法需要测量气体体积的压力变化。将已知的气体量注入到恒定温度下的装有吸附剂的样品管中,当吸附发生时,样品内的压力降低直到平衡状态;平衡压力下气体吸附量为注入到样品内气体的量和平衡压力下样品管内剩余气体量的差值。吸附等温线通常使用进气技术将气体注入到体系内,再应用气体定律等到连续的数据点。需要精确知道死体积(自由空间),可以通过校正样品管体积再减去吸附剂的体积(通过密度计算)得到,也可以通过在一定程度上不在吸附剂上发生吸附的气体(如氦气)来测量。容量法气体吸附装置示意动态流动色谱法为在大气压力下,吸附气体和惰性气体的混合物在样品上连续流动,通过热传导检测器(TCD)监测样品对吸附物的吸收。首先,在环境温度下监测从样品管流过的气体,作为建立基线的参考;接下来,降低样品所处温度以促进吸附,并检测随着由于发生吸附导致的气体混合物热导率的变化,当吸附平衡建立时,出口气原始混合物的比例恢复,TCD信号恢复到基线;然后将样品温度提高到环境温度,这时因为被吸附的气体从样品脱附,并再次改变气体混合物中组分的比例。将任一信号(通常是脱附)与校准信号进行积分,可以得到样品吸附的气体量,混合物中吸附气体的分压除以饱和压力就是吸附发生时的相对压力。流动色谱法系统总之,无论什么方法,所使用的气体都是在固体表面形成物理吸附的气体,例如氮气、氩气、二氧化碳等,常使用的冷浴温度一般为氮气@77K(液氮温度),氩气@77K(液氮温度)/87K(液氩温度),二氧化碳@273.15K(冰水混合物温度)/298.15K(室温)/195K(干冰温度)。参考文献《现代催化研究方法新编》 辛勤 罗孟飞 徐杰 主编,科学出版社2018年本文作者:钟华 博士,毕业于中国科学院大连化学物理研究所。在粉体与颗粒表征仪器行业工作10多年,多年在高校研究所开展不同技术讲座和培训,对颗粒表征仪器有丰富的理论知识和仪器应用、市场实践经验。
  • 达标仅靠化学吸附?汽车尾气“年检神器”被批非常不靠谱
    “网闻”回放  一段时间以来,一种叫“火莲花”、自称“年检神器”的汽车尾气过滤产品在网上热销。按销售方的说法,无论汽车尾气状况如何,只要安装了这款产品,在尾气年度检测中保准能通过。然而,某电商平台及在该平台上销售“年检神器”的商家日前被中国生物多样性保护与绿色发展基金会(以下简称中国绿发会)提起民事环境公益诉讼,要求被告承担生态环境修复费用1.5亿元人民币。  汽车尾气“年检神器”到底是什么,有用吗?记者就此采访了有关专家。  中国绿发会副秘书长马勇说,“火莲花”就像是刷锅用的钢丝球,该产品号称能够帮助尾气不合格车辆规避汽车尾气年检,在商家的销售页面上还公然声称:“更换三元催化器成本高,金属软载体辅助或替代三元催化器治理尾气,可重复使用3次左右,单次过检成本低至15元,超高性价比”。  据了解,“火莲花”表面有少量的化学附着物,安装后汽车尾气中的化合物部分可被“火莲花”上的化学附着物所吸附,从而达到通过尾气检测的目的,但“火莲花”的有效公里数仅有50公里左右,远未达到国家标准。相比之下,三元催化器是一种安装在汽车排气系统中最重要的机外净化装置,可将汽车尾气排出的一氧化碳、碳氢化合物等有害气体通过氧化和还原作用转变为无害的二氧化碳、水和氮气。  “正规的三元催化器是以贵金属为活性物质,市场价格大约在两千元以上,超过使用寿命后极容易导致汽车尾气超标,需及时更换,因此成本相对较高。”北京建筑大学机电与车辆工程学院的姚圣卓博士解释道。“但三元催化器需要经过国家环保认证后,才能生产销售,未经认证就使用的属于违法行为。”他强调。  “‘火莲花’临时把有害废物吸附了,但堵住排气孔后造成排气不畅,不仅会大大增加汽车油耗,还会对发动机整体造成损害,给行车安全带来一定隐患。”因此,姚圣卓建议尾气超标的汽车应及时进行规范的故障诊断,并有针对性地维修。  “其实汽车尾气排放超标并非都是催化器损坏的缘故。如果商家不顾具体原因便混淆视听,让尾气超标车辆的车主安装自己公司生产销售的产品,不仅涉嫌违反广告法,也与国家关于车辆的检查维护管理制度相违背,对科学解决超标车污染、科学减排有百害而无一利。”机动车汽车尾气研究领域一位不愿透露姓名的专家提醒道。
  • 麦克网络研讨会:了解穿透吸附的理论与应用
    穿透曲线是描述吸附柱出口吸附质浓度随时间变化的曲线。穿透曲线可以让用户评价吸附剂介质,并计算其对流动的气体或蒸气的吸附量。穿透曲线可应用在分离、吸附、变压吸附和变温吸附等领域。 与静态吸附测量相比,动态穿透吸附能带来诸多优势。它能够轻松收集多组分吸附数据,确定吸附物选择性,同时模拟工艺条件。2022年2月,作为材料表征技术的全球专业供应商, Micromeritics 正式推出全新穿透曲线分析仪 ( Breakthrough Analyzer,下称BTA)。BTA 是一套用于模拟工业生成相关条件下精细表征吸附剂性能的强大系统,其设计结合了Micromeritics 在气体吸附方面广受认可的专业知识,以及微反应器和中试装置技术,为气体或蒸汽混合物提供可靠的选择性吸附数据。作为评估下一代吸附剂性能的高效工具,BTA 可广泛应用于气体分离、储存和净化、二氧化碳捕获和能量储存等领域。 想了解穿透吸附的基础理论与分析,为您的研究工作选择合适的方法?欢迎参加由micromeritics举办的直播网络研讨会。 内容看点:竞争性穿透吸附理论穿透曲线分析仪BTA分子筛高压吸附CO2双组分蒸汽竞争性吸附BTA在DAC技术上的应用 直播时间:2022年3月24日周四14:00—15:00 扫描下方二维码,免费注册参加麦克举办的网络研讨会!
  • 煤层气等温吸附仪隆重发布
    浙江泛泰仪器有限公司经过多年研发,在今年正式投产全自动煤层气等温吸附仪产品。即等温吸附解吸仪。 该仪器能够单组分或多组分等温吸附或解吸。 其主要流程如下图所示。
  • 傅若农:珠联璧合功能尽显的金属有机框架化合物(MOFs)吸附剂
    往期讲座内容见:傅若农老师讲气相色谱技术发展    金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。配体,通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景。  在20世纪前,多孔材料一般有两种类型:无机材料和碳质材料。无机材料中以沸石分子筛为代表,而活性炭是在1900年之后才发现的,因其优良的吸附功能,在20世纪后半叶广泛用于各个领域。但是在多种多样的要求下。这些材料已经不能满足人们的需要,于是就有新型的无机-有机杂化金属有机骨架材料的诞生。  1995年亚希(Yaghi)研究组在Nature上报道了第一个MOFs的材料,它是具有二维结构的配位化合物,由刚性的有机配体均苯三甲酸与过渡金属 Co 形成,成为这类化合物发展史上的一个里程碑(Yaghi O M,et al,,Nature,1995,378:703-706)。图1是Yaghi 研究组合成的MOFs。图1 Yaghi 研究组合成的MOFs  1999年,Yaghi研究组在Science 杂志上报道了在原有的基础上进行的改进、以刚性有机配体对苯二甲酸和过渡金属Zn合成的具有简单立方结构的三维 MOF 材料(Li H,et al, Nature,1999,402:276- 279)。2002年,Yaghi研究组通过拓展有机配体的长度合成了一系列与M0F-5具有相同拓扑网络结构的金属-有机骨架多孔材料IRMOF( Isoreticular Metal-organic Framework ),IRM0F-8(N. L. Rosi, et al, Science,2003,300:1127-1129。 这一系列晶态孔材料的合成,成为有纳米孔洞MOF材料的第二次飞跃。  2004年,Yaghi研究组又以三节点有机羧酸配体BTB构筑了MOFs材料MOF-177, 因相对于传统材料的大分子骨架和高比表面积使它的应用范围和吸附性大大增加(Chae H K,Nature,2004,427:523-527)。  2005年法国Férey 研究组在Science发表具有超大孔特征的类分子筛型MOFs 材料——MIL-101。  2006年,Yaghi 研究组合成出了十二种类分子的咪唑骨架(ZeoliticImidazolate Frameworks,ZIFs)材料 (Férey G ,et al, Science,2005,309:2040-2042)。ZIFs具有与沸石相似的拓扑结构,它所展现出的永久孔性质和高的热化学稳定性引起了人们很大的注意,ZIFs的优越性能使其成为气体分离和储存的一类新型材料。2010年,又在 Science杂志上提出了一个新的概念——多变功能化金属有机骨架(MVT-MOFs)材料,即在同一个晶体结构的孔道表面同时修饰上不同种类功能团的 MOFs 材料,并报道了十八种MVT-MOF-5材料。  2013年Yaghi研究组在Science 上以“金属-有机骨架材料的化学和应用”为题总结了金属-有机骨架材料在化学及应用反面的发展,他们涉及了图2所列的材料(SCIENCE, 2013,341:1230444-1-1230444-12)。图 2 MOFs 分子中的无机单元(A)和有机配体(B)的结构  图中颜色:黑—C,红—O,黄—S ,紫—P,浅绿—Cl, 氯—N,蓝--多面体,金属离子,  AIPA, 三(4-(1H-咪唑-1- )苯基)胺 ADP, 脂肪酸 TTFTB4– --4,4′ ,4′ ′ ,4′ ′ ′ -([2,2′ bis(1,3- dithiolylidene)] -4,4′ ,5,5′ -tetrayl)tetrabenzoate.  1. MOFs 在吸附剂中的应用  MOFs 已经有众多应用领域,在分析化学中的应用如下图所示。在分析化学的应用中,很多过程都涉及使用吸附剂(如样品收集、贮存、固相萃取、固相微萃取、色谱分离等)。Zhi-Yuan Gu, Cheng-Xiong Yang, Na Chang, and Xiu-Ping Yan*Acc. Chem. Res., 2012, 45 (5):734–745图 3 MOFs 在分析化学中的应用  MOFs材料分为微孔、介孔、和大孔。介孔材料在有腔尺寸范围2-50 nm,这一尺寸相当于典型有机物分子大小(除了聚合物)。因此,介孔材料是特别有前途的吸附剂,用于许多领域。图3是2002-2015年间发表的有关MOFs介孔材料的文章数据(Chem. Eur. J. 2015, 21:16726 – 16742)。近年发表的有关MOFs介孔材料的文章急剧上升,到2014年后大顶峰,如图3所示。图3 2002-2015年间发表的有关MOFs介孔材料的文章数据  MOFs 比一般吸附剂具有更大的比表面和可调的孔径,图 4是近年合成的MOFs材料比表面和孔径逐年提高的情况。图 4 近年合成的MOFs材料比表面和孔径逐年提高的情况(括号中的数据是孔容(cm3/g)  2010年 A Samokhvalov 的综述“溶液中芳烃和杂环芳烃在介孔金属-有机框架化合物上的吸附”(Adsorption on Mesoporous Metal–Organic Frameworks in Solution: Aromatic and Heterocyclic Compounds)。系统地分析了在溶液中介孔材料的吸附/解吸研究的化学机制,讨论了介孔材料在水中稳定性、吸附容量和选择性。((Chem. Eur. J. 2015, 21:16726-16742)  2012年,中科院大连化学物理研究所孙立贤应邀为Energy & Environmental Science杂志撰写了题为:介孔金有机框架化合物:设计和应用(Mesoporous Metal Organic Frameworks: Design and Applications)的综述文章,详细介绍了介孔金属有机骨架材料的设计合成、研究进展及其在气体储存、催化、传感、VOC吸附和药物释放等领域的潜在应用。介孔MOFs的设计合成方法主要包括:(1)通过延长配体的长度,调节次级结构单元大小,从而提高MOFs孔径 (2)采用混合配体,构筑新型次级结构单元,获得介孔MOFs (3)利用表面活性剂作为模板,合成介孔MOFs材料 (4)设计合成次级结构配体,构建中孔MOF材料。  (http://www.cas.cn/ky/kyjz/201203/t20120331_3547949.shtml)(Energy Environ. Sci. 2012, 5:7508–7520.)  同年上海交通大学崔勇等也发表了” 介孔MOFs材料“(Mesoporous metal–organic framework materials)的总综述章,讨论了介孔材料的设计与合成,孔隙率、活化和表面改性,以及在贮存与分离,催化,药物输送及影像学的应用。其特性是依赖于笼形或通道的孔形状、大小和化学环境。(Chem Soc Rev , 2012, 41:1677–1695)。  2 典型的介孔MOFs材料  MOFs材料有很多很多,有代表性的介孔MOFs见下表1.  表1 有代表性的介孔MOFs介孔MOFs/分子式比表面积/ (m2 /g)窗口或孔道/?孔容/(cm3 /g)结构类型拓扑的符号g文献BETLangmuirCd-MOF/Cd(NH2BDC)? (4,4,-bpy)?4.5H2O?3DMF——18x23—3D通道kagJ. Am. Chem. Soc.,2010, 132:5586CMOF-2/[Zn4O(L4)3] ?22DEF?4H2O——26,20x16—3D通道pcu J. Am. Chem. Soc., 2010, 132:15390.CMOF-3/[Zn4O(L5)3] ?42DMF——20,15x7—3D通道pcu同上CMOF-4/[Zn4O(L5)3] ?37DMF?23EtOH?4H2O——32,25x23—3D通道pcu同上CMOF-2a/Cu2L1a(H2O)2?15 DMF?11 H2O0—22x15—3D通道{43 62 8}n Nat. Chem., 2010,2: 838CMOF-3a/Cu2L2a(H2O)2?12 DEF?16 H2O240—30x20—3D通道{43 62 8}同上CMOF-4a/Cu2L3a(H2O)2?10 DEF?14 DMF?5 H2O0—32x24—3D通道{43 62 8}同上CMOF-2b/Cu2L1b (H2O)2?11 DEF?3 H2O0—22x15—3D通道{43 62 8}同上CMOF-3b/Cu2(L2b) (H2O)2?13 DMF?11iPrOH?4.5 H2O0—30x20—3D通道{43 62 8}同上CMOF-4b/Cu2(L3b) (H2O)2?6.5 DEF?19DMF?8.5iPrOH?2 H2O0—32x24—3D通道{43 62 8}同上IRMOF-12/Zn4O(HPD)3?10DEF?H2O—175024.5 0.613D通道pcuScience, 2002, 295, 469.IRMOF-14/Zn4O(HPD)3?6DEF?5H2O—193624.50.693D通道pcu同上IRMOF-16/Zn4O(HPD)317DEF?2H2O1910—28.8—3D通道pcu同上JUC-48/[Cd3(BPDC)3(DMF)] ?5DMF?18H2O62988021.1x24.90.191D通道etbAngew. Chem., Int. Ed., 2007, 46: 6638mesoMOF-1/Cu3(TATAB)2(H2O)38DMF?9H2O729—22.5x26.13D通道borJ. Chem. Soc., 2006, 128:16474.MIL-100(Cr)/Cr3FO(H2O)3(BTC)2?nH2O(n=28)—310025,291.16笼型MTNAngew. Chem., Int. Ed., 2004, 43: 6296.MIL-101(Cr)/Cr3F(H2O)2(BDC)3?25H2O4200b, 2800-4230c5900 b 4000-5900 c29,34 b2.01笼型MTN16, Science, 2005, 309, 2040;49MOF-180/Zn4O(BTE)2(H2O)3?H2O15x231.37-2.15笼型qomScience, 2010, 329, 424MOF-200/Zn4O(BBC)2(H2O)3?H2O45301040018x283.59笼型qom同上MOF-210/Zn4O(BTE)4/3(BPDC)62401040026.9x48.33.9笼型toz同上NOTT-116(PCN-68)/Cu3(PTEI)(H2O)3?16DMF?26H2O4664d 5109c6033c12.0,14.8,23.2e2.13d,2.17笼型rhtJ. Am. Chem. Soc., 2010,132:409219NU-100(PCN-610)/Cu3(H2O)3(TTEI)?19H2O?22DMFa6143f—13.4,15.4,27.4f 12.0,18.6,26c28.2 f笼型rhtAngew. Chem., Int. Ed.,2010, 49:535720PCN-100/Zn4O(TATAB)2?17DEF?3H2O—86027.30.58笼型pyrInorg. Chem., 2010, 49:11637PCN-101/Zn4O(BTATB)2?16DEF?5H2O—11400.75笼型pyr同上UMCM-1/Zn4O(BDC) (BTB)4/34160650024x291D通道—Angew. Chem., Int. Ed.,2008, 47:677ZIF-95/Zn(5-氯代苯并咪唑)21050124025.1x14.3 30.1x200.43笼型pozNature, 2008, 453:207ZIF-100/Zn20(5-氯代苯并咪唑)39 OH59578035.60.37笼型moz同上Cu6O(TZI)3(H2O)9(NO3)?15H2O2847322312.088 13.077 20.2471.01笼型rthJ. Am. Chem. Soc., 2008, 130: 1833Cu2(L7)(H2O)2?14DMF?5H2O1020112721.2x3.5—3D通道ptsAngew. Chem., Int. Ed., 2009, 48: 9905.JT-1/{Cu7(OH)2(L6)3}{Cu6(OH)2(SO4)-(S3O10)2}?10H2O375—23.6—笼型f—Angew. Chem., Int. Ed., 2011,50:1154JT-2/{Cu7(OH)2(L6)3}2{Cu6(OH)2- (SO4)6 (S2O7)}{Cu3(SO4)(H2O)6} ?18H2O421—18.23—笼型f—同上  a --同一化合物会有不同的名称 b --数据源于文献:Science, 2005, 309: 2040 c--数据源于文献Angew.Chem., Int. Ed., 2006, 45: 8227 d--数据源于文献: J. Am. Chem. Soc., 2010,132:4092 e--数据源于文献: Angew.Chem., Int. Ed.,2010, 49:5357 f--数据源于文献:20 Nat. Chem., 2010, 2: 944 g—要理解拓扑符号参阅 http://rcsr.anu.edu.au/ and http://www.iza-structure.org/databases/ h—Schlafli 符号 i—手性MOF  2. 介孔MOFs材料在水中的稳定性  MOFs材料常用于吸附水中的物质,所以它在水中的稳定性至关重要。许多MOFs在水中是不稳定的,这是由于金属和配体的连接的配合物遇水会水解。在水中稳定的MOFs可用于水的净化,表2是这类MOFs。  表2 MIL-101 家族在水中的稳定性MOF后改性液体/蒸汽液相测试条件a吸附的表征结构文献MIL-100(Cr)(F)无蒸汽--变温T, RHXRD24h元素分析,滴定,XRD, N2吸附稳定25,Adv Mater, 2011, 23:3294–3297MIL-101(Cr)(F)无蒸汽-40–140℃ , 5.6 kPaH2O and N2吸附稳定21,Eur. J. Inorg. Chem, 2011, 471–474MIL-101(Cr)(F)无液体NaOH 或 HCl水中RTXRD, ζ -电位在pH 2-10稳定,pH 12不稳定22,Chem Eng J, 2012, 183: 60–67MIL-101(Cr)-X X=-H X=-NO2 X=-NH2 X=-SO3H 无 无 还原 无蒸汽--25℃同步辐射XRD,吸附水, TGA稳定26,Microporous Mesoporous Mater,2012, 157: 89–93MIL-101(Cr)(F) MIL-101(Cr)无蒸汽--100℃XRD, TGA,吸附稳定24,Energy Fuels 2013, 27: 7612–7618MIL-101(Cr)(F) MIL-101(Cr)-NO2 MIL-101(Cr)-NH2无HNO3/H2SO4 还原蒸汽--40–140℃TGA, DSC, XRD, BET反复40次,稳定15,Chem Mater,2013, 25:790–798MIL-101(Fe)-NH2无液体水RT,24 hXRD--33,Chem Commun,2013, 49:143–145.MIL-101(Al)-NH2无液体水液体水RTXRD,NMR, AAS稳定 7天30,Chem Eur J, 2015, 21:314–323  4 MOFs 用作分离富集吸附剂  MOFs具有比表面积大、孔道和性质可调等的特点,非常适合于气态样品的采样和预富集。Yaghi研究较早合成的的MOF-5其比表面积约为3 000 m2/g,2004年,他们合成报的MOF-177,比表面积可达到4 500 m2/g,而2010年合成出MOF-210,以BET法测定比表面积可达6 240 m2/g,这为从混合物中分离富集微量目标物提供了很好的条件。  2007年 Ji Woong Yoon 等合成了 [Co3(2,4-pdc)2(μ 3-OH)2]?9H2O (2,4-pdc =嘧啶-2,4-二羧酸二价阴离子, NC5H3- (CO2)2-2,4) (CUK-1),以CUK-1作填充气相色谱柱,可以很好地分离几种永久气体组成(氢、氧、氮、甲烷和二氧化碳)[B-4],这样要比无机分子筛要优越多了(二氧化碳不会在低温下永久吸附)。  2010年严秀平研究组就研究了 MOF-5[ Zn4O(BDC)3, BDC =对苯二甲酸]和MOF-5单斜(沸石咪唑酯骨架结构材料ZIF-8 的吸附性能,用脉冲气相色谱、静态蒸气吸附、穿透吸附方法研究二了甲苯位置异构体和乙苯混合物在这两种金属框架配位化合物上的吸附行为。他们合成MOF-5的方法: Zn(NO3)26H2O(600 mg,2mmol)和对苯二甲酸(170mg,1mmol)溶解在DMF(20mL) 混合转移到一个聚四氟乙烯衬里的小反应釜中,密封后在120℃烘箱中加热21 h后,冷却至温,过滤得到的混合物为无色立方晶体。用DMF洗涤合成的MOF-5,在室温下干燥后再在减压下于250℃烘干, MOF-5在真空下储存以免受潮水解破坏结构,BET法测得比表面积773 m2/g。他们测得MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线,见图 5.图 5 MOF-5吸附剂对乙苯、二甲苯异构体的漏出曲线  2010年年严秀平研究组利用MOF-5吸附剂现场对大气中的甲醛进行吸附取样预浓缩,然后直接热脱附,用GC-MS进行分析。这一吸附剂比Tenax TA(有机聚合物)吸收效率高53-73倍。 取样和分析过程如图5所示(Anal Chem,2010,82:1365-1370)。图6用MOF-5吸附剂现场取样分析大气中的甲醛  2012年扬州大学曾勇平研究组用巨正则蒙特卡罗模拟法考察金属有机框架IRMOF-1和Cu-BTC吸附噻吩和苯的问题,仿真结果表明,吸附质与之间的静电相互作用主导吸附机制。结果表明,噻吩分子优先被吸附 IRMOF-1比Cu-BTC[ BTC =均苯三甲酸]有较高的吸附容量(Sep Pur Tech,2012,95:149–156)。  2013年同济大学乔俊莲研究组合成了MOF MIL-53(Al){Al(OH)[O2C-C6H4-CO2]}和MIL-53(Al)-F127{Al(OH)[O2C-C6H4-CO2]} 用作吸附剂去除水样品中双酚A(BPA)。BPA的吸附动力学数据符合拟二级动力学模型,二者对BPA的平衡吸附量达到329.2± 16.5和472.7± 23.6mg/g,远高于活性炭(从129.6到263.1 mg/g),可以快速去除水中的BPA,所需的接触达到平衡的时间约 90 min (J Colloid Interface Sci,2013,405:157–163)。双酚A吸附情况如图7所示。图 7 在MIL-53(A)上吸附双酚A的示意图 2014年江苏大学的刘春波和南京师大的张继双研究组用Cu-BTC [ BTC =均苯三甲酸](MOF HKUST-1)去除染料废水中的亚甲基蓝,Cu-BTC具有中孔,高表面积和大孔隙体积,具有很好的吸附能力(Micropor Mesopor Mater,2014,193 :27–34)。Cu-BTC的晶体结构如图6所示。Cu-BTC能用乙醇溶液再生,并保留吸附能力。因此,作者们认为这些Cu-BTC MOFs材料为载体可以成为最有前途的分离污染物的吸附剂,其晶体结构如图8。图8 Cu-BTC的晶体结构  4 小结  MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在吸附剂应用领域有广泛的应用前景。MOFs在固相萃取中的应用下一篇讨论。
  • 吸附等温线及典型吸附理论浅析
    p style=" text-align: justify text-indent: 2em " strong 编者按: /strong 本文对气体吸附研究中最常用到的概念——吸附等温线进行了科普和分类,并对Langmuir吸附等温理论、BET理论给出了自己的分析和见解,深入浅出的专业文章即将到来,以飨读者。 /p p style=" text-align: justify text-indent: 2em " strong 吸附等温线小科普 /strong /p p style=" text-align: justify text-indent: 2em " 对于给定的固体-气体体系,在温度一定时,可以认为吸附作用势一定,这时候,吸附量是压力的函数,这个关系叫做吸附等温线。 /p p style=" text-align: justify text-indent: 2em " 气体在固体表面的吸附状态多种多样,目前,把等温线分为六类,实际的各种吸附等温线大多是这六类等温线的不同组合。设固体表面与第一层(单分子层)吸附分子的吸附作用能为E1,第n层与第n+1层的作用能为En。 /p p style=" text-align: justify text-indent: 2em " (1)I型等温线 /p p style=" text-align: justify text-indent: 2em " I-A型(E1& gt & gt En) /p p style=" text-align: justify text-indent: 2em " 由于单分子层的吸附作用力很大,表面吸附位的反应活性高,属电子转移型吸附互相作用,这时候的吸附大多数不可逆,我们认为是化学吸附。在金属与氧气、金属与一氧化碳、金属与氢气的表面反应体系中常见,这种等温线是由Langmuir研究,所以也叫做Langmuir型。等温线如下图所示。 span style=" text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/91952d99-a96e-444f-b86b-f98a78a8e437.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span br/ /p p style=" text-align: justify text-indent: 2em " I-B型 /p p style=" text-align: justify text-indent: 2em " 活性炭和沸石常呈现这种类型,这些固体具有微孔,外表面积比孔内表面积小很多。在相对压力较低时,吸附曲线迅速上升,发生微孔内吸附。如上图所示。 /p p style=" text-align: justify text-indent: 2em " (2)II型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线一般为非多孔性固体表面发生多分子层吸附,比如非多孔性金属氧化物粒子吸附氮气或者水蒸气,此外,发生亲液性表面相互作用时也为此类型。在相对压力约为0.3时,第一层吸附大致完成,随着相对压力增大,开始形成第二层,在饱和蒸气压时,吸附层数无限大。Brunauer、Emmet和Teller从理论导出这种等温线,故这种类型的等温线也被称作BET等温线。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/11476386-c8ca-4d9f-a9b2-bd2c87e56d2c.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify text-indent: 2em " (3)III型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 在憎液性表面发生多分子层吸附,或者固体和吸附质的吸附相互作用小于吸附质之间的相互作用时呈现这种类型。比如,水蒸气在石墨表面上吸附,或者,水蒸气在进行过憎水处理的非多孔性金属氧化物上的吸附。因此,这种吸附在低压区的吸附量较少,相对压力越大,吸附量越多。如下图。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/931c7ce4-fbdd-4933-bf7a-3a53890d9de5.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify text-indent: 2em " (4)IV型等温线(E1& gt En) /p p style=" text-align: justify text-indent: 2em " 氮气、有机蒸汽和水蒸气在硅胶上吸附属于这一类型。在相对压力约为0.4时,吸附质发生毛细凝聚,等温线迅速上升,脱附等温线与吸附等温线不重合,脱附等温线在吸附等温线的上方,产生吸附滞后,形成一个“吸附滞后环”。在相对压力较大时,由于中孔内的吸附已经结束,吸附只在外表面上发生,曲线平坦,在相对压力接近1时,在大孔上吸附,曲线上升。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/f555414b-be52-465d-9be6-977a773a7321.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: justify text-indent: 2em " (5)V型等温线(E1& lt En) /p p style=" text-align: justify text-indent: 2em " 发生在多孔固体上,表面相互作用同III型,例如水蒸气在活性炭或憎水化处理过的硅胶上的吸附。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2900e13b-5186-4bfc-90dc-13e79adb4bdd.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: justify text-indent: 2em " (6)VI型等温线 /p p style=" text-align: justify text-indent: 2em " 这种类型的等温线又称为阶梯型等温线。非极性的吸附质在化学性质均匀的非多孔固体上吸附时较为常见。如将炭在2700℃以上进行石墨化处理后,再吸附氮气、氩气、氪气。这种阶梯型等温线是先形成第一层二维有序的分子层后,再吸附第二层,第二层显然受第一层的影响,因此成为阶梯型。 /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/2f1b1b14-d591-4786-98e0-0eef916902cd.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 典型吸附理论浅析 /strong /p p style=" text-align: justify text-indent: 2em " 不同的固体表面与吸附质组合得到各种不同的吸附等温线,这些等温线的形状反映了固体表面结构、孔结构和固体-吸附质的相互作用,通过解析这些等温线就能知道吸附相互作用和表征固体表面。对于常见的等温线,提出许多吸附相互作用的理论。下面仅介绍目前具有代表性的理论。 /p p style=" text-align: justify text-indent: 2em " Langmuir方程是常用的吸附等温线方程之一,是由物理化学家朗格缪尔于1916年根据分子运动理论和一些假定提出的。这个理论认为,在固体表面的分子或原子存在向外的剩余价力,可以吸附分子,吸附位可以均匀的分布在整个表面,但是只是吸附在表面的特定位置,称之为特异吸附。 /p p style=" text-align: justify text-indent: 2em " Langmuir吸附等温方程如下式: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/81e08f48-a1ad-4e98-9589-7ca91cac2197.jpg" title=" a.png" alt=" a.png" / /p p style=" text-align: justify text-indent: 2em " 其中,P为氮气压力、V为实际吸附量、Vm为单层饱和吸附量、b为与吸附热相关的常数。在不同的氮气压力P下测出氮气的实际吸附量V,用Langmuir方程作图得到一条直线,该直线的斜率的倒数即为单层吸附量Vm,进而计算出比表面,称为Langmuir比表面,Langmuir比表面对于微孔具有重要的意义。 /p p style=" text-align: justify text-indent: 2em " 布鲁诺(Brunauer)、埃麦特(Emmet)和泰勒(Teller)于1938年在Langmuir方程基础上提出的描述多分子层吸附理论,通过对气体吸附过程的热力学与动力学分析,推出氮吸附量随氮气分压而变的BET方程: /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/e4e4e5d7-cb69-473d-84f0-ceda0cf74951.jpg" title=" b.png" alt=" b.png" / /p p style=" text-align: justify text-indent: 2em " 分析得出,P/P0在0.05~0.35范围中,BET是一个线性方程,该直线的斜率与截距之和的倒数是单层饱和吸附量,从而算出比表面积。通过BET方程求出比表面积成为目前国际通用的方法,被称为BET比表面。 /p p style=" text-align: justify text-indent: 2em " 根据材料不同,特别是微孔材料,由于在很低的压力下就完成了单层吸附,因此,BET方程的线性范围会向低压方向移动。对于孔径极小的分子筛,线性范围应取0.005~0.01;微孔材料的线性范围应取0.005~0.1;介、微孔复合材料线性范围应取0.01~0.2;介孔、大孔材料的线性范围取0.05~0.35。但是根据实际材料的不同,线性范围的取点应根据实际情况进行调整,使BET直线的线性良好才具有一定的参考价值。对于微孔材料,更接近于单层吸附的特征,Langmuir比表面值应具有更大的参考意义。 /p p style=" text-align: right " strong 作者:精微高博 /strong /p p style=" text-align: justify text-indent: 2em " (本文由精微高博团队供稿,不代表仪器信息网本网观点) /p
  • 药物分析新技术系列约稿|气体吸附技术在医药粉体表征中的应用
    药物粉体是大部分药物制剂的主体,其疗效不仅取决于药物的种类,而且很大程度上还取决于组成药物制剂的粉体性能。大量的研究表明,药物粉体的比表面积、孔径分布和真密度等物性参数关系到粉末颗粒的粒径、吸湿性、溶解度、溶出度和压实度等性能,在药品的净化、加工、混合、制片和包装能力中扮演着重要角色。尤其是对于原料药和药用辅料,其比表面积等参数是其性能的重要指标。原料药,作为药物的活性成分,其比表面积会影响其溶出度、颗粒粒径和溶解度等性质。在一定条件下,同等重量原料药的比表面积越大颗粒粒径则越小,溶解和溶出速度也相应加快。通过对原料药比表面积的控制,还可使其达到很好的均匀度和流动性,保证药物含量分布均匀。药用辅料,作为生产药品和调配处方时使用的赋形剂和附加剂,比表面积正是其重要功能性指标之一,它对于稀释剂,粘合剂,崩解剂,助流剂,尤其是润滑剂具有重要意义。例如,对于润滑剂而言,比表面积显著影响其润滑效果,因为润滑剂要起到润滑效果的前提,就是要能均匀地分散在颗粒的表面;一般来说,粒径越小,比表面积越大,越容易在混合过程中均匀分布。由此可见,精准、快速、有效的测试医药粉体的比表面积和真密度等物性参数,一直都是医药研究中不可缺少的关键环节。因此,在美国药典USP和USP,欧洲药典Ph. Eur. 2.9.26和Ph. Eur. 2.2.42以及《中国药典》2020年版四部通则第二批增修订的理化分析内容0991和0992中,都明确规定了药物粉体比表面积的测定方法和固体密度的测定方法。一、气体吸附技术及其应用气体吸附技术是材料表面物性表征的重要方法之一,基于吸附分析能够对原料药、药用辅料和药物制剂的比表面积、孔容及孔径分布、真密度等参数进行精准的分析。进而对药品的有效期、溶解速率与药效等性能做一些基础性的分析,助力医药行业的快速高质量发展。比表面积:主要对于药品有效期、溶解速率和药效有着重要影响。一般来说,比表面积大,其溶解和溶出速度也相应加快,进而保证了药物含量分布均匀;但比表面积过大:会使药物吸附更多的水分,不利于药物的保存和药效的稳定。孔容及孔径分布:对药物崩解、释放和生物利用度有着关键的影响。较大的孔容可在孔道内负载各种药物, 并可对药物起到缓释作用, 提高药效的持久性;此外,一定范围内孔径增大,药物的释放速率也会相应加快。真密度:对粉体药物的流动性,均匀性,压缩性以及离析度、结晶度等有着重要的影响。真密度的大小可作为判断材料的结晶状态以及二元混合物中固体含量百分比;此外,对于优化辊压速度、辊压压力等工艺参数具有一定的指导作用。2、 比表面积和孔径分布表征中的实际应用案例1、 原料药蒙脱石散的比表面积表征蒙脱石,是由膨润土提纯加工而得,因其特殊的层状晶体结构使其具有良好的吸附能力、阳离子交换能力和吸水膨胀能力,在药学上具有独特的优势。其作用机制与其较大的比表面积息息相关。由于其较大的比表面积,因而可对毒害物质具有较强的吸附作用;此外,与消化道黏液蛋白静电结合,对消化道黏膜起保护和修复作用[1]。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对蒙脱石散粉体材料的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议不少于0.1g,在105℃下真空加热脱气2小时后进行测试。从图1可以看出,不同种类的蒙脱石散其表面积差距较大,分别为 76.57 m2/g,47.67 m2/g和29.32 m2/g,研究者可以通过比表面积的测试结果来进行基础药性的判断,进而根据药品的实际作用需求来选择相应类型的原料。图1 不同种类的蒙脱石散比表面积测试结果2、 药用辅料硬脂酸镁的比表面积表征硬脂酸镁,呈片状晶体形状,主要用作片剂和胶囊的润滑剂或抗粘剂;由于其不确定的化学组成导致硬脂酸镁具有不同的物理性质,从而影响其润滑功能,其比表面积对硬脂酸镁润滑功能起到关键作用[2]。比表面积越大,其极性越强,附着力越大,可以在颗粒表面形成一层较薄但均匀的硬脂酸镁层,相应的合成物的润滑性就越好;而比表面积较低的硬脂酸镁,容易在颗粒表面富集。润滑性能就会较差。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对硬脂酸镁的表征案例,据中国药典2020版四部规定,采用氮气作为吸附质,样品待测面积至少>1m2 ,我们建议待测面积>5m2,根据美国药典要求,其BET方程的P/P0选点在0.05~0.15之间,其线性拟合度要大于0.9975。从图2可以看出,在经过40℃、80℃和100℃预处理之后,其比表面积测试结果分别为 6.14 m2/g,5.78 m2/g和3.10 m2/g,可以发现不同预处理温度对其表面积测试结果有较大影响,且随着脱气温度升高,其比表面积数值越小,经过分析主要是硬脂酸镁的成分复杂,且熔点较低,较高的脱气温度会造成硬脂酸镁烧结或熔化。图2 不同预处理温度下硬脂酸镁比表面积测试结果3、 纳米氧化锆材料的比表面积和孔径分布表征纳米氧化锆材料是一种白色结晶氧化物,在过去的十年中由于其表面光滑、质地致密,高强耐磨,良好的生物相容性和化学稳定性,因而在医疗硬组织修复领域中很受欢迎。以下是使用国仪量子V-Sorb X800系列比表面及孔径分析仪对纳米氧化锆的表征案例。从图3可以看出,粒径为2.0-2.5 μm(左)和粒径为1.0-1.5 μm(右),其比表面积测试结果分别为18.64 m2/g和19.91 m2/g,可以发现随着粒径的降低其比表面积数值在增加。此外,也对粒径为1.0-1.5 μm的纳米氧化锆材料进行了孔径分布的表征,从图4的N2吸附-脱附等温线可以看出,主要为Ⅱ类等温线,在高点时吸附量陡增,可能存在少量的大孔结构;从BJH介孔孔径分布图来看,样品基本没有介孔结构,但在100 nm-200 nm处存在相对集中的孔径分布,可能含有部分大孔结构,可结合扫描电镜进一步观察确认。从SF-微孔孔径分布图以及N2吸附-脱附等温线图来看,样品存在较为少量的微孔结构,集中分布在0.75 nm,即最可几孔径为0.75 nm。图3 不同颗粒尺寸的纳米氧化锆比表面积测试结果(左:2.0-2.5 μm,右:1.0-1.5 μm)图4 N2吸附-脱附等温线(左)、BJH-孔径分布(中)、SF-孔径分布(右)三、真密度表征中的实际应用案例在医药领域,气相二氧化硅的亲水性可用来消除水肿和降低伤口发炎产生的分泌物;帮助腹泻病人固定和结合水分;在皮肤病学中广泛用作干燥剂,其高吸附性可用来吸附微生物和微小病毒。气相二氧化硅还可作为乳浊液的稳定剂、药物载体,延长药效和促进药物吸收。以下是使用国仪量子G-DenPyc X900系列真密度测定仪对气相二氧化硅材料的表征案例。从图5可以看出,经过不同改性后的气相二氧化硅其真密度数值具有较大的差异,分别为0.154 g/ml,0.299 g/ml和0.382 g/ml,研究者可以在保证药效的前提下,选择相应较轻的二氧化硅进行生产加工。图5 不同改性后的气相二氧化硅的真密度测试结果国仪量子比表面及孔径分析仪国仪量子V-Sorb X800系列产品可以提供超低比表面积和微孔、介孔孔径及其分布的稳定测试,是满足中国药典测试方法的高通量快速经济型仪器;实现来料、出厂成品比表面积快速测试,孔径分布分析,进而进行质量把控,调整工艺参数,预估药品性能等。产品具有测试高效、结果准确、性价比高、自动化操作简单易学等诸多优势。全自动比表面及孔径分析仪V-Sorb X800系列参考文献[1] 次旦卓嘎. 蒙脱石治疗小儿腹泻的临床效果分析[J]. 世界最新医学信息文摘, 2019(79):2.[2] 郭仁庭, 覃忠富,傅长明, 等. 硬脂酸镁的性质、应用及市场前景综述[J]. 企业科技与发展: 上半月, 2011, 000(004):P.15-17.
  • “一种用于选择吸附六价铬的吸附剂”获国家发明专利授权
    中国科学院兰州化学物理研究所发明了一种用于选择吸附六价铬的吸附剂,近日获得国家发明专利授权(一种用于选择吸附六价铬的吸附剂,专利号:ZL 201110212531.3,发明人:郑易安 王爱勤)。   铬及其化合物广泛应用于工业生产的各个领域,是冶金工业、金属加工、电镀、制革、油漆、印染、颜料等行业中必不可少的原料。铬在水中的存在形式有两种:铬(VI)和 铬(III)。毒性大的铬(VI) 是重金属中有毒有害污染物的代表,常用的处理方法有沉淀法、氧化还原法、电解法、吸附法、离子交换法等。每种方法各有优劣,其中吸附法因操作简单、见效快、吸附剂可以设计及循环使用等优点在含铬废水处理中得以广泛应用。然而,目前国内常用的吸附法均存在一定缺陷,如材料价格昂贵、再生困难 吸附容量小,容易造成二次污染 选择吸附性有待提高等。   该发明以洋车前子壳粉和苯胺为原料,经过氧化聚合制备了用于选择吸附六价铬的吸附剂。吸附剂可在保持聚苯胺原有吸附性能基础上,进一步降低制备成本,赋予环境友好性,用于工业含铬废水的处理。   与现有技术相比,该发明中吸附剂合成原料廉价易得 吸附剂的制备过程简单,反应条件温和 吸附剂对水中的六价铬具有高的选择吸附性 在不降低聚苯胺原有吸附性能基础上,引入洋车前子壳粉,从理论上讲赋予吸附剂良好的生物可降解性,同时可拓展洋车前子壳粉的应用领域。
  • 中睿仪器发布中睿仪器TSP-600吸附管配标仪新品
    TSP-600吸附管配标仪一、产品背景:大气环境和室内空气中的VOC监测是我国生态环境保护的重要环节,目前国家制定了一系列VOC检测标准,如环境标准HJ734-2014、HJ644-2013、HJ583-2010;室内空气标准GB/T18883-2002、GB50325-2010以及车内挥发性有机物标准HJ/400-2007等。要做好VOC的检测,从样品采集到实验数据分析,每个环节都非常重要。在这些环节中,配制好标准样品管这一步显得尤为关键。 二、产品用途:中睿公司TSP-600吸附管配标仪,它是专门为配制标准样品管而研发的一款高科技产品,具有自主知识产权,可同时制备6支标准样品管,专利的石英汽化室设计,使标液得到充分汽化,吸附效率更高,具有很好的线性和重现性,配制6支标准样品管时间少于10分钟,提高了实验室操作人员标样管制备效率。三、技术特点:1. 可同时配制6 支标准样品吸附管 2. 专利的石英汽化室,保证标液样品充分汽化,吸附效率更高; 3. 每个样品管位都配有独立的石英汽化室;4. 石英汽化室温度可调节,温度范围:室温~400℃;5. 采用针阀流量控制技术,每个样品管位载气流量可调节; 6. 操作简单,只需将标液注入到相应的进样口,即可完成吸附管标样的配制;7. 进样口采用耐高温不粘连高级进口隔垫;8. 苯的线性优于0.999,重现性RSD9. 配制6支标准样品管时间10min;10. 体积小巧,可放置实验台或通风柜使用。四、应用领域: 环境监测、职业卫生、质检院、出入境、建筑科学院、计量院、高校和科研机构、第三方检测及汽车检测行业等。创新点:TSP-600吸附管配标仪创新点: 1. 同时配制6支标准样品管; 2. 每个样品管位都有独立的石英汽化室; 3. 专利的石英汽化室,保证标液充分汽化,吸附效率更高; 4. 操作简单,只需将标液注入到进样口,即可完成标准样品管的配制; 5. 配制6支标准样品管时间少于10分钟。
  • 美国康塔仪器推出新一代物理化学吸附仪
    Autosorb-IQ ——气体吸附测量技术的革命性进展   Autosorb-IQ是一种全新的、高精度、多功能型气体吸附分析仪,可最多同时进行两个样品的超低压微孔物理吸附测定。   长达90小时以上的杜瓦瓶连续使用时间。分析站具有静、动态化学吸附测试功能(自带程序升温炉和强制风冷系统)。   可加装蒸汽发生装置具备蒸汽吸附功能。内置脱气站具有程序控制升温速率/持续时间/自校正功能方案,配置独立低温冷阱,可加装涡轮分子泵(选件)实现高真空脱气处理。   Autosorb-IQ的构造以及它的升级功能使它成为现今最先进的物理化学分析仪。 Autosorb-IQ的类型 1. Autosorb-IQ –AG(基本型) 基本型Autosorb-IQ适用于高分辨率,高精度的物理吸附研究,可使用任何非腐蚀性气体,内含1000 torr高精度压力传感器和二阶机械真空泵。具有超低压微孔分析和化学吸附的扩展能力。 2. Autosorb-IQ-MP(微孔型) 微孔型Autosorb-IQ-MP拥有1000、10、1torr的高精度压力传感器和高真空涡轮分子泵系统,具有IQ-AG的全部功能以及超低压微孔分析功能,并具备化学吸附的扩展能力,可加装第二套分析站系统。 3. Autosorb-IQ-Chemi(化学吸附型) 针对化学催化剂的特征,化学吸附型Autosorb-IQ具有IQ-AG和IQ-MP的全部分析功能,并具备静、动态化学吸附功能,可加装第二套分析站系统。
  • 听大咖讲氮吸附孔径分析 脱附与吸附曲线该选who?
    p style=" text-align: justify text-indent: 2em " 让公益传播科学知识,用教育安抚技能焦虑。2018年11月15日,“比表面与孔径分析原理及应用”系列精品在线讲座第四弹成功举办。中国氮吸附仪的开拓者、国务院特殊津贴专家钟家湘教授与广大网友再度相聚仪器信息网。用内容丰富、深入浅出的精彩讲解,在2小时的滴答中,带大家继续畅游于比表面与孔径分析的世界。该系列讲座共分6讲,在此前的三讲中,钟老先后为大家讲解了氮吸附法、连续流动色谱法和静态容量法比表面及孔径分析仪原理及应用。本期的讲座则聚焦于氮吸附法介孔和大孔的测试与分析。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/d94345d7-5843-42ff-96d2-b7fe28d449cf.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p /p p style=" text-align: center text-indent: 2em " strong 仪器信息网仪颗通平台直播现场 /strong /p p style=" text-align: justify text-indent: 2em " 在学术界,介孔与大孔的测量范围一般在2nm-500nm之间。钟老先为大家讲解了氮吸附法BJH孔径分析的基本方法。该方法通过控制和调节吸附质的压力,由低向高逐级变化,测量出每个压力下产生的吸附或脱附量,利用压力和孔径之间的定量关系,从而计算得到孔体积随孔径的变化,测试的压力点越多,孔径分布的描述就越精确。在该方法中,等温吸、脱附曲线的测定是孔径分析的唯一实验依据。钟老详细讲解了BJH法测量的介孔体积测量和计算方法,以及孔径分析的各种参数来源。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/f1cabf20-a28f-4d7e-ba1c-f1bbe4099dbe.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p /p p style=" text-align: center text-indent: 0em " strong 钟家湘教授 /strong /p p style=" text-align: justify text-indent: 2em " 而在孔径分布的表征中,除了总表面积(BET)和总孔体积外,积分分布、微分分布和最可几孔径是最重要的参数。其中积分分布反应的是孔增量的累计叠加、微分分布反应的是孔体积随直径变化的变化率,最可几孔径则是微分分布最大值对应的孔径,代表着孔径密度最大的等效孔径值,该数据在多孔材料的制备、检测、及实际应用中具有重要的参考意义。 /p p style=" text-align: justify text-indent: 2em " 另外,钟老还认为,吸附平均孔径缺乏实用的意义和价值,虽然仪器会得出相关数据,但是很少会成为主要分析参数。 /p p style=" text-align: justify text-indent: 2em " 氮吸附法比表面与孔径分析仪的精确测量上限在哪里?钟老表示,虽然仪器上标注的上限在500nm左右,但是高点追求接近于1并无实质意义,在0.99及以下才较为适当,这样相对应的孔径测试上限在200nm是合理的。另外,在前几年相关研究的论文中,研究者常采用等温吸附线中的脱附曲线进行分析,钟老表示,由于“张力强度效应”会导致脱附曲线很容易出现假峰(常出现在0.3-0.4nm左右),因此选取吸附分支可以获得更为真实的孔径分布。 /p p style=" text-align: justify text-indent: 2em " 讲座还对孔径分析设备要求、预处理注意事项、P0确定的经验等内容进行了传授,并分析了影响孔径分析测试精度的因素。钟老的精彩讲解赢得了网友们的满堂彩,在随后的问答环节,网友们积极留言互动,钟老也对大家提出的孔壁吸附层厚度选择、脱附曲线异常变动、BJH方法使用范围等内容进行了耐心地一一解答。 /p p style=" text-align: center text-indent: 0em " img src=" https://img1.17img.cn/17img/images/201811/uepic/7a054509-c45b-4ed7-b41e-78e9f84680e0.jpg" title=" 企业微信截图_15422713207930(1).png" alt=" 企业微信截图_15422713207930(1).png" / /p p /p p style=" text-align: center text-indent: 0em " strong 网友感谢弹幕 /strong /p p style=" text-align: justify text-indent: 2em " 虽然年逾80,但是钟老精神矍铄,幽默的谈吐,渊博的学识,以及鞭辟入里的条分缕析无不让听众如沐春风,讲座结束后,留言板上满是对钟老真诚感谢的弹幕。“时间过得太快了,希望下次讲座能够讲更多的东西。”钟老憨厚地笑着说。 /p p style=" text-align: justify text-indent: 2em " 作为仪器信息网仪课通平台打造的精品系列讲座之一,“比表面与孔径分析原理及应用”讲座的下一讲将于12月20日与网友们见面,有兴趣的用户可随时关注仪器信息网了解报名详情。仪课通是仪器信息网旗下的在线教育平台,专注于科学仪器与检测行业用户职场技能的提升。千里仪缘一网迁,平台邀请行业资深专家开讲授课,为行业用户提供丰富、高质量的自我提升内容,在知识互通,交流互助的学习环境下完成专业知识的系统化储备与升级。平台在线讲座包罗万象,涉及色、质、谱,物性检测、食品药品检测、环境检测、仪器开发与设计等诸多领域。讲座的直播采取公益形式,用户可免费报名参加。错过直播的用户也可在仪颗通平台购买讲座课程进行学习。 /p p style=" text-align: justify text-indent: 2em " 仪课通平台网址( a href=" https://www.instrument.com.cn/ykt/" target=" _self" https://www.instrument.com.cn/ykt/ /a )。 /p p style=" text-align: justify text-indent: 2em " 仪课通公众号二维码 /p p /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201811/uepic/1072b0b6-b309-4496-b53b-914bde7d2b04.jpg" title=" 仪课通.jpg" alt=" 仪课通.jpg" / /p
  • 康塔仪器竞争性气体吸附分析仪荣获创新产品奖
    2015年10月,全球粉体及多孔材料分析检测仪器领导者,美国康塔仪器正式发布dynaSorb BT系列竞争性气体吸附分析仪。这款开创性的仪器一经推出,就凭借其独特的安全性设计和卓越的性能而赢得客户青睐。它可以便捷地研究任意复杂的吸附过程;可以在宽泛的温度和压力范围内,调节气体流速并很好地定义气体组分;从而可以调查或研究在真实工艺条件下的吸附剂技术状况。其卓越的性能和创新设计,使其赢得《2015年仪器行业优秀新品奖》。dynaSorb BT系列竞争性气体吸附分析仪可广泛应用于:穿透曲线的测定、对吸附剂的动力学性能研究、在水或其他蒸汽存在下的吸附测量、共吸附和位移现象的调查、选择性吸附测定、技术分离工艺的合理比例缩小、动态吸附和解吸实验、单一和多组分吸附数据的测定、沿吸附床层的温度分布曲线调查等。 完整地理解发生在固定床反应器的复杂过程是获得最佳分离性能的关键,穿透曲线的预测是固定床吸附过程设计与操作的基础。 dynaSorb BT系列动态吸附穿透分析仪具备强实的吸附器设计,防护门,工作区照明和结构清晰的PC控制界面,确保安全和方便的仪器操作。吸附器压力是永久性测量的,即使仪器关机,压力也会显示在仪器的前面板上。当加热包温度超过用户设定值时,信号灯将亮起。在所有dynaSorb BT仪器上,检测可燃气体的安全保护传感器是标准配置。在气体泄漏的情况下,仪器会跳回到空闲状态,并自动关闭。除卓越的安全设计外,dynaSorb BT系列还具备诸多无与伦比的优点: 穿透(突破)曲线测定, 单和多组分吸附数据测定 顺序吸附与解吸实验的自动化流程, 逆向气流能力 自动吸附器压力调控可高达10bar, 沿吸附器轴向监测压降 自动内置气体混合,可配置最多4个高精度质量流量控制器 入口和出口气体组分测量, 入口气体温度监测 用于导入水或其他蒸汽的蒸发器选项 吸附床内的热谱测定(用四个温度传感器) 沿吸附器轴向监测压降 美国康塔仪器 美国康塔仪器(Quantachrome Instruments)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及最佳的性能价格比。康塔公司不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、真密度、堆密度、开/闭孔率、粒度粒形、Zeta电位、孔隙率、压汞仪、大孔分析 、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以 满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问 题的根源 通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。 康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。 康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 麦克仪器发布Micromeritics® 选择性吸附分析仪SAA—8100新品
    SAA 8100Micromeritics® 选择性吸附分析仪选择性吸附分析仪(SAA - 8100)是一种基于气固平衡可逆系统的动态吸附分析仪。SAA - 8100是一款收集多组分瞬态和平衡状态吸附数据的仪器。由于流动的气流具有良好的混合性,且采用的可监测多组分吸附的瞬态行为(传质分布)检测系统,故采用了动态法分析选择性吸附。 工作原理SAA-8100的设计基于美国麦克仪器旗下西班牙PID公司技术的气体输送系统。该系统的主要组成部分包括质量流量控制器,混合阀,蒸汽源,温度控制器和用于评估吸附剂的样品柱。分析的基本程序包括:吸附剂的活化(脱气),气体(或蒸汽)的混合物流过装有吸附剂的样品柱,并监测流出气体的组成。吸附的气体量可以根据质量平衡,进入样品柱前的质量减去离开样品柱的组分的质量来确定。该值为混合气各组分吸附总量。利用进入样品柱前的气体组分比例和吸附的组分(从气相)比例,可以计算出吸附剂的选择性。这种选择性是比较吸附剂的一个关键参数。 仪器优势1,全测量范围内优化的最小 “死体积”,确定分离是否可进行 然后根据吸附量计算选择性。2,简单的柱设计,出色的流量控制,可以使用多种气体,并可进行高度可控的气体混合。3,样品柱位于温度控制的热箱中,可以通过精确的温度控制进行高质量的吸附实验,这对于突破曲线分析尤为重要。4,精确的温度控制对于消除冷点,避免蒸汽冷凝至关重要,并且需要在样品柱附近进行取样以最大限度地减少混合。分离后,我们希望获得最佳分辨率,混合会对数据产生负面影响(注意:许多应用都是在相对较低的温度下进行的,因此并不总是需要加热炉)。4,专有混合阀为气体混合控制提供重要优势,并最大限度地减少系统死体积。6,背压控制,允许用户在商业相关条件下进行实验。7,SAA 8100是可灵活配置的的精密系统,可增加不同的检测器和其他可选附件从而扩展其功能。从而确保提供高质量的分离和出色的流速数据,确保得到高质量的选择性数据。 可选配件• 质谱仪(用户配置或麦克配置)• 红外光谱仪(使用者配置)• GC/ MS• 其他混合组件• 高温炉• 蒸汽发生器(水和其他蒸汽) SAA 8100应用气体分离、储存和纯化突破曲线分析二氧化碳捕获吸附选择性评价下一代吸附剂材料,如MOFs、COFs、ZIFs、沸石、活性炭、硅胶、活性氧化铝、分子筛碳、多孔聚合物及树脂等储能选择性分析材料研究化学工程 Basolite C300(Cu-btc)的二氧化碳穿透曲线可执行的测试类型• 多组分吸附• 混合气体吸附• 突破曲线分析• 气体和蒸气混合物吸附• 选择性和吸附能力• 动态吸附和解吸测量• 竞争吸附• 高压吸附• 纯组份数据(低压,高温,宽温度范围)规格参数压力压力 0-10bar温度室温至450°C(带炉)创新点:1、产品设计 灵活的气体输送和管理系统,可在工艺相关条件下精确表征吸附剂的性能。 该系统将美国麦克及麦克旗下PID公司的成熟技术相结合,通过质量平衡提供高精度、可靠的、选择性气体/蒸汽混合物吸附数据,使其成为评估下一代吸附剂性能的高效工具。 2、系统组件 集成了精确的质量流量控制器和麦克旗下PID公司专有的高性能混合阀,所得的气体输送系统具有最小的死体积,并确保精确控制组分和流速。 可灵活配置的精密系统,可增加不同的检测器和其他可选附件从而确保提供高质量的分离和出色的流速数据,确保得到高质量的选择性数据。 3、动态监测 基于气固平衡可逆系统的动态吸附分析,产品采用可监测多组分吸附的瞬态行为检测系统,可收集多组分瞬态和平衡状态的吸附数据。 Micromeritics® 选择性吸附分析仪SAA—8100
  • 粒度仪、吸附仪“双打”生风 麦奇克拜尔亮相IPB2018
    p style=" text-align: justify text-indent: 2em " strong 仪器信息网讯 /strong 在2018年2018年10月17日-10月19日,第十六届中国国际粉体加工/散料输送展览会(IPB2018)上,麦奇克拜尔携两款重量级产品亮相,一款是比表面和孔隙分析仪BELSORP-max II(下简称max II),另外一款是激光粒度粒形分析仪Sync(下简称Sync)。展会上,麦奇克拜尔的中国代理商,大昌华嘉销售经理严秀英接受了仪器信息网的采访。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/574b39fc-032b-4a6b-a9bb-9aa4b81ffeaf.jpg" title=" 图片5.jpg" alt=" 图片5.jpg" / /p p style=" text-align: center text-indent: 0em " strong 麦奇克销售经理严秀英 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/053c7e83-d13f-4d7e-b034-3166adef0b99.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center text-indent: 0em " strong 激光粒度粒形分析仪Sync /strong /p p style=" text-align: justify text-indent: 2em " Sync是2018年3月21日刚刚才中国隆重首发的新产品,自上市以来销售成绩可圈可点,在2018上半年,仅环境监测总站一家单位就采购了6台sync仪器。该仪器采用动态光散射技术原理,测量范围可达0.01-4000um,量程广阔,准确性为0.6%,重现性为0.5%,同时支持干法分散和湿法分散,几项重要指标都性能良好。 /p p style=" text-align: justify text-indent: 2em " 严秀英告诉笔者,Sync最大的亮点就是可在同一仪器,同一样品,一次进样,同一样品池,一次测量,同时得到粒径粒形结果。而其粒形检测技术结合了挪威AnaTec公司的研发成果和丰富经验。“AnaTec从1985年就开始研发出第一台动态图像分析仪,拥有30余年的经验。2013年,该公司被麦奇克收购,老板本身也加盟了麦奇克公司,成为了我们的粒度粒形专家。因此Sync的粒形分析能力值得信赖。”严秀英说。 /p p style=" text-align: justify text-indent: 2em " 另外,Sync另一个突出特点,就是其激光衍射法测量和动态图像法检测是在仪器中智能化自动切换,同步轮流进行的,因此既有激光衍射法的测试数据又有动态图像法的测试数据,并且检测速度很快,该仪器在进样后,只需要10-30秒的测量时间,就可以同时得到粒度、粒度分布和各项粒形结果分析。该仪器在高校科研院所、3D打印、电池、化妆品、油墨、制药、环境等行业有着广泛的应用。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201810/uepic/d9f49f8c-7790-4860-b752-9fb368143614.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center text-indent: 0em " strong BELSORP-max II比表面和孔隙分析仪 /strong /p p style=" text-align: justify text-indent: 2em " 另一款亮相IPB的仪器是max II。“我们的max II是吸附仪中的战斗机,很受市场的欢迎。”严秀英自信地说,该仪器比表面积测量范围为0.0005m2/g-无上限,孔径分析范围为0.35nm-500nm。绝大部分有机溶剂的蒸汽吸附和水蒸气吸附可升级到高压吸附系统,最高压力1MPa。相比于前代产品max,max II新增了一个分析站,可支持4站分析,并配有0.1torr的传感器,测试速度也提高了约1/3。另外,max II还采用了内部独有的保温技术。 /p p style=" text-align: justify text-indent: 2em " 据严秀英介绍,max II相比与市面上的其他仪器,主要有以下几方面的优势,一个是仪器采用静态容量法蒸汽吸附原理,这是麦奇克拜尔吸附仪最大的特色,max II可以做有机蒸汽吸附、水蒸气吸附、甲苯吸附等等,能够满足个性化科研工作的需要;其二具有出色的内部温控系统,控温最高可达80摄氏度左右。除此之外,可以与核磁共振、质谱、XRD等多种仪器联用,满足一条龙式科研表征的要求。最后,该仪器还采用气动阀进行密封,密封性优良,保证了测量下限的准确性。 /p p style=" text-align: justify text-indent: 2em " 正因为具有这样的特点,max II的用户群体主要集中在高校/科研院所,在MOF、催化剂、石化系统等方面都有广泛应用,在已购用户名单中清,也不乏清华大学、南京大学、中山大学,南京工业大学、苏州大学等重磅客户。 /p p style=" text-align: justify text-indent: 2em " 麦奇克针对粒度仪和吸附仪,布置了10多人的售后服务团队,在北京、上海、广州、成都、西安等地都设有售后中心,在北京和上海还设立了为用户提供免费支持的应用技术支持中心。“这几天在IPB展会上,已经有很多用户主动提出来想用我们的仪器进行试样检测,进一步交流对接,我们有信心在粒度仪和比表面领域获取更大的市场份额。”严秀英说。 /p
  • Autosorb IQ物理吸附仪培训会
    美国康塔仪器公司(Quantachrome Ins)40余年专注于多孔材料科学表征仪器的生产、制造,相继推出了7代适应不同分析需求的物理吸附仪器。其中Autosorb IQ是我公司2010年面向高端用户的物理吸附划时代研究级仪器,因其具有高分辨、高精度、大通量的特点,一经推出就收到全球众多用户的青睐。 美国康塔仪器公司始终以为用户提供准确地数据、科学严谨的应用支持为己任。在定期为全国各地研究者提供理论培训的基础上,我公司针对Autosorb IQ的用户特点及使用特性,将于2012年9月21日在上海科学会堂举办Autosorb IQ物理吸附仪培训会。为操作者详细介绍这一系列仪器的操作、并帮助操作者理解物理吸附数据的解析。 会议内容将包括: Autosorb IQ功能全解析 如何有效地进行样品前处理 如何理解、设置分析条件 如何判断等温线的可信度 如何对数据进行完整的解析 如何理解不同数据处理方法之间的关系 详情请与美国康塔仪器公司北京办事处联系。 联系电话:010-64401522 传真:010-64400892
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制