当前位置: 仪器信息网 > 行业主题 > >

血管显像仪

仪器信息网血管显像仪专题为您提供2024年最新血管显像仪价格报价、厂家品牌的相关信息, 包括血管显像仪参数、型号等,不管是国产,还是进口品牌的血管显像仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合血管显像仪相关的耗材配件、试剂标物,还有血管显像仪相关的最新资讯、资料,以及血管显像仪相关的解决方案。

血管显像仪相关的资讯

  • 高端仪器结合特有显像剂 可精确追踪肿瘤微小变化
    总是感觉不舒服,就是查不出病兆。临床上,这类病人并不少见。对于这类病人,更为精确的检查尤其重要。记者从第一医院主办的2016亚太地区肿瘤生物学和医学学术会议上获悉,该院引进国内自主研发的首台全数字PET—CT,依靠该院实验室特有的特异性分子显像剂,可跟踪到肿瘤细胞的凋亡、肿瘤新生血管的形成等各种肿瘤生物学行为。  今年50多岁的患者王先生,腹泻持续8年,曾就诊过多家医院,但就是无法治愈。最终,在第一医院通过PET—CT检查发现,其患有神经内分泌肿瘤肺类癌。 “神经内分泌肿瘤可生长于人体任何一个部位,有各种临床表现,包括腹痛、难以治愈的皮疹、顽固性高血压、胃溃疡等。”南京市第一医院核医学中心主任王峰介绍,神经内分泌肿瘤近年来发病率和患病率均显著上升,目前发病率达到5.25/10万,依靠传统的CT、核磁共振很多时候并不能准确揪出病兆。  记者了解到,南京地区已有多家医院拥有PET—CT这一高端检查设备。“对疾病的诊断,除了仪器,药物最为关键。”王峰告诉记者,传统的PET—CT检查仅仅反映细胞的糖代谢水平,但临床上发现,除了肿瘤会致细胞糖代谢水平异常,普通的炎症也会影响。该院正在试运行的PET—CT检查项目,将依靠该院实验室能够提供的特异性的分子显像剂,评价细胞的凋亡、肿瘤新生血管的形成、肿瘤受体的变化等。“说白了,就是能进一步全面评价肿瘤的生物学行为,为精准施治提供精准诊断。”王峰告诉记者,很多肿瘤在治疗过程中大小并没有发生变化,但其代谢水平会发生明显变化,这些依靠传统的CT和核磁共振根本无法看出来,PET—CT借助特异分子显像剂就可以观察到这些微小变化,从而找到肿瘤特异性靶点,给予相对应的靶向药物,会让很多愈后很差的肿瘤病人的生命得以无限期延续。  当天出席论坛的工程院院士陈志南表示,未来开展精准诊疗后,医生将清楚地了解到哪些药物对一部分患者有效,对另一部分患者无效。这样精准施治不仅可以减少药物对患者的副作用,也可以大大降低医疗成本,减少患者的负担。不过,我国的精准诊疗刚刚起步,因相应靶向药物的短缺,很多病人尚没有真正从中获益。
  • 看ICG荧光造影技术如何在皮瓣显像中大显神通
    在皮瓣外科手术中,皮瓣能否成活,其中关键因素之一就是皮瓣的血液灌注情况。简单来说也就是皮瓣的血液循环情况。这里做一下科普:皮瓣是由具有血液供应的皮肤及其附着的皮下脂肪组织所形成。所以皮瓣中的血管就好比是一条条公路,无论公路之间怎么交叉环绕,也都要保证公路之间的畅通无阻。皮瓣移植手术时也要确保每一具皮瓣在与其他组织接触时相互连接畅通。滨松荧光造影手术现场术中对皮瓣血液灌注的实时评估,可降低术后皮瓣发生缺血、坏死等并发症发生的概率,提升皮瓣的存活率。大多数的术者主要是凭借个人经验以及主观方法来评估皮瓣的血液灌注情况,比如观察皮瓣的颜色、温度、组织张力等。以上方法要求术者有大量的经验积累以及较高的技术水平,但是这些方法仍然无法保证术者可以得出准确且客观的结果。虽然现阶段也可以在术中使用热成像仪等辅助器材进行检测,但存在着无法进行重复检测、可能出现试剂中毒等问题。 随着皮瓣外科手术的不断发展成熟,近年来,一种新型的近红外荧光造影技术已应用于皮瓣外科手术中。它使用吲哚菁绿(indocyanine ICG)作为造影剂,该造影剂是一种水溶性物质,在静脉注射之后,它会与血浆蛋白紧密结合,可以稳定的留存在血管内,对血液成分、凝血系统及血管内膜没有损伤和影响,具有高敏感性高稳定性以及无放射性等特点。 吲哚菁绿试剂该造影剂在受到760nm的近红外光激发时,会释放810nm的荧光,这是一种近红外光,能够穿透2cm左右的人体组织,红外荧光显像技术就是通过它来测量这种近红外荧光,从而帮助医生实时观察到局部血液循环状态。就如我们上文提到的,如果把皮瓣中的血管比作一条条公路的话,吲哚菁绿与荧光定位仪的结合使用,就好比是为这一条条公路点亮了路灯,使得来来往往的车辆都可以看清自己的前行方向。这种新型的ICG近红外荧光造影技术由于操作简单,评估准确等特点,得到了许多外科医生的重视及应用。近期滨松中国与长沙众智医疗合作,在长沙湘雅医院应用该荧光探测技术,手术结果显示,该技术能够帮助医生准确直接地评估术中皮瓣的血液循环状况,实时观察
  • 压力大到小心脏承受不住?“好”压力促进心血管瓣膜形成
    《机智的医生生活》中,新生儿由于先天性心脏病而延迟关胸,手术之后小朋友心脏不再需要借助仪器辅助,开始健康地跳动,“李子一样大小的心脏,跳动起来异常有力”震撼的场面让实习医生们决定加入胸外科的道路。心脏的跳动是生命的信号,血液流过的地方与心跳一起带给了心内膜细胞(Endocardial cells,ECs)流体剪切机械应力以及牵拉力。在发育过程中机械力帮助心血管系统逐渐成型,但这些力量如何指导局部心肌细胞的细胞命运的刻画的仍不清楚。为此,法国国家健康与医学研究院Julien Vermot研究组在Science发文题为Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces,通过在体内操纵机械应力揭开了机械力在促进心血管瓣膜形成以及特定细胞命运决定中的关键作用。以斑马鱼作为模式生物可以实现高分辨率的时空机械应力参数在体内的控制,作者们首先通过的荧光标记的Ca2+感受器蛋白GCaMP7a在心内膜细胞中的表达监测Ca2+的动态变化【1】作者们惊讶地发现Ca2+振荡几乎只会在房室瓣的房室管区域形成(图1)。这一现象引发的了作者们的兴趣,作者们想知道Ca2+的振荡是否与血管瓣膜形成分化过程相关,所以作者们想找到Ca2+信号在体内的解码器以及效应因子。也就是说,什么因子能够读取Ca2+振荡事件所带来的信息呢?先前的研究表明,Nfatc1(Nuclear factor of activated T cells 1)是一个对Ca2+通道非常敏感的转录因子,能够调节心内膜细胞向间充质细胞的转化以及心脏瓣膜形态发生过程【2,3】。因此,作者们构建了一个Nfat结合元件报告品系,可以反映Nfat蛋白的结合。作者们确认了Ca2+信号通路的时空调控与Nfat激活是相耦连的,是瓣膜形成过程中心内膜细胞中的特征。图1 Ca2+振荡只出现在瓣膜形成区域进一步地,作者们想知道所观察的Ca2+振荡是否与心内膜细胞中对于应力的响应有关,所以作者们使用抑制剂处理使得心脏跳动停止,然后观察此时Ca2+信号的变化。作者们发现心脏跳动停止后,Ca2+振荡消失,与此同时Nfat的激活也消失。另外,在斑马鱼的缺血性突变体中Ca2+的振荡也会显著减少,并且Nfat的活性也同步降低。这些现象表明Ca2+振荡以及Nfat的激活对于机械应力具有响应。进一步地,作者们希望通过操纵血管瓣膜边界处的机械应力对机械力改变所带来的效应进行检测。作者们想到了一个很巧妙地方式,将一个30-60μm的琼脂磁珠插入到心血管腔中,通过精妙地微型外科手术确保不会影响心脏的正常功能。作者们通过磁镊(Magnetic tweezers)精确调控可以施加在磁珠上的机械应力。通过Ca2+的流量对心内膜细胞中对机械力的响应,作者们发现心肌细胞机械应力的与Ca2+振荡有关。那么当应力发生错误的时候,是否对瓣膜形态形成和发育有影响呢?为此,作者们通过对磁珠移植的局部反应进行检测,发现移植的磁珠会导致心脏瓣膜定位异常并伸入心胶质中,同也会导致心脏瓣膜相关基因的异常表达。另外,通过Nfat的抑制剂处理,作者们发现Nfatc1的核定位会被增加的机械力所促进,并且是以一种Nfatc1中Ser/Thr去磷酸化依赖的方式进行的。除此之外,作者们发现Ca2+-Nfat信号通路并不是通过通常认为的klf2a机械转导信号进行的,而是通过一个机械力敏感的基因egr1实现的。为了找到机械力依赖的Ca2+-Nfat信号通路激活的具体因子,作者们对一些已知对机械力敏感的通道蛋白以及纤毛发生相关的突变体品系进行检测,比如Trp通道以及Piezo等。但是作者们发现这些突变体中Ca2+激活都是正常的,而且对胚胎使用非特异性应力敏感通道阻滞剂钆离子处理后的胚胎Ca2+的激活也是正常的。这说明可能有其他的因素参与其中。先前的研究表明,这体外培养的心内膜细胞对于机械力在响应的时候会产生ATP水平的变化【4】,ATP会通过嘌呤受体P2X通道激活Ca2+信号。通过拮抗剂以及转录本、过表达等实验,作者们确认在心内膜细胞中Ca2+内流是由P2X通道调节,以响应胞外ATP水平的变化。随后作者们对激活以及抑制P2X介导的ATP信号通路对瓣膜形成的影响进行鉴定,发现P2X受体调节Nfat活性,但该调节作用并不依赖于VEGF信号通路。P2X介导的ATP信号通路发生异常时,心脏瓣膜结构异常,瓣膜形态不完全。因此,P2X作为Nfat活性上游发挥作用,控制心脏瓣膜发育以响应机械力的刺激。图2 工作模型总的来说,该工作揭开了心内膜细胞“破译”机械力信息的奥秘(图2),并且发现ATP作为一种附加的机械敏感旁分泌信号,通过它血流动力学力量可以指导心脏瓣膜的发育,可能可以作为未来帮助心脏瓣膜在体外的生长以及对先天性心脏瓣膜缺陷的治疗方案。由于该工作对于心脏瓣膜发育与机械力之间关系的揭示,同期刊发了观点文章对其进行了高度评价,题为Not all stress is bad for your heart。适当的机械应力对于心内膜细胞感受刺激并在正确位置产生心脏瓣膜具有非常重要的意义。斑马鱼中的研究并非终点,如何将机械应力在哺乳动物例如小鼠或者人类中瓣膜形成与特化过程相联系,能否用于三维类器官培养以造福病人等该领域未来的发展方向。不过,看来有点儿“小压力”对心脏也并非坏事,小压力,才有强心脏!原文链接:https://www.science.org/doi/abs/10.1126/science.abc6229
  • 再不怕被扎冤枉针!美新型仪器可迅速“照出”血管
    图为美国克里斯蒂医疗控股设计的&ldquo 克里斯蒂血管指示器&rdquo 。(图片来源:《每日邮报》) 如果开启精细模式,图像还会显示出静脉的更多详细信息,甚至可以帮助医护人员发现静脉血管的分岔点等。(图片来源:《每日邮报》) 中国日报网3月27日电(刘宇) 你有没有因为护士找不到血管而被扎&ldquo 冤枉针&rdquo 的经历?一种新仪器的出现可以大大减少你的担忧了。据英国《每日邮报》26日报道,美国的医院正在尝试使用一种新型仪器来帮助护士寻找患者手臂上的血管,原理是借助对人体无害的近红外线。 这种仪器是由位于美国孟菲斯的克里斯蒂医疗控股公司设计的,名为&ldquo 克里斯蒂血管指示器&rdquo (Christie VeinViewer)。它可以检测出血管的位置,并将血管的分布图像实时投射到手臂上,以便让医护人员知道应该在哪里下针。设计公司表示:&ldquo 这或许能让 你免于遭受&lsquo 冤枉针&rsquo 的痛苦。&rdquo 该仪器的工作原理是发射出近红外线,这种光线会被血液中的血红蛋白吸收,然后被周围的组织反射。仪器通过将这些信息进行数字化处理,就可以把血管的位置实时投射在皮肤上。这样一来,患者的血管分布立刻清晰可见。 据了解,这种仪器可以&ldquo 照出&rdquo 深达10毫米的静脉血管。如果开启精细模式,它还会显示出静脉的更多详细信息,甚至可以帮助医护人员发现静脉血管的分岔点等。
  • 应用分享 | PH响应性NIR-II光学诊疗制剂用于原位监测肿瘤血管和抗血管/光热联合治疗
    图1 论文部分截图。发集成在近红外二区(NIR-II)窗口中的荧光成像能力和肿瘤微环境响应多模态治疗的纳米平台,对于实时反馈治疗效果和优化肿瘤抑制效率而言具有重要意义。鉴于此,中国科学院理化技术研究所开发了一种对pH敏感的吡咯吡咯aza-BODIPY基两亲性分子(PTG),该分子具有平衡的NIR-II荧光亮度和光热效应。应用报道将PTG进一步与血管破坏剂(DMXAA)共同组装,制备PTDG纳米颗粒,用于联合抗血管/光热治疗和实时监测肿瘤血管破坏情况。每个PTG分子都有一个活性的PT-3核心,它通过pH敏感的酯键与两条PEG链相连。在酸性肿瘤环境中,酯键的裂解会使DMXAA释放,并用于抗血管治疗,并进一步将PT-3核心组装成微米颗粒,用于长期监测肿瘤进展。图2(a) PTDG NPs的构建和ph响应聚集的示意图。(b) NIR-II对肿瘤血管破坏和抗血管/PTT联合治疗的实时成像。此外,得益于PTDG纳米颗粒在NIR-II区域的高亮度(119.61M&minus 1cm&minus 1)和长血液循环时间(t1/2 = 235.6 min),可以在治疗过程中实时、原位可视化对肿瘤血管破坏过程进行成像。该研究设计了一种能够用于构建pH响应性NIR-II纳米平台的自组装策略,该平台可实现对肿瘤血管破坏情况的实时监测,并且能够长期追踪肿瘤进展和进行抗血管/光热联合治疗。目前,这篇论文已在《Biomaterials》进行了发布,想要查看完整英文版全文的读者,可以长按下方二维码进行查看。值得一提的是,论文中拍摄的NIR-II荧光图像数据均采用北京睿光科技有限责任公司自主研发的NirVivo-Pro NIR-II小动物活体荧光成像系统。图3 论文部分截图。产品推荐NirVivo-Pro NIR-II小动物活体荧光成像系统NirVivo-Pro NIR-II小动物活体荧光成像系统是北京睿光科技自主研发的一款专门用于NIR-II的光学成像系统。该系统可实现高质量荧光图像的采集及图像处理,实时地观察基因在活体动物体内的表达、肿瘤的发生、生长、转移及药物的治疗效果,对同一个动物进行时间、环境、发展和治疗影响跟踪,可用于生命科学、医学研究及药物开发等应用领域。产品特点:使用-80℃制冷InGaAs相机,曝光可达5分钟;电动切换10cm宽视野镜头及0.8倍显微视野镜头;0.08mm高精度三维电控平台,支持自动对焦功能;内置808nm/980nm/1064nm多种激光器,均匀照明;全中文操作软件,界面友好,拥有自主知识产权;
  • 心脑血管虚拟内窥镜的研发培育
    成果名称 心脑血管虚拟内窥镜的研发培育 单位名称 北京师范大学 联系人 常崇艳 联系邮箱 changcy@bnu.edu.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 心脑血管可视化研究是针对人体心脑血管的计算机应用技术。通过对数字化的医学影像的智能处理、数据分析、三维建模、数据可视化,虚拟现实,以充分呈现人体血管的形态特征,方便医生洞察医学数据,应用于医学教学、科研、临床,达到对疾病诊断、病灶检测、辅助治疗的作用。 心脑血管是人体血管中的最典型的代表,心脑血管疾病是当前人类健康的最重要疾病。结合信息科学与生命科学特点,运用计算机最新科技方法对血管的研究,是近年来该领域的研究热点。该领域的研究进展和技术突破,对临床医学、生命科学、病症统计学及预防学等领域的发展将带来重要的影响。由于心脑血管在人体组织中所占比例低,血管成像灰度不均匀,形态复杂且个体差异性大,细小血管间多存在缠绕和遮挡,使得对心脑血管的可视化成为计算机图形学领域中的重要问题。本项研究针对心脑血管可视化应用领域,主要解决的问题和关键技术包括: 1. 从医学影像中血管信息的提取技术; 2. 医学体数据中血管的三维可视化实时绘制技术 3. 血管数据的三维建模技术、 4. 血管的虚拟内窥技术 5. 三维血管数据的测量技术 6. 异常血管的疾病监测技术 本项研究应用计算机图形学和人工智能技术,重点突破在基于医学图像序列的影像数据精细分割、大规模体数据的实时精细绘制、复杂血管模型的建模,针对脑血管的分层三维可视化、血管的虚拟内窥等关键技术瓶颈,改进了现有的可视化关键算法,开发了系列软件平台,形成了&ldquo 四层两库&rdquo 的体系结构。本项研究工作得到了6项国家和北京市的科技计划支持,共发表三大检索论文28篇。 该项研究运用信息技术对医学影像的智能处理,更真实的呈现了人体血管的三维形态特征。研究成果可有效的应用于医学教学、科研、临床,其研究意义重大,应用前景广阔。 应用前景: 医学影像检查的结论通常来自图像后处理医生提供的图像和报告,如果所获得的图像质量非常高,图像后处理难度非常小,那么诊断结论就相对简单、诊断准确性也将很高。然而由于患者心率、造影剂的注射参数、扫描参数、伪影以及对比强度不佳等客观因素以及图像重建水平等主管因素的影像往往使得医学影像检查的结论存在一定的误差,因此亟待通过应用高性能、高质量的医学影像工作站进一步提高图像重建的准确程度,为伪影的甄别和处理和病变组织的识别和判断奠定基础。 在实际工作中,大多数情况下主治医生并不能到影像工作科室去实际完成影像的重建,其诊断还是要依赖于重建医生所提供的图像。重建医生在重建过程中所出现的判断错误,主治医生很难识别,即使有所怀疑,也需要对原始的切片图像进行观察和简单处理以后才能确定。但是,在很多医院,受PACS系统承载能力的限制,不可能把大量的切片图像全都上传到图像服务器,这就给整个诊断过程带来了困难,并将对医学影像工作站的使用造成巨大的负载压力。要解决这样的冲突,就必须增加工作站的数量,然而设备厂商提供的工作站价格十分昂贵,并且一般不为用户提供相应软件开发和的接口个性化服务功能,一定程度影响了工作站的推广和使用。因此具有价格便宜、具有满足用户个性化需要、兼容各类影像数据和工作站、功能完整、重建质量高、操作简单、具有可编程开放接口等特点的医学影像工作站将成为未来的发展方向。 知识产权及项目获奖情况: 本项目在多项关键技术中,具有自主知识产权的研究成果 专利与软著情况,形成6项软件著作权,1项专利 6项软件著作权 1、 脑血管医学图像分割系统2、 脑血管分割及医学虚拟内窥检查系统 3、 基于PSO的统计脑血管分割系统 4、 脑血管三维可视化虚拟融合系统 5、 心脑血管数据库管理系统 6、 三维脑血管模型动态压缩处理 1项专利 1、 基于球B样条曲线的三维血管模型构造方法 10项国家、部委、省、市专项计划支持 1、 国家自然科学基金《基于医学图像的数据挖掘技术研究》(60372072)已结题 2、 北京自然科学基金重点项目《虚拟环境中脑血管可视化、导航和监测技术》(4081002)已验收 3、 首都科技条件平台项目《心脑血管虚拟内窥镜的研发培育》(Z131110000613062) 已验收 4、 国家自然科学基金项目《盘B样条和球B样条造型的理论及其应用》(61170170) 在研 5、 国家自然科学基金项目《脑血管兴趣区域提取关键技术研究》(61271366) 在研 6、 国自然面上基金《基于CTA影像数据的3D冠脉狭窄自动检测及其量化评估研究》(61472042) 在研 7、 国自然青基《基于球B样条的Willis环建模、分割及定位关键技术研究》(60803082)已结题 8、 国自然青基《基于统计分割的脑血管三维模型重构研究》(61003134) 已结题 9、 国家重点实验室项目《交互式实时虚拟内窥镜算法研究》(SYSKF0107 》已结题 10、 博士后基金《三维血管的重构技术研究》已结题
  • 中国自主研发高灵敏度心磁图仪面世更好识别心血管疾病
    记者29日获悉,中国心磁图自主研发技术实现了新的突破:中国企业自主研发、拥有完全自主知识产权的高灵敏度心磁图仪——谛听?高灵敏度心磁图仪在沪面世,其灵敏度达到5飞特。这意味着中国心磁图仪的技术水平步入一个新台阶。研发该高科技设备的中国企业为中国科学院微系统所下属生物磁产业化企业,是“十四五”国家重点研发计划心磁图仪重点专项课题承担单位。企业董事长曲列锋博士接受采访时告诉记者,谛听是传说中地藏王菩萨的坐骑,善听人心。他希望高灵敏度心磁图仪能像谛听一样,成为医生的忠诚伙伴,为患者祛除“心病”尽一份之力;并时刻提醒企业谛听来自医者和患者的需求。中国科学院院士、中国医师协会心血管内科医师分会会长葛均波接受采访时介绍,心磁图是一种心肌缺血功能学检查方法,具有信号高度保真、对局部电流高度敏感的技术特点,灵敏、快速、无创、无辐射,在心血管疾病早期筛查、诊断评估、长期监测等方面具有良好应用前景,还可用于冠脉微循环障碍患者的评估。他希望谛听?高灵敏度心磁图仪能帮助医务工作者更好地识别诊断心血管疾病,为中国心血管事件拐点的早日到来等作出贡献。中国人民解放军总医院崔建国博士介绍了基于心磁图的心肌缺血功能学评估的新进展。他说,研究人员发现心磁图的动态变化过程蕴含丰富的缺血定位信息。另外,研究证实心磁图对于微循环障碍的患者有着重要的提示作用,对心肌缺血评估具有明确价值,是现有心脏检查的重要补充。上海市第六人民医院马健教授告诉记者,随着国内外对心磁技术的关注逐步提高,人工智能分析、多模态融合、心脏康复、肿瘤心脏病学等学科与心磁技术的交叉,逐渐成为心磁下一阶段在心血管疾病诊断中的应用热点。相关企业总经理张树林研究员介绍,这款中国企业自主研发的心磁图仪创新性地采用了全球领先的八维降噪技术以及智能分析,能够在百万倍地球磁场下提取高质量的微弱心磁信号。他介绍,谛听?高灵敏度心磁图仪能够动态显示心磁定量指标;通过研发AI智能分析模型,心磁图分析诊断的准确度已达87.8%,后续期待与临床专家达成更多的合作。张树林研究员坦言,从技术本身而言,目前国内心磁技术快速发展。在临床应用上,建立心磁的诊断标准和体系,是未来心磁技术发展的关键。其所在企业将依托国家重点研发计划心磁图仪专项,致力与临床专家共同建立心磁大数据平台,推动心磁仪的临床应用。在采访中,中科院上海微系统与信息技术研究所所长谢晓明坦言,医疗设备的性能和临床价值挖掘是一个长期持续的过程,需要医工紧密合作。中科院微系统所十多年前从“零”开始组建超导团队,经过艰苦努力,研发了5飞特级灵敏度心磁图仪。他表示,现阶段心磁技术的发展,特别需要更多的临床医院和专家加入,使其更加普及易用,共同打造中国的创新产品和解决方案。(完)
  • 阜外华中心血管病医院346.90万元采购红外光谱仪,离心机
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 基本信息 关键内容: 红外光谱仪,离心机 开标时间: 2022-03-08 09:00 采购金额: 346.90万元 采购单位: 阜外华中心血管病医院 采购联系人: 高宏杰 采购联系方式: 立即查看 招标代理机构: 河南省信人工程造价咨询有限公司 代理联系人: 朱勇 代理联系方式: 立即查看 详细信息 阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目-公开招标公告 河南省-郑州市-金水区 状态:公告 更新时间: 2022-02-14 项目概况 阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目招标项目的潜在投标人应在登录“河南省公共资源交易中心(http://www.hnggzy.net/)”,凭CA数字证书获取招标文件,并于2022年03月08日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2022-38 2、项目名称:阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目 3、采购方式:公开招标 4、预算金额:3,469,000.00元 最高限价:3469000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20220062-1 阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目 3469000 3469000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1 采购货物名称及数量:超高速离心机1台、FTIR红外线光谱仪1台、心理测评系统1套、X射线防护舱2台、温度压力检测仪1台。5.2 标包划分:1个标包5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”5.4 核心产品:超高速离心机5.5 采购范围:超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:15日历天5.8 交货地点:采购人指定地点 6、合同履行期限:15日历天 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小微企业、监狱企业及残疾人福利性单位发展等政府采购政策。 3、本项目的特定资格要求 供应商须具有医疗器械经营许可证或医疗器械经营备案凭证(医疗器械注册人、备案人经营其注册、备案的医疗器械,无需办理医疗器械经营许可或者备案,但应当符合《医疗器械监督管理条例》规定的经营条件),投标产品须符合《医疗器械监督管理条例》相关规定,取得医疗器械注册证或相关凭证。 三、获取招标文件 1.时间:2022年02月15日 至 2022年02月21日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:登录“河南省公共资源交易中心(http://www.hnggzy.net/)”,凭CA数字证书 3.方式:《河南省公共资源交易中心-市场主体系统》中下载投标项目所含全部资料 4.售价:0元 四、投标截止时间及地点 1.时间:2022年03月08日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(一)-3 五、开标时间及地点 1.时间:2022年03月08日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(一)-3 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《中国招标投标公共服务平台》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 无。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:阜外华中心血管病医院 地址:河南省郑州市郑东新区阜外大道1号 联系人:高宏杰 联系方式:0371-58680089 2.采购代理机构信息(如有) 名称:河南省信人工程造价咨询有限公司 地址:河南省郑州市金水区文化路9号永和国际1702室 联系人:朱勇 联系方式:0371-63899156、13673666378 3.项目联系方式 项目联系人:高宏杰 联系方式:0371-58680089 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:红外光谱仪,离心机 开标时间:2022-03-08 09:00 预算金额:346.90万元 采购单位:阜外华中心血管病医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南省信人工程造价咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目-公开招标公告 河南省-郑州市-金水区 状态:公告 更新时间: 2022-02-14 项目概况 阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目招标项目的潜在投标人应在登录“河南省公共资源交易中心(http://www.hnggzy.net/)”,凭CA数字证书获取招标文件,并于2022年03月08日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2022-38 2、项目名称:阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目 3、采购方式:公开招标 4、预算金额:3,469,000.00元 最高限价:3469000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20220062-1 阜外华中心血管病医院国家区域医疗中心设备(超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪)采购项目 3469000 3469000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1 采购货物名称及数量:超高速离心机1台、FTIR红外线光谱仪1台、心理测评系统1套、X射线防护舱2台、温度压力检测仪1台。5.2 标包划分:1个标包5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”5.4 核心产品:超高速离心机5.5 采购范围:超高速离心机、FTIR红外线光谱仪、心理测评系统、X射线防护舱、温度压力检测仪的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:15日历天5.8 交货地点:采购人指定地点 6、合同履行期限:15日历天 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小微企业、监狱企业及残疾人福利性单位发展等政府采购政策。 3、本项目的特定资格要求 供应商须具有医疗器械经营许可证或医疗器械经营备案凭证(医疗器械注册人、备案人经营其注册、备案的医疗器械,无需办理医疗器械经营许可或者备案,但应当符合《医疗器械监督管理条例》规定的经营条件),投标产品须符合《医疗器械监督管理条例》相关规定,取得医疗器械注册证或相关凭证。 三、获取招标文件 1.时间:2022年02月15日 至 2022年02月21日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:登录“河南省公共资源交易中心(http://www.hnggzy.net/)”,凭CA数字证书 3.方式:《河南省公共资源交易中心-市场主体系统》中下载投标项目所含全部资料 4.售价:0元 四、投标截止时间及地点 1.时间:2022年03月08日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(一)-3 五、开标时间及地点 1.时间:2022年03月08日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(一)-3 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《中国招标投标公共服务平台》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 无。 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:阜外华中心血管病医院 地址:河南省郑州市郑东新区阜外大道1号 联系人:高宏杰 联系方式:0371-58680089 2.采购代理机构信息(如有) 名称:河南省信人工程造价咨询有限公司 地址:河南省郑州市金水区文化路9号永和国际1702室 联系人:朱勇 联系方式:0371-63899156、13673666378 3.项目联系方式 项目联系人:高宏杰 联系方式:0371-58680089
  • 生物打印技术将“印”出血管组织和器官
    生物打印技术是利用三维打印技术解决医学问题,能在器官或组织发育过程中,在空间上精确地排列细胞、蛋白质、基因、药物和其他生物活性物质。这一技术是医学领域具有革命意义的重大突破,已经受到全世界科学家和普通大众的广泛关注。  生物打印技术:应用潜力巨大的医学革命  生物打印技术通过软件分层离散和数控成型的方法成型生物材料,其主要利用的技术包括三维生物喷墨、纤维挤压成型和激光辅助细胞打印。这一技术的出现预示着一场医学新革命或将来临,人类的医疗史将被改写。  该技术在医学领域具有广泛的应用前景。目前,已被用于制造个性化生物医药材料、药物检测和筛选、癌症或其他多种疾病研究等。而利用生物打印技术制造器官或组织更是开创了器官移植的新纪元,为人类健康带来了福音。利用生物打印技术制造生物器官的研究目前方兴未艾,但随着这一技术的发展,移植器官资源紧缺的问题将得到有效缓解,器官移植的成本也将大幅降低。此外,利用生物打印制造的器官进行移植可以有效减少机体排异反应的产生,可有效提高移植成功率。  目前,利用生物打印技术制造生物组织和器官的方法有两种,分别是制造具有血管的生物组织和器官的体外打印技术,以及用于直接在病变部位进行组织再生的体内打印技术。  体外生物打印:能造有血管的组织和器官  利用体外生物打印技术制造完整且具有生物活性的器官,虽然具有广泛的应用前景,但这一技术仍存在很多困难。很多生物学、生物打印技术、生物打印材料、生物打印后续成熟过程等多个方面均存在诸多技术限制。所以科学家首先把研究重点放到利用生物打印技术制造生物组织方面。  体外打印生物组织是非常尖端而又精密复杂的过程,需要对多层细胞进行分级排列,并在组织内生成血管网络系统。科学家利用体外生物打印技术已制造出多种生物组织,其中人工打印的气管、下颌和软骨组织已成功用于临床治疗。但在制造心脏、胰腺或者肝脏等具较高氧气消耗速率的组织时遇到了困难。其最主要的问题是如何将上述器官血管脉络中的动脉、静脉与毛细血管整合起来。因为在亚微米程度上打印毛细血管非常困难。科学家通过首先打印大血管,再由大血管自然地产生毛细血管的方法实现了毛细血管的打印。另外,科学家也已成功打印出连接血管和相邻毛细血管的通道,完成了血管重塑。  生物打印材料和其打印后的成长过程,对于体外打印生物组织也至关重要。生物打印的材料能够影响生物组织的生化(如生长因子、粘合因子和信号蛋白)和物理学特征(如细胞外基质的机械强度和结构稳定性等),进而影响细胞生存、分裂和分化的环境。生物打印材料必须具有很高的机械强度和结构稳定性,并且不能在生物打印之后溶解 能使干细胞分化成组织特异的细胞系并避免器官移植后产生免疫反应。同时,生物墨水必须能快速固化成型,且价格低廉、材料丰富。目前,很多天然的或人工合成的生物墨水已经被用于打印制造生物组织。生物打印的后续过程中的机械和化学刺激对组织的生长和发育也有重要影响。  体内生物打印:在病变部位直接再生组织  体内生物打印主要利用生物喷墨打印技术,能在病变部位直接重新长出组织和器官,并能够整合到原有组织上。利用这一技术制作的皮肤细胞能够有效地治疗烧伤,并将在战场上和灾区救治伤员发挥巨大作用。  体内打印技术对于在病变的部位直接进行组织再生非常有效。这项技术在临床应用中有许多优点。首先,在病变部位直接打印生物组织不需要根据病变部位的几何性状提前制作塑形模具,进而可以减少污染并提高细胞活性。第二,在制造某些具有特殊功能的生物组织时,体内打印可在体内直接打印干细胞,随后可分化出人类所需要的细胞类型。第三,体内打印能够在体内缺陷部位精确地排列细胞、基因和其他生物活性物质,而不会发生变形。同时体内打印技术可对组织进行进行精细控制,如在不同的细胞层打印不同的细胞因子。第四,体内打印技术能够在形状不规则的病变部位精确地制造组织和器官,直接进行组织再生。第五,体内打印技术利用自动打印机能够在体内不平整的的病变部位进行多角度的生物打印。  因为具有诸多优点,体内生物打印技术将被广泛应用于医学领域,但这仍然需要大量的探索和实践。
  • 吸烟对心、脑血管和呼吸道的影响
    对心、脑血管的影响 许多研究认为,吸烟是许多心、脑血管疾病的主要危险因素,吸烟者的冠心病、高血压病、脑血管病及周围血管病的发病率均明显升高。统计资料表明,冠心病和高血压病患者中75%有吸烟史。冠心病发病率吸烟者较不吸烟者高3.5倍,冠心病病死率前者较后者高6倍,心肌梗塞发病率前者较后者高2~6倍,病理解剖也发现,冠状动脉粥样硬化病变前者较后者广泛而 严重。高血压、高胆固醇及吸烟三项具备者冠心病发病率增加9~12倍。心血管疾病死亡人数中的30%~40%由吸烟引起,死亡率的增长与吸烟量成正比。烟雾中的尼古丁和一氧化碳是公认的引起冠状动脉粥样硬化的主要有害因素,但其确切机理尚未完全明了。多数学者认为,血脂变化、血小板功能及血液流变异常起着重要作用。高密度脂蛋白胆固醇(HDL-C)可刺激血管内皮细胞前列环素(PGI2)的生成,PGI2是最有效的血管扩张和抑制血小板聚集的物质。吸烟可损伤血管内皮细胞,并引起血清HDL-C降低,胆固醇升高,PGI2水平降低,从而引起周围血管及冠状动脉收缩、管壁变厚、管腔狭窄和血流减慢,造成心肌缺氧。尼古丁又可促使血小板聚集。烟雾中的一氧化碳与血红蛋白结合形成碳氧血红蛋白,影响红细胞的携氧能力,造成组织缺氧,从而诱发冠状动脉痉挛。由于组织缺氧,造成代偿性红细胞增多症,使血粘滞度增高。此外,吸烟可使血浆纤维蛋白原水平增加,导致凝血系统功能紊乱;吸烟还可影响花生四烯酸的代谢,使PGI2生成减少,血栓素A2相对增加,从而使血管收缩,血小板聚集性增加。以上这些都可能促进冠心病的发生和发展。由于心肌缺氧,使心肌应激性增强,心室颤动阈值下降,所以有冠心病的吸烟者更易发生心律不齐,发生猝死的危险性增高。 据报告,吸烟者发生中风的危险是不吸烟者的2~3.5倍;如果吸烟和高血压同时存在,中风的危险性就会升高近20倍。此外,吸烟者易患闭塞性动脉硬化症和闭塞性血栓性动脉炎。吸烟可引起慢性阻塞性肺病(简称COPD),最终导致肺原性心脏病。对呼吸道的影响 吸烟是慢性支气管炎、肺气肿和慢性气道阻塞的主要诱因之一。实验研究发现,长期吸烟可使支气管粘膜的纤毛受损、变短,影响纤毛的清除功能。此外,粘膜下腺体增生、肥大,粘液分泌增多,成分也有改变,容易阻塞细支气管。在狗实验中,接触大量的烟尘可引起肺气肿性改变。中国医科大学呼吸疾病研究所的一项研究发现,吸烟者下呼吸道巨噬细胞(AM)、嗜中性粒细胞(PMN)和弹性蛋白酶较非吸烟者明显增多,其机制可能是由于烟粒及有害气体的刺激,下呼吸道单核巨噬细胞系统被激活,活化的AM除能释放弹性蛋白酶外,同时又释放PMN趋化因子,使PMN从毛细血管移动到肺。激活的AM还释放巨噬细胞生长因子,吸引成纤维细胞;以及PMN释放大量的毒性氧自由基和包括弹性硬蛋白酶、胶原酶在内的蛋白水解酶,作用于肺的弹性蛋白、多粘蛋白、基底膜和胶原纤维,从而导致肺泡壁间隔的破坏和间质纤维化。据报导,1986年美国患COPD者近1300万人,1991年死亡9万多人,吸烟是其主要病因。吸烟者患慢性气管炎较不吸烟者高2~4倍,且与吸烟量和吸烟年限成正比例,患者往往有慢性咳嗽、咯痰和活动时呼吸困难。肺功能检查显示呼吸道阻塞,肺顺应性、通气功能和弥散功能降低及动脉血氧分压下降。即使年轻的无症状的吸烟者也有轻度肺功能减退。COPD易致自发性气胸。吸烟者常患有慢性咽炎和声带炎。
  • 大口吃肉与血管老化,原来还有这样的关联
    牛排虽好吃,但也有风险。根据美国科罗拉多大学博尔德分校的一项新研究,当我们吃红肉时,肠道中产生的一种化合物会损害我们的动脉,并有可能增加心脏病的风险。这项研究于近日发表在美国心脏协会的杂志《Hypertension》上。研究还表明,人们可以通过改变饮食和针对性疗法(如新型的营养补充剂)来预防甚至逆转这种与年龄相关的老化。文章第一作者、整合生理学系的博士后Vienna Brunt表示:“我们的工作首次表明,这种化合物不仅直接损害动脉功能,而且还有助于解释为什么心血管系统随着年龄的增长而出现损伤。”通过动物和人体试验,Brunt及其团队试图回答三个问题:TMAO是否以某种方式损害我们的血管系统?如果答案是肯定的,以何种方式?这是否是心血管系统随着年龄的增长而逐渐老化的原因之一(即使是那些勤锻炼而不吸烟的人)?在吃一块牛排或一盘炒鸡蛋时,您的肠道细菌会立即起作用将其分解。它们在代谢L-肉碱和胆碱时,会产生一种称为三甲胺(trimethylamine)的代谢副产物。您的肝脏将其转化为三甲胺-N-氧化物(TMAO),并通过血液传递出去。之前的研究表明,血液中TMAO含量较高的人患心脏病或中风的可能性高两倍,而且往往过早死亡。不过到目前为止,科学家还没有完全弄清楚这背后的原因。研究人员检查了101位老年人和22位年轻人的血液和动脉健康状况,发现TMAO的水平随着年龄的增长而显著上升。这与之前的小鼠研究相吻合,表明肠道微生物组会随着年龄的增长而变化,繁殖出更多产生TMAO的细菌。这项新的研究表明,若成年人血液中的TMAO含量较高,则动脉功能明显变差,而且其血管壁上表现出更大的氧化应激或组织损伤的迹象。当研究人员直接将TMAO投喂给幼鼠时,它们的血管迅速老化。Brunt指出,在摄入TMAO数月后,12个月大的小鼠(相当于35岁左右的人)看起来更像是27个月大的小鼠(相当于80岁)。初步数据还显示,对于TMAO水平较高的小鼠,其学习和记忆能力都下降,表明这种化合物还可能在与年龄相关的认知功能下降中起作用。另一方面,小鼠在摄入另一种名为二甲基丁醇(DMB)的化合物后,血管功能出现逆转。这种化合物主要存在于初榨橄榄油、红酒和醋中。研究人员认为,它能够阻止TMAO的产生。Brunt指出,每个人,包括年轻的素食主义者,都会产生一些TMAO。不过随着时间的流逝,若摄入的动物制品较多,则心血管功能会受到影响。“吃的红肉越多,则产生TMAO的细菌摄取得越多,”她说。资深作者、衰老整合生理学实验室的主任Doug Seals表示,该研究是一项重要的突破,因为它揭示了为什么我们的动脉会随着年龄的变化而逐渐老化,即使最健康的人群也是如此。研究人员目前正在进一步探索可能阻止TMAO生成的化合物,以防止年龄相关的血管老化。他们表示,多蔬少肉的饮食方式也可以控制TMAO水平。
  • 新荧光成像技术可清晰呈现血管脉动
    据物理学家组织网近日报道,美国斯坦福大学的科学家开发出一种荧光成像技术,能够使活体动物血管脉动以前所未有的清晰度呈现。与传统的影像技术相比,其增加的清晰度类似于擦拭掉眼镜前的迷雾一般。该研究结果发表在最新一期的《自然医学》杂志在线版上。   该技术被称为近红外-Ⅱ成像,或NIR-Ⅱ。研究人员首先将水溶性碳纳米管注射到活体的血液中,然后用激光照射要观察的对象,如小白鼠。激光的波长在近红外范围内,约为0.8微米,可导致专门设计的碳纳米管发出1微米至1.4微米的波长更长的荧光,用于检测确定血管的结构。   碳纳米管发出的荧光波长要比传统成像技术更长,这是实现令人惊叹的微小血管清晰图像的关键。由于更长波长光散射较少,因此形成了更清晰的血管图像。此外,这种技术使图像呈现更精致的细节,允许研究人员能够获得一个快速的图像采集速度,近乎实时地测量血流量。   同时获得血流信息和看到清晰血管对于动脉疾病动物模型的研究将特别有用,如血流是如何受到动脉阻塞和收缩诱发的影响,还有其他事项如中风和心脏病发作的影响。   研究人员说:“对于医学研究而言,这是一个非常好的观察小动物特征的工具。其将有助于我们更好地理解一些血管疾病,以及其对于治疗的反应和如何可以设计出更好的治疗。”   由于NIR-Ⅱ至多只能穿透身体1厘米,所以它不会取代其他成像技术,而是X射线、CT、MRI和激光多普勒技术的补充。不过,它却是一个用于研究动物模型的强大方法。   研究人员说,下一步将使这项技术在人体内更容易接受应用,并探索可替代的荧光分子。他们希望找到小于碳纳米管又能够发出同样波长光的物质,以便使其可以很容易地从体内排出,消除任何毒性的担忧。
  • 阿拉丁小分子抑制剂、激动剂、拮抗剂--血管生成信号通路(上)
    血管生成血管生成,即从已存在的血管中生成新血管。此通路是通过人体中存在的诸多互补和复杂的信号途径调节的。正常情况下,血管生成的相关诱导剂和抑制剂之间保持平衡状态。但对于创伤、缺氧或炎症继发等微环境破坏的条件下,此通路能做出迅速的应答。在各种慢性病理和肿瘤的情况下,血管生成的平衡状态被打破,导致异常的血管生成或新生血管。血管生成信号通路转导过程血管生成的激活导致促血管生成生长因子(vegf、pdgf、fgf和tgf等)的释放,这些因子将其受体结合到已有血管内的内皮细胞上,从而诱导pi3k/akt、erk1/2、smad和notch等多种途径的信号转导,引起内皮细胞增殖和迁移。内皮细胞利用基质金属蛋白酶和整合素来消化细胞外基质,迁移到新的区域,在那里它们延长并形成管子,产生新的血管。在肿瘤血管生成过程中,癌细胞刺激新血管的形成,为肿瘤输送氧气和营养。随着肿瘤的生长,位于肿瘤中心的细胞缺氧,使得转录因子hif-1α(缺氧诱导因子-1)稳定表达。该转录因子与hif-1β结合上调几种促血管生成基因的表达。此外,生长因子信号还刺激hif-1活性,以维持生长细胞的氧稳态。血管生成信号通路图 产品列表 *flt项目号产品名称规格cas包装细胞靶点ic50kis129593sorafenib tosylate≥99%475207-59-150mg,100mg,250mg,1g,5g无细胞raf-16 nmb-raf22 nmvegfr-290 nmvegfr-320 nmpdgfr-β57 nmflt-359 nmc-kit68 nmt127762tozasertib≥98%639089-54-625mg,100mgflt330 nms125267sp600125≥98%129-56-625mg,100mg,500mg,1g,5g无细胞jnk140 nmjnk240 nmjnk390 nmf127011foretinib (gsk1363089)≥98%849217-64-75mg,25mg,100mg无细胞met0.4 nmkdr0.9 nmq127558quizartinib (ac220)≥99%950769-58-15mg,10mg,50mg,500mgmv4-11flt3(itd)1.1 nm/4.2 nm rs4 11flt3(wt)1.1 nm/4.2 nmd126778dovitinib (tki-258, chir-258)≥99%405169-16-610mg,50mg,250mg无细胞flt31 nmc-kit2 nmt126330fedratinib (sar302503, tg101348)≥98%936091-26-85mg,25mg,100mg无细胞jak23 nml126993linifanib (abt-869)≥99%796967-16-35mg,10mg,50mgkdr4 nmcsf-1r3 nmflt-1/33 nm/4 nmpdgfrβ66 nmc127776crenolanib (cp-868596)≥99%670220-88-95mg,10mg,50mgpdgfrα2.1 nmpdgfrβ3.2 nmr129910r406 (free base)≥99%841290-80-05mg,10mg,25mg,50mg,100mgsyk41 nmm127412amuvatinib (mp-470)≥98%850879-09-35mg,25mg,100mgc-kit10 nmpdgfα40 nmflt381 nmt125150tandutinib (mln518)≥98%387867-13-225mg,100mg,500mgflt30.22 μmt127523tg10120998%936091-14-45mg,25mg,100mg无细胞jak26 nmflt325 nmret17 nmk127169kw-2449≥98%1000669-72-65mg,25mg,100mgflt36.6 nme126318enmd-2076≥99%934353-76-15mg,10mg,50mgaurora a14 nmflt31.86 nml127618ldk378≥99%1032900-25-65mg,25mg,100mg,250mg无细胞alk0.2 nmigf-1r8 nminsr7 nmstk22d23 nmflt360 nmp129908prt062607 (p505-15, biib057) hcl≥98%1370261-97-45mg,25mg无细胞syk1 nms125098sorafenib≥99%284461-73-0250mg,1g无细胞raf-16 nmb-raf22 nmvegfr-290 nmvegfr-320 nmpdgfr-β57 nmflt-359 nmc-kit68 nmc129757cabozantinib malate (xl184)≥99%1140909-48-310mg,25mg,50mg,100mg,250mgvegfr20.035 nm无细胞c-met1.3 nmret4 nmkit4.6 nmflt-1/3/412 nm/11.3 nm/6 nmtie214.3 nmaxl7 nmt129806tcs 359≥99%301305-73-710mg,25mg,50mgflt343 nme129946enmd-2076 l-(+)-tartaric acid≥99%1291074-87-75mg,25mgaurora a14 nmvegfr(flt3)1.86 nml127298ly2801653-1206799-15-65mg,10mg,50mgmet2 nmc168062crotonoside95% (hplc)1818-71-95mg,10mg,25mgflt3hdac3/6g172979gilteritinib97%1254053-43-45mg,100mgflt30.29 nmaxl0.73 nmp171724pexidartinib97%1029044-16-35mg,100mgcsf-1r20 nmkit10 nmflt3160 nm *dna alkylator项目号产品名称规格cas包装细胞靶点ic50ec50kis129593sorafenib tosylate≥99%475207-59-110mg,50mg,250mg,1g,5g无细胞raf-16 nmb-raf22 nmvegfr-290 nmvegfr-320 nmpdgfr-β57 nmflt-359 nmc-kit68 nme129728sunitinib malate≥99%341031-54-7100mg,500mg,1g无细胞vegfr2 (flk-1)80 nmpdgfrβ2 nml125046lenalidomide≥99%191732-72-650mg,250mg,1g,5gpbmcstnf-α13 nmc126195cabozantinib (xl184, bms-907351)≥98%849217-68-15mg,10mg,50mg,100mg,250mg无细胞vegfr20.035 nmc-met1.3 nm ret4 nmkit4.6 nmflt-1/3/412 nm/11.3 nm/6 nmtie214.3 nmaxl7 nmp127550ponatinib (ap24534)≥99%943319-70-810mg,50mg,250mg无细胞abl0.37 nmpdgfrα1.1 nmvegfr21.5 nmfgfr12.2 nmsrc5.4 nmk125585ki20227≥98%623142-96-110mg,50mgkdr2 nmvegfr-212 nmc-kit451 nmpdgfrβ217 nma129732axitinib≥99%319460-85-010mg,50mg,250mg,1g猪主动脉内皮细胞vegfr10.1 nmvegfr20.2 nmvegfr30.1-0.3 nmpdgfrβ1.6 nmc-kit1.7 nmf127011foretinib (gsk1363089)≥98%849217-64-75mg,25mg,100mg无细胞met0.4 nmkdr0.9 nmn129725nintedanib (bibf 1120)≥98%656247-17-55mg,10mg,25mg,50mg,100mg,500mg无细胞vegfr134 nmvegfr213 nmvegfr313 nmfgfr169 nmfgfr237 nmfgfr3108 nmpdgfrα59 nmpdgfrβ65 nmv125180vandetanib (zd6474)≥99%443913-73-325mg,100mg,500mg无细胞vegfr240 nmvegfr3110 nmegfr500 nmr127804regorafenib (bay 73-4506)≥99%755037-03-75mg,10mg,25mg,100mg无细胞vegfr113 nmvegfr24.2 nmvegfr346nmpdgfr-β22 nmkit7 nmret1.5 nmraf-12.5 nmp129722pazopanib hcl (gw786034 hcl)≥98%635702-64-625mg,100mg,250mg,1g无细胞vegfr110 nmvegfr230 nmvegfr347 nmpdgfr84 nmfgfr74 nmc-kit140 nmc-fms146 nmc125911cediranib≥98%288383-20-010mg,50mgvegfr(kdr)5 nm/≤3 nmp125865pd173074≥99%219580-11-75mg,10mg,50mgfgfr125 nmvegfr2100-200 nmd126778dovitinib (tki-258, chir-258)≥99%405169-16-610mg,50mg,250mg无细胞flt31 nmc-kit2 nml126993linifanib (abt-869)≥99%796967-16-35mg,10mg,50mgkdr4 nmcsf-1r3 nmflt-1/33 nm/4 nmpdgfrβ66 nmv125857vatalanib (ptk787) 2hcl≥99%212141-51-010mg,50mg无细胞vegfr2/kdr37 nmr127906raf265 (chir-265)≥98%927880-90-81mg,5mg,10mg,50mgvegfr230 nmb-raf3-60 nmt126012tivozanib (av-951)≥98%475108-18-05mg,25mg,100mgvegfr10.21 nmvegfr20.16 nmvegfr30.24 nmm129736motesanib diphosphate (amg-706)≥98%857876-30-35mg,10mg,50mgvegfr12 nmvegfr23 nmvegfr36 nml125518lenvatinib (e7080)≥99%417716-92-85mg,10mg,50mg,100mgvegfr2(kdr)4 nmvegfr3(flt-4)5.2 nmb127317brivanib (bms-540215)≥98%649735-46-65mg,10mg,50mgvegfr225 nmm127064mgcd-265≥98%875337-44-31mg,5mg,10mg,50mgc-met1 nmvegfr1/2/33 nm/3 nm/4 nma126830aee788 (nvp-aee788)≥97%497839-62-05mg,25mg,100mgegfr2 nmher2/erbb26 nme126318enmd-2076≥99%934353-76-15mg,10mg,50mgaurora a14 nmflt31.86 nmo126155osi-930≥99%728033-96-31mg,5mg,25mg,50mgkit80 nmkdr9 nmcsf-1r15 nmc126929cyc116≥99%693228-63-61mg,10mg,50mgaurora a8.0 nmaurora b9.2 nmvegfr244 nmk125876ki8751≥98%228559-41-95mg,25mg,100mgvegfr20.9 nmt129747telatinib≥99%332012-40-51mg,5mg,10mg,50mgvegfr2/36 nm/4 nmc-kit1 nmpdgfrα15 nmp126419pp121≥98%1092788-83-410mg,50mgpdgfr2 nmhck8 nmmtor10 nmvegfr212 nmsrc14 nmabl18 nmdna-pk60 nmp125184pazopanib≥99%444731-52-625mg,100mg,500mggfr110 nmvegfr230 nmvegfr347 nmpdgfr84 nmfgfr74 nmc-kit140 nmc-fms/csf1r146 nmk125907krn-633≥97%286370-15-85mg,25mg,100mgvegfr1170 nmvegfr2160 nmvegfr3125 nm
  • Thermo蛋白质组学解决方案在高端心血管研究中的应用
    本文将讨论伦敦国王学院采用的蛋白质组学解决方案在先进的心血管研究中的重要性。 引言 蛋白质组学是对蛋白质的大范围分析,被认为是生物系统研究的下一趋势。尽管干细胞疗法对于再生医学和组织工程具有很大的潜力,但是干细胞如何分化为心血管系统细胞的机理仍不明晰。很多以往的研究着重于基因表达,但是蛋白质组学能够在超越基因水平上通过对蛋白质改性的研究推进对干细胞分化的认识。 高端蛋白质组学解决方案的出现使得研究者可以揭示干细胞分化的新认识,这一点通过传统技术无法获得。该方法的应用可能引出治疗和治愈心血管疾病的新方法。 研究进展 伦敦国王学院James Black中心的心血管蛋白质组学研究团体(The Vascular Proteomics Group)正进行蛋白质组学的最新研究。该团体具有包括基因组学、蛋白质组学、多光子共聚焦显微镜技术(multiphoton confocal microscopy)和核磁共振成像技术(MRI)等一系列核心能力。2007年12月,心血管科获得了英国心脏基金会颁发的优秀研究奖奖金9,000,000欧元奖金。部分奖金将用于推进蛋白质组学研究应用于心血管疾病的发展。国王学院的研究焦点之一就是确定干细胞如何修复心血管或者缺血心肌。 心血管蛋白质组学研究团体进行研究的目的是解释干细胞起源的心血管细胞不同的蛋白质组学和代谢特点。因为干细胞研究对于再生医学和组织工程具有深远意义,研究的总体目标是鉴别出可能成为促进干细胞分化的药物靶标的关键蛋白或者小分子。 蛋白质组学在心血管研究中的重要性 以往研究局限于表面标记物的表达来表征干细胞。然而,细胞表面标记物并不一定表明很多细胞活化状态的信息。但是它可以解释为什么注射入一个病人体内的干细胞比在另外一个病人体内更有效。 心血管蛋白质组学研究团体的目标是展示注入病人体内的细胞特性及其分子特性的综合架构。这一目标需要通过分离干细胞和研究其分泌因子来完成。标准的ELISAs(酶联免疫吸附试验)可以一次测试一个分子,质谱可以对某个数值以上的所有蛋白进行综合测试。分泌蛋白质组的复杂性是非常有限的,因此,即使是ng/mL水平的蛋白质,例如细胞因子和趋化因子,也可以被鉴别出来。 随着研究的进行,国王学院将分离出病人的干细胞,表征其分泌因子,并设法确定干细胞如何有益于临床应用。 挑战 心血管蛋白质组学研究团体进行的研究中,所用设备的灵敏度和耐受性是非常重要的。国王学院的研究者和技术人员是生物医学研究者,因此,该团体所需要的是一种用户友好,几乎不需要日常维护,并可以给出高准确数据的非常可靠的解决方案。该解决方案必须可以可进行短肽序列分析和提供准确的蛋白鉴定。国王学院要求前沿技术来支持研究中心多学科环境和核心能力。 因此,中心要寻找一种高速、强大而尽少维护的系统,用以发展鉴别复杂蛋白质的高通量方法。该系统可以保证小组准确分析很多样品。操作仪器也需要高度灵敏和高度可靠以便应用蛋白质组学来保证细胞分化和在移植或者组织修复中的安全使用。 解决方案 对于这项具体的研究,国王学院要求一种高灵敏度仪器来处理大数量的样品和分析低浓度水平的较大的分子。 国王学院购买了高性能质谱、蛋白质鉴定和生物标记物发现工作平台(Thermo Scientific LTQ Orbitrap XL)和具有电子转移解离能力(ETD)的线性离子阱(Thermo Scientific LTQ XL)等仪器的组合。这些设备提供了研究必需的高质量和高灵敏度。 采用高性能的线性离子阱使得国王学院可以比传统离子阱质谱输送更多的结构信息;ETD选项则提供了传统分析方法无法提供的序列信息。研究小组发现通过快速交互变换破碎技术,可以显著扩大蛋白质组的范围,并增强了蛋白质改性鉴定的把握。心血管蛋白质组学研究团体相信ETD技术是蛋白质组学研究的未来,因而愿意成为首先使用这种前沿设备的一员。ETD提供了蛋白质分析中最前沿的技术,该组织相信,在未来,ETD将成为蛋白质组学研究中广泛应用的一种破碎技术。 OrbitrapXL很高的质量准确度和分辨率使得国王学院可以研究不同干细胞的分泌因子。即使是低丰度蛋白,仍然可能获得可靠的匹配,而准确的质量则增加了复杂基质中肽分析的可靠性。 这些不同仪器的组合为复杂的蛋白质分析和智能肽序列分析提供了综合解决方案。 结论 国王学院的心血管蛋白质组学研究组织将蛋白质组学应用于干细胞和心血管研究中。该研究的潜在意义在于应用于临床治疗。从长远看来,该组织希望鉴定因子,这一点传递了干细胞疗法的优势。从药理学观点来看,给病人注入蛋白或者小分子比细胞要好的多。 将蛋白质组学应用于心血管研究中的高级专业技术将会帮助今天的研究者推进他们对心血管疾病的认识,并有助于将来新药品的发现以及基于干细胞的治疗。
  • 仪器情报,科学家实现对血液和淋巴血管进行无创的拉曼成像新技术!
    【科学背景】拉曼光谱技术作为一种高分辨率的分析工具,已广泛应用于化学、材料和生物医学科学中,其通过检测小分子的不弹性光散射来提供化学信息。尽管拉曼光谱技术具有优良的化学选择性和稳定性,但其固有的散射效应效率极低,通常在10-28到10-30 cm2的范围内,这限制了其在实际应用中的灵敏度和有效性。为提高信号强度,表面增强拉曼散射(SERS)技术被引入,通过将小分子拉曼探针吸附在无机或有机基底上来实现信号放大。然而,基底材料的生物安全性问题限制了SERS在生物体内的广泛应用。针对这一挑战,复旦大学陆伟教授、上海交通大学Zeyu Xiao和国科大杭州高等研究院方晓红研究员合作提出了堆叠诱导的电荷转移增强拉曼散射(SICTERS)机制。这一新机制不依赖于基底材料,而是通过小分子的自堆叠形成有序的三维空间结构,允许分子间的电荷转移在多个方向上自由进行。研究表明,与传统的SERS技术相比,SICTERS基于的小分子纳米探针在拉曼散射截面上表现出显著的增强,能够实现对微肿瘤的术中检测和对血管及淋巴管的非侵入性成像。SICTERS技术不仅克服了基底材料的安全性问题,还在体内成像的灵敏度、空间分辨率和成像深度方面超越了现有的SERS技术和其他拉曼成像技术,如刺激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS)。这些进展标志着SICTERS在生物医学成像领域的潜力和应用前景。【科学亮点】1. 实验首次提出了SICTERS效应,用于小分子的无基底拉曼散射增强。通过这一新机制,小分子在不依赖传统金属或半导体基底的情况下,展示了显著的拉曼散射增强。2. 实验结果:机制验证:SICTERS效应利用小分子的π-共轭平面结构和自堆叠形成的有序空间排列,实现了邻近分子之间的三维电荷转移。这种结构显著提高了拉曼散射的截面。与以往通过π-π堆叠实现的增强效果相比,SICTERS表现出更高的拉曼截面。结果对比:实验对比了SICTERS与传统的SERS技术。结果表明,SICTERS基于BBT纳米颗粒的拉曼散射截面高达1.61 × 10-21 cm2,明显高于基于有机半导体膜的MB(2.4 × 10-24 cm2 sr-1)和[34](1,2,4,5)环芳烃(9.1 × 10-25 cm2)。这一巨大增强证明了SICTERS在提高拉曼散射截面方面的有效性。成像性能:SICTERS技术在体内成像中的灵敏度、空间分辨率和成像深度都优于传统SERS技术,能够实现高分辨率的非侵入性透皮成像。SICTERS的成像深度达到1.2 mm,显著高于CARS/SRS技术的0.4 mm限制。通过对比,SICTERS在淋巴引流和微血管成像方面展现了更强的能力。应用前景:SICTERS技术可用于术中多重成像,不依赖基底且具备较高的灵敏度和成像深度。尽管SICTERS的成像深度尚不足以穿透人类皮肤,但其在术前PET/MRI和术中SICTERS成像的结合,将有助于实现精准的疾病诊断和手术引导。【科学图文】图1:聚集增强小分子拉曼散射效应。图2:基于DTBT的平面D-A-D分子的堆叠诱导分子间电荷转移。图3:原位小鼠结肠肿瘤的SICTERS术中拉曼成像。图 4: 基于SICTERS的小分子纳米探针与基于SERS的金纳米探针的拉曼散射截面比较。图5:使用SICTERS对原位小鼠结肠肿瘤进行的手术中拉曼成像。图6:使用基于SICTERS的BBT纳米探针对淋巴引流和血管进行的非侵入性拉曼成像。【科学结论】本文揭示了小分子在无基底情况下通过SICTERS机制实现拉曼散射增强的潜力,与传统的SERS技术相比具有显著优势。SICTERS通过小分子间的三维电荷转移效应,克服了传统拉曼散射中低效率的问题,展现出远高于现有技术的拉曼散射截面。与SERS相比,SICTERS不仅避免了基底材料的生物安全性问题,还在灵敏度、成像深度和空间分辨率方面表现优异。SICTERS技术能够非侵入性地实现高分辨率的体内成像,特别是在肿瘤和淋巴管的成像应用中具有显著的优势。此外,SICTERS的优越性能超越了现有的SRS和CARS技术,显示出更高的检测灵敏度和成像深度。未来,SICTERS技术有望在疾病早期检测和术中精准成像中发挥重要作用,进一步推动拉曼成像技术在生物医学领域的应用。参考文献:Gao, S., Zhang, Y., Cui, K. et al. Self-stacked small molecules for ultrasensitive, substrate-free Raman imaging in vivo. Nat Biotechnol(2024). https://doi.org/10.1038/s41587-024-02342-9
  • 检测脑毛细血管血液循环问题的新方法
    通过贝塞尔光束双光子显微镜检测毛细血管血液循环问题的新方法,可能会导致相关疾病的治疗方法的发展。国际光电工程学会9月13日消息对于血流和氧气供应的变化,大脑可能是最敏感的器官。即使是短暂的毛细血管血流中断(或称“失速”)也可能表明急性神经系统问题。有证据表明,阿尔茨海默病和帕金森病等慢性疾病与失速事件(stalling events)密切相关。因此,研究失速的影响可能会导致这种疾病的治疗方法的发展。然而,尽管在过去的几十年里,医学成像取得了巨大的进步,但识别毛细血管中的失速仍然是一个艰巨的挑战。光学相干断层扫描(Optical coherence tomography ,OCT)是目前监测小体积内毛细血管的最佳方法。但是这种方法存在时间分辨率差的问题,这意味着它只能捕获长时间的失速事件。此外,分析通过 OCT 收集的数据以确定失速事件需要大量的手工工作。John Giblin 博士在最近发表在国际光电工程学会(International Society for Optics and Photonics,SPIE)期刊《神经光子学》(Neurophotonics)上的一项研究中,由美国波士顿大学(Boston University,BU)的 John Giblin 博士领导的一个研究小组试图解决这些问题。利用定制的装置,研究人员展示了一种名为贝塞尔光束双光子显微镜(Bessel beam two-photon microscopy)的技术的潜力,该技术可以获得脑毛细血管的容积图像。此外,该团队还提出了一种创新的分析方法,可以半自动地识别失速事件。论文题目“贝塞尔光束双光子显微镜高通量检测毛细管失速事件”( High throughput detection of capillary stalling events with Bessel beam two-photon microscopy)。研究于2023年9月12日发表在《Neurophotonics》(最新影响因子:5.3)杂志上但什么是贝塞尔光束双光子显微镜?双光子显微镜是一种广泛使用的成像方式,它利用激光激发样品中的荧光分子。发光必须同时发生两个光子与荧光分子的碰撞,这可以大大降低背景杂波。此外,利用贝塞尔光束,一种具有独特强度分布的激光束,使其能够在相对较长的距离内保持聚焦在狭窄的空间内,使该技术更具前景。由于这种方法,研究人员可以大约每两秒获得 713 × 713 × 120 μm3 体积内所有毛细血管的清晰图像。在这些图像中,通过聚焦红血球的运动,可以直接检测到失速,红血球以阴影的形式出现。如果细胞停留在毛细血管内的同一位置连续两帧或更多帧,这意味着毛细血管内的血液流动已经停止。与 OCT 相比,使用贝塞尔光束双光子显微镜的方法可以更快地生成图像,提供更好的时间分辨率。然而,这种设置产生的大量数据只会加剧数据分析的问题。因此,该团队提出了一种方法,可以更容易地识别失速事件。所提出的分析程序依赖于这样一个事实,即在双光子图像中沿失速毛细血管的强度将保持相对不变。研究人员实现了一种算法来计算单个毛细血管的帧间强度相关性,高相关性意味着毛细血管已经停止运转。通过可视化计算出的相关性,而不是原始的强度图像,研究人员发现识别失速事件更容易、更快。研究小组通过小鼠体内实验测试了他们的半自动数据分析技术,以探索卒中前后失速的变化。提出的策略将分析所需的时间缩短了一半。此外,可视化强度相关性被证明比“盲目”观察原始图像更可靠地检测失速。与 OCT 不同,这种成像策略也能够检测到短暂的失速事件。此外,贝塞尔光束双光子显微镜使血管直径的估计基于荧光强度。为了展示这一特征,研究人员调查了失速事件与动脉扩张之间的关系,发现扩张的血管可以短暂地减少失速。《神经光子学》副主编、约翰霍普金斯大学(Johns Hopkins University,JHU)眼科学和生物医学工程教授 Ji Yi 评论道:“综合来看,这项研究的发现证明了贝塞尔光束双光子显微镜在探索大脑循环系统的复杂运作及其对神经系统健康的影响方面的力量。”在不久的将来,检测失速的全自动方法有望帮助科学家调查、诊断和评估脑部疾病的治疗方法。创立于1839年的波士顿大学
  • 阜外华中心血管病医院207.00万元采购基因测序仪,核酸提取仪,大分子作用仪,移液工作站
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪 河南省-郑州市-金水区 状态:公告 更新时间: 2023-02-07 招标文件: 附件1 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目-公开招标公告 中小微企业融资申请 项目概况 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目招标项目的潜在投标人应在河南省公共资源交易中心网站获取招标文件,并于2023年03月01日09时00分(北京时间)前递交投标文件。 一、项目基本情况1、项目编号:豫财招标采购-2023-19 2、项目名称:阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 3、采购方式:公开招标 4、预算金额:2,070,000.00元 最高限价:2070000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20230048-1 国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 2070000 2070000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1 采购货物名称及数量:高通量基因测序全自动核酸提取仪 1台,高通量基因测序超声DNA打断仪 1台,高通量基因测序生信分析软件 1套,高通量多功能全自动液体处理工作站 1台5.2 标包划分:共划分 1 个标包 5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求” 5.4 核心产品:高通量多功能全自动液体处理工作站 5.5 采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:10日历天5.8 交货地点:采购人指定地点 6、合同履行期限:/ 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无; 3、本项目的特定资格要求 供应商须具有医疗器械经营许可证或医疗器械经营备案凭证(医疗器械注册人、备案人经营其注册、备案的医疗器械,无需办理医疗器械经营许可或者备案,但应当符合《医疗器械监督管理条例》规定的经营条件),投标产品须符合《医疗器械监督管理条例》相关规定,取得医疗器械注册证或相关凭证。 三、获取招标文件 1.时间:2023年02月08日 至 2023年02月14日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心网站 3.方式:登录《河南省公共资源交易中心-市场主体》凭CA数字证书下载投标项目所含全部资料 4.售价:0元 四、投标截止时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:通过《河南省公共资源交易中心-市场主体》电子交易平台加密上传 五、开标时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(二)-5 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 无 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:阜外华中心血管病医院 地址:河南省郑州市郑东新区阜外大道1号 联系人:何芸 联系方式:0371-58680092 2.采购代理机构信息(如有) 名称:河南省信人工程造价咨询有限公司 地址:河南省郑州市金水区文化路9号永和国际1702室 联系人:龚亮 联系方式:0371-63899156 3.项目联系方式 项目联系人:龚亮 联系方式:0371-63899156 采购需求-(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站).pdf × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:基因测序仪,核酸提取仪,大分子作用仪,移液工作站 开标时间:2023-03-01 09:00 预算金额:207.00万元 采购单位:阜外华中心血管病医院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:河南省信人工程造价咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪 河南省-郑州市-金水区 状态:公告 更新时间: 2023-02-07 招标文件: 附件1 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目-公开招标公告 中小微企业融资申请 项目概况 阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目招标项目的潜在投标人应在河南省公共资源交易中心网站获取招标文件,并于2023年03月01日09时00分(北京时间)前递交投标文件。 一、项目基本情况 1、项目编号:豫财招标采购-2023-19 2、项目名称:阜外华中心血管病医院国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 3、采购方式:公开招标 4、预算金额:2,070,000.00元 最高限价:2070000元 序号 包号 包名称 包预算(元) 包最高限价(元) 1 豫政采(2)20230048-1 国家区域医疗中心设备(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站)采购项目 2070000 2070000 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1 采购货物名称及数量:高通量基因测序全自动核酸提取仪 1台,高通量基因测序超声DNA打断仪 1台,高通量基因测序生信分析软件 1套,高通量多功能全自动液体处理工作站 1台5.2 标包划分:共划分 1 个标包 5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求” 5.4 核心产品:高通量多功能全自动液体处理工作站 5.5 采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:10日历天5.8 交货地点:采购人指定地点 6、合同履行期限:/ 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否 二、申请人资格要求: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策满足的资格要求: 无; 3、本项目的特定资格要求 供应商须具有医疗器械经营许可证或医疗器械经营备案凭证(医疗器械注册人、备案人经营其注册、备案的医疗器械,无需办理医疗器械经营许可或者备案,但应当符合《医疗器械监督管理条例》规定的经营条件),投标产品须符合《医疗器械监督管理条例》相关规定,取得医疗器械注册证或相关凭证。 三、获取招标文件 1.时间:2023年02月08日 至 2023年02月14日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心网站 3.方式:登录《河南省公共资源交易中心-市场主体》凭CA数字证书下载投标项目所含全部资料 4.售价:0元 四、投标截止时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:通过《河南省公共资源交易中心-市场主体》电子交易平台加密上传 五、开标时间及地点 1.时间:2023年03月01日09时00分(北京时间) 2.地点:河南省公共资源交易中心远程开标室(二)-5 六、发布公告的媒介及招标公告期限 本次招标公告在《河南省政府采购网》、《中国政府采购网》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日 。 七、其他补充事宜 无 八、凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:阜外华中心血管病医院地址:河南省郑州市郑东新区阜外大道1号 联系人:何芸 联系方式:0371-58680092 2.采购代理机构信息(如有) 名称:河南省信人工程造价咨询有限公司 地址:河南省郑州市金水区文化路9号永和国际1702室 联系人:龚亮 联系方式:0371-63899156 3.项目联系方式 项目联系人:龚亮 联系方式:0371-63899156 采购需求-(高通量基因测序全自动核酸提取仪、高通量基因测序超声DNA打断仪、高通量基因测序生信分析软件、高通量多功能全自动液体处理工作站).pdf
  • 深圳先进院等研发出新型无标记血管成像双光子显微系统
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院深圳先进技术研究院研究员郑炜团队、北京大学教授施可彬团队合作,研制出首台短波长(520纳米)激发的双光子显微系统。该系统可用于毛细血管的高分辨率、无标记、无创活体成像,相关成果论文In vivo label-free two-photon excitation autofluorescence microscopy of microvasculature using a 520 nm femtosecond fiber laser发表在Optics Letters上。 /p p style=" text-align: justify text-indent: 2em " 对微血管网络在其自然环境中进行形态评估,为理解感染、高血压、糖尿病、缺血、癌症等各种疾病的发生和发展提供了独特视角。目前,无需标记物的高分辨率三维成像技术的缺乏,限制了对微血管的体内研究。以往采用蓝宝石激光器(波长范围:700-1000纳米)作为光源的普通双光子显微系统给血管成像时,由于血管自身几乎不发荧光,需要提前在血管中注射荧光染料。近年来,科研人员发现红细胞在可见光飞秒激光激发下可发出微弱的自发荧光信号。但以往研究只能依赖蓝宝石激光器和光参量振荡及放大技术或光子晶体光纤(PCF)产生超连续谱这两种方法来获得可见光波段(400-700纳米)的飞秒光。这些方法存在激光器体积大,价格昂贵,结构复杂,易受环境影响等问题。 /p p style=" text-align: justify text-indent: 2em " 该研究借助施可彬团队自行研制的520纳米高功率飞秒光纤激光器,采用短波长激发和荧光寿命成像相结合的技术,实现了毛细血管的无标记、活体、高分辨成像。整个双光子显微系统横向分辨率达到260纳米,纵向分辨率为1.3微米,在体成像深度可达200微米。该设备的研发将为后续血管相关的疾病机理研究与治疗策略探索提供重要工具。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 该研究得到国家自然科学基金、广东省自然科学基金等项目支持。 /span /p p style=" text-align: justify text-indent: 2em " a href=" https://www.osapublishing.org/ol/abstract.cfm?uri=ol-45-10-2704" target=" _self" span style=" color: rgb(0, 176, 240) " strong span style=" text-indent: 2em " 论文链接& nbsp /span /strong /span /a /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/aa10e0df-e883-46ef-ad83-b8c46ccd44d1.jpg" title=" 1.PNG" alt=" 1.PNG" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" text-indent: 2em " (a)血红细胞和(b)毛细血管的无标记、高分辨成像结果 /span /strong /p
  • 最新!联影医疗医用血管造影X射线机获批上市
    近日,国家药品监督管理局经审查,批准了上海联影医疗科技股份有限公司生产的“医用血管造影X射线机”创新产品注册申请。该产品由高压发生器、X射线管组件、限束器、滤线栅、平板探测器、机架、导管床、显示器、显示器吊架、视觉组件、触控平板、控制模块、控制盒、脚踏开关、手闸、图像采集工作站、视频管理工作站、图像高级处理工作站、3D图像处理工作站和附件组成。适用于对血管造影检查、介入手术时提供X射线透视、摄影、血管减影图像和体层图像。  该产品采用9轴机器人DSA,能实现全腹部、全胸部的锥形束成像,解决了传统锥形束CT重建视野小的问题。此外,产品采用计算机视觉技术,实现了一键自动锥形束CT扫描和一键到位,可简化定位和锥形束CT的工作流,减少辐射暴露和术中操作步骤。与传统的医用血管造影X射线机相比,该产品可显著扩大锥形束CT重建视野,减少锥形束CT扫描的操作步骤、操作时间和辐射剂量,预期缩短成像前的准备时间,提高手术效率。  药品监督管理部门将加强该产品上市后监管,保护患者用械安全。
  • 【新品上市】凯尔测控新品上市-血管支架疲劳试验系统
    凯尔测控是一家专业从事开发、生产、销售各类力学试验系统的国家高新技术企业,自2008年成立以来一直致力于发展新的测试方法。先后与清华大学、北京大学、中科院金属所、中国工程物理研究院等国内知名高校、科研院所建立密切合作,持续在航空、航天、核电等关键领域进行技术研发与投入。公司拥有各类力学性能试验机四个系列四十余个品种,主导产品电磁式疲劳试验系统、原位力学试验系统、原位双轴力学试验系统、拉扭多轴疲劳试验机等测试系统打破国外设备的垄断。凭借着过硬的技术、性能优良的产品和专业妥善的服务,凯尔测控赢得了众多用户的信赖。   在发展过程中,凯尔测控始终坚持以用户需求为导向,以市场发展为指引,以技术创新为动力,力求不断推出实用、好用、易用、耐用的仪器设备,为客户提供成熟的解决方案。近日,凯尔测控新品再度来袭,为医学科研用户带来了新体验。血管支架疲劳试验系统 据了解,本款产品可以通过模拟生理脉动环境,实现对模拟血管和支架的径向应变控制,满足多周期高频率疲劳测试需求。最多支持6样品工位同时测试,可定制连接器以适配多种管径,试验系统运行稳定,无需长期值守,配有漏水报警停机功能。双音圈电机对称加载,动态性能优异,相位自动调整,防止植入物偏移。激光测量系统可实时采集高精度径向应变数据并记录,软件内嵌数学计算功能可自动计算实时内径。 产品是企业的生命和基础,一件好的产品能体现一个企业的“精气神”。正如凯尔测控的这款新品,它从性能、外观和实用性等方方面面都体现了凯尔测控对用户的重视和对仪器的深刻把握。未来,凯尔测控还将保持初心,以产品品质和性能为重,继续在仪器行业耕耘,为国产仪器市场提供更多高精尖的前处理仪器。
  • 安捷伦科技公司授出心血管代谢疾病转化研究基金
    安捷伦科技公司授出心血管代谢疾病转化研究基金美国杜克大学 Christopher Newgard 博士的团队采用安捷伦平台对疾病机制展开深入研究 2014 年 1 月 13 日,北京 — 安捷伦科技公司(纽约证交所代码:A)今日宣布向新成立的美国杜克大学分子生理学研究所(DMPI)授予研究基金。DMPI 研究团队目前正在使用安捷伦的整合生物学解决方案深入研究主要慢性疾病(如,心血管疾病)的代谢和生理学机制。 DMPI 团队的负责人是 Christopher Newgard 博士,他在美国杜克大学医学院药理学和癌症生物学系担任教授,同时担任 Sarah W. Stedman 营养及代谢研究中心和分子生理学研究所的主任。 Newgard 博士说:“杜克分子生理学研究所致力于将强大的基因组学、表观基因组学、转录组学和代谢组学平台与计算生物学、临床转化医学和基础科学经验相融合,以深入研究心血管代谢疾病的机制,我们衷心感谢安捷伦在研究方面给予的支持,并且十分期待与他们的进一步合作,推进心血管疾病和未确诊代谢疾病的深入研究。” Newgard 博士的生物学通路研究以 Agilent GC/MS、三重四极杆 LC/MS 和四极杆飞行时间 LC/MS 系统,以及带化学工作站功能的 MassHunter 工作站等软件为基础,辅以 Agilent-Fiehn GC/MS 代谢组学 RTL 谱库和使用 METLIN 个人代谢物数据库和谱库的 MassHunter 定性软件。安捷伦的 GeneSpring GX 软件、Mass Profiler Pro 和 Pathway Architect 将在数据集成和通路导向解析方面发挥重要作用。 “我们很高兴能够为杜克大学 Newgard 博士和他的团队在开创性转化医学研究领域提供支持,”目前正在与该团队紧密协作的安捷伦“组学应用”主管 Steve Fischer 说道,“他们将拥有整合不同“组学数据”的强大功能,深入研究复杂疾病机制并查明之前不为人知的疾病表型通路。此外,我们的解决方案还将帮助他们更快速地了解心血管代谢疾病的复杂过程,从而更快速地开发治疗方案。” “我们在将整合方案应用于解决心血管代谢疾病之类的重要健康问题方面拥有强大的技术基础,”安捷伦整合生物学总监 Leo Bonilla 补充道,“所以,我们非常期待能够为 Newgard 博士在杜克进行的开创性研究提供进一步支持。”关于安捷伦科技公司的大学事务 安捷伦在支持全球高等教育和研究方面发挥着积极作用。要了解有关最新研究合作、研究工具、教育支持、顶尖大学人才招募和慈善机构的详细信息,请访问:安捷伦大学事务。关于安捷伦整合生物学解决方案 安捷伦科技公司为研究者们提供了涵盖所有四门主要“组学”学科的分析产品。这些组合式硬件/软件和信息学解决方案正在推动新一代生物学通路的多组学研究,并且获得了与药物响应、耐药性、诊断标志物和基础疾病/毒理学途径相关的重要信息。有关安捷伦整合生物学解决方案整套产品的更多信息,请访问 http://biology.chem.agilent.com。关于安捷伦科技公司 安捷伦科技公司(NYSE:A) 是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20600 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2013 财年,安捷伦的净收入达到 68 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。 2013 年 9 月 19 日,安捷伦宣布将通过对旗下电子测量公司进行免税剥离,分拆为两家上市公司的计划。分拆后电子测量公司名字为是德科技 (Keysight Technologies, Inc.),此次分拆预计将于 2014 年 11 月初完成。 更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 著名心血管外科专家高长青院士因病离世,享年59岁
    p   中国工程院院士、我国著名心血管外科专家、中国人民解放军总医院原副院长高长青教授,于2019年1月8日下午15:59因病在京去世,享年59岁。   /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/f059399f-e648-4f63-8dca-9ad9a50810d0.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 300" style=" width: 450px height: 300px " / /p p   他开创了我国机器人微创外科,成功实施了亚洲第一例全机器人不开胸心脏手术。 /p p   他的一生创造了太多生命的奇迹! /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " ==高长青院士简介== /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201901/uepic/ea8ecc20-34b9-4d7a-84f4-9bdbbe3732d3.jpg" title=" 2.jpg" alt=" 2.jpg" style=" text-align: center " / /p p style=" text-indent: 2em " 高长青,男,1959年12月31日出生,解放军总医院全军心脏外科研究所所长,主任医师、教授、博士生导师,心血管外科专家。中国工程院院士,英国皇家外科学院院士、法国国家医学科学院院士、法国国家外科学院院士,解放军总医院原副院长。现任解放军心脏外科研究所所长,心血管疾病微创技术研究北京市重点实验室主任。中国医师协会心血管外科分会会长,中国医师协会机器人外科分会会长,国际微创胸心外科学会常委,美国机器人外科学会常委。 /p p   长期从事心血管外科专业临床和基础研究工作,开创了我国机器人微创外科,引领并推动了国际机器人微创外科的发展,是亚洲机器人微创心脏外科的开拓者之 一。完成了系列微创冠脉搭桥术临床和基础研究,在国际上率先提出冠脉搭桥术 后抗凝治疗新方案。创新性阐述了心肌带的解剖学概念,降低了冠心病室壁瘤手术死亡率,促进了我国冠心病室壁瘤外科的发展。 /p p   承担国家“863”、国家重点研发计划等课题 20余项。发表论文 300余篇,主编、 参编专著10部。以第一完成人获国家科学技术进步奖一等奖1项和省部级一等奖4项。获“何梁何利科学与技术奖”,“求是杰出青年工程奖”,“军队杰出专业技 术人才奖”,是“军队科技领军人才”。 /p
  • 四川3D生物打印血管在猴体实验成功 获全球性突破
    四川3D生物打印血管在猴体实验成功 获全球性突破投资者总是先知先觉,12月9日午后,3D打印板块崛起,蓝光发展(600466)涨停。12月11日上午,涨停原因揭晓,蓝光发展控股子公司四川蓝光英诺生物科技股份有限公司(以下简称“蓝光英诺”)召开成果发布会,宣告蓝光英诺3D生物打印血管植入恒河猴体内实验取得成功,这标志着困扰临床半个世纪的人工血管内皮化问题成功找到解决办法,为全球近十八亿心血管疾病患者带来福音。去年10月,蓝光英诺发布全球领先3D生物血管打印机,如今打印血管成为现实,并取得动物体实验成功,这意味着成都3D生物打印取得全球阶段性重大技术突破。中组部首批“千人计划”国家特聘专家、美国毒理科学院院士、蓝光英诺首席执行官兼首席科学家康裕建教授介绍,今后不仅是血管,人体其他器官皆可3D生物打印,“以病为本的医药产业,将转向以人为本的健康产业”。30只恒河猴植入3D打印血管100多天后还是活蹦乱跳“截至2016年12月1日,蓝光英诺已在30只恒河猴进行3D生物打印血管体内植入实验,实验动物术后存活率为100%”。康裕建告诉记者,术后对植入血管取出进行功能观察,截至2016年12月1日,对实验动物植入血管的结构和功能一致性观察分别从最短1天内即时观察到最长104天持续观察不等,在实验期内,所有实验动物在3D生物打印血管植入后,其脂肪间充质干细胞均有序分化为内皮细胞、平滑肌细胞等血管组织,在3D生物打印血管再生完成后,其结构和功能均与实验动物自身血管的结构和功能一致,实验动物各项生理指标均未发现异常。据他介绍,团队科研人员利用取自恒河猴自体的脂肪间充质干细胞制备成3D生物打印墨汁,应用自主研发的3D生物血管打印设备构建出具有生物活性的人工血管,并将其置换恒河猴体内一段腹主动脉。“上述实验结果与原定实验预期一致有效,且打印材料取自实验动物自体的脂肪间充质干细胞,保证了该血管移植在体内的安全性。”康裕建说。动物实验持续到明年5月华西医院出具总结报告据悉,蓝光英诺于2016年5月与四川大学华西医院签订《3D生物打印血管体内移植动物实验研究》技术开发委托合同,正式开始进行3D生物打印血管动物实验。实验目的为进行3D生物打印血管与实验动物自身血管的结构和功能一致性的验证。本次动物实验设定的预期成功指标包括3D生物打印血管与实验动物自体血管可替换;3D生物打印血管与实验动物自体血管可融合;3D生物打印血管与实验动物自体血管结构和功能一致。该动物实验是在具有GLP资质的四川大学华西医院动物实验中心进行,实验数据充分,并具有阶段性总结报告。据悉,该动物实验将持续到2017年5月,后续阶段将完成3D生物打印血管移植手术程序的标准化。实验结束后,四川大学华西医院按照《3D生物打印血管体内移植动物实验研究》技术开发委托合同的要求出具动物实验总结报告。康裕建教授表示:“3D生物打印血管在体实验的成功解决了困扰临床半个世纪的人工血管内皮化的问题。同时,在体实验打破了脂肪间充质干细胞不能分化成血管组织所需的多种细胞的认识。”康裕建强调,该技术的核心理念是在不对干细胞加以修饰的前提下保持干细胞的干性,通过调动体内自主再生能力,实现机体自主调节的组织再生和功能恢复。这是对目前在干细胞研究与应用过程中对干细胞进行人为诱导、分化等方向的认知的根本性重大挑战。将申请人体临床试验进军158亿美元心血管疾病市场蓝光英诺3D生物血管打印未来主要应用于心血管疾病领域。心血管疾病发病率为全球第一,其中需要血管支架和人工血管置换的市场需求规模巨大。目前在心血管领域治疗主要应用的是非生物活性的人工血管或人工支架。根据世界卫生组织统计,2012年全球心脑血管疾病患病人数超过17亿人,约占全球人口的25%。北京大学研究(《介入器械分类及其发展趋势》,2014年)表明,2010年,全球冠状动脉手术为333万例,全球介入性心血管疾病治疗市场规模超过158亿美元,并将于2018年超过251亿美元,市场前景广阔。蓝光发展公告称,下一步,公司3D生物打印血管将向有关监管机构申请临床试验,并进一步补充表示,根据动物实验的结果和相关法规要求,公司正在撰写、补充和完善临床试验申报资料。康裕建表示,此举将对传统医疗市场产生革命性影响,传统医疗是针对疾病分类的标准化制药,比如血管疾病治疗,需要为病人在有限的人工血管选择合适的型号,而随着上述技术的突破,通过病人身体三维影像数据,提取病人自身脂肪作为3D生物打印“墨汁”,打印出为病人量身订造的个性化血管。“干细胞应用技术的突破将引领人类迈入组织制造、器官修复的再生医学和精准医疗新时代。
  • 阜外华中心血管病医院国家区域医疗中心预算830万元购买串联质谱仪、在线标本冷藏箱
    4月6日,阜外华中心血管病医院国家区域医疗中心公开招标,购买串联质谱仪、在线标本冷藏箱2台/套仪器,预算830万元。  项目编号:豫财招标采购-2021-139  项目名称:阜外华中心血管病医院国家区域医疗中心设备(串联质谱仪、在线标本冷藏箱)采购项目  采购方式:公开招标序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20210281-1阜外华中心血管病医院国家区域医疗中心设备(串联质谱仪、在线标本冷藏箱)采购项目83000008300000  采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)  采购货物名称及数量:液相色谱串联质谱仪 1 台、在线标本冷藏箱1套  标包划分:1个标包  采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”  核心产品:液相色谱串联质谱仪  采购范围:货物的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务  开标时间:2021年04月30日09时00分(北京时间)
  • 【知识科普】心血管生物力学与力学生物学2022年研究进展
    心血管系统是脊椎动物胚胎发育的第一个功能器官系统,其主要功能是运输、控制和维持全身的血流。由于不断暴露在来源于血流量和压力的多种机械力下,心血管系统是最容易受到机械力学刺激的系统之一。在这种情况下,心血管系统中的细胞由于心脏跳动产生的脉动变化以及血流产生的剪切应力等永久地受到力学刺激。一方面,流体剪切应力、血管壁机械牵张力、细胞与细胞之间的胞间力等外力组成了心血管系统的力学刺激。另一方面,心血管细胞力学描述了心血管的细胞或组织弹性的动力学。 心肌组织是由心肌细胞、心脏成纤维细胞、细胞外基质、血管等组成的复杂和高度层次化的组织,其组织结构与心脏的宏观力学和形态特性密切相关。随着心脏从单腔结构演变为多室结构,心脏瓣膜开始控制心脏周期中的单向血流。在此期间,心室肌细胞以纤维的形式排列,在心脏壁内形成复杂的层流模式,赋予了心脏包括各向异性、黏弹性在内的多种力学性能。此外,细胞外基质维持了心脏完整性并支持其功能。心脏间质外基质主要由成纤维细胞样细胞产生和维持,为心肌提供了必要的结构支持,保留了心室的力学特性。血流和基质成分的改变都将在一定程度上影响整个心脏的结构和功能。血管在组织结构较高,特别是大组织和器官结构的产生中发挥着重要作用。所有组织生长需要建立足够的血管结构。血管主要由血管内皮细胞(endothelial cells,ECs)和周围的平滑肌细胞(smooth muscle cells,SMCs)或周细胞组成。这些特殊组分维持了血管的黏弹性、各向异性等力学特性。EC排列在血管的内表面,其在循环和周围组织之间提供选择性结构屏障,调节血管通透性和血流。血管内皮功能可以通过血流速率、血管直径或动脉力学特性变化来评估,这些特性与血管收缩和舒张活动有关。此外,SMCs是构成血管壁组织和维持血管张力的主要细胞成分。血管SMCs在组织发育过程中,不断暴露于脉动牵张力等力学刺激中,这种力学作用至少在一定程度上促进了血管组织成分的发育。心血管结构或可替代性的改变可以对心脏功能、血管收缩和扩张能力产生重要影响。特别是在病理情况下,了解心血管结构和力学特性的变化是阐明心血管疾病发生的必要条件,因为这些特性是正常心血管功能的关键决定因素。2022年,关于心血管的生物力学与力学生物学研究主要集中在心血管组分、结构和功能方面。在生理或病理条件下,对心脏和血管壁的生物力学特性、血管内的血流动力学参数、以及响应力学刺激后的生物学改变进行了广泛研究。此外,在微流体技术、纳米技术和生物成像技术等新技术的应用以及心血管生物力学建模领域也取得了进步。然而,机体自身存在的复杂力学环境导致体内心血管力学生物学相关的研究较少。因此,体内环境中不同力学条件下心血管损伤修复的力学生物学研究是未来重要的研究方向。1 心血管生物力学研究1.1 心脏结构和功能的生物力学特征心脏具有复杂的三维结构,在整体器官水平上的功能来自于细胞亚结构到整个器官的内在结构-功能的协调作用。然而,对人体心脏结构中细胞生物力学特征的研究还处于早期阶段。在最近的报道中,Chen等[1]通过空间维度剖析了心肌细胞的异质性,并明确了心肌细胞和血管细胞的空间和功能分区。该项研究表明心房或心室内存在明显的空间异质性,为心脏不同分区的功能异质性提供了理论基础。心脏的基本功能是收缩功能,由此产生的收缩力是心脏独特的力学特性。心脏收缩是一种复杂的生物力学过程,需要心肌细胞的收缩和松弛协同作用,产生足够的收缩力,将血液推向体循环和肺循环。以往研究更多的关注心脏的形态结构、心室大小和室壁厚度等因素对心脏收缩功能的影响,而缺乏对心脏收缩功能的直接表征。Salgado-Almario等[2]构建了一种新的斑马鱼品系,可用于斑马鱼心脏收缩期和舒张期钙水平的成像。该研究通过将Ca2+水平和心脏收缩功能关联起来,可实现对收缩功能的表征,有利于心力衰竭和心律失常等疾病病理生理学机制的阐明。此外,在心脏周期中,心脏收缩或舒张引起的血液流动与发育中的心脏壁不断地相互作用,从而调节心脏发育的生物力学环境。因此,确定整个心脏壁的力学特性是十分重要的。Liu等[3]在健康的成年绵羊模型中研究了左心室和右心室的生物力学差异,观察到右心室在纵向上比左心室顺应性强,在周向上比左心室硬,这表明不同心室的力学特性对舒张期血液充盈的影响不同。未来的研究应该根据不同室壁的生物力学原理开发对应的特异性治疗方法。值得注意的是,心脏瓣膜是控制心脏血流的重要组成部分,其力学特征对心脏功能和心脏瓣膜疾病的发展都有重要影响。瓣膜的生物力学特征包括瓣膜的弹性和变形能力等。这些特征可以影响瓣膜的开合和阻力,进而影响心脏血液流动和血液循环。因此,揭示心脏瓣膜的生物力学特性具有重要意义。软组织的力学性能是由其复杂、不均匀的组成和结构所驱动的。在一项二尖瓣小叶组织研究中,Lin等[4]开发了一种具有高空间分辨率的无损测量技术,证明了厚度变化可引起二尖瓣异质性的存在。此外,Klyshnikov等[5]利用数值模拟方法分析了主动脉瓣瓣膜移动性对瓣膜瓣叶装置的应力-应变状态和几何形状的影响,从应力-应变状态分布的角度出发,该研究的仿真方法可以优化心脏瓣膜假体的小叶装置几何形状。由此可见,心脏结构和功能的生物力学特征是多方面因素的综合反映,评估和解析心脏的结构和形状有利于对心脏功能作用的阐明。1.2 血管结构和功能的生物力学特征血管包括心脏的血管和周围的血管系统,这些血管的生物力学特征对心脏功能有重要影响。血管结构取决于血管的类型,其功能可分为血流动力学功能和血管功能两部分。血管的弹性和柔韧性可以影响血管的阻力和血液流动速度,从而影响心脏负荷和排血量。此外,血管的厚度和硬度也会影响血压和血液流动的速度。从生物力学和力学生物学角度去解析血管的结构和功能是目前研究的重要方向。在心血管疾病相关药物的开发中,需要精确定位和分离冠状动脉以测量其动态血管张力变化。然而,如何记录离体血管的动态生物力学特性一直困扰着人们。Guo等[6]建立了一种冠状动脉环张力测量的标准化和程序化方案,通过多重肌电图系统监测冠状动脉环沿血管直径的收缩和扩张功能,确保了生理、病理和药物干预后血管张力记录的真实性。ECs和SMCs是血管结构和功能完整性所必需的主要细胞类型。ECs可调节血管张力和血管通透性,而SMCs负责维持正常的血管张力和结构的完整性。ECs可以分泌多种生物活性物质,如一氧化氮、血管紧张素等,对血管张力和血流动力学产生调节作用。ECs还能响应外部力学刺激,如流体剪切应力和压力变化等,从而改变ECs的形态和功能,影响血管壁的生物力学特征。SMCs可以收缩和松弛,调节血管的管径和血管阻力。除细胞因素外,血管的力学性质还受到血管壁中胶原和弹性蛋白的性质、空间排列等因素的影响。这是因为SMCs是高度可塑性的,它能响应细胞外基质(extracellular matrix,ECM)固有的力学信号。最近的一项研究显示,现有的微血管网络在力学刺激的加入或退出时表现出明显的重塑,并且排列程度出现相应的增加或减少。在这个过程中,纵向张力可导致纤维蛋白原纤维的纵向排列[7]。正是这些细胞和细胞外组分赋予了血管的黏弹性、各向异性等力学特性。总体而言,血管的结构和功能是复杂而多样的,涉及到多种生物力学特性的相互作用。研究血管的生物力学特征可以帮助人们更好地理解血管疾病的发生和发展,为疾病的治疗和预防提供科学依据。1.3 心血管疾病与生物力学关系的研究进展心血管疾病是一类常见的疾病,包括动脉粥样硬化、动脉瘤、心肌梗死等。这些疾病的发生和发展与心血管系统的生物力学特性密切相关。在心血管生物力学与力学生物学领域,近年来对心血管疾病与生物力学关系的研究取得了许多进展。1.3.1动脉粥样硬化的生物力学特征研究动脉粥样硬化是一种常见的动脉疾病,其特征为动脉壁上的脂质沉积和炎症反应,导致血管壁逐渐增厚和失去弹性。动脉粥样硬化的发生和发展是一个复杂的过程,涉及多个生物力学因素的相互作用。在动脉粥样硬化中,SMCs从收缩表型转变为合成表型,而影响SMCs表型变化的因素尚未完全阐明。Swiatlowska等[8]发现基质硬度(stiffness)和血流动力学压力(pressure)变化对SMCs表型具有重要影响。在动脉粥样硬化发展过程中,在高血压压力与基质顺应性(matrix compliance)共同的作用下,才会导致SMCs完整的表型转换[8]。提高对冠状动脉微结构力学的认识是开发动脉粥样硬化治疗工具和外科手术的基础。虽然对冠状动脉的被动双轴特性已有广泛的研究,但其区域差异以及组织微观结构与力学之间的关系尚未得到充分的表征。Pineda-Castillo等[9]利用双轴测试、偏振光成像和前室间动脉共聚焦显微镜来描述了猪前室间动脉近端、内侧和远端区域的被动双轴力学特性和微结构特性,为冠状动脉旁路移植术中吻合部位的选择和组织工程化血管移植物的设计提供指导。动脉粥样硬化斑块的破裂是引起患者死亡的主要原因;但目前尚不清楚这种异质的、高度胶原化的斑块组织的破裂机制,以及破裂发生与组织的纤维结构之间的关系。为了研究斑块的非均质结构和力学性质,Crielaard等[10]研制了力学成像管道(见图1)。通过多光子显微镜和数字图像相关分析,这条实验管道能够关联局部主要角度和胶原纤维取向的分散度、断裂行为和纤维斑块组织的应变情况。这为研究人员更好地了解、预测和预防动脉粥样硬化斑块破裂提供了帮助。图1 在拉伸测试过程中斑块组织样本中的破裂起始和扩展[10]除SMCs以外,最近的一项研究揭示了动脉粥样硬化中ECs表面力学性质的变化。Achner等通过基于原子力显微镜的纳米压痕技术发现内皮/皮层僵硬度的增加[11]。事实上,内皮功能障碍在血管硬化中的作用一直是一个重要的研究方向。ECs的可塑性在动脉粥样硬化的进展中起关键作用,暴露于扰动、振荡剪切应力区域的内皮细胞功能障碍是动脉粥样硬化的重要驱动因素[12]。由此可见,未来的研究如能进一步明确ECs和SMCs对血管硬化相关心血管疾病的贡献,则可能为恢复动脉粥样硬化中的血管内皮和平滑肌功能提供重要的靶点。1.3.2动脉瘤的生物力学特征研究主动脉SMCs在维持主动脉机械动态平衡方面起着至关重要的作用。动脉瘤主动脉的SMCs表型受到力学因素的影响,但是主动脉瘤中SMCs的骨架硬度的改变情况缺乏相关的数据。Petit等[13]以附着在不同基质硬度上的动脉瘤或健康SMCs为对象,通过原子力显微镜纳米压痕技术研究了细胞骨架硬度的区域差异性。该研究结果表明,动脉瘤SMCs和正常SMCs的平均硬度分布分别为16、12 kPa;然而,由于原子力显微镜纳米压痕硬度检测值的大量分散,两者之间的差异没有统计学意义。在腹主动脉瘤中,Qian等[14]采用基于超声波镊(ultrasonic tweezer)的微力学系统探究了SMCs的力学特性(见图2)。结果发现,动脉瘤病理发展中细胞骨架的变化改变了SMCs的细胞膜张力,从而调节了它们的力学特性。图2 基于超声波镊的微力学系统检测腹主动脉瘤中SMC的力学特性[14]a使用超声波激发微泡通过整合素结合到PDMS微柱阵列上的SMCs膜上的微力学系统示意图;b基于微柱的力学感受器和单细胞的超声波镊系统示意图二尖瓣主动脉瓣经常与升胸主动脉瘤相关,但目前尚不清楚瓣尖融合模式对生物力学和升胸主动脉瘤微观结构的影响。Xu等[15]通过双向拉伸试验对具有左右瓣尖融合以及右冠窦和无冠窦瓣尖融合的升胸主动脉瘤的力学行为进行了表征。此外,将材料模型与双轴实验数据进行拟合,得到模型参数,并使用组织学和质量分数分析来研究升胸主动脉瘤组织中弹性蛋白和胶原的基本微观结构和干重百分比。其结果发现,两种瓣尖融合模式对双轴加载表现出非线性和各向异性的力学响应;在弹性性能方面,左右瓣尖融合的弹性性能劣化得更严重。由此可见,心血管结构自身生物力学特性的改变可能对动脉瘤的进展有很大影响。然而,主动脉血流动力学对升主动脉瘤动脉壁特性的影响尚不清楚。在最近的一项研究中,McClarty等[16]探究了升主动脉瘤血流动力学与主动脉壁生物力学特性的关系。其结果发现,血管壁的剪切应力与动脉壁黏弹性滞后和分层强度的局部退化有关,血流动力学指标可以提供对主动脉壁完整性的深入了解。因此,从血管自身结构特性以及血流动力学两方面探究动脉瘤的形成机制具有重要意义。1.3.3 心肌梗死的生物力学特性研究心肌梗死是心肌细胞死亡的结果,通常是由于冠状动脉阻塞引起的。心肌梗死可导致心力衰竭并降低射血分数。生物力学研究发现,冠状动脉阻塞会导致心肌的缺血和再灌注损伤,这些过程涉及血流动力学和细胞力学等因素。在体循环过程中,心肌梗死后的血流动力学改变如何参与并诱导心力衰竭的病理进展尚未完全阐明。Wang等[17]采用冠状动脉结扎术建立了Wistar雄性大鼠心肌梗死模型。术后3、6周分别对左心室和外周动脉进行生理和血流动力学检测,计算左心室肌纤维应力,并进行外周血流动力学分析。结果表明,心肌梗死明显损害心功能和外周血流动力学,并改变相应的心壁和外周动脉壁的组织学特性,且随时间延长而恶化。综上所述,心功能障碍和血流动力学损害的相互作用加速了心梗引起的心衰的进展。急性心肌梗死后,左室游离壁发生重塑,包括细胞和细胞外成分的结构和性质的变化,使整个左室游离壁具有不同的模式。心脏的正常功能受到左心室的被动和主动生物力学行为的影响,进行性的心肌结构重构会对左心室的舒缩功能产生不利影响。在这个过程中,左心室游离壁形成纤维性瘢痕。尽管在心肌梗死背景下对左室游离壁被动重构的认识取得了重要进展,但左室游离壁主动属性的异质性重构及其与器官水平左心功能的关系仍未得到充分研究。Mendiola等[18]开发了心肌梗死的高保真有限元啮齿动物计算心脏模型,并通过仿真实验预测梗死区的胶原纤维跨膜方向对心脏功能的影响(见图3)。结果发现,收缩末期梗死区减少的及潜在的周向应变可用于推断梗死区的时变特性信息。这表明对局部被动和主动重构模式的详细描述可以补充和加强传统的左室解剖和功能测量。图3 代表性的啮齿动物心脏计算模型在心肌梗死后不同时间点的短轴和长轴截面显示收缩末期的周向、纵向和径向应变[18]上述研究表明,心脏疾病的发生和发展与心脏结构和功能的生物力学特征密切相关。任何影响心脏收缩和舒张过程的因素,都可能调控心脏的泵血功能和心脏负荷。这些因素可以影响心脏收缩的能力、心肌细胞的代谢和血流动力学参数,从而影响心脏的整体功能和疾病的进展。总之,通过深入研究这些生物力学特征,可以为心血管疾病的诊断和治疗提供重要的理论和实践基础。2 力学生物学在心血管细胞水平上的研究进展2.1 ECs水平上的研究进展细胞的凋亡、通讯和增殖异常等表型变化是心血管疾病的一个重要机制。通过力学生物学的方法,研究人员可以模拟不同的细胞应力环境,探索细胞生长和凋亡的调控机制,并研究细胞在受外界力学刺激作用下的反应。由于ECs直接暴露于血流中,因此ECs表型变化的力学生物学机制一直是心血管领域的研究热点之一。紊乱扰动的血流改变了ECs的形态和细胞骨架,调节了它们的细胞内生化信号和基因表达,从而导致血管ECs表型和功能的改变。在颈动脉结扎产生的动脉粥样硬化模型中,Quan等[24]研究发现,在人和小鼠动脉和ECs的振荡剪切应力暴露区,内皮MST1的磷酸化被明显抑制。该研究揭示,抑制MST1-Cx43轴是振荡剪切应力诱导的内皮功能障碍和动脉粥样硬化的一个基本驱动因素,为治疗动脉粥样硬化提供了一个新的治疗目标。另外一项研究从表观修饰角度探究了剪切应力对ECs功能的影响[20]。Qu等[20]研究显示,层流切应力通过增加内皮细胞CX40的表达而诱导TET1s的表达,从而保护血管内皮屏障,而TET1s过表达则可能是治疗振荡剪切应力诱导的动脉粥样硬化的关键步骤。另一方面,病理性基质硬度可使ECs 获得间充质特征[21]。动脉生成(arteriogenesis)在维持足够的组织血供方面起着关键作用,并且与动脉闭塞性疾病的良好预后相关,但涉及动脉生成的因素尚不完全清楚。Zhang等[22]研究发现,在动脉阻塞性疾病中,KANK4将 VEGFR2偶联到 TALIN-1,从而导致VEGFR2活化和EC增殖的增加。
  • 强强联手 | 珀金埃尔默诊断与国家心血管病中心达成战略合作
    2017 年 11 月 28 日,珀金埃尔默医学诊断产品(上海)有限公司与国家心血管病中心签署战略合作协议,携手共建“心血管生物样本资源中心-珀金埃尔默联合实验室”,揭牌仪式在国家心血管病中心国际合作部隆重举行。双方一致达成在生物样本核酸提取工作中进行合作,共同推进中国心血管病公共卫生服务事业——“心血管病高危人群早期筛查与综合干预项目”的发展。我国心血管病患病率及死亡率处于上升阶段根据今年 6 月份发布的《中国心血管病报告 2016 》显示,目前我国心血管病呈现出发病率上升、死亡率高、医疗负担重的特点。《报告》指出,我国心血管病患病率处于上升阶段,推算患病人数约 2.9 亿,城乡居民疾病死亡构成比中,心血管病占首位,每 5 例死亡中就有 2 例死于心血管病,已成为城乡居民死亡的“头号杀手”。 然而心血管病实际上是一种可防可控的疾病,早期加以预防或者及时治疗,不会发展到最后需要做手术、甚至死亡的风险。 此次,珀金埃尔默诊断与国家心血管病中心达成战略合作,将为生物样本资源中心提供先进的核酸提取解决方案,共同推进中国心血管病公共卫生事业的发展。 强强联合,共建实验室珀金埃尔默诊断事业部副总裁及亚太区总经理张晟先生与国家心血管病中心国际合作部邢超主任为此次“心血管生物样本资源中心——珀金埃尔默联合实验室”共同揭牌,并在签约仪式上签字。邢超主任在致辞中表示:非常高兴能与技术领先的珀金埃尔默公司进行战略合作,共建联合实验室,加速提升心血管生物样本资源中心实验室领域的建设与发展,共同推进中国心血管病公共卫生服务事业——‘心血管病高危人群早期筛查与综合干预项目’的发展,并希望以后能在其它应用领域开展合作。作为在全球诊断、生命科学方面技术领先的国际化公司,珀金埃尔默诊断在生物样本库的自动化核酸提取方面拥有国际先进的经验。珀金埃尔默诊断事业部副总裁、亚太区总经理张晟先生在致辞中表示:“国家心血管生物样本资源中心致力于心血管病高危人群的早期筛查与综合干预工作,广泛收集全国各地有代表性的生物样本,为国人的健康付出了巨大的汗水。蒋立新院长的团队最新发表在国际顶级期刊---《柳叶刀》杂志上的两篇科研成果,揭示了我国高血压防控面临的挑战,阐明了其中亟待改善的关键环节,为推进我国高血压管理提质增效提供了科学的数据支撑,为中国人的健康事业作出了卓越的贡献!而珀金埃尔默作为一家在全球诊断、生命科学方面技术领先的国际化公司,我们在 30 多年前就进入中国,为中国的医疗科研人员、临床人员提供产品和技术支持。我们在生物样本库的自动化核酸提取,核酸质控,高通量测序前样本制备方面,如自动化建库和文库质控,在国际上得到该领域科研人员的信赖,并享有盛誉,希望我们的产品和技术能给大家提供良好的科研解决方案,同时也衷心的希望珀金埃尔默诊断能和心血管病生物样本资源中心进行持续和深入的合作!”自动化核酸提取整体解决方案 更好支持样本资源中心 珀金埃尔默诊断亚太区资深销售总监 Colin Hocking 先生对珀金埃尔默公司及诊断事业部做了详细介绍:“珀金埃尔默诊断不仅作为产前筛查和新生儿筛查领域的引领者,为母婴健康领域提供完整的解决方案。同时珀金埃尔默诊断也在分子诊断领域有着一站式全方位的解决方案,我们的分子生物学产品涵盖了核酸提取、质控、自动化、传染性疾病筛查、NGS 及病理学检测。”珀金埃尔默诊断事业部应用基因分析业务部销售总监郭峰先生详细介绍了珀金埃尔默的自动化核酸提取整体解决方案:“此次为“心血管生物样本资源中心-珀金埃尔默联合实验室”提供的自动化核酸提取整体解决方案包括:3 台 Chemagic 360 高通量自动化核酸提取仪,配套 Chemagic Buffy Coat DNA 提取试剂盒,每天可进行 3 轮共 864 个样本的核酸提取。珀金埃尔默 Chemagic 360 自动化核酸提取仪是目前市场上唯一、可实现大体积核酸提取的自动化解决方案,特别在 NGS、肿瘤液体活检应用。同时配套了 1 台 JANUS G3 自动化工作站、1 台Labchip DS全光谱扫描仪进行自动化地移液操作及高通量核酸浓度、纯度检测质量控制 。各个环节在国家心血管中心样本库 LIMS 信息管理系统上都实现了全流程的标本溯源及信息管理。希望在将来珀金埃尔默诊断能为国家心血管中心提供更好的产品与服务。”签约仪式结束后,心血管生物样本资源中心副主任戴浩、国家心血管疾病临床医学研究中心实验室主任黄海霞带领大家参观了实验室。
  • 脑血管疾病基因检测试剂盒在深批量投产
    记者16日获悉,深圳奥萨医药有限公司自主研制的一类创新药“依叶”,成功获得国家食品药品监督管理局的I类新药化学药品的批文,而该公司最新研发成功的一项预测心脑血管疾病发生的基因检测试剂盒,刚刚在今年3月获得批文,并在近日成功实现批量化生产。在深圳自主创新的“版图”上,又添一项重大科技创新成果。   记者获悉,奥萨医药研发团队经过多年自主研发的预防脑卒中发生的创新药物“依叶”,在去年成功实现量产的基础上,目前已累计形成6000多万元的销售收入,未来前景十分看好。奥萨高层昨日向记者透露,前不久,由奥萨研发团队努力研制的亚甲基四氢叶酸还原酶基因 677C/T 检测试剂盒,作为生物医学产业一种前沿的三类体外诊断试剂,已于今年3月获得注册和生产批文。在国内外患卒中、缺血性心脏病高发的背景下,该基因测试试剂盒基于领先的基因技术,通过基因试剂盒的简单检测,有助于早预测心脑血管疾病发生风险,早期干预,降低风险,未来市场前景巨大。
  • 593万!北京市心肺血管疾病研究所超高分辨质谱仪采购项目
    项目编号:11000023210200037508-XM001项目名称:基于高性能质谱检测系统的前沿生命组学研究平台建设其他仪器仪表采购项目预算金额:593 万元(人民币)采购需求:序号货物名称简要技术要求数量是否允许进口产品1超高分辨质谱仪1、适用于蛋白质组学应用,包括蛋白质组学研究中的蛋白质鉴定、翻译后修饰、生物大分子相互作用、多肽和蛋白质的定量分析;2、适用于临床检测、代谢组学、脂质组学、生物制药、化药和天然产物分析,以及临床毒物筛查等应用领域。1套是(具体内容详见招标文件第三章 采购需求)合同履行期限:合同签订生效后120天内。本项目不接受联合体投标。获取招标文件时间:2023-03-23 至 2023-03-29 ,每天上午09:00至12:00,下午12:00至16:00(北京时间,法定节假日除外)地点:北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)方式:投标人按照规定办理CA数字认证证书(北京一证通数字证书)后,在获取招标文件时间内持投标人自身数字证书登录北京市政府采购电子交易平台免费获取电子版招标文件。售价:¥0 元,本公告包含的招标文件售价总和对本次招标提出询问,请按以下方式联系。1.采购人信息名称:北京市心肺血管疾病研究所地址:北京市朝阳区安贞路2号联系方式:穆老师,010-644564072.采购代理机构信息名称:北京科技园拍卖招标有限公司地址:北京市海淀区万柳光大西园6号楼0188联系方式:贾徇、解磊、张文明,010-82575731/5131/5125/5831/5683/5137转213、221、2113.项目联系方式项目联系人:贾徇、解磊、张文明电话:010-82575731/5131/5125/5831/5683/5137转213、221、211
  • 880万!阜外华中心血管病医院国家区域医疗中心高分辨蛋白组质谱成像仪采购项目
    一、项目基本情况1、项目编号:豫财招标采购-2023-272、项目名称:阜外华中心血管病医院国家区域医疗中心设备(高分辨蛋白组质谱成像仪)采购项目3、采购方式:公开招标4、预算金额:8,800,000.00元最高限价:8800000元序号包号包名称包预算(元)包最高限价(元)1豫政采(2)20230060-1阜外华中心血管病医院国家区域医疗中心设备(高分辨蛋白组质谱成像仪)采购项目880000088000005、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等)5.1 采购货物名称及数量:高分辨蛋白组质谱成像仪 1台5.2 标包划分:一个标包5.3 采购货物技术性能指标:具体参数详见招标文件第五章“采购需求”5.4 核心产品:/5.5 采购范围:高分辨蛋白组质谱成像仪的供货、运输、保险、装卸、安装、检测、调试、试运行、验收交付、培训、技术支持、售后保修及相关伴随服务5.6 资金来源:财政资金,已落实5.7 交货期:20日历天5.8 交货地点:采购人指定地点6、合同履行期限:/7、本项目是否接受联合体投标:否8、是否接受进口产品:是9、是否专门面向中小企业:否二、获取招标文件1.时间:2023年02月13日 至 2023年02月17日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。)2.地点:河南省公共资源交易中心网站(http://www.hnggzy.net/)3.方式:投标人凭企业CA 数字证书登录河南省公共资源交易中心网站市场主体登录系统,并按网上提示自行下载投标项目所含格式(.hnzf)的招标文件。4.售价:0元三、投标截止时间及地点1.时间:2023年03月06日09时00分(北京时间)2.地点:通过“河南省公共资源交易中心(http://www.hnggzy.net/)”电子交易平台加密上传。逾期送达的投标文件,电子招标投标交易平台将予以拒收。四、开标时间及地点1.时间:2023年03月06日09时00分(北京时间)2.地点:河南省公共资源交易中心远程开标室(一)-2,郑州市经二路12号(经二路与纬四路向南50米路西)。五、发布公告的媒介及招标公告期限本次招标公告在《河南省政府采购网》、《中国政府采购网》、《河南省公共资源交易中心网》上发布, 招标公告期限为五个工作日。六、其他补充事宜无七、凡对本次招标提出询问,请按照以下方式联系1. 采购人信息名称:阜外华中心血管病医院地址:河南省郑州市郑东新区阜外大道1号联系人:何芸联系方式:0371-586800922.采购代理机构信息(如有)名称:河南省信人工程造价咨询有限公司地址:河南省郑州市金水区文化路9号永和国际1702室联系人:张振辉联系方式:0371-638991563.项目联系方式项目联系人:张振辉联系方式:0371-63899156
  • 蔡司与您共赢系列——“血管稳态重点实验室-蔡司影像技术中心”揭牌
    携手共进,合作共赢——血管稳态重点实验室-蔡司影像技术中心”揭牌 春回大地,万象更新。2017年3月2日,河北省心脑血管病防治协同创新中心与世界光学领航者——德国蔡司强强联合,共建“血管稳态重点实验室-蔡司影像技术中心”,揭牌仪式在河北石家庄成功举行。 中国工程院院士李春岩,河北医科大学校长崔慧先,河北医科大学第二医院院长王晓路,实验室主任张祥健,河北省科技厅平台与基础处处长李志平、副处长梁超,蔡司中国显微镜部副总裁张育薪、市场总监郑欣、医疗负责人孙学宁、高级销售专员刘敬忠等多位领导出席了揭牌仪式。 王晓路院长和张祥健主任就中心建立的重大意义作了三点阐释:第一、搭建起了临床科研与企业研发、生产的桥梁;第二、技术中心作为一个新产品展示和技术培训的平台,将推动科研工作的开展,更好地为全院的科研工作服务;第三、中心的建立符合国家产学研协同创新的思路,是顺势而为。 随后,蔡司中国副总裁张育薪先生致辞,他强调中心的成立为双方的技术合作搭建了一个绝佳的技术平台,也为双方进一步的合作打下坚实基础,只要精诚合作,共谋发展就一定能实现共赢。 “血管稳态重点实验室-蔡司影像技术中心”,是蔡司在中国大陆医疗系统首个影像技术中心,依托河北省血管稳态重点实验室的研究优势和河北医科大学第二医院的临床优势,结合蔡司享誉世界的高科技显微镜影像技术优势,强强联合。该中心拥有超高分辨率双光子系统、宏观变焦成像系统、电生理系统、倒置和正置成像系统等目前在世界范围内领先的技术仪器。 河北医科大学第二医院近年来在继续巩固基础研究的基础上,不断加大对临床研究、转化研究的支持力度;同时,鼓励广大科研工作者走出去,多交流,多协作,共同发展。此次协同创新中心与蔡司公司的合作,就是在这一大背景下实现的。 此次合作的成功也是蔡司显微镜在中国区加强重点客户合作系列工作的开始,此举必将推动蔡司扎根中国,与客户共赢,并保持更加强劲和长期的增长,实现蔡司2020年远景战略目标。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制