活体米定仪

仪器信息网活体米定仪专题为您提供2024年最新活体米定仪价格报价、厂家品牌的相关信息, 包括活体米定仪参数、型号等,不管是国产,还是进口品牌的活体米定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合活体米定仪相关的耗材配件、试剂标物,还有活体米定仪相关的最新资讯、资料,以及活体米定仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

活体米定仪相关的厂商

  • 留言咨询
  • 公司概况 东莞市晟鼎精密仪器有限公司,专注为广大客户提供表面性能处理及检测解决方案!晟鼎精密创立于2012年,是一家集研发、设计、生产、销售及产业链服务为一体的国家级高新技术企业,致力于为广大客户提供表面性能处理以及检测整体解决方案。研发团队成员以多年从事工业自动化等领域的博士、硕士和学士为主,本科学历以上占比50%。核心产品有RTP快速退火炉、等离子去胶机、微波等离子清洗机、大气等离子清洗机、宽幅等离子清洗机、真空等离子清洗机、接触角测量仪、USC干式超声波除尘清洗机、离子除静电装置等,目前已大批量用于半导体制造、3C消费电子、新能源、显示等行业,获得了全球知名制造商的高度认可。是福顺半导体、三安光电、北方华创、华润微电子、上海微电子、TDK、清华大学、中国科学院半导体研究所等知名企业及科研院校长期合作伙伴。 晟鼎精密坚持以市场为导向,坚持投入研发做好产品,团队具备敢拼敢想的创新精神和极其专注的务实作风。目前我们已有各自独立 ,又相互关联的产品联盟,快速退火炉,接触角测量仪,等离子清洗机,USC超声波除尘,静电消除器等产品在每个细分领域深耕细作。未来,晟鼎精密继续持续以客户为中心,用心打造业内具有竞争力的产品和团队。 晟鼎,深入表面,魅力科学。
    留言咨询
  • 东莞市宝鼎精密仪器有限公司始建于1999年,产品涵盖橡胶、塑胶、制鞋、化工等领域,主营产品:实验室小型平板硫化机、压片机,开炼机,密炼机,吹膜机,挤出机等。公司集研发与制造为一体,采用德国先进技术,引进高科技人才,建立现在企业制度,不断提高管理,研发部不断开发新产品,其技术含量,自动化程度均为全国较高水平。同时公司对内强化管理,对外注重诚信,以优质的产品质量赢得国内外客户一致好评。宝鼎一直以人性化的服务,客户所需,即我所为,售后服务优良,产品远销全国各地企业厂家和大专院校以及东南亚各国,针对售出的产品,免费为客户提供技术培训,为企业客户创造产品价值.以诚信赢得口碑,用质量塑造品牌,欢迎广大新老朋友前来洽谈、咨询、合作!
    留言咨询

活体米定仪相关的仪器

  • 活体成像仪 400-860-8560
    UVP Biospectrum Advanced 900活体成像仪随着科研的深入,生命科学的研究已经发展到在体研究的阶段,德国耶拿公司UVP Biospectrum Advanced 900活体成像仪是一款兼容生物发光和荧光多重成像的非侵入性活体成像仪。生物发光方面,该仪器使用了一个-100度深度制冷的背照式CCD,配合超大光圈的定焦镜头,不仅能实现灵敏度的信号采集,而且将噪音水平控制到极低的水平,从而实现高灵敏度的生物发光检测。荧光成像方面,高强激光光源可以实现从紫外到近红外的全光谱荧光成像,带宽更窄,激光光强更强,既兼容了所有的荧光成像应用,又可以通过近红外降低样品背景,进一步提升了成像效果。 该仪器既可以用于动物活体成像,亦可以用于植物活体成像,模块化设计,及各种配件可以实现生物学、医学、环境生物学等多个领域的各种成像应用扩展,比如高分子材料、纳米靶向材料成像、WB成像等。可以根据客户需求定制化滤光片,匹配个性化的需要。温控板可以让小鼠保持正常生理体温,小鼠成像时的状态与正常生理状态一致,确保结果的准确性。软件使用方便,对于需要多次成像的试验,可通过预设模板的方法进行一键成像。在线气体麻醉系统可以实现在线麻醉,防止体外麻醉对小鼠带来损伤。一次可同时进行多达10只小鼠的成像。软件符合21CFR Part11,可以实现对数据追踪溯源,保证数据的真实性。应用方向:癌症与抗癌药物研究 ,免疫学与干细胞研究 ,细胞凋零 ,病理机制及病毒研究 ,基因表达和蛋白质之间相互作用 ,转基因动物模型构建 ,药效评估 ,药物甄选与预临床检验 ,药物配方与剂量管理 ,肿瘤学应用 ,生物光子学检测 ,食品监督与环境监督等。
    留言咨询
  • 活体取卵仪 400-860-5168转4446
    活体取卵仪德国米尼图Minitube采用的是坚硬的不锈钢外壳,技术成熟稳定,安全到位,易操作,轻盈小巧的设计,简便的操作方式,不锈钢外壳,坚固耐用的机体,测定速度快,不需要预热,就能够随时操作,内置存储器,可储存3000条测量记录,测定速度要比普通同款设备快,而且无需等待就能出结果,自动形式的操作模式,可为企业节约时间和精力,采用低噪音传动机构,更清晰、更平稳,更稳定,测量时间短,而且中途间隔时间也短。技术参数:1、显示:数显LCD;2、检测精度: +/-0.25%;3、尺寸:290×295×285mm;4、电源:220V/60HZ;5、变形量:(1-70)mm;6、测量误差:<5%;7、精度: 1%。产品特点:1、设备设计小巧玲珑,可以方便外出携带;2、坚固的外壳设计,整机纯不锈钢机体;3、检测速度快,不需要等待就能出结果;4、设备功能性比较完善,安全性也较为到位;5、校准模式比较简单,一键校准节省时间;6、采用6通道,6个工作区域同时进行分析。活体取卵仪德国米尼图Minitube测定时间短,性能稳定可靠,设备属于简单、平稳、易懂的操作模式,测试方法其实非常的简单,只需要几步就能完成整个流程,采用的是防震包装箱,不怕碰撞,仪器配备了自动停机功能,实现全自动完成测试,坚固的外型设计,轻松的操作方式和易懂形式的测试值,可与电脑和打印机进行连接储存数据,采用的是LCD液晶显示模板,无需提前预热,开机就可以使用,敦实的设计理念,稳固的稳妥的底盘。
    留言咨询
  • 活体采卵仪 400-860-5168转4446
    活体采卵仪德国米尼图mintube设计小巧,方便外出携带,软皮包装箱可以防止对外撞击的保护作用,测定结果数码显示,数据处理并打印,全钢结构,圆角打磨方式,智能化操作模式,一键式校正功能非常的方便实用,设备操作简单实用,没有复杂的操作流程,7寸液晶显示屏幕,能够分类显示参数,功能性比较稳定可靠,属于易操作型,全钢外壳设计,坚固的内饰以及防高温检测,分析频率可自动调节,也可以切换用手动进行调节。技术参数:1、工作温度:0-50℃;2、显示:数显LCD;3、测量范围:0g~150g; 4、显示精度:0.01g;5、测量稳定性:97.6%;6、频率:60Hz±1Hz;7、量速度:2秒可测量一次。产品特点:1、数据处理能力更快,更智能;2、数显LCD显示器显示测试的结果;3、易操作,每次使用完后几乎不需要维护;4、可适应行业的需求性和操作方式;5、采用6通道,6个工作区域同时进行分析;6、易操作,每次使用完后几乎不需要维护;7、简便的设计方和便携性的操作模式。活体采卵仪德国米尼图mintube各项指标参数符合行业的需求和相关规定,外观设计轻便,可外出携带使用,采用的是6通道双模式操作,外观设计结实耐用的形式,不论是技术还是功能以及性能都是比较完善,功能性比较完善,安全性也较为到位,不需要提前预热,开机即可使用,半自动和全自动检测模式,方便快捷,传统的双通道测定分析模式,此款是四通道分析模式,更快,更稳定,全自动测定模式,没有复杂的操作流程。
    留言咨询

活体米定仪相关的资讯

  • 文献速递ㅣ动物活体成像系统在纳米医学领域中的应用一
    全文字数:1852阅读时间:6分钟● 快讯近日,湘雅二医院药学部湖南省转化医学与创新药物工程技术研究中心向大雄教授团队在纳米医学领域取得系列研究成果,在国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)及《Journal of Controlled Release》(IF=9.77,JCR1区)上连续发表两篇研究性论文。两篇论文第一作者及通讯作者单位均为中南大学湘雅二医院,向大雄教授为通讯作者,团队2018级博士研究生吴军勇、2019级博士研究生李泳江为共同第一作者。文章一图1|国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)三阴性乳腺癌含有致密的肿瘤基质,是药物渗透和细胞毒性T淋巴细胞浸润的主要障碍,因此化疗和免疫治疗通常难以发挥作用。研究发现中性粒细胞弹性蛋白酶能快速破坏致密的细胞外基质,克服肿瘤基质屏障,使药物或免疫细胞进入肿瘤内部发挥作用。然而游离的弹性蛋白酶缺乏靶向性,因此向大雄教授团队开发了嵌合肿瘤细胞膜蛋白的仿生脂质体(LMP),并在表面结合弹性蛋白酶(NE-LMP),利用肿瘤细胞膜蛋白同源靶向及渗透与滞留效应(EPR)可以有效将NE靶向至小鼠原位乳腺癌内部并降解肿瘤基质。与紫杉醇及与PD-1免疫检查点抑制剂联合应用表现出显著增强的化学-免疫协同疗效,显著延长了小鼠的生存期。同时,这一联合应用策略还可以明显抑制肿瘤肺转移。文章中,标记DiR的NE-LMP在原位乳腺荷瘤小鼠中的生物分布和肿瘤靶向作用的活体实验成像,使用了广州博鹭腾AniView100多模式动物活体成像系统拍摄。活体结果显示DiR标记的NE-LMP在给药后很快到达肿瘤部位(2小时),并在8小时积累最多;体外器官结果显示DiR标记的NE-LP也到达肿瘤部位,但荧光强度不如DiR标记的NE-LMP,证明了NE-LMP的优越肿瘤靶向作用。图2|NE-LMP的生物分布(A) NE-LMP和NE-LP的体内生物分布和肿瘤靶向作用(B) NE-LMP和NE-LP的体外生物分布(C) 体外组织中荧光强度的量化目前上市用于临床的纳米载体大部分是脂质体,向大雄教授团队利用简单易制备的脂质体作为核心,表面嵌合特殊功能蛋白,这是一种“自下而上”的组装思路,具有前沿的创新性和实用性。图3|用于增强肿瘤化学免疫治疗的膜蛋白弹性蛋白酶结合仿生脂质体的制备示意图文章二图4|国际知名期刊《Advanced Healthcare Materials》(IF=9.93,JCR1区)多形性胶质母细胞瘤(GBM)是恶性程度最高的脑部肿瘤,目前缺乏有效的治疗方式,常规的化疗药物难以跨越血脑屏障(BBB)发挥作用。外泌体(Exos)是由细胞分泌,粒径在30-150nm的纳米囊泡,作为药物载体具有多种优势。脑微血管内皮细胞是BBB主要组成成分,其分泌的外泌体可以跨越BBB,用其载药可以将药物递送至脑内。然而,Exos提取纯化过程较为繁琐,产量较低,作为药物载体极大限制了应用。为了弥补这一缺陷,向大雄教授团队采用连续挤压细胞的方式生产仿生纳米囊泡(BNVs),其具有与Exos相似的粒径、外观和蛋白表达。本研究将Exos和BNVs进行深入比较,在脑部肿瘤的药物递送中进行了直接对比。结果表明,来源于脑微血管内皮细胞的BNVs是天然Exos的合格替代品。二者的载药能力相似,但BNVs的产率是Exos的500倍。携带阿霉素的天然Exos和BNVs在斑马鱼和体内皮下/原位异种移植小鼠肿瘤模型中表现出良好的抑瘤作用。文章中,评估和比较Exos和BNVs在小鼠肿瘤模型中脑肿瘤靶向能力的活体实验成像,使用了广州博鹭腾AniView100多模式动物活体成像系统拍摄。尾静脉对原位GBM小鼠注射给予DiR标记的Exos、BNVs或游离DiR,并在注射后6小时、12小时和24小时使用AniView100拍摄获得小鼠体内和体外器官荧光图像。结果显示DiR标记的Exos和BNVs在6小时达到GBM,并在24小时积累更多,而游离DiR在大脑中没有显示荧光信号,表明Exos和BNVs都可以突破BBB并靶向大脑中的肿瘤部位。图5|Exos和BNVs的生物分布和肿瘤靶向作用(A) Exos和BNVs在GBM小鼠中的体内生物分布(n=3)(B) Exos和BNVs在原位GBM小鼠中的体外生物分布(n=3)。H:心脏;S:脾;K:肾脏;B:大脑;GI:胃肠道(C) 原位GBM小鼠中Exos和BNVs的脑分布(n=3)鉴于自体来源的BNVs的低免疫原性、高产量等特性,可将其作为纳米医学中有效的Exos替代物,以克服Exos制剂研究过程中难以扩大生产的缺陷。图6|文章图形概要恶性肿瘤是严重危害人类健康的重大疾病,近年来。发病率和死亡率逐年上升,而临床常规的治疗方式(化疗、放疗、免疫治疗)特异性差,毒副作用较大,使用常受到限制。精心设计的纳米载体可以实现肿瘤的准确靶向,用以调控肿瘤的微环境或杀灭肿瘤细胞,达到减毒增效,然而常规的有机或无机纳米载体属于外源性材料,常引起机体的免疫响应,易被吞噬而失去效果。鉴于此,向大雄教授团队近年来着眼于仿生纳米递药系统研究,设计了一系列以外泌体、囊泡、细胞膜和蛋白等内源性材料为基础的纳米载体,实现了肿瘤的准确治疗。文献链接:https://doi.org/10.1016/j.jconrel.2021.07.004https://doi.org/10.1002/adhm.202100794博鹭腾助力科研实验
  • 文献速递ㅣ动物活体成像系统在外泌体研究中的应用
    细胞外囊泡(Extracellular vesicles,EVs)是来源于细胞的脂质双层包裹的纳米囊泡。外泌体(Exosomes)作为EVs的一个亚型,由于具有体积较小、能跨越生物屏障、循环稳定和固有靶向性等特性,成为非常有吸引力的药物输送载体。目前对于外泌体的获取,主要是基于差速超速离心,对细胞培养上清液的外泌体进行离心分离、收集和浓缩;但是在分析外泌体的内容物、研究其功能或用于治疗应用之前,储存条件对sEVs(small EVs)特性的影响还没有完全阐明,也缺乏对不同储存条件的对比评价。▲ 典型的外泌体结构。外面由磷脂双层包围,含有对运输很重要的膜联蛋白;用于细胞靶向的四环素以及参与其他生物过程的蛋白。近日,中南大学、湖南省转化医学与创新药物工程研究中心向大雄教授课题组通过差速超速离心分离获得bEnd.3细胞来源的sEVs,并测试了保存条件对sEVs的大小、数量、蛋白质/RNA含量和与治疗应用相关的性质影响。在研究不同储存温度对sEVs在活体治疗应用的影响时,采用博鹭腾AniView100多模式动物活体成像系统进行了连续纵向检测sEVs在活体体内生物分布。结果直观清晰地显示储存会显著影响bEnd.3细胞来源的sEVs的脑靶向能力;因此,对于sEVs的治疗应用,应使用新鲜的sEVs或可在-80℃下短期保存备用。相关成果已发表在期刊《Drug Delivery》,可为未来sEVs的商业化储存提供参考。▲ 使用博鹭腾AniView100拍摄的sEVs在小鼠体内和体外器官的生物分布结果。(A) sEVs在健康小鼠体内的生物分布(B) 在小鼠主要器官的生物分布(C) sEVs在小鼠脑部生物分布比较(D) sEVs在小鼠器官中的荧光信号强度(E) sEVs在小鼠脑部荧光信号的强度参考文献:1、Wu J Y , et al. Preservation of small extracellular vesicles for functional analysis and therapeutic applications: a comparative evaluation of storage conditions[J]. Drug Delivery, 2021, 28(1):162-170.2、Kourembanas, Stella. Exosomes: Vehicles of Intercellular Signaling, Biomarkers, and Vectors of Cell Therapy[J]. Annual Review of Physiology, 2015, 77(1):13-27.AniView100多模式动物活体成像系统应用实例肿瘤学研究新药筛选评价干细胞研究病毒感染模式疫苗开发基因表达调控研究
  • 国家纳米中心“活体自组装”生物纳米材料研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院国家纳米科学中心王浩课题组通过发展“活体自组装”技术,在细胞内构建了不同拓扑结构的纳米材料,并提出了全新的细胞内原位聚合和组装策略,为功能性纳米材料的设计提供了新思路。相关研究成果发表在 em Nature Communications /em 上,并已申请中国发明专利。 /p p   纳米材料在生物医学领域已被广泛研究和认可,例如药物递送、组织工程等均得到了深入研究。但纳米材料独特的生物界面效应,使其在复杂生命体中的递送过程、物理化学转化以及蓄积代谢等问题变得十分棘手。因此,王浩课题组提出了“活体自组装”理念,独特设计纳米材料的建筑单元,将外源引入的分子参与到生命体的功能性组装过程中,实现了在生理环境下自发的纳米材料构建和功能化。这一独特思路,为生物医用纳米材料领域的设计和应用提供了新视角和新途径。 /p p   在纳米材料的生物功能应用中,拓扑结构对活体器官、组织和细胞的功能影响显得尤为重要。前期报道指出,特定拓扑结构在生命体中扮演者独特的角色,例如双螺旋结构的DNA、具有特定3D结构的蛋白大分子,以及各种传导信号的分子复合体等。材料和界面的拓扑结构影响生物功能,例如界面的形态会诱导干细胞定向分化、决定细胞迁移和内吞等功能。因此,深入研究在特定区域内材料拓扑结构与生物功能之间的关系,将为精准功能化纳米材料的设计提供指导。目前,体外构筑的纳米材料,不能区分界面和胞内作用,干扰了限域拓扑结构和生物功能关系的分析和理解。 /p p   针对特定区域内材料与功能之间的关系研究,王浩课题组发展了细胞内原位聚合和组装的新方法,首次实现了在细胞内平行构筑不同拓扑结构的纳米材料,为研究胞浆拓扑结构和功能的关系提供了有效手段。通过设计不同氨基酸序列的多肽聚合单体,实现了在胞内聚合过程中,对聚合物分子量大小、温敏性质以及组装后的拓扑结构的调控;在细胞和组织水平原位的证实了多肽单体的聚合和组装过程;综合评价了不同拓扑结构的纳米组装体的滞留效应和细胞毒性等生物功能,为精准设计功能化纳米材料提供基础参考。 /p p   研究工作得到了国家自然科学基金、创新群体项目、中科院国际合作、交叉团队、青促会等的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171108529108817694.png" src=" http://img1.17img.cn/17img/images/201711/uepic/4a4278be-71e4-47d4-87a7-0fc2df981d1b.jpg" uploadpic=" W020171108529108817694.png" / /p p style=" text-align: center " 国家纳米中心“活体自组装”生物纳米材料研究工作获进展 /p

活体米定仪相关的方案

活体米定仪相关的资料

活体米定仪相关的试剂

活体米定仪相关的论坛

  • 双波长活体荧光成像系统特点

    [url=http://www.f-lab.cn/vivo-imaging/lab-flare.html][b]双波长活体荧光成像系统[/b][/url]是最先进的开放空间[b]近红外荧光成像系统[/b],能够真正同时获得彩色视频和两种不同波长的[b]近红外荧光图像,[/b]广泛用于[b]体外近红外荧光成像分析,活体近红外荧光成像分析,荧光造影剂研发,低温荧光层析成像[/b]等应用。双波长活体荧光成像系统是实验室近红外荧光成像研究的理想仪器,它提供A/D、D/A、TTL输入和输出,使复杂的重复实验自动化完成双波长活体荧光成像系统采用2个紧凑荧光成像头通过长距离六自由度运动支架和电磁制动臂连接到可移动的小车上,方便移动使用,并具有多种无菌操作和减少反射伪影的附件也可供使用。双波长活体荧光成像系统应用体外近红外荧光成像分析活体近红外荧光成像分析新型近红外荧光造影剂的研制低温荧光层析成像[img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/flare-open-imaging-R1.JPG[/img]双波长活体荧光成像系统规格参数视场 从0.9厘米到25.3厘米不等。工作距离 从12"到18"[b]不等[/b]分辨率 从50微米到500微米光照波段 3(彩色视频,近红外通道# 1、近红外通道# 2)同时成像通道 3通道(彩色视频,近红外通道# 1、近红外通道# 2)无菌使用 通过专有的悬垂/盾牌组合。见附件标签。可移植性好 4医用个人脚轮刹车运输 可重复使用,防水,防火,防震运输箱声明 仅用于实验室研究使用。不用于人类或动物诊断。[img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/FLARE-OPEN-imagin_300x239.png[/img][img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/FLARE-OPEN-imagin_300x239.png[/img]双波长活体荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/lab-flare.html[/url]

  • 近红外活体荧光成像系统介绍

    [url=http://www.f-lab.cn/vivo-imaging/fluobeam-imaging.html][b]近红外活体荧光成像系统[/b][/url]是开放式[b]活体荧光成像系统[/b]和[b]体内荧光成像系统[/b],是非侵入性[b]活体荧光成像系统品牌[/b]中具有适中的[b]活体荧光成像系统价格[/b],也可用于术中荧光成像.[b]近红外活体荧光成像系统[/b]fluobeam提供各种活体动物实时荧光图像和荧光成像视频,适合各种大小活体动物无创荧光成像,也可用于及手术或切除手术术中荧光成像.[b]近红外活体荧光成像系统[/b]fluobeam超级小巧而紧凑,适用于各种实验室研究,广泛兼容各种荧光探针,适用于不同的活体研究领域。[b]近红外活体荧光成像系统[/b]应用领域包括:• 肿瘤学淋巴结定位• 的分布和发展• 靶向探针• 心血管研究• 免疫学和传染病 [img=近红外活体荧光成像系统]http://www.f-lab.cn/Upload/fluoptics_system_imaging.jpg[/img][b]近红外活体荧光成像系统[/b]fluobeam不同波长选择:• fluobeam800• fluobeam700• fluobeam650• fluobeam600• fluobeam500[img=近红外活体荧光成像系统]http://www.f-lab.cn/Upload/fluobeam-results.png[/img]近红外活体荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/fluobeam-imaging.html[/url]

  • 苏州纳米所等在硫化银近红外量子点活体成像研究中获进展

    随着生物医学影像技术的不断发展,近红外荧光成像技术在生物医学研究领域得到了越来越多的关注和应用。其中,近红外二区(1000 nm-1400 nm)荧光对生物组织穿透能力强,成像信噪比高,该区域荧光成像技术在生物活体成像领域已展现出巨大潜力。量子点(Quantum dots, QDs)作为一种新型的纳米荧光探针,具有亮度高、光稳定性强、光谱可调等传统荧光染料不可比拟的优势,在生物标记、成像与传感等方面得到了广泛应用,而开发具有近红外二区荧光发射、生物相容性好、量子产率高的QDs是当前其用于活体荧光成像所面临的重要挑战。 中科院苏州纳米技术与纳米仿生研究所王强斌研究员课题组在“单源前驱体制备Ag2S近红外量子点”(J. Am. Chem. Soc. 2010, 132, 1470–1471)的基础上,进一步优化制得了量子产率更高、生物相容性更好、尺寸均匀可控的Ag2S近红外QDs。通过与美国斯坦福大学戴宏杰教授课题组合作,利用Ag2S QDs进行了细胞成像与毒性研究。结果表明,在水溶性Ag2S QDs表面修饰不同的生物识别分子,可实现对不同细胞系的特异性标记,并且该Ag2S QDs几乎没有细胞毒性(ACS Nano 2012, 6, 3695–3702)。 在上述工作基础上,王强斌课题组与戴宏杰教授课题组继续合作,进一步将Ag2S QDs用于动物活体成像研究。结果表明,因肿瘤组织对大分子的高通透性和滞留效应(简称EPR效应),肿瘤对QDs具有很高的摄取(图2),该现象为肿瘤早期诊断以及手术的可视化提供了重要的技术基础。同时,他们对导入小鼠体内QDs的命运进行了追踪,发现除了富集于肿瘤部位的QDs外,其它QDs大部分在注射24小时后不断的随粪便和尿液排出;一周后,体内各个器官(肝和脾除外)的QDs均已基本排出(图3)。 该工作已在国际著名杂志Angewandte Chemie International Edition上发表。对Ag2S QDs的长期体内代谢、分布和毒理研究正在进行之中。 此项工作得到中科院“百人计划”、中科院先导专项、国家自然科学基金委和科技部等的大力支持。 原文链接http://www.cas.cn/ky/kyjz/201209/W020120921399246236683.gif 图1:(a)Ag2S QDs成像示意图,(b)和(c)分别为Ag2S QDs的实物和暗场中的荧光照片,(d)和(e)分别为吸收和荧光光谱,(f)为Ag2S QDs的TEM照片。http://www.cas.cn/ky/kyjz/201209/W020120921399246247360.gif图2:4T1肿瘤对Ag2S QDs的高效摄取http://www.cas.cn/ky/kyjz/201209/W020120921399246242640.gif图3:Ag2S QDs的活体滞留和排泄情况

活体米定仪相关的耗材

  • BTX 活体专业电极
    BTX 活体专业电极, 专为您的活体电穿孔实验精心设计。 BTX为您的活体实验提供了种类繁多,不同尺寸的专业电极,为您的活体电穿孔实验提供最大便利的同时,让您获得最高的转染效率。
  • 角度可调小鼠头部固定器配件
    角度可调小鼠头部固定器配件把小鼠固定在显微镜下或其它仪器上,用于小鼠的活体成像或显微镜观察或实验,是固定小鼠的理想仪器。角度可调小鼠头部固定器配件也可以放置在立体显微镜下,是体内观察或成像实验最适合的装置。安装有角度调节器用于获得更深度的图像。比MAG-2稍微大一些,角度倾斜更大这对头的颞区域的研究更有用。* 可连接的mice chamber 小鼠室: CF-10, CP, CP-1, CP-2倾斜角度纵向倾斜 (± 10°)侧向倾斜 (± 15°)角度可调小鼠头部固定器配件规格:配件CP-1 室板 (每个一块)CP-2 室板 (每个一块)乙烯基片大小/重量W108 x D152 x H109 ~ 130mm, 1.7Kg最大倾斜角度纵向± 15°侧向± 20°承载重量2kg* 室框架根据用户应用进行定制,请与我们联系获取详细信息。* 不能连接室框架CFR-1 (用于大鼠)。
  • 天骅自动化仪表U型压力计压力计华勃氏定容 yb512647 0
    微量呼吸压力计 华勃氏WARBURG MANOMETER别名:华勃氏定容呼吸压力计:一、概况及用途 该仪器是用明硅玻璃经灯工,刻度制成一支U形压力计和二只反应瓶,配套磨砂而成。一般在使用时常以12支为一组进行测试,它适用于生物医学方面,对生理与动植物组织或微生物的发酵和代谢分析,以及发芽组织的呼吸作用,在临床上用于对正常组织和肿瘤组织中乳酸、丙酮酸的测定,也可用于研究其它有关氧与二氧化碳气体的反应,如光合作用及酶的活性等。二、造型及原理 它是由U型具侧支管压力计和反应瓶组成,U型压力计用毛细管经刻度加工制成。测压灵敏。压力计左管上端开口,右管上端接有三路活塞,可以平衡压力或调整液面,弯形侧支管具有标准磨口塞与反应瓶相连,反应瓶是放置被测物的,底部有-一个环形小杯,放入硷性溶液以吸收二氧化碳,反应瓶有一个侧臂管,系供养料或在反应过程中作添加物料用,侧臂管的毛细管塞可作放气用。其原理:是凡含有气体的动植物活体细胞或组织,在消耗氧的同时放出二氧化碳,而二氧化碳气体被硷溶液吸收,在固定体积和一定温度的情况下气体的发生或消失(包括速度),可由密闭系统中气体压力计的液面改变而测得。三、使用方法(一)先将仪器洗净烘干,然后用水银灌入带活塞的U形管内。(二)在U形压力计的下端尾部套一小节胶管并用螺丝夹夹住,以调整压力计的液面升降位置。(三)在反应瓶的中心圈内放入吸收二氧化碳的氢氧化钾溶液,在反应瓶的外圈四周放入肝脏和生理容液葡萄糖等组织液,在反应瓶的侧管内盛入被检定的药物,插上毛细管塞,将反应瓶连接在U形压力计的磨砂塞上,必须用弹竇夹在钩上以防止脱落。(四)在活塞口上端的毛细孔与混合气体(氧气及二氧化碳)的贮气瓶相连。(五)测定:在未起反应之前使瓶内充满氧气,关闭活塞及毛细管寒,要严密不漏气,然后将整个压力计固定在水槽的外侧振荡轴上,使反应瓶完全浸在恒温水槽内的恒温水中,在12支压力计中,除二支做标准空白对照用外(即只放溶液不放入肝脏组织),其余可放入不同量的试物和不同剂量的药物进行测量。全部装妥后,所有的反应瓶都处在同一水温中。开动马达使仪器摇动,进行气体平衡,待标准管的液面到达“零”位时关闭活塞,读出被测管的读数,然后将压力it从水槽内取出小心地把侧管的药物倒入反应瓶的外園组织液中(切勿倾入反应瓶的中心周内).混合,立刻放回水槽内,开动秒表,继续摇动10分钟,右管中液体上升,左管中液休必然下降,通过转动螺丝夹使右管的液面仍回到250处,读出左管中液体体积,根据第一次测得的读数减去第二次被吸收后的读数,其差數就代表在10分钟反应瓶内的试样所消耗的氧气量,也就是该组织给以药物后该组织的反应如何。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制