当前位置: 仪器信息网 > 行业主题 > >

霍尔脉冲仪

仪器信息网霍尔脉冲仪专题为您提供2024年最新霍尔脉冲仪价格报价、厂家品牌的相关信息, 包括霍尔脉冲仪参数、型号等,不管是国产,还是进口品牌的霍尔脉冲仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合霍尔脉冲仪相关的耗材配件、试剂标物,还有霍尔脉冲仪相关的最新资讯、资料,以及霍尔脉冲仪相关的解决方案。

霍尔脉冲仪相关的论坛

  • 霍尔流量计在冲奶机的应用

    霍尔流量计在冲奶机的应用

    [size=18px]现如今,市面上有各种各种的家用电器,使用[url=http://www.eptsz.com][color=#000000]霍尔流量计[/color][/url],今天主要介绍的是霍尔流量计在冲奶机的应用。[/size][align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2021/07/202107291641148918_7151_4008598_3.jpg!w690x690.jpg[/img][/align] 冲奶机改变了人们长期以来调配奶粉的模糊观念,量化了水量等等。 如果量化水量适配奶粉呢,就需要安装流量计,设定几勺奶粉,加多少水量。而出水量的控制,就需要流量计来把控。 霍尔流量计FM-HL3012是脉冲计数,是以脉冲数算流量的,叶轮转一圈的话霍尔IC输出一个脉冲。是利用脉冲来实现流量控制的。 霍尔小型流量计的优点:体积小,易于安装,流量精度高??,精度可以达到3%。[align=right][size=18px]——深圳市能点科技有限公司[/size][/align]

  • 霍尔流量计的特点及安装

    霍尔流量计的特点及安装

    [size=18px][font=宋体][font=宋体]霍尔流量计内部是由霍尔元件、磁铁(分正负极)、叶轮组成的,利用霍尔效应,通过液体在进入流量计内部时,把带有两极磁铁的叶轮转动所产生的[/font][font=Calibri]GS[/font][font=宋体]值,转换成脉冲信号输出,叶轮每转动一圈就会产生一个脉冲信号。[/font][/font][font=宋体][font=宋体]能点科技的霍尔流量计具有体积小、安装简易、检测精度高、反应灵敏、重复性高等特点。只需在流量计的进出水口两端用水管连接即可,安装简单,角度多样化([/font][font=Calibri]0[/font][font=宋体]°、[/font][font=Calibri]90[/font][font=宋体]°、[/font][font=Calibri]180[/font][font=宋体]°、[/font][font=Calibri]360[/font][font=宋体]°)。霍尔流量计一般应用在咖啡机、饮料机、制冰机、净水器啤酒机等设备上。[img=,690,308]https://ng1.17img.cn/bbsfiles/images/2022/10/202210210946442170_3891_4008598_3.jpg!w690x308.jpg[/img][/font][/font][/size]

  • 霍尔流量计在啤酒机中应用原理

    霍尔流量计在啤酒机中应用原理

    [size=18px] 现在市面上的啤酒机是可以自动控制啤酒多少的,那这到底是如何实现的呢? 其实只需要在啤酒机里安装一个霍尔流量计就可以实现,霍尔流量计内部会有磁铁和叶轮,顶部有一个霍尔元件。当液体从管道进入到流量计内部,就会带动叶轮转动,利用霍尔效应,把带有两极磁铁的叶轮置于垂直磁场中,通过叶轮转动产生的GS值转换成脉冲信号输出。此时啤酒机设备会根据流量计输出的脉冲值来判断液体的流量变化,以此来控制。 霍尔流量计内部含有铁氧体磁铁、精度稳定可靠,结构简单,安装方便。 霍尔流量计还能用于:咖啡机、泡茶机、饮水机、饮料机等。 [img=,575,351]https://ng1.17img.cn/bbsfiles/images/2022/05/202205311507046946_4924_4008598_3.png!w575x351.jpg[/img][/size]

  • 霍尔流量计与光电流量计有哪些区别

    霍尔流量计与光电流量计有哪些区别

    霍尔式流量计和光电式流量计是常见的两种流量计类型,它们在原理、结构和应用方面存在一些区别。下面将介绍霍尔式流量计和光电式流量计的主要区别。霍尔式利用霍尔效应,通过叶轮转动产生的磁场变化来检测流体流量。当流体流经叶轮时,叶轮转动并改变与其垂直的磁场,从而产生霍尔电压或霍尔电流的变化。通过测量这些变化,可以计算出流体的流量。光电式则利用叶轮切割光通路的方式进行流量测量。当流体流经叶轮时,叶轮的旋转会切割入射的光线,从而产生脉冲信号。通过计算脉冲信号的次数,可以确定流体的流量。霍尔式内部含有铁氧体磁铁,用于产生磁场。以磁铁为基础结构,叶轮固定在磁铁上,当流体通过叶轮时,叶轮转动,触发霍尔效应。光电式内部不含磁铁,采用纯光学感应原理。它由光源、接收器和叶轮组成。入射的光线通过叶轮时,光线会被切割,产生脉冲信号。[align=center][img=小型流量计,475,347]https://ng1.17img.cn/bbsfiles/images/2024/02/202402281606191467_1241_4008598_3.jpg!w475x347.jpg[/img][/align]霍尔式具有精度稳定、可靠性高的特点。由于采用了铁氧体磁铁,它对外部磁场的干扰较为敏感,因此在一些特殊环境下可能需要进行屏蔽处理。光电式内部不含磁铁,纯光学感应,对水质保护更好。它对外部磁场的干扰相对较小,适用于一些对磁场敏感的场合。此外,光电式流量计通常比霍尔式流量计更紧凑,体积更小。霍尔式和光电式在原理、结构和应用方面存在一些区别。选择哪种类型的[url=https://www.eptsz.com]流量计[/url]取决于具体的应用场景和测量要求。

  • 霍尔流量计流量控制原理

    [size=24px][font=宋体]在我们的日常生活中,流量计的应用也越来越广泛,不同的设备、功能及液体,所适用的[url=http://www.eptsz.com/Products.aspx?CategoryID=5][b]流量计[/b][/url]是不一样的。[/font][font=宋体]下面要介绍的这款[url=http://www.eptsz.com/Products.aspx?CategoryID=5][b]霍尔流量计[/b][/url],是属于小流量计类型的,适用于一些流量比较小的设备上,[/font][font=宋体]比如咖啡机、冲奶机、饮料机、饮水机等小流量控制的,流量能够实时统计。[/font][font=宋体][font=宋体][b]霍尔流量计[/b]内部有一个两极磁铁、一个叶轮和一个霍尔元件,当叶轮转动一圈所产生的[/font][font=Calibri]GS[/font][font=宋体]值转换成一个脉冲信号输出,根据脉冲数计算流量,[b]霍尔流量计[/b]是利用脉冲来实现流量控制的。[/font][/font][font=宋体][font=宋体]例如在自动饮料机的应用,如果我只需要[/font][font=Calibri]100ml[/font][font=宋体]的饮料,那么通过[url=http://www.eptsz.com/Products.aspx?CategoryID=5][b]霍尔流量计[/b][/url]就可以实现固定的[/font][font=Calibri]100ml[/font][font=宋体]的饮料。[/font][/font][/size][font=宋体][size=24px][font=宋体][b]霍尔流量计[/b]不仅体积小、而且安装简易、流量精度高、精度可达[/font][font=Calibri]3%[/font][/size][font=宋体][size=24px]、一致性强、还可以用于多种高低流量控制。 ——深圳市能点科技有限公司[/size][/font][/font]

  • 霍尔流量计在咖啡机中应用原理说明

    霍尔流量计在咖啡机中应用原理说明

    [size=18px]市面上的咖啡机是可以实现一键实现各种类型的咖啡,根据不同的咖啡有不同的配料比进行冲泡出液。那这种每种类型不同的配比是如何调控的呢?不同比例的出液调控,是通过流量计来控制实现的。咖啡机的流量控制只需要增加一个霍尔流量计,其内部会有磁铁和叶轮,顶盖上会有霍尔元件。每当液体顺着管道流入流量计的内部,则会带动叶轮转动,之后经过处理,则会输出脉冲信号。此时咖啡机设备则会根据流量计输出的脉冲值来判断液体流量的变化,以此变化控制流量。例如抽取出水、咖啡、牛奶等各自的不同比例,来调控不同风味的咖啡。霍尔流量计安装方便、结构简单,只需将水管套入流量计的进出水口的两端。将线插入咖啡机的控制器中。同时霍尔流量计的角度也有多种类型,有0°,90°,180°,360°这四种类型,霍尔流量计具有使用寿命长、响应灵敏、安全可靠、流量检测精度高的优点,可达到±2%的精度。[/size][align=center][img=,690,308]https://ng1.17img.cn/bbsfiles/images/2022/03/202203021524374873_5047_4008598_3.jpg!w690x308.jpg[/img][/align]

  • 霍尔流量计应用注意事项

    霍尔流量计应用注意事项

    [size=18px][url=http://www.eptsz.com]霍尔流量计[/url]可应用于净水器、咖啡机等等需要小流量控制的家用电器中。其主要作用是控制出水量,例如咖啡机,就是需要实现咖啡机的流量控制,单杯出水量。[/size][align=center][size=18px][img=,690,298]https://ng1.17img.cn/bbsfiles/images/2021/07/202107261606394215_7488_4008598_3.jpg!w690x298.jpg[/img][/size][/align][size=18px] 它是通过叶轮在液体的推动下不断旋转,带动螺杆旋转。速度越高,位移越大。而使用霍尔流量计时需要注意确保流体没有快速脉冲波动,确保整个循环系统中没有空气,确保没有反向喘振压力。 而且安装的时候需要注意,流量计的安装位置,且需要定期清洗。 霍尔流量计,不仅小体积,安装方便,而且精度高,应用范围广泛。[/size][align=right][size=18px]——深圳市能点科技有限公司[/size][/align]

  • 泡茶机流量控制如何实现的—霍尔流量计

    泡茶机流量控制如何实现的—霍尔流量计

    [font=&][color=#333333][/color][/font][font='Segoe UI'][color=#333333]泡茶机流量控制是通过使用霍尔流量计来实现的。霍尔流量计是一种基于霍尔效应的传感器,可以测量液体流量。它由一个霍尔元件和一个磁场发生器组成。[/color][/font][font='Segoe UI'][color=#333333]在泡茶机中,霍尔流量计通常安装在水管中,用于[/color][/font][font='Segoe UI'][color=#333333]检测[/color][/font][font='Segoe UI'][color=#333333]水的流量。[/color][/font][font=微软雅黑][color=#595959]利用霍尔效应,[/color][/font][font='Segoe UI'][color=#333333]把带有两极磁铁的叶轮置于垂直于[/color][/font][font='Segoe UI'][color=#333333][font=Segoe UI]磁场中,通过叶轮转动产生的[/font] [font=Segoe UI]GS 值转换成脉冲信号输出。 [/font][/color][/font][align=center][img=霍尔流量计,690,425]https://ng1.17img.cn/bbsfiles/images/2023/07/202307121746149258_3397_4008598_3.jpg!w690x425.jpg[/img][/align][font='Segoe UI'][color=#333333][font=Segoe UI][url=https://www.eptsz.com]霍尔流量计[/url]应用在泡茶机具有体积小成本低优势,每分钟最大流速小于[/font][font=Segoe UI]760ml,流量精度高,可靠性好,寿命长,质量轻,自身可供四方位组装,安装方便,符合ROHS要求。[/font][/color][/font][font='Segoe UI'][color=#333333]使用霍尔流量计时要注意避免有电流冲击,同时注意流量计的安装位置,确保没有反向激增压力、流体没有快速的脉冲波动、整个流道系统里没有空气,经过一段时间要清洗系统,不能有雾气积攒在连接端子上,不可在连接端子上施加机械压力,连接端子不可接错,否则会损坏流量计,最小最大流量计应在流量计线性范围内[/color][/font][font='Segoe UI'][color=#333333]总之,泡茶机流量控制是通过使用霍尔流量计来实现的。通过监测霍尔流量计的输出信号,泡茶机可以实时地了解水的流量情况,并根据设定的流量目标来控制水的注入量,从而实现精确的流量控制。[/color][/font][font=&][color=#333333][/color][/font][font=&][color=#333333][/color][/font]

  • 光电流量计和霍尔流量计有哪些区别

    光电流量计和霍尔流量计有哪些区别

    [font=宋体][color=#333333][back=white]随着流量仪表行业的不断发展,流量计在生活和工业中起着重要的作用,流量计也变得多功能化和专用化,霍尔流量计和光电流量计是两种常见的流量计,它们在工作原理和特点上存在一些区别。[/back][/color][/font][font=宋体][color=#333333][back=white]霍尔流量计采用的是霍尔效应原理,通过内置的霍尔元件,利用液体压力推动下转动的带有两极磁铁的叶轮产生的[/back][/color][/font][font='Segoe UI',sans-serif][color=#333333][back=white]GS[/back][/color][/font][font=宋体][color=#333333][back=white]值,将其转换成脉冲信号输出。[/back][/color][/font][font=宋体][color=#333333][back=white]而光电流量计则是利用光学原理检测,当叶轮转动时,切割光线通路会产生脉冲信号,通过计算叶轮的转动次数来判断水流量的多少。霍尔流量计是通过磁铁和霍尔元件的相互作用来实现流量测量,而光电流量计则是通过光线的切割来实现流量测量。[/back][/color][/font][align=center][img=咖啡机小型流量计,439,378]https://ng1.17img.cn/bbsfiles/images/2023/07/202307251501215888_7664_4008598_3.png!w439x378.jpg[/img][/align][font=宋体][color=#333333][back=white]霍尔流量计具有体积小、安装简单方便、精确度高等特点。由于其工作原理的特殊性,[url=https://www.eptsz.com]霍尔流量计[/url]不受液体透明度的影响,适用于各种液体的流量测量。[/back][/color][/font][font=宋体][color=#333333][back=white]而光电流量计则内部不含磁铁,采用纯光学感应,不会污染液体,适合透光率高的液体。光电流量计的优势在于其不受磁场干扰,适用于一些对磁场敏感的液体。[/back][/color][/font][font=宋体][color=#333333][back=white]我们在选择小型流量计时,要根据具体的应用场景和需求,选择合适的流量计进行使用。[/back][/color][/font]

  • 我国刷新脉冲磁场最高强度纪录 闯入90特斯拉大关

    科技日报讯 近日,依托华中科技大学建设的国家脉冲强磁场科学中心(筹)自行研制的脉冲磁体,成功实现了90.6特斯拉的峰值磁场,再次刷新我国脉冲磁场最高强度纪录,使我国成为继美、德后,第三个闯入90特斯拉大关的国家。 中国工程院院士、华中科技大学教授潘垣介绍,磁现象是物质的基本现象之一。当物质处在磁场中,其内部结构可能发生改变,产生新成果。强磁场与极低温、超高压一样,被列为现代科学实验最重要的极端条件之一。它可分为稳态强磁场和脉冲强磁场两大类,其对应的发生装置又分为稳态强磁场装置和脉冲强磁场装置。有资料显示,自1913年以来,世界上有19项与强磁场有关的成果获得诺贝尔奖;仅近30年来,就有8项与此有关的成果获得诺贝尔奖,如量子霍尔效应、分数量子霍尔效应、磁共振成像等。 据国家脉冲强磁场科学中心(筹)主任李亮介绍,产生90.6特斯拉磁场强度的磁体、电源、控制系统等全套装置均为中心自主开发研制。脉冲磁体是产生高强磁场最重要的部件,电流和磁场相互作用在瞬间所产生的强大电动力和急剧温升,是限制磁场强度提高的两大主要因素。与美国、德国90特斯拉级脉冲磁体都采用昂贵的高强高导材料相比,我国磁体制造成本还不到他们同类磁体的1/10。 据称,为实现90特斯拉以上的磁场强度,美国洛斯—阿拉莫斯强磁场实验室用了20年,德国德累斯顿强磁场实验室用了10年,而我国仅用5年就实现了这一水平。(记者刘志伟 通讯员程远) 《科技日报》(2013-08-14 一版)

  • 记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修

    记一次脉冲强磁场设备维修原创:大陆2015-11-13一、前言磁场设备是磁学研究中产生磁场的设备,根据可产生最高磁场强弱可以分为亥姆赫兹线圈、永磁场发生器、电磁铁、超导磁体与强脉冲磁场发生器几种,其中使用脉冲磁场发生器原理是短时间通大电流产生强磁场,在相同的散热及供电功率等配套条件下可以产生比稳恒磁体强一个数量级以上的磁场,因而可以在物理、化学与生物研究中需要强场的场合应用。目前脉冲强磁场能产生的最高磁场的世界纪录超过2千特斯拉,不过这些极端磁场的产生过程伴随爆炸冲击波作用,只是一次性的产生,线圈无法再次使用,而且需要防爆实验环境;能够重复使用同一个线圈可控产生的脉冲强磁场最高约1百特斯拉,这需要配套专门的实验室与供电通道;在普通实验室条件下对脉冲磁场发生装置的需求一是不需要专门的电力改造,且整个装置方便移动,不过产生的磁场最高超过10特斯拉,我们实验室(磁学国家重点实验室)就有一套这样的样机设备,是实验室几位老前辈在1990年前后自己做的,设备整体照片如图1,它的主体分为充放电控制模块、线圈负载与电容柜(如图02中肚子里主要装的是1kV,0.1mF的电容阵列,合计98个,总容量9.8毫法拉) 、。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573466_1611921_3.png图01 脉冲强磁场装置照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573467_1611921_3.jpeg图02 脉冲强磁场装置中的电容二、故障及诊断维修前段时间有使用者在使用过程中发现设备电容无法充到设定电压,从而无法放电产生磁场。首先通过沟通,获知设备是在用户更换自己的负载线圈之后引起,用户自己的负载线圈电感约10纳亨,而设备标配的负载线圈是280微亨,相差4个数量级;然后结合图03所示的脉冲强磁场的电路分析故障在充电模块;最后打开机柜,通过肉眼观察线路板与元器件,如图04所示,可以看到大功率晶闸管的散热固定木柱有裂纹,从而将故障诊断在晶闸管上。值得一提的是,必须赞一下实验室前辈们:在设备制造过程中保留着晶闸管的铭牌,这样尽管他们退休好多年了,设备出现问题,后人还可以找到配件的线索。将晶闸管拆下来后发现正反向都是导通状态,显然控制端无法控制其单向积累电荷给电容充电,因而根据铭牌上的最大电流500A、耐压1800V、控制电压1.5V指标购买替换晶闸管,幸运的是市场上还能找到同样规格的KP-500A晶闸管,买回来替换上后测试发现仪器可以正常充放电,至此维修工作完成。简单分析其原因是使用者将负载换成特别轻的电感,这样在最高800V充电后,电感几乎不能增加阻抗,此时放电回路电路中的阻抗幅值约0.5欧姆,导致放电回路中的电流瞬间超过1600安培,而晶闸管的最高承受电流只有500安培,所以损坏导致故障。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573468_1611921_3.gif图03 脉冲强磁场装置充放电原理电路图http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573469_1611921_3.png图04 脉冲强磁场装置充放电电路照片http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573470_1611921_3.jpeg图05 更换的晶闸管照片三、测试验证我们知道,设备维修让设备能工作与是否适合科学研究是两码事,为了让使用者更好的在该设备上开展研究,需要在正常工作的基础上对其性能做一次测试验证,测量不同充电电压对应在标准负载线圈中的放电脉冲磁场。测试用到的工具是带轴向(霍尔传感器)磁场探头的特斯拉计(高斯计),与一台示波器,如图06所示,由于仪器尾部自带有BNC模拟接口,将其连在示波器上,但初步测试发现仪器标配的模拟信号在较高磁场下有饱和截断平台,如图07所示。http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573471_1611921_3.png图06 测试验证需要的仪器http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573472_1611921_3.png图07 直接使用模拟信号观测脉冲场波形经过与特斯拉计的工程师交流,得知其模拟输出的是原始霍尔电压信号放大10倍并做滤波限幅保护等电路处理之后输出的结果,而设备限幅4V,对应典型传感器最高只能测量4T的磁场。我们目前的应用明显要测量超过4T的磁场,那么要想获得高于4T的模拟脉冲信号,怎么办呢?使用原始(未经放大、调理、限幅处理的)霍尔电压信号!于是打开特斯拉计机箱,如图08所示,http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573473_1611921_3.png图08 特斯拉计内部电路结构http://ng1.17img.cn/bbsfiles/images/2015/11/201511132130_573474_1611921_3.png图09 改变模拟BNC输入线的接入位置做好以上的准备工作后,开始进行测量系统标定,为了简便,这里使用一块永磁体产生磁场做动态模拟电压-磁场标定,放在探头边上,通过调节距离改变特斯拉计的输入磁场,记录特斯拉计与示波器上直流信号的平均值,绘制成曲线并拟合如图10所示。然后将磁场探头放入负载线圈的中心位置,测量不同放电电压下产生的脉冲磁场波形,并根据指数衰减放电函数拟合出峰值与脉宽,如图11所示。最后将所有的初始放电电压获得的脉冲磁场信号曲线的拟合结果汇总可得脉宽不随放电电压变化,恒定约1毫秒,峰值磁场与初始放电电压关系经拟合满足为B(特斯拉)=20V(千伏)关系,该设备在最高800V电压充电时产生峰值磁场约16T,使用相对简单的原理与低成本[c

  • 霍尔流量计在果汁机的应用

    霍尔流量计在果汁机的应用

    在现代厨房技术中,果汁机的设计和制造领域正经历着一场革命,这场革命不仅仅局限于提升设备的外观设计和用户界面友好度,更重要的是,它还涵盖了如何提升设备的性能,特别是在精确控制液体流动方面。霍尔流量计,在这一领域展现出了其不可或缺的作用,特别是在果汁机这类需要精确控制流量的家用电器中。霍尔效应是一项经典物理现象,当电流通过一个置于磁场中的导体时,会在导体的侧面产生垂直于电流方向和磁场方向的电压。基于这一原理,霍尔式流量计将这种物理现象运用到了流体测量领域,通过在流体路径中引入带有两极磁铁的叶轮,并使之与磁场垂直,当液体通过时,叶轮转动,利用霍尔传感器捕捉叶轮的旋转速度,进而转换为GS值,最终通过高级信号处理技术将这些GS值转换成具体的脉冲信号输出,实现对流量的精确测量。对于果汁机来说,使用霍尔流量计具有明显的优势。首先,其精确度高,能够确保在制作果汁时加入的水或其他液体分量准确无误,从而保证果汁的品质和味道的一致性。这一点对于追求高品质生活的消费者尤为重要。其次,由于霍尔流量计体积小,安装简易,可以很容易地集成到果汁机等家用电器中,而不会影响设备的整体设计和用户操作体验。此外,该技术支持多种高低流量控制,意味着无论是需要大量快速加工的商业环境,还是家庭中小批量、多样化的使用需求,霍尔流量计都能够提供满意的解决方案。[align=center][img=霍尔流量计,531,347]https://ng1.17img.cn/bbsfiles/images/2024/02/202402201503309521_7375_4008598_3.jpg!w531x347.jpg[/img][/align][url=https://www.eptsz.com]霍尔流量计[/url]符合FDA(美国食品药品监督管理局)和FLGB(食品级标准)的要求,保证了其在食品加工领域的应用是安全且可靠的。同时,这种流量计还支持流量定制,这意味着设备制造商可以根据不同型号的果汁机需求,定制适合的流量计规格,进一步提升产品的专业性和竞争力。随着人们生活水平的提升和对健康饮食的关注增加,果汁机等厨房电器的科技含量也在不断提升。在这一背景下,霍尔流量计凭借其高精度、高一致性、小体积及易于安装等特点,在果汁机等设备中的应用将越来越广泛,成为提升设备性能、保障用户健康饮食的重要技术支撑。

  • 使用小型霍尔流量计需要注意哪些

    使用小型霍尔流量计需要注意哪些

    [align=left][font=宋体][color=black]要避免有电流冲击。霍尔流量计是通过测量磁场变化来计算流量的,因此在使用过程中要避免电流冲击,以免影响测量结果。[/color][/font][/align][align=left][font=宋体][color=black] [/color][/font][/align][align=left][font=宋体][color=black]安装位置应选择在流体流动平稳的地方,确保没有反向激增压力和流体没有快速的脉冲波动,这样可以提高测量的准确性。[/color][/font][/align][align=left][font=宋体][color=black] [/color][/font][/align][align=left][font=宋体][color=black]整个流道系统里不应有空气。空气的存在会影响流量计的测量结果,因此在安装前要确保整个流道系统里没有空气,可以通过排气等方式来实现。[/color][/font][/align][align=center][font=宋体][color=black] [img=小型流量计,360,360]https://ng1.17img.cn/bbsfiles/images/2023/07/202307311630014202_9573_4008598_3.jpg!w360x360.jpg[/img][/color][/font][/align][align=left][font=宋体][color=black]经过一段时间的使用,需要清洗系统。[url=https://www.eptsz.com]霍尔流量计[/url]容易受到污染物的影响,因此定期清洗系统可以保持流量计的正常工作。[/color][/font][/align][align=left][font=宋体][color=black] [/color][/font][/align][align=left][font=宋体][color=black]还要注意不能让雾气积攒在连接端子上,以免影响连接的稳定性。同时,在连接端子上不可施加机械压力,以免损坏流量计。[/color][/font][/align][align=left][font=宋体][color=black] [/color][/font][/align][align=left][font=宋体][color=black]使用时要确保连接端子的正确连接,不可接错。如果连接错误,会导致流量计无法正常工作或损坏。[/color][/font][/align][align=left][font=宋体][color=black] [/color][/font][/align]

  • 【转帖】脉冲电镀技术与脉冲电源

    脉冲电镀技术与脉冲电源兰为国 2006-05-24 09:45:41 在能源紧张、耗材昂贵、资源短缺、竞争激烈的新形势下,我们怎样才能立于不败之地?省钱等于赚钱才是硬道理。那么怎样才能省钱呢?降低成本就能省钱。表面处理行业,首先是个电老虎,而因为电的问题没解决好,电镀行业电的成本占经营成本的20%,耗材占经营成本的30%;氧化行业电的成本占经营成本的33%,耗材占经营成本的20%;有没有既能省电,又能节省材料,又能提高生产效率的设备,来帮助我们提高生产力呢? 高频脉冲电源是大家向往以久的设备。上世纪,我们国家表面处理行业的前辈们,就已提出这一脉冲工艺技术,而在国外更早已普遍应用了。 一、什么是脉冲电镀 脉冲电镀所依据的电化学原理,主要是利用脉冲电压或脉冲电流的张弛(间隙工作),增强阴极的活性极化和降低阴极的浓差极化,从而有效地改善镀层的物理化学特性。 在脉冲电镀过程中,电流导通时,接近阴极的金属离子充分地被沉积,而电流关断时,阴极周围的放电离子又恢复到初始浓度。脉冲电镀时的导通电流密度,远远大于直流电源电镀时的电流密度,这将使金属离子处在直流电镀实现不了的极高过电位下电沉积,其结果不仅能改善镀层的物理化学特性,而且还能降低析出电位较负金属电沉积时析氢副反应所占比例。 二、脉冲电镀的特点 能得到致密、均匀和导电率高的镀层。这是采用电子电镀最最可贵的,无论是硅整流还是可控硅整流都难以实现的。 降低浓度极化,提高阴极的电流密度。从而提高镀速(频率越高,镀速越快),缩短了电镀时间,为企业创造更好的效益。 减少镀层的孔隙率,增强镀层的抗蚀性。由于均匀脉冲有张有弛,使得镀层的致密性得到非常有效的改善,孔隙率降低,几乎是完美无缺,抗蚀能力得到加强。 消除氢脆,改善镀层的物理特性,由于采用脉冲电源镀层和被镀物的导电率极高,致密性极好,几乎不会出现氢脆现象,经电镀后的表面光洁平整。 降低镀层的内应力,提高镀层的韧性。由于脉冲电流电镀的一瞬间,电流及电流密度是非常之强大,此时金属离子处在直流电源电镀实现不了的极高过电位下电沉积(吸附能力极强),大大提高镀层的韧性。 减少镀层中杂质,提高镀层的纯度。因为在电镀的瞬间,脉冲电流只对金属离子作用,好比是过滤,这样,将有用的金属离子送到被镀物上沉积,而滤其杂质,提高镀层的纯度。 降低添加剂的成份,降低成本。由于脉冲电镀的均匀,致密性好,光洁度高,存放时间长,一般镀件免加添加剂,有要求的镀件,也可少加添加剂。 脉冲电镀中金属的电结晶。在金属电结晶过程中,晶核形成的几率与阴极的极化有关,阴极极化越大,阴极过电位越高,则阴极表面吸附原子的浓度越高,晶核形成的几率越大,晶核尺寸越小,使得沉积层的晶粒细微化,这就是脉冲电镀能获得细致光滑镀层的本质原因。 三、脉冲电源的特点 节电:效率≥90%,比硅整流省电达40%左右或比可控硅电源省电达20%左右。 节料:由于它的工作原理与普通电源不一样,因此在达到相同表面要求的前提下,可节料达15%左右。 节时:由于采用高频脉冲工作方式,电镀完全是在过电位下的电沉积,因此可节约时间达10%左右,提高工效。 高频脉冲电源采用N+1方式多个并联,(硅整流或可控硅电源不可以),大功率、大电流可任意并用,效率更高。 高频电源的稳定性:由于采用了最新现代半导体双极型器件(IGBT智能模块),其可靠性、安全性、稳固性和长时间工作寿命都大大加强和延长,这也是硅整流或可控硅电源无法比拟的。 高频脉冲电源:其工作时,脉冲顶部非常之平,完全是一条直线,纹波可小到0.5%,关断时可对被镀件进行瞬间退镀整平,因此克服了硅整流或可控硅电源的脉动波纹及被镀件表面的高低区,不会形成高的地方镀层厚,低的地方镀层薄的现象。 四、脉冲电源参数及选择 1.脉冲参数表示 Q:周期 Ton:脉冲导通时间 Toff:脉冲关断时间 f:频率 Jp: 脉冲电流密度 Jm:平均电流密度 r%:占空比(导通时间与周期之比的百分数) 2.常用计算公式 ①占空比:r%=(Ton/Q)×100% =[Ton/(Ton+Toff)]×100% ②平均电流密度:Jm=Jp×r% =Jp×[Ton/(Ton+Toff)]×100% ③频率:f=1/Q=1/×(Ton+Toff) ④平均电流密度:Jm=Jp×r% 3.脉冲参数的选择 ⑴脉冲导通时间Ton选择: 脉冲导通时间Ton是由阴极脉动扩散层建立的速率或由金属离子在阴极表面消耗的速率Jp来确定。如果Jp大,金属离子在阴极表面消耗得快,那么,脉动扩散层也建立得快,则Ton可短些,反之则取长。但无论Ton取长或短,只要大于tc(电容效应产生的放电常数)即可。 ⑵脉冲关断时间Toff选择: 脉冲关断时间Toff是受特定离子迁移率控制的阴极脉动扩散层的消失速率来确定。如果将扩散层向脉动扩散层补充金属离子使之消失得快,则Toff可取短些,反之则长,但Toff只要大于tcd(电容效应产生的时间常数)即可。 ⑶脉冲电流密度Jp的选择: 脉冲电流密度Jp是脉冲电镀时金属离子在阴极表面的最大沉积速度,它的大小受Ton、Toff、Jm的制约,在选定Ton和Toff,并保持Jm/Jgg≤0.5这个比值,则希望Jp越大越好。 ⑷脉冲占空比r%选择: 脉冲占空比是由Ton和Toff及Q决定的,一般脉冲电镀贵重金属时,占空比选取10~50%为最佳,脉冲电镀普通金属时,占空比选取25~70%。占空比的真正选择要在实际试验后得到最佳结果。 五、脉冲电镀电源使用须知 1.脉冲电镀电源与镀槽之间的距离 为了确保脉冲电流波形引入镀槽时不畸变,且衰减小,希望在安装时,脉冲电镀电源与镀槽的间距2~3m为佳,否则对脉冲电流波形的后沿(下降沿)影响较大,电镀将不能达到预期效果。 2.阴、阳极的导线连接方式 直流电源的导线连接方式,不适合脉冲电源的连接,脉冲电镀电源的输出连接,希望两根导线的极间电容能够抵消导线的传输电感效应,因此阴、阳极导线最好的方法就是双绞交叉后,引送到镀槽边,从而保持脉冲波形不变。 总之,采用高频脉冲整流机,总体效益提高20%左右,符合现代企业清洁生产与可持续发展之要求,这是淘汰硅整流和可控硅整流机的必然优势。

  • tcxuefeng读书笔记——脉冲下的汉密尔顿

    tcxuefeng读书笔记——脉冲下的汉密尔顿

    之前讨论的是无脉冲下的汉密尔顿,而在引入射频脉冲后系统汉密尔顿修正如下http://ng1.17img.cn/bbsfiles/images/2012/08/201208261027_386183_2071539_3.jpg其中http://ng1.17img.cn/bbsfiles/images/2012/08/201208261028_386184_2071539_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/08/201208261029_386185_2071539_3.jpg我们可以看到,在静止坐标系下这一汉密尔顿显得十分复杂。但经过之前的旋转坐标系转换后,这一公式简化为http://ng1.17img.cn/bbsfiles/images/2012/08/201208261033_386186_2071539_3.jpg其中http://ng1.17img.cn/bbsfiles/images/2012/08/201208261033_386187_2071539_3.jpg式中ωnut为章动频率,与核在脉冲激发后的章动角有关,Brf为射频场强度,θrf为射频场Brf与外磁场Bo之间的夹角,我们可以看到,90度时脉冲激发效率最高,这也就是为什么在安装核磁时线圈与磁场呈90度的原因.

  • 霍尔电流传感器简绍

    在工业、电力、牵引等领域,电压、电流及功率的计量是非常至关重要的。对于电压的计量,低压可以用电压表直接测量,如果测量高压就需要有电压互感器变压后进行测量。那么对于电流的测量交流直流电流很小时,可以用万用表直接串入电路测量,稍大点的(0-7000A以下)电流可以用分流器测量,但是这种方法测量精度低,隔离程度低,电流超过7000A以上时分流器就无法使用了。这里介绍一下测量电流的一种设备电流传感器,电流传感器是电流的一种新型设备,该设备采用霍尔检测原理具有测量精确度高、线性好、隔离程度高、安装更换简便等优点。逐渐取代比较笨重的电流互感器。电流传感器主要有霍尔直测试和霍尔检零式两种原理其中霍尔楂零式精度高但是电路复杂有功耗成本高,霍尔直测式电路简便,成本低安装件结。在此着重介绍一下直测试电流传感器。 一、霍尔电流传感器原理 霍尔元件在聚集磁路中检测到与原边电流成比例关系的磁通量后输出霍尔电压信号,经放大电路放大后输送到仪表显示或计算机采集来直观反映电流的大小。 二、霍尔元件的电原理 当霍尔元件的垂直方向加上一个磁场B,在原件上加上控制电流I,那么霍尔元件就有一个霍尔电压Uh输出,它们的关系式为Uh=kh·I·B,其中kh为霍尔元件的灵敏度,B为磁场轻度。

  • 群脉冲发生器使用注意事项

    群脉冲发生器使用注意事项:  群脉冲发生器是精密高压仪器,为确保您的人身安全及预防对我们测试装备的破坏,请在使用时遵守群脉冲发生器使用注意事项下预防措施:  (1) 在存放爆炸物区及禁火区请勿使用该设备,否则可能引起爆炸或火灾;  (2) 佩带人工心脏起搏器的人员请勿使用该设备或在该设备运行时靠近本设备操作区,以免造成危险;  (3) 本机为高压设备,进行被试品摆放、接线及改变试验配置时,请务必注意应在高压断开及切断试品电源的情况下进行,防止因电源外露带来的触电危险;  (4) 相对湿度超过75%时,请停止使用群脉冲发生器设备进行试验。  (5) 注意使用群脉冲发生器时应保证设备接地状况良好,严格按照IEC61000-4-4或GB/T17626.6标准要求进行试验配置,以保证试验结果的一致性和可重复性。  群脉冲发生器设备内部存在高压,未经厂方同意或指导请勿随意拆卸或敞开机壳工作,防止对设备和人员造成不必要的伤害。

  • 在线脉冲清灰电脑控制仪

    在线脉冲清灰电脑控制仪

    SXC系列化产品:SXC-8A(在线脉冲)、SXC-8B(离线脉冲和气箱脉冲)、SXC-8C(反吹风)等,是我厂2004年开发的新产品,适用于各类袋式除尘系统的电脑控制仪。从2005年起将全面替代原有AL-8和SXC-1型及部分PLC程控柜老产品。中小除尘系统用的SXC型电脑控制仪,其中央控制单元选用美国microchip公司生产的新PIC单片机,充分发挥了它的物美价廉的软硬件资源;电源选用强抗干扰的开关型净化电源、电路进行了优秀的简化设计;中央控制单元与输出用光电隔离器,输出选用超大功率输出管(15A)或固态继电器,以大马拉小车来确保工作的高可靠性,从而实现了上述的四大特点。大除尘系统用的SXC型电脑控制仪,是PIC单片机、PLC、固态传感器三者的电子数字集成系统,与单独的单片机或PLC相比,具有功能更强、操作更灵活、可靠性更高,而且价格比PLC大幅度下降,是我厂开发的又一高新技术产品。8A1-8为1~8路(门)输出,8A1-16为1~16路(门),8A1-128为128路(门)。1、脉冲电磁阀阀数选择:1~8、9~16、17~40、40~128门四种(具体数字由用户订货时提出);2、每门输出功率:DC24V / 1.5A (一个电磁阀的电流为0.6~0.8A,需AC220V或110V输出请用户订货时提出);3、脉冲宽度: 0.01~0.25秒±0.001(出厂时已设置在通用值0.08秒); 4、脉冲间隔: 1~255秒±0.01(出厂时已设置为10秒)5、脉冲周期(循环间隔): 0~255分钟±1秒(出厂时已设置在0分) 上述三个时间设定范围,可根据用户特殊要求修改软件而确定。6、定时/ 定差压(或本地/远程)两种清灰控制方式任选(出厂时已设置为定时)。7、交流输入电源电压允许大范围波动:AC160~260V。[img=,200,126]http://ng1.17img.cn/bbsfiles/images/2017/05/201705051209_01_3163882_3.jpg[/img]

  • 二维解谱和脉冲序列解读

    请教各位老师,大侠,那里找解析核磁共振二维谱的相关书籍,和脉冲序列(二维实验)解读的相关信息,谢谢!

  • 1分钟解读霍尔流量计

    1分钟解读霍尔流量计

    [align=left]霍尔流量计是一种基于位移传感的,然而流体推动叶轮旋转,带动螺杆旋转,产生磁系统上下移动,流速大则位移量大。用霍尔流量计检出位移而获得流速和流量。[/align]霍尔流量计在当今日常生活中,使用流量计的范围越发广泛,例如,应用于公共自来水龙头,饮水机、咖啡机、冲奶机等等,流量能够实时统计。下面介绍一下能点科技的霍尔流量计。[b]霍尔流量计的特点:[/b]l、体积小、重量轻、自身可四方组装,安装方便2、可感知移动水箱内的液位高度3、流量精度高[b]技术参数:[/b][table=100%][tr][td]额定电压:[/td][td]DC5~18V[/td][/tr][tr][td]额定电流:[/td][td]<10mA[/td][/tr][tr][td]流量范围:[/td][td]0.075~0.65L/min[/td][/tr][tr][td]检测精度:[/td][td]±2.5%[/td][/tr][tr][td]温度范围:[/td][td]-10°~+85°[/td][/tr][/table]霍尔流量计的精度相对较低,可满足一般需要,例如在使用饮水机的过程中,只需要精确到0.05L即可,在价格上,霍尔流量计却有极大的优势,可满足超声波流量计的传感器,价格至少要在1000元以上,霍尔传感器的成本底于超声波流量计的上百倍,使用这种传感器,可使整个流量计的成本大大降低,一般超声波的流量计。基于霍尔效应的流量计只能精确到0.01L,而精度不如高精度的超声波流量计。误差在15ml以下,生活中这个数量级的误差不会对于使用造成影响,相对于超声波的流量计,霍尔流量计的成本大大降低,只有超声波流量计成本的1/30,相对很低的价格,像这种流量计被更多的产品所使用,增加这种新型流量计市场空间,使的应用范围更加广泛,因此更多的把这种流量计用到生活中。霍尔流量计图片:[img=霍尔流量计,690,510]http://ng1.17img.cn/bbsfiles/images/2018/05/201805291455438274_2732_3397320_3.jpg!w690x510.jpg[/img][img=霍尔流量计图2,690,690]http://ng1.17img.cn/bbsfiles/images/2018/05/201805291457161504_4538_3397320_3.jpg!w690x690.jpg[/img]深圳市能点科技有限公司是一家专业的开关生产厂家,主要供应液位传感器、[color=#000000][url=http://www.eptsz.com/]液位开关[/url]、[/color]倾倒开关、霍尔流量计、运动开关、轻触开关、鱼缸自动智能补水器等产品。官方网站:www.eptsz.com

  • 脉冲驱动模块

    脉冲驱动模块针对激光测距市场的电子元器件我们目前针对主要专注于脉冲和相位测距领域,以下予以分别介绍:对于我们所提供的大多数产品,均保证价格最低,低于华强北市场不信你可以咨询,同时我们的质量要好于华强北的B货,使您可以不必购买后心存忐忑。同时我们提供最迟3天内的交货期,详见下方:一、其中脉冲测距主要提供如下元器件:发射:1 SPL PL90-3 905nm 75W(预测距离:600-1600米)德国Osram,9万原装库存一周内交货,2 905D1S3J09UA 905nm 75W(预测距离:450-1200米)德国Laser Components,常备原装库存2万,3天交货3 VPL 90-3 905nm 75W(预测距离:450-900米),常备库存5000,7天交货除上述应用领域之外,还可用于安防,CS,全站仪,汽车防撞,工业测距传感器等领域。另外,我们还可以提供4W,10W,25W,50W等其他功率的激光管。自己封装,7天交货5000pcs接收:1 PIN管:SFH203PFA 德国OSRAM,1万原装库存一周内交货2 雪崩管:AD500-9TO52S3 德国Silicon sensor,5000原装库存一周内交货3 带滤光片的雪崩管:AD500-9TO52S1F2 德国Silicon sensor,500原装库存,3天内交货 本公司另外还提供相应的发射驱动模块,接收模块。

  • 霍尔传感器在各大领域的应用

    霍尔传感器是一种基于霍尔效应的器件,它能实现磁电转换,可用于检测磁场及其变化。霍尔效应虽然在1879年才被发现,但是直到20世纪50年代才出现了对其的应用,然而器件成本很高。1965年,人们开始将霍尔传感器集成进硅芯片中,从而促进了霍尔器件的应用。霍尔器件有许多优点。它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHz),耐震动,不怕灰尘、油污、水汽及烟雾等的污染或腐蚀。 霍尔传感器作为核心检测元器件,其具有使用范围的广泛性、多样化、不可替代性等特点,各个行业对于霍尔传感器的各种电性能和抗外界因等都有一定的要求,如:电力机车、坦克、机床、油田、光伏、风电等相关行业,都要求元器件要耐低温、高温、强震、高潮湿等问题。目前市场上的电流传感器,很多产品都无法解决这样的问题,致使很多客户的设备无法高效的正常运转,带来的损失无法衡量、计算。  鉴于目前客户的一系列要求,宁波锦澄电子有限公司推出一系列镀金焊针PCB霍尔电流传感器、霍尔电压传感器,很好的解决了目前市场上众多客户的需求。本次推出的镀金焊针闭环霍尔电流传感器包括以下型号:JCE6…25-TSNP、JCE6….25TSRNP,JCE25….50-151NP、JCE25-ANP等四种;闭环霍尔电压传感器为JCE-L25P。  JCE镀金焊针PCB霍尔电流电压传感器一经推出已经广泛的在变频器、光伏汇流箱、变频调速、伺服系统、电动汽车、变频空调、液晶电视、军工电源等众多行业、设备上批量使用。并且完全替代进口传感器,在价格、周期、服务上具有一定的市场竞争力。 但由于霍尔传感器的成本较高,因此其应用领域基本锁定在汽车等高端市场,而对于需求量较大、对成本控制非常严格的消费电子市场则受到了成本的限制。相信随着技术的进一步发展,霍尔传感器走进手柄等消费电子应用领域将是大势所趋。

  • 【资料】-微波功率控制方式,脉冲微波和非脉冲微波的概念

    化学反应过程一旦超越某一临界点,可能会迅速释放出大量气体以致超过消解各罐的压力上限(110bar)而难以驾御。因此需随时谨慎监视反应过程,并及时改变微波功率输出加以调控。一般根据控制能力可分低、中、高三档,控制能力不同,程序输入也不一样。1)开关式脉冲控制:传统的办法是采用固定功率输出,但间歇关闭微波以改变输出功率总量的方式,其特征是开关式脉冲微波。如:在10秒钟内关闭微波5次间隔1秒,功率为50%。开关式控制是第一代控制技术。研究人员发现这种控制方式不仅不易控制,还可能会直接影响到反应结果,且意外都是发生在开关方式下。根据功率发射方式把微波定义为脉冲和非脉冲,即间断发射为脉冲微波,而不间断发射为非脉冲微波。 研究表明,脉冲微波在开关瞬间会产生高阈值电磁脉冲,对消解含有机脂类和醇类的样品,其与硝酸的反应产物可能会刺激发生临界爆炸,其反应机理与炸药引爆相似。在萃取反应中也宜采用非脉冲技术,因为高阈值脉冲微波也极易破坏所萃取的有机分子形态,不能保证分子有机形态的完整,从而影响结果的一致性和可靠性。2)自动功率变频控制和非脉冲技术:这是第二代控制技术,特征是功率自动变化,输出均为非脉冲微波。特点是无须关闭微波发射,在连续微波发射条件下,根据温压反馈信号,自动线性改变微波功率输出,调整反应状态。不仅提高了反应速率,而且非常安全。由于闭环响应是基于精确可靠的在线罐内温压传感装置,从而提高了整机技术,当然成本也相应提高。非脉冲微波是在连续微波发射的条件下,自动线性调整微波的功率输出,其特征是无论功率如何变化,微波仍能持续输出,无脉冲刺激。实验结果表明,这种方式更易于控制微波辅助反应,提高消解反应的稳定性和安全性。且有机萃取反应回收率和稳定性也得到改善。大功率微波仪器最好采用非脉冲,因为其阈值太高,有潜在的危险。因此,非脉冲微波化学仪器的发展对反应动力学的研究十分有利,它实际上代表了微波技术发展的一个新方向。

  • 我科学家首次发现量子反常霍尔效应

    美妙之处或可加速推进信息技术进步的进程 新华社北京3月15日电 (记者李江涛)由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队在量子反常霍尔效应研究中取得重大突破,他们从实验中首次观测到量子反常霍尔效应,这是我国科学家从实验中独立观测到的一个重要物理现象,也是物理学领域基础研究的一项重要科学发现。 该成果于北京时间3月15日凌晨在美国《科学》杂志在线发表。 据介绍,美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。而在磁性材料中不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应之所以如此重要,一方面是由于它们体现了二维电子系统在低温强磁场的极端条件下的奇妙量子行为,另一方面这些效应可能在未来电子器件中发挥特殊的作用,可用于制备低能耗的高速电子器件。 例如,如果把量子霍尔效应引入计算机芯片,将会克服电脑的发热和能量耗散问题。然而由于量子霍尔效应的产生需要非常强的磁场,因此至今为止它还没有特别大的实用价值,因为要产生所需的磁场不但价格昂贵,而且其体积庞大(衣柜大小),也不适合于个人电脑和便携式计算机。 据了解,量子反常霍尔效应的美妙之处是不需要任何外加磁场,因此,这项研究成果将会推动新一代的低能耗晶体管和电子学器件的发展,可能加速推进信息技术进步的进程。

  • “量子反常霍尔效应”离诺贝尔物理奖有多近?

    我国科学家首次发现“量子反常霍尔效应”这一科研成果离诺贝尔物理奖有多近2013年04月11日 来源: 中国科技网 作者: 林莉君 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244421_change_wtt3427_b.jpg量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130410/051365597244437_change_wtt3428_b.jpg理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导 “这个研究成果是从中国实验室里,第一次发表出来了诺贝尔物理奖级别的论文,这不仅是清华大学、中科院的喜事,也是整个国家发展中喜事。”4月10日,诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授高度评价了我国科学家的重大发现——量子反常霍尔效应。 由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应。美国《科学》杂志于3月14日在线发表这一研究成果。由于此前和量子霍尔效应有关的科研成果已经3获诺贝尔奖,学术界很多人士对这项“可能是量子霍尔效应家族最后一个重要成员”的研究给予了极高的关注和期望。那么什么是量子反常霍尔效应?对它的研究为什么引起世界各国科学家的兴趣?它的发现有什么重大意义? 重要性 突破摩尔定律瓶颈 加速推动信息技术革命进程 在认识量子反常霍尔效应之前,让我们先来了解一下量子霍尔效应。量子霍尔效应,于1980年被德国科学家发现,是整个凝聚态物理领域中重要、最基本的量子效应之一。它的应用前景非常广泛。 薛其坤院士举了个简单的例子:我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前”地前进。“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”薛其坤打了个形象的比喻。 然而,量子霍尔效应的产生需要非常强的磁场,“相当于外加10个计算机大的磁铁,这不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。”薛其坤说,而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。 自1988年开始,就不断有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2006年, 美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等有多个世界一流的研究组沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。 薛其坤团队经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。 “量子反常霍尔效应可在未来解决摩尔定律瓶颈问题,它发现或将带来下一次信息技术革命,我国科学家为国家争夺了这场信息革命中的战略制高点。”拓扑绝缘体领域的开创者之一、清华大学“千人计划”张首晟教授说。 创新性 让实验材料同时具备“速度、高度和灵巧度” 从美国物理学家霍尔丹于1988年提出可能存在不需要外磁场的量子霍尔效应,到我国科学家为这一预言画上完美句号,中间经过了20多年。课题组成员、中科院物理所副研究员何珂告诉记者:“量子反常霍尔效应实现非常困难,需要精准的材料设计、制备与调控。尽管多年来各国科学家提出几种不同的实现途径,但所需的材料和结构非常难以制备,因此在实验上进展缓慢。” “这就如同要求一个运动员同时具有刘翔的速度、姚明的高度和郭晶晶的灵巧度。在实际的材料中实现以上任何一点都具有相当大的难度,而要同时满足这三点对实验物理学家来讲是一个巨大的挑战。”课题组成员、清华大学王亚愚教授这样描述实验对材料要求的苛刻程度。 实验中,材料必须具有铁磁性从而存在反常霍尔效应;材料的能带结构必须具有拓扑特性从而具有导电的一维边缘态,即一维导电通道;材料的体内必须为绝缘态从而对导电没有任何贡献,只有一维边缘态参与导电。 2010年,课题组完成了对1纳米到6纳米(头发丝粗细的万分之一)厚度薄膜的生长和输运测量,得到了系统的结果,从而使得准二维超薄膜的生长测量成为可能。 2011年,课题组实现了对拓扑绝缘体能带结构的精密调控,使得其体材料成为真正的绝缘体,去除了其对输运性质的影响。 2012年初,课题组在准二维、体绝缘的拓扑绝缘体中实现了自发长程铁磁性,并利用外加栅极电压对其电子结构进行原位精密调控。 2012年10月,课题组终于发现在一定的外加栅极电压范围内,此材料在零磁场中的反常霍尔电阻达到了量子霍尔效应的特征值h/e2—25800欧姆——世界难题得以攻克。 课题组克服薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,最终为这一物理现象的实现画上了完美的句号。 “下一步我们主要的努力方向是全面测量材料在极低温下的电子结构和输运性质,寻找更好的材料体系,在更高的温度下实现这一效应。那时,也许我们能对其应用前景作更好的判断。”王亚愚告诉记者。 外界评说 这是凝聚态物理界一项里程碑式的工作 “实验成果出来以后,量子霍尔效应的发现者给我发了一封邮件。他写道:我深信拓扑绝缘体和量子反常霍尔效应是科学王冠上的明星。”张首晟向记者展示了这封邮件。 《科学》杂志的一位审稿人说:“这项工作毫无疑问地证实了与普通量子霍尔效应不同来源的单通道边缘态的存在。我认为这是凝聚态物理学一项非常重要的成就。”另一位审稿人说:“这篇文章结束了多年来对无朗道能级的量子霍尔效应的探寻。这是一篇里程碑式的文章。” 延伸阅读 霍尔效应与反常霍尔效应 霍尔效应是美国物理学家霍尔于1879年发现的一个物理效应。在一个通有电流的导体中,如果施加一个垂直于电流方向的磁场,由于洛伦兹力的作用,电子的运动轨迹将产生偏转,从而在垂直于电流和磁场方向的导体两端产生电压,这个电磁输运现象就是著名的霍尔效应。产生的横向电压被称为霍尔电压,霍尔电压与施加的电流之比则被称为霍尔电阻。由于洛伦兹力的大小与磁场成正比,所以霍尔电阻也与磁场成线性变化关系。 1880年,霍尔在研究磁性金属的霍尔效应时发现,即使不加外磁场也可以观测到霍尔效应,这种零磁场中的霍尔效应就是反常霍尔效应。反常霍尔效应与普通的霍尔效应在本质上完全不同,因为这里不存在外磁场对电子的洛伦兹力而产生的运动轨道偏转。反常霍尔电导是由于材料本身的自发磁化而产生的,因此是一类新的重要物理效应。 量子霍尔效应的相关研究已3次获得诺贝尔奖 量子霍尔效应在凝聚态物理的研究中占据着极其重要的地位。它就像一个富矿,一代又一代科学家为之着迷和献身,他们的成就也多次获得诺贝尔物理奖。 1985年,诺贝尔物理奖颁给了德国科学家冯·克利青,他于1980年发现了整数量子霍尔效应。 1998年,诺贝尔物理奖颁给了美国科学家:美籍华人物理学家崔琦以及施特默、劳弗林。前两人于1982年发现了分数量子霍尔效应,而后者则对这一效应进一步给出了理论解释。 2010年,诺贝尔物理奖颁给了英国科学家安德烈·海姆和康斯坦丁·诺沃肖洛夫。他们俩在2005年发现了石墨烯中的半整数量子霍尔效应。 此外,量子化自旋霍尔效应于2007年被发现,2010年获得欧洲物理奖,2012年获得美国物理学会巴克利奖。(记者 林莉君 李大庆) 《科技日报》(2013-04-11

  • 德科学家让光脉冲拥有“负质量”

    该方法可用于研制速度更快的电子通讯设备科技日报 2013年10月17日 星期四 科技日报讯 (记者刘霞)据英国《新科学家》网站10月16日(北京时间)报道,德国科学家使用一些光纤环,表象上使光脉冲拥有“负质量”,让激光脉冲在其周围自我加速。科学家指出,最新研究表面似乎与牛顿第三定律不符,但只是一种假象。其重要意义在于,科研人员可藉此研制运行速度更快的电子设备和更可靠的通讯设备等。 牛顿第三定律指出,两个物体间的作用力和反作用力总是同时在同一条直线上,大小相等,方向相反。当两球相撞时,它们会相互弹回。但如果一个球的质量为负数,当它们相遇时,会朝同一个方向加速前进。这种效应在“反向驱动器”内非常有用。“反向驱动器”是科学家们假想出来的一种设备,在其内部,正负质量相互作用,然后永远加速向前。上世纪90年代,美国航空航天局(NASA)就试图制造出这种驱动器以便为火箭发射提供更好的助推力。不过量子力学声称,物质不可能拥有负质量,即使反物质的质量也为正数。 现在,德国爱尔兰根-纽伦堡大学的乌尔夫·佩斯彻尔和同事使用“等效质量”,制造出一种“反向驱动器”。他们解释道,当光子以光速行进时,它们没有静止质量,但如果将一束光脉冲照射在晶体这样的层叠物体内,有些光子会被晶体的一层反射回来接着再被另一层反射回去,这就会让部分脉冲发生延迟,导致它同其余脉冲相互干扰,通过材料的速度因此变得更慢。 这样一来,光脉冲似乎就拥有了质量——“等效质量”。取决于光波的形状和晶体的结构,光脉冲能拥有负的等效质量。为了得到这样一种脉冲同具有正质量的脉冲相互作用,需要非常长的晶体,以便在两束脉冲展示反向推动效应之前将光吸收。 为此,佩斯彻尔在两条光纤环内制造出一系列激光脉冲。这些脉冲会在两条环之间的某个连接点“分道扬镳”,而且,光会以同样的方向在每个光纤环周围移动。关键在于一个环比另一个环稍长一点,因此,在更长环周围运动的光相对来说有点延迟。当这个脉冲被反射回并且在连接点分开时,它会同另一个环内的脉冲分享部分光子。这样几趟旅程之后,脉冲会发展出一种干涉模式,赋予脉冲负质量。 佩斯彻尔表示,半导体内的电子也可以拥有“等效质量”,因此,这些环可被用来给电子加速并提升计算机的处理能力。而且,在某些光纤内,光脉冲的速度与其波长相当,这就意味着,这种环能被用来控制光纤输出光的颜色。这种方法也有望用来增加光子通讯的带宽,帮助制造出诸如激光显示屏那样的显示设备。不过,将这种环用于实际生活中也并非易事。 总编辑圈点 在宏观世界,质量恒定不变且能对物体运动产生作用,是反映物质运动状态变化难易程度的物理量。但到了微观量子世界,运动却成了质量产生的决定因素,运动的粒子与希格斯粒子发生碰撞才产生质量。本项研究更加深刻地揭示了在微观领域运动和质量的关系,尽管“负质量”只是一种假象,但我们却可以利用这种假象来发明新的应用。将“负质量”用于实际生活确非易事,但并不是完全不可能,反向驱动器就是一种好的尝试。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制