当前位置: 仪器信息网 > 行业主题 > >

烟气除尘器

仪器信息网烟气除尘器专题为您提供2024年最新烟气除尘器价格报价、厂家品牌的相关信息, 包括烟气除尘器参数、型号等,不管是国产,还是进口品牌的烟气除尘器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合烟气除尘器相关的耗材配件、试剂标物,还有烟气除尘器相关的最新资讯、资料,以及烟气除尘器相关的解决方案。

烟气除尘器相关的资讯

  • 超低烟气排放的除尘技术大全
    烟气超低排放实际上是指烟气中颗粒物的超低排放,排放烟气中不仅包括烟尘,而且包括湿法脱硫过程中产生的次生颗粒物,因此要实现烟气的超低排放必须进行必要的除尘处理。除尘技术一般包括:烟气脱硝后烟气中烟尘的去除,称之为一次除尘技术,主流技术包括:电除尘技术?袋式除尘技术和电袋复合除尘技术 脱硫后对烟气中颗粒物的再次脱除或烟气脱硫过程中对颗粒物的协同脱除,称之为二次除尘或深度除尘技术,脱硫后对烟气中颗粒物的脱除主要采用湿式电除尘技术,脱硫过程中对颗粒物的协同脱除主要采用复合塔脱硫技术,并采用高效的除雾器或在湿法脱硫塔内增加湿法除尘装置?下面详细介绍一下这几种除尘技术。一次除尘技术1电除尘技术电除尘技术利用强电场电晕放电,使气体电力产生大量自由电子和离子,并吸附在通过电场的粉尘颗粒上,使烟气中的粉尘颗粒荷电,荷电后的粉尘颗粒在电场库仑力的作用下吸附在极板上,通过振打落入灰斗,经排灰系统排出,从而达到收尘的目的。优点:除尘效率较高,压力损失小,使用方便且无二次污染,对烟气的温度及成分敏感度不高,设备运行检修相对容易,安全可靠性较好。局限:设备占地面积较大,除尘效率受煤种和飞灰成分的影响较大。依据电极表面灰的清除是否用水,电除尘可分为干式电除尘和湿式电除尘?干式电除尘常被称作电除尘,如静电除尘技术、低低温电除尘技术 湿式电除尘常被称作湿电,湿电仅用于湿法脱硫后的二次除尘?(1)静电除尘技术静电除尘技术是在电晕极和收尘极之间通上高压直流电,所产生的强电场使气体电离、粉尘荷电,带有正、负离子的粉尘颗粒分别向电晕极和收尘极运动而沉积在极板上,使积灰通过振打装置落进灰斗。静电除尘器与其他除尘设备相比,耗能少,除尘效率高,适用于除去烟气中0.01~50μm的粉尘,而且可用于烟气温度高、压力大的场合。但由于静电除尘器基于荷电收尘机理,静电除尘器对飞灰性质(如成分、粒径、密度、比电阻、黏附性等)较为敏感,特别对高比电阻粉尘、细微烟尘捕集困难,运行工况变化对除尘效率也有较大影响。另外其不能捕集有害气体,对制造、安装和操作水平要求较高。(2)低低温电除尘技术低低温电除尘技术是通过烟气冷却器降低电除尘器入口烟气温度至酸露点以下的电除尘技术?低低温电除尘技术因烟气温度降至酸露点以下,粉尘比电阻大幅下降,且击穿电压上升,烟气流量减小,可实现较高的除尘效率 同时,烟气温度降至酸露点以下,气态SO3将冷凝成液态的硫酸雾,通过烟气中粉尘吸附及化学反应,可去除烟气中大部分SO3 在达到相同除尘效率前提下,与常规干式电除尘器相比,低低温电除尘器的电场数量可减少,流通面积可减小,运行功耗降低,节能效果明显。但粉尘比电阻降低会削弱捕集到阳极板上粉尘的静电黏附力,从而导致二次扬尘有所增加?2袋式除尘技术袋式除尘技术利用过滤原理,用纤维编织物制作的袋式过滤单元来捕捉含尘烟气中的粉尘。堆积在滤袋表面的粉饼层在此反向加速度及反向穿透气流的作用下,脱离滤袋面,落入灰斗。落入灰斗后的灰再经输灰系统外排。优点:布袋除尘器占地面积小 除尘效率高,一般可保证出口排放浓度在50mg/m3以下 处理气体量范围大 不受煤种、飞灰成分、浓度和比电阻的影响 结构简单,使用灵活 运行稳定可靠,操作维护简单。局限:受滤袋材料的限制,在高温、高湿度、高腐蚀性气体环境中,除尘时适应性较差。运行阻力较大,平均运行阻力在1500Pa左右,有的袋式除尘器运行不久阻力便超过2500Pa。另外,滤袋易破损、脱落,旧袋难以有效回收利用。3电袋复合除尘技术电袋复合除尘技术是电除尘技术与袋式除尘技术有机结合的一种复合除尘技术,利用前级电场收集大部分烟尘,同时使烟尘荷电,利用后级滤袋区过滤拦截剩余的烟尘,实现烟气净化?未被前级电区捕集的荷电粉尘,由于电荷作用使细微颗粒极化或凝并成粗颗粒,同时由于同性电荷的排斥作用,到达滤袋表面堆积的粉尘层排列有序?结构疏松,呈棉絮状,粉尘层阻力低,容易清灰剥离,因而产生了荷电粉尘增强过滤性能的效应,降低运行阻力,延长滤袋寿命?电袋复合除尘器按照结构型式可分为一体式电袋复合除尘器?分体式电袋复合除尘器和嵌入式电袋复合除尘器?其中一体式电袋复合除尘器技术zui为成熟,应用zui为广泛?优点:对煤种和烟尘比电阻变化的适用性比电除尘器强,运行阻力低于纯布袋除尘器,滤袋寿命较布袋除尘器更长,电耗低于电除尘器。局限:由于兼有电除尘和布袋除尘两套单元,运行维护较为复杂。二次除尘技术1湿式电除尘技术湿式电除尘技术是用水冲刷吸附在电极上的粉尘?根据阳极板的形状,湿式电除尘器分为板式、蜂窝式和管式等,应用较多的是板式与蜂窝式。湿式电除尘器安装在脱硫设备后,可有效去除烟尘及湿法脱硫产生的次生颗粒物,并能协同脱除SO3、汞及其化合物等?影响湿式电除尘器性能的主要因素有湿式电除尘器的结构型式、入口浓度、粒径分布、气流分布、除尘器技术状况和冲洗水量?优点:对粉尘的适应性强,除尘效率高,适用于处理高温、高湿的烟气 无二次扬尘 无锤击设备等易损部件,可靠性强 能有效去除亚微米级颗粒、SO3气溶胶和石膏微液滴,对有效控制PM2.5、蓝烟和石膏雨。局限:排烟温度需低于冲刷液的绝热饱和温度 在高粉尘浓度和高SO2浓度时难以采用湿式电除尘器 必须要有良好的防腐蚀措施 湿式电除尘器冲洗水虽采用闭式循环,但要与脱硫水系统保持平衡。2复合塔脱硫技术复合式脱硫塔工作时烟气由引风机鼓入脱硫塔内,在脱硫塔径向进风管内设有*级喷淋装置,对烟气进行预降温和预脱硫,经过降温和预脱硫的烟气由脱硫塔中下部均匀上升,依次穿过三级喷淋装置形成的高密度喷淋洗涤反应区和吸收反应区,脱硫液通过螺旋喷嘴生成极细的雾滴为烟气与脱硫液的充分混合提供了巨大的接触面积,使得气液两相进行充分的传质和传热的物理化学反应,从而达到SO2的高效脱除。脱硫塔内置有两级脱水除雾装置,经过脱硫后的烟气继续上升,依次经过两层折板除雾装置,通过雾气、小液滴在折板处的多次撞击形成较大液滴,大液滴与烟气分离后下落,脱水后的烟气通过烟道至烟囱排放。针对以上几种除尘技术的选择,当电除尘器对煤种的除尘难易性为“较易”时,可选用电除尘技术 当煤种除尘难易性为“较难”时,可优先选用电袋复合除尘技术,300MW等级及以下机组也可选用袋式除尘技术 对于一次除尘就要求烟尘浓度小于10mg/m3或5mg/m3不依赖二次除尘实现超低排放的,可优先选择超净电袋复合除尘技术?其他情况下(包括煤种的除尘难易性为“一般”),可结合二次除尘技术效果?煤质波动情况?场地条件?投资与运行费用等因素综合考虑选择?另外,还可遵循原则:一次除尘器出口烟尘浓度为30mg/m3~50mg/m3时,二次除尘宜选用湿式电除尘器 一次除尘器出口烟尘浓度小于30mg/m3,二次除尘也可选用湿式电除尘器,实现更低的颗粒物排放浓度,更好地适应煤炭市场等因素的变化,投资与运行费用也会适当增加?一次除尘器出口烟尘浓度为10mg/m3~30mg/m3时,二次除尘宜选用复合塔脱硫技术协同除尘,并确保复合塔的除雾除尘效果?
  • 实现烟气超低排放,干湿除尘技术要两手抓!
    随着环境污染的越发严重,国家对锅炉烟气排放提出了更加严格的标准。面对这一发展形势,相关企业要加强锅炉烟气除尘技术的运用,并且结合实际生产情况做好除尘设备的选择,以便在响应国家政策号召的同时,给企业生产带来一定的效益。既促进了工业的可持续发展,同时为人们创造一个安全、舒适的生存环境。 下面小编针对干式与湿式两种较为实用高效的除尘技术进行简要介绍,希望对您有所帮助。 一、干式除尘技术 干式除尘技术主要包括静电除尘、袋式除尘和电袋复合除尘技术。其中静电除尘技术具有处理烟气量大、除尘效率高、设备阻力低、适应烟温范围宽、使用简单可靠等优点,已经应用在我国80%以上的燃煤机组。针对静电除尘的增效技术包括:低低温电除尘、旋转电极式电除尘、微颗粒捕集增效、新型高压电源技术等。通过增效的干式除尘技术,辅以湿法脱硫的协同除尘,在适宜煤质条件下,能实现烟囱出口烟尘排放浓度低于10mg/m3。 这里重点对低低温电除尘技术及其应用进行介绍: 低低温电除尘技术通过低温省煤器或气气换热器使电除尘器入口烟气温度降到90~100℃低低温状态,除尘器工作温度在酸露点之下。 具有以下优点: ①烟气温度降低,烟尘比电阻降低,能够提高除尘效率; ②烟气温度降低,烟气量下降,风速降低,有利于细微颗粒物的捕集; ③烟气余热利用,降低煤耗; ④烟气中SO3冷凝并粘附到粉尘表面,被协同脱除; ⑤对于后续湿法脱硫系统,由于烟温降低,脱硫效率提高,工艺降温耗水量降低。 在国际上,日本低低温电除尘技术应用较为广泛,为应对日本排放标准的不断提高并解决SO3引起的酸腐蚀问题,三菱公司1997年开始研究日本基于烟气换热器装置的低低温高效烟气治理技术,现今在日本已得到大面积的推广应用,三菱、日立等低低温电除尘器配套机组容量累计已超13GW。日本橘湾电厂1050MW机组应用数据显示低低温烟气处理技术可实现烟囱出口粉尘排放浓度在5mg/m3以下,出口SO3排放浓度低于2.86 mg/m3。我国首台低低温电除尘器应用是在2010年12月广东梅县粤嘉电厂6号炉135MW机组。 2012年6月,我国首台600MW低低温电除尘在大唐宁德电厂4号炉成功投运,经第三方测试除尘器出口粉尘排放低于20mg/m3,同时具有较强的SO3、PM2.5、汞等污染物协同脱除能力。 2014年浙江嘉华电厂1000MW机组采用低低温电除尘后除尘器出口粉尘浓度降至15 mg/m3。相关的工程应用实践表明,低低温电除尘技术集成了烟气降温、高效收尘与减排节能控制等多种技术于一体。综合考虑当前我国极其严峻的“雾霾”大气污染和煤电为主的能源资源状况,低低温电除尘技术具有粉尘减排、节煤、节电、节水以及SO3减排多重效果,是我国除尘行业最急需支持应用推广的技术之一。 二、湿式静电除尘技术 湿式静电除尘技术通常用于燃煤电厂湿法脱硫后饱和湿烟气中颗粒物的脱除。要实现烟尘浓度低于5 mg/m3的超低排放,一般情况下需要配套湿式静电除尘技术。 湿式静电除尘工作原理是:烟气被金属放电线的直流高电压作用电离,荷电后的粉尘被电场力驱动到集尘极,被集尘极的冲洗水除去。与电除尘器的振打清灰相比,湿式静电除尘器是通过集尘极上形成连续的水膜高效清灰,不受粉尘比电阻影响,无反电晕及二次扬尘问题;且放电极在高湿环境中使得电场中存在大量带电雾滴,大大增加亚微米粒子碰撞带电的机率,具有较高的除尘效率。湿式静电除尘技术突破了传统干式除尘器技术局限,对酸雾、细微颗粒物、超细雾滴、汞等重金属均具有良好的脱除效果。 全世界第1台除尘器为湿式静电除尘器,1907年投入运行,主要用来去除硫酸雾,后来被拓展用于电厂细微颗粒捕集。美国在用于多污染物控制的湿式静电除尘器研究及应用方面处于领先地位。国内,湿式静电除尘器在冶金行业、硫酸工业已有多年成功的运行经验,是一项非常成熟的技术,并且针对微细雾滴制定出台了环保部标准HJ/T 323—2006《电除雾器》。 主要技术特点:单体处理烟气量较小,一般不超过50000m3/h,设计烟气流速较低,一般为1m/s左右,电极多采用PV或FRP材质。随着湿式静电技术的进一步发展,其应用领域和功能也不断拓展,加之在传统脱硝、脱硫、除尘技术均已达到一定水平,湿式静电在细颗粒物、超细雾滴、SO2、NOx、Hg等雾霾前体污染物进一步协同控制和深度净化上被寄予更多预期,这也是今后发展的趋势。 三、烟气超低排放技术路线 为了减少烟气中的烟尘,实现低于5mg/m3的超低排放,除采用以上增效干式除尘技术——低低温电除尘和湿式静电除尘器之外,也可配套使用必要的过程监测仪器,如烟气分析仪(低量程在线型)Gasboard-3000Plus,对整个烟气除尘工艺流程进行过程调控优化,以最大限度的提高除尘效率,实现烟气排放符合超低排放标准。 烟气分析仪(低量程在线型)Gasboard-3000Plus结合领先的微流红外技术,创造性采用隔半气室设计,可实现200ppm内的低量程测量,在满足行业标准应用的同时,还可根据用户需求定制量程,实用性大大提高。 烟气通过低低温电除尘脱除大部分粉尘、部分SO3和颗粒汞,同时通过烟气余热的回收利用,节约电煤消耗,降低烟温和烟气量,使后续湿法脱硫节水、提效,缓解“石膏雨”现象;然后通过湿式静电除尘,使得烟气含尘量达到超低排放要求,另一方面对SO3、重金属、NH3等多污染物协同净化,并有效减少“石膏雨”;此外,烟气成分分析仪作为整个工艺流程的过程监测单元,可指导现场操作人员对SO2或NOx进行过程调控,如在系统最后治理单元——湿式深度净化装置中,可根据需要适量添加脱硫液或脱硝液,实现对烟气成分的深度净化。来源:微信公众号@工业过程气体监测技术,转载请务必注明来源!
  • 利用预注石灰与活性炭的布袋除尘器脱除汞
    使用NIC产品制作的科学出版物:注:一, 此科学出版物是由我们的客户使用NIC产品完成。二, 此页仅供文摘参考。请参阅此展位友情链接以获取完整信息。 Process Safety and Environmental ProtectionVolume 148, April 2021, Pages 323-332利用预注石灰与活性炭的布袋除尘器脱除汞作者: MasakiTakaokaa , YingchaoChenga,b , KazuyukiOshitaa , TomoakiWatanabec , ShojiEguchida. Department of Environmental Eng., Graduate School of Eng., Kyoto University, C-cluster, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan b. Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan c. Nippon Instruments Corporation, 14-8, Akaoji-cho, Takatsuki, Osaka, 569-1146, Japan d. Taiyo Chikuro Industries Co., ltd., 6-21, Higashi Kouen, Hakata-ku, Fukuoka, 812-0045, Japan 文摘: 火葬场已被确定为目前尚未得到治理的汞排放源之一。然而,通过安装布袋除尘器(FF)以改变操作条件,从而去除火葬场烟气中的汞的效果却未得到深入研究。本研究采用连续排放监测设备记录了火葬场烟气通过增加预处理的FF和选择性催化反应器(SCR)前后的汞浓度,验证了将石灰与10%活性炭的混合物预先注入烟道的汞去除效果。经该除尘系统处理后,SCR出口处的汞浓度极低,最高排放浓度低于5 μg/Nm3,汞去除率达87.5-99.9%。FF表面的石灰与活性炭的厚层有效地抑制了SCR出口处的汞浓度峰值。FF入口处的平均汞浓度与遗体死亡年龄之间的关系表明,死亡年龄或为火葬场控制汞排放的关键因素之一。 有关详情,请浏览NIC仪器信息网友情链接。
  • 火电厂如何保证除尘器灰斗的安全运营?这篇文章告诉您!
    火力发电占中国超过70%的发电量,全国遍布了成千上百座火电厂,火力发电厂的安全运营对于电力生产商至关重要。近年来,我国火力发电厂出现过多次电除尘器灰斗严重积灰坍塌事故,典型案例如下:12005年湖北某电厂 1号机组(30万千瓦)2号电除尘器“1.1”整体坍塌事故;22005年内蒙古某电厂2 号机组(20万千瓦)电除尘器一电场“3.20”灰斗整体坍塌事故;32005 年内蒙古某铝电公司自备电厂一期3号机组“4.9”灰斗脱落事故;42006年安徽某发电公司2号机组电除尘器“3.14”坍塌事故;52014年唐山某公司“9.23”电除尘器灰斗坍塌事故;62021年9月份湖南某电厂发生严重除尘器灰斗事故。电厂除尘器灰斗积灰如果不及时清理,会给电厂安全运营造成极大隐患。如何保证除尘器灰斗的安全运营?需要安装在除尘器灰斗高、低位的报警开关能够真实无误的发出继电器信号给控制阀,飞灰到达高位报警启动落灰阀门,避免造成积灰,导致安全事故。AMETEK 旗下DREXELBROOK品牌的射频导纳物位开关可以完美胜任该任务,专为电除尘飞灰灰斗设计的射频导纳开关,具有高度的稳定,Cote Shield防挂料屏蔽层可以保证该型号开关稳定的输出正确的报警信号,避免挂料造成的误报。图1 在某电厂静电除尘器灰斗高低位报警开关现场应用工况对于静电除尘器的灰位测量,除了必须采用用于开关量报警输出的开关之外,同时可以安装连续量测量的射频导纳料位计,AMETEK DERXELBROOK独特的“钓鱼竿式”传感器,专为灰斗这类应用开发,具有测量准确、耐用、抗挂料等优良性能,可为电除尘器灰斗的安全运营带来双重保证,下面图2和图3是“钓鱼竿式”传感器和安装示意图:图2图3AMETEK DREXELBROOK射频导纳开关 ✅ 坚固,耐用,免维护,无移动部件;✅ 防挂料误报,专利的Cote-shield屏蔽技术,可以有效忽略积灰挂料可能带来的误报;✅ 探头耐高温至260摄氏度;✅ 输出DPDT继电器信号;✅ 原装进口,常年备有现货库存,交货期快;✅ 应用业绩多AMETEK DREXELBROOK射频导纳连续料位计✅ 坚固,耐用,免维护,无移动部件;✅ 防挂料传感器,可以准确测量积灰物位;✅ 探头耐高温至500摄氏度;✅ 输出4-20ma信号;✅ 原装进口,常年备有现货库存,交货期快射频导纳开关射频导纳连续料位计AMETEK DREXELBROOK射频导纳产品在国内的火电厂有大批量的应用,目前开关的使用量累计超过20000台,见证了中国火电厂的发展历程,也维护了火电厂的安全运行
  • 湿法脱硫协同除尘机理及超低排放技术路线选择
    p   随着国家三部委《全面实施燃煤电厂超低排放和节能改造工作方案》的实施,燃煤电厂烟气治理设备超低排放改造工作突飞猛进,成绩显著。在实施湿法脱硫(WFGD)超低排放方面,各环保公司纷纷开发了脱硫喷淋塔技术改造提效升级的多种新工艺,如单塔双循环技术、双托盘技术、单塔双区(三区)技术、旋汇耦合技术等,特别在脱硫塔核心部件喷淋系统上,采用增强型的喷淋系统设计(如增加喷淋层、提高覆盖率、提高液气比等)。脱硫效率从以前平均在95%左右提高到99%甚至更高。特别引人关注的是,在超低排放脱硫系统脱硫效率大幅提高的同时,其协同除尘效果也显著提高,一批改造后脱硫系统的协同除尘效率(净效率,已包含脱硫系统逃逸浆液滴的含固量)达到了70%,甚至有更高的报道。 p & nbsp & nbsp & nbsp & nbsp 面对这样的事实,与之相关的问题亟需得到解答与澄清: p & nbsp & nbsp & nbsp & nbsp (1)超低排放湿法脱硫协同除尘的核心机理是什么? p & nbsp & nbsp & nbsp & nbsp (2)湿法脱硫协同除尘技术是否有局限性?应用中应注意哪些问题? p & nbsp & nbsp & nbsp & nbsp (3)超低排放技术路线选择中如何把握好湿法脱硫协同除尘与湿式电除尘器的关系? p & nbsp & nbsp & nbsp & nbsp 本文旨在追根溯源,一方面回顾总结过去在这方面的研究 一方面从机理出发,研究喷淋系统(及除雾器)对颗粒物脱除的作用。并采用理论模型计算与实际工程案例比较的方法,论证湿法脱硫喷淋系统是协同除尘的主要贡献部件,同时分析湿法脱硫协同除尘的局限性及与湿式电除尘器的关系,为超低排放技术路线选择提供有益的参考意见。 p & nbsp & nbsp & nbsp & nbsp 湿法脱硫协同除尘的研究简要回顾 p & nbsp & nbsp & nbsp & nbsp 清华大学热能系对脱硫塔除尘机理的研究较多,脱硫塔内单液滴捕集飞灰颗粒物的相关研究,主要建立了综合考虑惯性、拦截、布朗扩散、热泳和扩散泳作用的单液滴捕集颗粒物模型并进行了数值模拟计算,分析了温度、液滴直径和颗粒粒径对单液滴捕集过程及效率的影响规律。清华大学王晖等通过测试执行GB13223-2011标准WFGD进出口颗粒物的分级浓度的研究表明,WFGD可有效捕集大颗粒,但对PM2.5的捕集效率较低,且分级脱除效率随粒径减小而明显下降。华电电力科学研究院魏宏鸽等于2011~2013年对39台锅炉(机组容量为25~1000MW)的执行GB13223-2011标准WFGD开展了除尘效率测试试验,结果显示,不同试验机组WFGD的协同除尘效率为18~68%,平均协同除尘效率为49%。国电环保研究院王东歌等通过对我国4座电厂5台不同容量的执行GB13223-2011标准WFGD进出口烟气总颗粒物浓度进行了测试,结果表明,WFGD对烟气中总颗粒物的去除效率介于46.00%~61.70%之间,平均达到55.50%。夏立伟等对某电厂超低排放改造前的WFGD进行了协同除尘效果测试,结果显示,WFGD协同除尘效率为53%。 p & nbsp & nbsp & nbsp & nbsp 上述研究结果一致表明:WFGD具备协同除尘能力 执行GB13223-2011标准WFGD平均协同除尘效率大致在50%左右 湿法脱硫协同除尘的主要机理是喷淋液滴对颗粒物的捕获机理。这种认识在WFGD实施超低排放之前是行业内比较公认的。 p & nbsp & nbsp & nbsp & nbsp 湿法脱硫喷淋液滴协同除尘机理 p & nbsp & nbsp & nbsp & nbsp 1、湿法脱硫喷淋液滴捕集颗粒物的机理与模型喷淋塔除尘机理与湿法除尘设备中重力喷雾洗涤器相似。一定粒径(范围)的喷淋液滴自喷嘴喷出,与自下而上的含尘烟气逆流接触,粉尘颗粒被液(雾)滴捕集,捕集机理主要有重力、惯性碰撞、截留、布朗扩散、静电沉降、凝聚和沉降等。烟气中尘粒细微而又无外界电场的作用,可忽略重力和静电沉降,主要依靠惯性碰撞、截留和布朗扩散3种机理。前人的研究结果表明,Devenport提出的孤立液滴惯性碰撞效率模型、马大广的拦截效率模型、嵆敬文的布郎扩散捕集效率模型与实验结果吻合较好,因此我们根据上述相关模型计算单个液滴的综合颗粒分级捕集效率,然后结合实际工程参数参考岳焕玲提出的液滴群和多层喷淋层中不同粒径液滴的颗粒分级捕集效率模型进行了的计算,相关计算模型见表1所示。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230061.jpg" width=" 500" height=" 465" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609230934.jpg" width=" 500" height=" 478" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609231751.jpg" width=" 500" height=" 186" / /center p /p p /p p & nbsp /p p   2、湿法脱硫喷淋层对颗粒物捕集效率影响因素 p & nbsp & nbsp & nbsp & nbsp (1)颗粒物粒径及分级浓度分布对喷淋层协同粉尘脱除效率的影响 p & nbsp & nbsp & nbsp & nbsp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比L/G=14.283L/m3时,不同粒径范围(900~5000μm)液滴群对颗粒物分级脱除效果曲线如图1所示。 p & nbsp & nbsp & nbsp & nbsp 随着颗粒物分级粒径的增大,脱除效率明显增加,900μm粒径液滴群对1μm颗粒物的脱除效率不到5%,而对10μm颗粒物的脱除效率可达70%以上,因此,烟尘颗粒的分级浓度特性对喷淋层的协同除尘效率影响很大,小颗粒(& lt 2.5μm)比重越大,脱硫塔的协同除尘效率越低。随着液滴粒径增大,因其数量占比大幅减小,发生惯性碰撞、拦截和扩散效应的概率随之降低,对同一粒径颗粒物分级脱除效率随之降低。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609233040.jpg" width=" 416" height=" 343" / /center p & nbsp & nbsp & nbsp & nbsp (2)液气比对颗粒物协同脱除效率的影响 /p p & nbsp & nbsp & nbsp & nbsp 选用单向双头空心喷嘴(液滴体积平均粒径1795μm),液气比选为8、12、16、20L/m3,不同液气比条件下不同粒径范围(900~5000μm)喷淋雾滴群对2.5μm颗粒物脱除效果曲线如图2所示。 /p p style=" TEXT-ALIGN: center" img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609240974.jpg" width=" 402" height=" 337" / /p p & nbsp & nbsp & nbsp & nbsp 上述计算结果表明,随着液气比的增大,吸收塔单位截面上喷淋浆液量越大,喷淋液滴数目增加,表面积增加,与颗粒物接触机会增加,脱除效率明显增大。对于900μm左右粒径的液滴,液气比从8L/m3增加到16L/m3,对2.5μm颗粒分级脱除效率从14.35%增加到26.64%,脱除率增加了84%。因此增大液气比有助于提高湿法脱硫对粉尘和细颗粒(PM2.5)的协同脱除作用。 /p p & nbsp & nbsp & nbsp & nbsp 3、超低排放WFGD与执行GB13223-2011标准WFGD协同除尘效率的比较 /p p & nbsp & nbsp & nbsp & nbsp 为了分析问题,我们假定有一个脱硫工程需要做超低排放改造,设定进口SO2浓度为2450mg/Nm3,进口粉尘浓度20mg/Nm3,出口SO2浓度在超低排放改造前后分别设定为200mg/Nm和35mg/Nm3,选用双头空心喷嘴(液滴体积平均粒径1795μm),脱硫塔进口飞灰颗粒物浓度分布参考清华大学对某个实际工程的颗粒物质量累积分布测试结果。 /p p & nbsp & nbsp & nbsp & nbsp 根据上述假定,我们计算了超低排放WFGD与执行GB13223-2011标准WFGD喷淋层的协同除尘效率、喷淋层对PM2.5的脱除效率,同时把除雾器出口液滴中的含固量考虑在内,测算了超低排放WFGD与执行13223-2011标准WFGD的协同除尘效率,结果如表2所示。 /p center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609242531.jpg" width=" 600" height=" 340" / /center center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609243491.jpg" width=" 600" height=" 322" / /center p & nbsp & nbsp & nbsp & nbsp 表2计算可以给我们以下几点认识: /p p & nbsp & nbsp & nbsp & nbsp (1)WFGD对飞灰颗粒物协同脱除的主要贡献是喷淋层。根据前述WFGD喷淋雾滴捕集颗粒物的机理分析与模型计算,喷淋层对较大粒径颗粒的脱除效率是较高的,而这一部分颗粒占重量浓度的大部分,所以计算结果显示,对执行GB13223-2011标准WFGD,喷淋层协同除尘效率74.95%,超低排放WFGD喷淋层协同除尘效率83.30% /p p & nbsp & nbsp & nbsp & nbsp (2)WFGD的整体协同除尘效率需要考虑WFGD逃逸液滴中的石灰石、石膏等固体颗粒物分量。在进口粉尘浓度条件不变的情况下,由于超低排放WFGD改造安装了高效除雾器,超低排放WFGD协同除尘效率可保持在72.05%,而执行GB13223-2011标准WFGD由于我们假设的原除雾器设计效率较低,出口液滴排放浓度较高,其协同除尘效率降到了37.45%。为了保障WFGD整体的协同除尘效率和较低的颗粒物总排放浓度,需要应用高效除雾器把WFGD出口液滴排放浓度降到足够低。 /p p & nbsp & nbsp & nbsp & nbsp (3)对于我们特别关注的细颗粒物(PM2.5),执行GB13223-2011标准WFGD喷淋层的协同脱除效率为42.74%,超低排放WFGD喷淋层的协同脱除效率为61.83%,提效44.67%,分析超低排放WFGD喷淋层脱除细颗粒物效率较高的主要原因,在于大幅增加了WFGD的液气比,使得喷淋雾滴总的表面积增加,与细颗粒接触的概率增加,从而明显提高了颗粒物特别是PM2.5的协同脱除效率。 /p p /p p /p p   表3是我国部分超低排放WFGD工程的协同除尘效果,其中A为华能南通电厂4号机组(350MW)B为华能国际电力股份有限公司玉环电厂1期1000MW机组,C为首阳山公司二期300MW机组。实际WFGD工程的协同除尘测试效率与理论计算结果存在一定的差别,但是趋势是一致的,部分案例数据还比较接近。 center img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609250410.jpg" width=" 600" height=" 157" / /center p & nbsp & nbsp & nbsp & nbsp 超低排放WFGD与执行GB13223-2011标准WFGD比较,无论是通过理论计算比较,还是通过工程实际测试结果来比较,证明超低排放WFGD对执行GB13223-2011标准WFGD提高协同除尘效率的大致幅度是一致的。这也间接地证明了喷淋层是WFGD协同除尘作用的主力军。 /p p & nbsp & nbsp & nbsp & nbsp 湿法脱硫用机械类除雾器协同除尘机理 /p p & nbsp & nbsp & nbsp & nbsp 1、除雾器的工作机理及主要作用除雾器是WFGD的重要设备,安装于脱硫塔顶部,常采用机械除雾器,用以去除烟气携带的小液滴,保护下游设备免遭腐蚀和结垢。 /p p & nbsp & nbsp & nbsp & nbsp 除雾器对协同除尘的主要作用在于捕集逃逸液滴的同时捕集了液滴中颗粒物(石灰石、石膏及被液滴包裹的烟尘等)。SO2与颗粒物的超低排放对WFGD的除雾器组件提出了更高要求,一方面,通过增加液气比与喷淋层数、提高喷淋覆盖率等措施实现高效脱硫,但在另一方面一定程度上增加了进入除雾区的液滴总量,使其负荷增加。同时为了保证WFGD出口烟气的颗粒物达到超低排放浓度要求,实际超低排放WFGD工程一般会应用多级或组合型(管式、屋脊式、水平烟道式)高效除雾器以保证WFGD出口液滴浓度处在较低水平,以尽量减少逃逸液滴中的颗粒物对排放的贡献。 /p p & nbsp & nbsp & nbsp & nbsp 2、WFGD除雾器协同除尘的贡献讨论当今高效除雾器能将WFGD出口液滴排放浓度控制得比较低已得到工程实际的验证。但有人可能要问,这一类的除雾器对喷淋层出口的飞灰颗粒物是否有较高的直接脱除作用呢?我们认为,应该说会有一定作用。但是,从本文对喷淋层协同除尘效果分析可以看出,未被喷淋层捕集的飞灰颗粒物的平均粒径非常小。在现实燃煤电厂超低排放治理条件下,脱硫前的除尘器出口飞灰颗粒物浓度一般控制在20mg/m3左右,平均粒径约是3.02μm,经过脱硫塔喷淋层协同除尘作用后,喷淋层出口的飞灰颗粒物平均粒径& lt 1μm。从分析可知,机械除雾器对液滴的临界分离粒径在20~30μm左右,可以推断,机械除雾器对喷淋层出口的飞灰颗粒物直接脱除(液滴包裹的除外)作用很有限,不太可能成为协同除尘的主要贡献者。 /p p & nbsp & nbsp & nbsp & nbsp 超低排放技术路线的选择 /p p & nbsp & nbsp & nbsp & nbsp 1、WFGD的主要功能定位与协同除尘的局限性WFGD的主要功能定位是脱硫,工程项目设计时要确定设计输入与输出条件,在设计煤种上会选含硫量较高的煤种进行设计,根据要求的出口SO2浓度设计脱硫效率,从而设计整个脱硫系统(包括喷淋层系统和运行参数),对除尘作用基本上是协同的概念。从我们前述计算与测试数据来源,大多数是以全负荷运行状态而言。实际上,WFGD运行是与煤的含硫量、发电负荷紧密联系的,根据WFGD实际进口SO2浓度进行控制,调节循环泵开启的个数,控制喷淋量与浆液pH。这样可能导致协同除尘效率不是很稳定,运行中二者难以兼顾。当采用WFGD后没有配置湿式电除尘器的超低排放治理技术路线工程中,WFGD就是除尘的终端把关设备,在某种特定应用煤种情况下(如低硫煤、高灰分、高比电阻粉尘),WFGD进口比较低的SO2浓度与较高的飞灰颗粒物浓度同时出现,WFGD的运行将难以兼顾,不大可能为了维持较高的除尘效率将喷淋层全负荷投运,这就是WFGD协同除尘的局限性。WFGD的主要功能定位就是脱硫,除尘仅仅是协同作用,不可把除尘的终端把关全部责任交给WFGD。 /p p & nbsp & nbsp & nbsp & nbsp 2、湿式电除尘器对超低排放与多污染物协同控制的重要作用湿式电除尘器(WESP)安装于WFGD下游,WESP除尘原理与干式电除尘收尘原理相同,都是依靠高压电晕放电使得粉尘颗粒荷电,荷电粉尘颗粒在电场力的作用下到达收尘极。在工作的烟气环境和清灰方式上两者有较大区别,干式电除尘器主要处理含水很低的干气体,WESP主要处理含水较高乃至饱和的湿气体 干式电除尘器一般采用机械振打或声波清灰等方式清除电极上的积灰,而WESP则通过喷淋系统连续喷雾在收尘极表面形成完整的水膜将粉尘冲刷去除。由于WESP进口烟气温度低且处于饱和湿态,水雾与粉尘结合后比电阻大幅下降,使得WESP对粉尘适应能力强,同时不存在二次扬尘,因此无论前部条件是否波动,WESP对细颗粒和WFGD除雾器逃逸液滴均具备较高的脱除效率,WESP还能有效捕集其它烟气治理设备捕集效率较低的污染物(如PM2.5、SO3酸雾和Hg等),可作为烟气多污染物治理终端把关设备。实际工程中WESP应用较广,除尘效果显著,甚至可达到更低排放要求,例如河北国华定洲发电有限责任公司1号机组(600MW)配套WESP出口粉尘排放浓度低于1mg/m3。 /p p & nbsp & nbsp & nbsp & nbsp 3、是否配置湿式电除尘器是超低排放技术路线选择中的一个重要问题根据我们的经验可以列出以下几点作为考虑是否需要配置WESP的主要因素: /p p & nbsp & nbsp & nbsp & nbsp (1)脱硫前除尘器的除尘效率是否有较大余量?如有较大余量,就可以在不利条件下启用除尘器余量,不用过分依赖WFGD的协同除尘作用 /p p & nbsp & nbsp & nbsp & nbsp (2)煤种的条件:实际供应的煤种含硫量是否波动较小?含硫量波动小,意味着协同除尘效率比较稳定,依靠度较高 /p p & nbsp & nbsp & nbsp & nbsp (3)影响除尘器除尘效率的煤种条件和飞灰条件是否相对稳定?如果经常可能使用影响除尘性能的困难煤种,那脱硫系统的协同除尘负担就重。 /p p & nbsp & nbsp & nbsp & nbsp (4)是否考虑未来对SO3等其他污染物的控制要求? /p p & nbsp & nbsp & nbsp & nbsp 如果有以上(1)~(3)的不利条件,同时考虑到未来对SO3等可凝结颗粒物和其他污染物的控制要求,那么论证配置WESP的必要性是应该的。 /p p & nbsp & nbsp & nbsp & nbsp 目前,关于超低排放技术路线的选择有很多探讨,实际工程上的问题和条件是很复杂的,除了技术条件,还有现场场地条件、煤种来源稳定性、负荷波动状况等等其他因素需要考虑。所以我们认为超低排放技术路线选择的核心就是具体问题具体分析。 /p p & nbsp & nbsp & nbsp & nbsp 超低排放技术路线中的关键问题是多污染物协同控制,在各主要治理设备中理清主要功能和协同功能非常重要,一定要考虑当主要功能与协同功能有矛盾时如何处理,还是要保留有应对措施。比如,在煤种多变的条件下,保留一个适当规格的WESP作为终端把关,是一个较符合实际的选择。 /p p /p p /p p   4、湿法脱硫协同除尘与湿式电除尘器在除尘中相互关系计算举例 p & nbsp & nbsp & nbsp & nbsp 为了说明WFGD与湿式电除尘器在除尘中的相互关系,我们举了个计算例子,按第3节“湿法脱硫喷淋液滴协同除尘机理”的关于超低排放脱硫系统的基本假设,取超低排放WFGD出口烟气液滴浓度为15mg/m3(含固量15wt%),计算液气比分别为10、12.5、15、17.5和20L/m3的WFGD进出口粉尘浓度关系曲线(注:这里是简化计算,实际应考虑塔内其他部件对烟尘的捕集作用),结果见图3所示。 p & nbsp & nbsp & nbsp & nbsp WFGD的液气比越大,喷淋层协同除尘效率越高,越容易达到超低排放。对于特定液气比条件下的WFGD,WFGD进出口粉尘浓度呈线性关系,当其进口粉尘浓度在一定范围以内(较低)时,对应的出口粉尘浓度处于图中垂直网格区域,此时由高效除雾器配合即可满足WFGD出口粉尘浓度达到超低排放要求 但是在斜线网格区域时就不能满足WFGD出口粉尘浓度≤5mg/m3。 /p p style=" TEXT-ALIGN: center" img alt=" " src=" http://img01.bjx.com.cn/news/UploadFile/201707/2017070609254032.jpg" width=" 413" height=" 301" / /p p & nbsp & nbsp & nbsp & nbsp 这个结果可以供设计参考,考虑实际用煤的含硫量(特别要注意低含硫量煤种)可以估算实际应用的液气比,考虑最差煤种可以估算进口粉尘浓度最高值,这样可以帮助判断是否需要配置WESP作为除尘终端把关设备。上述结果也可以供实际运行控制时参考,在正常的煤种条件下,充分发挥WFGD的协同除尘作用,同时控制好WESP的运行参数 在低硫煤、飞灰条件对除尘器不利条件下,用好WESP起到终端把关作用实现超低排放(≤5mg/m3)。 /p p & nbsp & nbsp & nbsp & nbsp 通过以上分析,我们得出如下结论: /p p & nbsp & nbsp & nbsp & nbsp (1)WFGD协同除尘的主要贡献是喷淋层,其除尘的核心机理是雾化液滴对飞灰颗粒物的惯性碰撞、拦截和扩散效应。通过理论计算和工程案例数据比较可看出,由于超低排放WFGD喷淋层应用了高液气比、多层喷淋层、高覆盖率等措施以及高效除雾器的配合,协同除尘效率可达到70%左右。 /p p & nbsp & nbsp & nbsp & nbsp (2)湿法脱硫装置的主要功能定位是脱硫,除尘是协同功能。当燃用低硫煤煤种、对除尘器不利飞灰两种情况同时出现时,WFGD的脱硫与协同除尘较难兼顾,所以在粉尘超低排放技术方案选择时,不应过度依赖WFGD的协同除尘作用(设计上直接应用70%协同除尘效率是有风险的)。 /p p & nbsp & nbsp & nbsp & nbsp (3)机械除雾器主要通过高效脱除来自喷淋层的雾滴抑制WFGD出口液滴中固体含量对排放粉尘的贡献,其液滴的临界分离粒径在20~30μm左右,对粒径更小的喷淋层出口飞灰颗粒物(≤10μm)的脱除作用很有限,起到辅助除尘作用。 /p p & nbsp & nbsp & nbsp & nbsp (4)湿式电除尘器对颗粒物、雾滴及其他(SO3等)污染物具有高效捕集能力,在超低排放中作为终端把关设备可以应对煤种、工况变化的复杂情况。 /p p & nbsp & nbsp & nbsp & nbsp (5)超低排放技术路线选择的核心是具体问题具体分析,在各主要治理设备中理清主要功能和协同功能非常重要,在中国煤种普遍波动较大的现实条件下,更要仔细认清协同控制中协同功能的局限性,不能简单地套用一些国外经验。 /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p /p
  • 湿法脱硫:治理燃煤烟气污染却成巨大污染源
    p   在今年三月份的全国两会期间,李克强总理在陕西代表团参加审议时说:“雾霾的形成机理还需要深入研究,因为我们只有把这个机理研究透了,才能使治理措施更加有效,这是民生的当务之急。我们不惜财力也要把这件事研究透,然后大家共同治理好,一起打好蓝天保卫战。” /p p   “我在国务院常务会议几次讲过,如果有科研团队能够把雾霾的形成机理和危害性真正研究透,提出更有效的应对良策,我们愿意拿出总理预备费给予重奖!这是民生的当务之急啊。我们会不惜财力,一定要把这件事研究透!” /p p   “我相信广大人民群众急切盼望根治雾霾,看到更多蓝天。这需要全社会拧成一股绳,打好蓝天保卫战!” /p p   从2013年初算起,中国治理大气污染的大规模行动已经进行了四年多,各地政府和相关企业,为之投入了巨大的人力物力。京津冀地区,在几个重点的燃煤烟气污染领域,如钢铁冶金(重点是烧结机)、焦炭、水泥、燃煤发电厂、燃煤蒸汽和热水锅炉、玻璃行业,这几年给几乎所有的大烟囱都带了口罩——加装燃煤烟气处理系统。收效虽有,但大家总觉得与治理的深度和广度差距太大。我与某地环保局的专业工作人员聊天时,曾听到对方的困惑:几乎所有的大型燃煤设施,都已经上了烟气处理措施。在重压之下,有几个企业敢大规模偷排啊?大气中的PM2.5的浓度怎么还是这么高啊?这些颗粒物到底是从哪里来的? /p p   在中国,已经有很多科学论文介绍,中国的大气颗粒物监测中经常发现有大量的硫酸盐。北京的严重雾霾天气,硫酸盐的比例有时甚至远超50%。 /p p   曾经有专家认为大气中大量的硫酸铵颗粒物是在大气中由二氧化硫和氨气合成的。而氨气是从农业种植业和养殖业中逃逸出来的。还有中外合作的科研团队的结论是,北京及华北地区雾霾期间,硫酸盐主要是由二氧化硫和二氧化氮溶于空气中的“颗粒物结合水”,在中国北方地区特有的偏中性环境下迅速反应生成。可农业种植和养殖业的氨逃逸不是最近几年才突然增长,通过这几年的大气污染治理措施,大气中二氧化硫和二氧化氮的含量是逐渐下降的。显然,这些结论很牵强附会。篇幅所限,我就不深入分析了。 /p p   我谈谈自己的经历。 /p p   去年夏天我在某市出差,前天晚上下了一场暴雨,第二天空气“优”了一天,但第三天空气质量就跨越两个级别,达到轻度污染,第四天就是中度污染了。夏季没有散煤燃烧采暖造成的污染,而该市主要的燃煤烟气设备都有有效的颗粒物减排措施。虽然大气中的二氧化硫和氨能合成二次颗粒物,可大气中二氧化硫的浓度并不高,暴雨也能把地里的氨大部分都带走,大气中不可能有这么多的氨气,而且颗粒物的增长也不应该这么快。 /p p   我在一个企业调查时,用肉眼就清晰地发现,某大型燃煤设施经湿式镁法脱硫后的烟气中的水雾蒸发之后,仍拖着一缕长长的淡淡的蓝烟。这是烟气中的水雾在空气中蒸发之后,水雾中的硫酸镁从中析出,留在了空中。 /p p   而在另外几个企业,我则看到,用湿式钙法脱硫技术处理的烟气中的水雾蒸发后,留下一缕白色的颗粒物烟尘。其中有一次我在一个钢铁企业考察时,因为气象的原因,经湿法脱硫的烧结机燃烧烟气沉降到地面上,迅速闻到一股呛人的粉尘气味。 /p p   这种现象很多专业人士都注意到了。某省一位专业环保官员告诉我,这种湿法脱硫工艺产生的烟气颗粒物,还有一个俗称,叫“钙烟”。 /p p   2015年我的德国能源署同事在中国的调研工作中清晰地发现了这个情况,并在2016年载入了科研报告:“很多燃煤热力站的烟气净化主要在洗气塔中进行,没有在尾部安装过滤装置。由于洗气塔的净化效果有限,并且只适用于分离水溶性物质,因此,中国企业广泛采用未加装过滤装置的洗气塔的方式并不可靠”。 /p p   更糟糕的是,我们看到,很多企业为了降低不菲的烟气脱硫废水处理成本,不对湿法脱硫的废水中溶解的硫酸盐做去除处理,而是将溶有大量硫酸盐的废水反复使用,还美其名曰,废水零排放。废水是零排放了,可溶性的硫酸盐却全都撒到天上了,每立方米的燃煤烟气中,有好几百毫克的硫酸盐,全都变成PM2.5了。还不如不做烟气脱硫处理呢! /p p   今年5月17日下午,中国生物多样性保护与绿色发展基金会与国际中国环境基金会总裁何平博士联合组织了一次“燃煤烟气治理问题与对策研讨会”。我也应邀参加了这次会议。在这次会议上,大家纷纷指出了一个重要的大气污染源,燃煤烟气湿法脱硫。 /p p   其中山东大学的朱维群教授介绍了他从经湿法脱硫后的烟气里检出了大量硫酸盐的实验结果。与会的其他两个公司也介绍了类似的发现。其中一个来自东北某省会城市的公司介绍,最近两年,该市每年在供暖锅炉启动运行的第一天,就出现大气中的颗粒物含量迅速上升现象。而这些锅炉都有烟气处理工艺,从监测仪表上看,颗粒物的排放比前些年大幅下降。而二氧化硫和二氧化氮要合成二次颗粒物不会这么快。可以断定,是在烟气处理过程中的湿法脱硫工艺合成了大量的颗粒物。该公司负责人还调侃说,他曾给市环保局建议,把全市的燃煤烟气湿法脱硫停止运行试一天做个试验,肯定大气中的颗粒物浓度会大幅下降。 /p p   我也介绍了我和同事们在河北进行大气污染治理时发现的类似现象,并介绍了我们于2016年在有关报告中建议的治理方法:“基于德国的经验,建议采用(半)干法烟气净化技术取代湿法洗气塔。具体而言,我们建议采用APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺”。 /p p   十分凑巧的是,就在举办这个会议的当天晚上,华北某市的环保局局长(尊重他的意愿,我不能公开他的姓名和所在的城市)来北京出差,约我聊一聊治霾问题。一见面,他就开门见山告诉我一件令他困惑了几年并终于揭晓的谜: /p p   几年来,他一直怀疑现在的燃煤烟气处理工艺有问题,因为在这些已经采用了燃煤烟气处理工艺的烟囱附近的空气质量监测站,发现大气中颗粒物的浓度要明显高于其他地区监测站监测的结果。不久前,他所在城市的一家大型燃煤发电厂刚刚安装了超净烟气处理设施。但在超净烟气处理设施运行的当天,附近大气质量监测站检测出的大气中的颗粒物浓度比起其他地区的监测站,有了突然的大幅升高。于是他让环保检测人员到现场从烟囱里抽出烟气到实验室里检测。结果,发现有大量的冷凝水,在将这些冷凝水蒸发后,得到了大量的硫酸盐,其数量相当于在每立方米的烟气中,有100~300毫克/的以硫酸盐为主的颗粒物。而国家规定的燃煤锅炉烟气中的颗粒物排放上限(依锅炉的功率和是否新建或既有)分别为20~50毫克/立方米 燃煤电厂烟气超净排放标准的颗粒物排放上限甚至只有5~10毫克/立方米。也就是说,湿法脱硫产生的二次颗粒物造成烟气中的颗粒物浓度超过不同的国家标准上限几倍至几十倍! /p p   超净烟气中水分含量更高,带出的冷凝水和溶盐更多,烟气的温度也更低,所以在烟囱附近沉降的颗粒物更多。 /p p   既然是超净排放,烟气中怎么还会有这么多的颗粒物?烟气中的颗粒物可都是有在线监测的。难道是偷排?还真不是偷排。 /p p   原因很简单:国家的烟气检测规范规定,烟气中的颗粒物浓度是在烟气除尘之后湿法脱硫之前进行检测。这也有道理,因为在湿法脱硫工艺之后,大量的水雾被带到烟气中,这些水雾在普通的烟气检测技术方法中,往往会被视为颗粒物,造成巨大的测量误差。即便有高级仪器能区分湿烟气中的水雾和颗粒物,也很难测定水雾中的硫酸盐含量。除非能检测水雾中的盐含量。但这太困难了。即使有检测装置能够在线检测出来水雾中的硫酸盐浓度,成本也太惊人了。 /p p   燃煤烟气在经过湿法脱硫后,会含有大量的水雾,水雾中溶解有大量的硫酸盐和并含有脱硫产生的微小颗粒物,其总量总高可达几百毫克。 /p p   以上的事实,对大气中的颗粒物中有大量的硫酸盐、甚至经常有超过50%比例的硫酸盐的现象做出了合理的解释:大气中绝大部分的硫酸盐并不是二氧化硫和氨气在大气中逐渐合成的,而是在湿法脱硫装置中非常高效迅速地合成的。 /p p   也就是说,湿法脱硫虽然减少了二氧化硫——这个在大气中能与碱性物质合成二次颗粒物的污染物,但却在脱硫工艺中直接合成出大量的一次颗粒物。在已经普遍安装了燃煤烟气处理装置的地方,湿法脱硫在非采暖季已经成为大气中最大的颗粒物污染源。万万没想到,烟气治理,治理出更多的颗粒物来,甚至出现在超净烟气处理的工艺中,真是太冤了。 /p p   难怪下了这么大的力气治理燃煤烟气污染,大气中的颗粒物浓度降不下来,原因就是燃煤烟气污染治理本身,并不是燃煤的企业和环保部门的工作人员治理大气污染不积极、不认真 而是方法错了。方法错了,南辕北辙。这充分说明,铁腕治霾,一定要建立在科学的基础上。方法不科学,很可能腕越铁,霾越重。 /p p   有疑问吗?有疑问不必争辩,找人对湿法脱硫之后的燃煤烟气进行取样,拿到实验室去一检测就清楚了。实践是检验真理的唯一标准。 /p p   现在雾霾治不了,很多地方的环保部门就采用“特殊手段”。其中一种手段是用水炮。可是,一些人不知道,硫酸盐是水合盐,在湿度高时,硫酸盐分子会吸收大量的水分,增大体积,这也就是为什么很多地方在空气湿度升高后,颗粒物的浓度会突然大幅增加的原因。我有个朋友是环保专家,他告诉我,有一次,他所在的地区大气颗粒物浓度过高,他的上司要派人到监测站附近打水炮降颗粒物,他赶忙拦住:“现在湿度高,越打水炮,硫酸盐颗粒物吸水越多,颗粒物浓度越高。” /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667799730726.jpg" width=" 571" height=" 395" style=" width: 571px height: 395px " / /center p   更下策的办法是给监测仪器上手段,直接对仪器作假,譬如给颗粒物探测头上缠棉纱。第一个作假被抓住并被公布的环保局官员,就是在我的家乡西安,我的心情很不平静。在这里,我不是为作假者开脱,而是为他们的无奈之举感到深深的悲哀。 /p p   湿法脱硫的技术包括钙法、双碱法、镁法、氨法。这些工艺都或多或少地在湿法脱硫过程中合成大量的硫酸盐,只是其中所含硫酸盐的种类(硫酸钠、硫酸镁、硫酸铵、硫酸钙)和比例有所不同。 /p p   我用最常用的钙法脱硫的烟气处理(超净排放需要增加脱硝的处理工序)流程图,简要地解释一下湿法脱硫产生大量的硫酸盐的过程: /p p    /p center img alt=" 2" src=" http://img.caixin.com/2017-07-10/1499668426791886.jpg" width=" 562" height=" 234" / /center p br/ /p p   湿法脱硫产生大量二次颗粒物的问题,从上世纪七八十年代起,在德国也出现过。德国发现了这个问题后,研究解决方案,选择了两条解决问题的路径: /p p   1. 在原来湿法脱硫的基础上打补丁。其具体措施是: /p p   1) 加强水处理措施,对每次脱硫后的废水去除其中颗粒物和溶解的盐 /p p   2) 加装烟气除雾装置(例如旋风分离器) /p p   3) 加装湿法静电除尘器 /p p   4) 采取了以上的方法后,烟气中仍然有可观的颗粒物。于是为了避免颗粒物在烟囱附近大量沉降,又加装了GGH烟气再热装置,将烟气加热,升到更高的高度,以扩散到更远的地方——虽然扩大了污染面积,但减轻了在烟囱附近的空气污染强度。当然烟气再加热,又要消耗大量的热能。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667818346916.jpg" width=" 584" height=" 241" / /center p br/ /p p   但国内外都发现了GGH烟气再热装置结垢堵塞的现象,于是在发生结垢堵塞要对GGH再热装置进行清洗(结垢就是颗粒物,这也证实了湿法脱硫后的烟气中含有大量的颗粒物)时,需要有烟气旁路。而中国的环保部门为了防止偷排,关闭了旁路。所以,检修锅炉要停机,很多燃煤电厂为了防止频繁的锅炉停机,只好拆除了GGH烟气再热装置,由于烟气温度过低,因此烟气中的大量颗粒物在烟囱附近沉降,这也就是前述的某市环保局长发现的在燃煤电厂附近区域空气监测站发现大气中有较高的颗粒物含量的原因。 /p p   但这个方法只适合于大型燃煤锅炉,如燃煤电厂的大型燃煤锅炉。因为采用上述的技术措施,工艺复杂,电厂的大锅炉,由于规模大,脱硫废水和废渣的处理成本还能承受。对于小的燃煤锅炉在经济上根本承受不了,且不说还要加装价格不低的湿式静电除尘器。因此,在德国,非大型燃煤电厂的锅炉几乎都不采用这种在原湿法脱硫工艺的基础上打补丁的方法,而是采用下述的第二种方法。 /p p   2. 第二种方法就是干脆去除祸根湿法脱硫工艺,采用(半)干法烟气综合处理技术。德国比较成功的是APS (Activated Powder Spray,活性粉末喷洒)烟气处理工艺,综合脱硫、硝、重金属和二恶英。这种工艺是在上世纪末发明的,本世纪开始逐渐成熟并得到推广。其具体措施是: /p p   1) 燃煤烟气从锅炉出来用旋风分离器进行大致的除尘后,即进入到APS烟气综合处理罐,进行综合脱硫、硝、重金属和二恶英(垃圾焚烧厂和钢铁工业的烧结机排放的烟气中有大量的二恶英) /p p   2) 而后用袋式除尘器将处理用的大量脱污染物的粉末和少量的颗粒物一并过滤回收,多次循环使用(平均约100次左右)。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667826241238.jpg" width=" 567" height=" 179" / /center p br/ /p p   德国现在普遍采用这种(半)干法综合烟气处理工艺。即便是从前采用给湿法脱硫打补丁的燃煤电厂,也逐步地改为(半)干法综合烟气处理工艺。 /p p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667836914688.jpg" width=" 597" height=" 403" style=" width: 597px height: 403px " / /center p    /p center img alt=" asd" src=" http://img.caixin.com/2017-07-10/1499667844142957.jpg" width=" 460" height=" 496" style=" width: 460px height: 496px " / /center p   上面两张图片是在德国凯泽斯劳滕市中心的热电联供站的屋顶上拍摄的,热电联供站既有燃煤锅炉,也有燃气锅炉。其中燃煤锅炉满足基础热力负荷,而燃气锅炉提供峰值热力负荷。上面两张照片上的两个烟囱当时都在排放燃煤烟气,不过这些燃烧烟气经过了APS半干法烟气综合烟气系统的处理,颗粒物排放浓度当时只有1毫克/立方米左右,所以用肉眼根本看不到排放的烟气。2016年,凯泽斯劳滕市的年均大气PM2.5浓度为13微克/立方米。 /p p   燃煤烟气采用先进的半干法烟气综合烟气系统,完全可以达到中国燃煤烟气超净排放的标准,即:颗粒物& lt 5~10毫克/立方米烟气,SOx& lt 35毫克/立方米烟气 NOx& lt 50毫克/立方米烟气。如果烟气中有二恶英,则烟气中的二恶英浓度甚至可以降低到0.05纳克/立方米以下(在实际项目中经常可以降到0.001纳克/立方米以下),而欧盟标准的上限是0.1纳克/立方米烟气。 /p p   湿法脱硫这个新的巨大的大气污染源被发现是坏事也是好事。坏事是知道很多的钱白花了,污染却没减多少,甚至有所增加,很遗憾。好事是知道了大气污染的主要症结在哪里,知道了如何去治理 特别是知道了,大气质量会因此治理措施(在中国北方+散煤治理措施)得到根本性的改善。 /p p   这一污染并不难治,采用先进的(半)干法技术综合烟气处理技术,立马就能把这个问题解决。尽管有一些成本,但是可以接受的成本,因为这种处理技术,如果要达到同样的环保排放标准,成本比采用湿法脱硫技术的烟气处理工艺还要低。如果现在就开始治理,冬奥会之前,把京津冀地区这个主要污染源基本治理好,再加上治理好散煤污染(在下一篇中详述),让大气质量上一个大台阶,把京津冀所有市县的年均PM2.5的浓度降到35微克/立方米一下,应该不难实现。 /p p   最后我要强调的是,这个主要大气污染源的发现,并非我一个人或者我们这个中德专家团队所为,而是一批工作在治霾第一线的专家和环保官员们(当然也包括我和我们这个团队)经过精心观察发现的,并逐步得到越来越清晰的分析结果。我只不过把我们分别所做的工作用这篇文章做一个简单的综述。在此,本文作者对所有为此做出了贡献的人(很遗憾,他们之中的很多人现在不愿意公布他们的姓名和单位——也许要待到治霾成功那一天他们才愿意公布)表示衷心的敬意和感谢! /p p strong style=" color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 作者为中德可再生能源合作中心(中国可再生能源学会与德国能源署合办)执行主任 /strong strong style=" color: rgb(51, 51, 51) font-family: 宋体 text-align: justify white-space: normal background-color: rgb(255, 255, 255) " 陶光远 /strong /p
  • 把PM2.5聚成"团"捕捉 华科大破解工业烟尘超低排放难题
    p   8月9日,华中科技大学煤燃烧国家重点实验室教授张军营收到捷报:他研发的“PM2.5团聚强化除尘技术”,成功运用于江西国电丰城发电有限公司的4号机组,并于上月底通过江西省环保厅超低排放验收。 /p p   监测数据显示,该技术在90%、75%、50%三种发电负荷下,经过常用煤质、设计煤质、近两年最差煤质等3种不同煤质条件,连续5天烟尘排放浓度均在每立方米5毫克以下,远低于国家10毫克/立方米烟尘超低排放标准,且无二次污染。 /p p   发电厂、钢铁厂、水泥厂和玻璃厂等工业排放废气中的颗粒物,是雾霾的重要来源之一。长期以来,工业废气除尘主要靠物理方法。从传统的静电除尘器、袋式除尘器,到目前的低低温静电除尘器,都是靠物理吸附和过滤来脱尘。其一大缺陷,就是对超细微颗粒(PM2.5)难以捕获。 /p p   张军营突发奇想:米粒太小,容易漏掉。一旦结成饭团,就容易收集和处理。同理,如果把PM2.5聚成“饭团”,不就容易“捕捉”了? /p p   从2001年起,他开始潜心钻研:跳出现有物理除尘法,率先引入化学思维,研发出“PM2.5团聚强化除尘技术”。该技术原理是,通过特殊的团聚剂,让PM2.5互相牵粘,变成“大胖子”落网。 /p p   2016年,国电丰城发电有限公司应用该技术,一台30万千瓦发电机组的除尘超低排放改造,使用化学团聚技术约需600万元,为市面现有主流技术的一半。设备占地不到100平方米,安装灵活不需电厂停工。 /p p   本月,新疆神火煤电有限公司4台350万千瓦机组将进行烟气超低排放除尘改造。另有20多台大型发电机组、水泥窑炉改造项目,已进入洽谈对接。 /p
  • 众瑞仪器发布ZR-3260型自动烟尘烟气综合测试仪(B款,小型化)新品
    产品简介ZR-3260型自动烟尘烟气综合测试仪(B款,小型化),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。适用范围:各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定;该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样;各类除尘设备效率的测定;烟道排气参数(动压、静压、温度、流速、标干流量等)的测定;烟气含氧量、空气过剩系数的测定;干、湿球温度的测定;烟气连续测量仪器准确度的评估和校准;各种锅炉、工业炉窑的SO2、NOx排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定(可选);其它可应用的场合。执行标准HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T 48-1999 烟尘采样器技术条件HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法JJG 968-2002 烟气分析仪JJG 680-2007 烟尘采样器JJG 518-1998 皮托管检定规程Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法工作条件工作电源: 交流220V±10%,50Hz;环境温度: (-20~ 45 )℃;环境湿度: 0% ~95%;适用环境: 非防爆场合;电源接地线应良好接地;野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施。 技术特点仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;烟气测试流量控制满足HJ/T 46 的要求;获得中国环境保护产品认证证书 经过生态环境部环境监测仪器质量监督检验中心检测认证检测合格(报告编号:质(认)字NO.2018-154) 具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利;板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;支持手机APP无线操控,支持蓝牙通信功能和外置蓝牙高速打印机;配备高负载低噪声大流量抽气泵,流量可达80L/min;准确的电子流量计控制,实时监测计温,计压,自动调节流量;交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电,采用220V供电、充电,具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;具备DC24V输入和DC24V输出接口,可外接电源使用,亦可为外部附件提供电源。具有大于AC250V过压保护功能,避免因接入电压过高而造成仪器损坏。加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。可选配无线通讯和定位,支持手机APP操作。预留2种湿度测量方法(阻容法和干湿球法)的接口。选配部分可扩展β射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量;可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取;烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度;创新点:1、用于固定污染源中颗粒物(含超低浓度)的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定; 2、该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样; 3、可扩展β 射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量; 4、可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取; 5、烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度; ZR-3260型自动烟尘烟气综合测试仪(B款,小型化)
  • 青岛众瑞ZR-3260系列烟尘烟气测试仪全解析
    本期为大家介绍众瑞的3260系列—烟尘烟气综合测试仪。综合众瑞ZR-3260系列烟尘烟气综合测试仪是青岛众瑞集中科研力量,自主研发的一系列烟尘烟气测试仪器,主要用于固定污染源中颗粒物的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量以及折算浓度、排放总量的计算等。
  • 众瑞仪器发布ZR-3260D型低浓度自动烟尘烟气综合测试仪新品
    ZR-3260D型低浓度自动烟尘烟气综合测试仪(A款,小型化)产品简介:ZR-3260D型低浓度自动烟尘烟气综合测试仪(A款,小型化),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。适用范围:各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定;该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样;各类除尘设备效率的测定;烟道排气参数(动压、静压、温度、流速、标干流量等)的测定;烟气含氧量、空气过剩系数的测定;干、湿球温度的测定;烟气连续测量仪器准确度的评估和校准;各种锅炉、工业炉窑的SO2、NOx排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定(可选);其它可应用的场合。工作条件工作电源: 交流220V±10%,50Hz;环境温度: (-20~ 45 )℃;环境湿度: 0% ~95%;适用环境: 非防爆场合;电源接地线应良好接地;野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施。 执行标准HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法HJ/T 48-1999 烟尘采样器技术条件HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法JJG 968-2002 烟气分析仪JJG 680-2007 烟尘采样器JJG 518-1998 皮托管检定规程Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法 技术特点仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;烟气测试流量控制满足HJ/T 46 的要求;具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利;板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;支持手机APP无线操控,支持蓝牙通信功能和外置蓝牙高速打印机;准确电子流量计控制,实时监测计温,计压,自动调节流量;微电脑控制等速跟踪采样,专有调节方式,响应时间快;具备操作导航功能,引导用户快速完成整个采样过程;皮托管正负取压接嘴与连接管路进行颜色标识区分,便于操作;具备烟尘系统气密性和整机故障自检与报警功能,方便用户使用及维护;具有气路缓冲功能,实现真正防倒吸,保证采样数据的准确性;主机可视化优质尘滤芯、逃逸水陷阱一体化设计,有效滤尘且便于更换,进一步除水,保护气路及采样泵;具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥3小时 30L/min,-8kPa负载时≥2小时。可扩展备用电池输入。;具备DC24V输入和DC24V输出接口,可外接电源使用,亦可为外部附件提供电源。具有大于AC250V过压保护功能,避免因接入电压过高而造成仪器损坏。加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。可选配无线通讯和定位,支持手机APP操作。预留2种湿度测量方法(阻容法和干湿球法)的接口。选配部分可扩展β射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量;可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取;烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度;创新点:1、仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正 2、便携性好,外形尺寸:(长275× 宽170× 高265)mm,重量6.8kg(含电池),相较于众瑞上代产品体积和重量减少40%以上。 3、获得国家计量器具型式批准证书CPA;获得中国环境保护产品认证证书(编号:CCAEPI-EP-2018-640) 经过生态环境部环境监测仪器质量监督检验中心检测认证检测合格(报告编号:质(认)字NO.2018-154) 4、同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况; 5、内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利高效; 6、板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储; 7、烟气传感器类型、数量、维护日期动态管理,气体传感器自动配置,同时传感器供电无需更换电池,自动充电,增加传感器电池电量报警,提示用户注意,确保传感器处于安全状态; 8、交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电,采用220V供电、充电,具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样; 9、标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥ 3小时 30L/min,-8kPa负载时≥ 2小时。可扩展备用电池输入。 ZR-3260D型低浓度自动烟尘烟气综合测试仪
  • 众瑞仪器发布ZR-3260D型低浓度自动烟尘烟气综合测试仪新品
    产品简介ZR-3260D型低浓度自动烟尘烟气综合测试仪(A款,小型化),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。适用范围:各种锅炉、工业炉窑的烟尘排放浓度、折算浓度和排放总量的测定;该仪器配合油烟采样管,可以进行油烟采样;选配沥青烟采样管,可以进行沥青烟采样;各类除尘设备效率的测定;烟道排气参数(动压、静压、温度、流速、标干流量等)的测定;烟气含氧量、空气过剩系数的测定;干、湿球温度的测定;烟气连续测量仪器准确度的评估和校准;各种锅炉、工业炉窑的SO2、NOx排放浓度、折算浓度和排放总量的测定及各类脱硫设备效率的测定(可选);其它可应用的场合。工作条件工作电源: 交流220V±10%,50Hz;环境温度: (-20~ 45 )℃;环境湿度: 0% ~95%;适用环境: 非防爆场合;电源接地线应良好接地;野外工作时,应有防雨、雪、尘以及日光爆晒等侵袭的措施。 执行标准HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法HJ/T 48-1999 烟尘采样器技术条件HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法JJG 968-2002 烟气分析仪JJG 680-2007 烟尘采样器JJG 518-1998 皮托管检定规程Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法 技术特点仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;烟气测试流量控制满足HJ/T 46 的要求;具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利;板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;支持手机APP无线操控,支持蓝牙通信功能和外置蓝牙高速打印机;准确电子流量计控制,实时监测计温,计压,自动调节流量;微电脑控制等速跟踪采样,专有调节方式,响应时间快;具备操作导航功能,引导用户快速完成整个采样过程;皮托管正负取压接嘴与连接管路进行颜色标识区分,便于操作;具备烟尘系统气密性和整机故障自检与报警功能,方便用户使用及维护;具有气路缓冲功能,实现真正防倒吸,保证采样数据的准确性;主机可视化优质尘滤芯、逃逸水陷阱一体化设计,有效滤尘且便于更换,进一步除水,保护气路及采样泵;具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥3小时 30L/min,-8kPa负载时≥2小时。可扩展备用电池输入。;具备DC24V输入和DC24V输出接口,可外接电源使用,亦可为外部附件提供电源。具有大于AC250V过压保护功能,避免因接入电压过高而造成仪器损坏。加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。可选配无线通讯和定位,支持手机APP操作。预留2种湿度测量方法(阻容法和干湿球法)的接口。选配部分可扩展β射线吸收法和微振荡天平法测量的烟尘直读模块,以及可扩展直读称量单元,实现烟尘浓度现场自动测量;可配备阻容法含湿量测量仪,代替干湿球法独立测量湿度,无需外部动力抽取;烟气预处理器,可有效进行脱水、除尘, 增强烟气成分检测准确度;创新点:1、仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正 2、便携性好,外形尺寸:(长275× 宽170× 高265)mm,重量6.8kg(含电池),相较于众瑞上代产品体积和重量减少40%以上。 3、获得国家计量器具型式批准证书CPA;获得中国环境保护产品认证证书(编号:CCAEPI-EP-2018-640) 经过生态环境部环境监测仪器质量监督检验中心检测认证检测合格(报告编号:质(认)字NO.2018-154) 4、同时支持触控和按键操作,5.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况; 5、内置自动排水泵,实现烟尘、烟气采样冷凝水自动排出功能,更适合高湿度工况,操作便利高效; 6、板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储; 7、烟气传感器类型、数量、维护日期动态管理,气体传感器自动配置,同时传感器供电无需更换电池,自动充电,增加传感器电池电量报警,提示用户注意,确保传感器处于安全状态; 8、交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电,采用220V供电、充电,具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样; 9、标配电池25.9V 6AH,仪器功耗更低,20L/min,-8kPa负载时≥ 3小时 30L/min,-8kPa负载时≥ 2小时。可扩展备用电池输入。 ZR-3260D型低浓度自动烟尘烟气综合测试仪
  • 众瑞仪器发布ZR-3260型自动烟尘烟气综合测试仪 (C款,正压)新品
    ZR-3260型自动烟尘烟气综合测试仪(C款,正压)产品简介:ZR-3260型自动烟尘烟气综合测试仪(C款,正压),用于固定污染源中颗粒物(含超低浓度) 的采集、SO2和NOX等有毒有害气体的测量、除尘脱硫效率的测定;烟道温度、动压、静压、含湿量测量及折算浓度、排放总量的计算等。执行标准l HJ 57-2017 固定污染源废气 二氧化硫的测定定电位电解法l GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物采样方法l HJ/T 48-1999 烟尘采样器技术条件l HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法l JJG 968-2002 烟气分析仪l JJG 680-2007 烟尘采样器l JJG 518-1998 皮托管检定规程l Q/0212 ZRB014-2015 自动烟尘烟气综合测试仪l HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法技术特点l 仪器具有CO对SO2的自动修正功能。修正功能开关可选,修正系数可通过干扰试验测定后输入修改。选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正;l 适用于烟道正压环境,主机烟尘无动力源采样;l 烟气测试流量控制满足HJ/T 46 的要求;l 采样管与皮托管材质为310S耐温耐腐蚀材质;l 采用刚玉滤筒采集颗粒物,适用于800℃以下高温工况;l 满足烟道压力0.3MPa\800℃的采样工作环境要求;l 双重水冷却烟气,确保烟气进入主机之前降温到仪器可承受的温度;l 具备烟道信息数据库,自动记忆烟道工况配置信息,支持汉字输入,可快速提取历史数据;l 同时支持触控和按键操作,7.0寸宽温高亮多角度翻转彩屏,耐高寒,视域广,汉字图形化显示,键盘采用防尘防水工业精密设计,适用于恶劣工况;l 板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储;l 支持外置蓝牙高速打印机;l 精确电子流量计控制,实时监测计温,计压,自动调节流量;l 微电脑控制等速跟踪采样,专有调节方式,响应时间快;l 烟气传感器类型、数量、维护日期动态管理,气体传感器自动配置;l 具备操作导航功能,引导用户快速完成整个采样过程;l 气嘴接口侧向布局,防雨防尘效果好;l 交直流电压供电,支持外接电源箱供电或AC/DC桌面电源适配器供电;l 具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样;l 内置锂电池,满电状态下可正常工作不低于3小时;l 加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。创新点:仪器具有CO对SO2的自动修正功能,选择修正功能后仪器自动通过测得CO的浓度对所测SO2进行修正; 适用于烟道正压环境,主机烟尘无动力源采样; 烟气测试流量控制满足HJ/T 46 的要求; 采样管与皮托管材质为310S耐温耐腐蚀材质; 采用刚玉滤筒采集颗粒物,适用于800℃以下高温工况; 满足烟道压力0.3MPa800℃的采样工作环境要求; 双重水冷却烟气,确保烟气进入主机之前降温到仪器可承受的温度; 板载大容量存储器,采样数据实现无限存储,支持SD卡、U盘等大容量存储介质,实现文件无限量存储; 精确电子流量计控制,实时监测计温,计压,自动调节流量; 微电脑控制等速跟踪采样,专有调节方式,响应时间快; 具有断电记忆功能,采样过程中,突然断电,自动保存工作数据,来电提示恢复继续采样; 加强过滤除湿以及静电、摔碰等的防护,整机更结实耐用。 ZR-3260型自动烟尘烟气综合测试仪 (C款,正压)
  • 脱硝除尘电价大调整 脱硝设备将爆发性增长
    脱硝电价上涨,新增除尘电价标准   国家发改委近日发出通知,决定自2013年9月25日起提高可再生能源电价附加征收标准,将燃煤发电企业脱硝电价补偿标准由每千瓦时0.8分钱提高至1分钱 对燃煤发电企业除尘成本予以适当补偿,除尘电价补偿标准为每千瓦时0.2分钱。这一环保电价政策的大调整,对鼓励燃煤发电企业进行脱硝、除尘改造,落实《大气污染防治行动》有着较大的影响,脱硝设施及脱硫烟气监测设备、除尘设施及粉尘监测设备市场也将被带动,有望重现脱硫市场的快速增长。   二氧化硫、氮氧化物、烟粉尘、挥发性有机物是影响空气中PM2.5浓度的主要污染物,据《2011年中国环境状况公报》公布的数据,2011年我国二氧化硫、氮氧化物、烟粉尘、挥发性有机物排放量分别为2218万吨、2404万吨、1500万吨和3000万吨,而火电行业的排放量占总排放量的近50%。   相关政策的推进   因此,加快火电行业的脱硫脱硝除尘改造,减少污染排放成为改善空气质量的重要措施。国务院《节能减排&ldquo 十二五&rdquo 规划》提出要推进电力行业脱硫脱硝,新建燃煤机组全面实施脱硫脱硝,尚未安装脱硫设施的现役燃煤机组要配套建设烟气脱硫设施,不能稳定达标排放的燃煤机组要实施脱硫改造。对单机容量30万千瓦及以上的燃煤机组、东部地区和其他省会城市单机容量20万千瓦及以上的燃煤机组,均要实行脱硝改造,综合脱硝效率达到75%以上。   国务院《大气污染防治行动计划》提出要加快重点行业脱硫、脱硝、除尘改造工程建设。所有燃煤电厂、钢铁企业的烧结机和球团生产设备、石油炼制企业的催化裂化装置、有色金属冶炼企业都要安装脱硫设施,每小时20蒸吨及以上的燃煤锅炉要实施脱硫。除循环流化床锅炉以外的燃煤机组均应安装脱硝设施,新型干法水泥窑要实施低氮燃烧技术改造并安装脱硝设施。燃煤锅炉和工业窑炉现有除尘设施要实施升级改造。   或可重现脱硫市场的快速增长   但脱硝改造及运行脱硝设备均会增加企业成本,先前国家虽有补贴,但不能弥补企业在脱硝改造和运行时增加的费用。据悉,一台30万千瓦的机组,在扣除补贴后,一年需要消化的脱硝运行成本仍然高达千万元。补贴电价的上涨将会对脱硝设备的安装改造起到比较直接的推动作用。   &ldquo 十一五&rdquo 及&ldquo 十二五&rdquo 期间我国火电行业的脱硫改造过程中,受脱硫电价政策的影响较为明显,在未实施脱硫电价政策之前,截至2006年底,全国脱硫机组装机容量仅1.06亿千瓦,占全国火电机组总装机容量的22%。随着脱硫电价政策的出台和污染减排考核机制的不断强化与完善,到2010年底,全国脱硫机组装机容量增至5.78亿千瓦,占全国火电机组总装机容量的83%。&ldquo 十二五&rdquo 以来,截至2012年底,全国脱硫机组装机容量7.18亿千瓦,占燃煤装机总容量的比例高达92%。在此期间,受益于脱硫设施及脱硫烟气监测系统的市场增长,雪迪龙、HORIBA等企业此部分业务出现了快速的增长。   脱硝电价及除尘电价的上涨,预计将使脱硝和除尘机组装机容量有着更快的增长,据统计,目前国内火电行业脱硝机组装机容量为27%,也有着较大的市场空间。《京津冀及周边地区落实大气污染防治行动计划实施细则》(以下简称&ldquo 实施细则&rdquo )中,确定了到2015年底,京津冀及周边地区新建和改造燃煤机组脱硫装机容量5970万千瓦,新建和改造钢铁烧结机脱硫1.6万平方米 新建燃煤电厂脱硝装机容量1.1亿千瓦,而全国新建燃煤电厂脱硝装机容量据专家估计将达4.2亿千瓦。   除火电行业外,非电力行业也将成为脱硝相关设备增长点。目前水泥、钢铁等行业还很少安装脱硝设施,随着国家各项环保政策的实施,也会成为脱硝设备的重要市场。仍以&ldquo 实施细则&rdquo 为例,目标是到2015年底,新建或改造脱硝水泥熟料产能1.1 亿吨 电力、水泥、钢铁等行业完成除尘升级改造的装机容量或产能规模分别不得低于2574万千瓦、3325万吨、6358万吨。   声明:此为仪器信息网研究中心的研究信息,未经仪器信息网书面形式的转载许可,谢绝转载。仪器信息网保留对非法转载者的侵权责任追讨权。如需进一步信息,请联系刘先生,电话:010-51654017-8032。   撰稿:魏昕
  • 雪迪龙受邀参加“高温袋式除尘技术国际论坛”交流火电厂超低排放监测新技术
    2016年10月11-12日,为推进火电厂烟气袋式除尘技术的产业发展,由工信部消费品司指导,中国产业用纺织品行业协会、中国纺织科学研究院主办的高温袋式除尘技术国际论坛在上海顺利举办,北京雪迪龙科技股份有限公司受邀参加。会议现场 国际能源署清洁碳中心、美国、日本、印度以及国内相关部委、科研单位的专家学者及代表上百人出席本次专题论坛。雪迪龙公司市场部马志坚做“New Technology and Application Progress on Monitoring ”Ultra-low Emission” Flue Gas from Stationary Sources”专题英文报告,主要介绍中国目前全面实施燃煤电厂超低排放和节能改造计划相关最新政策动态,以及污染源烟气“超低排放”监测最新技术及相关应用进展;详细介绍冷干法抽取式、高温红外法、稀释抽取式等主流方法的低浓度气体测量方案与技术,低浓度粉尘监测技术及其应用;同时,介绍汞监测主要方法以及烟气汞监测的新技术及仪器应用进展情况;并与参会的国内外专家进行现场交流。
  • 【干货】火电厂超低排放烟气在线监测技术探讨
    p   火电厂实施超低排放改造后,对污染物在线监测的精确性提出了更高要求。本文通过对比几种应用于二氧化硫、氮氧化物和烟尘的典型监测技术,提出了适用于超低排放改造的 a title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S02005-T000-1-1-1.html" strong 烟气 /strong /a 在线监测系统优化配置方案,为火电厂超低排放改造中烟气在线监测系统的选型提供参考。 /p p   1引言 /p p   自《煤电节能减排升级与改造行动计划(2014-2020年)》(发改能源[2014]2093号)发布后,国家出台了一系列文件、措施和鼓励性政策支持火电厂实施超低排放改造,并在东部地区进行了试点。经过试点后,“十三五”期间将在全国范围内实施火电厂超低排放改造,改造后烟气排放限值执行标准为烟尘 10mg/m3、二氧化硫35 mg/m3、氮氧化物50 mg/m3。 /p p   火电厂实施超低排放改造后,烟气污染物浓度大幅降低,烟气水分含量增大,烟气特性发生了较大改变,对污染物在线监测的精确性提出了更高要求。因此,在现阶段总结超低排放试点电厂烟气在线监测系统(CEMS)的运行情况,分析对比各种烟气监测技术的性能特点,对于“十三五”火电厂超低排放改造中CEMS的选型具有积极作用。 /p p   2 火电厂烟气在线监测技术现状 /p p   2.1 非分散红外/紫外吸收法SO2和NOX监测技术 /p p   “十一五”和“十二五”期间,国内在脱硫和脱硝上应用最为广泛的是非分散红外吸收法监测技术,有少部分紫外吸收技术。这类技术是基于朗伯-比尔 (Lambert-Beer)吸收定律的光谱吸收技术,其基本分析原理是:当光通过待测气体时,气体分子会吸收特定波长的光,可通过测定光被介质吸收的辐射强度计算出气体浓度。即: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/ba5ac4a7-c3d8-4993-9dac-f4185deda181.jpg" title=" 11.jpg" / /p p   式中:I—光被介质吸收后的辐射强度 /p p   I0—光通过介质前的辐射强度 /p p   K—待分析组分对辐射波段的吸收系数 /p p   C—待分析组分的气体浓度 /p p   L—气室长度(待测气体层的厚度)。 /p p   2.2 紫外荧光法SO2监测技术 /p p   紫外荧光法基于分子发光技术,在一定条件下,SO2气体分子吸收波长为190~230nm紫外线能量成为激发态分子,激发态的SO2分子不稳定,瞬间返回基态,发射出波长为330 nm的特征荧光。在浓度较低时,特征荧光的强度与SO2浓度成线性关系,即可通过检测荧光强度计算SO2浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/f0f3e27d-62a0-4250-ba79-e190032bf99c.jpg" title=" 22.jpg" / /p p   2.3 化学发光法NOX监测技术 /p p   化学发光法是在一定条件下,NO与过量的O3发生反应,产生激发态的NO2。激发态NO2返回基态时,会产生波长为900nm的近红外荧光。在浓度较低情况下,NO与O3充分反应发出的光强度与NO浓度成线性关系,即可通过检测化学发光强度计算NO浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/79153f86-4b97-4e01-a90b-e0dcc5971bfa.jpg" title=" 33.jpg" / /p p   2.4 烟尘监测技术 /p p   2.4.1 光透射法烟尘监测技术 /p p   光透射法技术基于朗伯-比尔定律,即光穿过含尘烟气时透过率与烟尘浓度呈指数下降关系。在实际应用中有单光程和双光程两种类型的仪器,光透射法的准确性受颗粒物粒径分布影响较大,且灵敏度不高,一般用于烟尘浓度高(大于300mg/m3)、烟道直径大且烟气湿度低的工况。 /p p   2.4.2 光散射法烟尘监测技术 /p p   光照射在烟尘上时会被烟尘吸收和散射,散射光偏离光入射的路径,散射光强度与烟尘粒径和入射光波长有关,光散射法就是采用测量散射光强度来监测烟尘浓度的。在实际应用中有前向散射、后向散射和边向散射三种类型。该技术灵敏度高,能够测量低至0.1mg/m3的烟尘浓度,最低量程可达到0-5mg/m3,适用于烟尘浓度低、烟道直径小的情况。但该技术同样容易受水汽影响,不适宜烟气湿度高的工况。 /p p   2.4.3电荷法烟尘监测技术 /p p   所有烟尘颗粒均带有电荷,颗粒物接触或摩擦时将产生电荷交换,电荷法就是用电绝缘传感探针测量探头和附近气流或直接与探头碰撞的颗粒物之间的电荷交换来测量烟尘浓度的。该技术除受烟尘粒径变化、组分变化和烟气湿度影响外,还受烟气流速影响,主要用于布袋除尘的泄漏检测和报警等定性测量,少在CEMS中应用 。 /p p   2.4.4 贝塔射线吸收法烟尘监测技术 /p p   & amp #946 射线具有一定穿透力,当它穿过一定厚度的吸收物质时,其强度随吸收物质厚度的增加逐渐减弱,通过测量穿过物质前后的& amp #946 射线强度,即可得出吸收物质的浓度。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/70107fe8-94e7-475f-826f-0bc4e290f1ef.jpg" title=" 44.jpg" / /p p   式中:I—通过吸收物质后的射线强度 /p p   I0—未通过吸收物质的射线强度 /p p   & amp #956 —待测吸收物质对射线的质量吸收系数 /p p   x—待测吸收物质的质量浓度。 /p p   该技术基于抽取式测量方式,不受烟尘粒径分布、折射系数、组分变化、烟气湿度等影响,可用于烟尘浓度低、烟气湿度大的工况。但抽取式测量属于点测量,不适合烟气流速变化大、烟尘浓度分层的场所。 /p p   2.5 烟气预处理技术 /p p   基于非分散红外/紫外吸收法技术的CEMS系统多数采用直抽法取样,为防止系统堵塞和水分对测量的干扰,需要对烟气进行除尘和除水处理。预处理装置的效果直接影响CMES的整体性能,通常以处理后的烟气露点作为重要指标来判定预处理的性能。 /p p   在实际应用中,“过滤+冷凝”的预处理方式较为广泛。其中烟气过滤除尘技术较为成熟,常用的有金属滤芯、陶瓷烧结滤芯和膜式过滤器。在采样探头处初步过滤,样气进分析仪前深度过滤,至少过滤掉0.5-1微克粒径以上的颗粒物。 /p p   烟气冷凝除水技术较为常用的有压缩机冷凝和半导体冷凝,可将烟气露点干燥至5℃。新兴技术中有高分子膜式渗透除水技术,采用高分子聚合亲水材料,具有高选择性除水性能,不改变烟气中SO2和NOX污染物因子成份,可将烟气露点干燥至-5℃以下。 /p p   3 几种烟气在线监测技术的性能比较 /p p   国内火电厂烟气在线监测产品众多,本文结合各种产品的运行情况,参考了拥有该种技术典型品牌产品的说明书,对超低排放较为关注的量程、精度等重要指标参数进行对比。其中最小量程指的是最小物理量程,而非软件迁移的量程。 /p p   3.1 SO2和NOX监测技术的比较 /p p   几种主要SO2测量技术的简单参数对比表见表1。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/0a6a0a06-ef1a-4c64-9c06-8ef7296c45d7.jpg" title=" 55.jpg" / /p p   几种主要NOX测量技术的简单参数对比表见表2。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/9a723c58-4207-4427-9a0b-c88d4ca6bf09.jpg" title=" 66.jpg" / /p p   根据《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测系统技术要求及检测方法》(HJ/T76),按超低排放限值计算,SO2和NOX量程应不大于 175mg/m3和250mg/m3。 从表1和表2可以看出,传统非分散红外吸收法分析仪SO2和NOX的最小量程分别为286mg/m3和308mg/m3,不能满足超低排放污染物在线监测的要求。 /p p   非分散紫外吸收/差分法分析仪的最小量程满足HI/T76标准要求,但CEMS系统的整体性能不但与分析仪本身性能有关,还受烟气预处理系统性能的影响。预处理部分的比较将在后文专题论述。 /p p   从表1和表2还可看出,紫外荧光法和化学发光法测SO2和NOX的最小量程可达到0.1mg/m3,检出下限极低。紫外荧光法和化学发光法是分子发光气体分析技术,属于ppb级的气体分析技术。该种技术以分子发光作为检测手段,具有灵敏度高、选择性好、试样量少、操作简便等优点,已在生物医学、药学以及环境科学等方面广泛应用,也是EPA(美国环境保护署)认证中明确推荐的SO2和NOX浓度监测技术。该技术采用抽取稀释法(常用稀释比为100:1)对烟气进行预处理,避免了烟气水分、烟尘对测量的影响,在超低排放烟气监测上具有较好的适应性。 /p p   3.2 烟尘监测技术的比较 /p p   几种主要烟尘测量技术的简单对比表见表3。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/f0168a55-67d8-413e-84b8-0eb3052375e4.jpg" title=" 77.jpg" / /p p   在火电厂超低排放改造中,烟尘浓度一般要达到10mg/m3以下。尤其以湿式除尘改造为主要技术路线的烟气中水分含量较大,给烟尘的准确监测带来挑战。在实际应用中一般是将烟气等速抽取,经升温加热使水分雾化不出现液滴,再通过光散射等低浓度测量方法进行测量 另一种是将烟气等速抽取,将加热干燥的空气与其按一定比例混合稀释,从而降低烟气中的水分含量,再通过光散射等低浓度测量方法进行测量,结合混合气体的稀释比计算出烟尘浓度。这种方式采用低浓度测量原理,优化了烟气采样和预处理,有效解决目前超低排放改造中高湿低浓度烟尘在线监测的问题,在湿式除尘后已有广泛应用。 /p p   3.3 烟气预处理技术的比较 /p p   火电厂实施超低放改造后,烟气污染物浓度大幅降低,在线监测的适应性取决于系统的检出下限,而CEMS 的检出下限受分析仪本体和烟气预处理装置两部分制约。在实际应用的烟气预处理中,直接抽取+冷干法占70%,均采用冷凝除水技术。该技术在冷凝过程中,冷凝水会吸收携带部分SO2和NOX,以致在超低浓度工况下的监测数据严重失真甚至无检测数据,不能满足HJ/T76标准的技术要求。表4为不同水分含量下不同预处理方式对SO2测量影响的实验对比表。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/2a5c2e14-a1a8-4109-8997-00c3fa7c0203.jpg" title=" 88.jpg" / /p p   注:标气SO2浓度500ppm,样气温度120℃,测量数值单位ppm。 /p p   从表4可看出,水分含量越高对测量结果影响越大,其中渗透膜除水技术对SO2测量的影响远小于其它除水技术,其除水效果优于其他技术。也可由此而知,在直抽法采用紫外吸收/差分法分析仪时,应同时选用除水效果更好的烟气预处理技术,否则监测数据可能严重失真甚至检测不出数据。 /p p   在稀释法取样中,预处理侧重于对稀释气体的处理,通常配备专门的压缩空气净化装置或者发生装置,经精密过滤和干燥,可将露点降至-40℃,不需要加热采样管线。在CEMS中,稀释抽取法通常与紫外荧光和化学发光技术配套使用。 /p p   4 结论与建议 /p p   (1)超低排放改造实施后,进出口烟气特性差异较大,烟气监测对CEMS的系统配置提出了更高、更具体的要求,建议在可研或技术规范书里明确各测点不同污染物对烟气取样方式、预处理、分析仪的测量原理、量程、检出下限等主要参数和选型的具体要求。 /p p   (2)在超低排放改造中,脱硫脱硝入口CEMS仍可采用常规的预处理装置和非分散红外技术测量SO2和NOX浓度,除尘器前可采用光透射法测量烟尘浓度。 /p p   (3)在脱硫脱硝出口特别是湿式除尘后,SO2和NOX的测量优先采用紫外荧光法和化学发光法技术 若采用直抽法非分散紫外吸收/差分法分析仪时,应同时配备除水性能更优越的膜渗透烟气预处理技术。 /p p   (4)在脱硫出口特别是湿式除尘后,优先采用抽取高温光散射法测量烟尘浓度。 /p
  • 《京津冀及周边地区重点工业企业清洁生产水平提升计划》印发
    工业和信息化部关于印发《京津冀及周边地区重点工业企业清洁生产水平提升计划》的通知   工信部节[2014]4号   北京市、天津市、河北省、山西省、内蒙古自治区、山东省工业和信息化主管部门,有关中央企业,有关行业协会:   为贯彻落实《国务院关于印发大气污染防治行动计划的通知》(国发〔2013〕37号),加强工业领域大气污染防治工作,促进区域大气环境质量改善,我们制定了《京津冀及周边地区重点工业企业清洁生产水平提升计划》。现印发给你们,请认真贯彻执行。   工业和信息化部   2014年1月3日   京津冀及周边地区重点工业企业清洁生产水平提升计划   为贯彻落实国务院《大气污染防治行动计划》(以下简称《大气十条》),加快推进京津冀及周边地区大气污染综合防治工作,促进区域大气环境质量持续改善,根据《京津冀及周边地区落实大气污染防治行动计划实施细则》,制定本提升计划,实施期限为2013年至2017年。   一、区域清洁生产水平提升的必要性   京津冀及周边地区(包括北京市、天津市、河北省、山西省、内蒙古自治区、山东省)是我国经济发展重点区域,也是污染物排放高度集中的区域之一。据测算,2011年京津冀及周边地区排放的主要大气污染物二氧化硫为638万吨、氮氧化物685万吨、烟(粉)尘421万吨,均占全国相应总排放量的30%左右。其中,工业排放二氧化硫577万吨、氮氧化物502万吨、烟(粉)尘354万吨,分别占区域污染物排放总量的90%、73%和84%,是京津冀及周边地区大气污染的重要源头 区域内钢铁、水泥、有色金属等重点工业行业排放的二氧化硫、氮氧化物和烟(粉)尘分别占工业排放的24%、22%和49%,是大气污染物排放的重点行业。   近年来工业企业推行清洁生产,有效减少了大气污染物的产生量,但仍有大批先进适用的清洁生产技术和环保装备未得到全面推广应用大气污染物排放量大的状况未得到根本转变。认真贯彻落实《大气十条》“对钢铁、水泥、化工、石化、有色金属冶炼等重点行业进行清洁生产审核,针对节能减排关键领域和薄弱环节,采用先进实用技术、工艺和设备,实施清洁生产技术改造”的要求,编制并实施《京津冀及周边地区重点工业企业清洁生产水平提升计划》,对实现到2017年重点行业排污强度比2012年下降30%以上目标,加强京津冀及周边地区大气污染防治工作,从源头减少大气污染物的产生量,降低末端排放量,全面提升区域内工业企业清洁生产水平,增强区域工业可持续发展能力具有重要意义。   二、基本思路和主要目标   (一)基本思路   坚持源头减量、全过程控制原则,以削减二氧化硫、氮氧化物、烟(粉)尘和挥发性有机物产生量和控制排放量为目标,充分发挥企业主体作用,加强政策引导和支持,推广采用先进、成熟、适用的清洁生产技术和装备,加快推进重点行业和关键领域工业企业实施清洁生产技术改造,促进技术升级与产业结构调整相结合,全面提升京津冀及周边地区工业企业清洁生产水平,确保完成行业排污强度下降目标,促进区域环境大气质量持续改善。   (二)主要目标   到2017年底,京津冀及周边地区重点工业企业,通过实施清洁生产技术改造,可实现年削减主要污染物二氧化硫25万吨、氮氧化物24万吨、工业烟(粉)尘11万吨、挥发性有机物7万吨。具体分解指标如表:   三、主要任务   在钢铁、有色金属、水泥、焦化、石化、化工等重点工业行业,推广采用先进、成熟、适用的清洁生产技术和装备,实施工业企业清洁生产的技术改造,有效减少大气污染物的产生量和排放量。   (一)钢铁行业   采用石灰(石)-石膏法、氧化镁法、循环流化床等技术,主要实施烧结烟气脱硫技术改造,综合脱硫效率达到70%以上。   采用湿式静电除尘器、袋式除尘器(覆膜滤料)、电袋复合除尘器、移动极板除尘器等技术装备,实施高效除尘技术改造。   (二)有色金属行业   采用动力波(或高效)湿法脱硫、有机溶液循环吸收脱硫、活性焦脱硫、金属氧化物脱硫等技术,实现制酸尾气等烟气脱硫技术改造。   采用铝电解槽上部多段式烟气捕集、新型电解铝干法净化、重有色金属冶炼湿法改干法等高效除尘技术措施,实施除尘技术改造。   (三)水泥行业   采用水泥炉窑低氮燃烧、分级燃烧和非选择性催化还原(SNCR)等技术,实施脱硝技术改造。   采用高效低阻袋式除尘技术,实施除尘系统改造。   (四)焦化行业(含钢铁联合企业焦化厂)   采用HPF工艺、栲胶工艺(TV)、真空碳酸钾工艺、FRC工艺等焦炉煤气高效脱硫净化技术,实施焦炉煤气脱硫改造。   采用袋式除尘器(覆膜滤料)等高效除尘技术装备,实施除尘地面站改造。   (五)石化和化工行业   采用泄漏检测与修复(LDAR)技术、油罐区、加油站密闭油气回收利用技术、吸附吸收技术、高温焚烧技术等,实施有机工艺尾气治理技术改造。   采用高效密封存储技术、冷凝回收技术、吸附吸收技术、高温焚烧高效脱硫除尘技术等,实施化工含VOC废气净化技术改造。   (六)装备制造业   调整燃料结构,采用高温低氧燃烧等先进燃烧技术,减少锻造烟气中氮氧化物含量 使用高效混砂机配合袋式除尘器,从源头控制铸造粉尘排放 采用整体通风空调式、集中式、固定式、移动式等烟尘净化措施,对焊接、切割烟尘进行综合治理。   (七)工业锅炉   实施高效节能锅炉系统改造,推广高效煤粉技术,鼓励建立集中式锅炉专用煤加工中心,改善工业燃煤品质,对燃煤工业锅炉实施湿式静电除尘器、袋式除尘器等高效除尘技术改造。   四、保障措施   (一)组织实施清洁生产水平提升计划。地方工业主管部门、区域内中央企业,一是要根据本提升计划,2014年6月底前完成本辖区和本企业集团实施计划制定工作,落实企业主体责任 二是要加强指导和考核,督促有关企业实施清洁生产技术改造项目,确保目标任务如期完成 三是要每年年底前报告计划落实情况。   (二)做好技术支持和信息咨询服务。有关行业协会、科研院所和咨询机构要充分发挥自身优势,做好技术引导、技术支持、技术服务和信息咨询、交流研讨等工作,推动京津冀及周边工业行业清洁生产水平提升,促进区域工业行业可持续发展能力。   (三)加强政策引导支持力度。充分利用工业转型升级、技术改造等专项资金,支持京津冀及周边地区清洁生产技术改造,对符合条件的项目优先给予支持。地方工业和信息化主管部门要充分利用中央和地方财政资金,加大对清洁生产技术改造项目的支持力度,促进项目顺利实施。 文章转载自:工业和信息化部
  • 你知道烟气分析仪的特点吗?该如何选购?
    烟气分析仪可测定烟道气中各燃烧参数的手持式烟道气体分析仪,具有时尚的外观和先进的检测技术,且操作简单。可测量空气和烟气温度、动压、静压、压差,监测 O 2 和 CO 、 NO ,可选配 CO 高浓度, SO 2 、 NO x 测量通道。此外还可以计算出 CO 2 ,燃烧效率,烟气损失和空气过剩系数。可监测周围空气中的 CO 浓度,相当于集成了一台个人 CO 检测报警仪,保护使用者的人身安全。 配有一个有自动过载保护的清洗泵,有防震功能的气体预处理器。内置红外传输器和数据储存器,可存储 40 个外整的测量值(也可选配高容量内存,能储存几千个完整测量值)。通过通讯接口可轻易的将测量值传输到计算机内。目前越来越多的实验室和研究单位,需要采购烟气分析仪。但是鉴于烟气分析仪的品牌较多,性能各异,大家往往无从选择,*后往往只看重价格,结果不能买到*合适自己使用的烟气分析仪。下面小编教你如何选购烟气分析仪!烟气分析仪是利用电化学传感器连续分析测量CO2、CO、NOx、SO2等烟气含量的设备,具有功能全M、性能稳定、适用范围广、使用安全可靠等特点,主要用于小型燃油、燃气锅炉污染排放或污染源附近的环境监测手持使用。烟气分析仪的工作原理常用两种,一种是电化学工作原理,另一种是红外工作原理。电化学气体传感器工作原理:将待测气体经过除尘、去湿后进入传感器室,经由渗透膜进入电解槽,使在电解液中被扩散吸收的气体在规定的氧化电位下进行电位电解,根据耗用的电解电流求出其气体的浓度。红外传感器工作原理:利用不同气体对红外波长的电磁波能量具有特殊吸收特性的原理而进**体成分和含量分析。烟气分析在化肥,冶金,石油化工,水泥生产,火力发电行业占有重要地位,不同行业烟气成分不同,但主要是含SO2,NOX,CO,O2等的气体。烟气分析仪已成为这些行业用来保证安全,稳定,高效生产的有力装置。
  • 崂应新品3022型烟气综合分析仪(15代)正式发布
    2015年7月11日,大家期待已久的崂应新品-3022型烟气综合分析仪正式发布! 崂应3022型烟气综合分析仪,在普通的电化学烟气分析仪的基础上,做了进一步的优化。采用了全新彩色触摸屏直观面板,取代了繁琐的手动按键操作,实现可视化方便简单操控;简约美观的结构设计,体积小巧、携带方便;高效的烟气预处理装置的应用,有效的除尘、脱水,提高了测量的准确性,延长了传感器的使用寿命;完美集成化设计,一机多用,同时满足两路的溶液吸收法烟气采样和七组分烟气成分分析,集烟气采样和烟气分析于一体;加强整机防静电设计,抗干扰能力更强;内置大容量存储设备,存储容量可达100000条;超低功耗,交、直流两用,大大提高工作效率! 为专家服务,成为民族产业的科技先锋,一直是崂应科技创新的驱动力,在多年的环境监测领域探索历程中,正是锐意创新、不断进取,才让崂应在该领域里一直引领科技的前沿,基于创新的技术和新产品的核心优势,我们将不断提高客户服务质量,不断满足广大客户监测与分析的需求,为推动中国环保行业的技术进步贡献自己的力量。 产品链接: 崂应3022型 烟气综合分析仪(15代) http://www.hbyq.net/info/pic_detail.asp?id=100
  • 环保部日查678家企业 27家存涉气环境问题
    p   据环境保护部宣传教育司官方微博消息,6日,28个督查组共检查了678个企业(单位),发现其中的27家企业(单位)存在涉气环境问题。 /p p   环保部介绍,1月6日,28个督查组共检查了678个企业(单位),发现其中的27家企业(单位)存在涉气环境问题。存在问题的企业(单位)中,治污设施不正常运行、施工工地扬尘管理和非工业污染问题的各5个,未安装污染治理设施和工业企业其他涉气环境问题的各3个,工业企业错峰生产和工业企业未落实无组织排放整治要求的各2个,涉气“散乱污”企业综合整治、重污染天气应急响应的各1个。 /p p   环保部指出,典型情况有以下七点:一是仍有企业的污染治理设施不正常运行,废气直接排放。山东省菏泽市牡丹区菏泽创盛晨新型材料有限公司熔化炉的旋风除尘器未使用,布袋除尘器的布袋脱落,湿式除尘器未加氢氧化钠,碱液经测试pH值为7(中性),无法达到除尘效果 该公司的熔化炉应安装脱硝处理设施,督查组现场检查该公司内未发现有脱硝设施 该公司的配料间和生产车间未密闭,配料及上料口未安装集尘系统,粉尘无组织排放严重。山东省菏泽市成武县山东成武易信环保科技有限公司在锅炉焚烧前设置挡板,车间中的有机废气(VOCs)经挡板前管道直接排放 酯化蒸馏车间的尾气未经收集处理,直接外排,车间气味刺鼻。 /p p   二是仍有部分工业企业未安装污染治理设施,存在违法排污现象。河北省沧州任丘市荣丰电缆辅助材料有限公司新增喷漆工序无环保手续,未安装污染治理设施,存在露天喷漆现象,木材切割工序未安装粉尘收集处理设施,烟气直排。河北省沧州任丘市天发密封材料厂的14条塑料隔热条生产线均未安装废气处理设施。河南省兰考县兰考华兰家具有限公司烤漆房未安装污染治理设施,经排风扇直排 喷胶、喷底漆工序废气未处理直接排放。 /p p   三是仍有工业企业未严格执行工业企业错峰生产与运输要求,仍在违法生产。河北省邢台市巨鹿县飞达橡胶有限公司、巨鹿县宁峰橡胶制品厂按照当地工业企业错峰生产要求应限产50%,督查组现场检查时发现巨鹿县飞达橡胶有限公司被封的2台硫化机封条被撕毁,设备有明显的余温 巨鹿县宁峰橡胶制品厂被封的1台开炼机和1台硫化机封条被撕,督查组现场检查时发现设备电源均处于开启状态,且硫化机有明显的余温。 /p p   四是部分工业企业扬尘治理设施不正常运行或防扬尘治理措施不完善,粉尘无组织排放严重。督查组检查发现,北京市丰台区北京市高强混凝土有限责任公司喷淋设施损坏无法正常使用,原料输送廊道料口未采取封闭收集措施,物料露天堆放未苫盖,粉尘无组织。 /p p   五是仍有清单外“散乱污”企业违法生产。山东省菏泽市曹县庄青路与220国道交汇处一家无名木艺加工厂,无环保手续,不在当地“散乱污”企业综合整治清单内。督查组现场检查时临时停产,机器设备均处于通电状态,存在约1000平方米露天喷漆作业,现场有大量喷漆半成品。 /p p   六是仍有企业未落实重污染天气应急响应要求,违法生产。河北省沧州任丘市利宝铝材销售部在橙色预警下应停产,该单位的表面处理车间正在生产,喷涂车间设备电源开启,喷涂生产线上挂满工件,转印机有明显的生产迹象。 /p p   七是仍有部分施工工地防扬尘治理措施不完善,粉尘无组织排放严重。督查组检查发现,山西省太原市尖草坪区阳曲镇市政工程工地、山东省滨州市山东省博兴县华美保温材料有限公司施工工地、山东省淄博市张店区东方星城三期施工工地等5个工地存在周边围挡、物料堆放覆盖、土方开挖湿法作业、路面硬化、出入车辆清洗、渣土车辆密闭运输的防扬尘措施不完善或不到位现象。 /p
  • 环保部官员解读《火电厂污染防治可行技术指南》:明确超低排放可行技术
    p   环境保护部于近日首次以国家环境保护标准发布了《火电厂污染防治可行技术指南》(HJ2301-2017),以期进一步落实排污许可制度,加强和规范火电厂烟气、水、噪声、固体废物污染防治,改善环境质量,推动火电行业污染防治措施升级改造与技术进步。日前,环境保护部科技标准司有关负责人就这一技术指南的相关问题以及如何理解、贯彻这一技术指南,接受了记者采访。 /p p & nbsp & nbsp & nbsp & nbsp strong 记者:制定《火电厂污染防治可行技术指南》的必要性和背景情况? /strong /p p & nbsp & nbsp & nbsp & nbsp 答:本《技术指南》制定的必要性主要体现在“环境改善的要求、火电发展的要求、技术进步的要求、环境管理的要求”4个方面。 /p p & nbsp & nbsp & nbsp & nbsp 一是环境改善的要求。随着我国工业化和城市化进程加快,空气污染问题日益突出,持续发生的大面积雾霾事件引起了全社会对环境空气质量的关注。导致雾霾的主要内因是燃煤、机动车尾气排放和工业污染排放,而其中燃煤量巨大成为多数城市大气污染的主要原因。据统计,中国电力行业耗煤量约占全国煤炭总消耗量的一半,控制燃煤电厂的大气污染物排放就成了重中之重。 /p p & nbsp & nbsp & nbsp & nbsp 二是火电发展的要求。“十三五”期间或更长时间内,我国经济仍需保持中高速发展,能源发展、电力发展是我国实现“全面建成小康社会新目标”的刚性需求。从我国能源资源禀赋来看,火电以煤电为主,并且仍然是中长期电力发展的主流。因此,制定火电厂污染防治可行技术指南就显得格外重要。 /p p & nbsp & nbsp & nbsp & nbsp 三是技术进步的要求。2014年6月7日,国务院印发了《能源发展战略行动计划(2014~2020年)》,首次在政府文件中明确“提高煤电机组准入标准,新建燃煤发电机组污染物排放接近燃气机组排放水平”。各级政府与煤电行业积极响应,主动作为,大力推进煤电“超低排放”行动,取得了卓越的成效,在减排技术上也取得了重大突破。但是,现有燃煤电厂烟气超低排放工程在应用中也出现部分工程将各种技术简单堆积,造成改造费用过高、能耗过高等诸多问题。为更好地落实环境保护部、国家发改委、国家能源局联合发布的《全面实施燃煤电厂超低排放和节能改造工作方案》,在2020年前完成燃煤电厂超低排放改造任务,迫切需要制定有关燃煤电厂烟气超低排放的技术指南,引导企业选择可靠合理的超低排放技术路线。 /p p & nbsp & nbsp & nbsp & nbsp 四是环境管理的要求。我国的环境管理已转移到以环境质量改善为核心的管理模式上,并且正在积极推进企业的排污许可证管理制度。国务院办公厅发布的《控制污染物排放许可制实施方案》中指出,要“建立健全基于排放标准的可行技术体系,推动企事业单位污染防治措施升级改造与技术进步” 环境保护部发布《火电行业排污许可证申请与核发技术规范》中明确可行技术的相关要求参照行业污染防治可行技术指南。为适应当前的环境管理新形势,环境保护部启动“火电厂污染防治可行技术指南”编制工作,以指导火电行业全过程、全因素污染防治技术应用,推动火电企业排污许可证的实施与管理,增强环境管理的科学性。 /p p strong & nbsp & nbsp & nbsp & nbsp 记者:《火电厂污染防治可行技术指南》有哪些亮点? /strong /p p & nbsp & nbsp & nbsp & nbsp 答:一是明确颗粒物术语和定义。燃煤电厂排放烟气中不仅含有除尘器未能完全收集的烟尘颗粒,还包括烟气脱硫、脱硝过程中产生的次生颗粒物。因此,本《技术指南》中首次将燃煤电厂排放烟气中的“烟尘”定义为颗粒物,即悬浮于排放烟气中的固体和液体颗粒状物质。 /p p & nbsp & nbsp & nbsp & nbsp 二是首次提出石灰石—石膏湿法复合塔脱硫技术与pH值分区技术。近5年来,随着火电厂大气污染物排放标准趋严,污染治理技术发展迅速,为实现二氧化硫超低排放,主要采用复合塔技术和pH值分区技术,通过调整塔内喷淋布置、烟气流场优化、加装提效组件等方法提高脱硫效率,形成多种新型高效脱硫工艺。 /p p & nbsp & nbsp & nbsp & nbsp 三是指南不仅明确烟气达标可行技术,还明确了超低排放可行技术,并优化技术路线,为排污许可证制度的实施提供技术支持,规范超低排放,引领行业产业发展和技术创新。本《技术指南》中提出,燃煤电厂在选择超低排放技术路线时,应遵循“因煤制宜,因炉制宜,因地制宜,统筹协同,兼顾发展”的基本原则,选择技术成熟可靠、经济合理可行、运行长期稳定、维护管理简单方便、具有一定节能效果的技术。同时,本指南还通过图或表等直观易懂的表达方式分别给出了颗粒物、二氧化硫、氮氧化物超低排放技术选择方法,给出了典型的烟气污染物超低排放技术路线。 /p p & nbsp & nbsp & nbsp & nbsp 以颗粒物为例,目前典型技术路线有以下3种:以湿式电除尘器做为二次除尘的超低排放技术路线 以湿法脱硫协同除尘做为二次除尘的超低排放技术路线 以超净电袋复合除尘为基础不依赖二次除尘的超低排放技术路线。工程实际应用中需考虑不同污染物治理设施之间的协同作用,针对不同燃煤电厂的具体条件选择适宜的技术路线。 /p p strong & nbsp & nbsp & nbsp & nbsp 记者:如何理解《技术指南》中提出的“因煤制宜,因炉制宜,因地制宜,统筹协同,兼顾发展”的超低排放技术路线选择原则? /strong /p p & nbsp & nbsp & nbsp & nbsp 答:因煤制宜,不仅要考虑设计煤种、校核煤种,更要考虑随着市场变化,电厂可能燃烧的煤种与煤质波动,要确保在燃用不利煤质条件下,污染物能够实现超低排放。 /p p & nbsp & nbsp & nbsp & nbsp 例如,对于煤质较为稳定、灰分较低、易于荷电、灰硫比较大的烟气条件,选择低低温电除尘器+复合塔脱硫系统协同除尘作为颗粒物超低排放的技术路线,是一种经济合理的选择。对于煤质波动大、灰分较高、荷电性能差、灰硫比较小的烟气条件,则应优先选择电袋复合除尘器或袋式除尘器进行除尘,后面是否加装湿式电除尘器,则取决于除尘器的出口浓度以及后面采用的脱硫工艺的协同除尘效果,湿式电除尘器是应对不利因素的最佳选择。 /p p & nbsp & nbsp & nbsp & nbsp 因炉制宜,主要是考虑不同炉型对飞灰成分与性质的影响。如循环流化床锅炉,适用于劣质燃料的燃烧,通常灰分含量高,颗粒粒径较煤粉炉大,排烟温度也普遍较高,原则上优先选择电袋复合除尘器或袋式除尘器 对于燃烧热值较高煤炭的循环流化床,可选用余热利用的低低温电除尘器。 /p p & nbsp & nbsp & nbsp & nbsp 因地制宜,既要考虑改造机组的场地条件,也要考虑机组所处的海拔高程。如采用双塔双pH值脱硫工艺、加装湿式电除尘器、增加电除尘器的电场数等一般都需要场地或空间条件。对于高海拔的燃煤电厂,还应考虑相应高程的空气影响烟气条件,从而影响电除尘器的性能。 /p p & nbsp & nbsp & nbsp & nbsp 统筹协同,烟气超低排放是一项系统工程,各设施之间相互影响,在设计、施工、运行过程中,要统筹考虑各设施之间的协同作用,全流程优化,实现控制效果好、运行能耗低、成本最经济的最佳状态。 /p p & nbsp & nbsp & nbsp & nbsp 兼顾发展,就是不仅要满足现在的排放要求,还应考虑排放要求的发展以及技术、市场的发展变化。如目前我国燃煤电厂排放要求中,对烟气中的三氧化硫排放没有要求,对汞及其化合物的排放要求还比较宽松,技术路线选择时就应考虑下一步排放限值的发展。此外,污染防治技术也在不断发展,需要考虑技术进步及其改造的可能性。煤炭市场、电力市场等均处于不断变化之中,煤质稳定性有无保障,电力负荷的变化与煤电深度调峰对烟气成份的影响等,在选择技术路线时都需要考虑。 /p p & nbsp & nbsp & nbsp & nbsp 总之,燃煤电厂烟气污染物超低排放技术路线的选择既要考虑初始投资,也要考虑长期的运行费用 既要考虑投入,也要考虑节能减排的产出效益 既要考虑技术的先进性,也要考虑其运行可靠性 既要考虑超低排放的长期稳定性,也要考虑故障时运行维护的方便性 既要立足现在,也要兼顾长远。 /p p strong & nbsp & nbsp & nbsp & nbsp 记者:本《技术指南》与之前2010年发布的《燃煤电厂污染防治最佳可行技术指南(试行)》有哪些不同? /strong /p p & nbsp & nbsp & nbsp & nbsp 答:与2010年发布的《燃煤电厂污染防治最佳可行技术指南》相比,本《技术指南》不同之处主要体现在以下9个方面: /p p & nbsp & nbsp & nbsp & nbsp 一是调整了适用范围,本《技术指南》适用范围与《火电厂大气污染物排放标准》(GB13223-2011)一致,其中烟气污染防治技术以100MW及以上的燃煤电厂烟气治理为重点。 /p p & nbsp & nbsp & nbsp & nbsp 二是强化了工艺过程煤尘污染防治技术,增加了灰场扬尘防治技术,增加液氨与氨水的装卸、输送与贮存污染防治技术。 /p p & nbsp & nbsp & nbsp & nbsp 三是烟气除尘技术方面增加了近几年发展和应用的低低温电除尘技术、湿式电除尘技术以及超净电袋复合除尘技术。 /p p & nbsp & nbsp & nbsp & nbsp 四是烟气脱硫技术方面增加了石灰石—石膏湿法脱硫复合塔脱硫技术、pH值分区脱硫技术 删除发展前景不佳的等离子体脱硫脱硝技术,增加具有研发价值的资源化脱硫技术。 /p p & nbsp & nbsp & nbsp & nbsp 五是烟气脱硝技术方面增加SNCR-SCR联合脱硝技术。 /p p & nbsp & nbsp & nbsp & nbsp 六是增加了烟气超低排放技术路线选择原则、方法及典型技术路线,这是本《技术指南》特色亮点。 /p p & nbsp & nbsp & nbsp & nbsp 七是废水治理技术方面增加氨区废水处理技术和废水近零排放技术。 /p p & nbsp & nbsp & nbsp & nbsp 八是噪声治理技术方面调整相关噪声治理措施的治理效果,增加封闭式隔声机房噪声治理技术。 /p p & nbsp & nbsp & nbsp & nbsp 九是固体废弃物处置方面,随着电袋复合除尘和袋式除尘技术在火电行业的发展与应用,增加废弃滤袋的回用与处置技术。 /p
  • 几种常见煤电超低排放技术汇总
    p   本文介绍了几种常见的燃煤电厂超低排放技术,主要有二级串联吸收塔石灰石-石膏湿法脱硫技术原理及特点、高效低氮燃烧器+SCR脱硝技术原理及特点、五电场静电除尘器+湿式静电除尘器原理及特点等,内容如下: /p center img alt=" 超低排放" src=" http://img01.bjx.com.cn/news/UploadFile/201702/2017021710142297.jpg" width=" 500" height=" 325" / /center p   /p p & nbsp & nbsp & nbsp & nbsp 二级串联吸收塔石灰石-石膏湿法脱硫技术原理及特点 /p p   二级串联吸收塔石灰石-石膏湿法脱硫工艺原理为:采用价廉易得的石灰石作为脱硫吸收剂,石灰石小颗粒经磨细成粉状与水混合搅拌制成吸收浆液。在两级吸收塔内,吸收浆液分两次分别与锅炉烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙及鼓入的氧化空气进行化学反应被脱除,最终反应产物为石膏。脱硫后的烟气经除雾器除去携带的细小液滴,再经换热器加热升温后排入烟囱。脱硫石膏浆液经脱水装置脱水后回收,脱硫石膏和脱硫废水经处理后供电厂综合利用。 /p p   石灰石-石膏湿法脱硫工艺由于具有脱硫效率高(脱硫效率可达95~98%)、吸收剂利用率高、技术成熟、运行稳定等特点,因而是目前世界上应用最多的脱硫工艺。 /p p   白杨河电厂两级脱硫吸收塔均采用喷淋塔结构,喷淋塔具有脱硫效率高、系统可靠性和可用率高、系统适应性强等优点,目前运行的喷淋塔对于低、中、高燃煤硫分都有较多成熟的案例,国内90%以上的湿法脱硫装置都是采用的喷淋塔。 /p p    center img alt=" 超低排放" src=" http://img01.bjx.com.cn/news/UploadFile/201702/2017021710150086.jpg" width=" 535" height=" 600" / /center center style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp & nbsp img alt=" 超低排放" src=" http://img01.bjx.com.cn/news/UploadFile/201702/2017021710150791.jpg" width=" 541" height=" 276" / /center p /p p & nbsp /p p   高效低氮燃烧器+SCR脱硝技术原理及特点 /p p   低氮燃烧器降低氮氧化物浓度的原理是:改变通过燃烧器的风煤比例,使燃烧器内部或出口射流空气分级,以控制燃烧器中燃料与空气的混合过程,尽可能降低着火区的温度和降低着火区的氧浓度,在保证煤粉着火和燃烧的同时有效抑制氮氧化物生成。在富燃料燃烧条件下,选择合适的停留时间和温度可使氮氧化物最大限度地转化成氮气。 /p p   选择性催化还原(ive-catalytic-reduction,SCR)脱硝技术的工艺流程为:烟气在锅炉省煤器出口处被平均分为两路,每路烟气并行进入一个垂直布置的SCR反应器里,烟气经过均流器后进入催化剂层,然后进入空预器、电除尘器、引风机和脱硫装置后,排入烟囱。在进入烟气催化剂前设有氨注入的系统,烟气与液氨蒸发产生的氨气充分混合后进入催化剂发生反应,脱去氮氧化物。 /p p   SCR的化学反应机理比较复杂,但主要的反应是在一定的温度和催化剂的作用下,有选择地把烟气中的氮氧化物还原为氮气。目前,世界各国采用的SCR系统有数百套之多,该技术具有技术成熟运行可靠、脱除率高等特点,我国近几年也已在燃煤发电机组中大面积推广使用SCR脱硝系统。 /p p    center img alt=" 超低排放" src=" http://img01.bjx.com.cn/news/UploadFile/201702/2017021710152936.jpg" width=" 373" height=" 546" / /center p    center img alt=" 超低排放" src=" http://img01.bjx.com.cn/news/UploadFile/201702/2017021710153639.jpg" width=" 640" height=" 231" / /center p /p p & nbsp /p p   五电场静电除尘器+湿式静电除尘器原理及特点 /p p   静电除尘器与湿式静电除尘器的除尘原理,其实与常规干式电除尘器除尘相同,而工作的烟气环境不同。都是向电场空间输送直流负高压,通过空间气体电离,烟气中粉尘颗粒和雾滴颗粒荷电后在电场力的作用下,收集在收尘极表面,但干式电除尘器是利用振打清灰的方式将收集到的粉尘去除,而湿式电除尘器则是利用在收尘极表面形成的连续不断的水膜将粉尘冲洗去除。 /p p   湿式静电除尘器除具有极高的除尘效率外,对微细颗粒物PM10、PM2.5和石膏颗粒的去除效率较高,一个电场的除尘效率能够大于90%。湿式电除尘器对烟气中雾滴的去除效果较高,去除效率可达60%。湿式电除尘器对二氧化硫的去除效率能够超过60% 同时,湿式电除尘器能够有效控制重金属汞排放,汞脱除效率能够达到40%。 /p p    center img alt=" 超低排放" src=" http://img01.bjx.com.cn/news/UploadFile/201702/2017021710155539.jpg" width=" 600" height=" 237" / /center p /p p & nbsp /p p   建议:大力发展超低排放的煤电机组 /p p   我国发电用煤量约占煤炭消费总量的一半,而发电排放的污染物则远低于50%,煤电机组的污染物排放水平远低于其他工业和民用锅炉。从发达国家的情况看,发电用煤占煤炭消费总量的比例是随经济发展水平逐步提高的,美国发电用煤的占比接近100%。 /p p   发电用煤的占比越高,污染物的排放总量就越低,这是因为发电机组的大量集中用煤,便于高效经济地集中处理污染物,而分散的工业和民用锅炉则不便于污染物的处理。今后,我国煤炭消费总量将会受到控制乃至逐步降低,但发电用煤的占比则会不断提高。分析我国目前的煤炭消费结构,可以预见今后燃煤发电机组仍有很大发展空间,当然其中相当部分会是热电联产机组。 /p p   我国的资源秉赋决定了煤电的基础性作用,同时发展可再生能源发电也需要煤电的配合。水电是可再生能源中最为可靠、质量最好的电能,但一则其总量不足,二则由于其季节性特点,需要煤电的支撑。风电、光电等则更需要煤电的支撑。天然气发电虽然清洁高效低碳,但受到资源供应的制约。核电发展也受到诸多制约,且由于我国人口密集,核电厂址选择更难。因而,煤电的基础地位不会动摇。 /p p   煤电带来的主要污染物是二氧化硫、氮氧化物、烟尘和重金属。近年来,燃煤电厂的污染物控制技术取得了巨大进步,利用最新技术,燃煤发电机组的污染物排放不仅可以达到我国《火电厂大气污染物排放标准GB13223—2011》,而且可以达到其中天然气燃机发电的排放标准。需要指出的是,此项排放标准已经被誉为史上最严标准(世界范围内)。 /p p   如果在我国的大城市和其他重要地区,燃煤发电机组的排放达到天然气燃机机组的排放标准,将有助于大大改善这些地区的环境。而且,在技术上并无难以逾越的障碍,目前国内技术可敷使用,发电成本的增加也可接受。 /p p   对于脱硫,主要是采用脱硫系统改造技术并辅以脱硫添加剂等,可使二氧化硫的排放由100毫克/立方米进一步降至35毫克/立方米以下 对于脱硝,主要是进一步改进低氮氧化物燃烧系统,并在SCR脱硝系统中增加一级催化剂,可以保证氮氧化物排放低于50毫克/立方米 对于除尘,采用布袋除尘器、电袋除尘器、低温电除尘器等,并改进脱硫塔内的除雾器,然后加装湿式电除尘器,可使烟尘排放低于5毫克/立方米。 /p p   湿式电除尘器对于PM2.5也有较高的脱除效率,同时还有提升脱硫效率的作用。针对重金属(主要是汞)的排放,华能开发了协同脱汞技术,并已应用于北京热电厂,使烟气排放的汞低于0.8微克/立方米。这些技术的组合应用,可保证燃煤发电机组的烟气排放达到天然气燃机机组的排放标准。 /p p   近年来,由于我国东部出现大范围雾霾天气,部分城市拟关停燃煤供热电厂。如果一个城市的天然气供应充足,且城市及其邻近地区已经全面杜绝烧煤,则关停燃煤热电联产机组不失为进一步改善环境的重要举措。若城市及其邻近地区依然拥有大量工业与民用燃煤锅炉,而选择关停大容量的热电联产机组,则不是经济合理的选择。 /p p   鉴于我国资源禀赋和经济发展状况,城市供热全部依赖天然气,在近中期实现难度较大。保留部分环保性能好的大容量热电联产机组,并进一步提升其环保性能,在现阶段当是经济合理、现实可行的选择。 /p p   发展超低排放的大容量高效燃煤发电机组,是我国近中期支撑经济发展同时确保环境逐步改善尤其是控制雾霾的必然选择。同时,鉴于我国城市发展水平和能源供应现状,我国城市及其周边地区应更多采用超低排放的大容量燃煤热电联产机组,而不是全面地“煤改气”。 /p /p /p /p /p
  • 【众瑞小课堂】关于固定污染源废气检测过程中,异常情况处理方式探讨
    固定源废气监测是污染源监测的重要组成部分,现场监测受行业类别、污染物处理方式、生产设备工艺设计、操作人员水平、监测仪器等问题影响较大,监测过程中经常出现一些异常情况,为获得准确的监测数据,为环境执法提供依据,排除和处理这些异常情况显得尤为重要。 本文针对固定源废气监测过程中经常出现的燃煤锅炉含氧量过高、风量无法比对、烟尘含量为负值等情况进行分析,并提出异常情况排除处理方法。1 燃煤锅炉含氧量过高?01核实锅炉运行工况,检查锅炉仪表盘及煤质分析报告,确认生产负荷是否达到设计能力的75%以上,排除锅炉运行负荷低和煤质差导致的含氧量偏高。02对比仪器测定风量和锅炉的额定风量,确定是否是进风量过大与锅炉不匹配原因造成。03检查锅炉炉墙、省煤器、空气预热器、引风机前后、风道是否存在密封不严等漏风现象,排除锅炉本身设计缺陷导致的含氧量过高现象。也可以通过现场分段排查,如在锅炉燃烧后进除尘器前、除尘器进脱硫脱硝前、脱硫脱硝排入大气后分别监测烟气含氧量,排除各工段有无漏风现象。04与锅炉工沟通排除操作导致的锅炉燃烧状况不理想不均匀、调节不合理情况引起的含氧量偏高。2 风量无法比对?01确认采样位置的合理性,是否避开烟道弯头和断面急剧变化的部位,设置位置是否满足距弯头、阀门、变径管下游方向不小于6倍直径,和距上游方向不小于3倍直径的要求。若现场位置确实有限,采样断面与弯头的距离至少是烟道直径的1.5倍。监测断面是否满足烟道内流速>5m/s,大型燃煤电厂烟道排气筒若监测断面选择不合理很多会出现流速过低无法比对的情况。02与厂家联系,查看排气筒管道设计图纸,确认监测断面实际截面积,认真核对监测断面烟道直径及壁厚保温层扣除问题。03提前收集资料了解被监测工况企业排放的主要污染物种类和排放浓度大致范围,以确定适合的监测方法。在现场监测过程中应选择与工况企业排放气态污染物浓度适合的标准气体校准监测仪器,避免出现高浓度校标后出现的传感器浓度误差。04气态污染物浓度值明显过低的情况排除应做好烟道内含湿量的测定,根据待测污染物种类选择合适的采样方式,如采样流量点位选择(观察监测仪器测定气态污染物时的实时流量是否大于0.7L/min,监测点负压大于监测仪器抽气泵吸力时会导致烟道内气体无法进入传感器而监测结果偏低);吸收液瓶材质是否对待测组分存在吸收、颜色(是否需要遮光低温保存等)、发泡率(是否均匀)、阻力(当采样流量为0.5L/min时,其阻力应为5±0.7kpa)等;伴热管的温度范围(SO2采样时伴热管温度应保持在120℃,NOX采样时伴热管温度应保持在140℃等);检查气体收集装置有无漏气现象。3 烟尘含量为负值?01选择滤筒前是否进行过针孔检查、质量筛选和失重处理。针孔检测可采用灯泡法检查滤筒是否有针孔;质量筛选以规格25mm×70mm的玻璃纤维滤筒,质量在(1.0±0.2)g为宜。失重处理可按照《固定源废气监测技术规范》HJ/T397-2007规范,将滤筒预先在400℃高温箱中烘烤1h,冷却至室温并称至恒重后使用。滤筒称重还应考虑冷却时间与干燥器内放置滤筒多少、放置方式以及烘干时间的影响。02排气筒中颗粒物浓度太低,采样时间、采样体积又不够引起的称量误差。按照《固定源废气监测技术规范》要求锅炉颗粒物原则上每点采样时间不小于3min或每台锅炉测定时所采集的总采气量不少于1m3,但是目前实际操作过程中类似于水泥厂、大型火电、热电厂由于除尘设施均采用了静电除尘和袋式除尘结合的复合除尘设备,除尘效率基本上都达到了99.9%以上,若按照规范的采样时间和采样体积采样,经常会出现颗粒物浓度为负值的情况。这就要求实际监测过程应结合实际污染物排放情况,适当延长采样时间加大采样体积来降低测定误差。03超低排放趋势下的监测手段更新。根据大型(热电火电)电厂超低排放标准即烟尘不超过5mg/m3;二氧化硫不超过35mg/m3;氮氧化物不超过50mg/m3,现有监测部门配发的传统三合一(定电位电解法测定烟尘、二氧化硫、氮氧化物)监测仪器根本无法针对超低排放的锅炉特别是烟尘在5mg/m3以下机组开展现场监测,必须立即配发专门针对超低排放的采样仪器,才能获得准确的监测数据。众瑞仪器ZR-3260D型 低浓度自动烟尘烟气综合测试仪高负载、低噪声大流量抽气泵(可达100L/min)ZR-D09ET型 高湿低浓度烟尘采样管钛合金材质,具备加热功能
  • 57种烟尘烟气监测系统合格名单公布
    2011年8月16日,环境监测总站公布了一批烟尘烟气连续自动监测系统(CEMS)认证检测合格厂家名录(截至2011.8.10),具体名单详见下表。 烟尘烟气连续自动监测系统(CEMS)认证检测合格厂家名录--截至2011.8.10 序号 单位名称 仪器名称 报告编号 检测项目 1 北京凯尔科技发展有限公司 BKS-3000型 烟气排放连续监测系统 质(复认)字 No.2008–011 颗粒物、SO2、NOX 2 青岛崂山电子仪器总厂有限公司 CEMS-2001 型烟尘烟气连续监测系统 质(认)字 No.2008–012 颗粒物、SO2、NOX 3 锦州华冠环境科技实业公司 YQ-2002型 烟气连续监测系统监测 质(复认)字 No.2008–013 颗粒物、SO2、NOX 4 艾默生过程控制有限公司 GMP1000M型 烟气连续监测系统监测 质(认)字 No.2008–014 SO2、NOX 5 杭州富铭环境科技有限公司 AS2000型 烟尘烟气连续监测系统 质(认)字 No.2008–015 颗粒物、SO2、NOX 6 国电环境保护研究院 STEP-2000型 烟气连续监测系统监测 质(认)字 No.2008–016 SO2、NOX 7 湖北盘古环保工程技术有限公司 PG01型 烟气连续监测系统监测 质(认)字 No.2008–017 颗粒物、SO2、NOX 8 河北先河科技发展有限公司 XHCEMS-41A型 烟气排放连续自动监测系统 质(认)字 No.2008–018 SO2、NOX 9 北京怡孚和融科技有限公司 EV1000型 烟气排放连续监测系统 质(认)字 No.2008–019 SO2、NOX 10 邹城安安科技发展有限公司 AA-6000型 烟气排放连续监测系统 质(认)字 No.2008–031 SO2、NOX 11 北京牡丹联友电子工程有限公司 HP5000型 在线式烟气连续排放监测系统 质(认)字 No.2008–039 颗粒物、SO2、NOX 12 北京牡丹联友电子工程有限公司 HP5000D型 在线式烟气连续排放监测系统 质(认)字 No.2008–040 颗粒物、NOX 13 中科天融(北京)科技有限公司 TR-Ⅱ型 烟气连续监测系统 质(认)字 No.2008–041 颗粒物、SO2、NOX 14 杭州弗林科技有限公司 FLEM-3000型 烟气在线监测系统 质(认)字 No.2008–043 颗粒物、SO2、NOX 15 西克麦哈克(北京)仪器有限公司 SMC-9021型 烟气排放连续监测系统 质(认)字 No.2008–046 颗粒物、SO2、NOX 16 重庆川仪分析仪器有限公司 PS6400型 烟气排放连续监测分析系统 质(认)字 No.2009–001 颗粒物、SO2、NOX 17 安徽蓝盾光电子股份有限公司 YDZX-01型 烟气排放连续监测系统 质(认)字 No.2009–007 颗粒物、SO2、NOX 18 西门子(中国)有限公司 SYS-CE-1型 烟气连续监测系统 质(认)字 No.2009–015 颗粒物、SO2、NOX 19 宇星科技发展(深圳)有限公司 YX-CEMS型 烟气连续监测系统 质(认)字 No.2009–018 颗粒物、SO2、NOX 20 上海优科伽瓦自动化工程有限公司 CW-3000型 烟气连续监测系统检测 质(认)字 No.2009–019 颗粒物、SO2、NOX 21 深圳市中兴环境仪器有限公司 ZE-CEM2000型 烟气连续监测系统 质(认)字 No.2009–020 颗粒物、SO2、NOX 22 河北金冠环保仪器设备有限公司 JG-CEMS-Ⅰ型 烟气连续监测系统 质(认)字 No.2009–021 颗粒物、SO2、NOX 23 青岛佳明测控仪器有限公司 YSB型 烟气连续监测系统 质(认)字 No.2009-027 颗粒物、SO2、NOX 24 安徽蓝盾光电子股份有限公司 LGC-01型 烟尘排放连续监测系统 质(认)字 No.2009-031 颗粒物、SO2、NOX 25 上海宝英光电科技有限公司 C600型 烟气连续监测系统 质(认)字 No.2009-032 颗粒物、SO2、NOX 26 武汉宇虹环保产业发展有限公司 TH-890型 烟气排放监测系统 质(认)字 No.2009-033 颗粒物、SO2、NOX 27 北京中电兴业技术开发有限公司 CEI-3000-YQ型 烟气连续监测系统检测 质(认)字 No.2009-035 SO2、NOX 28 南京华彭科技有限公司 RQ-200型 烟气排放连续监测系统 质(认)字 No.2009-042 颗粒物、SO2、NOX 29 赛默飞世尔科技(上海)有限公司 Model200型 烟气连续监测系统 质(认)字 No.2009-045 SO2、NOX 30 太原中绿环保科技股份有限公司 TGH-YX型 烟气排放连续监测系统 质(认)字 No.2009-053 颗粒物、SO2、NOX 31 广州市林华环保科技有限公司 JHL-6型 烟气排放连续监测系统 质(认)字 No.2009-067 颗粒物、SO2、NOX 32 岛津国际贸易(上海)有限公司 NSA-3080型 烟气连续监测系统 质(认)字 No.2009-070 颗粒物、SO2、NOX 33 北京航天益来电子科技有限公司 CYA-863型 烟气连续监测系统 质(认)字 No.2009-071 颗粒物、SO2、NOX 34 河南友来金科技有限公司 YLJ-05型 烟气连续监测系统 质(认)字 No.2009-072 颗粒物、SO2、NOX 35 北京雪迪龙自动控制系统有限公司 SCS-900型 烟气连续监测系统 质(认)字 No.2010-002 颗粒物、SO2、NOX 36 聚光科技(杭州)股份有限公司 CEMS-2000型 烟气连续监测系统检测 质(认)字 No.2010-016 颗粒物、SO2、NOX 37 北京雪迪龙自动控制系统有限公司 SCS-900C型 烟气连续监测系统 质(认)字 No.2010-017 颗粒物、SO2、NOX 38 石家庄瑞澳科技有限公司 RO-23A型 烟气排放连续监测系统 质(认)字 No.2010-027 颗粒物、SO2、NOX 39 南京分析仪器厂有限公司 XGF-404型 烟气排放连续监测系统 质(认)字 No.2010-037 颗粒物、SO2、NOX 40 河南乾正环保设备有限公司 QZ5000型 烟气在线自动监测系统 质(认)字 No.2010-038 颗粒物、SO2、NOX 41 合肥皖仪科技有限公司 CEMS1000型 烟气排放连续监测系统 质(认)字 No.2010-041 颗粒物、SO2、NOX 42 赛默飞世尔科技(中国)有限公司 MODEL 600型 烟气连续自动监测系统检测 质(认)字 No.2010-052 SO2、NOX 43 北京光电设备厂 YPLC-35型 烟尘烟气连续自动监测系统 质(认)字 No.2010-059 颗粒物、SO2、NOX 44 岛津国际贸易(上海)有限公司 NSA-3080A型 烟气排放连续监测系统 质(认)字 No.2010-076 颗粒物、SO2、NOX 45 长沙华时捷环保科技发展有限公司 HSJ-CEMS型 烟气排放连续监测系统 质(认)字 No.2011-003 颗粒物、SO2、NOX 46 上海华川自动化科技有限公司 M6000型 烟气拍了连续监测系统 质(认)字 No.2011-005 颗粒物、SO2、NOX 47 佩羲美仪器(上海)有限公司 LMS181型 颗粒物排放连续监测系统 质(认)字 No.2011-006 颗粒物、SO2、NOX 48 堀场贸易(上海)有限公司 IM-1000E型 烟气排放连续监测系统 质(认)字 No.2011-007 颗粒物、SO2、NOX 49 德菲电气(北京)有限公司 CEMS9000E型 烟气排放连续监测系统 质(认)字 No.2011-016 颗粒物、SO2、NOX 50 天津市蓝宇科工贸有限公司 FB-1000型 烟气颗粒物排放连续监测系统 质(认)字 No.2011-024 颗粒物、SO2、NOX 51 天津同阳科技发展有限公司 TY-021C型 烟气排放在线自动监测仪 质(认)字No.2011-025 颗粒物、SO2、NOX 52 安徽蓝盾光电子股份有限公司 YDZX-02型 烟气连续监测系统 质(认)字 No.2011-026 颗粒物、SO2、NOX 53 厦门格瑞斯特环保科技有限公司 FGAS-06型 烟气排放连续监测系统 质(认)字 No.2011-027 颗粒物、SO2、NOX 54 常州帮达诚科技有限公司 S2000型 烟气排放连续监测系统检测 质(认)字 No.2011-031 颗粒物、SO2、NOX 55 深圳市世纪天源环保技术有限公司 STEP-CEMS型 烟气排放连续监测系统 质(认)字 No.2011-050 颗粒物、SO2、NOX 56 北京航天益来电子科技有限公司 CYA-863型 烟气排放连续监测系统 质(认)字 No.2011-051 颗粒物、SO2、NOX 57 深圳市彩虹谷科技有限公司 RBV-CEMSⅠ型 烟气排放连续监测系统 质(认)字 No.2011-052 颗粒物
  • 【新品推介】ZR-3211型便携式紫外烟气综合分析仪
    【新品推介】ZR-3211型便携式紫外烟气综合分析仪小瑞又来为大家推荐新品了众瑞紧跟行业和市场发展需求推出采用紫外吸收光谱技术的烟气浓度及排放量的综合测试仪器ZR-3211型便携式紫外烟气综合分析仪主要特点●采用紫外光谱差分吸收技术(DOAS)测量固定污染源排气中的SO2、NO、NO2等气体浓度,测量精度高,不受烟气中水蒸气影响,特别适合高湿低硫工况。●拓展H2S/CS2/NH3/CH3SCH3/CH2O/C6H6等监测项目,无需添加硬件,降低采购成本。●配备自主知识产权的紫外检测模块,关键部件带有恒温、减震装置,消除温度漂移,测量结果稳定。●双量程分析设计,根据SO2、NO、NO2高低浓度值自动切换量程。●采用进口深紫外光谱仪,匹配SO2、NO等组分的吸收谱段。●紫外光源采用氘灯(选配脉冲氙灯),预热时间小于10min,使用寿命长,紫外波段能量占比大,确保低检测限。●分钟数据和总平均数据动态保存,导出excel表格,可选配大容量硬盘,数据海量存储。●实时查询检测数据,标配蓝牙打印机,现场打印。●采用高性能低功耗工控机,宽温高亮度彩色触摸屏,整体防尘防水防静电设计,多级光电隔离,能够在恶劣工况下连续稳定运行。●选配手机或平板实现所有的操作和数据存储,提高仪器操控性。执行标准JJG968-2002 《烟气分析仪检定规程》HJ/T 397-2007《固定源废气监测技术规范》DB37/T 2704-2015《固定污染源废气氮氧化物的测定紫外吸收法》DB37/T 2705-2015《固定污染源废气二氧化硫的测定紫外吸收法》DB37/T2641-2015 《便携式紫外吸收法多气体测量系统技术要求及检测方法》GB13233-2011《火电厂大气污染物排放标准》配套使用ZR-D05BT型烟气预处理器是集过滤、加热、冷凝除水于一体的被测烟气前处理设备,具有除水能力强、烟气损失率低等特点,可有效的提高配套烟气分析仪的测量精度,延长传感器的使用寿命。◆烟气成分损失率低:预处理器前端过滤器内含加热设计,杜绝冷凝水的产生,冷凝室采用加酸方式抑制冷凝水对SO2的吸收,有效降低 SO2的损失,更适用于高湿、烟气成分浓度低的工况。◆精密过滤:内置金属和PTFE两级过滤器,有效除尘,拆装方便。◆有效除水:采用大功率两级电子制冷,制冷温差大,可处理含水量高达30 Vol.%的低温低硫烟气。◆动态排水:采用蠕动泵动态排水,防止冷凝水进入烟气分析仪。◆体积轻巧:采样管和除水装置一体设计,方便携带和使用。◆出气露点稳定:冷却(出气口)温度恒定在4°C。“以质量求生存,以服务求市场,以科技求发展”众瑞出品,值得关注
  • 说一说环保喷雾除尘系统的那些事儿
    随着社会经济的迅速发展和城市规模的日益扩大,各种环境污染也随之而来。其中,建筑工地的施工所产生的大量有害粉尘对生活环境和工作环境的影响引起了人们的关注。为了有效解决建筑施工带来的粉尘污染问题,环保喷雾除尘 工地喷雾降尘设备在城市中广受欢迎。主要配件:液压水泵、过滤系统、降尘雾化喷嘴、管路、转换接头、固定支架、控制系统。使用场所:针对石料场、料棚、煤棚、施工工地、露天采矿企业、搅拌站、水泥厂等粉尘较大的场地具有很好的除尘抑尘效果。作用价值:1、降低粉尘浓度。降尘专用的高压喷雾加湿器是利用柱塞泵将净化处理的水洁净加压至7Mpa后在经耐高压管传送至特制的喷头喷出,形成5-15微米的细雾颗粒,使其能够迅速并扩散在空气中,空气湿度与空气中的粉尘结合,增加了粉尘的含量即重量,粉尘通过自然降落的原理起到降尘、抑尘的作用。2、满足环保要求。由于现在国家对于环境污染的监督力度较大,针对于各种生产环境粉尘等问题强调要求改善,而工厂的生产环境主要为供料车间,无法避免粉尘较大的现象产生。因此,安装车间降尘系统能够有效解决陈建粉尘问题,达到环保要求,避免环保导致的停机停产罚款等。3、改善生产环境。车间降尘系统采用自然的发生方式,在空气中产生大量的微小雾化颗粒,有效的提高的空气湿度,消灭了车间粉尘飞扬的现象,有效的改善了车间工人的生产环境,提高员工满意度。特点优势:1、智能化程度高,触屏模式,自动控制。该设备采用全自动控制,时间控制(0-999s),湿度控制(0-99%RH),可以根据车间具体情况设置,找到合适的控制时间或者湿度,即达到除尘目的,又不会弄湿物料就是你想要的降尘效果了。2、喷雾量大。该设备喷雾量大,能够在短时间内产生大量的雾化颗粒,可短时间内弥漫到石料车间的各个角落,实现快速降尘,不留死角。3、防暑降温效果好。该设备的雾化颗粒只有只有1-15μm,很容易吸收周围空气中的热量被蒸发,在短时间内实现雾化颗粒气化,降低车间温度,一般车间温度降低3-8℃是没有问题的。在夏季就没有比这更省钱的降温设备了。4、使用寿命长,运行可靠。可以24小时连续运转,运行稳定,不锈钢材质结实耐用,平均使用寿命5-8年。5、无二次污染发生。洒水的方式降尘,有时候会因为水量不好控制,造成积水问题,在一些石料车间、煤矿,采石场,搅拌站等很有可能引发二次污染,而使用高压系统用喷雾的方式,雾化的水不会因为过多而聚集,因此不会发生二次污染。6、维护保养简单。一般主机不需要特别保养,简单的清洗水箱就可以满足设备日常工作不受影响。对于管道和雾化喷头的清洗也只需要清水洗净即可,维护成本低,操作简单。郑州国润 环保喷雾除尘 工地喷雾降尘设备可以根据空气质量、湿度、温度等数据指标实现自动化控制,它的出现完善城市的智能化管理体系,推进了城市环保建设,它的使用既能够达到实际效果,又能够降低成本,如今已经成为城市防治粉尘大气污染的重要设施。
  • 水泥业新标准下脱硝除尘改造成本超260亿元
    相关报道:   水泥行业排放新标准将增原子吸收等需求   环保部发布多项新标准 增特别排放限值等   继钢铁、火电等行业后,环保部将整顿&ldquo 重拳&rdquo 挥向了长期以来的产能大户水泥行业。记者近日从多位业内专家处获悉,环保部新近发布了《水泥工业大气污染物排放标准》和《水泥窑协同处置固体废物污染控制标准》,被业内称为水泥行业&ldquo 史上最严标准&rdquo 。   环保部科技司司长熊跃辉表示,要达到这个标准,2000多个水泥企业都要对除尘设施进行改造,每一个企业改造除尘设施都要投入至少1300多万元。依此计算,全行业设备改造总成本将超过260亿元。   记者了解到,水泥行业是我国仅次于火电厂、机动车的第三大氮氧化物排放源。新标准重点提高了颗粒物、氮氧化物的排放控制要求。根据除尘脱硝技术的相关情况,新标准将PM排放限值由原来的水泥窑等热力设备50mg/m3、水泥磨等通风设备30mg/m3,收紧至30mg/m3和20mg/m3;将氮氧化物排放限值由800mg/m3收紧到400mg/m3。   业内认为,将近二分之一的收紧幅度将使水泥全行业面临严峻挑战。中国水泥协会常务副会长兼秘书长孔祥忠表示,如果根据最新排放标准,包括上市水泥央企在内,可以说目前国内大部分水泥企业都面临调整。   为达到新标准,企业需要更新和改造现有设备。业内认为,由此带来的改造成本将引发水泥行业&ldquo 洗牌&rdquo 。   招商证券表示,氮氧化物排放限值的下调事实上对水泥企业的影响较大,根据以往的抽样调查,90%左右的企业都不能满足新标准关于氮氧化物排放的要求,因而将有众多水泥企业需要新上或者改造脱硝设备。而仅仅脱硝设备单项的投资费用就高达数百万元,再加上其他运行费用,众水泥企业尤其是中小型水泥企业将面临重大调整。
  • 让地球更纯净——飞纳电镜助力上市公司厦门三维丝
    厦门三维丝环保股份有限公司成立于2001年,专注于工业高温烟气除尘,集高性能高温除尘滤料的研发、生产、销售和服务于一体,成为国内高温袋式过滤除尘上市企业(股票代码:300056)。袋式除尘袋式除尘器是一种高效干式除尘器。它是依靠纤维滤料做成的滤袋,滤袋是袋式除尘器运行过程中的关键部分,在脉冲和气箱式脉冲除尘器中,含尘气体经过除尘器时,粉尘被捕集在滤袋的外表面,而干净气体通过滤料进入滤袋内部,从而实现除尘功能。 但是,含尘气体的温度、成分、风速等条件都会影响滤袋的过滤效果以及使用寿命: 滤袋通常由高分子材料构成,熔点相对较低,当气体温度超过了滤袋的正常使用温度时,滤袋将被直接融毁; 如果气体中含有超标的酸、碱以及腐蚀性物质,将大大缩短滤袋的使用寿命; 风速过快,过滤层将会遭受物理性破坏,这也是滤袋失效的主要原因之一。那么如何来评价滤袋的品质、粉尘的过滤效果、以及失效分析呢?飞纳台式扫描电镜助力滤袋技术研究2018 年 11 月,飞纳台式扫描电镜高性价比标准版 Phenom Pure 正式入驻厦门三维丝环保股份有限公司。三维丝滤袋技术研究院是以滤袋新材料技术、微细颗粒物控制技术、污染物协同控制技术为主要研究方向的环境保护科研机构,通过使用飞纳电镜,进一步提高产品质量检测技术: 滤袋所用纤维材料直径多为微米级别,Phenom Pure 放大倍数为 30,000x ,分辨率优于 30 nm,可轻松观察微米级纤维样品,获取样品过滤效果图片、纤维断裂证据等信息; 滤袋使用前 滤袋使用后 飞纳电镜操作界面简洁明了,上手快,经过 1-2 日的培训即可独立操作,数分钟内就可完成样品观察,大大提升了检测效率。用户独立操作飞纳电镜在让地球更纯净的路上,飞纳电镜将会高效服务厦门三维丝环保股份有限公司,助力环镜保护。
  • 崂应发布大流量低浓度烟尘/气测试仪(18款)新品
    崂应3012H-D型 大流量低浓度烟尘/气测试仪(18款) 一、产品概述 本仪器应用皮托管平行等速采样法采集固定污染源排气中的颗粒物,用过滤称重法测定烟尘质量,应用定电位电解法定性定量测定烟气成份。可应用于各种锅炉、烟道、工业炉窑等固定污染源颗粒物的排放浓度、折算浓度、排放总量的测定及设备除尘脱硫效率的测定;自动测量烟气动压、烟气静压、流速、流量计前压力、流量计前温度、烟气温度、含湿量、O2、SO2、CO、NO、NO2、H2S、CO2浓度等参数。 产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑、以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。 二、执行标准n GB/T 16157-1996 固定污染源排气中颗粒物和气态污染物采样方法n HJ/T 48-1999 烟尘采样器技术条件n HJ 57-2017 固定污染源废气 二氧化硫的测定 定电位电解法n HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法n HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法n HJ 870-2017 固定污染源废气 二氧化碳的测定 非分散红外吸收法n HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法n JJG 680-2007 烟尘采样器技术条件n JJG 695-2003 硫化氢气体检测仪n JJG 968-2002 烟气分析仪检定规程 n DB13/T 2375-2016 固定污染源废气低浓度颗粒物的测定 重量法三、产品特点控制系统n 可完成固定污染源废气中浓度低于20mg/m3的颗粒物测定n 气体传感器修正补偿技术:烟气测量具有气体交叉干扰自动修正算法,最大限度地避免了交叉干扰对测量结果的影响,保证了测量精度n 气体传感器量程根据校准量程可调,扩展传感器的使用范围n 采用工业级嵌入式控制器设计,抗静电能力强n 精确电子流量计控制,实时监测计温、计压,自动调节流量n 微电脑控制等速跟踪采样,专有调节方式,响应时间快n 仪器内置弹性气容,提高采样流量稳定性n 具有防倒吸功能,可防止采样结束后采集的烟尘被倒吸出来,保证采样数据的准确性n 实时记录设备工作状态数据,具有采样过程停电记忆功能n 针对温度变化引起的流量误差做了温度补偿,保证测量的准确度n 含湿量检测多模式:兼容干湿球法和阻容法两种测量模式n 具有烟尘采样和烟气测量同步运行功能n 具备故障自检功能,可对仪器功能进行检测并提示故障,方便用户的维护、使用n 具备气密性自动检测功能,可自动诊断气路的气密性动力系统n 高效采样泵,耐腐蚀,流量可达110Lmin,连续运转免维护,适应各种工况,具有过载保护功能n 精密压力传感器搭配稳定的流量控制,可实现超低流速的稳定跟踪n 独特高效气水分离器设计,高效除湿,令硅胶利用率大大高于同类其他仪器n 高效粉尘过滤功能:烟尘烟气采样气路均使用高效粉尘过滤器,极大的降低了流量传感器和采样泵系统的故障率。过滤系统采用透明窗设计,易观察,易更换操作系统n 智能化的软件参数标定设计n 工业级防尘防水键盘,操作方便,特别适用于恶劣工况n 带有中文输入法,方便用户输入采样地点等信息n 采用5.7寸宽温LCD显示屏,适用于野外环境温度,良好人机交互界面,让工作更轻松n 丰富的人机接口:具备RS232、USB等接口,支持数据通信,U盘数据转存输出n 皮托管正、负取压接嘴采用硅橡胶双联管连接,耐候性强,减少管路连接,操作方便n 提供USB接口,可将采样数据文件导出,同时支持升级仪器主板程序n 选用蓝牙高速低噪音微型热敏打印机,轻松掌握实时数据n 预留物联网模块接口,可扩展联网功能其他n 一体化电化学传感器模块,可根据需要自主选配进口传感器,SO2传感器具有高低双量程选择,最多可同时测量7种气体n 多种供电方案:仪器内置电池,并支持交、直流两种供电方式n 内置充电管理:交流供电时可同时工作及给仪器内部电池充电n 直流输出带载:通过直流输出线可以直接给低浓度烟尘多功能取样管或阻容法含湿量检测器供电n 一体称重滤膜式烟尘取样管:适合低浓度烟尘采样*说明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、内置大容量充电锂电池,支持交、直流两种供电方式,可同时给主机和加热取样管供电(24v) 2、便携升级、体积缩小40% 3、具有烟尘采样和烟气测量同步运行功能,最多可同时测量7种气体 4、采用高效芯泵,空载流量可达110L/min,负载20Kpa时流量不低于60L/min ,寿命长,耐腐蚀、连续运转免维护、具有过载保护功能 5、兼容干湿球法和阻容法两种测量模式,并且可以连阻容法烟气含湿量检测器直接读取数据 大流量低浓度烟尘/气测试仪(18款)
  • 崂应发布大流量低浓度烟尘/气测试仪(18款)新品
    崂应3012H-D型 大流量低浓度烟尘/气测试仪 一、产品概述 本仪器应用皮托管平行等速采样法采集固定污染源排气中的颗粒物,用过滤称重法测定烟尘质量,应用定电位电解法定性定量测定烟气成份。可应用于各种锅炉、烟道、工业炉窑等固定污染源颗粒物的排放浓度、折算浓度、排放总量的测定及设备除尘脱硫效率的测定;自动测量烟气动压、烟气静压、流速、流量计前压力、流量计前温度、烟气温度、含湿量、O2、SO2、CO、NO、NO2、H2S、CO2浓度等参数。 产品广泛应用于环保、检测公司、工矿企业(电厂、钢铁厂、水泥厂、糖厂、造纸厂、冶炼厂、陶瓷厂、锅炉炉窑、以及铝业、镁业、锌业、钛业、硅业、药业,包括化肥、化工、橡胶、材料厂等)、卫生、劳动、安监、军事、科研、教育等领域。 二、执行标准n GB/T 16157-1996 固定污染源排气中颗粒物和气态污染物采样方法n HJ/T 48-1999 烟尘采样器技术条件n HJ 57-2017 固定污染源废气 二氧化硫的测定 定电位电解法n HJ 693-2014 固定污染源废气 氮氧化物的测定 定电位电解法n HJ 836-2017 固定污染源废气 低浓度颗粒物的测定 重量法n HJ 870-2017 固定污染源废气 二氧化碳的测定 非分散红外吸收法n HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法n JJG 680-2007 烟尘采样器技术条件n JJG 695-2003 硫化氢气体检测仪n JJG 968-2002 烟气分析仪检定规程 n DB13/T 2375-2016 固定污染源废气低浓度颗粒物的测定 重量法三、产品特点控制系统n 可完成固定污染源废气中浓度低于20mg/m3的颗粒物测定n 气体传感器修正补偿技术:烟气测量具有气体交叉干扰自动修正算法,最大限度地避免了交叉干扰对测量结果的影响,保证了测量精度n 气体传感器量程根据校准量程可调,扩展传感器的使用范围n 采用工业级嵌入式控制器设计,抗静电能力强n 精确电子流量计控制,实时监测计温、计压,自动调节流量n 微电脑控制等速跟踪采样,专有调节方式,响应时间快n 仪器内置弹性气容,提高采样流量稳定性n 具有防倒吸功能,可防止采样结束后采集的烟尘被倒吸出来,保证采样数据的准确性n 实时记录设备工作状态数据,具有采样过程停电记忆功能n 针对温度变化引起的流量误差做了温度补偿,保证测量的准确度n 含湿量检测多模式:兼容干湿球法和阻容法两种测量模式n 具有烟尘采样和烟气测量同步运行功能n 具备故障自检功能,可对仪器功能进行检测并提示故障,方便用户的维护、使用n 具备气密性自动检测功能,可自动诊断气路的气密性动力系统n 高效采样泵,耐腐蚀,流量可达110Lmin,连续运转免维护,适应各种工况,具有过载保护功能n 精密压力传感器搭配稳定的流量控制,可实现超低流速的稳定跟踪n 独特高效气水分离器设计,高效除湿,令硅胶利用率大大高于同类其他仪器n 高效粉尘过滤功能:烟尘烟气采样气路均使用高效粉尘过滤器,极大的降低了流量传感器和采样泵系统的故障率。过滤系统采用透明窗设计,易观察,易更换操作系统n 智能化的软件参数标定设计n 工业级防尘防水键盘,操作方便,特别适用于恶劣工况n 带有中文输入法,方便用户输入采样地点等信息n 采用5.7寸宽温LCD显示屏,适用于野外环境温度,良好人机交互界面,让工作更轻松n 丰富的人机接口:具备RS232、USB等接口,支持数据通信,U盘数据转存输出n 皮托管正、负取压接嘴采用硅橡胶双联管连接,耐候性强,减少管路连接,操作方便n 提供USB接口,可将采样数据文件导出,同时支持升级仪器主板程序n 选用蓝牙高速低噪音微型热敏打印机,轻松掌握实时数据n 预留物联网模块接口,可扩展联网功能其他n 一体化电化学传感器模块,可根据需要自主选配进口传感器,SO2传感器具有高低双量程选择,最多可同时测量7种气体n 多种供电方案:仪器内置电池,并支持交、直流两种供电方式n 内置充电管理:交流供电时可同时工作及给仪器内部电池充电n 直流输出带载:通过直流输出线可以直接给低浓度烟尘多功能取样管或阻容法含湿量检测器供电n 一体称重滤膜式烟尘取样管:适合低浓度烟尘采样*说明:1、以上内容完全符合国家相关标准的要求,因产品升级或有图片与实机不符,请以实机为准, 本内容仅供参考。创新点:1、内置大容量充电锂电池,支持交、直流两种供电方式,可同时给主机和加热取样管供电(24v) 2、便携升级、体积缩小40% 3、具有烟尘采样和烟气测量同步运行功能,最多可同时测量7种气体 4、采用高效芯泵,空载流量可达110L/min,负载20Kpa时流量不低于60L/min ,寿命长,耐腐蚀、连续运转免维护、具有过载保护功能 5、兼容干湿球法和阻容法两种测量模式,并且可以连阻容法烟气含湿量检测器直接读取数据 大流量低浓度烟尘/气测试仪(18款)
  • 烟尘烟气连续自动监测系统认证检测合格厂家名录公布
    烟尘烟气连续自动监测系统(CEMS)认证检测合格厂家名录(截止2011年9月5日) 序号 单位名称 仪器名称 报告编号 检测项目 1 北京凯尔科技发展有限公司 BKS-3000型烟气排放连续监测系统 质(复认)字No.2008–011 颗粒物、SO2、NOX 2 青岛崂山电子仪器总厂有限公司 CEMS-2001 型烟尘烟气连续监测系统 质(认)字No.2008–012 颗粒物、SO2、NOX 3 锦州华冠环境科技实业公司 YQ-2002型烟气连续监测系统监测 质(复认)字No.2008–013 颗粒物、SO2、NOX 4 艾默生过程控制有限公司 GMP1000M型烟气连续监测系统监测 质(认)字No.2008–014 SO2、NOX 5 杭州富铭环境科技有限公司 AS2000型烟尘烟气连续监测系统 质(认)字No.2008–015 颗粒物、SO2、NOX 6 国电环境保护研究院 STEP-2000型烟气连续监测系统监测 质(认)字No.2008–016 SO2、NOX 7 湖北盘古环保工程技术有限公司 PG01型烟气连续监测系统监测 质(认)字No.2008–017 颗粒物、SO2、NOX 8 河北先河科技发展有限公司 XHCEMS-41A型 烟气排放连续自动监测系统 质(认)字No.2008–018 SO2、NOX 9 北京怡孚和融科技有限公司 EV1000型 烟气排放连续监测系统 质(认)字No.2008–019 SO2、NOX 10 邹城安安科技发展有限公司 AA-6000型 烟气排放连续监测系统 质(认)字No.2008–031 SO2、NOX 11 北京牡丹联友电子工程有限公司 HP5000型 在线式烟气连续排放监测系统 质(认)字No.2008–039 颗粒物、SO2、NOX 12 北京牡丹联友电子工程有限公司 HP5000D型 在线式烟气连续排放监测系统 质(认)字No.2008–040 颗粒物、NOX 13 中科天融(北京)科技有限公司 TR-Ⅱ型烟气连续监测系统 质(认)字No.2008–041 颗粒物、SO2、NOX 14 杭州弗林科技有限公司 FLEM-3000型烟气在线监测系统 质(认)字No.2008–043 颗粒物、SO2、NOX 15 西克麦哈克(北京)仪器有限公司 SMC-9021型烟气排放连续监测系统 质(认)字No.2008–046 颗粒物、SO2、NOX 16 重庆川仪分析仪器有限公司 PS6400型 烟气排放连续监测分析系统 质(认)字No.2009–001 颗粒物、SO2、NOX 17 安徽蓝盾光电子股份有限公司 YDZX-01型烟气排放连续监测系统 质(认)字No.2009–007 颗粒物、SO2、NOX 18 西门子(中国)有限公司 SYS-CE-1型 烟气连续监测系统 质(认)字 No.2009–015 颗粒物、SO2、NOX 19宇星科技发展(深圳)有限公司 YX-CEMS型烟气连续监测系统 质(认)字 No.2009–018 颗粒物、SO2、NOX 20 上海优科伽瓦自动化工程有限公司 CW-3000型 烟气连续监测系统检测 质(认)字 No.2009–019 颗粒物、SO2、NOX 21 深圳市中兴环境仪器有限公司 ZE-CEM2000型烟气连续监测系统 质(认)字 No.2009–020 颗粒物、SO2、NOX 22 河北金冠环保仪器设备有限公司 JG-CEMS-Ⅰ型烟气连续监测系统 质(认)字 No.2009–021 颗粒物、SO2、NOX 23 青岛佳明测控仪器有限公司 YSB型烟气连续监测系统 质(认)字No.2009-027 颗粒物、SO2、NOX 24 安徽蓝盾光电子股份有限公司 LGC-01型烟尘排放连续监测系统 质(认)字No.2009-031 颗粒物、SO2、NOX 25 上海宝英光电科技有限公司 C600型烟气连续监测系统 质(认)字No.2009-032 颗粒物、SO2、NOX 26 武汉宇虹环保产业发展有限公司 TH-890型烟气排放监测系统 质(认)字No.2009-033 颗粒物、SO2、NOX 27 北京中电兴业技术开发有限公司 CEI-3000-YQ型 烟气连续监测系统检测 质(认)字No.2009-035 SO2、NOX 28 南京华彭科技有限公司 RQ-200型烟气排放连续监测系统 质(认)字No.2009-042 颗粒物、SO2、NOX 29 赛默飞世尔科技(上海)有限公司 Model200型 烟气连续监测系统 质(认)字No.2009-045 SO2、NOX 30 太原中绿环保科技股份有限公司 TGH-YX型烟气排放连续监测系统 质(认)字No.2009-053 颗粒物、SO2、NOX 31 广州市林华环保科技有限公司 JHL-6型烟气排放连续监测系统 质(认)字No.2009-067 颗粒物、SO2、NOX 32 岛津国际贸易(上海)有限公司 NSA-3080型烟气连续监测系统 质(认)字No.2009-070 颗粒物、SO2、NOX 33 北京航天益来电子科技有限公司 CYA-863型烟气连续监测系统 质(认)字No.2009-071 颗粒物、SO2、NOX 34 河南友来金科技有限公司 YLJ-05型烟气连续监测系统 质(认)字No.2009-072 颗粒物、SO2、NOX 35 北京雪迪龙自动控制系统有限公司 SCS-900型烟气连续监测系统 质(认)字No.2010-002 颗粒物、SO2、NOX 36 聚光科技(杭州)股份有限公司 CEMS-2000型 烟气连续监测系统检测 质(认)字No.2010-016 颗粒物、SO2、NOX 37 北京雪迪龙自动控制系统有限公司 SCS-900C型烟气连续监测系统 质(认)字No.2010-017 颗粒物、SO2、NOX 38 石家庄瑞澳科技有限公司 RO-23A型烟气排放连续监测系统 质(认)字No.2010-027颗粒物、SO2、NOX 39 南京分析仪器厂有限公司 XGF-404型烟气排放连续监测系统 质(认)字No.2010-037 颗粒物、SO2、NOX 40 河南乾正环保设备有限公司 QZ5000型烟气在线自动监测系统 质(认)字No.2010-038 颗粒物、SO2、NOX 41 合肥皖仪科技有限公司 CEMS1000型烟气排放连续监测系统 质(认)字No.2010-041 颗粒物、SO2、NOX 42 赛默飞世尔科技(中国)有限公司 MODEL 600型 烟气连续自动监测系统检测 质(认)字No.2010-052 SO2、NOX 43 北京光电设备厂 YPLC-35型烟尘烟气连续自动监测系统 质(认)字No.2010-059 颗粒物、SO2、NOX 44 岛津国际贸易(上海)有限公司 NSA-3080A型烟气排放连续监测系统 质(认)字No.2010-076 颗粒物、SO2、NOX 45 长沙华时捷环保科技发展有限公司 HSJ-CEMS型烟气排放连续监测系统 质(认)字No.2011-003 颗粒物、SO2、NOX 46 上海华川自动化科技有限公司 M6000型烟气拍了连续监测系统 质(认)字No.2011-005 颗粒物、SO2、NOX 47 佩羲美仪器(上海)有限公司 LMS181型颗粒物排放连续监测系统 质(认)字No.2011-006 颗粒物、SO2、NOX 48 堀场贸易(上海)有限公司 IM-1000E型烟气排放连续监测系统 质(认)字No.2011-007 颗粒物、SO2、NOX 49 德菲电气(北京)有限公司 CEMS9000E型烟气排放连续监测系统 质(认)字No.2011-016 颗粒物、SO2、NOX 50 天津市蓝宇科工贸有限公司 FB-1000型烟气颗粒物排放连续监测系统 质(认)字No.2011-024 颗粒物、SO2、NOX 51 天津同阳科技发展有限公司 TY-021C型烟气排放在线自动监测仪 质(认)字No.2011-025 颗粒物、SO2、NOX 52 安徽蓝盾光电子股份有限公司 YDZX-02型烟气连续监测系统 质(认)字No.2011-026 颗粒物、SO2、NOX 53 厦门格瑞斯特环保科技有限公司 FGAS-06型烟气排放连续监测系统 质(认)字No.2011-027 颗粒物、SO2、NOX 54 邦达诚科技(常州)有限公司 S2000型烟气排放连续监测系统检测 质(认)字No.2011-031 颗粒物、SO2、NOX 55 深圳市世纪天源环保技术有限公司 STEP-CEMS型烟气排放连续监测系统 质(认)字No.2011-050 颗粒物、SO2、NOX 56 北京航天益来电子科技有限公司 CYA-863型烟气排放连续监测系统 质(认)字No.2011-051 颗粒物、SO2、NOX 57 深圳市彩虹谷科技有限公司 RBV-CEMSⅠ型烟气排放连续监测系统 质(认)字No.2011-052 颗粒物 58 广州怡文环境科技股份有限公司 EST-CEMS-1000型CEMS 质(认)字No.2011-053 颗粒物、SO2、NOX
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制