当前位置: 仪器信息网 > 行业主题 > >

基于虚拟仪

仪器信息网基于虚拟仪专题为您提供2024年最新基于虚拟仪价格报价、厂家品牌的相关信息, 包括基于虚拟仪参数、型号等,不管是国产,还是进口品牌的基于虚拟仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基于虚拟仪相关的耗材配件、试剂标物,还有基于虚拟仪相关的最新资讯、资料,以及基于虚拟仪相关的解决方案。

基于虚拟仪相关的资讯

  • 当虚拟现实遇见科研产业
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/8ca48239-3f8c-4b57-95ab-95682e17f65b.jpg" title=" 1.jpg" / /p p style=" text-align: center " strong 来自德国的VR/AR服务商,我们更懂科研产业 /strong /p p strong br/ /strong /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong VR/AR行业现状 /strong /span /p p   虚拟现实和增强现实(VR/AR)热潮近年来接连在全球范围内引爆。目前,VR/AR技术已成功应用于广告传媒、教育培训、房地产、工业生产、医疗服务、文化旅游、互动娱乐等领域,并为行业带来新的发展机遇和升级机会。 /p p   教育行业VR/AR试点更为广泛,将会有超过500家学校采用VR/AR方案。 /p p   教育行业是 VR/AR厂商关注最多的产业,一方面由于教育行业IT终端产品采购量巨大,另一方面则是因为教育行业对应用新科技产品来提高教育质量需求较大。 /p p   教育部发布《教育部办公厅关于2017-2020年开展示范性虚拟仿真实验教学项目建设的通知》后,多个地方政府也出台虚拟产业鼓励政策,以促进教育行业VR及AR的发展。 /p p   2018年,政策推动加上教育行业VR内容的完善,将促使更多学校采用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/1c227c8e-8a88-4e83-8e38-3602b604c9ec.jpg" title=" 2.jpg" / /p p style=" text-align: center " strong 品牌营销对于VR/AR利用将达到新高度 /strong /p p   IDC中国商用渠道和终端用户访谈显示,目前医疗、零售、制造、服务、房地产等行业正在利用VR/AR技术来更好的帮助其产品营销,以更具创意的数字营销手段吸引注意,让消费者身临其境的感受产品特点。 /p p   基于手机的AR技术有望结合LBS地理位置服务以及SLAM同步定位建图,提供更为精准个性的营销方案,提升销售转化。 /p p   现在越来越多的科研产业领域先行者,已经在通过VR技术实现更具现代科技感的营销工具,不断为用户的体验而达到极致。 /p p   技术从来不是万能的,但是这个时代,只有技术能够实现效率的极大提升。领先一步就是商机和优势! /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/1de1e7cb-9136-4986-928a-a00e5bb59725.jpg" title=" 3.jpg" / /p p style=" text-align: center " strong 优质内容商将成为VR/AR的优势竞争者 /strong /p p   2018年,VR体验店将迎来差异化、精细化以及渠道下沉的运营方向。为实现体验店差异化运营,更多类型的体验店和体感设备将投放市场。高端体验店的服务也将更为精细,将提供更多主题化体验的VR服务。 /p p   在目前市场普遍缺乏优质内容的阶段,一款好的内容有能力驱动一种硬件形态的发展,并因此成为VR/AR行业的优势竞争者。 /p p   2018年,将会有更多优质内容商以及内容与VR/AR设备协同,带动市场向各产业细分应用场景纵深发展。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/3ae520b3-5479-4e63-bac2-346e9cd4876b.jpg" title=" 4.jpg" / /p p   而RW1,realworld one, 作为从IKA分拆出来的独立公司,拥有40多名来自全球各地的虚拟现实领域的专业人士,realworld one致力于打造专为工业和仪器设备制造商、高校教育领域以及应用于化工、制药、化妆品及食品等行业的虚拟现实产品和增强现实产品。 /p p   和IKA一样,RW1的优势也在于产品品质,即虚拟现实产品优质内容的精细打造。 /p p   我们拒绝粗制滥造,因为我们的服务对象是科研产业,这是一个比其它任何产业都要讲求精工专业的应用行业。 /p p   我们深懂科研,凭借IKA一百多年的专注,RW1有实力专为科研产业领域提供世界顶级的VR及AR体验。 /p p   而我们的梦想,远不止于此。我们要打造一个国际范围内的VR生态圈! /p p   一睹realworld one的风采,请来这里: /p p   2018年6月,法兰克福阿赫玛大展,RW1将以600平米的超级空间等候您的光临。 /p p   2018年4月15-16日,中国常州,ACCSI,科学仪器行业“达沃斯”论坛,RW1将盛大亮相。或者,您想单独预约体验一下?也是So Easy~ 留个言,剩下的交给我们。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201803/insimg/c34bdf49-e5ce-4906-8804-fdf42343b3b7.jpg" title=" 5.jpg" style=" width: 600px height: 351px " width=" 600" vspace=" 0" hspace=" 0" height=" 351" border=" 0" / /p p span style=" color: rgb(112, 48, 160) " strong 年会介绍 /strong /span :http://www.instrument.com.cn/accsi/2018/ /p p span style=" color: rgb(112, 48, 160) " strong 年会报名 /strong /span :http://www.instrument.com.cn/accsi/2018/Register.html /p
  • 心脑血管虚拟内窥镜的研发培育
    成果名称 心脑血管虚拟内窥镜的研发培育 单位名称 北京师范大学 联系人 常崇艳 联系邮箱 changcy@bnu.edu.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 心脑血管可视化研究是针对人体心脑血管的计算机应用技术。通过对数字化的医学影像的智能处理、数据分析、三维建模、数据可视化,虚拟现实,以充分呈现人体血管的形态特征,方便医生洞察医学数据,应用于医学教学、科研、临床,达到对疾病诊断、病灶检测、辅助治疗的作用。 心脑血管是人体血管中的最典型的代表,心脑血管疾病是当前人类健康的最重要疾病。结合信息科学与生命科学特点,运用计算机最新科技方法对血管的研究,是近年来该领域的研究热点。该领域的研究进展和技术突破,对临床医学、生命科学、病症统计学及预防学等领域的发展将带来重要的影响。由于心脑血管在人体组织中所占比例低,血管成像灰度不均匀,形态复杂且个体差异性大,细小血管间多存在缠绕和遮挡,使得对心脑血管的可视化成为计算机图形学领域中的重要问题。本项研究针对心脑血管可视化应用领域,主要解决的问题和关键技术包括: 1. 从医学影像中血管信息的提取技术; 2. 医学体数据中血管的三维可视化实时绘制技术 3. 血管数据的三维建模技术、 4. 血管的虚拟内窥技术 5. 三维血管数据的测量技术 6. 异常血管的疾病监测技术 本项研究应用计算机图形学和人工智能技术,重点突破在基于医学图像序列的影像数据精细分割、大规模体数据的实时精细绘制、复杂血管模型的建模,针对脑血管的分层三维可视化、血管的虚拟内窥等关键技术瓶颈,改进了现有的可视化关键算法,开发了系列软件平台,形成了&ldquo 四层两库&rdquo 的体系结构。本项研究工作得到了6项国家和北京市的科技计划支持,共发表三大检索论文28篇。 该项研究运用信息技术对医学影像的智能处理,更真实的呈现了人体血管的三维形态特征。研究成果可有效的应用于医学教学、科研、临床,其研究意义重大,应用前景广阔。 应用前景: 医学影像检查的结论通常来自图像后处理医生提供的图像和报告,如果所获得的图像质量非常高,图像后处理难度非常小,那么诊断结论就相对简单、诊断准确性也将很高。然而由于患者心率、造影剂的注射参数、扫描参数、伪影以及对比强度不佳等客观因素以及图像重建水平等主管因素的影像往往使得医学影像检查的结论存在一定的误差,因此亟待通过应用高性能、高质量的医学影像工作站进一步提高图像重建的准确程度,为伪影的甄别和处理和病变组织的识别和判断奠定基础。 在实际工作中,大多数情况下主治医生并不能到影像工作科室去实际完成影像的重建,其诊断还是要依赖于重建医生所提供的图像。重建医生在重建过程中所出现的判断错误,主治医生很难识别,即使有所怀疑,也需要对原始的切片图像进行观察和简单处理以后才能确定。但是,在很多医院,受PACS系统承载能力的限制,不可能把大量的切片图像全都上传到图像服务器,这就给整个诊断过程带来了困难,并将对医学影像工作站的使用造成巨大的负载压力。要解决这样的冲突,就必须增加工作站的数量,然而设备厂商提供的工作站价格十分昂贵,并且一般不为用户提供相应软件开发和的接口个性化服务功能,一定程度影响了工作站的推广和使用。因此具有价格便宜、具有满足用户个性化需要、兼容各类影像数据和工作站、功能完整、重建质量高、操作简单、具有可编程开放接口等特点的医学影像工作站将成为未来的发展方向。 知识产权及项目获奖情况: 本项目在多项关键技术中,具有自主知识产权的研究成果 专利与软著情况,形成6项软件著作权,1项专利 6项软件著作权 1、 脑血管医学图像分割系统2、 脑血管分割及医学虚拟内窥检查系统 3、 基于PSO的统计脑血管分割系统 4、 脑血管三维可视化虚拟融合系统 5、 心脑血管数据库管理系统 6、 三维脑血管模型动态压缩处理 1项专利 1、 基于球B样条曲线的三维血管模型构造方法 10项国家、部委、省、市专项计划支持 1、 国家自然科学基金《基于医学图像的数据挖掘技术研究》(60372072)已结题 2、 北京自然科学基金重点项目《虚拟环境中脑血管可视化、导航和监测技术》(4081002)已验收 3、 首都科技条件平台项目《心脑血管虚拟内窥镜的研发培育》(Z131110000613062) 已验收 4、 国家自然科学基金项目《盘B样条和球B样条造型的理论及其应用》(61170170) 在研 5、 国家自然科学基金项目《脑血管兴趣区域提取关键技术研究》(61271366) 在研 6、 国自然面上基金《基于CTA影像数据的3D冠脉狭窄自动检测及其量化评估研究》(61472042) 在研 7、 国自然青基《基于球B样条的Willis环建模、分割及定位关键技术研究》(60803082)已结题 8、 国自然青基《基于统计分割的脑血管三维模型重构研究》(61003134) 已结题 9、 国家重点实验室项目《交互式实时虚拟内窥镜算法研究》(SYSKF0107 》已结题 10、 博士后基金《三维血管的重构技术研究》已结题
  • 湖南首届虚拟仪器大赛举办 9所高校20多支团队参赛
    湖南省首届虚拟仪器大赛今天在湘大举办。来自中南大学、湖南大学、湘潭大学等省内9所高校20多支团队参赛。湘潭大学副校长廖永安、省仪器仪表学会副理事长李学军出席比赛开幕式,并现场观看了作品展示。  “只要伸出手比划一个‘不’的手势,电脑就能隔空‘读懂’!”展台入口处,湘潭大学爱科技爱创意团队的“魔幻手语”汇聚了很高人气,团队成员、2015级物理与光电工程学院的刘韬边用心地演示,边耐心地向评审专家和参观师生解说作品的创意灵感,“良好的人机交互需要识别手势所表达的含义,这个有比较好的应用前景,目前很火的VR项目,就需要用到手势识别。”  经过作品展示、答辩和专家评审,湘潭大学S-creator团队的“基于My-RIO的智能垃圾桶”、 湖湘梦之队的“无线数显角度测量仪”,南华大学低调奢华有内涵团队的“车载安全监控系统”,中南大学三点一线小太阳花小队“基于NI myRIO的智能购物车机器人”获得一等奖 湖南师范大学众创LabView小组“LabView大学物理仿真实验套件”、湘潭大学爱科技爱创意团队“魔幻手语”、湖南大学87仪器团队“基于LabVIEW的多功能噪声测量分析管理系统”等6个团队获得二等奖,另有9个团队获得三等奖。  李学军认为,本次比赛融科学性、实用性、趣味性和观赏性为一体,学生通过参加这样富有创意性的科技竞赛,能够初步体会一个工程性的研究开发项目从设计到实现的全过程,可以有效培养他们综合运用知识的能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能力。  廖永安表示,参加学科竞赛,不但可以培养学生的科学兴趣、锻炼综合素质、展现创新能力,同时也可以不断提升教师教学综合能力和人才培养质量。希望通过湖南省首届虚拟仪器设计大赛,促进与兄弟院校的技术交流,共同提高,共同进步,争取在虚拟仪器这个领域以赛促学,为培养新一代卓越工程师而努力。  本次大赛,湘潭大学物理与光电工程学院LabVIEW学生创新俱乐部推荐的10个团队全部获奖,并取得了2个一等奖、4个二等奖的好成绩。团队指导老师李旭军曾连续3届带领学生团队入围国内虚拟仪器顶级赛事“全国虚拟仪器大赛”决赛,拥有丰富的大赛指导经验,“这次比赛从作品展示、作品答辩到作品评审等环节都参照国赛模式,学生通过展示作品、作品答辩,可以切磋技艺、交流心得,是一次很好的锻炼。”  据了解,虚拟仪器技术(Virtual instrument)是利用高性能的模块化硬件,结合高效灵活的软件来完成各种测试、测量和自动化的应用技术,适用范围非常广泛。目前,区域性与省级虚拟仪器设计大赛在全国各地已经形成了常规赛事。在我国,“全国虚拟仪器大赛”是国内虚拟仪器方面的顶级赛事,自2011年开赛以来,每两年举办一届,每届都吸引了全国近200多所高校1000多支代表队参加,参赛队伍涵盖本科、研究生各层次,湘潭大学物理与光电工程学院连续3届都有学生团队参赛并入围决赛。
  • 中国虚拟仪器之父应怀樵:攻克十大世界性难题
    5月24日,北京东方振动和噪声技术研究所名誉所长应怀樵在第十五届北京科博会“2012中国战略性新兴产业发展论坛”上,作题为《云智慧时代第三次工业革命正在走来——“从软件制造仪器”到“软件制造一切”》的主题演讲。   科学无国界,而科学家是有国界的,这句话在“中国虚拟仪器之父”应怀樵身上,就是近半个世纪的岁月里,他始终以“砍柴樵夫”般的坚韧与顽强,跋涉在为中华崛起而奋斗的科学高峰上,即使古稀之年,面对“3次中风、4次心梗、7次至阎王殿”的生命挑战,依然以超人的毅力、坚定的信念,战胜病魔,执著奋进在创世界一流的“虚拟仪器”科研阵地上。   而支撑他的则是中国科学界应为人类文明进步作出更大贡献的使命感与荣誉感!正是怀着振兴中华、造福人类的理想追求,他数十年如一日,呕心沥血,将全部精力投入虚拟仪器(VI)科学研究之中,自主创新112项新技术,攻克十大世界性难题并填补国内空白,特别是对“传递函数的测试及实时控制和反演关键技术”的成功突破,为提高虚拟仪器测量精度和范围开创新途径,被认为“可与‘光纤之父’诺奖得主高锟教授的‘光纤通信’成果相提并论”,使中美两国同步创造的虚拟仪器达到可问鼎诺贝尔物理学奖的,具有世界性重大意义的成果,是中华民族继四大发明之后,对人类文明有重要意义和影响的现代发明之一。   生命熔铸:“虚拟仪器之父”是怎样炼成的   1941年7月,应怀樵出生于浙江绍兴,这里人文底蕴深厚,而无论是早年受笃信佛教的母亲的熏陶,还是得益蔡元培曾担任校长的小学优良的教学传统,都使他从小树立了为民族崛起而读书的远大理想。   1959年,应怀樵就读浙江大学理论物理专业,后应国家需要全班调整为应用力学专业。1964年,大学毕业后,他被分配到中国铁道科学院,致力于高速列车风洞课题研究,并到清华学习风洞测试分析技术。1965年,他参与我国核爆炸防护工程研究,接触到震动噪声和频谱分析,开始了虚拟仪器科研生涯,而早年五次转换专业,则练就他扎实的学术功底和多学科交叉研究课题的优势。更重要的是,科技水平对国家命运的深刻影响更使他深感责任重大。成为世界一流的科学家,为国争光成为他深埋心中的梦想。而他也毫不讳言对诺奖的钟情,在他看来,诺奖不仅是一种崇高的荣誉,更是激励创新、造福人类的精神泉源。   在他看来,以“四大发明”为标志,中华民族曾为人类科技进步作出重要贡献,然而近代以来却落伍了,应怀樵认为,伴随中华民族的伟大复兴,中国科学家理应在高科技领域取得原创的重大突破,向诺奖冲刺。这不仅是一个科学家的荣誉,更是中华民族屹立世界民族之林的时代要求。   正是怀着这样一份强烈的使命感和荣誉感,应怀樵走过了一条不平凡的科研探索之路。要成为世界一流的科学家,首先要有敏锐、超前发现重大课题的科研能力。应怀樵介绍说,所谓“‘虚拟仪器’其实并非是传统的仪器,它是指集数据采集和信号调理器、信号处理技术与PC机技术于一体的软件制造仪器”。事实上,1965年他参加国防核爆炸防护工程课题——地下铁道核爆炸震动噪声与动力学测试分析的研究,当他遇到地铁道床的下沉残余位移(OHz)用硬件无法获得的难题时,就萌生了虚拟仪器的大胆构想——“用数字算法和软件取代硬件”,1973年他尝试用数字计算机的软件数字积分取代传统硬件模拟积分的方法解决上述难题,1979年获得成功,成为虚拟仪器的最早成功范例。同年于杭州召开的国防科委核试验全国防护工程学术会上,他提出虚拟仪器的核心概念——“软件制造仪器”,获得主持会议的中科院力学所所长郑哲敏院士、清华大学副校长张维院士、同济大学校长李国豪院士的赞扬和支持,比美国NI公司“软件是仪器”的概念提出早7年。   成为世界一流科学家,还要有瞄准国际前沿,不断自我超越的创新意志。据了解,科学仪器与实验技术发展至今已走过模拟式、数字式、智能式三个阶段,从1983年~1986年,开始出现第四代仪器即虚拟仪器(简称VI)。而应怀樵的研究始终走在国际前列。1979年,他编撰的具有该领域应用成果的国内首部专著《振动测试和分析》出版发行,并不断自我超越:1982年《CZ测震仪与测振技术》出版发行,1983年出版了具有中国虚拟仪器早期构思实例框图的《波形和频谱分析与随机数据处理》。1985年他自筹资金创建东方振动和噪声技术研究所(简称东方所),开始系统从事虚拟仪器库、移动实验室技术研究,提出“把实验室拎着走”的目标,正式立题“DASP虚拟仪器库—振动噪声、模态分析移动实验室技术”研究,为此,他自立课题、自筹资金开始研究“PC卡泰”(PCCATAI)—微机卡式自动采集测试分析仪器。他还是国内外最早提出“用软件制造仪器”、“用软硬件相结合”来取代传统仪器的学者。此后,依靠持续创新,他带领团队突破了虚拟仪器的核心技术,开发出适合便携机和笔记本使用的小型数采卡和大容量数据采集分析(LCAS)软件,研制成功台式和笔记本式大容量智能数据采集和信号处理系统以及DASP“达世普”虚拟仪器库系统。这是我国最早研制成功的虚拟仪器产品,实现“把实验室拎着走”的目标。   1988年9月16日,中国虚拟仪器应用于火箭激振钱塘江大桥模态实验圆满成功。1993年3月,该仪器参加北京新技术展览会,并远赴加拿大参展获一致好评。1995年用于“长三捆”火箭全箭模态实验,1996年用于神舟载人飞船移动发射平台模态实验。2004年用于航天员超重训练设备臂架系统模态分析。2007年,在第二届全国虚拟仪器学术交流大会上,东方所的卓越贡献受到高度评价,应怀樵被誉为“中国虚拟仪器之父”。   产业报国:让DASP虚拟仪器库运行在每个实验台   伴随经济全球化及信息时代的来临,如何在世界高科技领域拥有一席之地,如何将中国的高科技产品行销全世界,正成为中华民族是否真正崛起的重要标志。   数十载春秋,对十大世界性难题原创性的解决让其成为具有中华民族自主知识产权关键技术的经历为应怀樵平添几分豪迈与自信。   一是基于平台式设计的VI库技术。用软件制造仪器,软硬件结合取代传统仪器,这一具有里程碑式划时代意义的新路线对仪器制造业和测试技术界产生巨大影响,代表了我国在VI研发方面的最高水平。   二是变时基(VTB)传递函数(导纳)测量分析方法。达到国际领先水平,获国家发明专利。已完成神舟飞船750吨移动发射平台、“长三捆”大型运载火箭、航天员超重训练机模态实验等数十项国家重点项目,效果优良。   三是高精度频率、幅值、相位和阻尼测量技术。东方所原创的高精度频率计和幅值计,比国外常规方法提高精度100万倍,具有重大国际影响力。   四是超低频信号快速测量技术,达到国际领先水平。   五是原创倒熵熵、倒熵富、倒富熵等三种倒熵谱分析方法,达到倒谱分析的国际领先水平。   六是FFT/DFT分析方法,成为目前频谱细化主要方法之一,达到国际领先。   七是振动全息AVD“一入三出”实时测试分析创新技术,原创性地提出了全程微积分方法,实现AVD“一入三出”振动全息实时动态连续测量,达到国际领先。   八是自动化模态分析方法。一般人员通过简单操作即可获得专家级的模态分析结果。   九是24位“双核”变幅基A/D高精度超量程160dB数采仪技术达到国内首创,国际领先。   十是突破传递函数的测试及实时控制和反演关键技术为提高仪器测量精度和范围开辟新途径。此技术是一项世界难题,可极大扩展仪器的频率测试范围,提高测试精度,极具国际竞争力。   仅仅拥有一流的成果还远远不够,在应怀樵眼里,诺贝尔不仅是一位杰出的科学家,还是一代企业家,对科学及人类进步事业的热爱,和凭借巨额财富设立的诺贝尔奖,使他成功激励了一代又一代热爱科学与进步的杰出人物,为人类文明的进步作出不可磨灭的贡献。为此,当虚拟仪器技术攀上科学顶峰的时候,应怀樵直面7次与死神擦肩而过的生命危机,依然没有停止探索与奋进的脚步,开始积极思考中国虚拟仪器的产业化之路,树立起“让INV系统走进每一个实验室,让DASP软件运行在每个实验台上”的宏大目标。   为此目标,他在建所之初就提出“勤奋、创新、坚持、自强、和谐”的十字座右铭和完全自由的判断与讨论的“玻尔所”精神和“六要三不要”的处事准则等基础上,发展成为涵盖精神追求、道德情操的18条共336字法则及幸福六大原则的企业文化,加强了东方所的文化凝聚力。   以此为纽带,东方所不断加强人才队伍建设,一方面加强与全国重点高校合作,为国家培养出大批专业急需人才,以及行业高端人才,该所研究团队也扩大到40余人,拥有博士、硕士数十名,成为虚拟仪器领域一支重要力量。同时他还成功组织和主持了23届全国振动与噪声高技术学术会议,1997年至今主编《现代振动与噪声技术》九卷等十多部专著及《倒熵谱研究》等150多篇论文报告。同时,不断创新软硬件研发,推出CPCI式INV3020和LAN以太网式INV3060、USB式INV3018系列新产品,无线INV9500、手持式INV3080等硬件新产品和DASP的最新软件版本,积极推动产品市场化。   “软件制造仪器,软硬件结合取代传统仪器”能省掉大量昂贵和笨重的硬件材料和人力物力、设备、厂房和能源,便于生产和携带。这是一条划时代的新途径,是科学仪器和测试领域的一次突破和革命,是21世纪的仪器的重要发展方向,是中华民族原创的具有自主知识产权的重大发明之一。中国虚拟仪器DASP软件和INV移动实验室系统是与美国NI同步并行研发的,其中自主创新112项新技术,其中20多项达国际领先水平,是研发最早且核心技术搞得最好的科研成果。   截至目前,该成果产品累计销往2000多家用户,经济效益超过1亿元,打破了此类仪器长期依赖进口的局面,为国家节省外汇数亿美元。目前,已广泛用于国防军工、航天航空等许多部门,参与完成上百项国家重大工程项目测试。若在国内全面推广,其经济价值按我国2007年仪器产值估算,按软件取代硬件30%到一半计算,将产生600亿元到1000亿元/年的巨大价值,为促进技术变革和推动新兴产业形成,造福国计民生发挥重大作用。   面对激烈的国际竞争与广阔的国际市场,应怀樵认为中国虚拟仪器产业化之路任重道远,“达到世界普及”,这是一个目标,更是一种信念!以领先的科技与执著的信念支撑,应怀樵和他的虚拟仪器产业化之路必将迎来胜利曙光!而作为科学家,应怀樵瞄准国际前沿的战略思考从未停止,随着“云计算”和“物联网”时代的到来,他又在国内外率先提出实验室网络云时代——“云智慧仪器实验室”与“云智慧故障诊断中心”和“智慧仪器”的构想,提议国家尽快开展相关研究。   正如诺奖的创立者曾经践行的,科学精神与产业之路的生命熔铸将带给人类更加美好的未来!或许,这正是以不竭的生命激情与创新意志跋涉于科学与产业化之路的“中国虚拟仪器之父”应怀樵教授所真正钟情的。
  • 光学分析仪成就虚拟翻书国内尖端技术
    虚拟翻书作为一个新鲜的名词最近已经进入到人们的视线之内。无论是在各大行业的展览展示应用,还是人们的眼前手边,都已经开始发现虚拟翻书这种独特的高科技产品。新颖的模式,别具一格的造型理念,在配合新兴的娱乐互动系统,让虚拟翻书都成为越来越不可或缺的创新产品。   虚拟翻书系统就是虚拟电子书,又叫做虚拟翻页、感应翻书、电子翻书、互动翻书等,虚拟电子书犹如一本打开的书籍,里面可以记载丰富的资料(包括动画、视频、图片)。参观者可以挥动手臂“翻阅”书籍,自左向右或者自右向左,还可以选择章节,快速找到您想翻阅的内容,就像翻阅一本普通的杂志一样,这就是虚拟翻书系统带来的惊喜!这种虚拟翻书形式新颖,视觉冲击力强,给人以神奇感,而且可以展示的信息量大。   互动技术在投影行业已经有了广泛的认知和长足的发展,国内随着投影机的普及新型的技术也打开了局面。   互动投影系统运用的技术为混合虚拟现实技术与动感捕捉技术,是虚拟现实技术的进一步的发展。虚拟现实是通过计算机产生三维影像,提供给用户一个三维的空间并与之互动的一种技术。通过混合现实,用户在操控虚拟影像的同时也能接触真实环境,从而增强了感官性。   互动投影系统奇幻的视觉效果和美妙的动感将吸引所有的顾客、现场观众甚至是路人的驻足停留和互动观看,并通过其互动画面和声音变幻使所有的顾客和观众参与其中,从而提升娱乐和休闲的内在吸引力,促进消费和再消费,特别适合于迪吧、酒店、KTV、酒吧等休闲娱乐场所。
  • 病理学数字化——介绍虚拟显微镜以及要问的问题
    • Katharina Eser病理学实验室作为一个机构正在发生变化。即使有一段时间的滞后,这门至关重要的医学学科也正在转向数字化:实验室正在变得虚拟。这个过程的一部分也是虚拟显微镜,它支持向数字病理学的转变。许多病理学家仍然通过模拟显微镜观察,同时决定作为切片制剂位于他们面前的一小段组织是否注入了肿瘤细胞。在其他实验室,这项任务已经由一个自动化系统完成,该系统将切片制剂独立放置在扫描显微镜下,扫描样本,最后由人工智能识别、标记和计数肿瘤细胞。要采取这一步骤,你不仅需要合适的设备,还需要实验室中的新工作流程和经过培训的人员。本文将有助于强调这一过程中的挑战和出现的问题。全球病理学家短缺如今,癌症发病率正在上升,同时,能够治疗和检测癌症的人数正在减少。世界上许多地方的医疗服务不足,但即使在最富裕的国家,也缺乏病理学家等专家。造成这种情况的原因包括医学院期间的教育和广告太少,以及在实验室工作是孤立的情绪因素,与患者的接触往往仅限于观察他们的组织。但也有一个事实是,大多数疾病观察的时间越长,就会变得越复杂。人类无法提供识别某些相关性所需的数据量。因此,病理学实验室的数字化带来的可能性是无限有吸引力的。病理学的一个重要支柱是在显微镜下观察组织样本。虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。为此,显微镜制剂被数字化,因此可以在以后的屏幕上查看和处理,而不考虑位置和/或工作站。这些数字制剂可以存储在数据库中,并与无限数量的用户共享。为了生成样本的数字图像,可以使用配有额外摄像头的模拟显微镜。然而,病理学的发展趋向于使用数字显微镜。根据模型的不同,这些显微镜通常不仅可以产生标本的实时图像,还可以对其进行扫描。数字显微镜不仅可以显示单个视场,还可以扫描整个标本。数字化显微镜载玻片可以称为虚拟载玻片、扫描或全载玻片图像。这些术语描述了完全数字化的显微镜标本。为了产生数字图像,该仪器逐片扫描载玻片上的整个样本。该软件将生成的高分辨率单个图像合并为一个完整的图像。这个过程叫做缝合。在电脑上,用户可以浏览样本,放大并分析。图1:虚拟显微镜为用户提供了独立于时间和位置对标本进行数字显微镜检查的能力。©Precision股份有限公司试样质量至关重要与所有显微镜手术一样,标本的质量在虚拟显微镜中也起着重要作用。样品必须尽可能均匀地切割,因为软件在扫描过程中会自动设置焦点。过大的高度差异可能导致平面跳跃和完成扫描中的模糊区域,并且无法校正。样本也必须在仪器的固定扫描区域内。样本必须均匀染色,以正确表示所有细胞结构。此外,应避免样品出现气穴、重叠和其他污染。在特殊情况下,样本的性质会退隐到背景中。例如,在肿瘤手术过程中,通常会在手术过程中对切除的组织进行切片,即所谓的冷冻切片。然后在显微镜下只观察样品的某些区域。数字样本的质量也取决于所用相机的质量。模拟显微镜上的相机附件通常不能提供高质量,因为这些系统不是为数字化过程设计的。数字显微镜是为这一过程设计的,除了扫描功能外,它还具有实时视图,因此可以在屏幕上实时观察样本。纯幻灯片扫描设备为用户提供了在速度和分辨率之间进行选择的可能性。较高的扫描速度会导致图像质量的损失。然而,由于这些设备是自主操作的,因此也可以通过调整扫描仪的工作时间来调整时间损失,例如在晚上。为了充分利用显微镜扫描,需要合适的图像查看软件。根据图像格式的不同,只有非常专业的程序才能处理病理切片的图像。所谓的查看软件也提供了评估图像的不同可能性。例如,使用不同的注释工具,可以绘制直线和圆,也可以附加书面注释。此外,还可以将人工智能集成到此类程序中。在集成人工智能的帮助下,对某些结构或细胞的自动评估成为可能。理想情况下,可以根据图像来存储注释和评估。可以将查看软件集成到云中。这样一来,扫描不仅可以通过网络服务器与其他用户共享,还可以直接在平台上查看。此外,通常可以提供关于图像的特定信息。在大多数云服务中,图像存储、图像共享和图像查看设施都是可用的。任何终端设备都可以查看扫描结果。不管是大屏幕、智能手机、平板电脑还是笔记本电脑。然而,屏幕的性质对于再现的图像质量是决定性的[1]。表1:拥有数字工作流程可以使病理实验室的工作更快、更高效,并为创新腾出空间。©Precision股份有限公司今天的病理学是手工工作目前,在大多数情况下,需要在病理学实验室进行检查的样本都会带着一张提交单到达,上面会手工注明如何处理。这些信息由工作人员传输到实验室信息系统。在病理学家对组织进行宏观检查后,医疗技术人员准备样品进行进一步检查。这些标本有时需要大量的手工制作、切割、在煤油中固定,并使用各种组织化学和免疫组织学技术进行染色;它们被切割,安装在载玻片上,并用玻璃覆盖。然后将标本分类到文件夹中,并提交给病理学家进行检查。在某些情况下,标本也会被扫描。为此,还必须手动插入样本并进行登记。如果存在质量缺陷,则必须重复该过程。这个工作流程在这里只是粗略地概述,涉及许多手册和小规模的工作步骤,其中有许多错误来源。在向完全数字化病理学实验室发展的另一端,大量切片制剂的自动扫描、诊断的数字提供以及临床数据以及数字报告文本生成即将到来。该系统可以在输入样本注册后对订单进行优先级排序和处理,并处理质量控制。此外,人工智能用于支持组织病理学诊断。此外,该系统可以将分析的图像数据和分子信息集成到工作流程中。与此同时,几个研究项目正在接近实现这一愿景,揭示了这一理论的实际机遇和挑战。图2:有了数字样本,算法就有可能取代昂贵的计数和注释工作。©Precision股份有限公司算法打开了广泛的可能性尽管数字图像有很多优点,但它并不能解决用户的许多问题和要求。然而,数字化为使用算法进行图像分析开辟了广泛的可能性。经典算法可以检测和计数定义明确的结构,如肿瘤细胞。这使得病理学家能够通过具体的测量值进行量化。在这样做的过程中,算法有效地进行并且没有偏差。压力或时间压力以及影响人类的视错觉的影响等因素在这里不会发生。现在市场上有许多产品可以用于不同的分析方法。这些程序可以快速有效地找到预定义的结构,并可重复地对其进行量化。有许多研究描述了算法在不同器官和各种疾病的组织学制备中的应用[3]。通常,对这些算法进行训练,以便专家在组织学切片中标记定义的结构。该算法用一系列类似的部分进行训练,直到它自己识别出标记的结构。市场上常见的程序通常专门针对特定的疾病模式;他们的任务是识别和量化预定义的结构。一个算法只能和它所训练的数据集的质量一样好[4]。所寻求的结构的数量越多,变化越大,评估就越好、越可靠。这就是目前正在世界各地建立的生物库发挥重要作用的地方。这些不仅提供了许多物理样本,而且还提供了许多已经数字化的样本。下一步是专门针对用户的应用需求进行训练的算法。在这里,一系列有趣的产品也在开发[2]。挑战在于将获得的数据集转换成什么格式,以及如何最终将其整合到实验室信息系统和相关部门的系统中。当然,还有实验室人员和工作流程的问题。图3:正确的样品制备是虚拟显微镜的关键。©Precision股份有限公司结论病理学实验室向数字化病理学实验室的转变只能循序渐进。该过程的开始是所有过程的文档化和可视化,必须根据各种参数(如人员、机器和开发程度)以及IT和过程支持级别对其进行分析。由此可以产生有意义的转型规划。其中一部分是虚拟显微镜、满足要求的设备以及支持这项工作的算法。现在有许多公司专门帮助实验室进行这种转变。这是一项非常明智的服务,因为这种转变很复杂,需要时间和金钱,而且还必须在人员方面得到很好的支持才能发挥作用。References[1] Brochhausen C. et al (2015) A virtual microscope for academic medical education: the pate project. Interact J Med Res. 4: e11. [2] Li Z et al. (2021) Deep Learning Methods for Lung Cancer Segmentation in Whole-Slide Histopathology Images – The ACDC@LungHP Challenge 2019. IEEE J Biomed Health Inform 25: 429-440[3] Mun SK et al. Artificial Intelligence for the Future Radiology Diagnostic Service. Front Mol Biosci. 2021 Jan 28 7:614258. DOI: 10.3389/fmolb.2020.614258 [4] Cui, M., Zhang. D.Y. Artificial intelligence and computational pathology. Lab Invest 101, 412-422 (2021). DOI: 10.1038/s41374-020-00514-0 .关于作者Katharina Eser在学习艺术史之前曾在一家日报担任编辑。2021年,她加入PrecisPoint,担任业务创新经理,现在是该公司的自由职业者。来源:Going digital in pathology——Introducing Virtual Microscopy and what questions to askMicroscopy Light Microscopy Lab Automation Image Processing , 17 May 2023供稿:符 斌,北京中实国金国际实验室能力验证研究有限公司
  • 智能“手套”可增强虚拟现实触觉
    据英国《新科学家》杂志网站14日报道,美国科学家发明出一款智能“手套”,可通过向佩戴者手掌中的神经发送电信号,让佩戴者感觉自己在虚拟现实(VR)中抓住物体。  为配合在VR中拿东西的视觉体验,人们经常会佩戴手套,手套会向手掌提供反馈,比如振动或电信号。但手套也会使佩戴者的手指感觉迟钝,使用户在佩戴VR耳机时更难执行灵巧的任务。  芝加哥大学田中雄大团队开发出了一种设备,使用手背和手指上佩戴的电极网来模拟或增强触觉,使手掌和手指不受阻碍地活动。神经刺激会使单个手指感觉好像在触摸什么东西,因为人类的手掌比手背有更多触摸感受器来接收电极发送的电信号。  研究团队在几种VR体验中测试该设备,比如在虚拟攀爬体验中,该设备可让人们在VR中攀爬时能更敏锐地感觉到手掌中的绳索。  团队认为,这种手套在现实的学习任务中也很有用。他们尝试将其用于打碟,在该场景下,这款智能“手套”可提供反馈,指导某人何时将特定的音乐曲目淡入或淡出。  研究人员指出,因为这款手套不会覆盖整个手,所以可一直佩戴,在VR内外使用。他们在2023年计算机系统人为因素会议上介绍了这一最新研究。
  • 环境噪声信源分析与特征辨识虚拟仪器系统研发
    针对传统的环境噪声监测与分析仪器功能单一化,提出了环境噪声连续实时监测与同步时频分析一体化的设计思想,自行开发了环境噪声信源特征分析与辨识虚拟仪器系统。其检测前端采用半球型电容声压传感器阵列,以PC机及其自带声卡为硬件,在LabVIEW软件平台上通过二次开发,实现环境噪声信号采集、参量计算、时频分析、声源类型判定多功能一体化。该虚拟仪器系统定位最大相对误差4.13%,测量声级分辨率0.01dB。 环境噪声信源分析与特征辨识虚拟仪器系统研发_乔佳乐.pdf
  • 293.8万!中山大学智能工程学院虚拟现实技术实验室仪器设备采购
    一、项目基本情况项目编号:中大招(货)[2021]1029号项目名称:中山大学智能工程学院虚拟现实技术实验室仪器设备采购项目预算金额:293.8000000 万元(人民币)最高限价(如有):293.8000000 万元(人民币)采购需求:1、标的名称:虚拟现实技术实验室仪器设备2、标的数量:序号设 备 名 称数 量单位单价限价(元)1数据手套60双78002高清图像渲染集中处理平台1台10000003虚拟现实头盔60个45004虚拟现实高清图像处理工作站(核心产品)60台180005无线追踪器60套2000注:投标报价不得超过本项目最高限价及单价限价。3、简要技术需求或服务要求: 本项目不允许产自中华人民共和国关境外的进口货物投标,具体内容及要求详见用户需求书。 4、采购标的对应的中小企业划分标准所属行业为工业。合同履行期限:合同签订后且收到发货通知45个日历天以内安装完毕。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:本项目不属于专门面向中小企业采购的项目3.本项目的特定资格要求:3.1投标人应具备《政府采购法》第二十二条规定的条件,提供下列材料: ①供应商必须是具有独立承担民事责任能力的在中华人民共和国境内注册的法人或其他组织或自然人,投标时提交有效的营业执照(或事业法人登记证或身份证等相关证明)副本复印件。 ②.供应商必须具有良好的商业信誉和健全的财务会计制度(提供2020年度经第三方会计师事务所审计的财务状况报告或近一年内基本开户行出具的资信证明)。 ③.有依法缴纳税收和社会保障资金的良好记录(提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。如依法免税或不需要缴纳社会保障资金的,提供相应证明材料)。 ④.具备履行合同所必需的设备和专业技术能力(提供书面承诺或按投标文件格式填报设备及专业技术能力情况)。 ⑤.供应商参加政府采购活动前三年内,在经营活动中没有重大违法记录(按照投标函格式作出相关承诺)。重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(较大数额罚款按照发出行政处罚决定书部门所在省级政府,或实行垂直领导的国务院有关行政主管部门制定的较大数额罚款标准,或罚款决定之前需要举行听证会的金额标准来认定) ⑥.供应商必须符合法律、行政法规规定的其他条件(按照投标函格式作出相关承诺)。3.2供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以代理机构于投标截止日当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。3.3 本项目不接受联合体投标。3.4 已购买本项目招标文件。三、获取招标文件时间:2021年11月12日 至 2021年11月18日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:广东省机电设备招标中心有限公司网站(http://www.gdebidding.com)方式:网上购买招标文件——供应商登陆广东省机电设备招标中心有限公司网站(http://www.gdebidding.com)购买招标文件(详见网上购标操作指南),供应商完成网上购买招标文件后,在本条款规定的时间内,由采购代理机构将纸质标书包邮寄给供应商。 标书款支付方式:支付方式为电汇或网上支付,不接受现金(开户名称:广东省机电设备招标中心有限公司;开户行:建设银行广东省分行;账号:44001863201053034613)。注:我中心只开具对应金额电子增值税普通发票。”售价:¥300.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2021年12月02日 09点30分(北京时间)开标时间:2021年12月02日 09点30分(北京时间)地点:广州市海珠区新港西路135号中山大学南校园415栋生物楼3楼301室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中山大学     地址:广州市新港西路135号        联系方式:柯老师 联系电话:020-84115085-803      2.采购代理机构信息名 称:广东省机电设备招标中心有限公司            地 址:广州市越秀区东风中路515号东照大厦5楼            联系方式:赵工、黎工 电话:020-66341732、66341771            3.项目联系方式项目联系人:赵阳阳电 话:  020-66341732
  • 教育部批准100个国家级虚拟仿真实验教学中心
    p   各省、自治区、直辖市教育厅(教委),新疆生产建设兵团教育局,中央军委训练管理部: /p p   根据我部开展2015年国家级虚拟仿真实验教学中心建设工作的有关要求,经高等学校申请,省级教育行政部门、军队院校教育主管部门推荐,中国高等教育学会组织遴选和网上公示,现决定批准北京大学考古虚拟仿真实验教学中心等100个实验教学中心为国家级虚拟仿真实验教学中心。 /p p   有关高校要高度重视实验教学与信息化的深度融合,大力加强虚拟仿真实验教学中心建设工作,支持鼓励校内外、本地区及更广范围内的实验教学资源开放共享。要进一步完善虚拟仿真实验教学管理共享平台,优化虚拟仿真实验教学中心管理体系,提升虚拟仿真实验教学队伍教学和管理能力,提高实验教学管理信息化和支持服务信息化水平。 /p p   地方和军队教育行政部门应进一步加强对所属高校实验教学信息化和虚拟仿真实验教学中心建设工作的指导,建立健全激励和支持机制,积极组织所属高校学习借鉴国家级虚拟仿真实验教学中心建设的优秀经验,充分开放共享优质实验教学资源特别是优质虚拟仿真实验教学资源,全面提升实验教学信息化水平。 /p p style=" text-align: center " img title=" 1_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/1fbd4e1e-0d87-449d-a0e0-46fec6e45a47.jpg" / /p p style=" text-align: center " img title=" 2_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/17794cfb-d7e8-4dcc-bdbc-407bad707496.jpg" / /p p style=" text-align: center " img title=" 3_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/a678669d-d6d1-4e46-bdd5-ead33f0de172.jpg" / /p p style=" text-align: center " img title=" 4_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/3941abb1-bc25-4afa-b005-ee2ed349f281.jpg" / /p p style=" text-align: center " img title=" 5_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/c58fc7ea-d21b-4acb-99b3-c21bae5ad219.jpg" / /p p style=" text-align: center " img title=" 6_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/69f5777f-120c-48a6-a514-11658ad4caab.jpg" / /p p style=" text-align: center " img title=" 7_副本.jpg" src=" http://img1.17img.cn/17img/images/201602/insimg/ac844ba9-5ec3-470f-8622-a7b8c218ef75.jpg" / /p
  • 赛默飞世尔科技首次推出InforSense嵌入式虚拟机
    2008年9月15日,下一代商业和科技智能服务行业的领导者inforSense Ltd.宣布,赛默飞世尔科技(纽约证交所代码:TMO)&mdash &mdash 全球科学服务领域的领军者&mdash &mdash 开始在其蛋白组学Proteome Discoverer软件平台中嵌入由InforSense Virtual Machine(IVM)提供的蛋白注释软件。这是赛默飞世尔科技首次在其软件中嵌入IVM的工具软件,这也是二者长期合作中的一个标志性的里程碑事件。 Proteome Discoverer的蛋白注释能力是基于赛默飞世尔科技和InforSense合作开发的工作流程,可以自动的利用NCBI和SWISSPROT的信息对蛋白组学数据进行解析,提供与实验数据相关的信息。整个流程由IVM开发的一个体积小巧的分析执行程序完成,能够兼容不同的平台,包括工作站,服务器,科学仪器和移动设备,易于安装,维护,升级和扩展,避免了传统软件复杂的安装过程。 Proteome Discoverer 能和InforSense 5.0的平台无缝链接,用户能够根据自己的需要建立自己的注释流程,并通过InforSense 的在线用户交流平台进行共享。Proteome Discoverer的用户可以通过升级得到一个InforSense的软件许可证,建立自己的分析工作流程,整合内部数据提供更好的注释信息。 &ldquo 随着蛋白组学的发展,对蛋白组学数据阐释的深入性与适应性都提出了更高的需求。IVM使得用户能够灵活的适应这种变化中的需求,&rdquo 赛默飞世尔科技蛋白组学市场总监指出。&ldquo 这种不需要新的安装程序的客户端软件升级是IVM的主要优点,能够在减少我们支出的同时改进了我们满足客户需求的能力&rdquo &ldquo 今天的声明对赛默飞世尔和InforSense是一个重要的里程碑,我们很高兴我们紧密合作推出了市场上第一台基于虚拟机的产品,&rdquo InforSense的创始人兼首席执行官Yike Guo介绍说,&ldquo 这是我们的一个重要的合作,展示了下一代的智能技术在科学领域高效自动解析数据的能力。我们深信这种实时数据分析方式将是生命科学领域的未来趋势。&rdquo Proteome Discovery Proteome Discovery是赛默飞世尔科技推出的全新蛋白组学软件平台,使科学工作者能够以更加全面的视角去评估所得到的蛋白组学定性和定量数据,灵活方便的合并,比较不同的数据搜索引擎,不同的数据库和不同的裂解方法所得到的结果。 关于InforSense InforSense是一家总部设在英国伦敦的私人公司,北美总部在马萨诸塞州的剑桥市。InforSense的下一代商务智能分析平台提供了一整套高度灵活、可预知和可视化解决方案,能够帮助需要进行数据分析的组织将自己的数据源、信息处理工具和分析工具有机地加以整合,从而获取并更好地组织他们的决策制定流程。我们的顾客涵盖全球领先的制药,生物科技,消费品,健康,金融服务,制造和物流企业,为它们提供迅速,可靠的数据分析和预测服务。 关于赛默飞世尔科技(Thermo Fisher Scientific) Thermo Fisher Scientific(赛默飞世尔科技)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过100亿美元,拥有员工约33,000人,在全球范围内服务超过350,000家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域从常规的测试到复杂的研发项目中所遇到的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健,科学研究,以及安全和教育领域的客户提供一系列的实验室装备、化学药品以及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。欲获取更多信息,请浏览我们的网站:www.thermo.com.cn
  • 东方电子虚拟电厂项目入选“2022年度双碳科技创新典型案例”
    12月19日,由中国能源报、中国能源经济研究院发起的2022年度“双碳科技创新典型案例”,经综合评审,名单正式公布,共有18个案例获此殊荣。东方电子研发实施的“粤能投”虚拟电厂管理平台位列其中。“双碳科技创新典型案例”主要面向国内能源领域企事业单位、科研院所的低碳零碳负碳技术创新,聚焦清洁能源化利用、新能源、储能、低碳工业流程再造、固废综合利用、绿色建筑节能及生态固碳增汇等领域,以科技创新成果实力护航“碳达峰 碳中和”目标的实现。东方电子研发实施的“粤能投”虚拟电厂管理平台,作为南方电网第一个实用化负荷聚合虚拟电厂和广东首个虚拟电厂商业性运转平台,聚合光伏、储能、充换电站、空调、工商业负荷等各类用户侧可调控负荷资源参与广东省交易中心市场化需求响应市场,盘活用户侧可调控资源,实现多方共赢。此外,中国能源报、中国能源经济研究院还发起2022年度“碳中和绿色品牌影响力共建单位”,经综合评审,名单正式公布,共有15家机构/企业获此殊荣。东方电子实力上榜!能源行业绿色转型、节能降碳,离不开企业的先锋力量。“碳中和绿色品牌影响力共建单位”,是根据近年来在能源领域转型升级、绿色发展、布局优化、技术创新以及社会责任等方面表现突出的企事业单位,通过选树典型企业,借鉴并推广其在“双碳”建设中的先进经验和典型做法,助力“碳达峰、碳中和”。东方电子立足“双碳”目标新发展阶段,以“构建数字化企业,赋能数字化社会”为发展愿景,以精进管理体系为依托,制定双碳产业发展布局,充分发挥贴近用能市场、服务渠道畅通高效等优势,综合应用云、大数据、物联网等新技术,持续做大做强做优综合能源服务相关产业,推动全社会碳减排,为“碳达峰、碳中和”国家战略早日实现做出应有的努力和贡献。
  • ACS Nano出版 “北京大学的纳米科技研究” 北京大学百廿校庆虚拟专刊
    p & nbsp /p center img alt=" " src=" https://mmbiz.qpic.cn/mmbiz_gif/qfMmVoEgEk0OsftkduUlo0jyuM6aqjz7twklTic93sSgzLVPrDnic9D55ft9XR095Vic6hbibTt2RVcniae3DNBwrHg/640?wx_fmt=gif& tp=webp& wxfrom=5& wx_lazy=1" height=" 221" width=" 640" / /center p   为庆祝北京大学百廿校庆,在国际纳米科技领域具有重要影响的权威学术期刊ACS Nano出版了 a style=" color: rgb(0, 176, 240) text-decoration: underline " title=" " target=" _self" href=" https://pubs.acs.org/page/ancac3/vi/pku120.html?ref=ancac3Feature" span style=" color: rgb(0, 176, 240) " “北京大学的纳米科技研究”虚拟专刊 /span /a ,并于北京时间5月3日上线。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/bc350080-e131-4487-bcd7-6dc2302abefa.jpg" title=" 00.jpg" / /p p   该虚拟专刊选编了来自北京大学的研究者们发表在 ACS Nano上的四十篇文章,从一个侧面反映了近年我校在纳米科学与技术研究方面的辉煌成就。此刊也是ACS Nano近期计划推出的一系列基于研究机构和地区的虚拟期刊的第一期。为配合虚拟专刊的出版,李彦(ACS Nano副主编、我校化学与分子工程学院教授)、朱星(我校物理学院教授)、Paul Weiss (ACS Nano主编)还联合撰写了一篇编者按,介绍我校纳米科技的发展。 /p p   纳米科学与技术一直是我校重点发展的一个研究领域,在校本部、医学部、深圳研究生院等的多个院系和单位都有从事相关研究的团队。早在上世纪九十年代,北京大学就在国内率先成立了跨学科的纳米科学与技术研究中心。近年来,在国家和学校的支持下,我校纳米科技研究的发展更是突飞猛进。从2007年创刊以来,ACS Nano共发表了北京大学的研究者独立或合作完成的文章二百余篇,这些工作引起了国际同行的普遍关注。北京大学已居于纳米科技领域最有国际影响力的研究机构之前列。 /p p   化学与分子工程学院刘忠范教授(ACS Nano顾问编委)迄今已在ACS Nano上发表了27篇文章。他带领的团队在石墨烯研究中取得了一系列突破性研究成果,如发展了基于光化学的石墨烯氯化修饰方法(ACS Nano 2011, 5, 5957),成功制备了有多种重要应用前景的石墨烯玻璃(ACS Nano 2016, 10, 11136)等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/f76b31b7-625b-49ec-88c9-efaf8b50de6f.jpg" title=" 02.jpg" / /p p style=" text-align: center "    strong 石墨烯触屏 (ACS Nano 2016, 10, 11136) /strong /p p   北京大学不同院系的多个研究组在ACS Nano发表的一系列有关碳纳米管 (制备、表征、物性、器件、应用等)的研究工作引起了广泛的兴趣和关注。早在2008年,李彦教授课题组提出了离子液体分散碳纳米管的新机制(ACS Nano 2008, 2, 2540),2017年该课题组又报道了高纯度 (14,4)碳纳米管的选择性制备(ACS Nano 2017, 11, 186),这类单一结构的半导体性碳纳米管样品对碳纳米管器件的发展具有重要意义。 /p p   信息科学技术学院彭练矛教授(ACS Nano顾问编委)领导的碳纳米管器件研究团队在ACS Nano报道了他们一系列的重大研究进展。2009年,他们率先用远少于硅基技术的加工步骤制备出了n型和p型功能对称的碳纳米管集成电路(ACS Nano 2009, 3, 3781) 近期,他们又实现了目前国际上最复杂的基于纳米沟道材料的集成电路(ACS Nano 2017, 11, 4124)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/71f8c37c-bce5-4ade-9523-a8c41e891cfc.jpg" title=" 03.jpg" / /p p style=" text-align: center " strong 碳纳米管集成电路 (ACS Nano 2017, 11, 4124) /strong /p p   北京大学的稀土纳米材料研究独具特色,严纯华教授领导的团队在稀土纳米材料生物医学应用方面的研究产生了深远的影响。他们首次利用钕离子敏化的双光子发射使荧光成像能在更长的激发波长下实现(ACS Nano 2013, 7, 7200),还成功地将荧光成像、光动力治疗、核磁成像有机地结合到了一个体系中(ACS Nano 2016, 10, 2766)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201805/insimg/de2ed9ca-d321-4591-9ba8-600eea2d954e.jpg" title=" 04.jpg" / /p p style=" text-align: center " strong 稀土纳米粒子成像、治疗多功能体系 (ACS Nano 2016, 10, 2766) /strong   /p p   我校的纳米科技研究已经取得了丰硕的研究成果。我们相信,在国家和社会的支持下,经过相关学科师生的共同努力,未来我校的纳米科学与技术研究必将更上层楼,涌现出更多原创性研究,并产生更多具有自主知识产权的应用型成果,推动我国科技事业的发展,并造福全人类。 /p
  • 2018滨松虚拟光子展全面上线,360度全景展示带您畅游6大展区
    Photon Fair(滨松光子展或光子展),是由滨松集团主办的每5 年1 届的光子技术综合性展览会每隔5年,滨松集团都会举办 “光子展” ,该展会由滨松集团全资筹办,旨在展示滨松集团对于未来的愿景以及光子技术是如何在这一愿景中发挥作用的。1980年,滨松独立主办的第一届Photon Fair2018年11月初,“2018滨松光子展”在日本滨松市圆满落幕,有上千种产品及DEMO展出,除了滨松电子管、固体、系统、激光四大事业部的最新技术(包括大量面向未来的在研技术)以外,滨松中央研究所的诸多研究成果,也首次展现在了公众面前。活动累计5000位专业观众注册,超过10000人次参加参观。为了让更多人体会到光子技术的魅力,了解滨松近年的最新技术成果,“2018滨松虚拟光子展”如今在全球全面上线。通过本虚拟观展系统,您可以在“汽车”、“生活”、“医疗和生命科学”、“环境”、“制造”和“科学研究”六个主题展区,进行360度全景线上参观。每个展区您都可以逐个浏览展出的产品,以及相关的中文技术介绍、样本资料等。本系统将持续开放至2019年4月。可以通过关注滨松微信微信号,在微信号中回复“光子展”,即可进入“2018滨松虚拟光子展”参观,欢迎前往浏览!
  • 向新领域迈进:从仪器设备拓到虚拟现实技术解决方案——ACCSI2019视频采访IKA中国Managing Director Stalder Stephan
    p    strong 仪器信息网讯& nbsp /strong 2019年4月18日,中国科学仪器行业的“达沃斯论坛”——2019第十三届中国科学仪器发展年会(ACCSI2019)在青岛银沙滩温德姆至尊酒店召开,1200余位高端人士与会。在会议间隙,仪器信息网编辑有幸采访到了IKA中国Managing Director Stalder Stephan先生,听他谈谈IKA近年来所发生的变化以及未来的发展计划。 /p p   IKA成立于1910年,经过100多年的发展壮大成为一家全球化的集团公司,在全球4大洲上拥有10家子公司,其产品和技术服务于全球160多个国家的客户。自2000年进入中国市场以来,IKA也是为数不多的最早开始在中国设立本地生产中心和本地研发中心的外国厂商之一。当前,IKA在中国拥有超过200名全职员工,致力于为中国本地客户提供最合适的解决方案包括各种客制化方案。可以说, IKA非常了解中国本地的客户需求,且本地的研发中心也能够根据本地客户的实际需求,提供快速有效的响应。 /p p   2018年,IKA在全球开设了3个全新子公司,分别位于波兰、英国和东南亚,主要负责当地区域的销售,使当地的业务层面获得了很大的进展。此外,IKA集团还拆分出专注于虚拟现实解决方案的独立公司realworld one,可以向客户提供除实验室仪器设备、分析仪器设备和工业设备以外的虚拟现实技术解决方案,实现随时随地让客户享受诸如在线培训等过去难以想象的技术服务,是IKA近年来所取得的卓越成就之一。 /p p   在去年的德国ACHEMA上,IKA一口气推出60多款新产品,如STARVISC系列扭矩测量仪等,并在随后的上海analytica上也进行了这些新产品的展示。2019年,IKA的工作重点除了巩固新产品的发售之外,会更多关注新产品相应配套配件的研发,以更好地支持这些新产品,同时也是对过往产品的一些技术提升。此外,一些新的产品系列也将陆续发布。· /p p   更多详细内容请见视频! /p script src=" https://p.bokecc.com/player?vid=FD9A1BABA2D2D9879C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script p br/ /p
  • 2017年第四届全国虚拟仪器大赛在西安理工大举行
    p    strong 仪器信息网讯 /strong 2017年7月17-19日,第四届全国虚拟仪器大赛在西安理工大学成功举办。这次大赛由中国仪器仪表学会、教育部高等学校仪器类专业教学指导委员会主办,西安理工大学、中国仪器仪表学会虚拟仪器与网络化系统分会、中国仪器仪表学会电子测量与仪器分会(简称“分会”)共同承办,美国国家仪器(NI)公司协办。 /p p   本次大赛包括清华大学、上海交通大学、浙江大学、西安交通大学、台湾交通大学等学校共915只队伍参加比赛,最终共62支队伍进入决赛。 /p p   决赛名单如下: /p p *各组排名不分先后,按队伍ID排序。 /p table height=" 1202" border=" 1" tbody tr class=" firstRow" td colspan=" 5" style=" color:#262626 font-size:14pt font-weight:700 text-align:center vertical-align:middle " width=" 649" height=" 49" 软件组 /td /tr tr td style=" font-size:10pt font-weight:700 vertical-align:bottom background:#4f81bd " width=" 79" height=" 16" 队伍ID /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 121" height=" 16" 参赛级别 /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 171" height=" 16" 学校 /td td style=" font-size:10pt font-weight:700 vertical-align:middle background:#4f81bd " width=" 199" height=" 16" 队名 /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 148" height=" 16" 指导老师 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0008 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 常州信息职业技术学院 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 绿色方舟 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 钱声强 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0015 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 合肥工业大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 虚拟未来 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 徐梦洁 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0034 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 上海理工大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 探索者小队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 金晅宏 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0035 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 上海理工大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" WFZL /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 曹民 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0041 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 天津大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" tju-team /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 胡春光 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0042 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 天津科技大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 破风战队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 杨世凤 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0052 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 江苏大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 江大视觉奋进队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 郝秀春 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0060 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 成都理工大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 成理科技创新工作站 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 罗耀耀 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0086 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 北京信息科技大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 小太阳队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 郭阳宽 /td /tr tr td style=" font-size:10pt vertical-align:middle " width=" 79" height=" 16" A0089 /td td style=" font-size:10pt vertical-align:middle " width=" 121" height=" 16" 软件组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 武汉理工大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 常青藤 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 刘清元 /td /tr tr td colspan=" 5" style=" color:#262626 font-size:14pt font-weight:700 text-align:center vertical-align:middle " width=" 649" height=" 40" 创意孵化组 /td /tr tr td style=" font-size:10pt font-weight:700 vertical-align:bottom background:#4f81bd " width=" 79" height=" 16" 队伍ID /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 121" height=" 16" 参赛级别 /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 171" height=" 16" 学校 /td td style=" font-size:10pt font-weight:700 vertical-align:middle background:#4f81bd " width=" 199" height=" 16" 队名 /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 148" height=" 16" 指导老师 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0009 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 北京邮电大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" B-001A /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 刘奕彤 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0011 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 北京邮电大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" The& nbsp K3 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 刘奕彤 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0020 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 大连工业大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 烈焰之光 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 崔远慧 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0034 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 哈尔滨工业大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" TEAM& nbsp WE /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 吴艳 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0050 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 华南理工大学广州学院 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 华广LabVIEW& nbsp Club /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 邝禹聪 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0088 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 山东大学(威海) /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" MY-RIO /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 毕云峰 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0094 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 首都师范大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" Air& nbsp quality-Helicopter /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 张盛博 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0103 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 天津大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" TJUteam.one /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 胡春光 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0116 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 西安电子科技大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" win /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 李晓辉 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0117 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 西安电子科技大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 卡姆 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 王新怀 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0120 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 西安交通大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 年轻不打烊 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 曹建安 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0123 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 西安交通大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 梧桐道 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 郭文静,郭艳婕 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0159 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 浙江大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" NI_ce /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 马永昌 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0167 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 中国矿业大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" superman /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 冯雪君 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0168 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 杭州电子科技大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 闪电泡芙 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 徐平 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0170 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 江苏大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" Space& nbsp Master /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 潘海彬 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0171 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 厦门大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 逢考必过 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 林春 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0175 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 复旦大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 人马座 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 吴红艳 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0178 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 西安交通大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 有点意思队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 郭艳婕,郭文静 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0181 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 大连海事大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" 电子搜救犬驯养师 /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 王琳 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0184 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 常州信息职业技术学院 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" 咱们队 /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 李晴 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0190 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 中南大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" VICSU小队 /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 吴同茂 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0179 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 厦门大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" Tennis& nbsp Master /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 林春& nbsp 李继芳& nbsp 胡天林 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0198 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 深圳大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" 拉布威 /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 李天利 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0210 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 北京信息科技大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" 天韵队 /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 郭阳宽 /td /tr tr td colspan=" 5" style=" color:#0070c0 font-size:10pt font-weight:700 vertical-align:bottom " width=" 649" height=" 16" 台湾地区优秀入选队伍: /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0260 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 台湾交通大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" VBM /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 蕭子健 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" B0280 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 创意孵化组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 龙华科技大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" - /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 李聯旺 /td /tr tr td colspan=" 5" style=" color:#262626 font-size:14pt font-weight:700 text-align:center vertical-align:middle " width=" 649" height=" 37" 前沿工程应用组 /td /tr tr td style=" font-size:10pt font-weight:700 vertical-align:bottom background:#4f81bd " width=" 79" height=" 16" 队伍ID /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 121" height=" 16" 参赛级别 /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 171" height=" 16" 学校 /td td style=" font-size:10pt font-weight:700 vertical-align:middle background:#4f81bd " width=" 199" height=" 16" 队名 /td td style=" font-size:10pt font-weight:700 text-align:center vertical-align:middle background:#4f81bd " width=" 148" height=" 16" 指导老师 /td /tr tr td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0005 /td td style=" color:#262626 font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 171" height=" 16" 北京信息科技大学 /td td style=" color:#262626 font-size:10pt vertical-align:middle " width=" 199" height=" 16" Print& nbsp Dream /td td style=" color:#262626 font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 沈冰夏 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0008 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 常熟理工学院 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 天翼队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 王飞 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0016 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 东南大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" MIMO /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 王闻今 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0025 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 海南大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 智舰科技 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 张永辉 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0026 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 合肥工业大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 密联 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 胡毅 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0037 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 湖南大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 87仪器 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 唐求 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0046 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 南京理工大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" Sky /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 卜雄洙,吴健 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0064 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 同济大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 新风队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 张志明 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0066 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 武汉大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 工业巡检小车队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 陈厚贵 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0102 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 西安理工大学 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" 水下先锋 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 戴世通 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0112 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:middle " width=" 171" height=" 16" 常州工学院 /td td style=" font-size:10pt vertical-align:middle " width=" 199" height=" 16" ROVMAKER /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 陈勇将 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0113 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 长春工程学院 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 常兴 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 蔡长青 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0114 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 江苏大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 探索者 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 张西良 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0116 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 武汉理工大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 你说的都队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 邓翔天 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0127 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 广西大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 一支水 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 韦善革 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0128 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 华南理工大学广州学院 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 技术密集型团队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 刘颖君 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0138 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 上海海洋大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" SHOU /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 杨大章 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0139 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 东南大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" Carbon& nbsp Robot /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 莫凌飞 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0143 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 许昌学院 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 旋风队 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 丁瑞华 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0147 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 西安理工大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 匠晓 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 高峰 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0149 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 徐州工程学院 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 闪电来了 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 陈奎 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C0150 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 青岛大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 挑战者 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 董介春 /td /tr tr td style=" font-size:10pt vertical-align:bottom " width=" 79" height=" 16" C00189 /td td style=" font-size:10pt vertical-align:bottom " width=" 121" height=" 16" 前沿工程应用组 /td td style=" font-size:10pt vertical-align:bottom " width=" 171" height=" 16" 河南工业大学 /td td style=" font-size:10pt vertical-align:bottom " width=" 199" height=" 16" 梦之翼 /td td style=" font-size:10pt text-align:center vertical-align:middle " width=" 148" height=" 16" 徐回忆 /td /tr /tbody /table p   据悉,此次大赛设置了软件组和创意孵化组,并首次设立工程应用和职业技能两个独立组别。来自全国158所高校的915支队伍报名参赛,实际征集到学生创新作品631份,涉及众多学科与实际工业应用领域。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/a69c7f80-98ea-4195-99f4-432e8f6a08e3.jpg" title=" 1.jpg" / /p p style=" text-indent: 2em" 参赛作品中,贴近生活实际的作品不胜枚举。有面向办公室人群而设计的“健康生活”应用软件,有为师生解决日常学习和娱乐需求的“校园盒子”,还有智能门禁系统、智能快递柜、智能捡乒乓球机器人等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/94b27b02-5f99-4235-a100-aa04c85d8ddc.jpg" title=" 2.jpg" style=" width: 504px height: 378px " width=" 504" vspace=" 0" hspace=" 0" height=" 378" border=" 0" / /p p style=" text-indent: 2em" 本届大赛上还涌现出一批引领科技前沿的创意产品,包括VR实景探测系统、手势识别-视觉增强交互系统、具备触觉与视觉反馈的体感机器人、灾后智能搜救车等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/5d4ccbe2-f397-4952-a5ce-bd6e21e4d6df.jpg" title=" 3.jpg" / /p p   全国虚拟仪器大赛自设立以来一直致力于培养拔尖创新人才,在服务国家新工科建设中的作用也日益凸显。自2011年起,大赛已成功举办三届,累计有500余家高校派出4000多支代表队参赛,共提交创意作品近2000件,已成为全国工科类院校公认的虚拟仪器领域最权威、最具影响力的大学生科技创新竞赛。 br/ /p
  • 当虚拟现实遇见科研产业--常州,ACCSI 2018, 盛大呈现
    中国科学仪器发展年会 ACCSI 2018盛大呈现 不见不散 2018 年 4 月 15 – 16 日常州,REALWORLD ONE 展位 扫描二维码在线预约体验
  • 基于光线模型的成像系统标定与三维测量进展
    一、背景介绍:机器视觉可称为人工智能的“慧眼”,成像系统的标定又是机器视觉处理的重要环节之一,其标定精度与稳定性直接影响系统工作效率。在传统机器视觉与摄像测量标定领域,小孔透视模型仍存在高阶透镜畸变无法完备表征和多类复杂特殊成像系统不适用的问题。而基于光线的模型以成像系统聚焦状态下每个像素点均对应空间一条虚拟主光线为前提假设,通过确定所有像素点所对应光线方程的参数即可实现标定与成像表征,可避免对复杂成像系统的结构分析与建模。基于该光线模型,研究院相关课题组发展了各类特殊条纹结构光三维测量方法与系统,实验证明光线模型可通用于多类复杂成像系统的高精度测量,是校准非针孔透视成像系统的有效模型,可作为透视模型的补充。二、光线模型Baker等人最早提出了一种可表征任意成像系统的光线模型[1],认为图像是像素的离散集合,并以一组虚拟的感光元件“光素”表示每个像素与某像素相关联的空间虚拟光线间的完整几何特性、辐射特性和光学特性,如图1所示。因此,光线模型的标定即确定出所有像素点对应的光线方程,无需严格分析和构建成像系统的复杂光学成像模型,具备一定的便携性和通用性,从一定程度上也可避免镜头畸变的多项式近似表征引入的测量误差,为非小孔透视投影模型成像系统的表征提供了一种新的思路。图1 成像系统的光线模型示意图三、基于光线模型的条纹结构光三维测量在条纹结构光投影三维测量领域,光线模型一方面可作为三维重建的光线方案,用于表征大畸变镜头、光场相机、DMD投影机、MEMS投影机等多类特殊结构的成像与投影装置,可发展新的基于光线模型的条纹结构光三维测量方法与系统;另一方面,发掘光线模型在结构光测量中的优势,光线模型对克服投影与相机的非线性响应、大畸变镜头成像下提升三维重建精度具有优异的效果。3.1 Scheimpflug小视场远心结构光测量系统光线模型与三维测量课题组开发了小视场远心结构光测量系统,采用Scheimpflug结构设计确保公共景深覆盖,如图2所示。考虑到远心镜头属平行正交投影、Scheimpflug倾斜结构造成畸变模型非中心对称,因此,提出一种基于光线模型的非参数化广义标定方法[2]。系统中相机与投影机成像过程均采用光线模型表征,标定其像素与空间光线对应关系,计算光线交汇点坐标,实现三维重建。图3展示了系统实物图与五角硬币局部小区域的三维测量结果,测量精度为2 μm。图2 Scheimpflug小视场远心结构光测量系统图3 测量系统实物图与五角硬币局部的三维测量结果3.2光场相机的光线模型标定与主动光场三维测量课题组发展了基于主动条纹结构光照明的光场三维测量方法与系统。光场相机通过在传感平面前放置微透镜阵列,实现光线强度和方向的同时记录,由于存在微透镜加工误差、畸变像差、装配误差等复杂因素影响,光场相机完备表征与精密标定是个难题。课题组提出光线模型表征光场成像过程[3],即将光场相机内部看作黑盒,直接建立像素m与所对应的物空间光线方程l的参数,如图4所示。并通过标定光场所有光线与投影条纹相位的映射关系实现被测为物体的高精度三维测量,考虑光场多角度记录特点,构建基于条纹调制度的数据筛选机制,实现了场景的高动态三维测量,如图5所示,黑色面板与反光金属可同时重建。图4 光场成像模型图5 主动光场高动态三维测量3.3 DMD投影机与双轴MEMS激光扫描投影机的光线模型标定与三维测量基于微机电系统(MEMS)激光扫描的投影机以小型化、大景深的优势被应用于条纹投影测量系统,如图6(a)所示。但由于其依赖激光点的双轴MEMS扫描投影图案,不依赖镜头成像,透视投影模型表征会存在一定误差。此外, DMD等依赖镜头成像的投影机,大光圈设计也会影响小孔透视投影模型的表征精度。对此,课题组采用光线模型表征投影机[4],并提出了一种基于投影机光线模型的条纹投影三维测量系统标定方法,该方法根据双轴MEMS投影的正交相位对光线进行识别追踪,利用投影光线与相机构建的三角测量实现了三维重建。进一步发现:由于投影光线的相位一致性特性,光线模型可显著抑制系统非线性响应引起的测量误差,图6(b)展示了单目系统在3步相移条件下(未额外矫正非线性响应),分别使用透视投影模型与光线模型对石膏雕塑的三维重建结果,可见光线模型对非线性响应影响具有免疫性。图6 双轴MEMS激光扫描投影原理和石膏雕塑三维重建结果(3步相移,左图为透视投影模型,右图为光线模型)3.4单轴MEMS激光扫描投影机光线模型标定与三维测量单轴MEMS投影机将激光点扫描拓展为面扫描大幅提升了投影速率,可应用于动态测量。针对单轴MEMS投影机无透镜结构使得针孔模型不适用、单向投影无法提供正交相位特征点的问题,课题组提出一种基于等相位面模型的系统标定方法[5],推导出了相机反向投影射线与该等相位面交点处的三维坐标值与相位值间新的映射函数,实现了快速三维重建。图7展示了使用高速相机搭建的单目测量系统和重建场景,投影采集速率为1000 frame/s,采用4步相移与雷码图相位展开,三维重建速率为90 frame/s。后续为适应更高速率测量应用,可将单目扩展为双目或多目系统,采用单帧解调相位和多极线约束相位展开等方法减少投影图像数量,提升三维测量速率。图7三维测量系统与动态重建场景3.5大畸变镜头成像的光线模型标定与三维测量针对传统低阶多项式不能完备表征大畸变镜头的问题,课题组采用光线模型表征大畸变镜头相机成像,并提出一种完全脱离对相机和投影机内参依赖(透视模型依赖相机与投影机内参)的光线与条纹相位映射的三维重建方法。通过直接标定相机光线与条纹相位的倒数多项式映射系数,避免了繁琐耗时的对应点搜索与光线插值操作。图8为装配4 mm广角镜头的光线标定结果与标准球三维测量结果,可见由于广角镜头畸变较大,光线模型较透视模型重建质量有所提升。图8 广角镜头光线标定与标准球三维测量数据的拟合误差分布(a)透视投影模型,(b)光线映射模型四、总结光线模型通过确定所有像素点所对应光线方程的参数实现标定与成像表征,从而避免了对复杂成像(投影)系统的结构分析与建模,解决了特殊条纹投影三维测量系统的标定与重建问题,同时在条纹投影三维测量的系统非线性相位误差抑制和精度提升上展示出优异性能。在结构光三维测量的未来发展中,可进一步扩展光线模型三维测量的方法与应用,提升测量精度、效率与通用性,解决各类特殊复杂场景中的应用测量问题。参考文献[1] Baker S, Nayar S K. A theory of catadioptric image formation[C]//Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), January 7, 1998, Bombay, India. New York: IEEE Press, 1998: 35-42.[2] Yin Y K, Wang M, Gao B Z, et al. Fringe projection 3D microscopy with the general imaging model[J]. Optics Express, 2015, 23(5): 6846-6857.[3] Cai Z W, Liu X L, Peng X, et al. Ray calibration and phase mapping for structured-light-field 3D reconstruction[J]. Optics Express, 2018, 26(6): 7598-7613.[4] Yang Y, Miao Y P, Cai Z W, et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 2022, 149: 106818.[5] Miao Y P, Yang Y, Hou Q Y, et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Optics Express, 2021, 29(21): 34243-34257.课题组简介:本文作者:刘晓利 ,杨洋 ,喻菁 ,缪裕培 ,张小杰 ,彭翔 ,于起峰 ;深圳大学物理与光电工程学院深圳市智能光测与感知重点实验室。以于起峰院士领衔的深圳大学智能光测图像研究院主要研究方向包括大型结构变形与大尺度运动测量、超常光学测量与智能图像分析、计算成像与三维测量以及多传感器融合感知与控制等。
  • 产业升级为国内仪器行业带来机遇
    近年来我国电子测量仪器行业发展迅速,在若干重大科技领域取得了突破性进展,仪器的可靠性和稳定性有了很大的改观。尤其最近几年,我国本土仪器取得了长足的进步,特别是在通用电子测量设备和汽车电子设备的研发方面,与国外先进产品的差距正在快速缩小。模块化和虚拟技术的发展,为我国的测试测量仪器行业带来了新的发展契机,加上国家和各级政府的日益重视,为电子测量仪器产业提供了前所未有的动力和机遇。   目前国内电子仪器行业已经形成了一批电子仪器开发、生产的骨干企业,研究和开发出了一批具有自主知识产权、达到国际同类先进水平的产品。   目前我们国内规模以上的电子仪器企业有500多家,其中电子测量仪器制造企业130多家,电子测量仪器骨干企业几十家,针对目前的“时域”、“频域”、“数域”、“阻抗域”、“调制域”等五域的电子测量仪器,我国都开发了相应的产品,其中有几十个品种产品达到国际同类产品的先进水平,应用到了急需的国防、科研、生产等各个领域,电子测量仪器产量和销售量近900万台,增长幅度都在14%左右,生产产值和销售额都在100亿元左右。   国内电子仪器行业和企业虽然开发了若干个品种和一定数量并达到同类国际先进水平的产品,但是与国际水平相比,在产品结构上,在高端产品的技术水平上,在市场占有率(约占10%左右)上仍然存在着很大差距,有待于国内企业完善。   其实,国内测试仪器行业的市场机会早已来临,市场大门早已打开,关键是我们国内测试仪器企业要抓住机会进入市场,提供优质高水平的产品。目前我国电子仪器行业面临的机遇有:   1.最大的机会是我国产业的全面升级。包括IC在内的几十个信息产业要全面技术升级和产业升级,信息产业以外的其他产业也要全面技术升级和产业升级 家电下乡、电子信息产业振兴规划等政策方针也将进一步扩大市场需求。   2.节能、降耗、减排,为电子仪器提供了新的广阔市场。电子仪器具有双重功能,一是为节能、降耗、减排提供测试检测仪器 二是能够提供节能、降耗、减排电子仪器应用产品。   3.从制造业为主向服务业为主转变、市场家电产品3C技术融合等都为电子仪器提供了新的广阔市场。为了促进经济实力薄弱的电子仪器行业的发展,建议对具有自主开发能力、具有自主知识产权、具有国际先进水平产品的企业,有关部门应认定其为“电子仪器高新技术企业”,国家在相关政策上给予支持。   重点关注五大技术趋势   从技术和市场的角度看,电子仪器今后的发展趋势是各种高技术的综合,全方位服务于各个产业和国民经济市场,具体应关注以下几个方面:   第一,数字化电子测量仪器的普及率必须提升。数字化时代已经到来,数字化时代是社会生活与经济现代化的最新标志,关系着一个国家在科技领域核心竞争力的高低,如果对此重视不够,电子测量仪器将失去在技术上的领先地位,也将失去市场。   第二,总线技术必须跟踪国际发展水平。   VXI、PXI、LXI、USB接口、总线技术在电子测量仪器领域国外已经发展到一个很高的水平。目前,有三个趋势在推动测试测量行业的发展:首先,要有系统就绪的硬件,即模块化的产品,可以很快构建一个系统。其次,要有基于标准的与PC兼容的输入输出接口,以及输入、输出驱动程序,可以基于局域网,也可以基于互联网。最后,要有灵活的软件解决方案,不论客户需要的是Excel界面还是文字界面,都可以给客户灵活的选择。国际电子测量仪器LXI(LANeXtensionforIn-strument)联盟的产生,就是为了迎合这个变化。国外企业已经开发出LXI总线电子测量仪器产品,国内一些大学已开始着手研究,国内电子测量仪器企业尚未开始启动,如果着手太晚,将会再一次拉大我国电子测量仪器与国际技术水平的差距,因此我国电子测量仪器企业应该尽快启动LXI总线技术在电子测量仪器中的应用测量仪器。   第三,软件技术必须尽快提上日程。电子测量仪器“软件”是电子测量仪器智能化的核心技术,而且“软件修正测量误差”是目前修正测量误差既经济又最有效的办法 此外,特别是软件定义的无线电测量仪器,在国外得到了特别的重视和发展。自从无线接收系统从超外差变频结构,转变成无外差变频的零中频结构之后,无线电发射接收系统简化成为数字变频、基带放大器、基带滤波器、数模转换器、模数转换器、数字信号处理器等数字部件,使软件定义无线电(SDR)测量仪器得以实现。SDR的简明定义是,采用软件对无线电信号进行调制和解调制的无线通信系统测量仪器。显然,SDR借助通用的硬件子系统,根据软件定义的无线通信标准,可以灵活快速地构成不同通信标准的发射和接收系统及其测量仪器。总之,电子测量仪器没有软件技术,就好像我们的电子测量仪器还处于“冷兵器”时代,然而软件技术在我们的电子测量仪器中还远远没有充分体现出来。这一点不解决,我们的电子测量仪器就永远不是现代化水平的电子测量仪器。   第四,模块化技术必须加紧跟上。这是国际电子测量仪器发展的方向,实际上模块化技术与总线技术(接口技术)、软件技术是三位一体,我们必须尽快把三者有机地接合起来,形成有竞争力的电子测量仪器产品。   第五,合成仪器必须尽快实施。合成仪器采用可互换的标准模块、标准电路、标准接口,实现从单元电路至系统的积木化结构。由于美国国防部门是全球电子测量仪器的最大采购商,合成仪器将推动美国、欧洲、日本投入更多人力物力,开发从器件、模块、子系统至完整的自动测量系统,成为电子测量仪器技术创新的新动力。   我国电子仪器企业应有一个较大的发展,否则很难满足国内市场的巨大需求。因此,国内仪器企业应密切关注国际市场,了解最新技术走向,不断推陈出新,提升竞争力。
  • 首个基于国产高通量测序仪的肿瘤基因检测试剂盒获批 国产测序仪迎来突破
    p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 深圳华大基因股份有限公司(以下简称“公司”)全资子公司华大生物科技 (武汉)有限公司(以下简称“武汉生物科技”)于 2019 年4月1日向国家药 品监督管理局(以下简称“国家药监局”)提交 EGFR/KRAS/ALK 基因突变联 合检测试剂盒(联合探针锚定聚合测序法)的注册申请并获得受理。近日,武汉生物科技的上述试剂盒产品取得国家药监局颁发的医疗器械注册证。 /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 本次获批的试剂盒产品用于定性检测非小细胞肺癌患者 FFPE 病理组织样本 中 EGFR/KRAS/ALK 基因突变,可用于吉非替尼、盐酸埃克替尼、克唑替尼药物的非小细胞肺癌适应症的伴随诊断检测。该试剂盒基于国产高通量测序平台,搭载自动化建库和报告解读系统,具有检测灵敏度高、多测序平台通量配置灵活的特点,可满足临床用户的多样化和个性化需求。 /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " strong 据悉,这是中国首个基于国产高通量测序仪的肿瘤基因检测试剂盒,或将打破进口测序仪在肿瘤基因检测试剂盒领域的垄断局面,这是国产高通量测序仪在肿瘤临床领域所取得的重大突破。 /strong /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 华大基因在其公司公告中表示,该试剂盒产品的《医疗器械注册证》的取得,丰富了公司肿瘤防控业务产 品线,有助于公司构建肿瘤“预、筛、诊、治、监”闭环防控体系,进一步提升 了公司在肿瘤靶向用药基因突变检测方面的核心竞争力和市场拓展能力。同时也意味着肿瘤临床基因检测领域,国产高通量测序仪已完全具备和进口测序仪相当的竞争力。 /p
  • 高分子表征技术专题——基于原子力显微镜的单分子力谱技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!基于原子力显微镜的单分子力谱技术在高分子表征中的应用Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization作者:张薇,侯矍,李楠,张文科作者机构:吉林大学超分子结构与材料国家重点实验室,长春,130012作者简介:张文科,男,1973年生. 分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为Hermann E. Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究. 2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授. 2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助. 以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等.摘要基于原子力显微镜(atomic force microscopy, AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一. 本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理. 介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展. AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.AbstractAtomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) has been used widely in the investigation of molecular forces because of its friendly user interface (e.g., easy to operate and canwork in liquid, air and high vacuum phase) and worldwide commercialization. This review is aimed to introduce the principle and protocol of AFM-based SMFS including the setup, the working principle, typicalcurves, the choice of AFM tip and substrate, immobilization of samples, manipulation of the device, empirical criteria for single-molecule stretching and data analysis. Recent progresses on the application of AFM-based SMFS in the characterization of synthetic polymers and biopolymers were reviewed. For synthetic polymers, the effects of primary chemical compositions, side groups, tacticity and solvents on the single chain elasticities were discussed. The applications of AFM-SMFS in disclosing the structure of unknown molecule, polymer-interface interactions and polymer interactions in polymer assemblies (e.g., polymer single crystal) were introduced. In addition, the nature of mechanochemical reactions and characterization of supramolecular polymers were realizedvia this technic. For biopolymers, the effects of base-pair number, the force-loading mode (unzipping or shearing) on the stability of short double-stranded DNA (dsDNA) were reviewed. According to this knowledge, the single-molecule cut-and-paste based DNA assembly was then discussed. The typical force fingerprints of long dsDNA, proteins and polysaccharides as well as the force-fingerprint-based investigation of molecular interactions were illustrated. Finally, the application of AFM-SMFS in revealing the intermolecular interactions and the mechanism of virus disassembly as well as the antivirus mechanism of tannin in tobacco mosaic virus were reviewed.Therefore, AFM-based SMFS is essential for revealing the relationship between the conformation/composition of polymer chains and micro/macro-mechanical properties of polymer materials as well as correlating the molecular structure/interaction of biopolymers with their biofunctions. 关键词AFM单分子力谱  合成高分子  生物大分子KeywordsAtomic force microscopy-based single-molecule force spectroscopy  Synthetic polymers  Biopolymers 合成高分子材料自诞生以来,迅速地以其优良的物理、化学及力学性能等在军事、航空航天、医疗及其他民用领域得到了广泛应用. 其力学性能是最基本、最重要的性质之一,同时受到高分子的单链弹性及链间相互作用的影响[1,2]. 因此,建立高分子链一级结构、单链弹性及链间相互作用与材料宏观力学性能间的联系, 对高分子材料的理性设计至关重要. 然而,传统的材料学研究方法,如宏观拉伸实验、X射线晶体衍射、固体核磁及拉曼等技术无论从样品制备到检测均涉及大量分子,体现平均效应,表征宏观力学性能,无法获得单个链或键的性质及行为的相关信息. 此外,传统研究方法也无法连续、动态及精确地体现出单个事件的不同步骤(例如高分子在不良溶剂中的塌缩行为),导致很多重要信息无法获取. 因此,可在纳米尺度精确操纵与测量的单分子技术,例如基于AFM的单分子力谱,被广泛应用于单个分子的结构、功能及其动态行为的研究中[1~5]. 利用该技术,人们获得了溶剂、取代基以及立构规整度等因素对高分子单链弹性的影响,验证并改进了一些经典高分子理论模型[1,6~9]. 该技术还可以研究高分子的构象变化及其在界面的吸附行为,揭示外力诱导下高分子链中化学键类型的变化规律(力化学)[1,10~12]. 同时,该技术还被用于凝聚态(晶体、层层组装薄膜等)中高分子间相互作用的相关研究[13,14].生物大分子(核酸、蛋白质及多糖等)结构与功能的研究对于认识复杂生命过程的本质,了解疾病的发生发展机制以及开发新型药物与生物医用材料至关重要. 因此,AFM单分子力谱技术也被广泛用来研究生物大分子,例如DNA的解链及动态结构变化、蛋白质的折叠与解折叠、生物大分子间的相互作用(病毒的遗传物质与蛋白质外壳的相互作用)等[9,15~20]. 相关研究深化了人们对这些生物分子所参与的生命过程的认识,并为其功能调控奠定了坚实基础.本文将重点评述AFM单分子力谱技术的基础原理、实验技巧以及该技术在合成高分子及天然高分子领域的典型应用及前沿进展.1单分子力谱的基础原理1.1几种典型的单分子力谱技术迄今为止,诞生了许多单分子操纵技术,例如生物膜力学探测技术、玻璃纤维技术、光学镊子(光镊)、磁性珠技术(磁镊)以及AFM单分子力谱技术[9,21~25]. 后3种技术的应用较为广泛. 光镊利用聚焦激光束产生辐射压力形成的光学陷阱来捕获修饰有样品分子的小球,通过移动激光光束控制小球的移动,实现对样品分子的三维操纵,其时间分辨力能够达到10-4 s,被广泛应用于蛋白质折叠及解折叠等研究. 但光镊系统构造复杂,对环境要求极高,有效样品捕获率低以及激光束容易对样品造成光和热损伤等不足亟待解决. 磁镊技术将样品固定在基底与超顺磁性小球之间,利用外加磁场控制磁球,操纵样品分子,例如旋转等 [22]. 因此,磁镊被广泛用于DNA缠绕及解缠绕等研究中. 该技术可以检测低至10-3 pN的力值,也被应用于一些极微小力的测量. 该技术还能同时对多个磁球进行操纵,实现高通量测试. 由于需要通过成像观测磁珠,因而相机的拍摄速度决定了磁镊的时间分辨率,通常在10 -2 s以上. 在众多的单分子力谱技术中,AFM单分子力谱技术的应用最广,理论发展更为成熟 [1~5,9,26,27]. 该技术将样品分子固定在AFM探针与基底之间,通过控制AFM探针的位移来操纵样品分子. 该技术具有较高的时间和空间分辨率,较宽的力学测量范围,可以在真空、水相以及有机相等多种环境下工作,因此被广泛地应用于合成与天然高分子等众多体系中的分子内及分子间相互作用的研究. 综上所述,光镊及磁镊的力学精度稍高,适用于由弱相互作用及熵弹性所控制的力学性质的研究;AFM单分子力谱更适合较强相互作用或者由焓控制的弹性性质的研究. 为了更全面地认识聚合物的结构与力学性质,可以将上述3种单分子力谱技术联合使用.1.2AFM单分子力谱1.2.1仪器构造基于AFM的单分子力谱是AFM的工作模式之一. 因此,其基本构造与AFM相同,主要由位置控制系统(压电陶瓷管)、力学传感系统(AFM探针的微悬臂及其顶端针尖)以及光学检测系统(激光二极管、棱镜、反射镜与四象限光电检测器)三部分组成(图1)[9,21,28,29]. 对压电陶瓷管两端施加电压,可以控制其驱动样品台或AFM探针进行亚纳米精度的位移.z方向的移动用于调整探针与样品间的距离;x,y方向的移动用以调整探针在样品表面的探测位置及范围. 光学检测组件中的激光器将激光照射在微悬臂靠近针尖的一端,再反射到四象限光电检测器上. 当AFM探针受到样品分子的牵拉发生弯曲时,其反射的激光的位置也会随之变化. 据此,可以计算出微悬臂的偏转量,结合微悬臂的弹性系数,可以获得待测样品分子的相关力学信息[3~5].Fig. 1The schematic diagram of AFM-SMFS.1.2.2工作原理实验前,样品分子的一端通过物理吸附、特异性相互作用或化学偶联等方法被固定在基底. 随后,驱动压电陶瓷管使AFM探针逼近待测样品(图2(a)). 如果基底对探针没有长程的吸引或排斥作用,微悬臂将处于松弛状态. 探针与基底接触后,受力向微悬臂上表面方向弯曲,引起二极管的2个象限间的差分信号(pha-b)的变化(图2(a)与2(b),状态2→3). 在此过程中,样品分子会通过化学、物理或特异性作用吸附在探针上,在探针与基底之间形成桥联结构. 随后,探针远离基底并恢复松弛状态(图2(a),4),pha-b也恢复初始数值. 探针继续远离基底,桥联于探针与基底间的样品分子受到拉伸,导致微悬臂向针尖方向偏转(图2(a),5),引起pha-b的增加(图2(b),5). 最后,桥联结构中稳定性最薄弱的部分发生断裂,微悬臂迅速恢复为不受力的松弛状态(图2(a),6),表现为pha-b的突然回落(图2(b),6)[1,9,21,29]. 每个完整的逼近-回缩过程都会产生pha-b对应压电陶瓷管位移的原始曲线(图2(b))[29].Fig. 2(a) Schematic illustration of the basic working principle of AFM-SMFS (b) Original volt-piezo displacement curves (c) Typical force-extension curves.Fig. 3Electron microscopy images of a commercial Si3N4 AFM probe. Fig. 4Molecular immobilization based on (I) physical absorption, (‍Ⅱ) specific binding, (‍Ⅲ) gold-thiol chemistry, (‍Ⅳ) silanization and enzymatic biosynthesis.Fig. 5Immobilization of thiol-labeled DNA based on silanization and bifunctional PEG.Fig. 6Typical curves obtained in constant velocity (a) and force-clamp mode (b), respectively.原始曲线经过校正才能正成为最终的力-拉伸长度曲线(图2(c))[1,2,4,9,21,29]. 将具有弹性的微悬臂看成弹簧,根据胡克定律F=kcΔx(kc为微悬臂弹性系数,Δx为微悬臂偏转量)可以计算出微悬臂受到的作用力,即样品分子内或分子间的作用力.kc通过对微悬臂在远离基底时热振动所获得的能量谱的积分即可获得;Δx利用图2(b)中斜线部分(状态2→3)的斜率(s),即Δx=s-1pha-b就可以计算出. 样品分子的拉伸长度通过从原始数据横坐标记录的压电陶瓷管的位移中扣除Δx获得. 至此,pha-b对应压电陶瓷管位移的原始曲线被成功地转化为样品分子的力-拉伸长度曲线.1.2.3力曲线及其含义AFM针尖逼近和远离样品表面的一个循环中可以获得2条力曲线,称为逼近力曲线与回缩力曲线(图2(c))[1,2,4,9,21]. 逼近力曲线上B区域的形状可以给出样品模量等信息. 例如:当AFM探针接触较软的样品时,受到的排斥力随位移缓慢增加;而接触硬度较大的样品时,受到的排斥力快速增加,B区域的力信号与水平基线之间形成近90°的直角. 对于回缩力曲线,C-D区域可以给出单分子弹性性质、链结构信息以及分子内、分子间相互作用强度等定量信息.2AFM单分子力谱实验技巧2.1探针与基底的选择AFM探针直接影响力学探测的稳定性、精确度及测量范围[1,2,4,9,21,29]. 其材质通常是硅或氮化硅,由针尖、微悬臂及承载微悬臂的基片组成(图3). 针尖通常是四面体形状,最尖端的曲率半径(tip radius)为几个到几十纳米,高度(tip height)通长为3~28 µm. 微悬臂有矩形和三角形2种,长度为7~500 µm,厚度为0.5~7 µm. 其材质及几何尺寸均对共振频率和弹性系数有重要影响,需要根据实验体系来选择探针. 对于弱相互作用体系(例如双链DNA的解拉链)[30],应选择相对柔软,即弹性系数小的探针;而强相互作用体系(例如:共价键强度的测量)[31],则需选择相对坚硬,即弹性系数较大的探针. 值得注意的是,刚性较大的探针在应力松弛时其内部储存的能量释放速度更快,更适于研究多重键的连续打开与形成的动态过程,例如聚酰胺(PA66)单晶中聚合物链在受力熔融过程中的黏滑运动(stick-slip)[32]. 此外,一些公司也生产了许多功能化的AFM探针. 例如:满足基于巯基-金的化学分子偶联的镀金AFM探针;为了增加激光束在微悬臂上表面的反射率,只在上表面蒸镀金属涂层(铝或金等)的探针等. 然而,只存在于微悬臂上表面的镀层,往往导致其上下表面的膨胀系数产生差异,引起热漂移[33]. 为了减小该热漂移,有些探针只在其微悬臂的尖端进行有限的金属蒸镀(例如MLCT-BioDC型号探针). 如需增加时间分辨率,可以选用超短探针[34]. 但超短探针的弹性系数通常较大. 科研人员曾利用离子束刻蚀的方法将微悬臂做成镂空结构,同时保证了时间分辨率和弹性系数[35]. 然而,使用较小尺寸微悬臂时,激光容易“漏射”到样品表面,发生反射,与微悬臂表面的反射光产生干涉,导致力曲线出现大幅度波动. 为了减少这种干涉效应,通常可以采取以下几种策略:(1)减小汇聚到微悬臂表面的激光光点的大小,从而减小漏光;(2)选用横向尺寸较大的微悬臂,增大反射面积;(3)选择透明基片(例如玻璃片)固定样品,降低基片的反射率;(4)适当增加样品平面相对于微悬臂平面的角度,降低反射光的相干性.AFM探针需要被牢固地固定在夹具上,以减少系统漂移. 为了提高微悬臂检测的灵敏度,将激光光斑尽可能地照射在微悬臂的最前端. 仪器调试完毕,让整个系统平衡10~30 min,使微悬臂上下表面材质差异所引起的界面张力达到平衡,减小系统漂移. 如在同一个样品上进行力谱探测的时间较长,且实验前期及后期羧甲基化淀粉以及多聚蛋白质的力学指纹谱是被经常采用的单分子拉伸指示剂. 为此,可以将待测分子与已知指纹图谱的分子进行串联(图7)[49]. 需要注意的是待测体系的力学稳定性要大于内标分子产生力学指纹谱所需的力值.Fig. 7Basic strategy to isolate/identify single chain/molecule pair stretching.2.5力谱数据的分析处理单分子力谱数据可以给出的信息包括长度及力值的定量信息. 为了更精确地描述这些定量信息,通常需要对大量力学信号进行统计分析[1]. 常用的统计方法是将所得数据以柱状图形式呈现,进行高斯拟合,得出最可几值.此外,还可以利用自由连接链模型及蠕虫链模型对数据拟合,获得库恩长度、相关长度或者链段弹性系数等信息[1]. 近年来,这些经典模型不断被修正,应用范围逐渐被拓展[56]. 例如:FJC模型中了增加参数Ksegment,表征高分子链中每一个链段的弹性,被修正为可伸长的FJC模型(eFJC). 该模型中,每一个链段类似弹簧,受力过程中伸长,可以更加精确地描述高分子受力时的弹性行为. 为了更好地描述高分子主链的固有弹性,即本征弹性,由量子力学(QM)计算得到的非线性单链焓弹性模量被整合到WLC、FJC及FRC模型中,得到了QM-WLC、QM-FJC与QM-FRC模型[57]. 在特定情况下,如水环境或真空条件,侧基和环境的非共价相互作用会对高分子链弹性产生影响. 为了得到上述情况下高分子主链的弹性,基于两态(two-states)系统的非共价作用动力学被引入,创建了TSQM-WLC、TSQM-FJC及TSQM-FRC模型. 上述修正模型能够更加精确地定量高分子链的结构及性质[57].一些非平衡态体系,例如受体配体的解离、力诱导下的转变等,力加载速率会影响力-拉伸长度曲线的形状. 因此,可以在较大力加载速率范围内,观察上
  • 美媒盘点2014年八大创新 基因测序居首位
    1. illumina公司突破基因测序&ldquo 音障&rdquo   今年1月,illumina公司宣布,他们的最新款基因测序仪可以每年破译1.8万个基因组,每次花费仅1000美元&mdash &mdash 十年前的费用是几十亿美元。有了费用仅1000美元的基因组测序,科学家就能开展广泛的基因组研究,进而了解各种疾病的起因。迄今为止约有22.5万个基因组进行了测序,基因组学先锋克雷格· 文特尔表示,到2020年这个数字将达到500万。   2. 火星梦想,可重复使用的火箭和3D太空打印机   百万富翁太空企业家埃隆· 马斯克认为,人类若要生存下去就必须成为多行星物种。马斯克希望从本世纪三十年代开始在火星上开拓殖民地,但人们首先必须降低太空旅行的成本。太空探索技术公司今年开始研制可重复使用的火箭,他认为这将把发射成本降低99%。   除了降低成本以外,航空探索者还需要减轻对地面的依赖。奇点大学创办的太空制造公司今年组装并开始在轨测试第一台3D打印机。   3. 可穿戴电子产品式微,虚拟现实引人注目   尽管受到万众期待,谷歌眼镜并未走红。这款眼镜在亿贝以半价出售,软件开发商逐渐失去兴趣,连谢尔盖· 布林也在一次技术盛会上忘了戴上他的谷歌眼镜。   其他可穿戴电子产品也继续寻找黄金处方。最近的民调显示,仅20%的受访者想要一块智能手表。大家不感兴趣的最常见原因(51%)是什么呢?他们觉得没用。   苹果公司适时推出苹果手表,它将于明年上市,能否取得成功尚难预料。   谷歌公司用纸板制作出虚拟现实(VR)头戴式设备,奥克卢斯公司则和三星公司合作完成了基于智能手机的Gear VR眼镜(现已开售)。   4. Body 2.0:一滴血诊断法和基于皮肤的干细胞   便携式医疗设备的尺寸和能力日益接受《星际迷航》里的三录仪。非营利性组织Xprize Foundation和诺基亚公司联合组织的诺基亚传感器创新挑战赛(Nokia Sensing XChallenge)获奖作品rHEALTH是一种手持仪器,能用常规常规验血量1500分之一的血量诊断数百种疾病。便宜、定期的体检有助于医生及时发现和治疗疾病。   再生式医药也迅猛发展。一度备受争议的干细胞不再需要从胚胎提取。2014年,将普通皮肤细胞变成多能干细胞的先进技术开始在黄斑变性患者身上试用。多能干细胞可以变成任何一种细胞,有助于受损组织再生。   5. 3D打印不再是炸伤而接近于实实在在的革命   消费者3D打印在去年引起轰动。或许,3D打印公司先是受益于公众期望的上升,后又受其所累。业内领先企业斯特拉塔西斯公司和三维系统公司的股票价格在大幅攀升后于2014年骤跌,分别下降了41%和70%。   尽管如此,分析人士称,3D打印(硬件、软件和打印材料)在今后几年会快速发展。   6. 机器人来了:无人机、无人驾驶汽车和太空探测器   如今的无人机物美便廉,甚至能用高清摄像头跟踪你。最便宜的迷你无人机售价仅30美元,能在你手掌心里翻转。无人机已然在向执法部门和军队提供帮助,也许有朝一日会成为一大产业。   谷歌公司的无人驾驶汽车实现了安全行车70万公里,已从高速公路开上城市街头,新款已抛弃方向盘、油门和刹车踏板。各大汽车制造商纷纷推出自己的自动驾驶汽车计划。   此外,机器人还将打入快餐业、在亚马逊的仓库里捡货、在农场摘辣椒、在五金商店当售货员,甚至在太阳系里搭乘一枚彗星探索冥王星。   7. 人工智能取得进步,引发争议   不久以前,人工智能还是个禁忌话题,现在却再度流行。   狭义上的人工智能(AI)今年能力增强到能识别图像。IBM公司推出一款模拟大脑的新型芯片,投资10亿美元生产出在Jeopardy节目中夺冠的AI系统&ldquo 沃森&rdquo 。Siri的发明者出资开发下一代虚拟助手来完成Siri(及其他)尚无法完成的任务。谷歌、&ldquo 脸书&rdquo 等都在不断招募AI研究人员。   8. 数十亿人即将上线   2014年的发展表明,未来几年将新增40亿人上网。   Mozilla推出25美元的智能手机。谷歌的试验性互联网热气球也许明年就会抵达地球,该公司还宣布斥资10亿美元建立一个全球互联网卫星网络。&ldquo 脸书&rdquo 致力于开发太阳能互联网无人机,它们能长时间停留在空中,为基础设施欠缺的地区提供上网服务。   就文化、教育、研究、创新和通信而言,全世界互联网人口增加一倍以上的意义是惊人的。
  • 基于三坐标测量机测量双联行星轮对齿精度的方法探讨
    一、 前言根据自有设备情况选用公司齿轮测量机、三坐标测量机作为数字化设备,分别对双联行星轮对齿精度进行测量。通过分析测量过程及测量结果,对三坐标测量机间接测量法进行改进,即通过对大小齿轮轮廓进行扫描,构造虚拟量棒直径计算对齿角度偏差,并根据这种测量方法编制了三坐标自动测量程序,提高了检测效率及准确性,保证产品的合格率至98%以上。二、实施背景(一)背景近年来,为降低矿山运输行业成本,提高效率,大型工程运输车开始设计生产,其中轮式自卸车比较热门,一直占据市场主导地位。当前,全球每年轮式自卸车销售额高达100亿美元以上,并且连续6年保持30%的增长率,足以说明一个新兴品类正在崛起。(二)现状轮式自卸车电动轮组成的主要部件为双联行星轮。行星齿轮传动与普通齿轮传动相比,具有重量轻、体积小、传递功率大、结构紧凑、承载能力高等一系列优点,在工业领域应用广泛。在行星传动的各种型式中,NW、NN及WW三种型式的行星齿轮为双联齿轮,当前国内研制和承接的轮边减速器产品中,NW型双联行星轮组的制造工艺难度系数最大。目前,只有GE、西门子等极少数国际大公司具备制造高品质双联行星轮组的能力,形成市场垄断,利润高达500%。最近几年,国内研制了多种双联行星轮组对,但制造过程复杂,工艺和产线瓶颈较多。大多数公司只能选择自行配对组装,但却无法满足与客户整机零件的互换,与行业中成熟产品存在较大差距,产品的销价差别也很大。 (三)实施的紧迫性目前,中车戚墅堰所已涉及共计6款双联行星轮的研制,双联行星轮不仅可以作为零部件安装在总成上,还可以作为成品进行销售。通常双联行星轮需要经过热套、精磨轴承档、磨齿修正三个工序,每个工序都要检测对齿精度,只有保证每次检测的稳定和效率,才能使成品的对齿精度控制在顺逆30秒以内。为攻克目前产品中对齿精度检测的难点,本文对轮边减速器中的行星轮组对齿精度的相关工艺及检测要求进行了讨论分析,助力企业有效地提高生产效率,降低质量风险,固化生产周期并降低生产成本。三、测量方法及改进(一)间接测量方案及参数确定1.双联齿轮对齿技术简介行星齿轮机构传动是指二个或三个双联行星齿轮工作时与太阳轮、内齿轮同时啮合而形成的传动系统。双联行星齿轮对齿在技术条件上一般要求上下联的齿或槽中心对正,常用的对齿和测量方法是用插齿刀对齿,用圆柱棒进行偏差测量。2.测量设备配置检测设备配置如下表1所示,三坐标测量机是20世纪60年代发展起来的一种高效率的新型精密测量仪器。它的优点是:(1)通用性强,可实现空间坐标点的测量,方便地测量出各种零件的三维轮廓尺寸和位置精度;(2)测量精度可靠;(3)可方便地进行数据处理和过程控制。因此,它被纳入自动化生产线和柔性加工线中,并成为一个重要的组成部分。齿轮测量机主要用于测量齿轮的轮齿精度,包括齿形、齿向误差、周节累积误差、径向跳动误差等,测量精度高。表1 检测所用设备设备名称型号生产厂家三坐标测量机MMZ G 303020德国蔡司ZEISS齿轮测量机P65德国克林贝格3.测量参数的确定选用1Z057双联行星轮作为测量件,它是由小行星轮和大行星轮组合而成的。(如图1) 图1 1Z057双联行星轮选用三坐标测量机进行对齿精度测量时,首先要确定测量圆柱棒的直径。通过查阅1Z057 双联行星轮的设计蓝图,了解大小行星轮的参数,再根据参数信息计算最佳圆柱棒直径进行测量。为保证测量结果的准确性, 量棒直径不可太大, 也不可太小;若直径太大,与齿廓的接触点有可能超出大径,若直径太小, 则量棒外圆将与槽底接触。以上两种情况都无法得出正确的测量结果。为避免这些情况,选择量棒直径时,应使量棒外圆与齿廓的接触点落在分度圆及其附近的任意位置上,一般在距小径的(1/ 3~ 2/ 3 齿高之间为宜。当量棒外圆与齿廓的接触点落在分度圆上时,可通过公式1得出量棒直径。 公式(1)其中dp是量棒直径,db是分度圆直径,α是齿形角,Z为齿数,对于渐开线标准圆柱齿轮db=mz;小行星轮模数为8.367,齿数为17,齿形角为25度。经计算最佳量棒直径为φ16.771;大行星轮模数为8.175,齿数为72,齿形角为25度。经计算最佳量棒直径为φ15.797。4.间接测量方案根据公式(1)计算结果,我们选用φ16的量棒进行间接测量,测量方法如图2。 图2 测量小行星轮(左);测量大行星轮(右)先扫描上下两个轴承档连成公共轴线,确定轴线基准。将φ16的量棒卡入齿槽内,用探头确定量棒中心位置,建立坐标系,计算出上下中心的偏移量,得出对齿角度偏差。图3为测量数据报告,根据偏移量的正负值确定顺逆方向。 图3 测量数据5.数据验证选用齿轮测量机进行测量,首先找正双联齿轮的轴承档,输入大小行星轮参数,选择角度测量软件,自动扫描轴承档,确定基准中心线,然后扫描大小行星轮齿槽左右齿面的齿形轮廓和齿向轮廓,确定齿槽中心线,通过软件计算,得到偏转距离,从而得出对齿角度。测量过程如图4,数据报告如图5。 图4 测量小行星轮(左);测量大行星轮(右)图5 测量数据6.数据对比及测量存在的不足通过量棒间接测量的对齿角度为44秒,而齿轮测量机测量结果为1分05秒。以齿轮测量机测量结果为参考值,两次测量存在21秒偏差,偏差交大。对比两种测量方法,间接测量法以手动操作为主,人为不确定性较大;齿轮测量机通过扫描齿形轮廓和齿向轮廓确定齿槽中心线,得出对齿角度,数据精准性较高,但是起吊、找正及测量时间较长,效率低下,无法满足生产进度。(二)对齿精度检测工艺优化改善间接测量法测量结果偏差较大,特对其进行改进。首先选取小齿轮的上端面作为空转方向,小齿轮上端圆作为圆心,小齿轮两边对齿的中心点作为旋转方向建立初定位坐标系;通过初定位坐标系,三坐标测量机能够快速准确地扫描工件的上下两个轴承档并使其公共轴线成为基准;再通过三坐标测量机运用未知曲线扫描功能对上下齿轮中部(即齿向最高点)的齿槽两边进行扫描,得到2条V形曲线(如图6)。构造与V形曲线相切的两个虚拟圆形,小行星轮选择直径为φ16.771的圆,大行星轮选择直径为φ15.797的圆(如图7)。以轴线作为基准,小行星轮虚拟圆圆心到轴线的连线作为方向基准建立坐标轴。通过计算两个虚拟圆圆心到轴线连线的夹角得出对齿角度。 图6 扫描程序图7 小行星轮拟合圆(左);大行星轮拟合圆(右)表2 双联行星轮对齿角度数据序号改进前(三坐标)改进后(三坐标)(齿轮仪)方向10’40”0’22”0’20”顺时针20’38”0’18”0’20”顺时针30’42”0’23”0’20”逆时针40’20”0’13”0’10”逆时针50’15”0’36”0’35”逆时针60’40”0’51”0’50”逆时针70’28”0’9”0’12”顺时针80’30”0’13”0’13”顺时针90’5”0’21”0’20”顺时针100’13”0’35”0’35”顺时针110’30”0’15”0’12”顺时针120’28”0’10”0’12”逆时针130’5”0’24”0’20”顺时针140’45”0’24”0’25”顺时针150’5”0’25”0’23”顺时针160’10”0’30”0’29”顺时针170’5”0’20”0’20”顺时针180’30”0’10”0’5”逆时针190’24”0’23”0’25”逆时针200’19”0’40”0’38”顺时针210’28”0’14”0’10”顺时针220’13”0’32”0’30”顺时针230’10”0’30”0’32”顺时针240’40”0’25”0’25”顺时针250’15”0’33”0’30”顺时针260’29”0’22”0’20”逆时针270’42”0’22”0’25”顺时针280’8”0’29”0’28”逆时针290’28”0’16”0’12”逆时针300’40”0’20”0’21”顺时针平均偏差0’16”0’2”表2为30件工件的测量数据,以齿轮仪测量结果作为参考值。对比可见,改进前的数据平均偏差为16”,改进后的数据平均偏差为2”,表明改进后三坐标测量数据的稳定性及精确度都有了进一步提升,与齿轮仪的测量数据偏差较小,满足设计要求,提升测试效率,为双联行星轮的加工提供了强有力的数据支持,也为公司打破垄断走向市场提供了关键的检测技术支持。四、实施效果及意义通过对间接法进行改进优化,三坐标测量机适用于各类型双联行星轮组的对齿精度检测。对齿精度检测工艺的优化,也大大提升了产品合格率,取得了巨大成效,主要有以下4个方面。1.双联行星轮对齿精度合格率达98%;2.双联行星轮制造成本降低10%,产品质量和市场竞争力获得极大提高;3.双联行星轮的检测周期缩短20%,由以前的2天以上缩短至1天;4.双联行星轮可实现90%成品的对齿精度在正负30秒以内,媲美GE、西门子等公司同类产品要求。参考文献[1] 王兰群 张国建.渐开线花键M值得测量及量棒直径的选择 2005.9.1[2] 张志宏 张和平 双联行星齿轮模拟装配 2005.8.26[3] 郭海风 张丽 双联行星齿轮对齿技术 1994.1.1本文作者:中车戚墅堰机车车辆工艺研究所有限公司计量检测工程师 蒋瑞骐
  • 盘点:十大你所担忧的医疗黑科技
    自古以来,人类一直以一种恐惧的态度对待未知事物。因此,科技发展在推动社会进步的同时,也一直为人类所忌惮。电话于19世纪晚期进入瑞典,当时人们担心一旦不小心弄断电话线,电就会由此溢出,因此许多上了年纪的人坚决不碰电话机,以防止触电。可见涉及人类健康时,这种恐惧会被放大。就在Wilhelm Conrad R?ntgen公布自己发现X射线之后不久,人们担心这种高能照射可以读取他们的思想,看穿身体和灵魂——甚至有厂家专门生产出防X射线的内衣。到了现在,人工智能、机器人、纳米科技、虚拟现实、基因组测序等技术也引发出类似的恐惧。历史的发展总是惊人的相似,从古至今,这种恐惧的产生都是源于人类在某些技术领域的无知。接下来,动脉网将为大家拨开笼罩在数字医疗科技之上的迷雾,对其在生物伦理方面引发的问题给予解答,帮助人们安心、自如地使用这类科技。1据说人工智能可以控制人类,是真的吗? 有关人工智能及其应用的研究,其进展之快令人震惊。IBM Watson致力于为医疗数据打造一个基于云计算的共享枢纽,将闲置信息利用起来,以支持更加优质的诊断和护理服务。它可在数秒之内读取上百万份文件,然后给出最佳治疗方案;Atomwise则试图利用超级计算机提前对药物疗效做出判断,从而达到降低药物研发成本的目的;Google Deepmind Health被用于从医疗纪录中挖掘数据,以此加速医疗服务的供应,并提升医护体验。这一项目还处于初始阶段,目前已有一“位”合作伙伴:Moorfields Eye Hospital NHS Foundation Trust。双方共同努力,以改善眼部诊疗效果。人工智能研究的深入为提升人类福祉带来了诸多便利,同时也引发了许多担忧,最为典型的一个是:人们担心复杂精密的人工智能技术最终会赶超人类大脑,主宰人类命运,剥夺人类的自由意志和思考能力。Stephen Hawking甚至说过:人工智能技术发展到极致之日,便是人类灭绝之时。我觉得这种看法未免太消极,但我也认同一种观点,即我们应做出必要准备,以确保人工智能技术得到合理的利用,其中包括设置道德标准来对其发展施以适当限制,以及放慢研究速度,好腾出时间制定方案,以应对可能会出现的负面影响。在制定规则方面,谷歌已先人一步采取行动。假如能够有机会习惯人工智能技术,并发掘出于自身有益的方面,这对于患者和医护从业者来说都是一大利好。Cognitoys就是一个很好的例子,它可以借助人工智能技术以一种柔和有趣的方式帮助开发幼儿的认知能力。2外科手术机器人会不会突然失控、误伤病人? 人类在优化外科手术效果、提高操作的准确度和成功率及缩短愈合时间方面做出了许多努力,并取得了一定成果。通过da Vinci外科手术系统,外科医生可以在手术过程中获得更加清晰的视野,操作准确度和控制力也可以得到提升。去年12月,强生与谷歌联手创建了Verb公司,其主要目标是为外科手术从业人员研发出一款集前沿机器人技术与一流医疗设备于一体的“外科手术解决方案综合平台”。外科手术机器人有许多优势,比如低成本和高效率。尽管如此,仍有不少人担心这些机器人有一天会失控伤人。但其实,只要我们考虑周全,万事谨慎,这样的恐怖故事就不会成为现实。因此我不断强调加强人工控制,因为目前所有的外科手术机器人都是通过人工控制发挥功能的。此外,许多操作本身十分复杂,或是使用科技的经济成本太高,所以这些操作难由机器替代人类完成。我们应当时刻牢记:在外科手术领域,科技的使命仅仅在于辅助主刀医师更好地完成手术。3公司可以利用我们的医疗数据监视我们的行动吗?Proteus Health让患者贴一片形状类似于补丁的传感装置在身上,通过这个“补丁”他们可以对每一位个体患者的医疗习惯进行分析。这一传感装置将数据传送至患者和医师的智能手机,以帮助二者更好地对医疗过程进行管理,最终提升医疗效果。在这个例子当中,虽然医疗数据被收集利用了,但这种收集利用是以一种于患者有益的方式与目的进行的。另外一个例子是Oscar Health,一家立志改变医疗保险领域繁复现状的初创公司。他们的基本理念是:凡采取积极行动预防疾病发生的个体都应得到奖励。他们的顾客会得到一个免费的Misfit计步器,只要达到各自的日行走量目标,就可以得到1美元的奖励。假如从另外一个角度来看这些案例,似乎患者的保险都是以牺牲个人医疗数据换取的,其中包括睡眠数据、健康追踪仪收集到的数据、血压数据、心电图数据和通过小医疗器械测量得到的数据。利用这些数据,保险公司就可以随意改变保费,或是通知顾客:基于你不健康的生活习惯,我们很快就要提高你的保费了。假如你不按照专为你量身订制的饮食计划选择食物,而是钟爱吃牛排,或懒得运动,那么你的保费就会增加。总而言之,你做任何事情、任何决定,都会对你的保费产生影响。而且数据的流动似乎永远是单向的:患者把数据传送给医疗公司,却收不到有关医疗公司的任何信息。这肯定是不公平的。我们怎么判断一家生产可佩戴设备的初创公司是否可靠、是否会妥善保管我们的个人数据呢?针对这个问题,我的建议是:除非这家医疗产品公司得到了食品药品管理局这样的政府机构的许可,并且其生产经营行为符合一定的规范,比如健康保险携带和责任法案(HIPAA法案),否则就不要将信任交给它。如此一来便可确保我们的个人信息没有给错人,一旦被误用,相关单位一定会受到制裁。公司应当在网上建立公开透明的档案和面向顾客的在线沟通渠道。我们对一家公司越了解,个人信息被误用的风险就越小。4吞入式传感器和植入芯片会损害健康吗? 很多人相信,在未来,微型摄像头和微芯会入主医疗产业。患者可吞入微型摄像头和以药片为载体的微芯来检测是否有服用药物。VivaLNK’s eSkin Tattoo等生物识别纹身可以以一种严密的方式传送药物信息。射频识别(RFID)芯片可被植入人体皮肤,做识别设备用。不过,一些人担心这类设备可能会携带有害物质进入我们的体内,比如病毒,然后从内部对人体发动攻击,比如电影《黑客帝国Ⅰ》中被用在主角尼奥身上的那个小东西。显然,人类会有这种恐惧,是因为我们天生就对干涉身体自然运转的事物持反感态度,讨厌有一个小东西在我们的身体内自行运作。为了消除这种恐惧,医疗从业人员不得不设立适当的道德标准好帮助社会从一个宏观层面上应对传感器和芯片这两种新事物的兴起。在这样的道德标准规范下,只有那些能够证明自己提供的传感器和芯片足够安全的微型医疗设备供应商才能获得合法生产资格。5虚拟现实技术会使我们脱离现实吗? 虚拟现实技术正在改变医疗行业的面貌。洛杉矶Cedars-Sinai医院的Brennan Spiegel和他的团队向患者详细介绍了虚拟现实技术的世界,好帮助他们缓解压力、减轻痛苦。通过一部放置在患者家里、学校或是生日派对、足球比赛等特殊活动现场的360全景监控摄像机,再加上一部智能手机和一副虚拟眼镜,VisitU就可以帮助不得不住院治疗的年轻患者获得身临其境的体验,继续享受生活。尽管好处多多,许多人还是对虚拟现实技术持保留态度。没错,佩戴Oculus Rift目镜可能会引发一定的不适感,但这个问题的严重性距离人们担心的“虚拟现实技术使人脱离现实”简直十万八千里。《时代》杂志曾报道过这样一个案例:韩国一位年轻的父亲在咖啡馆打一款网络游戏上了瘾,导致自己两岁的孩子活活饿死在家里。另外一个可怕的故事同样发生在韩国:2005年,一名22岁男子在玩当时很流行的一款“星际争霸”游戏连续达50小时后,心脏骤停,离开了人世。类似案例的发生使许多人相信:虚拟现实技术也会令人沉迷或上瘾,并导致严重的后果。这种担忧是合理的,因此我建议,虚拟现实技术的引入必须循序渐进,别着急,一步一步来。至于Google Cardboard——目前最简单、最廉价的虚拟现实设备产品——会提供什么样的虚拟现实体验,就让我们拭目以待吧。6基因测序技术真的可以揭示我的命运吗? 基因测序技术可以挽救生命。早在2013年,遗传学家Stephen Kingsmore和他的团队就通过快速基因测序挽救了一名男婴。发展至今,这项技术比以往更加廉价,应用也更广泛。截至目前,已经有一些大的工程计划利用人工智能挖掘人体遗传数据,好帮助患者分析他们的基因当中都携带了什么风险。一提到事关生死的大命题,人们似乎总会联想到分子生物和基因科学。生命从何而来?生命如何成形?这样的思考往往又会引出生物伦理方面的严肃话题。许多人认为,一些医学家和医疗业本身都是在试图通过基因组测序和修正基因这样的行为越权扮演“上帝”和“造物主”的角色。Stranger Visions以艺术的形式使这种恐惧得到了具体的展现:通过对可从中提取出基因的物质——如在公共场所中采集到的烟嘴上的唾液——进行分析,艺术家们创造出了相应的人形塑像。这一艺术行为表明了这样一种可能性,即基因分析可能会帮助科学家获知某一人体的全部信息,这对于很多人来说是很可怕的。会害怕是正常的,通过你的一滴血或一口唾液就可以全面了解你的身体和生命,这确实很诡异。而基因学的发展可能会赋予它更大的权力,比如揭示基因中携带的致病因子,并对特定的生活习惯是否会诱发某种疾病这类事情作出判断。大多数人对此是拒绝的,因为他们并不想获知潜藏在自己基因当中的致病因子以及可能的健康走向。他们不想提前获知并改变命运,因为他们相信命运这种东西是早就注定的,尽管事实并非如此。我相信,只要加以合理谨慎的利用,并且是在不违背生物伦理的前提下,基因学和遗传学工具在预防和治愈疾病方面会发挥惊人的作用。消除人们对基因学的恐惧的最佳方式是科普和教育。我们应当做的是像Personalized Medicine Coalition那样,针对基因组测序和遗传学的利害面给出一个大体的介绍。但愿以后会有更多的机构做这样的事情。7纳米机器人会加剧生物恐怖主义吗? 来自德国马克斯-普朗克研究所的一群研究人员最近一直在针对一种直径不到一毫米的微型机器人进行相关实验。这种机器人可以在体液中随意流动穿梭,并十分精确地将药物或其他医用缓释剂运送至人体特定部位。科学家设计这种扇贝形状的、直径不足毫米级的迷你机器人是为了使其能够在非牛顿流体当中任意穿梭,比如人体的血液、淋巴系统或是眼球表面的黏液。纳米机器人尺寸非常小,即使有人把它放进你喝水的杯子里,即使你把它一起喝进体内,你都不会察觉到它的存在。有人担心这种微型设备会使全面监控成为可能——体液内有这么一个小机器人游来游去,那一定什么秘密都藏不住了。也有人担心会有罪犯或恐怖分子利用这种纳米机器人行违法之事,比如往人体内运送毒素或致死药剂。在这个问题上,我认为我们应当尽早就涉及纳米机器人的道德问题开展公开讨论,并成立生物伦理专家组,针对纳米机器人可能会造成的安全威胁进行评估。医疗行业从业人员和全体社会公众需要通力合作,不给那些试图利用数字医疗科技危害他人的危险分子留下任何可乘之机。8机器人会取代人类吗?医用机器人不只存在于科幻电影和遥远的未来;现如今的医疗产业当中已经可以看到它们的身影。Xenex机器人利用紫外线给医疗器械消毒;比利时的两家医院“雇”了Pepper机器人做前台。同样是在这两家医院,TUG机器人帮忙搬运不易携带的药物和医疗用具;小熊形状的RoBear机器人可以将患者从床上抬起来并安置在轮椅里,或帮助他们站立、运动,以免得因卧床太久而患上褥疮;Veebot机器人可以在不到一分钟的时间内快速采集血样;此外,已经有科学家开始着手研发性爱机器人。许多以前只能由人来完成的工作现在都交给机器人做,这触发了一些医疗从业人员、医护工作者包括普通人的恐惧神经。能让机器人做到采集血样或将患者从床上抬起来这样的工作是很不容易的。万一他们误伤患者或突然失控怎么办?和外科手术机器人一样,想要消除忧虑,人工控制是关键。还是那句老话:科技所起到的只是一种辅助作用,人才是主导。不过,随着机器人领域的发展,我们应当接受机器人这种新鲜事物进入我们的生活。因此,在一定程度上,我们要学会利用它。这不是要求我们像对待充气娃娃一样,将它们作为生活伴侣,并与之一起生活;我们要做的是借助机器人的能力为我们的生活添加便利。正所谓见多不怪,多被机器人抽几次血,我们就会把它们当成是人类护士一样了。9DIY生物科技会引发致命疾病吗?近年来,社区实验室已变得越来越普及,比如匹兹堡的“公民科学实验室(The Citizen Science Lab)”,其目的是激发出公民——从幼儿到老人——对生命科学的兴趣。在这些实验室里,人们可以随心所欲地开展创造活动,比如设计药物和修饰基因。与此同时,也有一些人认为DIY生物科技存在许多安全隐患,比如被罪犯和恐怖分子利用,为实现自己不可告人的邪恶目的来制造一些有害物质。另外一些人认为,利用科学方法和手段进行医学研究是且只应是科学家的权利和职责。倘若这种权利被扩散至所有人,其后果可能会十分严重。至于解决方案,和我在前面几个案例当中提到过的一样,就是制定规范并施加监管。利用CRISPR法修饰基因将在今后一至两年内成为主流,在这种背景下,新的规则必须尽快出台,以确保社区实验室不被不法分子所利用。10便携式医疗设备靠谱吗?可穿戴健康设备和传感器的市场形势一片大好。这些设备,如Scanadu和Viatom Checkme,不仅可以测量体温,还可以追踪心率、测量脉搏的速度和节奏、测量血氧饱和度、心脏收缩压、以及运动和睡眠。总而言之,这些设备的出现几乎完全刷新了我们对医疗的理解。有时你甚至不必去医院,在候诊室等上几个小时,只为那十分钟的检查。只要有合适的设备,你随时随地都可以替自己做出专业级别的诊断。不过,许多人不信任这种设备的准确性,除非有专业人员在场指导,否则他们会拒绝使用。此外,一些人认为只有专业的医护人员使用的可穿戴设备和传感器才是安全可靠的。因此,我建议此类设备生产商与顾客做到充分沟通,向顾客明确讲解自己的产品在质量方面都通过了哪些安全评估。当然,规则和标准也很重要。食品药品管理局有一张单子,上面罗列了通过批准的设备。这是一种非常有效的做法,其他国家也可以加以借鉴。
  • 一文读懂基于长读长技术的单细胞全长转录本测序
    单细胞全长转录本测序的价值单细胞测序技术为基础科研、临床诊断、药物研发等领域带来了诸多全新发现视角。现阶段主流的单细胞测序,大多是通过单细胞捕获设备获得cDNA文库后进行打断、扩增、建库,并用二代建库测序分析基因的整体定量。然而,基因在不同组织、不同细胞亚群中会使用mRNA的不同转录本,SNV、融合基因等结构变异也具有组织和细胞特异性,此外,科研界研究比较热门的lncRNA,在不同组织细胞亚群中也具有特异性的表达。这些基于全长序列方面的信息,是目前单细胞二代测序无法获取的。主要原因是目前基于二代测序的单细胞数据局限于3' 或5' 端的150-250bp,较难满足这类需求。而传统的Smart-seq虽然可以实现全长转录本覆盖,但需要经过拼接组装分析转录本结构,且通量较低,成本较高,研究单细胞可变剪切仍然较为困难。由于二代测序读长较短,三代测序如PacBio、Nanopore等技术以其长读长的优势解决了这一痛点,因此,如果能将二代测序与三代测序相结合,既能获得mRNA的全长序列,并通过Cell Barcode信息定位到细胞亚群,即可解决了这一单细胞研究领域的痛点。但是,在前期测试中发现,二代单细胞测序一般获得约3万个基因的表达矩阵,三代全长测序能获得超过10万个转录本的表达矩阵,两套数据的聚类图谱差异巨大,现有的分析流程并未很好地解决两套数据的一致性匹配问题。因此,如何能从庞大的二代+三代,也即基因+转录本的单细胞数据中,挖掘到有价值的特异性转录本,可以为单细胞临床转化、药物靶点发现带来更加细致的挖掘角度。及智医学团队出身单细胞科研服务行业,重点围绕单细胞富集与检测平台、单细胞测序技术平台和基于AI算法的单细胞数据分析算法平台,建立了单细胞转录组、空间转录组、单细胞联合Bulk多组学等多种独特的分析流程和方法,尤其擅长各类免疫细胞与基质细胞的分类、功能解析、细胞互作、药物靶点筛选等分析项目。最终通过积累的上百种单细胞分析方法与百万级别单细胞数据库,为单细胞临床转化类项目提供专业研发服务。及智医学团队生信专家通过高效的自动化分析脚本,并历时数月的二代+三代单细胞算法测试,目前已经解决了二代+三代单细胞聚类的诸多分析难点。伯豪生物基于十多年的单细胞组学服务经验,可提供从样品保存、运输、单细胞悬液制备,到单细胞分选、建库和数据分析的解决方案。及智医学与伯豪生物强强联合,正式推出单细胞全长转录本测序服务,即单细胞cDNA水平的转录、遗传变异研究,通过一次捕获,两种建库,同时获得单细胞聚类与转录本信息:目前,该技术方向为如下科研问题,提供了潜在的解决办法:发现携带特定突变的细胞,并与非携带突变细胞相比,挖掘基因表达规律挖掘功能基因,如膜蛋白、分泌蛋白、转录因子等的转录本使用情况,并发现全新功能转录本发现融合基因所在细胞亚群,研究它们与其他肿瘤细胞的拟时序分化关系发现亚群特异性全新IncRNA获得亚群特异性表达的转录本,能够辅助小核酸类药物开发企业,针对该特异性转录本设计siRNA干扰片段,提升小核酸干扰靶点的有效性。案例解析2021年11月11日,来自澳大利亚 沃尔特-伊丽莎霍尔医学研究所的Tian等人开发了一种基于Nanopore测序和10x Genomics的全长转录组单细胞测序方法,分析单细胞中的全长异构体、可变剪接和突变检测。研究成果发表在国际知名期刊Genome Biology(IF=13.6),论文题目为“Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing”。文章中,使用10x Genomics技术分选得到单细胞的全长cDNA后,将cDNA一分为二,一份进行打断建库用于二代测序,另一份进行全长扩增建库用于Nanopore三代测序。此时Nanopore的文库上也包含了细胞Barcode,后续可以通过分析流程将三代测序和二代测序结果通过细胞Barcode一一对应。通过这样的方式,即实现了获得全长转录本,分析亚群的特征性转录本使用,并同时拿到了突变所在细胞。文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)文章数据分析显示其中40%-60%的Nanopore reads可以分配给预期的Barcode,并保留用于后续分析(图C)。在数据处理过程中,非全长且不能唯一分配给转录本的数据被丢弃。最终每个细胞的平均UMI为10,000至60,000个,并且与对应的短读数据情况相符(图D)。Nanopore和Illumina数据的基因水平的UMI计数也高度一致(图E)通过聚类分析发现,CLL(慢性淋巴细胞白血病)细胞相比正常免疫细胞具有更高比例的新型转录本,特别是新型剪接的转录本。同样,相比激活的干细胞,静态肌肉干细胞也有更高比例的新型转录本(图 D)。分析发现,约80%的基因可以表达多种转录本(图E),但是大多数基因主要表达1到2种转录本类型(图F),约30%的基因含有多于一种的可变剪接事件,意味着2个最高表达的异构体可能涉及多个外显子的复杂剪接变化而产生不同。文章通过分析CLL数据,检测到CD45的多种亚型(图G),CD45的表达通过CITE-seq进行验证。CITE-seq可以同时检测RNA和细胞表面蛋白,这种方法结合三代测序,可以对细胞表面蛋白进行更深入的分析和探索。对CLL数据集进行分析,寻找只存在于癌细胞中的,且在不同的CLL转录簇中具有不同等位基因频率的SNVs,通过经典的曼哈顿图最终发现四个变异在不同的CLL聚类呈现显著差异(图C,D)。其中发现的Gly101Val突变,此突变已被证实通过降低BCL2对venetoclax的亲和力而使患者对venetoclax治疗产生耐药性,通过分析发现患者CLL2携带约25%的Gly101Val突变,并发现该突变不仅属于亚克隆,而且与特定的转录簇相关(图E)。样品选择与实验细节由于单细胞全长测序需要对mRNA反转录后的cDNA全长进行测序,核心是需要将完整的全长cDNA扩增至2ug的 Nanopore建库起始量,而常规单细胞是将一链cDNA做基础扩增后全部打断用来做建库测序,因此,这一验细节就意味着单细胞全长测序需要额外质控。本文也从如下四个方面给出一些基础建议:样品选择悬液质控文库质控单细胞测序剩余样品用于新的科研发现一:样品选择常规单细胞测序样品来源分为新鲜采集与液氮速冻两种类型,两种类型的样品需要两种处理方式,新鲜采集样品需要在48h内制备悬液并上机,液氮速冻样品需要将细胞膜破碎,丢弃细胞质,分离提取细胞核,用单个核来做单细胞测序。不过,由于细胞核里面的RNA大多为初始RNA,包含有较多内含子,而从初始RNA加工为成熟mRNA的过程大多发生在细胞质中,因此,抽核类的项目并不太适用于单细胞全长测序。虽然在2022年7月份一篇Nature Biotechnology的文章是对人脑抽核后的单细胞样品进行三代全长测序,不过由于拿不到成熟mRNA,文章是站在了特定基因在不同亚群的外显子保留这样的科研角度统计规律(如下图)。文章角度非常新颖,也是科研界首次用单细胞全长测序发现人脑中,某些基因在不同亚群中,使用不同的外显子组合,生成多种编码蛋白。不过,由于最终拿到的仍旧是细胞核内的RNA,后续还需要大量验证工作,因此抽核后做单细胞全长测序的临床转化价值较小。所以,单细胞全长测序的项目最适宜采集新鲜样品制备细胞悬液,捕获成熟mRNA开展后续验证工作。经三代单细胞全长测序发现CADM1基因在人脑神经元(兴奋性、抑制性)、星胶、小胶、少突细胞亚群中,会使用不同的外显子组合。原文也有用蛋白质谱技术对这些外显子的多肽产物进行验证的工作二:悬液质控在收集到新鲜样品之后,可以使用商品化的新鲜组织保护液将样品在24h-48h内从临床运输至实验室进行悬液解离,并通过显微镜、细胞计数仪检测悬液质量。由于全长单细胞对RNA质量要求较高,比较建议悬液活率在85%以上,同时用台盼蓝、AO/PI双染鉴定,并用显微镜仔细观察细胞真实活率、红细胞比例(红细胞在光镜下,可以观察到圆饼状的亮圈,中间有黑色小点,有经验的单细胞实验员可以通过肉眼观察判断出来,而不少品牌的细胞计数仪有可能会把红细胞计算为碎片,甚至检测不到)。另外,现阶段二代单细胞测序,单个样品的数据量大多为100G,可以容纳5000-8000左右的细胞捕获量;而三代测序成本较高,站在节省经费的角度,建议一方面准确的对细胞悬液的浓度进行测定(不可单纯依靠细胞计数仪),来控制上机细胞总数(建议上机不超过1万个细胞);同时也要结合不同品牌单细胞捕获设备的真实捕获率(这点最好找成熟单细胞科研服务公司来完成)来进行综合判定(建议捕获不超5000个细胞,如果超过5000需要增加三代测序数据量)。三:文库质控单细胞全长转录本测序,只需要一次捕获,拿到一链cDNA之后要立刻进行全长扩增,如下图:因此,就需要将已扩增好的cDNA全长进行质控:如上图,cDNA条带主峰在1-1.5kb左右,下一步可以联系三代测序工厂寄送样品,由他们进行建库测序。但是,也要测序工厂及时反馈三代文库的质检图片,要求文库主峰与cDNA条带主峰一致,方可进行正式的Nanopore上机测序实验。四:单细胞测序剩余样品用于新的科研发现由于现阶段三代全长测序的准确性不够高,考虑到后续验证工作,比较建议在单细胞上机之后,将剩余的细胞样品进行冻存,从DNA、RNA、蛋白三个层面开展后续验证实验:01DNA水平:在我们前期测试中发现,三代原始数据中基因单核苷酸结构变异SNV(RNA层面的SNP、Indel)较多,为了拿到准确的,与DNA层面一致的突变信息,就需要结合DNA层面的检测来共同筛选核心突变。有两种做法:第一:同时将肿瘤患者的外周血和单细胞实验剩下的肿瘤细胞做全外显子测序(两个样品的市场价合计不超5000元),通过 肿瘤组织测出来 的突变 扣掉 自身PBMC 的胚系突变,可以得到体细胞突变,将这些突变 基因位点作为核心突变,利用自动化脚本,提取 三代数据中的原始 reads,这些reads都带有的 Cell barcode信息可以定位到突变所在的细胞与亚群!即可通过拟时序算法分析突变细胞vs非突变细胞的发育分化轨迹。第二:做全基因组重测序(可以根据具体课题决定是否还需收集PBMC),发现拷贝数变异CNV,以及融合基因信息,将这些信息与三代全长进行联合分析。后续分析内容也极为丰富,可以展开多个科研角度的解释。02RNA水平:在三代全长拿到特征性转录本之后,还需要做后续验证,如果序列较少,可以通过5' RACE、3' RACE实验拉全长获得准确序列;如果候选转录本序列较多,也可以通过Pacbio直接做 Bulk 测序(可以混样测一份即可,目的是拿到序列),再结合单细胞全长转录本的特异性表达规律,可以快速、低成本获得这些序列的完整信息,下一步即可通过构建动物模型,开展功能验证工作。03蛋白层面:现阶段的单细胞测序大多是以基因作为靶点,但是从已经发表的上万篇单细胞数据中,也经常发现基因的表达特异性并不强,这个是现阶段单细胞测序需要升级改进的核心关键点。而在真实组织中,基因在不同亚群中使用不同的转录本编码多种蛋白产物。有了单细胞全长转录本技术,也就意味着可以将靶点发现从基因细化为转录本,挖掘转录本的蛋白编码产物。因此,临床转化最核心的一步:膜蛋白层面,可以依靠全长转录本获得一些全新的发现。现有的蛋白质质谱技术无法做到 针对单个细胞进行广泛的蛋白质检测,但是蛋白质的编码序列都是从RNA层面的转录本翻译过来,转录本序列的检测比蛋白质的检测要容易很多。所以,这个里面就依托一套简单的逻辑:从DNA到RNA到蛋白的中心法则,即可做到通过单细胞全长转录本测序,发现亚群特异性转录本,再将转录本序列预测的多肽产物与蛋白质谱打出来的多肽产物进行匹配,发现一条潜在的转录本+编码产物,即为一条新型潜在靶点。其实,在肿瘤新抗原发现领域,这套序列预测+质谱检测的策略已经非常成熟并且较为实用,因此,可以基于中心法则将这套成熟策略转用到单细胞全长转录本发现新型蛋白编码产物领域。总结综上所述,单细胞全长转录本更适合做新鲜样品,整体实验过程并不复杂,基本上现阶段单细胞科技服务类公司都能实现,只需要在几个细节上稍加注意即可。总结下来,单细胞全长测序的本质只是对转录本加了 细胞亚群 的标签,方便从数万条转录本快速筛选到特异性表达的少数转录本。这个并不是一套全新开发的技术,只能算是从DNA到RNA到蛋白的一整套符合中心法则的单细胞多组学的技术方案。在我们前期拜访前沿课题组的过程中,有不少研究员曾想过这样的方法,只是行业内缺乏前人尝试。我们深入思考过这些细节后,发现这套方案从样品的选择、测序实验、数据呈现,均比现阶段的单细胞二代测序更加实用,更加贴近临床转化。从另外一个角度,转录本是基因功能实现的最小细分单位,针对转录本研究的单细胞全长测序,算得上是转录组研究领域的终点站。
  • 首届数字人开发者大会在京成功举办,数字人产业蓄势待发
    12月3日,2020 DHDC首届数字人开发者大会在北京黑糖盒子艺术中心圆满落幕。首届数字人行业盛会由国家互联网信息化办公室信息化发展局和中关村科技园区管理委员会作为指导单位,中国信息通信院、浦发银行以及中关村数智人工智能产业联盟主办,凌云光技术协办。现场300多位数字人行业权威专家及企业代表等出席大会,来自谷歌、迪士尼、浦发、清华大学、魔珐科技、原力动画、凌云光等数十位行业大咖通过线上和线下发表精彩演讲,就企业前沿技术、新技术应用、人工智能等热点问题做了分享和探讨。大会伊始,中关村科技园区管委会产业处处长张宇蕾、原国家广电部副部长何栋材、中央广播电视总台总编务会成员姜文波、浦发银行总行信息科技部副总经理万化、凌云光技术股份有限公司董事长姚毅等嘉宾就大会分别发表了致辞。领导嘉宾致辞(左上:中关村科技园区管委会产业处处长张宇蕾;右上:原国家广电部副部长何栋材;左下:中央广播电视总台总编务会成员姜文波;右下:浦发银行总行信息科技部副总经理万化)中国工程院院士戴琼海9月份在现场见证了中关村数智人工智能产业联盟数字人工作委员会的正式成立,此次大会他也通过视频形式对数字人大会表达了祝贺,他提到,未来,要让数字人进一步成为我们人类的朋友,我们会希望数字人不只是形象像人,更希望他能像人一样聪明,一样智慧,一样能善解人意。随着数字人开发者们的加入,数字人技术将会迎来全新变化,在各个产业领域的应用也会稳步快速向前发展!凌云光技术股份有限公司董事长姚毅凌云光董事长姚毅博士在致辞中讲到:参与推动的数字人产业,是要创造虚拟数字人类,服务于更多服务产业,在物质日益丰富的时代,去满足人类更高层的精神需求。凌云公司在十年前就开始设立立体视觉业务方向,针对数字人应用打造了端到端的全栈式数字人制作方案ChongMing系列产品,并成功应用于中影、腾讯、网易、诺华、虎牙等大型影视游戏直播制作公司。数字人开源计划意义重大AI+数字人的解放了生产力,如果AI是“引擎”,数据就是“燃料”。凌云光技术副总裁杨艺提到:目前国内开源数据库数量少、规模小、持续更新动力不足,中小规模开发者很难拥有大算力支持,国内AI+数字人急需建立安全、稳定、的开源生态社区,设立标准规范、开放服务平台,为行业应用和开发者构建平台。宣讲过后,大会就数字人开源启动及数字人测评工作启动举行了仪式。数字人开源计划暨标准测评启动仪式凌云光新品AI Motion公开亮相凌云光新品AI Motion在本次大会公开亮相,AI Motion是凌云光自主研发的多视点智能无标记点多人运动捕捉系统。相比于传统的光学运动捕捉,AI Motion完全基于自然视频图像,运动捕捉演员可完全摆脱穿戴设备的束缚,表演动作更加舒适流畅。AI Motion采用凌云光与清华大学新科研成果,充分利用多视点4D信息进行全局优化,从而实现单场景多人交互动作的准确跟踪。可广泛应用于无人售货市、VR/AR游戏、远程全息通讯、虚拟主播、人机交互、医疗监护等领域。凌云光技术新产品体验区关注数字人产业的过去、现在和未来,是本次大会的重要主题,也是当今时代的主旋律。习总书记在亚太经合会议时指出,数字经济是全球未来的发展方向。随着数字人技术发展,未来数据载体将进化为形象更加生动、知识更加丰富,交互更加智能的数字人,数字人这个融合了数字和创新的新兴事物在数字经济中扮演越来越多的角色,同时,对虚拟数字人技术的要求也将越来越高。此次DHDC数字人开发者大会从数字人新产品、新业态、新技术、新应用等多方面展开了分享。在现有的数字人技术基础上,不断的突破提高,把数字人技术发展到一个更高的高度,从而满足更多复杂的应用,解决更多行业难题,是众多数字人共同努力追求的目标,同时凌云光也会将人工智能与深度学习技术相结合进行研究,推动数字人技术不断发展。
  • 基因组大数据、生物质谱等将为生物医学带来新机遇
    p   云计算正在成为生物医学界的“宠儿”。——8月14日,北京贝瑞和康生物技术有限公司与阿里云共同向外界宣布双方达成合作,共同打造以海量的中国人群基因组数据为核心的数据云,实现对个人基因组数据的精准解读。 /p p   此次,双方共同合作的“神州基因组数据云项目”将首先聚焦于基因组大数据在云平台上的批量计算、分析、存储,进而在基因大数据领域共同进行前沿探索。 /p p   “打造基因组大数据,相当于建立了一个中国人基因版的《本草纲目》,将记载中国人群最核心的基因信息、生命信息,为中国人群重大疾病的预测、预防、诊断和治疗奠定基础。它的意义将不亚于《本草纲目》这部东方医药巨典。”贝瑞和康首席生物信息官于福利博士说。 /p p   中国是世界出生缺陷率最高发地区之一。每年1600万至2000万的出生人口中,有80万至120万出生缺陷儿。1996年到2010年,中国新生儿出生缺陷发生率增幅达70.9%,每一万名新生儿中就有149.9人患有先天性缺陷。 /p p   这一不利的局面将随着“神州基因组数据云”项目的实现得到改观。据了解,贝瑞和康自主构建的中国人群基因组大数据库目前已包含超过四十万份基因组数据。通过对该数据资源的深入挖掘,能够进一步揭示中国人群遗传突变分布,这将极大助益于提升中国人遗传疾病诊断的效率和精准程度。 /p p   贝瑞和康作为国际领先的基因测序技术临床转化服务商,致力于为临床医学疾病筛查和诊断提供“无创式”整体解决方案,是无创DNA产前检测和针对肿瘤循环DNA的肿瘤个体化医疗基因检测的行业领导者。 /p p   基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种罕见疾病的可能性,如地中海贫血病。 /p p   业内人士指出,随着下一代基因测序、生物质谱和医学成像等医学技术的迅猛发展,大数据浪潮为生物医学带来了前所未有的机遇,将根本性的改变生物医学基础研究和医疗实践,但同时生物医学领域数据爆炸式的增长也对海量数据的存储和分析提出新的挑战。云计算将大量计算资源、存储资源和软件资源虚拟化,形成规模庞大的共享资源池,可以有效解决生物医学对IT资源的弹性需求。 /p p   目前,新一代基因测序技术要得到比较准确的信息,一般认为30X 的基因测序深度是必须的,所以一个人的基因组检测大约需要产生 90Gb 的数据。如此大的数据,在一般的电脑或小型服务器上运行起来非常困难。 /p p   阿里云是全球领先的云计算服务平台。客户通过阿里云,用互联网的方式即可远程获取海量计算、存储资源和大数据处理能力。根据IDC调研报告,阿里云是国内最大的公共云计算服务提供商。 /p p   此次,阿里云与贝瑞和康达成合作,正是基于阿里云批量计算服务的强大能力,利用云计算的优势降低成本,提高数据分析的速度。 /p p   阿里云批量计算服务是一种适用于大规模并行批处理作业的分布式云服务,适用于生物基因分析、渲染、多媒体转码、科学计算、金融保险分析等多个行业领域。 /p p   阿里云高级专家林河山介绍说,“借助批量计算服务,用户可以调动海量计算资源快速完成基因大数据的处理。批量计算服务提供简单易用的API,允许用户通过有向无环图的方式灵活组建工作流,计算资源管理、作业调度和数据分发由系统自动完成。同时,批量计算服务支持自定义镜像,并允许应用通过网络文件系统(NFS)协议高效访问阿里云对象存储(OSS)上的数据,使得用户原有分析流程可以轻松上云。结合阿里云对象存储,批量计算服务能够帮助生物信息分析专家在云上快速构建大规模基因组学应用。” /p p   他进一步说,“此次与贝瑞和康的合作,阿里云将不断优化基于基因组学的云解决方案,以契合医学时代发展的需求。” /p p   业内专家预计,双方合作完成的基因组数据云将对中国临床医学的精准诊断,预防和治疗的发展产生深远的推动力。 /p p   无疑,借助阿里云的批量计算服务,用户将更便捷、更简单、更迅速完成基因大数据计算,大大降低客户的成本。同样,因为云计算的赋能,为研究人员开展大规模的基因组学研究大开“方便之门”,将催生一批影响人类健康相关的变革性成果。 /p
  • 蛋白质测序技术发展漫谈(续)——基于荧光、纳米孔的单分子蛋白质测序
    前文回顾(点击查看):蛋白质测序技术发展漫谈(上篇);蛋白质测序技术发展漫谈(中篇);蛋白质测序技术发展漫谈(下篇)前面描述了目前成熟的蛋白质测序方法,并对最流行的基于质谱的蛋白质测序方法进行了综述。非质谱依赖的蛋白质测序手段,除了几十年前发展的基于Edman降解法通过气相或液相色谱测序的方法,最近热门领域的方法主要包括基于荧光或纳米孔的单分子蛋白质测序,代表了未来的发展方向。基于纳米孔单分子蛋白质测序方法纳米孔测序(nanopore sequencing)法是借助电泳驱动力使待测单个分子逐一通过纳米孔,通过检测纳米孔截面的电流变化来实现对序列的测定。纳米孔测序最初在1996年被提出,通过膜通道检测多核苷酸序列,也就是单分子DNA的测序[1]。随着使用纳米孔对单分子DNA测序技术的逐渐成熟[2-5],纳米孔技术也被应用在单分子蛋白质的鉴定上。对于DNA来说,其二级结构和电荷相对比较一致,它的聚合物比较容易处理,而且仅由四种碱基组成,单分子DNA测序比较简单。相比之下,蛋白质分子由20种氨基酸组成,并且蛋白的电荷和疏水性多变,还存在大量的二级和三级结构,因此基于纳米孔技术对蛋白质的鉴定要比DNA困难很多[6]。当前的基于纳米孔对蛋白质分析的主要探索方向是通过寡核苷酸适配子或抗体等亲和分子对纳米孔进行功能化,当蛋白质或肽段分子通过纳米孔时,由于不同氨基酸在纳米孔附近的结合或通过会引起不同幅度的电流变化,基于这些变化就可以确定氨基酸的种类,从而逐个得到所测蛋白质或肽段的序列信息(图1)。图 1 借助纳米孔的横向电流检测单分子蛋白质[2]牛津大学的Hagan Bayley[7]团队将单个α-血溶素蛋白孔插入两侧带有电极的膜中,磷酸化的蛋白质在DNA寡核苷酸的牵引下展开,并穿过纳米孔,通过记录纳米孔的电流变化区分出了202个磷酸化蛋白质的4种不同亚型,但无法鉴定蛋白质的一级结构。Francesco[8]团队将蛋白质或氨基酸吸附在金纳米星上,并施加电等离子体力将粒子推进并约束在金纳米孔内,利用金纳米星与金纳米孔壁之间的单个热点,实现了单分子表面增强拉曼散射(SERS)探测,用于检测氨基酸,并且可以分辨仅含有两个不同氨基酸的单个多肽分子抗利尿激素和催产素。Cao等[9]通过单个定点突变,在具有锥形识别位点的耻垢分枝杆菌孔蛋白A(MspA)的纳米孔内腔中引入了甲硫氨酸,从而将该反应有目的的移植到了MspA纳米孔最尖锐的识别位点,并观测到了相应的单分子反应信号。该纳米孔可以引入更多的离子电流,从而放大检测信号,其狭窄的识别位点则提供了更高的空间分辨率,大大削弱了周围氨基酸的干扰,从而拓宽生物纳米孔的单分子检测功能,有望推进基于孔道的单分子蛋白质测序研究。Ouldali[10]研究团队研发出了一种新型气溶素纳米孔,此纳米孔借助将氨基酸附着在聚阳离子载体上,使氨基酸在纳米孔上停留时间变长,并检测其通过纳米孔时电流的变化,最终可识别出组成蛋白质的15种氨基酸,也能检测到组成蛋白质的其余5种氨基酸的电流变化,但是无法对其进行区分。虽然只是对氨基酸进行识别,但作者设想通过对蛋白或者肽段末端氨基酸逐个降解,利用纳米孔技术鉴定从末端释放出来的氨基酸,从而对蛋白质或肽段序列进行测定。Zhao[11]等将一对金属电极分隔在约2nm的孔洞旁,当氨基酸线性穿过这种纳米孔的时候,每一个氨基酸都会完成一个回路,并反馈出相应的电信号,常见的20种氨基酸在通过纳米孔时都可以产生电信号。有的氨基酸需通过大约50种不同信号特征被鉴定,但绝大多数的氨基酸仅需要不到10个信号特征被鉴别。这种方法不仅能够高可信度的鉴定氨基酸,还能区分翻译后修饰的氨基酸(肌氨酸)及其前体(甘氨酸)、区分同分异构体的亮氨酸与异亮氨酸、区分对应对映异构体的氨基酸镜像分子L-天冬酰胺和D-天冬酰胺。此技术被应用于对两条由四个氨基酸组成的短肽(GGGG 和GGLL)进行测序,单分子短肽穿过纳米孔,孔道两边电极记录每个氨基酸通过时产生的电信号,通过测序算法,识别代表不同氨基酸的特征信号,从而得到短肽的序列。基于纳米孔单分子蛋白测序目前还属于初步发展阶段,除了需要根据电信号准确区分组成蛋白质的氨基酸以外,另一个关键是设计可一次拉动一个蛋白质或氨基酸穿过纳米孔的“马达”。为了让蛋白质或肽段顺利穿过纳米孔,研究者们在蛋白质一端添加了一串带有负电的氨基酸或者一段短DNA,用氨基酸或DNA链拉动蛋白质,可以使一些蛋白质打开折叠并顺利穿过纳米孔,但另一些复杂折叠的蛋白需要更多拉力,于是研究者在引导序列上添加了可以打开折叠的ClpX的识别位点[12]。这个系统能够将简单折叠的目标蛋白牵引过纳米孔,但对于折叠非常紧密的蛋白质仍要使用变性剂来打开折叠。基于纳米孔技术对单分子肽段或蛋白质测序目前还停留在对氨基酸鉴定和对短肽的区分阶段,还不能实际应用于对蛋白质的测序。虽然纳米孔测序具有高通量、对样品需求量少的优点,但是现有的纳米孔过大,失去了对氨基酸的区分能力,同时蛋白质分子通过孔道过快,加大了对信号读取难度;其次由于需要将蛋白的三级和二级结构破坏掉,纳米孔道需要能够耐受非常苛刻的化学和力学条件;第三,由于蛋白带电不均匀,控制其穿孔的速率也非常困难。所以目前的方法还不能准确的测得蛋白质的序列,基于纳米孔的单分子蛋白质测序技术还有很大的发展空间。基于荧光的单分子蛋白质测序方法基于荧光的单分子蛋白质测序同纳米孔测序一样,都可以对极少量蛋白质样品进行检测,其原理是先将蛋白质酶解成肽段,对肽段中特定氨基酸选择性标记不同的荧光基团[13],对不同氨基酸上的荧光进行观察,从而确定肽段部分氨基酸序列,再将这些序列与蛋白质组序列比对,即可确定肽段的来源蛋白(图2)。图 2 基于荧光的单分子蛋白测序流程[14]。Ginkel[15] 和Yao [16]都利用ClpXP蛋白酶辅助对肽段进行选择性荧光标记,可对序列中的赖氨酸和半胱氨酸进行标记,通过Förster共振能量转移依次读出被标记的肽段的氨基酸的信号。Swaminathan[14] 将蛋白质酶解成肽段,再将肽段固载到玻璃片上[17],使用特定荧光基团分别对肽段中的赖氨酸和半胱氨酸选择性标记,通过Edman降解技术对固载的肽段进行降解,每次降解后都使用全内反射荧光(TIPF)显微镜进行观测。如果被标记的赖氨酸和半胱氨酸在Edman降解中从肽段N端释放出来,被标记的以上两种氨基酸的位置就会被检测到。同时还发展了用于监测单个肽荧光强度的图像处理算法,并对误差源进行分类和建模,可以测得序列中部分氨基酸的信息。将测得的部分序列与参考蛋白质组序列比对,即可确定肽段的来源蛋白,通过与蛋白质组序列比对,可以鉴定到在人源蛋白质组中的绝大多数蛋白质。基于荧光单分子蛋白测序技术主要有三方面难点,一方面在于目前仅能对赖氨酸和半胱氨酸等几种氨基酸进行特异性荧光基团的标记,无法对所有氨基酸都进行标记;第二个难点是Edman降解是在强酸或强碱的环境中进行,对这些荧光基团的稳定性要求很高;第三个难点是对后期图像处理有较高的要求,如果序列中每个氨基酸都标记上不同的荧光基团,且发光峰易交叠难分辨,这给荧光处理算法带来了难度。因此,基于荧光的单分子蛋白测序技术虽然可以对极微量蛋白质样品分析,但目前仅能测得部分氨基酸序列,对蛋白质全序列的测定目前尚不能实现。[1] Kasianowicz J J, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel [J]. Proceedings of the National Academy of Sciences, 1996, 93(24): 13770-13773.[2] Branton D, Deamer D W, Marziali A, et al. The potential and challenges of nanopore sequencing [J]. Nanoscience and technology: A collection of reviews from Nature Journals, 2010: 261-268.[3] Laver T, Harrison J, O’neill P, et al. Assessing the performance of the oxford nanopore technologies minion [J]. Biomolecular detection and quantification, 2015, 3: 1-8.[4] Karlsson E, Lärkeryd A, Sjödin A, et al. Scaffolding of a bacterial genome using MinION nanopore sequencing [J]. Sci Rep, 2015, 5(1): 1-8.[5] Huang S, Romero-Ruiz M, Castell O K,et al. High-throughput optical sensing of nucleic acids in a nanopore array [J]. Nature nanotechnology, 2015, 10(11): 986-991.[6] Nivala J, Marks D B, Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore [J]. Nat Biotechnol, 2013, 31(3): 247-250.[7] Rosen C B, Rodriguez-Larrea D, Bayley H. Single-molecule site-specific detection of protein phosphorylation with a nanopore [J]. Nat Biotechnol, 2014, 32(2): 179.[8] Huang J, Mousavi M, Giovannini G, et al. Multiplexed Discrimination of Single Amino Acid Residues in Polypeptides in a Single SERS Hot Spot [J]. Angewandte Chemie 2020, 59(28): 11423-11431.[9] Cao J, Jia W, Zhang J, et al. Giant single molecule chemistry events observed from a tetrachloroaurate (III) embedded Mycobacterium smegmatis porin A nanopore [J]. Nature communications, 2019, 10(1): 1-11.[10] Ouldali H, Sarthak K, Ensslen T, et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore [J]. Nat Biotechnol, 2020, 38(2): 176-181.[11] Zhao Y, Ashcroft B, Zhang P, et al. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling [J]. Nature nanotechnology, 2014, 9(6): 466-473.[12] Nivala J, Mulroney L, Luan Q, et al. Unfolding and Translocation of Proteins Through an Alpha-Hemolysin Nanopore by ClpXP [M]. Nanopore Technology. Springer. 2021: 145-155.[13] Hernandez E T, Swaminathan J, Marcotte E M, et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing [J]. New J Chem, 2017: 462-469.[14] Swaminathan J, Boulgakov A, Hernandez E, et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures [J]. Nat Biotechnol, 2018, 36(11): 1076-1082.[15] Ginkel J V, Filius M, Szczepaniak M, et al. Single-molecule peptide fingerprinting [J]. Proceedings of the National Academy of Sciences, 2018, 115(13): 3338-3343.[16] Yao Y, Docter M, Ginkel JV, et al. Single-molecule protein sequencing through fingerprinting: computational assessment [J]. Phys Biol, 2015, 12(5): 055033.[17] Howard C, Floyd B, Bardo A, et al. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics [J]. ACS Chem Biol, 2020, 15(6): 1401-1407.作者简介:中国科学院大连化学物理研究所 单亦初副研究员1997年于中国科学技术大学获理学学士学位。2002年于中国科学院大连化物所获理学博士学位。2002年10月至2009年5月在德国马普协会马格德堡研究所、美国德克萨斯大学医学院及澳大利亚弗林德斯大学工作。2009年7月应聘到中国科学院大连化物所任副研究员。主持多项研究课题,包括国家重点研发计划子课题、国家自然科学基金面上项目等。已在Analytical Chemistry、Journal of Proteome Research、Journal of Chromatography A等杂志发表论文近80篇。主要研究方向包括蛋白质组鉴定和蛋白质组相对及绝对定量、蛋白质翻译后修饰富集和鉴定、蛋白质组末端肽富集和鉴定、蛋白质相互作用分析、蛋白质全序列从头测定及药物靶蛋白筛选。(本文经授权发布,仅供读者学习参考)专家约稿招募:若您有生命科学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:liuld@instrument.com.cn )。
  • 关于仪信通,那些你不知道的事儿
    一、 仪信通会员服务诞生的契机是什么?在信立方CEO唐海霞女士创业之初,当时仪器买错、买贵的情况层出不穷,效率极其低下,为了解决供需双方信息不对称的问题,2001年,仪信通诞世,可以帮助仪器企业更好的展示自家产品,同时也让用户们更清晰的了解到了产品的信息。二、 仪信通的logo有什么含义?仪信通作为仪器信息网的子品牌,从设计上引入了3i的概念,左侧的两个正在握手的i象征着仪器买家和仪器厂商,并形成了一个笑脸,最右侧的i代表仪器信息网平台,3个i整体构成了一个Hi,代表仪信通让供需双方快速对接,为双方提质增效。三、 仪信通会员发展至今,达成了什么规模?• 广度:分析仪器、实验室常用设备国内外生产商90%以上已成为仪信通会员• 深度:国内外一线品牌生产商80%以上已成为仪信通会员• 粘性:合作10年以上厂商超过1000家四、 仪信通会员达成了哪些效果?仪信通会员服务集合行业用户一手需求,链接仪器企业完成销售目标,平均每23s产生一个商机,全年产生40万条商机,线索价值高达400亿。平均每天超过1200个采购咨询来电,超过300条采购留言,目前已成为仪器厂商数据营销的首选平台之一。用户群体广泛覆盖大专院校、科研院所,工业企业,第三方检测机构等。五、 在优化迭代的路上都做了哪些工作?• 2001年1.0版本,产品分为2级会员,简易展位、普通展位,开启了“一年365天不落幕的线上展览”时代。• 2.0版本,主要做了展位前台展示样式的优化。• 2013年3.0版本,会员正式升级为仪信通会员,引入了商机点、400电话等全新功能。• 2022年4.0版本,仪信通会员北极星版横空出世,从底层代码,到前台展示形式,到数据分析层面都做了大幅提升。六、 关于北极星版都做了哪些工作?在仪信通会员北极星版在改版前期,为更好的满足客户和用户的双方需求,仪器信息网深度调研厂商200余家,采购用户2000余人,并加入K8S集群架构、i-engine智能急速检索技术(自主发明专利)、i-engine行为追踪分析系统等新技术,50余名成员历时8个月打造完成。七、 北极星版对比之前有哪些亮点?1、 打造高质量“官网”对于很多仪器企业来说,自建官网成本过高,在升级和维护上都存在一定困难,同时也面临推广难,搜索引擎权重低的问题,为解决这一问题,仪信通基于仪器信息网的高权重和年覆盖千万用户数为仪信通会员推出自助建站功能,同时匹配多套不同模板自由组合配置,结合不同市场热度、展示维度及仪器企业自身特点,组合配置各展示模块,自主DIY高质量“官网”,更好的向外传递企业文化。2、 强大的数据分析系统将大数据技术应用在数据分析系统,7个栏目数据全面统计,单一内容细化统计,8大类数据智能分析,大数据技术助力企业更加了解客户!• 全链路用户行为跟踪:漏斗转化/询盘转化分析一目了然• 智能用户画像分析:用户领域偏好、仪器原理偏好等• 虚拟号电话系统,智能精准统计:电话来源、接听情况、智能分析未接原因3、多账号管理方便快捷企业可自行定义管理权限和角色,商机自动推送、漏接提醒、一键分发市场销售,实时与用户对接,节约数据统计工作、报表汇总工作,提升用户体验。4、四端覆盖,营销无死角唯一一家实现四端覆盖PC、WAP、小程序、APP,同时覆盖微信、百度、支付宝、头条、抖音、UC、夸克等不同渠道,多端展示,超高流量,能够掌握用户的一手需求。八、 仪信通的独特性依托于仪器信息网20 余年的深耕科学仪器行业经历,聚焦了众多行业高质量用户。月覆盖300万行业用户,与10+万科研院所,大专院校,工业企业,医疗疾控,检测机构广泛合作。同时迎合互联网发展趋势,多入口更便捷,APP端与小程序端更是独具特色。其中仪器优选栏目更是收录了近20万台优质仪器,提供1000+的细分仪器分类,帮助用户和仪器企业精准定位,快速对接需求,保证每台产品都能得到曝光保障。用专业的导购平台服务,是唯一能够为用户同时提供从价格、品牌、行业、口碑、产品横向对比等维度查找仪器产品的平台,目前已成为用户选购仪器的首选网络平台。同时仪信通设置了400电话监控系统和数据监控工具,追溯每条求购,让效果随处可见。九、 仪信通会员功能模块及服务模式有哪些?• SaaS 工具:4 端建站(PC、WAP、小 程序、APP)、店铺装修、 产品和服务展示、信息发布 (资讯、视频、应用和解决方案)、电话接听系统、数据分析系统、询盘获取包• 标准广告/服务:站内排名权重、搜索热门仪器推荐、搜索结果品牌专区、仪器优选专场收录、金榜题名和品牌直通车• 品牌认证/奖项评选:品牌合作伙伴、品类先锋、3i 奖项评选参与资格• 信息服务:商机点、招标信息查询,展位销售线索实时提醒十、 是否会针对仪信通会员进行使用前培训?仪信通为会员提供完善的售后服务,定期开设仪信通会员训练营,从入门到资深的成长课程培训,帮助企业从会使用,到擅使用,可通过产品功能有效做好数字化营销。还有1对1运营指导, 让展位运营更简单!除以上几点之外,为更好的助力仪器企业传递品牌形象和价值,仪器信息网为仪信通会员提供了多项免费增值服务,其中仪器及检测3i奖是行业高度认可度的奖项,于每年1-3月进行评审,同时开设创新100、国产好仪器等特色线上线下活动,通过资深编辑走访报道、高端资源对接,全方位赋能仪器企业品牌打造。想要解锁更多有关仪信通会员的详细信息,可以通过扫描下方维码,留下您的联系方式,我们将会安排专业客服人员为您1对1解答哦!
  • 质谱仪器研制专辑分享四——基于LabVIEW的三重四极杆质谱仪开发平台的设计与应用
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 近日,《质谱学报》出版了由复旦大学杨芃原教授组织,全国多家质谱研制相关课题组参与撰写的“质谱仪器研制专辑”,专辑主要包含四极杆的离子光学和串联振荡技术;四极杆的导向装置、四极杆质量分辨自动调节技术、三重四极杆仪器开发平台以及三重四极杆质谱分析软件等硬软件技术;双线形离子阱间离子传输技术和静电轨道离子阱离子切向引入技术;小型飞行时间质谱和离子束诊断飞行时间质谱;复合离子源技术和激光后电离技术;以及集成了质谱技术的超宽波段光解离光谱系统和调控纳微尺度分子组装装置的研制等内容。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 仪器信息网授权将对以上系列文章进行转载,以下为第2期题为“基于LabVIEW的三重四极杆质谱仪开发平台的设计与应用”的文章,作者张 span style=" text-indent: 2em " 涛,通信作者汪曣。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " /span /p p style=" line-height: 1.75em text-indent: 2em " strong 汪曣 /strong ,天津大学精密仪器与光电子工程学院教授,博士研究生导师。 /p p style=" line-height: 1.75em text-indent: 2em " 科研与学术工作经历:1982年2月至1984年9月在南京工学院(现东南大学)任教,1984年9月至今在天津大学任教;89年3月至90年3月、97年3月至98年3月两次赴德国Giessen大学物理研究所作访问学者,从事合作研究;1996年评定为副教授职称;2001年为硕士研究生导师;2005年聘为教授,2008年为博士研究生导师。 /p p style=" line-height: 1.75em text-indent: 2em " 主要研究方向:质谱仪器及联用技术;新型环境检测光谱仪器技术;发动机气体排放检测技术与系统集成;POCT快检仪器。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 427px " src=" https://img1.17img.cn/17img/images/202003/uepic/4b2d0985-5e9a-4b83-906f-4bcaef399d9c.jpg" title=" 图2.jpg" alt=" 图2.jpg" width=" 600" height=" 427" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " 相对于单四极杆,三重四极杆质谱仪具有多种工作模式和更复杂的工作时序。为了适应研发需要,本设计采用虚拟仪器技术,开发了一套用于三重四极杆质谱仪的测控平台。平台硬件由工控机、PXIe板卡和辅助电路组成,软件基于LabVIEW开发环境,以状态机为基本架构。该平台能够对仪器各执行单元进行控制和监测;对离子光学系统、高压及四极杆电源的时间响应特性进行测量,获取建立时间等关键参数;测试各工作模式下不同条件的时序特征,从而对抗串扰等仪器性能进行评价。该平台具有界面友好、易维护、功能可扩展等优点,可以作为三重四极杆质谱仪研制过程中一种有效、方便的工具。 /p p style=" text-indent: 2em text-align: justify line-height: 1.75em " 以下为论文内容: /p p style=" text-align: center" img style=" width: 600px height: 486px " src=" https://img1.17img.cn/17img/images/202003/uepic/1a7cddb7-96af-4813-ba76-b80a003f40bf.jpg" title=" 截屏2020-03-26下午4.37.31.png" width=" 600" height=" 486" border=" 0" vspace=" 0" alt=" 截屏2020-03-26下午4.37.31.png" / /p p style=" text-align: center" img style=" width: 600px height: 1097px " src=" https://img1.17img.cn/17img/images/202003/uepic/a9225697-dec1-4277-960d-00f9007d88ec.jpg" title=" 截屏2020-03-26下午4.38.03.png" width=" 600" height=" 1097" border=" 0" vspace=" 0" alt=" 截屏2020-03-26下午4.38.03.png" / /p p style=" text-align: center" img style=" width: 600px height: 1059px " src=" https://img1.17img.cn/17img/images/202003/uepic/3f0b93e5-c3cc-4170-b5bf-6f460e5e2fc5.jpg" title=" 截屏2020-03-26下午4.38.15.png" width=" 600" height=" 1059" border=" 0" vspace=" 0" alt=" 截屏2020-03-26下午4.38.15.png" / /p p style=" text-align: center" img style=" width: 600px height: 935px " src=" https://img1.17img.cn/17img/images/202003/uepic/af9c39d4-86b1-448e-a167-330f81c304c3.jpg" title=" 截屏2020-03-26下午4.38.29.png" width=" 600" height=" 935" border=" 0" vspace=" 0" alt=" 截屏2020-03-26下午4.38.29.png" / /p p style=" text-align: center" img style=" width: 600px height: 941px " src=" https://img1.17img.cn/17img/images/202003/uepic/6c099656-ca4e-4998-8495-276e4a874982.jpg" title=" 截屏2020-03-26下午4.38.40.png" width=" 600" height=" 941" border=" 0" vspace=" 0" alt=" 截屏2020-03-26下午4.38.40.png" / /p p style=" text-align: center" img style=" width: 600px height: 930px " src=" https://img1.17img.cn/17img/images/202003/uepic/a5cef406-d519-4091-ade1-b40e28136ec3.jpg" title=" 截屏2020-03-26下午4.39.00.png" width=" 600" height=" 930" border=" 0" vspace=" 0" alt=" 截屏2020-03-26下午4.39.00.png" / /p p style=" text-align: center" img style=" width: 600px height: 893px " src=" https://img1.17img.cn/17img/images/202003/uepic/fec2e8b7-df1e-4c38-ac8c-ce1e944eec03.jpg" title=" 截屏2020-03-26下午4.39.10.png" width=" 600" height=" 893" border=" 0" vspace=" 0" alt=" 截屏2020-03-26下午4.39.10.png" / /p p style=" text-indent: 2em text-align: right line-height: 1.75em " 来源:质谱学报 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制