当前位置: 仪器信息网 > 行业主题 > >

激光发射器

仪器信息网激光发射器专题为您提供2024年最新激光发射器价格报价、厂家品牌的相关信息, 包括激光发射器参数、型号等,不管是国产,还是进口品牌的激光发射器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光发射器相关的耗材配件、试剂标物,还有激光发射器相关的最新资讯、资料,以及激光发射器相关的解决方案。

激光发射器相关的资讯

  • 德开发出微型太赫兹发射器
    近日,德国达姆施塔特工业大学的科学家成功研发出可在常温下使用的微型太赫兹发射器,并创造了1.111太赫兹的电子发射器频率纪录,为太赫兹辐射的广泛应用铺平了道路。   通过辐射的帮助,穿透日常的材料,如塑料、纸张、纺织品或陶瓷,从而对工件的质量进行无损检测,或者分析正在运行的发动机的燃烧过程,甚至不用打开就检测邮包和信件是否带有危险的生物物质,这些都是波长在0.1毫米至1毫米的太赫兹辐射可能的用途。然而直到目前太赫兹技术的发展和应用仍很局限,其主要障碍就是其发射和接收装置至今仍然十分笨重而且昂贵。   这一情况可能很快就会有所改变:达姆施塔特的物理学家和工程师在迈克尔菲格诺瓦博士的领导下成功开发出一种太赫兹辐射发射装置。其核心部件是一个所谓的共振隧道二极管(RTD),面积不到1平方毫米,制造工艺基于传统的半导体技术,实现了1.111太赫兹的频率纪录。   在对他们的新设备小型化的过程中,菲格诺瓦团队花了几年时间不断接近微电子的技术极限。共振隧道二极管的核心是一个所谓的双势垒结构,其中嵌入了一个量子阱(QW)。与量子阱有关的是一层非常薄的铟镓砷化物半导体层,它夹在两个很薄的铝砷半导体层中。每一层仅几纳米厚。这种双势垒结构,再加上量子力学效应,使太赫兹振荡器产生的电磁波被反复放大,而不是减弱,这使得振荡器可在太赫兹频率发出连续的电磁辐射。   该太赫兹发射装置可在室温下运行,这使它更具技术应用前景。例如可以利用共振在太赫兹范围内进行分子光谱研究。以前不能用频谱分析的物质,现在都可以在太赫兹范围内用这个方法进行研究。首先受益是医药领域,例如,可以把体内的病变组织从健康组织中区别开来。   菲格诺瓦表示,这是目前有源半导体器件所能达到的最高频率。而从理论上讲,他们研制的发射器还能实现更高的、直到3太赫兹的频率。他们将在未来几年进一步改进该发射器,使其达到更高频率。而利用更高频率的太赫兹辐射来进行材料分析则可获得更高的分辨率,即在图片上可以识别更小的细节。新太赫兹发射器将在电脑、手机和其他电子设备等许多领域获得至今无法想象的应用。
  • 傅立叶变换红外光谱技术(FTIR)助力人脸识别技术硬件:垂直腔面发射激光器(VCSELs)的研究与开发
    “扫码时代”或成过去式,“刷脸时代”已悄然而至人脸识别科技大大改变了人们的生活方式,从现金支付到刷卡支付,再到今天无处不在的扫码时代,一部智能手机既可以出行无忧。但您是否为忘带手机、手机没有网络、或者电量用完而感到焦急、困扰?别担心,“扫码时代”或将成为过去式,“刷脸时代”已悄然而至!从身份审核到线下支付,从乘坐地铁到取快递、领养老金,“刷脸”正在变得一路畅通。这一变革的核心就是人脸识别(脸部识别)技术。采用人脸识别技术的智能手机、电脑、银行柜员机、检票闸机、智能门锁、门禁、考勤、安检系统、远程认证、支付系统等已悄悄走进了人们的生活。人脸识别--这种非接触式、基于人的脸部特征信息进行身份识别的生物识别方法,是一种即体贴又便利的方法,某些情况下甚至优于现有的指纹识别系统,例如当冬天您戴着厚厚的棉手套,或者您手里刚好拿着其他东西时,指纹识别就显得不那么方便了。 人脸识别和垂直腔面发射激光器(VCSELs)人脸识别技术,这一重大进展硬件上可以通过所谓的垂直腔面发射激光器(vertical-cavity surface-emitting lasers,简称VCSELs)来实现。 VCSELs是一种特殊类型的半导体激光二极管,与传统的边缘发射激光二极管不同,它的发射垂直于芯片表面,因此可以很容易地封装成单个芯片上包含数百个发射器的发射阵列。用于智能手机的 VCSELs芯片通常发射的红外线,体积非常小,成本低廉,为脸部扫描提供了良好、安全的辐照性能。此外, VCSELs不仅可以用于人脸和手势识别,还可以用于通信、近距离传感器、增强现实显示、机器人(扫地机器人)和自动驾驶汽车的激光雷达等。 因此,表征VCSELs的发射光谱、功率、光束轮廓、噪声等是这些器件发展和改进的关键。傅立叶变换红外光谱技术(FTIR)用于垂直腔面发射激光器(VCSELs)的表征虽然辐照度传感器和快速光电二极管可以测量VCSELs激光器的功率和光束轮廓,但它们不能确定其发射光谱。 在这里,结合了步进扫描技术(StepScan)的傅立叶变换红外光谱(FTIR)以其高灵敏度、宽光谱范围、杰出的时间和光谱分辨率,被证明是理想的VCSELs激光器表征方法。来自德国达姆施塔特工业大学的Wolfgang Elsaesser教授和他的研究小组,使用布鲁克高性能VERTEX80v真空型傅立叶变换红外光谱仪,对VCSELs激光器进行了详细的微秒尺度时间分辨偏振(斯托克斯偏振参数)分析,很好地支持了VCSELs基础开发的理论模型。VERTEX80v真空型傅立叶变换红外光谱仪
  • 史上最强激光器或落户英国 有望破解宇宙奥秘
    史上最强激光器能撕裂真空 超高场激光器有望帮助人类解答一系列关于宇宙空间的难题   据英国《每日电讯报》10月30日报道,一座能撕开真空的激光发射器有望在英国问世,它将帮助科学家破解宇宙的未解之谜。   史上最强激光发射器的正式称谓是“超强激光构造计划超高场激光器”(Extreme Light Infrastructure Ultra-High Field Facility),它是继大型强子对撞机(Large Hadron Collider)之后物理学界的又一个重大实验项目,英国卢瑟福 阿普尔顿实验室高级激光技术与应用中心的科学家目前正在研制实验所需的相关技术。   欧盟委员会今年早些时候已经批准了在捷克、匈牙利和罗马尼亚分别建立三座激光发射器的计划。这三座激光发射器总造价约2亿欧元(约合17.6亿元人民币),预计2015年正式启用,将作为超高场激光器的组成部分,并为其提供原始激光束。整个超高场激光器将于2020年前后问世,总造价约10亿欧元(约合88亿元人民币),运转后将能在百万兆分之一秒内制造出总能量相当于全世界全部电能输出10万多倍的强大激光,全部激光束汇聚为一点后将产生比太阳核心还极端的超高温高热状态。   科学家希望利用超高场激光器“撕破”宇宙中的真空,探索宇宙空间的构成和所谓“暗物质”的真相。与人们通常的认识不同,宇宙中所谓的“真空”其实并非空无一物。根据科学家推测,所谓的真空是在物质与反物质的相互抵消作用下形成的 由于构成真空的所谓“鬼粒子”转瞬即逝,因此一直未能被人类所认识。超高场激光器的出现有望改变这一局面,甚至可以帮助科学家验证“额外维度”(extra-dimension)的存在。德国物理学会主席沃尔夫冈桑德纳教授表示:“我们往往认为真空中没有任何物质,但事实上,真空似乎是由存在时间极短的成对分子组成的。高能激光射线能将这些分子拉开,并延长它们存在的时间。”   此外,超强激光还有望催生癌症激光疗法和新的医学诊断方法。普利茅斯大学理论物理学副教授托马斯 海因茨尔接受采访时称:“超强激光构造计划将引领我们进入前所未知的物理学新领域,必将有许多令人惊讶的发现等待着我们。”   超高场激光器的最终落户地址将于明年公布,目前除英国外,俄罗斯、法国、匈牙利、罗马尼亚和捷克的研究机构也都在积极申请。
  • 深紫外激光二极管室温下发射连续波
    由2014年诺贝尔物理学奖获得者、日本名古屋大学材料与系统可持续发展研究所的天野弘领导的一个研究小组,与旭化成株式会社合作,成功地对深紫外激光二极管(波长低至UV-C区)进行了世界上第一个室温连续波激光发射。研究结果近日发表在《应用物理快报》上,代表这项技术朝着广泛应用迈出了一步。  从2017年开始,天野弘研究小组与提供2英寸氮化铝基板的旭化成公司合作,开始开发深紫外激光二极管。起初,向该装置注入足够的电流太困难,阻碍了紫外可见(UV-C)激光二极管的进一步发展。  2019年,天野弘的研究小组使用偏振诱导掺杂技术解决了上述问题,首次制造了一种短波长的UV-C半导体激光器,它可以在短脉冲电流下工作。这些电流脉冲所需的输入功率为5.2W,这对于连续波激光来说太高了,因为功率会导致二极管迅速升温并使激光停止。  研究人员此次重塑了设备本身的结构,将激光器在室温下运行所需的驱动功率降低至仅1.1W。研究人员发现,强晶体应变会阻碍有效电流路径。通过巧妙地剪裁激光条纹的侧壁,他们克服了缺陷,实现了流向激光二极管有源区的高效电流,并降低了工作功率。  这项研究是半导体激光器在所有波长范围内实际应用和发展的一个里程碑。未来,UV-C激光二极管可应用于医疗保健、病毒检测、颗粒物测量、气体分析和高清晰度激光处理,尤其有利于需要消毒手术室和自来水的外科医生和护士们。
  • 首个集成在铌酸锂芯片上的激光器面世
    美国哈佛大学科学家在最新一期《光学》杂志上撰文称,他们研制出了首个集成在铌酸锂芯片上的激光器,为高功率通信系统、全集成光谱仪、光学遥感,以及量子网络的高效变频等应用铺平了道路。研究人员解释称,长距离通信网络、数据中心光互连和微波光子系统都依赖激光来产生光载波以用于数据传输。但大多数情况下,激光器是独立设备,位于调制器外部,这会使整个系统更昂贵,且稳定性和可扩展性也较差。在最新研究中,哈佛大学工程与应用科学学院(SEAS)的研究人员与行业合作伙伴携手,在铌酸锂芯片上开发了第一台全集成高功率激光器。他们将小型但功能强大的分布式反馈激光器集成在芯片上。这些激光器位于蚀刻在铌酸锂芯片内的小井或沟槽中,且与铌酸锂内的50千兆赫兹电光调制器相结合,构建了一个高功率发射器。最新研究资深作者马科隆卡尔说:“集成铌酸锂是开发高性能芯片级光学系统的重要平台,但将激光器安装到铌酸锂芯片上已被证明是一个极大的挑战。在这项研究中,我们借助纳米制造技巧和技术,克服了这些挑战,实现了在薄膜铌酸锂平台上集成高功率激光器的目标。”最新研究第一作者、SEAS研究生阿米拉桑沙姆斯安萨里说:“集成高性能即插即用激光器将显著降低未来通信系统的成本、复杂性和功耗。我们最新研制出来的这款集成激光器可以集成到更大的光学系统中,用于传感、激光雷达和数据通信等一系列应用。”研究团队强调说,将薄膜铌酸锂器件与高功率激光器相结合,是朝着大规模、低成本、高性能发射阵列和光网络方向迈出的关键一步。他们计划继续提高激光器的功率和可扩展性,以使其能应用于更多领域。
  • 创三个世界第一!全球首颗激光二氧化碳探测卫星发射成功
    4月16日2时16分,长征四号丙运载火箭在太原卫星发射中心升空,将世界首颗具备二氧化碳激光探测能力的卫星——大气环境监测卫星送入预定轨道,发射任务取得圆满成功。星箭均由中国航天科技集团有限公司八院抓总研制。,时长00:30摄影:郑逃逃大气环境监测卫星是《国家民用空间基础设施中长期发展规划(2015-2025年)》中的科研卫星,运行705公里的太阳同步轨道,整星发射重量约2.6吨,装载了大气探测激光雷达、高精度偏振扫描仪、多角度偏振成像仪、紫外高光谱大气成分探测仪及宽幅成像光谱仪等五台遥感仪器,是一颗集CO2激光主动探测、细颗粒物立体探测、气态污染物探测和地表环境探测的多要素综合监测卫星。长征四号丙运载火箭发射升空。吴敬博 摄大气环境监测卫星的成功发射和在轨应用标志着我国在大气遥感领域达到国际领先水平,卫星在轨应用后将实现对生态环境、气象和农业等多领域定量遥感服务能力的跨越式提升,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。首次搭载大气探测激光雷达大气环境监测卫星在CO2探测手段和精度、细颗粒物主被动探测和偏振交火探测体制上,创造了三个世界第一。二氧化碳探测,激光雷达出奇效。大气环境监测卫星实现国际上首次搭载大气探测激光雷达这一主动探测载荷,实现主动激光CO2高精度、全天时、全球探测,探测精度大幅提升至优于1ppm,达到国际最高水平,为我国实现“碳达峰、碳中和”目标提供最精准的遥感数据支撑。同时,大气探测激光雷达通过对大气进行分层“CT”扫描,国内首次实现全球气溶胶光学厚度、形状和尺寸等垂直分布信息的获取。PM2.5监测,综合手段创新高。大气环境监测卫星国际上首次采用了主被动结合、多手段综合的探测体制,通过装载不同类型、不同原理的载荷,将主动发射激光接收的回波信号和被动接收的太阳光反射信号相结合,综合反演多种遥感数据,实现对近地面细颗粒物(PM2.5等)浓度的高精度监测,为大气污染精准防治提供科学数据支撑。中国航天科技集团八院供图偏振交火,信息融合效率高。大气环境监测卫星国际首次采用融合反演级偏振交火探测技术,获取气溶胶光学厚度、粒子尺度等多种参数,通过空间、辐射和偏振维度的信息融合,大幅提升细颗粒物探测精度,达到国际先进水平。此外,紫外高光谱大气成分探测仪及宽幅成像光谱仪也将大幅提升气态污染物以及地表环境监测能力,紫外谱段高光谱大气观测以及宽幅多光谱观测空间分辨率提升一倍。首次创新应用无控制点激光光轴自标定技术大气环境监测卫星每天可绕地球飞14轨,激光雷达不分白天黑夜全天时工作,可谓是一个兢兢业业的“劳模”。除了敬业之外,它还是一个十足的“强迫症”,时刻不忘摆正自己的姿态,以保证极高的指向测量精度,为此还在国内首次创新应用了无控制点激光光轴自标定技术。 中国航天科技集团八院供图这一“神技”顺利施展的前提是要有一把能够实时提供绝对姿态信息的“标尺”,也就是“司机”的“眼睛”——星敏感器。激光雷达自身发射的光源分束后经星敏感器支架上的棱镜反射,建立起激光雷达与星敏感器的在轨标校系统,这样激光雷达就可以借助星敏感器这双“慧眼”实时明确自己“身在何方”。据中国航天科技集团八院控制所卫星姿轨控分系统副主任设计师孙尚介绍,为提供高精度在轨三轴惯性测量精度,姿轨控分系统采用了高精度多头星敏感器。“好比用‘三只眼睛’同时定位,利用一个‘大脑’融合处理出更高精度的姿态测量数据。”据悉,“十四五”期间我国还将发射高精度温室气体综合探测卫星,与大气环境监测卫星组网观测,进一步提升我国天基碳监测能力和水平,为我国生态文明建设,实现“双碳”目标贡献航天力量。
  • 嫦娥三号探测器大揭秘:携带多种激光仪器
    承担中国探月工程第二步&ldquo 落月&rdquo 任务的嫦娥三号探测器将于今年12月份择机发射,它将实现中国航天器首次在地外天体的软着陆,从嫦娥三号着陆器中释放的月球车还将完成中国首次在月表的巡视探测。   昨日,探月与航天工程中心启动为中国第一辆月球车全球征名的活动,要求名称体现探月理念和月球车特点。参与者除了要选好名称,还要提交一份不多于300字的创意说明和背景阐述,每人最多允许提交5个方案。从昨日开始到10月25日,参与者可以提交方案,11月上旬,将确定最终入选名称。部分获奖者将有机会免费亲临西昌发射中心现场观摩嫦娥三号发射。   目前,包括月球车,以及嫦娥三号着陆器等组件,都已经被运抵西昌卫星发射基地。嫦娥三号已经进入到了发射前在前方发射场的调试、测试、准备阶段。   一、嫦娥三号探测器揭秘   看着像辆车 实为机器人   正在向全球征名的月球车将跟随年底择机发射的嫦娥三号&ldquo 着陆探测器&rdquo 展开对月球表面的探测。探月工程总设计师吴伟仁说,这不仅是我国第一辆月球车,且全部为中国制造,国产率达到100%。   嫦娥三号探测器   二、长相:身背太阳翼 脚踩&ldquo 风火轮&rdquo   月球车的专用名称叫做&ldquo 月面巡视探测器&rdquo ,设计质量是140公斤,由移动、结构与机构、导航控制、综合电子、电源、热控、测控数传和有效载荷等分系统组成。   在活动现场,记者看到了月球车1:2的模型,从模型上看,它的大脑袋上有一个定向天线和几个太阳敏感器,两侧为太阳翼,尾巴上很多天线,右后侧是导航相机和全景相机。它脚踩六个&ldquo 风火轮&rdquo 似的移动装置。腹部的&ldquo 秘器&rdquo 最多:包括红外成像光谱仪、避障相机、机械臂、激光点阵器等。   中国航天科技集团公司宇航部部长赵小津说,从严格意义上来说,月球车并不是一辆车,而是一个长着轮子,能够适应恶劣空间环境并开展空间科学探测的航天器,是一个小型化、低功耗、高集成、高智能的机器人。   据了解,月球车驶下着陆探测器后,可通过地面遥操作控制和自主规划路径,自主导航等开展长期的科学探测。   三、落月靠"3只眼"   嫦娥三号任务是我国探月工程&ldquo 绕、落、回&rdquo 三步走中的第二步,是承前启后的关键一步。在&ldquo 绕月&rdquo 阶段,中科院上海技术物理所、上海光学精密机械所为嫦娥卫星研制了&ldquo 激光眼&rdquo &mdash &mdash 激光高度计,为我国首幅全月面三维图提供了高程,相当于地球上的海拔高度。即使在无可见光的月面环境下,激光计也能&ldquo 拍摄&rdquo 自如。   但比起距离月面一两百公里外的绕月,零距离接触的落月对激光测距精度和速度提出了极高要求。在我国探月初期,嫦娥卫星对月发射一束激光,在月面形成的&ldquo 激光足印&rdquo 约有120米方圆范围,而嫦娥三号激光测距的&ldquo 足印&rdquo 将小到米级,测量精度进一步提高,可实时监测嫦娥三号着陆器距离月面的高度。   除了这束&ldquo 大激光&rdquo ,&ldquo 嫦娥&rdquo 还有一道灵敏度极高的&ldquo 小激光&rdquo 。当&ldquo 嫦娥&rdquo 向月面释放着陆器,着陆器将在接近月面时,通过激光三维成像,进一步&ldquo 观察地形&rdquo ,获取正下方图像。如下方不适合降落,它就马上换一块地方,确保着陆点相对更为平坦。这种接近&ldquo 现场直播&rdquo 的实时成像需在数秒内完成,为此中科院上海技物所研制的三维成像系统采用了多源激光并扫、实时成像方法,这种实测方式是在着陆月球时首次应用。   两只&ldquo 激光眼&rdquo 之外,&ldquo 嫦娥&rdquo 另有一只&ldquo 红外眼&rdquo &mdash &mdash 红外成像光谱仪。这台仪器置于俗称&ldquo 月球车&rdquo 的月面巡视器上,当巡视器从着陆器中驶出,便开启这一关键探测设备。这只&ldquo 眼睛&rdquo 不但能在可见光范围获得上百个光学波段的图像,还能用来探索可见光之外的&ldquo 光&rdquo ,捕捉月球物质资源放出的红外线光谱。因为每种物质都有其独特的&ldquo 红外图谱&rdquo ,红外成像光谱仪以极高的光谱分辨率&ldquo 拍摄&rdquo 月表物质,并能通过计算机直接将物质分门别类。   对于登月任务以及其后实施的返回任务,卫星发射重量越轻越好,因此&ldquo 嫦娥&rdquo 严格控制体重。相关项目负责人上海技物所研究员王建宇透露,此次星载的红外成像光谱仪只有5公斤多,是&ldquo 嫦娥&rdquo 3只眼中最轻的,而机载的同类光谱仪重量可达百公斤。今后,这种超轻型成像光谱仪器还能用于火星、小行星等更遥远的深空探测任务。   四、性能:耐极限温度 能爬坡越障   月球车以太阳能为能源,能够耐受月球表面真空、强辐射,以及从正150摄氏度到负180摄氏度,温差超过300摄氏度的极限温度和环境。工作时的舱内温度可以控制在零下20摄氏度至零上50摄氏度之间。   月球车凭借六个轮子可实现前进、后退、原地转向、行进间转向、20度爬坡、20厘米越障。   &ldquo 月面松软、崎岖不平、障碍物很多。月球车能够对月面环境和障碍进行感知和识别,然后对巡视的路径进行规划。月球车在月面巡视时采取自主导航和地面遥控的组合模式。&rdquo 探月工程副总指挥、探月与航天工程中心主任李本正说。   五、作息:大干3个月 一觉14天   月球上的一天相当于地球上的27天多,月球昼夜间隔相当于地球上14天。李本正说,月球车具备月球表面环境的生存能力,该休息的时候自动进入休眠状态,然后又能自动唤醒重新工作。据新华视点消息,月球车在月球上是连续工作14天,然后&ldquo 睡&rdquo 14天再重新工作。   在月球表面巡视的3个月中,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析,开展月壤厚度和结构的科学探测,对月表物质主要元素进行现场分析。它传回来的数据,将帮助人们更直接、更准确地了解神秘的月亮。   六、月球车探月过程:   1、动身   今年12月,中国将在西昌卫星中心用长征-3B增强型火箭发射&ldquo 嫦娥三号&rdquo 。   2、着陆   当&ldquo 嫦娥三号&rdquo 完成发射、飞行到达月球时,着陆探测器采取不同制导方式,从距月面15公里处开始动力下降,经过主动减速、调整接近、悬停避障等飞行阶段,实现路径优、燃料省、误差小的安全着陆。   &ldquo 到达月球轨道后,月球车将由着陆器背负,由变推力液体火箭发射器控制,通过各种光学、微波等敏感器测量,在月球表面百米高度上进行悬停和平移,以规避岩石和深坑等障碍,选择最佳着陆点缓慢降落月球表面。&rdquo 中国航天科技集团公司宇航部部长赵小津说。   3、准备   着陆器为月球车充电,对月球车进行初始化 之后月球车与地面建立通信链路,控制连接解锁机构解锁,走上转移机构 着陆探测器将控制转移机构运动到月面,月球车驶离转移机构,开始勘查。   4、勘查   为期3个月,月球车将依靠各种先进设备对月表进行三维光学成像、红外光谱分析 开展月壤厚度和结构的科学探测 对月表物质主要元素进行现场分析。
  • 激光雷达:技术概述-漫反射目标在测试和校准高级驾驶辅助系统 (ADAS) 中的作用
    作者:Pro-Lite Technology Ltd 产品经理 Russell Bailey 和 Labsphere Inc 首席技术专家兼产品营销经理 Greg McKee图1 激光雷达激光雷达是一项成熟的技术,越来越多地部署在消费产品和无人驾驶车辆中。LIDAR 是 Light Detection And Ranging 的首字母缩写词。激光雷达系统已经使用了 50 多年,但直到最近,此类系统的成本仍使它们无法在大众市场中广泛应用。尽管雷达在自动驾驶汽车技术(例如自适应巡航控制系统)中被广泛应用,但LIDAR被认为是驾驶员辅助汽车的首选传感器,因为它可以精确地映射位置和距离,从而检测小物体和3D成像。它使用带有飞行时间感应的脉冲激光和固态光来测量距离。激光雷达系统的表征要求在宽反射率动态范围内补偿传感器对脉冲激光或固态光水平的响应。为此,需要使用已知和稳定反射率的大面积反射率漫反射目标板。Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板,范围从5%到94%的反射率,使汽车制造商 OEM 及其供应商能够在广泛的环境条件下表征和校准其 LIDAR 系统。图2 Labsphere(蓝菲光学)的Permaflect漫反射涂层目标板激光雷达技术激光雷达最基本的形式是激光测距仪,自20世纪80年代以来已广泛应用于军事应用。激光测距仪由一个脉冲激光器(发射器)和一个光电探测器(接收器)组成。测距仪的设计可精确测量距离(所谓的“测距”),主要测量激光脉冲被反射和接收到探测器所花费的时间(这被称为“飞行时间”测量)。测距仪对准目标物并发射激光脉冲。激光击中目标,被散射,并且一部分反射光由探测器测量。由于光速非常精确,因此可以非常精确地测量测距仪和目标物之间的距离。更先进的激光雷达系统使用相同的原理,但使用光学和移动或多个探测器在二维中映射目标。这些系统通常每秒脉冲数千次,每秒可以探测到数千个点。分析该点云的数据可以创建目标区域的准确映射。激光雷达的工作方式类似于雷达和声纳,它们分别使用无线电波和声波。来自雷达和声纳的数据可用于以类似方式映射周围环境,但激光雷达系统使用的是较短波长的红外辐射,而不是较短波长的无线电波。由于使用的波长较短,激光雷达测量比雷达更准确。部署在自动驾驶汽车上的激光雷达系统通常使用扫描激光束和闪光技术来测量空间中相对于传感器的 3D 点。这些激光雷达系统通常每秒发射数千个激光脉冲,以便车辆可以对行人和其他车辆等障碍物做出反应。激光雷达允许自动驾驶汽车以高精度、高分辨率和长检测距离传送和接收物体和周围环境的反射光。目前正在开发更先进的 AI(人工智能)系统,用来预测车辆和行人路径,并做出相应反应。当您将 LIDAR 数据与定位信息(使用 GPS 或类似信息)相结合时,您就可以全面映射车辆周围环境。激光雷达的性能在很大程度上取决于所使用的激光功率和波长。出于安全原因,可使用的激光功率有一个上限。在没有更高的激光功率的情况下,你可以使用更高灵敏度的探测器,或者使用波长延伸到更远的红外(IR)的激光。由于现有激光器的技术成熟,通常使用的波长为850nm、905nm或1550nm。1550nm激光比其他选择更安全,因为超过1400nm的红外辐射不会再通过眼睛的角膜,所以不会聚焦在视网膜上,但因水对1550nm的光吸收较强,1550nm要求更多的功率来补偿。消费电子产品和自动驾驶汽车中的激光雷达激光雷达作为关键性技能与摄像头系统和其他传感器一起在自动化中应用。激光雷达系统已经在专业测绘和相关应用中商用多年。然而,直到最近几年,激光雷达才变得越来越普遍,这主要是由于自动驾驶汽车应用(无人驾驶汽车)需要更小、更便宜的设备。自上世纪90年代初以来,激光雷达已作为自适应巡航控制的基础应用于半自动驾驶汽车,而激光雷达首次应用于自动驾驶汽车是在2005年。在消费电子领域,最新一代的 Apple iPad Pro(以及现在的 iPhone 12 Pro)已将 LIDAR 传感器集成到其摄像头阵列中,专门用于成像和增强现实 (AR) 应用。LIDAR 传感器可使 iPad 正确解析真实物体相对于由相机阵列成像的 AR 物体的位置。AR 还处于起步阶段,因此 LIDAR 在智能手机和其他消费设备上的应用还有待观察,但人们对为专业应用开发的 AR 产生了极大的兴趣,其中 LIDAR 可以成为非常有用的增强功能。专业 AR 的应用多种多样,从帮助仓库工人找到最快、最安全的路径到所需零件,到辅助工程师了解复杂维修的过程。这些应用中的激光雷达可精确定位和对齐,这对于任何需要高精度的应用都很重要。漫反射目标板在激光雷达系统测试与标定中的作用多年来,Pro-Lite 和Labsphere(蓝菲光学)多年来使用漫反射板一直在支持开发 LIDAR 系统开发。Labsphere(蓝菲光学) 更紧凑的 Spectralon® 漫反射目标板通常被军方用于测试激光测距仪。精确校准的光谱反射率与近朗伯(漫反射)反射率相结合,意味着对于这些应用,您有一个准确性、重复性的漫反射目标板可在实验室或现场测试您的系统。用于更大规模测绘或自动驾驶汽车应用的激光雷达系统需要更大的目标区域。由于大多数自然物体都会漫反射光线,因此 Labsphere (蓝菲光学)的漫反射材料是用户的自然选择,可以提供质量保证、现场测试和比较。Labsphere(蓝菲光学) 开发了 Permaflect 目标板,以满足对大面积、耐用和光学稳定目标板材料的需求。大的漫反射目标板尺寸(标准尺寸高达 1.2m x 2.4m)与校准的光谱反射率数据相结合,可以精确测量 LIDAR 范围。在 100m、200m、300m 等长距离测试距离内,则需要更大的目标板来反映目标上具有代表性的点数。Permaflect 是一种喷涂漫反射涂层,可以将其应用于大面积或 3D 形状,从而可以模拟真实世界的物体。现实世界中很少有物体像目标面板一样平坦,因此 Permaflect 涂层物体可以实现可重复的近朗伯反射率水平,例如,可以应用于人体模型以模拟行人。图3 Labsphere(蓝菲光学) Permaflect 喷涂人体模型LIDAR 漫反射目标板通常部署在室外,因此随着时间的推移,当漫反射目标板的表面暴露在大气中时,可以预期校准的反射率值会出现一些漂移。Labsphere (蓝菲光学)的漫反射材料易于清洁。为了考察是否有反射率的下降,可以使用校准的反射率计(“反射率计”),它可原位测量漫反射目标板反射率并将红外反射率的任何变化考虑到内。漫反射目标板反射率的变化将直接影响测量范围。下图显示了不同漫反射目标板反射率水平范围内反射率变化对测量范围的影响。反射率的微小变化会对较低反射率目标板的测量范围产生很大影响。例如,如果目标板的反射率从5%降低到 4%,则原先 300 m的测量范围将下降到30 m。实时了解情况发生的方法是测量目标板的反射率,然后根据此调整修正您的计算。图4 Labsphere (蓝菲光学)漫反射板反射率测试仪(反射率计)图5 在300nm波长下对物体反射率进行距离测量的模拟灵敏度Labsphere(蓝菲光学) 的激光雷达反射仪套件就是为满足这一要求而开发的。这款手持式反射计测量测量在三个波长(使用可互换的 850nm、905nm 或 1550nm LED)中的8°/半球反射率。观看Labsphere 视频库中的短视频。这可用于验证 Permaflect 目标板或测试 LIDAR 系统的任何其他对象的反射率。图6 Labsphere 开发了 Permaflect 漫反射目标板,以满足对大面积、耐用和光学稳定漫反射目标板材料的需求。
  • 美拟研发新X射线激光器
    美国政府顾问小组近日提议,美国需要建造一种能够将电子在材料反应和化学反应中的活动轨迹成像的新型X射线激光器。   能源部下属的基础能源科学咨询委员会(BESAC)已经驳回了提交的关于未来X射线光源的4份提案,取而代之的是一个更具雄心的计划。BESAC表示,如果各方面力量能够齐心协力,该方案是完全可以实现的。   麻省理工学院加速器物理学家、曾在BESAC研究该课题的William Barletta认为:委员会所期望的机器将会是一种&ldquo 自由电子激光器&rdquo ,可以利用磁力来扭动电子光束,从而发射出连续的X射线。至于这种新型激光器的规格,委员会建议它应能提供快速的X射线脉冲重复率以及较广的X射线光子能量范围。   这一想法与美国劳伦斯伯克利国家实验室的一项提案不谋而合。劳伦斯伯克利国家实验室提议,&ldquo 下一代光源&rdquo (NGLS)这种自由电子激光器使用一种受超导磁体加速的电子光束。该提案已通过能源部审核,但还须经过国会的详细审查。   但是NGLS所能提供的能量范围还未达到顾问小组的期望,而与斯坦福线性加速器中心的相应提案范围相吻合。该中心提议对线性相干光源(LCLS)系统进行升级&mdash &mdash 这是一种已投入运行的自由电子激光器。   Barletta说,顾问小组认为,无论是NGLS项目还是待升级的LCLS项目都各有优点和缺点,两个实验室需要通力协作,寻求共识,取人之长,补己之短。   该顾问小组也听取了支持&ldquo 终极储存环&rdquo 的声音。终极储存环已经在一些美国的国家实验室中使用,其功能与X射线同步加速器相似,能够发射连续的X射线,并且可以循环利用光束,以达到节能效果。   Barletta认为研究终极储存环提案最关键的一点是:能源部应当仔细评估并认真审查升级已有同步加速器的方案,以确认将经费花在建造新型终极储存环上是否更值得。另外,瑞典、巴西、日本等国家正在建造比美国更先进的同步加速器。
  • 首台智能化高性能激光诱导击穿光谱仪成功登录中国
    2008年10月21日,上海凯来实验设备有限公司成功地完成了清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)的安装调试工作。目前这套Spectrolaser 4000 Target LIBS系统标配有532nm激光源,*能量为1064nm,300mj,4通道光谱仪,CCD检测器,内置图像2维扫描系统,将协助该中心进行煤炭领域的研究工作,最终目标将在煤矿,发电厂等企业实现在线快速分析,这标志着中国在煤炭的元素分析领域将掌握一种崭新的分析手段。    清华大学BP清洁能源研发与教育中心的激光诱导击穿光谱仪(LIBS)    LIBS应用专家讲解中    激光源导出系统实验    在大气环境中激发效果    外置激光源空气中测试名片中元素含量的实验    标煤(GBW111 O2i)    标煤(GBW111 O2i)LIBS 图谱1    标煤(GBW111 O2i)LIBS 图谱2   标煤(GBW111 O2i)结果显示,该样品煤中含有Si, Fe, N, Ti, C, Mg, Ba, Na, Sr, K, Ca, O、H、Al等多种元素,其中总S含量为33.51%(偏差为0.18%),挥发性硫含量为24.92%(偏差为0.29%),C含量为49.83%(偏差为0.35%),H含量为2.98%(偏差为0.14%),N含量为0.90%(偏差为0.03%),完全符合标准。   传统的煤分析方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。   煤炭分析背景资料   煤炭是我国国民经济发展的物质基础,煤炭企业生产的煤炭产品不仅要在数量上满足国民经济各物质生产部门的生产和人民群众的生活需要,而且也要在质量上满足不同用户的使用要求。   长期以来,我国煤炭供需关系总的来讲一直比较紧张,只要将煤炭从地下采出,销售就不成问题,这在一定程度上也淡化了人们的质量意识。但发展到今天,煤炭质量问题己引起越来越多用户的高度重视,对煤炭企业提出了严峻的挑战。从目前煤炭市场情况看,煤质不好,不仅价格较低,而且煤炭的利用率较低,浪费严重。据统计,我国煤炭平均利用率约在30%左右。一般来说煤炭燃烧时,煤质越差,热损失越多,热效率也就越低,耗煤数量也越多。如普通锅炉使用灰分为4O%的原料煤与使用灰分为90%的原料煤相比,热效率至少相差10%。可见,由于煤质不好或供煤品种的不对路,其浪费是惊人的。   同时,我国每年因燃煤而产生的硫的氧化物和氮的氧化物的总量在1000万t以上,这些有害的酸性气体排入大气后,在一定的条件下与雨水一起再降到地面。相当于从空中降下2000多万t强酸,对环境污染很大,特别是烟煤中所含苯并芘对人体危害*,其浓度每增加百万分之一,癌发率上升5%。由上可见,提高煤炭质量,不仅可以达到节约煤炭,降低用户生产成本的目的,而且有利于环境的保护,减轻煤炭利用对环境的污染。   为了严格控制煤炭的质量,1987年,国家标准局发布《煤质分析试验方法一般规定》(GB/T 483-1987)。其中包括:煤的元素分析方法 煤中碳和氢测定方法电量—重量法 煤中全硫的测定方法 煤中各种形态硫的测定方法 煤中磷的测定方法 煤中砷的测定方法 煤中氯的测定方法 煤中氟的测定方法 煤中锗的测定方法 煤中镓的测定方法 煤灰中钾、钠、铁、钙、镁、锰的测定方法(原子吸收分光光度法) 煤中铬、锡、铅的测定方法 煤中铀的测定方法 煤中钒的测定方法 煤中硒的测定方法 煤中汞的测定方法等等(详见GB/T 483-1987)。   传统的方法不仅样品前处理复杂,实验操作步骤冗长,而且用户需要大量的经费用于购买不同的仪器和试剂。然而,利用LIBS进行煤炭分析,样品制备简单,用户仅需短短二十秒,即可轻松的从软件中准确读出样品的所有元素以及各元素的含量。因此,LIBS的出现大幅度提高了实验人员的工作效率,节约了成本。    实验室留影1    技术交流会议合影留念   LIBS 技术背景介绍   激光诱导击穿光谱仪(LIBS),无论是在样品制备、检测元素及分析时间上都明显优异于传统分析技术。其基本原理是使用高能量激光光源在分析材料表面形成高强度激光光斑(等离子体),使样品激发而发光, 通过检测系统对激发光信号的分析从而对待测样品元素进行定性和定量分析。   早在1961年,相关技术的论文已发表在了Brech上,但由于当时的激光发射器造价较高,实际生产的应用并不多见。随着激光发射器的商业化,LIBS已经逐渐应用在各行各业:环境:土壤,微粒,沉积物 材料分析:金属,矿渣,塑料,玻璃、煤炭 法医和生物医学:牙齿,骨头 计量学:硅晶片,半导体材料 生物学研究:植物,谷物 国防和军事:爆破,生化武器 艺术品修复和保存:颜料 宝石学和冶金术:贵金属,宝石。   上海凯来拥有一支理论知识扎实和实践经验丰富的团队,秉承着为客户提供完善技术服务的理念,与清华大学BP清洁能源研发与教育中心合作开发LIBS在煤炭领域中的应用。此次合作也对LIBS技术的肯定,欢迎任何对此技术方法感兴趣的分析工作者一起探讨,同时我们可以提供测试服务。相信在不久的将来,LIBS将具有广阔的市场前景。
  • 我们一直在路上--智能化激光粒度仪LS-609上市
    2015年6月2日,欧美克倾力打造的全新产品线再添一位重量级成员:智能化全自动激光粒度仪LS-609正式上市。 LS-609型激光粒度分析仪是基于LS-POP(9)平台升级开发的一款智能化全自动激光粒度分析仪。主机装载了进口He-Ne激光发射器,预热时间短,激光功率稳定。结合现代化智能测量控制分析软件和全自动循环进样系统SCF-105B,使得粒度测试流程简洁高效、测试结果稳定可靠,粒度测试报告直观明了,用户操作体验得到前所未有的提升。 2015年3月,政府在“新型工业化、城镇化、信息化、农业现代化”之外,又加入了“绿色化”,它是一种新的生产方式,对我们粉体行业可持续发展也提出了更高要求。粉体行业的绿色化发展离不开精密测量仪器加入,而在粉体行业粒度检测与控制领域也需要全新的测量仪器,能更好的适应行业的发展需求。 珠海欧美克仪器公司因应市场需求,借助英国思百吉集团先进的研发管理经验,在粒度测量领域推陈出新:从代表国内高端设备的TopSizer激光粒度仪,到传承了LS-POP6精髓高性价比的LS-POP9,再到目前的智能化激光粒度仪LS-609,欧美克一直致力于粉体行业粒度检测与控制技术的专业化、精细化。为客户提供高端先进的粒度测量仪器、为了粉体行业的可持续绿色化发展,我们一直在路上! LS-609型激光粒度分析仪详细产品信息请点击以下网址: http://www.omec-instruments.com/productShow.asp?ArtID=579
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 欧司朗488nm激光二极管等获创新者奖
    p   欧司朗光电半导体宣布其PLT5 488青光激光二极管和Oslon Black Flat SFH 4735分别荣获《激光世界》杂志颁发的创新者奖银奖。这两款产品均以对研究创新的贡献,以及为医疗和消费者健康行业带来的先进能力获得嘉奖。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201809/uepic/386e4ef3-4424-45a8-a604-c1493c12c7d5.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center "    strong PLT5 488nm青光激光二极管 —— 荣获银奖 /strong /p p   在寻求新的医疗方法和生命科学研究过程中,DNA和细胞分析工具已成为不可或缺的工具。凭借着优秀的远场模式,波长公差严格控制在± 2 nm内,PLT5 488青光激光二极管紧随仪器更紧凑、更简单、更具性价比的发展趋势。当细胞呈一列纵队流经一次性微制造型流动池时,将使用欧司朗488 nm直接激光二极管在完全相同的时间测量每个颗粒的体积及其自发荧光。这种独特的组合方式在生命科学领域广泛接受。 /p p style=" text-align: center " strong   Oslon Black Flat SFH 4735 —— 荣获银奖 /strong /p p   欧司朗的近红外(NIR)宽带发射器Oslon Black Flat SFH 4735开创了一个全新的紧凑、耐用、低成本的传感技术领域,史无前例。SFH 4735近红外光谱技术应用的理想之选,可以用来评估食物或药物的质量,乃至能识别食物中的营养成分,卡路里等。专家认为,这项技术很快可以直接整合到智能手机或平板电脑等消费类移动设备中,为消费者追踪和监测健康提供一种更简便的方法。 /p p   《激光世界》创新者奖旨在奖励光电和光学技术、产品和系统领域最具创新性的解决方案,其评选结果由行业专家组成的专家小组评定。银质创新奖用于表彰不仅带来了渐进式改进,而且显著改善了以前所采用的方法、所采取的方案或所使用的产品和系统的创新。 /p
  • 欧美克LS-909E干法激光粒度仪在粉末涂料行业的创新应用
    干法激光粒度仪在粉末涂料行业的应用随着近年来国家环保高压及绿色发展要求,我国“漆改粉”趋势加速,粉末涂料在整个涂料体系中所占份额越来越大。根据Global Market Insights,Inc.的报告,到2025年,全球粉末涂料市场预计将超过170亿美元。而从全球范围看,我国粉末涂料产销量已占全球60%左右,引领着全球粉末涂料发展! 与传统液态涂料相比,粉末涂料对材料的利用率很高(高达99%),任何过量喷涂都可以回收利用,从而大限度地减少了浪费;具有更广泛的颜色选择和纹理强化了粉末涂料成为液体涂料的有力替代品;粉末涂料具有可持续性、清洁性、安全性等特性,与替代涂料相比,粉末涂料具有优异的性能特征以及显著的成本优势,在农业和建筑、电器、汽车和运输等工业涂饰市场占15%以上并持续增长。 粉末涂料市场一直在发展,而保证粉末涂料质量检测的科学仪器也在不断创新发展。我们都知道,涂料颗粒的粒度分布对粉末涂料性能的影响有以下几大方面: 1、涂料颗粒粒径影响其带电性能 粉末涂料喷涂时的粘附力主要来源于静电荷的库仑力。涂料颗粒一般来说粒径越大带电性越好,但是颗粒的重力随粒径加大的增长速度大于库仑力的增长速度。也就是说颗粒大到一定程度后,重力会远大于库仑力,导致上粉率和涂覆效果会变差。故理想状态下的粉末涂料颗粒粒径应该尽量控制在10μm-60μm之间。粉末涂料太细或者太粗,涂装施工效率、质量就会下降。 图一 不同粒径涂料带电性能 2、影响涂料的流平性 粉末涂料吸附在工件上被加热后形成高粘度的流体状态,然后逐渐流平固化。通过研究流平时间的NIX和DODGE公式:t=kμR/γ(t是涂料颗粒聚结时间、k是常数、R是涂料颗粒半径、γ涂料的表面张力、μ涂料粘度),我们可以知道涂料颗粒粒径跟流平时间成正比。粉末涂料的粒度分布不均匀或者颗粒太粗,将严重影响流平性。 图二 粒度分布均匀的粉末涂料流平效果明显 3、影响涂层厚度 传统粉末涂料的平均粒径一般控制在30μm -50μm,涂层厚度一般在60μm -100μm之间。不同类型的工件需要的涂层厚度不同。同时涂层厚度也在很大程度上影响单位重量的粉末涂料能够涂覆的面积。因此粉末涂料的粒度分布可以说是直接影响涂料性能及经济性的重要参数。 4、影响涂料的储藏性能 根据部分行业专家的研究,粉末涂料存在一个临界粒径,大于这个粒径,粉末不易结块,反之则很容易结团。涂料产品的粒径不应该低于临界粒径,否则产品的储藏性将变得很差。 图三 粉末涂料显微图像 从上图的粉末涂料显微图像中我们可以看到其中有为数众多的小于5微米的“有害”颗粒,这些颗粒既浪费了原材料和能源,又严重影响涂料的存藏性能,应该尽量减少其含量。 因此,有效测定粉末颗粒的分布才能保证粉末涂料的高质量应用。激光粒度仪是当前流行的粒度测试仪器之一,其测试动态范围大、测试速度快、对使用环境要求不高、重复性好等优势满足了涂料行业的测量需求。但随着粉末涂料的异军突起,常用的湿法测试由于粉末涂料样品亲水性不好以及添加分散剂后容易产生气泡等原因,会导致测试结果不稳定,并容易造成结果拖尾。 而干法测试通过空气作为分散介质,在粒度检测时对粉末涂料样品进行干法分散处理,测试时即可以模拟粉末涂料在应用中的状态,得到的测试结果更好的反应粉体应用。在此基础上,粉末涂料行业用户也迫切地要求激光粒度仪具有方便快捷、数据报表呈现灵活等自动化、个性化特点的使用需求。而高性能、简单易用的全自动干法测试系统,智能多样化的软件功能正是LS-909E显著的优势,能为行业用户带来行云流水一般的实验体验。 图四 欧美克LS-909E干法激光粒度仪 欧美克LS-909E干法激光粒度仪正是基于粉末涂料用户对高性能干法仪器的需求而开发的一款性能卓越的粒度分析仪。 LS-909E干法进样系统由干法进样器、全封闭进样窗口、静音泵空压机、油水过滤器和吸尘器等部件构成。在硬件方面,主机装载了进口的高性能进口He-Ne气体激光发射器,结合永磁体空间滤波器设计及一体化激光发射器技术,保障了LS-909E激光粒度分析仪具有0.1-1400um的较宽测试范围及重现性小于1%的高分辨率可靠结果。 搭配欧美克DPF-110自动干法进样系统,样品池具有三重调节设计:进料速度由先进的压电陶瓷晶体精确控制,使测试遮光率易于控制并节省样品量;内置分散压和负压传感器,实时监控测样状态,并具有错误警示功能;干法窗口采用密闭管道式设计,结合窗口负压保护设计与大功率吸尘器粉尘回收装置,大限度回收样品,也使主机不受粉尘影响,极大减少了窗口维护及擦拭清洁工作,并提高了窗口玻璃的使用寿命,同时也提升了测试分析速度。以上多种特性共同保障了LS-909E干法测试对多种不同特性样品的适应性及良好的重现性和真实性。 在软件设计方面,LS-909E智能软件控制自动对中系统保证了精确的光学对中和多次测量的重现性。自动对中机构精度达0.2um,速度更快,既可作为自动测量的一部分,亦可在屏幕上单击鼠标来完成。结合智能判断对中软件功能,避免了传统粒度测量中因对中不良导致的结果偏差,并能延长对中机构寿命。 值得一提的是,LS-909E还配备有完善、开放的样品参数数据库,具有200多种常见材料光学参数,用户也可以自定义材料和折射率,包括折射率实部和虚部(对应样品的吸收率)。结合简单易操作的SOP标准操作流程,使分析测试流程标准化,减少人为因素的影响。同时提供多种测试报告模式和高度个性化的自定义功能:可提供通用测试报告、筛分测试报告、百分测试报告,并具有平均报告、统计报告、拟合报告功能,以及可自定义专业测试报告模板功能。测试报告支持pdf、excel、word及其他文本格式等丰富的导出格式,报告图表可直接右键保存。此外用户还能够在软件中同时查看多个测试报告结果,进行数据的图形比对和数值统计分析,对多个参数进行分类、排序、筛选,并能以表格形式输出。 其智能、友好、符合多种应用的计算机软件功能可定义测试报告模板,让粒度测试分析变得轻松可靠。 欧美克LS-909E的定位是一款高性价比干法激光粒度仪,甫一问世,已在第二十四届中国国际涂料展上得到了广大用户的高度关注和良好反响。粒度测试是一门涉及知识面极为宽广的技术学科,在每一个行业中都有极深入的应用研究,即使是在粒度检测行业打拼了二十多年的欧美克人也一直不断虚心前行,不断探索更智能化的解决方案、更高效的新技术及更全面的服务推向行业市场,为粉末涂料客户在现有和新的应用领域提供了显著的附加值,共同助力粉末涂料行业的创新发展!
  • 首颗陆地生态系统碳监测卫星成功发射 携带多波束激光雷达和超光谱探测仪等设备
    今天成功发射的陆地生态系统碳监测卫星可以获取我国森林碳汇数据,提高碳汇计量的效率和精度,为我国实现“碳达峰、碳中和”目标提供重要的数据支撑。航天科技集团五院遥感卫星总体部陆地生态系统碳监测卫星总体主任设计师黄缙:碳排放的过程叫从化石燃料里面储存的碳变到二氧化碳,到大气当中叫碳排放、叫碳源。森林或者其他一些人工手段把二氧化碳从空气当中固化下来,叫碳汇。这颗星的最终目的就是通过对森林进行观测,来实现评估我们国家碳吸收的能力。多种模式综合成像 专业监测森林碳汇数据航天科技集团五院遥感卫星总体部陆地生态系统碳监测卫星总体主任设计师黄缙:这颗星最主要的一个载荷就是这上面这个叫多波束激光雷达,激光雷达可以发射几束激光到地面,我就可以知道森林的高度。我们还配置了多角度多光谱相机,总共5个角度的相机,通过这5个角度相机,从前、正、后不同的角度去观测,对森林进行成像。除此之外,卫星还携带了超光谱探测仪和多角度偏振成像仪等设备,可以探测森林的光合作用以及大气PM2.5含量等森林碳汇能力的核心数据。多种功能用途广泛 全自主任务智能规划森林碳汇监测是陆地生态系统碳监测卫星的主要任务,除此之外它还可广泛应用于环保、测绘、气象、农业、减灾等领域,因此,这颗卫星任务繁多、工作模式复杂,研制人员通过一系列智能化设计,让这颗卫星好用且易用。陆地生态系统碳监测卫星搭载的探测设备多,工作模式也多,不同组合的工作模式多达47种,研制人员在考虑让卫星可以支持更多应用的同时,在卫星的操作模式上也进行了专门的设计。此外,研制团队还为卫星设计了自主化运行方式,卫星可以自主判断海洋、陆地、光照条件等,自动规划探测任务。
  • 新发现!紧凑型 X 射线自由电子激光器项目成功推进
    经过五年的努力,亚利桑那州立大学的研究人员已经实现了构建紧凑型 X 射线自由电子激光器的第一个目标——创造最终将产生超短 X 射线脉冲的最重要的电子。ASU Physica 教授、应用结构发现生物设计中心研究员 William Graves 教授说:“这是一种灵光乍现的时刻,当我们打开所有这些复杂系统的所有东西时,我们看到了第一个电子的产生。”研究人员打算使用电子束的纳米图案,通过电子衍射,将他们杂乱无章的电子包转换成原子大小的“箱”,提高功率并产生完全相干的 X 射线。完全可操作的紧凑型 X 射线光源 (CXLS) 长约 10 m,可产生超短 X 射线脉冲以拍摄化学反应和分子活动的“高速电影”。紧凑型 X 射线光源紧凑型 X 射线光源将极短的紫外激光脉冲聚焦到铜表面上来产生电子包。然后,这些电子将被 1 m 长的直线加速器和具有兆瓦峰值功率的强微波频率电磁场加速到接近光速。接下来,电子将通过一系列精确对准的磁铁形成定向束。产生的电子束将被强烈的短脉冲激光发射,使电子产生起伏运动,从而产生强烈且可预测的X 射线发射。使用光学激光场作为波荡器从电子产生 X 射线,而不是一英里长的自由电子激光设施中常见的磁铁,如直线加速器相干光源,减少了电子波荡器的长度和加速器的数量级。至关重要的是,减少规模和成本意味着更多的研究机构可以建立类似的资源,投入更多的精力来研究光合作用和药物相互作用等现象。事实上,一旦产生,X 射线将用于揭示生物分子和新材料的原子结构和功能。一个关键应用就是阿秒物理学,它研究分子如何相互连接以及化学反应和催化的动力学。阿秒动力学是自然界中最快的过程,对工业也具有重要意义。同时,可以研究量子材料和时间分辨生物化学——涉及生物和化学过程之间微妙的相互作用。ASU 紧凑型 X 射线自由电子激光器 (CXFEL) 计划“我们不仅要捕捉静态结构,还要捕捉它的工作原理,”格雷夫斯说。“不同分子的功能是什么?我们真的能看到正在发生的反应吗?我们想制作一种关于化学键形成和断裂的定格电影。”“通过这样做,我们可以更深入地了解化学和分子的工作原理,”他补充道。“例如,药物如何影响病毒……或研究高温超导体如何彻底改变能源生产。我们还不了解它的物理原理。”如果没有Annette 和 Leo Beus 为创建 Beus Compact X 射线自由电子激光实验室提供了 1000 万美元的慷慨捐助,该计划就不可能实现。在过去的几年中,该计划引起了该领域科学家的极大期待和兴奋,并吸引了数十名科学家来到亚利桑那州立大学。从创新的 CXLS 过渡到设想的未来紧凑型 X 射线自由电子激光器 (CXFEL),需要进一步的突破。2019 年,美国国家科学基金会宣布支持下一阶段的 CXFEL 项目,拨款 470 万美元,用于资助新设备的综合设计研究。尽管 Covid-19 大流行仍在持续,但来自ASU 和其他机构的大约 100 名研究人员和学生参与了该项目,CXLS 的设计工作和建设仍在快速进行。文章来源:MicroscopyX-Ray Analysis(编译:符斌 北京中实国金国际实验室能力验证研究中心研究员)
  • Nature Communications | 杜平武与杨上峰两课题组合作,成功研发聚集可调双发射手性碳纳米环
    作者:王敏 来源:中国科学报中国科学技术大学杜平武教授课题组与杨上峰教授课题组合作,合成了首个具有聚集可调双发射性质的手性双环分子。研究成果近日发表于《自然-通讯》。a)传统AIE发光体示例;b) 具有聚集可调双发射性质的手性双环分子(SCPP[8]) 中国科大供图“这种新型手性分子在聚集态和溶液态可以发射不同波长的荧光,通过控制聚集程度,调节两个发射峰的比例,获得多种颜色的荧光发射。”化学与材料科学学院材料科学与工程系博士生张新宇说,该分子可以应用在光传感器、3D电影及视频、数据存储以及探针领域。在传统系统中,聚集诱导猝灭发光体通常在溶液状态强烈发光,但在聚集时,荧光会显著减弱甚至完全消失。另一种独特的发光体具有与之相反的光物理现象,其在溶液中几乎不发光,而在聚集时可以发射出强荧光,这种发光体称为聚集诱导发光分子。这也意味着目前绝大多数的发光体具有单一的发射性质,只在溶液中发光,或只在聚集态发光。而同时具有聚集诱导发光和聚集诱导猝灭效应的双发射有机材料在文献中很少报道。基于前期研究工作,合作研究团队通过将具有聚集诱导发射活性的1,2,4,5-四苯基苯用对苯撑单元固定,成功合成了首个具有聚集可调双发射性质的手性有机双环分子,称之为SCPP[8]。此外,团队在含有不同水体积的四氢呋喃和水混合物中研究了SCPP[8]的荧光现象。SCPP[8]展现了出乎意料的多色荧光发射、单分子近白光发射,稳定的固有手性和增强的圆偏振发光性质,将在聚集诱导发射传感器、白光发射器件和手性材料中具有潜在应用。审稿人认为,新型纳米环同时展现了令人意外的光物理现象和出色的圆偏振发光性质。这是一个有趣且不寻常的发现,优异的光物理性质使其拥有技术应用的潜在价值。相关论文链接:https://doi.org/10.1038/s41467-022-31281-9
  • 聚光科技E5000电弧直读发射光谱仪顺利通过辐射测试认证
    电磁辐射是指在电磁振荡过程中,电磁波向四周传播传递能量的现象。长期的电磁辐射会对人体的心血管系统、视觉系统、神经系统和生殖系统造成极大的危害,是心血管病、癌突变,不孕不育、白内障的主要诱因。电弧发射光谱仪的原理是通过高频引燃,产生大功率电弧火焰,实现样品的蒸发和激发,进行各元素的测定。因此,长期使用电弧发射光谱仪器的工作人员深受电磁辐射的危害,做好电弧发射光谱仪的电磁辐射屏蔽防护十分必要,更是仪器生产厂商对客户责任感的体现。  聚光科技(杭州)股份有限公司生产的E5000全谱直读电弧发射光谱仪是国内首台非金属粉末元素分析的台式全谱直读发射光谱仪,其将电弧激发光源与Paschen-Runge型全谱CCD 光谱仪相结合,通过激光定位与程控电极,自动调整电极位置,实现激发间距的精确控制,利用高阵列CCD 数采获得了激发样品的全谱信息,通过实时扣除背景与干扰校正,直接获得分析结果。与传统摄谱仪相比,仪器操作简单,自动化程度高,谱线信息丰富,测定结果快速准确。  E5000采用新一代数字电弧光源,替代了传统的电弧源,电极在矩室内全自动对准激发,无需人工直接观察调节间距,有效防护人眼,屏蔽了大量电磁辐射;此外,数字电源体积更小,可直接置于仪器内部,无需加长激发线连接外置的交流电源,有效降低大电流传导过程中产生的辐射。  辐射测试结果显示,正常工作时,若电弧光源无防护措施,电磁辐射显著高于国家标准限定的40dBN;如果有效屏蔽掉电源的电磁辐射,使用长的激发线激发时,高频300MHz以上的电磁辐射稍有降低,但300MHz以下的电磁辐射仍然较大。而经过完全防护的E5000仪器在正常工作时电磁辐射显著降低,完全符合国标中关于仪器设备的电磁辐射限定要求,具体结果如下图。E5000全谱直读电弧发射光谱仪电磁辐射测试结果  国家电子计算机外部设备质量监督检验中心是经国家主管部门审查认可的,具有第三方公正地位的国家级质量检验机构。经国家电子计算机外部设备质量监督检验中心的辐射骚扰场强试验(30MHz~1GHz)测试认证,聚光科技(杭州)股份有限公司研发生产的E5000电弧直读发射光谱仪符合国标GB 9254-2008《信息技术设备的无线电骚扰限值和测量方法》的B级标准要求。E5000全谱直读电弧发射光谱仪辐射骚扰场强试验检验报告
  • 澳开发出能量更强单原子激光器
    据美国《每日科学》网站3月31日报道,澳大利亚因斯布鲁克大学研究小组最新实现的更高能量单原子激光,不但具有传统激光器的属性,还展示了单个原子相互作用的量子力学性质。   在传统型激光器中,光学性质活跃的物质被放置在两面镜子之间的一个空腔内,然后用电流或另一束激光将其激发。光学性质活跃的物质所发射出的光子被反射再次穿过物质,会激发更多光子的发射,最终产生激光。系统中单个电子或光子的量子涨落对整个激光器几乎没有影响。   单个原子激光器,其激光出自于单个原子。首先对于激光系统性能而言,其工作阈值条件具有非常重要的意义。因斯布鲁克大学的科学家瑞纳布拉特与皮特施密特领导的研究小组,展示了激光阈值高度完美化的最小可能:单个原子可在光学腔中单模交互。被“囚禁”在离子阱中的单一钙离子,因接受外部激光刺激而活跃,释放出一个光子。由两面镜子组成的高精度光学腔,能捕捉并聚集该光子,离子循环的每个周期都有一个光子被添加到腔洞系统中,使光线得以增强。   单原子激光器可促进人们了解单个原子与单个光子之间的相互作用,由单原子激光器产生的非经典光将实现对光子流量的精细控制,在光子信息工程中具有很大的应用前景。自1958年研制成功以来,激光就被冠以“最快的刀、最准的尺”之名。但现今的这项技术正在将此概念延伸到一个全新的领域。   该项成果发表于最新一期《自然物理学》杂志上.
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器   新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。   1.美国“国家点火装置”   这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。   美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。   2.庞大的靶室    庞大的靶室   在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。   3.包含放射性氢同位素、氘和氚的铍球    包含放射性氢同位素、氘和氚的铍球   这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。   例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。   4.靶室顶部的起重机和气闸盖    靶室顶部的起重机和气闸盖   在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。   5.精密诊断系统    精密诊断系统   激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。   6.激光间    激光间   在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。   最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。   7.磷酸盐放大玻璃    磷酸盐放大玻璃   国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。   8.技术人员在激光间里安装光束管    技术人员在激光间里安装光束管   技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。   9.紧急停运盘    紧急停运盘   在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。   10.光导纤维    光导纤维   光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。   11.能量放大器    能量放大器   能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。   12.可变形的镜子    可变形的镜子   可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。   13.激光放大器    激光放大器   激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。   14.便携式洁净室    便携式洁净室   科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。   15.能量放大器    能量放大器   每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。   16.技术人员校对能量放大器    技术人员校对能量放大器   从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。   17.模仿NASA的主控室    模仿NASA的主控室   照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。   18.光束源控制中心    光束源控制中心   光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。   19.国家点火设施的激光源    国家点火设施的激光源   国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。   20.高能灯管    高能灯管   高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。   这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。   国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)   导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:   “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。   以下是“国家点火装置”产生最强激光的几大步骤:   1、安装球形外壳      安装球形外壳   为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。   2、用调节器调整靶位      用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。   3、将燃料放入燃料舱(圆柱体)      将燃料放入燃料舱(圆柱体)   进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。   4、压缩并加热燃料      压缩并加热燃料   所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。   5、用磷酸二氢钾晶体转换激光束      用磷酸二氢钾晶体转换激光束   激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 日本研制出世界最短波长X射线激光
    新华网东京6月12日电 日本研究人员近日利用X射线自由电子激光装置成功发射出波长仅0.12纳米的X射线激光,刷新了这种激光最短波长的世界纪录。   根据日本理化研究所和高辉度光科学研究中心联合发布的新闻公报,来自这两家机构的研究人员利用建在兵库县的X射线自由电子激光装置发出了波长仅0.12纳米的X射线激光,打破了美国的直线加速器相干光源于2009年4月创下的0.15纳米的最短波长世界纪录。   公报说,研究人员将X射线自由电子激光装置的监视器、电磁石等硬件,以及精密控制各种仪器的软件都按最佳设计进行了彻底调整,从2月底装置运转开始,仅用了3个多月时间就发射出了世界最短波长的X射线激光。而当年美国的调整过程花费了几年时间。   X射线激光的波长小于1纳米,它被看作能给原子世界照相的“梦幻之光”。在从基础研究到应用开发的广阔领域,比如膜蛋白的结构分析、纳米技术等领域,X射线激光的应用前景都被看好。
  • 159万!复旦大学电感耦合等离子体发射光谱仪等采购项目
    一、项目编号:0705-224002028052项目名称:复旦大学电感耦合等离子体发射光谱仪采购国际招标预算金额:99.0000000 万元(人民币)最高限价(如有):97.0000000 万元(人民币)采购需求:1、招标条件项目概况:电感耦合等离子体发射光谱仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028052招标项目名称:电感耦合等离子体发射光谱仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1电感耦合等离子体发射光谱仪1套自激式射频发生器,频率大于40MHz预算金额:人民币99万元 最高限价:人民币97万元 合同履行期限:签订合同后4个月内合同履行期限:签订合同后4个月内本项目( 不接受 )联合体投标。二、项目编号:0705-224002028053项目名称:复旦大学激光粒度分析仪采购国际招标预算金额:60.0000000 万元(人民币)最高限价(如有):58.0000000 万元(人民币)采购需求:1、招标条件项目概况:激光粒度分析仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028053招标项目名称:激光粒度分析仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1激光粒度分析仪1套测量速度:扫描速度≥10KHz预算金额:人民币60万元 最高限价:人民币58万元 合同履行期限:签订合同后3个月内合同履行期限:签订合同后3个月内本项目( 不接受 )联合体投标。
  • 揭秘好奇号火星车激光器:蒸发尘土分析成分
    ChemCam利用激光分析火星表面的物质,最大工作距离可达到23英尺    美国洛斯-阿拉莫斯国家实验室,ChemCam项目组首席研究员罗杰-韦恩斯对这台仪器进行检查   艺术概念图,展现了在火星表面执行探测任务的“好奇”号火星车   26日,美国宇航局的“好奇”号火星车搭乘宇宙神5型火箭在佛罗里达州卡纳维拉尔角的41号发射架发射升空,奔赴红色星球   据国外媒体报道,11月26日,美国宇航局“好奇”号火星车发射升空预计明年8月登陆火星。在火星表面,“好奇”号火星车将发射能量相当于100万个电灯的激光束确定这颗红色星球能否支持生命存在。除了激光束外,这辆火星车还将借助其他一系列装置寻找这个遥远世界的生物信号,帮助科学家确定火星是否是一颗适于居住的星球。   “好奇”号共携带10种不同科学仪器,ChemCam只是其中之一。抵达火星之后,“好奇”号的化学与摄像机仪器(以下简称 ChemCam)将发射强激光脉冲,蒸发火星尘土,而后对光谱进行分析。ChemCam发射的强激光脉冲可以蒸发针头大小的区域。这台仪器还装有激光器,用于观测被蒸发的物质产生的等离子体闪光,并记录下光线包含的颜色。一台分光计随后对这些光谱色进行分析,帮助科学家确定被蒸发物质的元素构成。   ChemCam可以向一个区域或者多个区域快速发射连续多激光脉冲,在火星表面取样分析过程中赋予研究人员极大的灵活性。 ChemCam项目组首席研究员罗杰-韦恩斯表示:“ChemCam在设计上用于寻找轻元素、例如碳、氮和氧,所有这些元素都对生命至关重要。这一系统能够立即发现火星表面的霜或者其他源中的水以及碳。碳是构成生命以及生命副产品的基本要素。由于具有这些功能,ChemCam成为‘好奇’号任务一个至关重要的组成部分。”   ChemCam可以分析整个可见光光谱以及红外和紫外光谱,寻找周期表上的任何元素。ChemCam能够对距离“好奇”号大约23英尺(约合7米)的区域进行探测。这台仪器采用的技术由美国洛斯-阿拉莫斯国家实验室研发,被称之为“激光诱导击穿光谱技术”(以下简称LIBS)。这项技术的核心是红外线激光器――肉眼看不到红外线――所发射的激光能量超过100万个电灯,能够聚焦一个微小区域,聚焦时间达到十亿分之五秒。   在地球上,LIBS用于确定极端环境下的物体构成,例如核反应堆和海床。随着“好奇”号任务的实施,这项技术第一次走出地球。法国国家太空研究中心负责制造ChemCam的激光器和望远镜。洛斯-阿拉莫斯国家实验室则负责制造ChemCam的分光计和数据处理器,同时担任这一项目的负责机构。   在“好奇”号登陆火星之后,洛斯-阿拉莫斯实验室的操作人员将负责控制这台仪器。此外,这家实验室同样参与“好奇”号的其他探测任务。洛斯-阿拉莫斯实验室地球与环境学部门的戴夫-瓦尼曼是“好奇”号携带的另一台仪器――化学与矿物学分析仪(以下简称CheMin)的副负责人。 CheMin会向样本发射X射线,根据X射线的衍射确定矿物的晶体结构。“好奇”号的机械臂通过车外的一个进口将样本送入CheMin进行分析。   “好奇”号携带的钚罐同样由洛斯-阿拉莫斯实验室制造,负责为这辆火星车的核动力发电机提供燃料。钚罐是近50名研究人员和技术人员共同努力的结晶。“好奇”号携带的发电机名为“同位素温差发电机”(以下简称RTG),发电量是过去的火星车的几倍,满足“好奇”号的用电需求。由于体积超过以往的火星车,“好奇”号能够携带更为先进的载荷,让安装RTG成为一种可能。   26日,美国宇航局在佛罗里达州发射“好奇”号火星车。宇航局的“海盗”号35年前登陆火星,现在已经没有“生命迹象”。科学家希望携带更先进仪器的“好奇”号能够上演更令人吃惊的发现。宇航局火星探索计划负责人道格-麦克奎斯逊表示:“‘好奇’号是迄今为止登陆另一颗行星表面的体积最大且最为复杂的探测器。”在飞行近3.54亿英里(约合5.69亿公里)之后,“好奇”号预计于2012年8月5日在火星表面着陆。“好奇”号任务耗资 25亿美元,其中一个首要任务是寻找科学家在火星空气中探测到的甲烷。这辆火星车将在红色星球跋涉大约98周,相当于一个火星年。
  • 业纳参加2013年度慕尼黑上海光博会
    业纳激光与材料加工事业部介绍了其在半导体材料领域所取得的成就,并进一步展示了其在激光材料加工方面推出的明星产品。3 月 19 日至21 日,中国上海,上海新国际展览中心 W2 展厅 #2420 展位,慕尼黑上海光博会即将开幕。   “很高兴能在 2013 年度慕尼黑上海光博会上,向亚洲准顾客们介绍我们在半导体材料和激光材料加工领域取得的最新成就。”业纳激光与材料加工分公司中国区总经理Martin Wachholz 说道。“拥有业纳技术,您能实现应用创新,如使用二极管激光器直接、快速、高效地加工各种几何形状各异的材料。”   采用业纳新型单发射器和迷你激光棒实现创新性激光应用   全新的单发射器和迷你激光棒现已上市,可选波长有 915nm 和 940/955nm,是光纤激光器的完美泵浦源,同时完美适用于二极管直接应用和塑料件焊接或韧化处理等其他应用。9xx nm 单发射器的输出功率为 12W,从 90μm 的孔洞中向外发射。12W 时,被动安装式散热器的插座电热转换效率为 64%,最大电热转换效率为 74%。在远场分布为 26° x 6.5°(达到一半最大值(12W) 时,宽度最大)的情况下,是耦合成 105μm 的光纤的理想选择。9xx nm 的迷你激光棒是非常杰出的解决方案,能够集单发射器的耦合效率和全幅激光棒的安装成本为一体。迷你激光棒内含五个发射器,每个发射孔洞的规格为 90μm ,孔洞间距为 1000μm 。建议输出功率为 55W。被动冷却式散热器的插座电热转换效率为 69%。远场分布情况与单发射器相同。除新型的迷你激光棒外,业纳还展示了适用于大功率应用的其他单发射器和激光棒用,并且效率较高、拥有卓越的使用寿命。这些产品现已上市,可选波长在 792nm 和 976nm 之间。所有的半导体产品均经严格的工艺控制制造而成,因此其品质、可靠性和较长使用寿命均能满足最高要求。   采用业纳 1kW 光纤激光器切割和焊接金属材料   在2013 年度慕尼黑上海光博会上,业纳还展示了自身研制的JenLas® fiber cw 1000 光纤激光器。这种 OEM 光纤激光器的输出功率为 1kW,完美适用于工业环境中的材料加工。JenLas® fiber cw 1000 可确保较高的生产效率和卓越的加工品质,尤其是切割和焊接厚度和几何形状各异的金属件时,这些优势更为明显。业纳对各层次的激光技术有着深入的了解,并具有丰富的多种应用经验,确保业纳能够轻松、灵活地将其激光器集成到全球客户系统和设备中。与常规机械或化学工艺(如胶合、钎焊或热板焊接)相比,采用光纤激光器进行激光焊接在灵活性、加工质量和加工速度上均有优势。焊缝强度极高,即使是尺寸罕见的部件,也可实现快速、可靠加工。采用 JenLas® fiber cw 1000 进行切割和焊接可为用户提供更多潜能,便于用于创造新前景。   进一步研发成就:激光棒CN安装底架   业纳激光与材料加工事业部推出了进一步研发出的 CN 散热器。由于二极管激光棒采用双侧冷却方式,与二极管激光棒常规安装技术相比,该散热器的冷却效率更高,最高幅度可达30%。此外,通过进一步研发CN 散热器制造技术,未来还可能将半导体激光器安装在散热器上,同样以硬脉冲形式运行。因此,这些高效被动式散热器可拓展至激光泵浦和材料加工等更多其他应用领域。   适用于多种微观应用的 IRxx 系列激光器   业纳奉献给亚洲准客户产品——已在光伏产业名闻遐迩的产品 —— 便是红外盘形激光器系列的JenLas® disk IRxx。这些激光器脉冲长度较短,重复率较高,脉冲能量亦恒定较高。其带给用户的另一大优势便是可灵活调整激光器参数,以便找到适用于单个工艺的最佳参数组合。这就意味着,可单独调整每一个参数,如脉冲持续时间、重复率和激光功率。激光器与智能激光器控制系统一起交付,其具有标准化的界面,可以简化集成。这样一来,不论是模拟式控制还是数字式控制,客户均可通过软件实现高度灵活的控制。JenLas® disk IRxx激光器的完美的微型材料加工解决方案,其适宜应用包括太阳能电池和金属件钻孔、微型架构、金属箔切割和碳纤维增强塑料 (CFRP) 加工。   如需了解 2013 年度慕尼黑上海光博会上展出的更多业纳产品信息,请访问:   www.jenoptik.com/laser-china。   下载高清图片,请点击:www.jenoptik.com/pdb-lasersystems   关于业纳激光与材料加工事业部   业纳旗下设有激光与材料加工事业部,是业界领先的激光技术供应商之一 从部件到完整的激光系统,业纳能够提供贯穿激光材料加工整个增值链的产品和解决方案。在激光器业务领域内,公司专门致力于研制优质半导体激光器、可靠的二极管激光器(可用作模块或系统),以及创新性固态激光器(如盘形激光器)。凭借丰富的产品组合,业纳成为从 cw 到 fs整个脉冲宽度范围的理想合作伙伴。在大功率二极管激光器领域,业纳是全球公认的品质领导者。在激光加工系统业务领域内,业纳开发、制造的激光设备能够集成到客户生产线中,参与客户的工艺优化和自动化。   这些激光设备可用于加工塑料件、金属件、玻璃件,以及薄膜。业纳激光系统能够确保最高加工效率、加工精度和加工安全性。此外,客户还可在应用中心试用多种激光源和激光设备,从而找到适于自身应用的最佳解决方案。最后,业纳产品组合还涵盖了能效较高、环境友好的排气清除系统,能在激光加工和其他工业加工过程中清除所有污染物,无任何残留。
  • 共振X射线发射光谱下发现稀土金属价态转变新进展
    稀土元素是现代科技中不可或缺的元素,在磁性激光、光纤通信、新能源、超导、航天航空、军事国防等领域有着不可替代的作用,是21世纪重要的战略元素。6月27日,北京高压科学研究中心研究员丁阳带领的国际研究团队在高压稀土金属价态转变研究领域获突破性进展。相关研究以《80 GPa左右单质金属铕(Eu)的新价态转变》为题发表于《物理评论快报》(Physical Review Letters)。 价态转变—价电子数的变化,是稀土金属及其化合物中普遍存在的物理现象,反映了局域4f电子在外界(比如压力、掺杂、温度)作用下向非局域化转化的过程,而这种非局域化转化标志着材料中大规模电子关联的开始。在此过程中,由于局域电子和非局域价电子之间的竞争等相互作用,稀土元素会衍生出许多奇异的量子现象,如价态转变、金属到绝缘体的转变、超导等,而这些都会极大影响稀土元素的磁、光、电等物理性质。因此揭示这些变化机制,将为设计研制面向国家战略需求的量子演生新材料,促进新型功能器件诞生及推动新能源产业升级提供巨大机遇。 在该研究中,研究人员使用同步辐射X射线共振发射光谱和X射线衍射技术,探测了Eu在高压下的电子和晶体结构变化,压力高达160万大气压。他们发现,在约80万大气压的压缩下,Eu中也发生了明显的价态变化,而且价态转变恰好与Eu在相同压力下的晶体结构变化相吻合;并提出Eu中这种电子重构归因于所谓的Promotional模型—4f轨道的电子向5d导带的跃迁导致的结果,为研究稀土元素的价态变化提供了重要的实验依据和理论模型。 “共振X射线发射光谱(RXES)是迄今为止在高压下研究稀土元素价态变化的最强大的实验技术,它可以提供可靠的电子结构测量,从而使我们能够检测到Eu在高压下电子结构的变化。”丁阳说。 据了解,目前该实验成果也是国内首次利用共振X射线发射光谱在如此高的压力下研究稀土元素4f 的电子结构,极大推进了高压调控4f电子研究的发展,同时也为我国同步辐射谱学技术的发展提供了重要参考。 据悉,北京高压科学研究中心博士后陈碧娟博士为该文第一作者,北京高压科学研究中心研究员丁阳和陕西师范大学的昌峻研究员为通讯作者,合作单位包括流体物理研究所、北京应用物理与计算数学研究所、吉林大学、美国阿贡国家实验室、中国科学院物理研究所等。 相关工作得到了国家自然科学基金项目、挑战者计划、国家重点研发计划项目、美国DOE-NNSA’s Office of Experimental Sciences等联合资助。
  • 来自激光尾流场加速光子的多毫焦耳太赫兹辐射
    近日,韩国基础科学研究所的Taegyu Pak等人观察到高功率太赫兹辐射从被100太瓦级激光脉冲照射的气体喷射器中发射出来,用于电子的激光视场加速。在氮气靶上,小于10太赫兹时产生了超过4毫焦耳的能量,激光到太赫兹的转换效率约为0.15%。这种强大的太赫兹辐射被认为是由等离子体电子产生的,这些电子在激光脉冲时间尺度上加速。该模型通过粒子在细胞中的模拟和分析计算进行研究,以更好地理解激光尾流场加速中高能太赫兹辐射的产生机制。太赫兹(THz)是位于电磁波谱的微波和红外区域之间的一个频段,这个频段下传统技术在产生和检测辐射方面效率低下,人们正在通过开发新的太赫兹源和检测器来弥补这一缺口。基于激光的太赫兹源由于能够产生相干的、单周期到多周期的、宽带(或窄带)辐射而备受关注。这种源也可以提供与驱动激光的自然同步,允许超快时间分辨光谱和成像。最近,高功率飞秒激光器被用来产生强大的太赫兹辐射,以及探索新的太赫兹驱动的现象,如分子排列,谐波生成和分子加速等。在许多基于激光的源中,基于激光等离子体的源很适合于高功率太赫兹的产生。等离子体已经被电离,因此可以维持高电磁场,当高功率激光脉冲被聚焦到一个小的体积中用于产生能量可存储的太赫兹时,几乎不需要材料损坏。从激光产生的气体和固体密度等离子体中产生的相干太赫兹已经被广泛地研究。在气体中,单色或双色激光产生的等离子体可以通过超快的激光驱动电流产生相干的宽带太赫兹辐射。在双色激光混合中,通过使用中红外激光驱动器,激光到太赫兹的转换效率提高到百分比水平。最近,从一个被高能量皮秒激光脉冲照射的金属箔中观察到了几十毫焦耳的太赫兹能量。然而,与气体靶材不同,高密度的靶材往往会带来靶材碎片和靶材重装的问题,这使得它们不利于用于连续或高重复率的操作。激光尾流场加速器(LWFA)是一种基于气态等离子体的紧凑型电子加速器方案,可以产生宽带电磁辐射。在激光尾流场加速器中产生的相对论性电子束,当它通过相干过渡辐射离开等离子体-真空边界时,可以发射出太赫兹辐射。当电子束的长度与发射的太赫兹辐射的波长可比拟或小于辐射波长时,就会出现这种情况,且单个电子产生的太赫兹场在辐射方向相干叠加。在实验中,用10 TW级激光器从激光尾流场加速器中观察到小于100纳焦的太赫兹能量,太赫兹辐射的波形被单次测量,也被利用来诊断电子束本身。然而到目前为止,激光尾流场加速器输出的太赫兹能量尚未超过微焦水平,人们也没有研究过太赫兹能量的扩展。韩国基础科学研究所的Taegyu Pak等人通过使用相对论激光科学中心(CoReLS)的150太瓦激光器,在激光尾流场加速器中明显增强了太赫兹的产生,达到了多毫焦耳水平。研究人员测试了激光尾流场加速器和各种目标条件下太赫兹的生成,并同时表征了两种光束,以便更好地了解激光尾流场加速器中太赫兹产生的起源。实验结果表明,多兆焦耳的太赫兹生成并不完全由相干跃迁辐射模型解释。研究人员研究了太赫兹产生的另一种可能机制,即由激光推动力和等离子体加速的等离子体电子的相干辐射。实验装置示意图如图1所示,激光脉冲电离气体射流并通过激光尾流场加速器加速等离子体电子,同时产生太赫兹辐射。在电子束通过带有偶极磁铁的电子光谱仪后,测量电子能谱。从等离子体发出的太赫兹辐射被准直,传送到真空室外,然后重新聚集到热释电检测器上进行检测。图1 激光驱动的电子加速和太赫兹生成示意图发出的太赫兹辐射通过其光谱、能量和偏振进行了表征,得到的太赫兹光谱在图2(a)中以散射形式显示,水平误差条代表滤波器传输带的光谱宽度,红线表示放置在光束路径上所有过滤器的整体传输曲线。其偏振通过一个带有热释电探测器的线栅偏振器来表征,收集35个热释电信号并取其平均值,结果显示在图2(b)中。测量的偏振分布是各向同性的,与电子的径向加速所预期的偏振相一致,沿垂直偏振方向有一些明显的增强。图2 太赫兹辐射的光谱和偏振表征
  • 美发现制造激光新方法
    新华社华盛顿12月26日电 美国每日科学网站日前报道说,美国普林斯顿大学的一个研究小组不久前发现了一种用普通电子材料发射激光光束的全新方法。这一发现可能帮助科学家制造出效能更大、温度更高的激光,开辟激光在环境检测和医疗诊断方面的新用途。   研究项目负责人克莱尔格马赫尔说:“这一发现使我们对激光的物理特性有了新的深入了解。”科学家是在一种名叫“量子级联激光器”的装置上发现这一现象的。量子级联激光器通过让一股电流穿过某种特殊物质来制造激光光束。   格马赫尔的研究小组发现,他们制作的量子级联激光器除发出一条主激光光束外,还发射出一条副光束。副光束的特性非常特别,相比传统的激光光束,这种激光只需要较少的电能。格马赫尔说:“我们如果能放弃传统(激光)光束,就能最终得到一种更好的激光,这种新激光可以更加高效地利用电能。”   新型激光具有一些有趣的特性。比如,对利用低动量电子产生激光的传统激光器而言,电子常常会把发射出去的光子重新吸收回来,这就降低了激光器的整体能效。但对新型激光而言,这种吸收率降低了90%。这就有可能使激光器得以在更弱的电流条件下工作,而且更不容易受到温度变化的影响。
  • 美国发现制造激光新方法
    美国每日科学网站日前报道说,美国普林斯顿大学的一个研究小组不久前发现了一种用普通电子材料发射激光光束的全新方法。这一发现可能帮助科学家制造出效能更大、温度更高的激光,开辟激光在环境检测和医疗诊断方面的新用途。   研究项目负责人克莱尔格马赫尔说:“这一发现使我们对激光的物理特性有了新的深入了解。”科学家是在一种名叫“量子级联激光器”的装置上发现这一现象的。量子级联激光器通过让一股电流穿过某种特殊物质来制造激光光束。   格马赫尔的研究小组发现,他们制作的量子级联激光器除发出一条主激光光束外,还发射出一条副光束。副光束的特性非常特别,相比传统的激光光束,这种激光只需要较少的电能。格马赫尔说:“我们如果能放弃传统(激光)光束,就能最终得到一种更好的激光,这种新激光可以更加高效地利用电能。”   新型激光具有一些有趣的特性。比如,对利用低动量电子产生激光的传统激光器而言,电子常常会把发射出去的光子重新吸收回来,这就降低了激光器的整体能效。但对新型激光而言,这种吸收率降低了90%。这就有可能使激光器得以在更弱的电流条件下工作,而且更不容易受到温度变化的影响。
  • 新型自由电子激光X射线探测器 ePix10k,每秒可获1000张图像
    新型自由电子激光x射线探测器 ePix10K,每秒可获1000张图像同步辐射与自由电子激光通常都用于研究自然界中一些肉眼无法观察到的超快现象。这些装置可产生的超亮且超快的x射线,就像巨大的频闪灯一样,“冻结”了快速的运动,它们可以捕捉到分子、原子的动态影像,研究人员就能够拍出清晰的快照,探究看不见的微观世界的秘密,为人类对自然的研究工程服务。美国能源部SLAC国家加速器实验室开发出了新一代的x射线探测器ePix10K,新的探测器每秒最多可获1000张图像,速度约是上一代的10倍。这大大提高了光源的有效利用率,即每秒可发射数千次x射线。相比于旧款ePix及其它探测器,ePix10K可以处理强度更高的x射线,同时灵敏度提高了3倍,且像素高达200万。SLAC的直线加速器相干光源(LCLS)x射线激光器上安装了一个16模块,220万像素的ePix10K x射线探测器1ePix10K概述epix10k 是由SLAC开发的一种用于自由电子激光装置(FEL)的混合像素探测器,可通过自动调节增益提供超高探测范围(245 ev至88 mev)。它具有三种增益模式(高,中和低)和两种自动调节增益模式(高至低和中至低)。首批ePix10K探测器围绕模块构建,该模块由与4个Asic结合的传感器倒装芯片组成,从而产生352×384个像素,每个像素100 μm x 100 μm。 ePix10K由两个主要的核心部分组成:感光传感器和专用集成电路(Asic)。后者处理传感器采集的信号,赋予epix10k独特的性能。以前的探测器(例如LCLS科学家使用了几年的ePix100)经过定制,可以在x射线激光每秒120脉冲的发射速率下最大化性能。SLAC的探测器团队进一步开发了该技术,现在它每秒可以捕获1,000张图像。2epix10k的主要规格specification 135k,2mof pixels/module 384 x 352pixel size100μmactive area dimensions38.4 x 35.2mm2max signal(8 kev photons equivalent) 11000frame rate (hz) 120 hz (or up to 1khz)sensor thickness (μm) 5003ePix10K的应用SLAC的ePix 旨在满足使用强大x射线光源研究化学、生物和材料的原子细节的科学家的特定需求。它们速度快,长时间运行稳定并且对大范围的x射线强度敏感,这意味着它们可以处理非常明亮的x射线束以及单个光子。ePix10K将成为SLAC的直线加速器相干光源(LCLS) x射线激光器中x射线科学的新主力,它也将使其他设备受益。美国能源部的Argonne国家实验室的先进光源(APS)和欧洲XFEL已经在使用该技术。4具体案例去年,研究人员把ePix10K带到了APS的Biocars光束线站,这是一个研究生物学和化学过程的实验站。该线站使用了一种被称为时间分辨串行晶体学的技术,研究人员用激光照射微小晶体,并使用APS 的x射线探究晶体的原子结构如何响应激光刺激。“我们将这种方法应用于蛋白质,例如,了解酶如何催化重要的生物反应,”芝加哥大学的Biocars运营经理Robert Henning说,“原则上,我们可以在APS上以每秒1,000个x射线脉冲的速度进行这些实验,但是大多数探测器无法处理与该速率相关的全部强度。”新的探测器将使科学家充分利用x射线源的能量,节省大量时间。Henning说:“要获得完整的数据,我们通常需要拍摄数千张x光照片,能够利用到APS的每一个脉冲,将减少完成这一任务所需的时间。”5ePix10K系列前景SLAC的探测器团队目前已经在开发新一代的探测器ePixHR,它将能够每秒拍摄5,000到25,000张图片。SLAC的最终目标是每秒能得到10万张图片。”此外,该团队正在研究一种革命性的新型探测器SparkPix,它将能以LCLS-II发射x射线脉冲的高速率采集图像并实时处理数据。参考资料【1】g. blaj, a. dragone, c. j. kenney, f. abu-nimeh, p. caragiulo, d. doering, m. kwiatkowski, b. markovic, j. pines, m. weaver, s. boutet, g. carini, c.-e. chang, p. hart, j. hasi, m. hayes, r. herbst, j. koglin, k. nakahara, j. segal and g. haller,“performance of epix10k, a high dynamic range, gain auto-ranging pixel detector for fels.”aip conference proceedings 2054, 060062 (2019) ,submitted.【2】p. caragiulo et al., "design and characterization of the epix10k prototype: a high dynamic range integrating pixel asic for lcls detectors," 2014 ieee nuclear science symposium and medical imaging conference (nss/mic), seattle, wa, 2014, pp. 1-3, doi: 10.1109/nssmic.2014.7431049.【3】https://www6.slac.stanford.edu/news/2020-08-20-new-x-ray-detector-snaps-1000-atomic-level-pictures-second-natures-ultrafast
  • 欧洲X射线自由电子激光装置在德国汉堡正式启用
    p   欧洲X射线自由电子激光装置(XFEL)于2017年9月1日在德国汉堡大都市区正式投入使用,德国教研部(BMBF)部长万卡与参与研发和建设的其他11国代表共同按下首次试验的启动按钮。 br/ /p p   欧洲XFEL装置建设项目2003年由德国科学理事会(WR)提议设立,于2009年启动,造价约为12亿欧元,并拥有延伸至德国石勒苏益格-荷尔斯泰因州的3.4千米隧道系统,是全球最大的X射线激光设施。每秒可发射多达2.7万个脉冲,较世界上其他五个同类装置的效率增加200倍。该装置的成功研制,将有助于人类开辟全新研究领域、突破当前的知识界限。例如,借助该装置能更准确观察物质材料的内部结构、像电影的“慢镜头”一样记录化学反应过程、在纳米粒子中制作三维图像、解开处于非结晶状态的病原单分子结构之谜以及推动新药和新材料的研发。 /p p   除了德国,参与XFEL装置项目建设的其他11个欧洲国家分别是丹麦、法国、英国、意大利、波兰、俄罗斯、瑞典、瑞士、斯洛伐克、西班牙和匈牙利。德国提供了全部造价的58%,是出资最多的国家,其次是俄罗斯和法国。BMBF已投入约7.6亿欧元用于与此相关的研究项目。目前利用该装置从事研究工作的科学家来自46个国家,还有一些全球顶尖科学家正在申请。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制