当前位置: 仪器信息网 > 行业主题 > >

激光功量仪

仪器信息网激光功量仪专题为您提供2024年最新激光功量仪价格报价、厂家品牌的相关信息, 包括激光功量仪参数、型号等,不管是国产,还是进口品牌的激光功量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光功量仪相关的耗材配件、试剂标物,还有激光功量仪相关的最新资讯、资料,以及激光功量仪相关的解决方案。

激光功量仪相关的论坛

  • 【分享】激光平整仪的特征及应用

    激光平整度仪又可称为路面平整度仪、平整度测量仪,是集自动计算、显示、打印全方位多功能于一体的公路平整度检测仪器。激光平整仪采用进口高精度激光传感器、加速度传感器和距离传感器,特别适用于高等级公路、机场跑道的竣工验收。 激光平整仪采用高精度激光传感器、加速度传感器和距离传感器;能够快速实时的检测高速及各等级公路路面的平整度、构造深度等技术特性,为交竣工验收、预防性养护以及路面管理系统提供综合高效的数据支持。激光平整仪具有连续测量、自动运算、显示并打印路面平整度标准差的功能,在测试过程不受仪器装载车动态性能的影响,可以在较大车速范围内变换测试车速而不影响测试结果。 激光平整仪可通过激光技术和画像处理技术,采用非接触式测绘方式应用于弯曲、倾斜、旋转、排水等的特殊路面;激光平整仪广泛应用于用于公路、城市道路、广场、机场跑道等路面的施工检查竣工验收和道路的氧护,同时也可以为教学、设计及科研单位提供可靠的路面分析资料。

  • 【资料】激光测距仪在林业上的应用

    多功能激光测量仪较传统罗盘有精度高、免记录、免绘图、免拉测绳、免砍草、省时省工及电脑处理、绘图等优点,经实地测试及现场操作,均较以往仪器超出甚多,值得推广激光测距仪在林业上的应用 野外数据采集是一个长期困扰测量人员、制图员、GIS数据库管理人员、工程师和研究人员的问题。问题很简单:就是如何高效、准确地收集定位和物理特征数据,用于制图、编目、资源清查和存入数据库。 在某一给定情况下,找出这一问题的结果是令人烦恼的。因为: (1)可能有很多方法和技术可以使用; (2)在绝大多数情况下,没有一种方法能单独提供完整而令人满意的结果。 激光技术的应用,尤其是美国激光技术公司(LTI)研制的激光测距仪自1990年由美国农业部林业局作为野外测量样机并进行评估其未来发展应用以来,日趋完善,并可与数据采集器、GPS连接,而且可配置丰富的各种软件,使林业测量由手操罗盘、绳带、倾斜仪和旧式望远镜推进到单人操作、全站位、全面综合的多用途仪器时代。 资源辽阔的中国,有着丰富的林业资源。随着改革开放带来的大规模生产,林业在国民经济中的重要地位日渐显著,商用木材需求激增。如何规划林业的发展,对林业资源更高精度的测量,以木材销售为重点的更精确的林业资源清查和编目,成为林业部门重要的议题。我们把激光测量技术介绍进来,将有助于推动我国的林业测量技术迈进新时代。 多功能激光测量系统的用途 (一) 距离测量----距离测量为本仪器主要功能,可直接显示水平距离或倾斜距离。 (二) 方位角----可直接显示测量目标的磁方位角,或者相对方位角。 (三) 倾斜角----可以显示倾斜角度(垂直角)或倾斜百分率。 (四) 目标坐标程序----目标程序功能即测量上所谓定址或定桩(放样)的功能,即在已知点上将其坐标(X,Y,Z)输入仪器,对准测量目标量测可以立即显示测定位置的坐标。 (五) 高度测量----利用三角原理(俯、仰角及水平距离)来测量物体高度,包括树木高度、建筑物高度等。 (六) 测量功能----本仪器具有另一项特殊功能程序,可直接进入测量功能,进行测量工作并自动存储方位角、距离、倾斜角等资料,并可输入电脑,经PC软件计算处理。 (七) 导航功能----因具有磁通罗经仪,可以担任导航功能。 多功能激光测量系统在林业上的应用探讨 (一)多功能激光测量仪与GPS结合 引进多功能激光测量仪当初主要与GPS相结合,即GPS在地形受限制地区配合多功能激光测量仪进行测量。 具体应用: 1) 滥垦地取缔与清查 利用激光测量仪与GPS、GIS及其软件相结合,配合便携式电脑来进行环境监控为目前各学术机构最热门的研究工作项目。在林业上则为滥垦地取缔与清查应用,但由于GPS使用时可能会受到地形限制,尚需进一步研究与测试。此外也可结合数码相机,将违规情形拍摄,存档,以供取缔之证据。 2) 租地清查 多功能激光测量仪与GPS结合进行租地清查工作,不但速度快,且精确度亦较高。此外亦可将数字化图档预先输入便携式电脑,携带至现场进行清查对比工作。 3) 区外保安林清查 目前本局区外保安林清查,均采用电子平板仪进行清查及放桩工作。但由于三角点不足,常造成清查工作缓慢。如能利用公分级GPS进行布点,然后利用激光测量仪进行施测,并利用目标坐标程序功能进行放桩工作,应可加速清查工作,并减少事后图籍数据化工作。 (二)林地测量 由于多功能激光测量系统结合激光测距与电磁式数字罗经于一身,其测距、测角精度均较罗盘仪、测绳高出甚多,实为林地测量最佳新仪器。 根据测试多功能激光测量仪应用于林地测量之优点为: 1)操作简易,测量锁定甚快、精度高。仪器可以自动纪录数据,电脑传输,无人为笔误。 2)数字仪表板自动显示,无人为目视判读误差。 3)节省人力及时间。4 )附有处理软件,可做点、线、导线之处理及闭合差、面积等之计算,并可连接印表机或绘图仪,直接绘出测量图形。 数据采集用于林业资源清查,即树高、可作商业性用材的高度,植被绘制,野生特殊树种、优良树种定位,确定区域内树的等级及经济价值,或在进行栽培管理研究时如修枝,决定产生特定高度的地方的树位置,绘制伐木量剖面图,确定资源边界;在收成木材考虑捆堆木材方法时,用于捆堆木材通道的地形测定、绘制,以及用作通用目的的道路和崎岖小道施工前调查是很重要的。使用以往可使用的常规调查、航空摄影和GPS定位都可能遇到各种问题(例如:成本,准确度,障碍物等)。 LTI设计的测量系统适合基本植被资源和木材销售巡查和规划测定,伐木量分布图和道路调查测量等的需要。至1993年6月,美国林业局已购买这些仪器超过150台。在美国农业部林业局在野外规划使用中,该激光测距仪不但功能完备、精确和耐用,而且节省成本,特别是对目标不清楚的地方。从爱达荷北部的灌木地到阿拉斯加东南的大雨林都证明了这一点。

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 【求助】高温观察用激光共焦扫描显微镜的疑惑

    最近在了解高温观察用激光共焦扫描显微镜,看了很多有关采用CLSM观察的高温熔化、凝固和固态相变的观察,感觉很不错。但是我在论坛里看见采用激光扫描共焦显微镜拍摄的很多三维组织图像照片,这种激光共焦扫描显微镜和宝钢、首钢的那种高温观察用的激光扫描共焦显微镜是不是不一样啊??激光共焦扫描显微镜是不是也分好几种啊,请专家解惑,我刚刚接触,不是很了解。另外高温观察用激光共焦扫描显微镜大概多少钱啊,在哪里买呢,谢谢大家

  • 【转帖】He-Ne激光器与半导体激光器

    半导体激光器又称激光二极管(LD),是二十世纪八十年代半导体物理发展的最新成果之一。导体激光器的优点是体积小、重量轻、可靠性高、使用寿命长、功耗低,此外半导体激光器是采用低电压恒流供电方式,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大。目前,半导体激光器的使用数量居所有激光器之首,某些重要的应用领域过去常用的其他激光器,已逐渐为半导体激光器所取代。它的应用领域包括光存储、激光打印、激光照排、激光测距、条码扫描、工业探测、测试测量仪器、激光显示、医疗仪器、军事、安防、野外探测、建筑类扫平及标线类仪器、激光水平尺及各种标线定位等。以前半导体激光器的缺点是激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差.但随着科学技术的迅速发展,目前半导体激光器的的性能已经达到很高的水平,而且光束质量也有了很大的提高.以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展,发挥更大的作用。 在气体激光器中,最常见的是氦氖激光器。1960年在美国贝尔实验室里由伊朗物理学家贾万制成的。由于氦氖激光器发出的光束方向性和单色性好,光束发散角小,可以连续工作,所以这种激光器的应用领域也很广泛,是应用领域最多的激光器之一,主要用在全息照相的精密测量、准直定位上。He-Ne激光器的缺点是体积大,启动和运行电压高,电源复杂,维修成本高。

  • 【资料】共焦激光扫瞄显微镜

    共焦激光扫瞄显微镜ZEISS所提供之英文数据,内容包含:1.影像构成原理2.电子信号处理[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=32959]共焦激光扫瞄显微镜[/url]

  • 激光测振仪在压电变压器振动测试中的应用

    激光测振仪在压电变压器振动测试中的应用

    压电变压器驱动电压低,体积小,质量轻,结构简单,无电池辐射等特点,但工作状态复杂,其振动特性影响它的特性,比如使用频率范围和转换效率等。压电变压器其实是电场和振动场耦合的谐振件,它在谐振时,器件会因多种因素(比如负载、环境、材料、输入电压)而发热、产生疲劳甚至破裂等问题。激光测振仪直接非接触地测得压电变压器在谐振状态下端点的振动位移、速度和加速度信号,便于更深入了解他的谐振状态,促进压电变压器的结构设计与优化。OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。OptoMET数字型激光多普勒测振仪具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。[img=,554,271]https://ng1.17img.cn/bbsfiles/images/2019/03/201903281454403195_8750_3859729_3.jpg!w554x271.jpg[/img]OptoMET单点激光测振仪有3个系列:分别是Vector、Nova、Dual Fiber系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。文章来源嘉兆科技官网来源网址:http://www.tnm-corad.com.cn/news/Show-5612.html

  • 【原创】新安装激光共焦显微镜

    单位新安装了激光共焦显微镜Olympus 3100放大倍数:120x-14400x分辨率:XY 0.12um;Z 0.05um观察模式:明场,暗场,激光共焦,微分干涉。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=67336]Olympus 3100 手册[/url]

  • 高分辨率激光共焦显微成像技术新进展

    共焦显微镜因其高分辨率和能三维立体成像的优点被广泛应用在生物、医疗、半导体等方面。文章首先分析了影响共焦显微镜分辨率的因素,主要有光源、探测器孔径和杂散光等;并结合这些因素介绍了双光子共焦碌微镜、彩色共焦显微镜、荧光共焦显微镜、光纤共焦显微镜;然后从提高系统成像速度的方面介绍了波分复用共焦显微镜和频分复用共焦显微镜;最后分析了共焦显微镜的发展趋势。一、引言随着人们对于生物医学的研究,传统的光学显微镜已经无法满足研究的需要,人们需要可以实现三维成像的显微镜。1957年Marvin Minsky提出了共焦扫描显微镜的原理。1969年,耶鲁大学的Paul Davidovits和M.David Egger设计了第一台共焦显微镜,1987年第一台商业化共焦显微镜的问世,真正实现了三维立体成像。与普通光学显微镜相比,共焦显微镜具有极其明显的优点:能对物体的不同层面进行逐层扫描,从而获得大量的物体断层图像;可以利用计算机进行图像处理;具有较高的横向分辨率和纵向分辨率;对于透明和半透明物体,可以得到其内部的结构图像;还可以对活体细胞进行观察,获取活细胞内的信息,并对获得的信息进行定量分析。自共焦显微原理被提出以来,引起了研究者的广泛关注,提高显微系统的分辨率和改善系统的性能是研究者开发新型显微镜时考虑的主要因素。近几十年,国内外学者通过对共焦显微成像系统的三维点扩散函数、光学传递函数等方面的分析,得出影响显微系统分辨率的因素,主要包括系统的激励光源、探测器孔径、杂散光等。此外,共焦显微镜的成像速度也是决定系统性能的一个重要因素,专家们也一直在进行提高系统成像速度的研究。本文主要从提高显微系统分辨率和系统成像速度这两个方面来介绍共焦显微镜的发展情况。二、共焦扫描显微镜分辨率的提高光源、探测器孔径和杂散光等是影响共焦显微镜分辨率的几个主要因素,因此可以通过改善这些方面来提高显微系统的分辨率。1.光源显微镜的成像性质在很大程度上取决于所采用光源的相干性,有关研究表明,光源相干性好的系统其分辨率要比相干性差的系统要好,并且照明光源对分辨率的改变范围达到了26.4%。因此,选取适合的照明光源对提高显微系统的分辨率有很大帮助。常规的共焦扫描显微镜主要使用普通单色激光作为光源,随着技术的进步,目前已经出现了使用飞秒激光、超白激光、高斯光束作为光源的共焦显微镜,以提高系统性能,获得更高的分辨率。①飞秒激光为光源的双先子扫描共焦显微镜双光子扫描共焦显微镜通常使用近红外的飞秒激光作为激发光源,由于红外光具有较强的穿透性,它能探测到生物样品表面下更深层的荧光图像,并且生物组织对红外光吸收少,随着探测深度的增加衰减会变小,另一方面红外光的衍射低,光束的形状保持性好。2005年,Wild等人利用双光子扫描共焦显微技术实时观察和定量分析了PAHs在植物叶片表面和内部的光降解过程。后来又进一步研究了菲从空气到叶片的迁移过程、菲在叶片内部的运动及其分布情况等,该技术可观测PAHs在叶片内部的最大深度约为200μm。②白激光( supercontinuum laser)为光源的彩色共焦显微镜彩色共焦显微镜是利用光学系统的彩色像差,光源的不同光谱成分会聚焦到样品的不同深度,通过分析由样品反射的光谱能有效地获得样品的扫描深度。2004年,美国宾夕法尼亚州立大学的Zhiwen Liu课题小组使用光子晶体光纤产生的超连续谱白光作为彩色共焦显微镜的光源,这种超连续谱白光具有大的带宽,能够提高系统的扫描范围,能达到7μm扫描深度。另外超白激光有较高的空间相干性,无斑点噪声,能提高系统的信噪比和扫描速度。③使用高斯光束的荧光共焦显微镜荧光共焦显微镜是通过激光照射样品激发样品发出荧光,再通过探测器接受荧光对样品进行观察的共焦显微镜。华南农业大学的杨初平等人研究了不同光源孔径和束斑尺寸的高斯光束对荧光共焦显微镜分辨率的影响表明:与一定孔径尺寸的平行光束相比,采用高斯光束系统可以获得更好的分辨率。 2. 探测器孔径和杂散光共焦显微镜中探测器孔径能滤除部分杂散光,提高系统的分辨率和信噪比。根据相关文献对共焦扫描显微镜的三维光学传递函数与探测器孔径之间的依赖关系的研究,可以得到探测小孔直径为:d=β*1.22λ/NA,式中,β为物镜的放大率,λ为光的波长,NA为物镜的数值孔径。由该公式确定探测器小孔的直径,一方面满足了共焦扫描系统对探测器小孔直径的要求,从而保证高的横向和纵向分辨率,另一方面,又最大限度地使由试样中发射的荧光能量被探测器接收。为了更进一步提高系统分辨率,许多研究者对共焦显微镜中探测孔径进行了改进,例如使用单模光纤代替普通针孔孔径,还有双D型孔径等。① 使用单模光纤的光纤共焦显微镜在光纤共焦显微镜中用光纤分路器代替传统共焦显微镜中的光束分路器,并以单模光纤来代替光源和探测器的微米尺寸针孔孔径。使用单模光纤的优点在于:首先,在采用寻常针孔制作的共焦显微镜中,光源、针孔、探测器等有可能不在一条直线上从而会引起像差;但是在光纤作为针孔的共焦显微镜中,即使有的部件偏离直线时也不会引入像差。其次,使用单模光纤代替微型针孔,容易清除针孔的污染,而且不易受污染。第三,在使用光纤的系统中,可以自由移动显微镜部分而不必挪动探测器。2006年德克萨斯大学使用光纤共焦显微镜进行口腔病变检测,测得的系统横向和轴向分辨率分别为2. 1µm和10µm,成像速度为15帧/s,可观测范围为200µm×200µm。② 具有D型孔径的共焦显微镜近几年,具有对称D型光瞳的共焦显微成像技术引起广泛的关注,图1所示是该系统示意图。2006年美国东北大学的Peter J.Dwyer等人使用这种共焦显微镜进行了人体皮肤内部成像的实验,测得横向分辨率为1.7士0.1µm。2009年新加坡国立大学的Wei Gong等人采用傍轴近似方法理论分析了在共焦显微镜中使用双D型孔径对轴向分辨率的影响。分析表明在图1中的d值给定时,进入瞳孔的光信号强度l会随着探测器尺寸的增加而增加;但是在探测器尺寸给定时,光信号强度I会随着d的增加而单调递减。在使用有限大小的探测器时,改变d的大小,轴向分辨率可以得到改善。 http://www.biomart.cn//upload/userfiles/image/2011/11/1321512815.png 图1 双D型孔径共焦成像系统示意图在共焦成像光学系统中,到达像面的杂散光会在像面上产生附加的强度分布,从而进一步降低了像面的对比度,限制了系统分辨率的提高,因此在显微系统设计时,杂散光的影响也是不容忽视的。一般除了使用探测小孔来抑制杂散光,其他的一些设备例如可变瞳滤波器等对杂散光也有很好的过滤作用。最近以色列魏茨曼科学研究所的O.sipSchwartz and Dan Oron等人提出在系统中使用可变瞳滤波器,这个滤波器能够使多光子荧光共焦显微镜达到分辨率阿贝极限的非线性模拟,从而改善系统的分辨率。三、共焦扫描显微成像速度的提高共焦显微镜快速的成像速度为研究者观察生物细胞中快速动态反应提供了良好的条件。在共焦扫描显微成像系统中,传统的方法是通过改善扫描探测技术来提高成像速度。现有的扫描探测技术主要有Nipkow转盘法、狭缝共焦检测法、多光束的微光学器件检测法。这些方法可以改善扫描速度,但是与系统分辨率,视场之间都存在矛盾,因此又诞生了两种提高成像速度的新型显微镜:波分复用共焦显微镜和频分复用共焦显微镜。

  • 激光测振仪在笔记本电脑结构振动测试中的应用

    激光测振仪在笔记本电脑结构振动测试中的应用

    结构振动特性决定了结构工作的可靠性。振动测试中,常用的是传统的接触式测量方式,但对于轻质量结构,这种方式会产生附加质量和刚度问题,影响测试结果。笔记本电脑质量相对较轻,结构也复杂,其振动特性测量适合采用非接触测量方法,利用激光测振仪测量笔记本电脑结构的振动特性或开展模态测试分析。单点式激光测振仪可用于测量笔记本电脑结构的振动响应,扫描式激光测振仪可以用于笔记本电脑结构的模态测试分析或工作变形分析中。 [img=,558,311]https://ng1.17img.cn/bbsfiles/images/2019/03/201903271515449311_283_3859729_3.jpg!w558x311.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。 OptoMET激光测振仪有四个系列:分别是Vector、Nova、Dual Fiber、Scan系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。Scan系列扫描式激光测振仪和Nova系列一样采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。来源:嘉兆科技官网 来源链接:http://www.tnm-corad.com.cn/news/Show-5611.html

  • 激光粒度仪测量原理及应用选型

    [align=center][size=18px][b]激光粒度仪测量原理及应用选型[/b][/size][/align][align=center][size=14px]会议时间[/size][size=14px]:[/size][size=14px]2020年[/size][size=14px]5[/size][size=14px]月[/size][size=14px]21[/size][size=14px]日1[/size][size=14px]4[/size][size=14px]:00[/size][/align][size=16px][b]内容[/b][/size][size=16px][b]介绍:[/b][/size]主要内容:1.颗粒相关样品的多种特性及表征方法;2.激光粒度仪的测量原理;3.如何根据质控的需要选择合适的测量仪器、测试方法;4.激光粒度仪的新发展趋势。[size=16px][b]讲师[/b][/size][size=16px][b]介绍:[/b][/size][size=14px][b]沈兴志[/b][/size][size=14px][b]:[/b][/size][size=14px]于2004年毕业于武汉大学,珠海欧美克仪器有限公司销售应用经理,中国颗粒学会青年理事会理事,主要从事粒度仪和[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]在多种不同领域的测试应用解决方案研究、培训推广等方面工作。协助粒度测试需求者开发和优化合适的粒度测试方法,使粒度测试结果更可靠,粒度仪能真正为客户所用,发挥其最佳的功能。为近红外化学成份的定性定量预测需求者提供技术支持和化学计量学支持工作[/size][size=14px]。[/size]报名地址:[url]https://www.instrument.com.cn/webinar/meeting_13679.html[/url]

  • 世界首款激光诱导击穿-拉曼一体化光谱分析仪,你了解吗?

    日前,由四川大学生命科学学院分析仪器研究中心段忆翔教授作为项目负责人,牵头承担的国家重大科学仪器设备开发专项又取得最新进展—“激光诱导击穿-拉曼光谱分析仪(LIBRAS)”首次亮相于2014年12月20日-21日的“激光光谱分析前沿技术国际研讨会”。  继2014年3月份在第九届中国西部国际科学仪器展览会成功展出作为国内自主研发的首例便携式激光诱导击穿光谱仪(LIBS)之后,该项目团队再接再厉,与各参研兄弟单位联合攻坚,将用于元素测量的LIBS技术与用于分子结构测量的拉曼(Raman)技术有机结合,成功研制出世界上首款风冷型高性能激光诱导击穿-拉曼一体化的光谱分析仪,并将其命名为LIBRAS(Laser Induced Breakdown Raman Spectroscopy)。该仪器可用于待分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。http://bimg.instrument.com.cn/show/NewsImags/images/20141224112321.jpghttp://bimg.instrument.com.cn/show/NewsImags/images/20141224112337.jpg  LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。这一成果也标志着我国激光光谱仪器自主研制能力的快速提升。

  • 激光粒度仪的保养常识

    现在很多激光粒度仪厂家为了适应社会的需求,机器的功能性和机器内部的复杂程度越来高。高技术的机器带给我们不只是高效的生产质量还给我们减少了人力的使用。但是再好的设备,如果不对其进行维护,他也会生病也会不听话。尤其是在激光粒度仪的使用中,我们的保养措施是非常重要的。  机器的正常工作的前提就是做好的平时的保养工作,面对机器上那厚厚的尘土,将原本精巧的外形遮藏起来,他不罢工才怪。我们人都知道为了不让岁月的纹路展现出来,我们都会购买各种保养型化妆品,同样的机器也一样。只有注重保养,他的使用寿命才会长久。  对于我们生产中经常用的设备激光粒度仪来说,一般的保养方法主要有:1)外壳。每当我们使用完机器时,我们应该将机器的外壳用纸巾或者湿巾擦拭干净,使其避免与其他物质触碰,对机身造成破坏。2)镜头。清理镜头时,我们应该采用规定的镜头布在镜头的一端单方向的擦拭,不能来回擦。3)防尘玻璃。清洁的操作非常的简单,跟上述清理镜头的操作时一样的,但是更换时,我们应该请专业的激光粒度仪工作人员来进行操作。

  • 一键式非接触光谱共焦测量仪

    一键式非接触光谱共焦测量仪

    如今三C行业,或者是精密仪器行业,都要求极高精度,我们人为是无法测量0.01以上的精度的,这个时候,问题就来了,我们要如何确保精度质量呢?针对这些需求,市面上推出了很多的测量仪器,有2次元,三次元这这些测量仪已经可以满足很多企业的需求了,但是有些企业的产品,他不仅仅是需要平面尺寸,他甚至还需要测量平整度。这次候就应运而生了一种五次远,这些仪器之间都有些什么区别呢?我们该如何选择适合自己的测量仪器呢?现在就将他们的区别来理一下,也给大家参考一下:现在市场的影像尺寸测量仪,有三次元测量仪、二次元测量仪和测量投影仪。而二次元测量仪跟测量投影仪难以区别,都是光学检测仪器,在结构和原 理上二次元测量仪通常是连接PC电脑上同时连同软件一起进行操作,精度在0.002MM以内,测量投影仪内部是自带微型电脑的,因此不需要再连接电脑,但在精度上却没有二次元测量仪那么精准,影像测量仪精度一般只能达0.01MM以内。三次元测量仪是在二次元测量的基础上加一个超声测量或红外测量探头,用于测量被测物体的厚度以及盲孔深度等,这些往往二次元测量仪无法测量,但三次元测量仪也有一定的缺陷:Ø 测高探头采用接触法测量,无法测量部分表面不 能接触的物体;Ø 探头工作时,需频繁移动座标,检测速度慢;Ø 因探头有一定大小,因些无法测量过小内径的盲孔;Ø 探头因采用接触法测量,而接触面有一 定宽度,当检测凹凸不平表面时,测量值会有较大误差,同时一般测量范围都较小。 光纤同轴位移传感器以非接触方式测量高度和厚度,解决了过去三角测距方式中无法克服的误差问题,因此开发出可以同轴共焦非接触式一键测量的3D轮廓测量设备成为亟待解决的热点问题。 针对现有技术的上述不足,提供五次元测量设备及其测量计算方法,具有可以非接触检测、更高分辨率、检测速率更快、一键式测量、更高精度等优点。五次元测量仪通过采用大理石做为检测平台和基座,可获得更高的稳定性;内置软件的自动分析,可一键式测量,只需按一个启动键,既可完成尺寸测量,使用方便;采有非接触式光谱共焦测量具有快速、高精度、可测微小孔、非接触等优点,可测量Z轴高度,解决测高探头接触对部分产品造成损伤的问题;大市场光学系统可一次拍取整个工件图像,可使检测精度更高,速度更快。并且可以概据客户需要,进行自动化扩展,配合机械手自动上下料,完全可做到无人化,并可进行 SPC 过程统计。为客户提供高精度检测的同时,概据 SPC 统计数据,实时对生产数据调整, 提高产品质量,节约成本。想要了解更多,可联系:15012834563,小周[img=,690,920]http://ng1.17img.cn/bbsfiles/images/2017/12/201712291417_2603_3353984_3.jpg!w690x920.jpg[/img]

  • 【分享】三维显微激光拉曼光谱仪

    【分享】三维显微激光拉曼光谱仪

    三维显微激光拉曼光谱仪三维显微激光拉曼光谱仪装置Nanofinder30  Nanofinder30 三维显微激光拉曼光谱仪装置是日本首创,世界最初的分析装置。它能在亚微米到纳米范围内,测定物质化学状态的三维图像。它由共焦激光显微镜,压电陶瓷平台(或电动扫描器)和光谱仪组成。并能自选追加原子力显微镜和近场表面增强拉曼测定的功能。 最新测量数据[ 变形Si的应力测定]PDF刊登 用二维的平面分析来评价变形Si。空间分辨率130nm, 变形率0.01%(0.1cm偏移)。 半导体/电子材料(异状物,应力,化学组成,物理结构)薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造结晶体(单壁碳纳米管,纳米晶体)光波导回路,玻璃,光学结晶等的折射率变化生物学(DNA, 蛋白质, 细胞 组织等) 以亚微米级分辨率和三维图像,能分析物质的化学结合状态空间分辨率200nm(三维共焦点模式),50nm(二维TERS模式)能同时测定光谱图像(拉曼/萤光/光致荧光PL),共焦显微镜图像,扫描探针显微镜图像(AFM/STM)和近场表面增强拉曼图像(SERS)能高速度,高灵敏度地测定样品(灵敏度:与原来之比10倍以上)不需要测定前样品处理,在空气中能进行非破坏测定全自动马达传动系统的作用,测定简单 共焦显微镜模式不能识别结晶缺陷,然而光致荧光(PL)模式却能清楚地测到结晶缺陷 共焦激光显微镜模式的形状测定 光谱窗 560 nm 用光致荧光(PL)模式测到的结晶缺陷的光谱图像(560nm的三维映像) 用AFM和共焦显微拉曼法同时测定CNT,能判定它的特性 (金属,半导体)和纯度。 同时测定单壁碳纳米管(CNT)的原子力显微镜(AFM) 形貌图像和拉曼光谱图像的例子 :拉曼光谱: 激光488nm,功率1.5mW,曝光时间2 sec,物镜100×Oil, NA=1.35, 积分时间100 sec (AFM和拉曼图像测定时) AFM形貌图像(右上)表示了单壁碳纳米管混合物的各种形状结构。图像中用数字1到8来表示其不同形状。数字1-6测得了拉曼光谱(上图所示),判定为半导体CNT。但7-8测不到拉曼光谱,所以不是半导体CNT,而可能是金属CNT(可用He-Ne激光633nm验证)。最上面表示了RBM(173cm-1), G-band(1593cm-1)及D-band(1351cm-1)的拉曼光谱图像 综合激光器和光谱分析系统的长处,坚固耐用的复合设计,卓越的仪器安定性,是纳米技术测定装置中的杰出产品。 ※日本纳米技术2004大奖“评价和测量部门”得奖. ※日本第16届中小企业优秀技术和新产品奖 “优良奖”得奖. 光学器件配置图Nanofinder30 [img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122565_1634361_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812071751_122566_1634361_3.jpg[/img][~122567~][~122568~]

  • 激光共焦扫描显微镜研究与软件研制

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[/b][font=&][size=12px][color=#1c1d1e][b][b]郑伟[/b][/b][/color][/size][/font][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[b][b]激光共焦扫描显微镜研究与软件研制[/b][/b][/font][font=&]【期刊】:[/font][font=Arial][font=&][size=12px]CNKI[/size][/font][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://kns.cnki.net/kcms/detail/detail.aspx?filename=1018798236.nh&dbcode=CMFD&dbname=CMFDTEMP&v=tp8D2bwk5nHWNaI8kWxjxAWIhbvBSi0KpipnvlBaa1QI0oJbPJNOQEe5HcciaOqv]激光共焦扫描显微镜研究与软件研制 - 中国知网 (cnki.net)[/url][/b][/color][/font]

  • 【求助】大家使用的 激光粒度仪 需要校验吗?我收到的报价怎么这么贵?

    公司里的计量仪器,通通都要校验检定。其他仪器的校验报价都能接受,比如电子天平了,价格在150~300之间。[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪,这么笨重,校验又耗时的仪器,也就500块。怎么一个10分钟搞定,只需耗掉几滴标准颗粒的 激光粒度仪,就要报价1000呢?大家校验的时候是什么价格啊?有没有什么好的检测机构推荐?(广州)

  • 激光测振仪在钢轨无损检测中的应用

    激光测振仪在钢轨无损检测中的应用

    钢轨在生产、铺设及行车过程中会产生各种损伤,这些损伤不但影响行车的平稳和舒适,而且会危及行车安全。钢轨的损伤包括疲劳、磨耗、锈蚀、弯曲变形和裂纹等。通常,我们可以利用机器视觉方法检测钢轨表面的损伤。但对于钢轨内部损伤,常规的图像法无法检测。钢轨内部早期损伤难以发现,随着工作时间推移会突然出现裂纹,容易造成严重的行车事故。钢轨内部缺陷已成为铁路运输安全的主要损伤类型。目前,铁路系统检测钢轨内部缺陷采用的是超声波法,该方法中利用高频的超声波作为信号源,基于此方法的钢轨探伤车无法实时在线监测钢轨内部缺陷。但在钢轨中激励低频、高能的超声波时,超声波会在钢轨边界不断发生反射、折射以及纵横波的转换,从而会产生一种新的超声波信号---超声导波。超声导波适合检测横截面一致、长距离的波导介质材料,如管道、钢轨等。钢轨具有声导管性质,超声导波在其内部传播距离很远。一般利用超声导波换能器接受导波,但换能器的黏贴位置、粘贴胶质和轨道温度等因素会影响这种非接触式测量方法的效果,降低测量准确率。然而利用激光测振仪这种非接触测量工具,既可以实现实时在线监测钢轨,发现钢轨早期的内部缺陷,同时也能提高检测精度。这种方法利用激光测振仪测量钢轨振动速度曲线,经信号处理后利用脉冲回波法,检测超声导波在钢轨内部缺陷处产生的回波信号来实现在线监测钢轨。[img=,599,333]https://ng1.17img.cn/bbsfiles/images/2019/04/201904101153380291_7519_3859729_3.jpg!w599x333.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有超高的光学灵敏度和信号强度,这对于在生锈和灰暗又无法进行表面处理的结构上获得无噪声和无信号丢失的测试数据至关重要。应用参考:邢博,余祖俊,许西宁,朱力强.基于激光多普勒频移的钢轨缺陷监测.中国光学,2018,11(06):991-1000.文章来源:嘉兆科技http://www.tnm-corad.com.cn/news/Show-5639.html

  • 激光测振仪在超声变幅杆振动测试中的应用

    激光测振仪在超声变幅杆振动测试中的应用

    超声加工系统主要由超声电源、换能器、变幅杆、加工工具及磨料供给系统组成。超声变幅杆是超声加工系统中的核心部件,主要作用是把机械振动的质点位移或速度放大,或者将超声能量集中于较小面积处,即聚能作用。一般超声换能器辐射的振动幅度在20kHz范围内只有几微米,但在高声强超声应用中,比如超声加工、超声焊接、超声金属成型或其他超声疲劳试验等应用中,辐射面的振动幅度范围一般在几十微米到几百微米,因此必须在换能器的端面连接超声变幅杆,将机械振动放大。除此之外,超声变幅杆可以作为阻抗变换器,在换能器和声负载之间进行阻抗匹配,使超声能量更加有效向负载传输。在超声变幅杆的设计研究中,需要测量其振动频率、振型等参数。变幅杆的尺寸较小,利用传统加速度传感器会面临附加质量影响及如何固定传感器的问题。激光测振仪非接触的测量方式适用于测量变幅杆的振动频率,并获得位移,速度或加速度振幅。利用扫描式激光测振仪可以直接获取变幅杆的振型参数。[img=,334,195]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426182913_5511_3859729_3.jpg!w334x195.jpg[/img]超声变幅杆[img=,431,181]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426281325_9396_3859729_3.jpg!w431x181.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET Scan系列扫描式激光测振仪采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。文章来源嘉兆科技http://www.tnm-corad.com.cn/news/Show-5665.html

  • 【原创大赛】激光共聚焦显微拉曼光谱仪使用心得

    【原创大赛】激光共聚焦显微拉曼光谱仪使用心得

    [align=center]激光共聚焦显微拉曼光谱仪使用心得[/align][align=center]NQI研发中心 徐婧婧 [/align]拉曼散射效应是印度物理学家拉曼在1928年首次发现的,随后在法国和苏联也被观察到。拉曼散射是当光通过透明介质时,由于入射光与分子运动相互作用而引起频率的变化。在透明介质的散射光谱中,频率与入射光频率υ[sub]0[/sub]相同的成分称为瑞利散射;频率对称分布在υ[sub]0[/sub]两侧的谱线或谱带υ[sub]0[/sub]±υ[sub]1[/sub]即为拉曼光谱。拉曼散射光频率与入射光频率之差(即拉曼位移)反映了分子振动和转动能级的情况,并且激发光频率对此没有影响,此外在一定条件或状态下不同的物质分子具有独一无二的分子结构,因此拉曼效应可用于鉴别物质。此外,拉曼信号强度正比于分子振动与转动强度,因此也可用作定量分析。如今,拉曼光谱早已是一项成熟的非接触式无损检测技术,并在食品检测、环境监测、珠宝文物鉴定等领域有着广泛的应用。在拉曼光谱测量仪中显微共聚焦激光拉曼光谱仪以其极高的灵敏度成为现代研究工作中一种先进测试手段,其具有对样品无损伤、无需样品制备、分析速度快、信息精确、高灵敏度、高分辨率、高重复性等诸多优点,非常适合各种物质的快速测定和分析,在众多研究领域的材料结构分析中是不可替代的设备。显微共聚焦激光拉曼光谱仪的检测原理为:激光器发出的激光光束通过激光光路传递到显微镜,通过显微镜聚焦到被测样品,激发出频率发生改变的非弹性拉曼散射信号,经过信号光路,并光栅进行分光,然后采用高效光信号采集及处理系统获得全光谱范围内的拉曼散射信号,研究分子的振动能级,从而反应物质的结构信息。还可对选定区域进行点、线、面扫描,从而确定不同物质的成分分布状况。激光共聚焦显微拉曼光谱仪目前的生产厂商主要以进口厂家为主,主要有HORIBA Scentific、Renishaw、Thermofisher等厂家。不过高精度的拉曼光谱仪特别是激光共聚焦显微拉曼光谱仪价格昂贵,为了能够更好的发挥拉曼光谱仪的使用价值,使用时要格外注意操作规范并且在闲置时要对其进行合理的保养。主要注意以下几点:1.为防止仪器受潮而影响使用寿命,拉曼仪器所在实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。2.实验室里的CO[sub]2[/sub]浓度会对仪器寿命造成很大影响,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。3. 为减少化学试剂对测定的影响,用于拉曼光谱分析仪的化学试剂应为光学试剂级,至少也要分析纯级。如发现化学试剂出现结块的现象,则应重新加热干燥。4.实验完毕后需要定期对机身进行保养,主要注意清除大颗粒灰尘、清洁镜头、机身。清洁过程中一定要注意使用合适的力道,太轻可能会导致清理不干净,太重又可能不慎损坏机身。以下是实验过程中利用激光共聚焦显微拉曼光谱仪测试的一些数据:[align=center][img=,690,467]https://ng1.17img.cn/bbsfiles/images/2019/09/201909160934496173_6576_3048281_3.jpg!w690x467.jpg[/img][/align][align=center]图1不同激光强度下4-巯基苯甲酸的拉曼光谱图[/align][align=center][img=,690,467]https://ng1.17img.cn/bbsfiles/images/2019/09/201909160935033673_5943_3048281_3.jpg!w690x467.jpg[/img][/align][align=center]图2尼尔蓝与4-巯基苯甲酸的双标记纳米粒子拉曼光谱图[/align]

  • 非接触测量物体振动的速度,加速度,位移,运动轨迹,频率-激光测振仪

    激光测振仪(进口)位移分辨率高达0.008纳米。非接触测量物体振动的速度,加速度,位移,运动轨迹,频率.全场激光测振实现整面物体的XY轴的振动测量可以彩色动画输出。三维激光测振可以实现三轴振动测量。多点激光测振可以同时实现16个振动点振动并可以测量物体瞬间振动和实时的振动模拟.激光测振可以实现对振动幅值、频率测量。使用激光进行非接触式测量,记录被测体在振动过程中的运动轨迹,并用最大值减去最小值得到振幅。当振幅超过界定值时,可通过软件设置输出报警信号。采样频率高,能精确还原被测体运动轨迹并通过图像显示出来。传统振动测量仪都会对机械振动带来的影响,而激光测振动测量系统使用各种滤波器,使测量结果更加稳定准确。还可以测量高频振动加速度峰值和平均值,测量低频振动速度有效值。应用于如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。非接触高精密测量精密机械加工微小振动 如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动激光多普勒测振仪最大测量速度可达20m/s,最大频率范围可达2.5MHZ,可以检测到纳米级别的振动.激光多普勒测振仪采用非接触式的测量方式,可以应用在许多其他测振方式无法测量的任务中。频率和相位响应都十分出色,足以满足高精度、高速测量的应用。使用非接触测量方式,无需耗时安装调节传感器、无质量负载,且不受被测物体的尺寸、温度、位置、振动频率等的限制。还可以检测液体表面或者非常小物体的振动,同时,还可以弥补接触式测量方式无法测量大幅度振动的缺陷。 应用:如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。 非接触高精密测量 精密机械加工微小振动如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动 整片不规则金属大型结构、高温、柔软物体等接触式测量无法满足的振动测量领域的振动情况

  • 【资料】工业应用中的三维几何测量仪器

    机床是制造业的母机,数控机床是机床产品的先进技术体现,特别是高档数控技术是装备制造业现代化的核心技术,是国家工业发展水平、综合国力的直接体现,此次展会汇集了当今世界机床发展和先进制造技术的最新成果,全面展示了我国数控机床产业近几年来高速发展的最新产品和技术。作为数控技术的重要环节——测量设备,在这次展会上展出了一批新技术、新产品,体现了当今测试计量技术发展动向和特点。 测量精度高  随着现代科技向高精度方向发展,机床作为装备工业的基础发展更应超前,而测量设备更由传统的微米、亚微米精度向着纳米量级精度方向发展。随着超精密加工技术的需要,数控精度愈来愈高,对测量设备的精度要求更高,这次展会展示了一批纳米量级的测量设备,除各种激光干涉仪外,光栅测量技术也达到纳米量级。如海德汉的LIP382超高精度直线光栅尺,其测量步距可以达到1nm。基于测量技术的发展,纳米量级的机床成为现实,如上海机床厂展出的纳米级精密微型数控磨床成为展会的一个亮点。测量速度高  现代制造业进行的是大规模、大批量、专业化生产,需要多参数、实时在线测量,故要求测试仪器的测量速度高、设备轻便、操作界面直观。如激光干涉测量技术作为精密测量的一种重要方法,各种激光干涉测量系统向着轻巧、便携、高测速的方向发展。雷尼绍XL-80干涉仪款型小巧,可提供4m/s最大的测量速度和50kHz记录速率,可实现1nm的分辨率;激光跟踪仪可实现快速数据采集与处理,有利于测量精度的提高。各种影像测量设备利用触摸屏可以方便直观地实现特征尺寸的测量。三维测量多样化  三维测量技术向着高精度、轻型化、现场化的方向发展。传统基于直角坐标的三坐标测量机经过50年的发展,其技术愈加成熟,测量更加快捷,功能更加强大。这次参展的国内外数十家坐标测量机生产厂商,各具特色,特别是国内很多厂家推出实用廉价的各种三坐标测量机,说明三坐标测量技术在我国已经走向全面实用化、特色化发展的道路。除直角坐标测量系统外,极坐标测量仪器体现出自身独特的优势,如FARO、ROMER等厂家生产的激光跟踪仪对大尺寸结构的装备现场具有方便灵活的特点。对于小尺寸测量,FARO、ROMER等生产的关节臂测量机因其低廉的成本、较高的精度、现场方便的操作等优势,在汽车等行业展现出广阔的应用前景。测量智能化  测量设备借助于计算机技术向着智能化、虚拟化的方向进一步发展。测量仪器的虚拟化、接口的标准化以及测量软件的模块化,加速了测量技术的发展,使测量仪器的应用更加方便、直观、智能。根据测量需求以及测量对象的不同,可基于同一软件平台使用不同的仪器协同工作,采用不同的测量软件模块,实现了广普测量仪器的网络化、协同化,提高了测量的自动化水平。在这次展会上,国内一些独立的测量软件公司进行了参展,对于测量设备的智能化、网络化具有推动作用。  这次展会展示了当今工业测量设备的新技术、新产品。但也同时看到,我国在测量仪器制造特别是高精度仪器制造方面缺乏自主创新的成果,一些高精度测量仪器在国内还没有相关单位能够生产。通过这次展会,对推动我国几何量测量设备的发展具有实际意义。

  • 计量仪器ZT

    我国计量仪器和国外相比存在一定的差距,更严重的是,国外对一些敏感计量仪器限制进口,严重阻碍了我国经济建设和国防建设的发展。例如:我国激光参数计量测试仪器的发展较为落后,与国外发达国家相比存在明显的差距。目前,我国激光参数计量测试仪器的专业研发单位和供应商很少,仅中国计量科学研究院、中科院上海光机所、北京光电技术研究所、物科公司等少数几家,且研发工作处于十分零散的状态。其提供市场的计量测试设备也较片面,绝大多数只能用于较传统的激光产品的计量测试,对于新型激光器和激光产品常常不能提供有效的计量测试。表现在:(1)现有计量检测仪器无法对某些激光输出参量进行计量检测。目前对于激光脉冲宽度、峰值功率、脉冲激光瞬态功率—时间曲线等重要参数,国内尚没有研发出成型的计量检测仪器,对于此类激光参数难以进行计量检测。(2)现有计量检测仪器不适用于某些激光器的工作状态。对于目前大量使用的高脉冲重复率、高平均功率的激光器,国内现有的计量检测仪器难以适应其工作状态。具体而言,国内现有的激光能量计量仪器绝大部分仍是单脉冲测量仪器,在激光器重频工作状态下根本无法进行测量;少量可测重频激光的能量计,其最高使用频率也仅20~40Hz,对于很多高达百Hz乃至数千Hz的激光输出也不适用;在此种情况下国内一般只能使用激光功率计进行平均功率检测,而这种检测方式无法评估激光输出的脉冲能量的稳定性,同时此类激光往往有较高的输出峰值功率,一般激光功率计在测量时极易受到损伤。又如蓝光DVD使用的半导体激光器的测试仪器,国内外产品普遍采用光电探测器作为激光接受器,但国内探测器一般仅在632.8nm进行校准,且没有给出探测器的光谱响应度曲线,致使国产激光功率测量仪器无法准确测量蓝光DVD使用的半导体激光器的输出功率。(3)现有计量检测仪器的量限难以满足一些激光参数的测试要求。目前激光应用的领域十分广阔,某些应用(如激光测距、制导等)需要对极其微弱的光信号(低至10-14~10-15J)进行检测校准,而另一些应用(如万瓦级激光加工机、化学激光器等)又需要对极高的激光输出能量功率(10KW、1MJ)或极高的峰值功率进行检测。国内现有的激光计量检测仪器其测量下限一般仅在10-9W或10-8J量级,测量上限也仅在数千瓦和数百焦尔量级,无法满足上述应用的计量检测需求。同时,我国国产的激光测数计量测试仪器在新技术的消化、吸收和利用上也远远落后于国际仪器行业的发展水平。当国外先进的激光计量检测仪器在5~10年前,早已全面实现智能化,而向虚拟化、网络化仪器发展的今天,国产激光计量测试仪器大部分仍然停留在模拟集成电路和数字化仪器阶段,仅少量的发展至智能化仪器水平,落后国际水平至少15年。国产激光参数计量测试仪器不仅在测量性能上落后于国际水平,在使用功能上亦远远逊色。进口仪器在智能化的基础上利用仪器本身具备的数据处理能力,提供了丰富的测量数据表达形式,直观友好的人机界面,同时通过仪器具备组网功能,依靠主控计算机强大的处理能力,协调多台仪器进行多参数协同测试,利用神经网络、模糊逻辑等算法对获得的原始测量数据进行综合分析,得到精确的测量结果并给出用户习惯的数据表达方式。而国产仪器绝大部分功能单一,根本不具备基本数据处理能力和联机能力。近年来,国外激光参数测量仪器大量进入国内市场。国内传统的激光参数计量检测产品在性能指标、功能多样性、技术水平、工作可靠性、使用便捷程度等方面均存在较明显差距,仅仅依靠价格优势,勉强抵抗国外产品对我国激光参数计量测试仪器市场的冲击。从中国计量科学研究院每年进行校准的激光参数计量检测仪器的情况看,进口仪器设备所占比重已由1995年的不到10%,迅速增长到50%左右。目前激光产品研究和使用单位在经费许可的情况下几乎很少考虑采购国产测试仪器,国产仪器正受到进口仪器猛烈的冲击。在扫描探针显微镜方面(SPM),国内对SPM的研究应当说是比较早的,中国科学院白春礼院士首先研制出我国

  • 【资料】激光原理及其应用

    激光是二十世纪六十年代出现的一种新型光源——激光器发出的光。激光一词的本意是受激辐射放大的光。1960年美国休斯研究实验室的梅曼制成了第一台红宝石激光器,1961年9月中国科学院长春光学精密机械研究所制成了我国第一台激光器。此后,在激光器的研制、激光技术的应用以及激光理论方面都取得了巨大进展,并带动了一些新型学科的发展,如全息光学、傅立叶光学、非线性光学、光化学等,激光还与当今的重点产业——信息产业密切相关。与激光有关的诺贝尔物理学奖获得者有:1964年,美国汤斯、原苏联巴索夫和普洛霍罗夫因在激光理论上的贡献而获奖。1981年美国肖洛因发展激光光谱学及对激光应用作出的贡献、美国布隆伯根因开拓与激光密切相关的非线性光学共同获奖。1997年美国朱棣文、科恩和飞利浦因首创用激光束将原子冷却到极低温度的方法共同获奖。 激光原理一.物质与光相互作用的规律光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202115_32995_1634962_3.gif[/img]微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为=△E/h(h为普朗克常量)。1. 受激吸收(简称吸收)处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。2. 自发辐射粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,既使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202116_32996_1634962_3.gif[/img]3. 受激辐射、激光1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。可以设想,如果大量原子处在高能级E2上,当有一个频率 =(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。这种在受激辐射过程中产生并被放大的光就是激光。二.粒子数反转爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统计分布律。按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。如何从技术上实现粒子数反转是产生激光的必要条件。理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制