当前位置: 仪器信息网 > 行业主题 > >

氧化镁分析

仪器信息网氧化镁分析专题为您提供2024年最新氧化镁分析价格报价、厂家品牌的相关信息, 包括氧化镁分析参数、型号等,不管是国产,还是进口品牌的氧化镁分析您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氧化镁分析相关的耗材配件、试剂标物,还有氧化镁分析相关的最新资讯、资料,以及氧化镁分析相关的解决方案。

氧化镁分析相关的资讯

  • 我国科研人员实现“原电池法超高纯氧化镁”技术突破
    p style=" text-indent: 2em " 12月2日,“原电池法超高纯氧化镁/电力联产项目技术成果发布会”在河北省唐山市海港经济开发区举行。由北京理工大学(唐山)转化研究中心自主研发的“原电池法超高纯氧化镁”技术实现突破。 /p p br/ /p p style=" text-indent: 2em " 高纯度氧化镁是精细化工产品和高温耐火材料,大量用于航空航天电子等各个高端领域。目前,国内外获取氧化镁生产工艺主要为矿石煅烧法和海水/卤水提纯法,矿石煅烧法氧化镁纯度最高仅有98.5%,已无法完全满足我国冶金等高端制造产业需求 而日、美、欧洲海水合成法则长期处于垄断地位。 /p p br/ /p p style=" text-indent: 2em " 12月1日,中国科学院唐山高新技术研究与转化中心组织相关专家,在唐山市对由唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心完成的“原电池法超高纯氧化镁/电力联产的技术研究”项目举行了成果评价会。 /p p br/ /p p style=" text-indent: 2em " 与会专家形成评价意见为:该项目基于电化学原理,开发了以纯镁材料为阳极、自主开发的纳米级碳/非贵金属基催化剂为复合阴极、中性溶液为电解液的化学原电池。通过外接储电介质、用电装置或并入电网,既实现了清洁电能的输出,又得到超高纯氢氧化镁产物。该氢氧化镁煅烧后可制得纯度高达99.95%的超高纯氧化镁。项目在电化学反应池构造、阴极高效催化加快电化学反应速率、电力和产物的高效联产等方面有鲜明的自主创新性。 /p p br/ /p p style=" text-indent: 2em " 项目实现了超高纯氧化镁的高效和清洁生产,为超高纯氧化镁的获得提供了新技术途径,对氧化镁基和含氧化镁的合成原料以及高温材料的进一步高性能化和功能化有重要的现实意义。 /p p br/ /p p style=" text-indent: 2em " 项目的工艺路线和生产方式已得到充分的实验室验证和一定规模的实际生产验证,产品质量稳定,技术先进、成熟,可以规模化生产。该成果具有良好的社会、经济和环保效益,应用前景广阔,对不同行业的联合互惠和融合发展有示范带动作用。 /p p br/ /p
  • 我国研发出X射线光谱法测定氧化镁含量
    近日,天津检验检疫局研发出用压片法-X射线荧光光谱法测定相关产品中氧化镁含量的检测方法,缩短了检验出证流程,进一步提高该局实验室检测能力。   2004年,商务部、海关总署和质检总局联合发布公告,对部分含有氧化镁的出口矿产品如高岭土等进行氧化镁含量的测定。2009年初,天津检验检疫局组织科技力量进行研发,并于2月中旬建立了压片法-X射线荧光光谱法测定氧化镁的含量,并已应用到日常检验工作中。   据了解,天津检验检疫局应用此方法已完成对高岭土、白云石、硅灰石等约50批矿物质中氧化镁的检测工作。
  • 全国工具酶标准化工作组发布国家标准《葡萄糖氧化酶活性检测方法》征求意见稿
    国家标准计划《葡萄糖氧化酶活性检测方法》由 SWG11(全国工具酶标准化工作组)归口 ,主管部门为国家标准化管理委员会。 拟实施日期:发布即实施。主要起草单位 福建南生科技有限公司 、夏禾(杭州)生物技术有限公司 、夏禾(深圳)生物技术有限公司 、宁夏夏盛实业集团有限公司 、厦门银祥集团有限公司 、深圳市新产业生物医学工程股份有限公司 、武汉新华扬生物股份有限公司 、廊坊诺道中科医学检验实验室有限公司 、天津博菲德科技有限公司 、广州市进德生物科技有限公司 、山西大禹生物工程股份有限公司 、河北省微生物研究所有限公司 、武汉瀚海新酶生物科技有限公司 、深圳市海拓华擎生物科技有限公司 。主要起草人 黄发灿 、郑登忠 、郑恬烨 、沈涛 、张志刚 。附件:国家标准《葡萄糖氧化酶活性检测方法》征求意见稿.pdf国家标准《葡萄糖氧化酶活性检测方法》编制说明.pdf
  • 东西分析应对《水泥化学分析方法》国标
    水泥是一种良好的建筑材料,在建筑行业中具有广泛的使用范围。近些年来,我国经济水平在不断地提高,建筑行业也有了很大地发展。如果要保证建筑的质量,就必须保证所使用水泥的质量,因此对于水泥的化学分析变显得十分重要。本文通过对GB/T176-2017《水泥化学分析方法》的研读,整理出一套东西分析应对水泥化学分析的解决方案,希望对水泥生产厂商、建筑施工方及第三方检测分析检测人员提供便利。国标检测对象本标准适用于通用硅酸盐水泥和制备上述水泥的熟料、生料及指定采用本标准的其它水泥和材料。国标涵盖内容本标准规定了水泥化学分析方法、X射线荧光分析方法和电感耦合等离子体发射光谱法对烧矢量(LOI)、SO3、不溶物(IR)、SiO2、Fe2O3、Al2O3、CaO、MgO、TiO2、Cl-、K2O、Na2O、S2-、MnO、P2O5、CO2、ZnO、F-、游离氧化钙(CaO)、SrO的测定。水泥化学分析方法又分为基准法和代用法,如果同一成分列了多种测定方法,当有争议时以基准法为准。东西分析应对方案(基准法)原子吸收分光光度法(AAS法)水泥中MgO(氧化镁)成分测定 AAS法水泥中 ZnO(氧化锌)成分测定 AAS法AA-7050原子吸收分光光度计三十年来,东西分析一直致力于原子吸收光谱仪器和分析技术发展,共研发出五代原子吸收分光光度计,继续领跑国产原子吸收新技术。AA-7050型原子吸收分光光度计,一款全功能、全自动仪器,使客户在工作中可以更加便捷、直观和高效,简化客户分析过程。示例:紫外-可见分光光度法(UV法)水泥中Fe2O3 (三氧化二铁)成分分析 UV法 水泥中TiO2(二氧化钛)成分分析 UV法水泥中MnO(氧化锰)成分分析 UV法Cintra 系列紫外-可见光分光光度计 双光束光学系统,具有长时间稳定性、准确性;配合Cintral 软件,能够进行波长扫描、时间扫描和固定波长测量,还具有定量分析和系统性能验证等应用特性;采用Czerny-Turner单色器,标配1.5nm固定狭缝宽度,可升级成1.0nm-3.0nm范围内狭缝连续可调。附录:水泥中全部检测成分及方法关于我们北京东西分析仪器有限公司,拥有三十年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 中国产学研合作促进会公开征求《NADH氧化酶活力的测定》、《醇脱氢酶活力的测定》、《辣椒素合成酶活力的测定》团体标准意见
    各有关单位、专家:由中国产学研合作促进会归口的《NADH氧化酶活力的测定》、《醇脱氢酶活力的测定》、《辣椒素合成酶活力的测定》团体标准已完成征求意见稿。根据《中国产学研合作促进会团体标准管理办法》,为保证标准的科学性、严谨性和适用性,现公开征求意见,欢迎社会各界对标准内容提出修改意见和建议。请各有关单位组织审阅,并于2024年08月18日之前将修改意见反馈至联系人。逾期未回复,视为认可征求意见稿中相关内容。联系人:蔡晓湛联系电话:15801487546邮箱:yuqi@cspq.org.cn中国产学研合作促进会2024年07月18日附件:附件1-《NADH氧化酶活力的测定》征求意见稿.pdf附件2-《NADH氧化酶活力的测定》编制说明.pdf附件3-《醇脱氢酶活力的测定》征求意见稿.pdf附件4-《醇脱氢酶活力的测定》编制说明.pdf附件5-《辣椒素合成酶活力的测定》征求意见稿.pdf附件6-《辣椒素合成酶活力的测定》编制说明.pdf附件7-征求意见反馈表.docx
  • 伟业新品:土壤分析质控样品系列标准物质
    伟业新品:土壤分析质控样品系列标准物质 土壤阳离子交换量是指土壤胶体所能吸附各种阳离子的总量。其数值以每千克土壤中含有各种阳离子的物质的量来表示,即mol/kg。土壤是环境中污染物迁移、转换的重要场所,土壤胶体以其巨大的比表面积和带点性,而使土壤具有吸附性。土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归属。土壤阳离子交换性能对于研究污染物的坏境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保证了土壤溶液的“生理平衡”,同时还可以保持养分免于被雨水淋失。 阳离子交换是土壤比较重要的性质之一,是土壤本身的特有属性,主要原因就是土壤胶体的负电特性,其电荷分为可变电荷和固定电荷,当ph较低时(到达等电点时),整个性质就会发生变化,阳离子交换,顾名思义,负电荷的土壤胶体表面吸附有一些可交换态的阳离子如k、mg、ca等,当污染物特别是重金属类物质与土壤接触时,由于其于土壤胶体表面基团具有更强的结合能力,从而取代部分正电性基团,但是阳离子交换过程并不稳定,属于静电作用,因此自身并不稳定,如上述内容所说,易受ph影响,低ph条件下容易被淋洗。同时由于其具有很强的水溶性,因此生物有效性较高,容易被动植物吸收而贮藏在体内,是土壤化学反应较为活跃的一部分,受土壤环境影响较大。一、标准物质的制备本标准物质选择经筛查的土壤为基体,经过风干、去杂、研磨、混匀、过筛、灭菌而成。量值核验一致后在洁净干燥的实验室环境下分装。二、标准物质的检测本标准物质定值方法参照NY/T295-1995中性土壤阳离子交换量和交换性盐基的测定、LY/T 1243-1999 森林土壤阳离子交换量的测定,通过使用满足计量学特性要求的计量器具保证其量值溯源性。实验原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为NH+4饱和土。用乙醇洗去多余的乙酸铵后,用水将土壤洗入凯氏瓶中,加固体氧化镁蒸馏。蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定。三、结论通过多次重复性实验的检测,产品的均匀性良好。经12个月长期稳定性研究结果表明有良好的稳定性,研制单位将继续跟踪监测该标准物质的稳定性,有效期内如发现量值变化,将及时通知上级主管部门与用户。四、应用领域本产品通常运用于土壤方面阳离子交换量、交换性盐基指标的检测。作为产品的质控分析样品,也可以用在环境土壤检测。五、注意事项需要注意的是,阴凉密闭及避光条件下保存。使用前应混匀,最小取样量为1.5g,并注意水分的影响。淋洗次数需合理,淋洗次数不够,不能把交换剂全部洗掉,淋洗过头会使易水解的被洗去产生误差,且不能超声提取。
  • 固废新标3月1日正式实施,分析方案请看这里!
    循环利用,绿色环保,固废新标为固废检测量身定做;有法可依,快速定量,荧光分析为回收利用把脉护航! 随着我国生产建设的速度越来越快,工业生产所产生的固废垃圾越来越多,拥堵了河道、阻塞了交通、遮掩了城区、遮蔽了云天,固废处理、合理使用迫在眉睫。近期,生态环境部发布了《HJ 1211-2021 固体废物 无机元素的测定 波长色散X射线荧光光谱法》标准,并将于2022年3月1日正式实施。岛津公司全程参与了标准的方法验证等工作,并全力助您一起轻松地应对新标准的应用。固废新标来袭,您准备好了吗? 固废新标解读 《HJ1211-2021固体废物 无机元素的测定 波长色散X射线荧光光谱法》标准,是为了贯彻《中华人民共和国环境保护法》《中华人民共和国固体废物污染环境防治法》,防治生态环境污染,改善生态环境质量,规范固体废物中无机元素的测定方法。 标准规定了测定固体废物中16种无机元素(砷As,钡Ba,氯Cl,钴Co,铬Cr,铜Cu,锰Mn,镍Ni,磷P,铅Pb,硫S,锶Sr,钛Ti,钒V,锌Zn,锆Zr)和7种氧化物(二氧化硅SiO2,三氧化二铝Al2O3,三氧化二铁Fe2O3,氧化钾K2O,氧化钠Na2O,氧化钙CaO,氧化镁MgO)的波长色散X射线荧光光谱法。 X射线荧光是如何实现对元素和氧化物分析的呢?样品经熔融玻璃片法或粉末压片法制样,试样中各元素原子在波长色散X射线荧光光谱仪中经激发放射出特征X射线谱线。通过测量试样中目标元素的特征X射线谱线强度的有无进行元素的定性分析,通过强度的高低定量分析试样中各元素的质量分数。 一起来看看下图加深印象吧!顺序扫描型荧光工作原理图 岛津应对方案 顺序扫描型X射线荧光光谱仪固废标准使用岛津XRF-1800顺序扫描型X射线荧光光谱仪来进行所有工作的验证,验证数据良好,操作简单,无需化学前处理,对环境友好。XRF-1800仪器拥有高功率光管、高精密气控装置和屏蔽外部干扰的保护功能,具有高灵敏度、高精确度、高稳定性的优点。图1 岛津顺序扫描型X射线荧光光谱仪XRF-1800 两种制样方法标准方法采用了熔融玻璃片及粉末压片制样两种方法。无需进行化学前处理,减少了对环境的二次污染。熔融玻璃片法适用于污泥、污染土壤、粉煤灰、烟尘、尾矿废石、冶炼炉渣等固体废物试样分析;粉末压片法适用于污泥、污染土壤、粉煤灰、烟尘等固体废物试样的分析。图2 熔融玻璃片制样 图3 粉末压片制样 压片法定性-半定量分析用国标物GSB 07-3272-2015验证了半定量分析的准确度,结果有很好的参考意义。 表1 定性-半定量结果(单位:元素-mg/kg,氧化物-%)说明:- 表示没有给出参考值。 熔融玻璃片制样法定量分析使用GSS和GSD系列标准物质,以熔融玻璃片法制样建立校准曲线。 表2 方法检出限(单位:元素-mg/kg 氧化物-%)说明:以较低含量样品多次测试标准偏差的3倍,作为实测检出限。 用煤灰样品进行了熔融玻璃片法精密度验证,对该样品连续测定6次,结果表明方法精密度良好。 表3 部分标样准确度结果(单位:元素-mg/kg 氧化物-%)粉末压片制样法定量分析使用GSS和GSD系列标准物质,以压片法制样建立校准曲线。使用污染土壤标准样品GSB07-3273-2015进行了压片法精密度验证,对该样品连续测定6次,结果表明方法精密度良好。 表4 部分标样准确度结果(单位:元素-mg/kg 氧化物-%) 结语 岛津XRF-1800顺序扫描型X射线荧光光谱仪,无论定性-半定量分析,还是精确定量分析,精密度、稳定性好,均能够很好地应对《HJ 1211-2021 固体废物无机元素的测定波长色散X射线荧光光谱法》标准,且无需化学前处理,也不会造成对环境的二次污染,是一种快速高效测定固废中无机元素的有效方法。 撰稿人:唐国轩 *本文内容非商业广告,仅供专业人士参考。
  • 220项拟立项国标征求意见 涉及多种仪器分析方法
    日前,国家标准委决定对《无焊连接 第7部分:弹性夹连接 一般要求、试验方法和实用指南》等220项拟立项推荐性国家标准项目公开征求意见,征求意见截止时间为2021年6月1日。有关单位和相关人员可登录全国标准信息公共服务平台的拟立项标准公示网页,查询项目信息和反馈意见建议。218项拟立项国家标准项目中,有数项涉及仪器检测方法,包括液相色谱串联质谱法、火焰原子吸收光谱法、气相色谱法、原子力显微镜法、氮吸附法等。部分摘录如下:序号项目中文名称制修订截止日期1化妆品中限用组分月桂醇聚醚-9的测定 液相色谱串联质谱法制订2021/6/12化妆品中限用组分二氨基嘧啶氧化物的测定 高效液相色谱法制订2021/6/13无损检测 纤维增强聚合物的声发射检测方法和评价准则制订2021/6/14纳米技术 拉曼光谱法测量二硫化钼薄片的层数制订2021/6/15钢渣 氧化钠和氧化钾含量测定 火焰原子吸收光谱法制订2021/6/16钢渣 硫含量的测定 高频燃烧红外吸收法制订2021/6/17纺织品 禁限用染料的测定 液相色谱-高分辨质谱法制订2021/6/18贵金属合金电镀废水化学分析方法 第4部分:氯离子含量的测定   氯化银浊度法制订2021/6/19镍铂靶材合金化学分析方法 第1部分:铂含量的测定   电感耦合等离子体原子发射光谱法制订2021/6/110钯锭分析方法   银、铝、金、铋、铬、铜、铁、铱、镁、锰、镍、铅、铂、铑、钌、硅、锡、锌含量测定 火花放电原子发射光谱法制订2021/6/111工业用乙烯、丙烯中微量一氧化碳、二氧化碳和乙炔的测定   气相色谱法修订2021/6/112贵金属合金电镀废水化学分析方法   第2部分:锌、锰、铬、镉、铅、铁、铝、镍、铜、铍含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/113镍铂靶材合金化学分析方法   第2部分:镁、铝、钛、钒、铬、锰、铁、钴、铜、锌、锆、银、钯、锡、钐、铅、硅含量的测定 电感耦合等离子体质谱法制订2021/6/114贵金属合金电镀废水化学分析方法   第1部分:金、银、铂、钯、铱含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/115镍铂靶材合金化学分析方法 第3部分:碳含量的测定   高频红外检测法制订2021/6/116工业用丙烯中烃类杂质的测定 气相色谱法修订2021/6/117钢中纳米级第二相定量测试-原子力显微镜法制订2021/6/118钢渣 氧化锰含量的测定 火焰原子吸收光谱法制订2021/6/119纳米制造 关键控制特性 纳米储能   第6部分:纳米电极材料中的碳含量测定 红外吸收法制订2021/6/120钢渣 磷含量的测定 铋磷钼蓝分光光度法制订2021/6/121纺织品 纤维定量分析 显微镜智能识别法制订2021/6/122铜精矿化学分析方法 第12部分:氟和氯含量的测定   离子色谱法和电位滴定法修订2021/6/123无损检测 声发射检测 混凝土声发射信号的测量方法制订2021/6/124无损检测 声发射检测 混凝土结构活动裂缝分类的检测方法制订2021/6/125钢产品无损检测 孔类构件残余应力分布状态超声检测方法制订2021/6/126铁矿石 钍含量的测定 偶氮胂Ⅲ分光光度法制订2021/6/127氧化铝化学分析和物理性能测定方法第27部分:粒度分析 筛分法修订2021/6/128氧化铝化学分析和物理性能测定方法第35部分:比表面积的测定   氮吸附法修订2021/6/129钴酸锂电化学性能测试 首次放电比容量及首次充放电效率测试方法修订2021/6/130铜精矿化学分析方法   第18部分:砷、锑、铋、铅、锌、镍、镉、钴、铬、氧化镁、氧化钙、氧化铝含量的测定 电感耦合等离子体原子发射光谱法修订2021/6/131无损检测 声发射检测 钢筋混凝土梁损伤评定的检测方法制订2021/6/132变形铝、镁合金产品超声波检验方法修订2021/6/133硅单晶中碳、氧含量的测定 低温傅立叶变换红外光谱法修订2021/6/134染料 在有机溶剂中溶解度的测定 重量法和光度法制订2021/6/135钢轨超声检测方法制订2021/6/136无机化工产品中铝测定的通用方法 铬天青S分光光度法修订2021/6/137圆钢涡流检测方法修订2021/6/138锡化学分析方法   第12部分:铜、铁、铋、铅、锑、砷、铝、锌、镉、银、镍、钴含量的测定 电感耦合等离子体原子发射光谱法制订2021/6/139镓基液态金属化学分析方法 第1部分:铅、镉、汞、砷含量的测定   电感耦合等离子体质谱法制订2021/6/140变形铝及铝合金制品组织检验方法 第1部分:显微组织检验方法修订2021/6/141钢产品无损检测 轴类构件扭转残余应力分布状态超声检测方法制订2021/6/1
  • 抗氧化基因改良苹果或将上市
    普通苹果切片与北极苹果切片对比   美国一家公司正尝试出售一种基因改良苹果,这种苹果切成片或碰伤后,果肉不会被氧化变成棕色。据报道,这家名为奥肯那根特色水果的公司称,这种名为“北极苹果”的不暗化苹果将会受到消费者和食品公司的欢迎,并将有助于提高苹果的销售量。   据悉,北极苹果包含一种综合基因,能急剧减少多酚氧化酶的产生,这种酶是苹果肉变暗的“元凶”。这种基因并不是来自其他的物种,其DNA序列是来自苹果自身的4种能控制多酚氧化酶的基因。   其实,早在上世纪90年代,美国人就已经开始使用基因改良食品,但是,这些食品主要集中于加工食物类。因此,北极苹果有可能成为人们直接吃进嘴里的第一种经基因方法改造过的水果。   但是,代表苹果企业的美国苹果协会反对这种苹果的生产。该协会表示,虽然他们不认为这种基因改良后的苹果有害,但是却会破坏苹果健康、自然食物的形象。   奥肯那根水果公司的负责人则表示,不会氧化变暗的苹果能够提高企业的销售额,正如儿童胡萝卜能提高胡萝卜销售额那样。“一个完整的苹果在某些场合对某些人来说是一个‘大工程’。”他说,如果在聚会中,有一果盘苹果,人们可能不会取来吃,但是假如是一盘苹果片,很可能每个人都会吃一片。   在美国,苹果片作为一种健康食品广受欢迎,在超市和餐厅都有出售。但是,这些苹果片通常涂有维生素C和钙来防止氧化变暗,这样一来会影响苹果本身的口感。北极苹果的上市也许能够解决这一问题。
  • 又一XRF有色行业标准即将来袭!或引发一波采购需求
    近日,在全国有色金属标准化技术委员会重金属标准网络审定、任务落实会上,行业标准《波长色散X射线荧光光谱法(铜熔炼渣中铜、铁、硫、二氧化硅、砷、铅、锌、锑、铋、镍、氧化钙、氧化镁、三氧化二铝的测定)》申报立项成功,该标准起草单位确定为西南铜业。目前,在我国铜熔炼渣的综合利用处理中均需及时准确分析熔炼渣成分,在冶炼过程中对进入到渣中的有毒有害元素进行无害化处理,减少对下游企业的污染和对环境的污染。对铜熔炼渣中的各项成分进行含量分析,不仅可掌握渣含铜、硅铁比等多种重要的工艺控制参数,对于熔炼炉的安全、稳定运行也具有重要的指导作用。该标准可填补国内无铜熔炼渣成分分析检测标准、分析方法的空白。此外,该标准还具有同时测定多种元素,分析速度快、测定元素的含量范围宽、分析试样制备简便等特点。为火法铜冶炼生产企业提供及时的指导数据,提高生产效率,降低生产成本,也为火法铜冶炼及下游企业绿色环保生产提供坚强支撑。新标准实施后,有色金属行业对XRF的需求或将增多,可能会引发一波采购浪潮。
  • ICP-AES法稀土总量测定等国标通过鉴定
    日前,由全国稀土标准化技术委员会组织召开的三个国家稀土检测标准鉴定会在厦门举行。鉴定组专家对包头检验检疫局参与制定的这三个标准进行了严格的评审。通过深入细致的核查、分析、讨论和研究,对其作出了肯定而满意的结论。   这三个标准是:GB/T16477.X-200X(代替GB/T16477.3-1996)《稀土硅铁及镁硅铁合金化学分析方法 氧化镁含量的测定 电感耦合等离子体发射光谱法》、GB/T16477.X-200X(代替GB/T16477.1-1996)《稀土硅铁合金及其镁硅铁合金化学分析方法 稀土总量的测定EDTA容量法》和GB/TXXXX-200X(新方法)《稀土硅铁合金及镁硅铁合金化学分析方法 稀土总量的测定 电感耦合等离子体发射光谱法》。
  • 梅特勒托利多热分析用户会暨技术研讨会报告
    报告名称:新版国标GB/T 6425—2008《热分析术语》的制订与指要 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 新版国标主要变化和各点说明  - 新版热分析定义及改变原因  - 两种类型DSC及其所测物理量  - 关于温度调制式差示扫描量热法(modulated-temperature differential scanning calorimetry)的简称  - 同时与串接联用技术的符号表示  - 关于sample (样品), specimen (试样) 和specimens (试样和参比物)  - 试样质量  - 热分析曲线TA curve  - 玻璃化glass transition  - 关于“热流”和 “热流量”(heat flow)  - 动力学三参量(kinetic triplet) * 新版国标特征(创新点)  - 具有一定的原创性  - 充分反映热分析的新进展  - 对热分析的新技术给出了科学定义  - 叫法严谨  - 对某些热分析术语定义及其表达做了重新表述  - 新版国标是制订我国各种热分析标准的最基本的文件和基础 报告名称:热固性树脂固化反应的表征 演讲嘉宾:刘振海 中国科学院长春应用化学研究所 主要内容: * 固化反应的两个重要效应  - 玻璃化温度提高  - 放热反应 * Tg * 固化反应的量热测量  - 基本表达式  - 等温固化度与升温后固化  - 固化反应动力学 * 固化反应举例:以环氧树脂为例  - 影响固化反应的因素  - 影响玻璃化的因素  - 贮存效应  - 固化因子(cure factor, CF) 报告名称:氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的测定 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - STARe系统仪器  - 气体切换器  - 参考标准  - 国内外标准比较  - 标准内容  - OIT典型的温度程序  - 聚乙烯:氧化稳定性  - PE-PP共聚物:空气中测定氧化稳定性(OIT)  - PP的OIT测试  - 聚乙烯OIT的TMA测量  - HP DSC827e: 应用 报告名称:比热容的DSC测量 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容: * 比热容的介绍及测试标准 * 比热容的测试方法  - 直接法(Direct method)  - 稳态ADSC法  - 蓝宝石法  1. ISO标准中蓝宝石法细节  2. ASTM标准中蓝宝石法细节  3. DIN标准中蓝宝石法细节  - 步进扫描  - 正弦温度调制方法  1. 计算原理  2. PET的ADSC测量  3. 如何进行ADSC测量  - 多频温度调制(TOPEM® )方法  1. TOPEN的原理  2. TOPEN的计算  3. TOPEN的优点 * 比热容测试注意事项 * 比热容测试方法比较 报告名称:Tg测量的不同标准(ASTM/DIN/Richardson)和不同技术(DSC/TMA/DMA)及其比较 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容:  - Tg测量方法概述  - DSC标准方法  - TMA标准方法  - DMA标准方法  - 聚苯乙烯的Tg测试  1. DSC、TMA、DMA三种方法测试、  2. 三种方法结果比较、  - 三种测试计算方法的影响  - 循环测试  - Tg的影响因素  - DSC、调制DSC、TMA、DLTMA、DMA方法优、缺点汇总、灵敏度比较  - Tg和相应的Dcp 报告名称:DSC在聚合物结晶动力学方面的应用 演讲嘉宾:仲伟霞 梅特勒托利多热分析仪器部技术应用顾问,博士 主要内容:  - 差示扫描量热仪DSC 1  - 两种PP产品的结晶参数对比  - 非等温结晶动力学方程  - PPF401的非等温结晶DSC曲线  - PPS2040的非等温结晶DSC曲线  - 两种PP非等温结晶过程参数对比  - PPF401的相对结晶度X(T)-T曲线  - PPS2040的相对结晶度X(T)-T曲线  - 根据Ozawa方法获得的两种PP非等温结晶动力学参数  - Kissinger 的活化能公式  - PP的活化能结果  - PET 的非等温结晶动力学  - 聚合物的等温结晶动力学  - PP的等温结晶曲线  - 两种PP的等温结晶动力学参数对比 报告名称:热分析在弹性体行业的应用 演讲嘉宾:唐远旺 梅特勒托利多热分析仪器部技术应用顾问 主要内容:  - 热分析在弹性体材料领域的应用  - 差示扫描量热法(DSC)  - 热重分析法(TGA)  - 热机械分析(TMA)  - 动态热机械分析(DMA)  - 玻璃化转变的计算方法  - 软化的针入TMA测量  - 硫化度对玻璃化转变的影响  - 增塑剂对玻璃化转变的影响  - 相容性聚合物共混物的玻璃化转变  - 不相容聚合物共混物的玻璃化转变  - 不相容聚合物共混物的DMA测试  - 密封圈适用温度范围的DSC测定  - 结晶对氯丁橡胶(CR)玻璃化转变的影响  - 氯丁橡胶(CR)结晶和熔融的测量  - 氯丁橡胶(CR)的DMA测量  - 结晶对硅橡胶玻璃化转变的影响  - 硅橡胶的DMA测量  - 预处理对EPDM熔融的影响  - 不同种类EPDM的DSC比较  - 顺丁橡胶(BR)的冷结晶与熔融  - 玻璃化转变的影响因素  - 聚氨酯DSC与DMA测量的比较  - 天然橡胶(NR)的TGA  - 丁苯橡胶(SBR)的TGA  - 丁腈橡胶(NBR)的TGA  - 三元乙丙橡胶(EPDM)的TGA  - 氯丁橡胶(CR)的TGA  - 乳聚SBR和溶聚SBR的热分解区别  - 橡胶中炭黑和无机填料含量测试  - 弹性体中碳黑的TGA分析  - 含一种聚合物橡胶的组分分析  - 氯丁橡胶弹性体中碳黑的分析  - 橡胶含量分析  - 多种橡胶比较  - 含多种聚合物的橡胶的组分分析  - 组分分析方法  - Delta cp在组分分析中的作用  - EPDM/SBR共混物的TGA和DSC联合分析  - 氯醚橡胶和卤化丁基橡胶的TGA  - 含不同种类碳黑的弹性体的分析  - 不同种类碳黑的TGA比较测量  - 氟橡胶(FPR)的TGA  - 硅橡胶的TGA  - 含其它聚合物的NR共混物的TGA  - 含SBR组分的弹性体的TGA  - CR/NBR共混物的TGA分析  - 油含量的TGA测定  - 含油与不含油SBR的减压(真空)TGA  - 压力对NR/SBR共混物TGA的影响  - BR和NBR的TGA-FTIR联用鉴别  - BR/NR弹性体的TGA/FTIR分析  - 弹性体热分析参数  - 硫化反应  - 硫化动力学  - 等温硫化动力学的测量  - NBR硫化的TGA测量  - 硫化过程的TGA-MS联用气体分析  - 填料影响  - 振动阻尼  - SBR 的频率扫描测试  - 振动阻尼-交联密度的影响  - 松弛谱的温度依赖性  - 等温蠕变和回复  - 交联对蠕变和回复的影响  - 不同炭黑含量的EPDM  - 蠕变和松弛  - 热致蠕变  - 典型的TSC曲线  - TSC测试-不同硫化度的SBR  - TSC测试-不同炭黑含量的EPDM  - 橡胶在甲苯中的溶胀  - 溶胀模式  - 阻燃剂三水合铝和氢氧化镁的TGA  - 阻燃剂物质的DSC测量  - EVA中阻燃剂的TGA  - 增塑剂矿物油的DSC测量  - 弹性体的DSC测量  - CIIR弹性体的DSC测量  - SBR低分子量成分的转变  - 借助ADSC用于曲线解析 报告名称:MP超越熔点仪系列 演讲嘉宾:陆立明 梅特勒托利多热分析仪器部经理,热分析技术应用专家 主要内容: * 超越熔点仪系列 * 特点和优点  - 简单  - 高效  - 视频记录、回放  - 符合标准 - 设计优势  - 结果可靠  - 彩色触摸屏  - 文件安全 * 技术  - 光源  - 图象  - 测量方法  - 终点测定  - 炉体  - 升温速率 * MP50 – 满足基本要求 * MP70 – 最大灵活性的最佳选择 * MP90 – 最高水准的熔点测定 * MP技术指标 * MP熔点仪的应用  - 熔融  - 通过混合物熔点鉴定  - 熔融和分解  - 液晶  - 无机物熔点  - 热致变色物质  - 聚合物熔融 报告名称:热分析仪器维修保养介绍 演讲嘉宾:唐幸初 梅特勒托利多热分析仪器部服务主管、安调与维修专家 主要内容:  - DSC外壳拆卸,传感器的测量  - DSC传感器的更换  - TGA搬运的准备工作  - TGA搬运结束后的恢复  - TGA的毛细管的安装  - DSC和TGA的校准
  • 2010年有色金属分析测试标准编制计划发布
    各会员单位及有关单位:   根据国家标准化管理委员会相关精神及工业和信息化部《关于开展2010年第一批原材料工业标准计划编制工作的通知》(原材料司函[2009] 210号)要求,以及标委会章程的规定,现决定编制2010年有色金属国家、行业标准项目计划。为有效做好以上工作,将有关事项通知如下:   一、项目编制重点   (一)行业发展急需的标准项目,特别是有色金属产业调整和振兴规划中所确定的产业发展重点   (二)与节能减排(减碳)相关的标准项目   (三)标龄超过10年,经复审需及时修订的标准项目。   二、报送项目计划的要求   (一)本次编制的项目为2010-2011年度需要安排的国家、行业标准计划项目。请各起草单位按照北京年会确定的项目填写相关表格。具体项目见附件一   (二)国家、行业标准项目都要求填写“国家、行业标准项目建议书”, 见附件二、附件三,“建议书”中的每个项次都要认真填写,尤其是立项的必要性、目的和理由、主要技术内容、国内外情况要重点论证,分析方法标准如有多个分方法,应按每个分标准分别填写“建议书”。同时要求字迹工整,纸质材料应加盖公章,纸张幅面一律为A4型纸 本次项目征集国家标准要求一同报送标准草案 请于2010年2月25日前将填好的项目建议书的书面文本(一式两份)寄至有色金属标委会秘书处,同时将项目建议书以及标准草案的电子版本发至有色金属标委会秘书处。   三、联系方式   全国有色金属标准化技术委员会秘书处   北京市海淀区苏州街31号8层 邮编:100080   全国有色金属标准化技术委员会轻金属分标委会秘书处:   联系人:葛立新 电话:010-62228793 Email:light-metal@263.net   全国有色金属标准化技术委员会重金属分标委会秘书处:   联系人:杨丽娟 电话:010-62228795 Email:yanglijuan889@163.com   全国有色金属标准化技术委员会稀有金属分标委会秘书处:   联系人:张江峰 电话:010-62574192 Email:zhjiangfeng@126.com   全国有色金属标准化技术委员会粉末冶金分标委会秘书处:   联系人:张宪铭 电话:010-62225125 Email:hnzjf@126.com   全国有色金属标准化技术委员会贵金属分标委会秘书处:   联系人:向 磊 电话:010-62623848 Email:xianglei2008@126.com   附件一:北京年会确定项目.xls(相关部分)   附件二:推荐性国家标准项目建议书.doc   附件三:行业标准项目建议书.doc   相关新闻:09年第二批有色金属标准制(修)订计划公布   附件一:确定制修订的有色金属标准(标红色字体为与分析测试直接相关的方法标准) 全国有色轻金属标准化分技术委员会年会确定的2010年项目(国家标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 变形铝及铝合金制品显微组织检验方法 方法 修订 2011 东轻 GB/T 3246.1-2000 2 变形铝及铝合金制品低倍组织检验方法 方法 修订 2011 东轻 GB/T 3246. 2-2000 3 一般工业用铝及铝合金板、带材 第1部分:一般要求 产品 修订 2011 西南铝 GB/T 3880.1-2006 4 一般工业用铝及铝合金板、带材 第2部分:力学性能 产品 修订 2011 西南铝 GB/T 3880.2-2006 5 一般工业用铝及铝合金板、带材 第3部分:尺寸偏差 产品 修订 2011 西南铝 GB/T 3880.3-2006 6 铝合金预拉伸板 产品 制定 2011 待定   7 变形铝合金产品超声波检验方法 方法 修订 2011 东轻 GB/T 6519-2000 8铝及铝合金冷拉薄壁管材涡流探伤方法 方法 修订 2011 东轻 GB/T 5126-2001 9 铝板带箔清洁度试验方法 方法 制定 2011 瑞闽铝板带   10 铝合金建筑用隔热型材生产工艺技术规范 基础 制定 2011 泰诺风• 保泰   11 铝合金建筑型材挤压工艺技术规范 基础 制定 2011 待定   12 电解铝生产二氧化碳排放量测算方法 方法 制定 2011 待定   13 电解铝生产全氟化碳排放量测定方法 方法 制定 2011 待定   14 铝中间合金化学分析方法 第1部分 铁含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   15 铝中间合金化学分析方法 第2部分 锰含量的测定 方法 制定2011 国家轻金属质量监督检验中心   16 铝中间合金化学分析方法 第3部分 镍含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   17 铝中间合金化学分析方法 第4部分 铬含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   18 铝中间合金化学分析方法 第5部分 锆含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   19 铝中间合金化学分析方法 第6部分 硼含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   20 铝中间合金化学分析方法 第7部分 铍含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   21 铝中间合金化学分析方法 第8部分 锑含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   22 铝中间合金化学分析方法 第9部分 铋含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   23 铝中间合金化学分析方法 第10部分 钾含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   24 铝中间合金化学分析方法 第11部分 钠含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   全国有色轻金属标准化分技术委员会年会确定的2010年项目(行业标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 铝及铝合金电阻熔炼炉、保温炉技术条件 基础 修订 2011 常铝股份 YS/T 11-1991 2 铝及铝合金火焰熔炼炉、保温炉技术条件 基础 修订 2011 广东坚美 YS/T 12-1991 3 变形铝及铝合金圆铸锭 产品 修订 2011 贵铝 YS/T 67-2005 4 变形铝及铝合金扁铸锭 产品 修订 2011 东轻、南山 YS/T 590-2006 5 钎焊式热交换器用铝合金箔 产品 修订 2011 东轻、银邦、常铝 YS/T 496-2005 6 凿岩机用铝合金管材 产品 修订 2011 西北铝 YS/T 97-1997 7 铝锡-20铜-钢双金属板 产品 修订 2011 银邦 YS/T 289-1994 8 铝及铝合金挤压扁棒 产品 修订 2011 西南铝 YS/T 439-2001 9 交通运输装备用铝合金焊接丝材 产品 修订 2011 杭州银宇焊接材料科技有限公司、中南大学 YS/T 458-2003 10 双零铝箔用冷轧带材 产品 修订 2011 瑞闽铝板带、华北铝 YS/T 457-2003 11 钎接用铝合金板材 产品 修订 2011 东轻 YS/T 69-2005 12 冰晶石化学分析方法和物理性能测定方法 第3部分 蒸馏—硝酸钍容量法测定氟含量 方法 修订 2011 霍煤鸿骏铝电有限责任公司 YS/T 273.3-2006 13 氟化铝化学分析方法和物理性能检测方法 第3部分 蒸馏-硝酸钍容量法测定氟含量 方法 修订 2011 霍煤鸿骏铝电有限责任公司 YS/T 581.3-2006 14 铝熔体在线除气净化工艺规范 基础 制定 2011 福州麦特新高温材料有限公司   15 铝及铝合金晶粒细化剂 第二部分:铝-钛合金线材 产品 制定 2011 新星化工   16 铝及铝合金晶粒细化剂 第三部分:铝-钛-碳合金线材 产品 制定 2011 新星化工   17 空调风管用涂层铝箔 产品 制定 2011 瑞闽铝材彩涂有限公司   18 铝及铝合金连铸连轧线材 产品 制定 2011 杭州飞翔、新疆众和   19 丙烯酸漆喷涂型材 产品 制定 2011 兴发   20 帐篷用高强度铝合金管 产品 制定 2011 上虞市东轻特种铝材厂   21 铝用炭素材料热膨胀系数测定装置 产品 制定 2011 北京英斯派克科技有限公司   22 轨道交通用铝合金板材 产品 制定 2011 东轻   23 铝合金抛光膜层规范 产品 制定 2011 新合铝业、凤铝  24 烟包装用铝箔 产品 制定 2011 云南新美铝箔、华北铝   25 铝合金管、棒、型材清洁生产水平评价技术要求 第2部分 阳极氧化与电泳涂漆 基础 制定 2011 待定   26 铝合金管、棒、型材清洁生产水平评价技术要求 第3部分 粉末喷涂 基础 制定 2011 待定   27 铝合金管、棒、型材清洁生产水平评价技术要求 第4部分 氟碳漆喷涂 基础 制定 2011 待定   28 原生镁锭清洁生产水平评价技术要求 基础 制定 2011 待定   29 氧化铝生产用絮凝剂 产品 制定 2011 青岛海纳特新材料能源发展有限公司、中国有色金属工业标准计量质量研究所   30 氧化铝生产工业废水中总碱度测定 方法 制定 2011 中铝河南分公司   全国有色重金属标准化分技术委员会年会确定的2010年项目(国家标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 反射炉精炼安全生产规范 管理 制定 2011 大冶公司   2 锡冶炼安全生产规范 管理 制定 2011 云锡公司   3 有色金属冶炼危险源控制与应急救援 管理 制定 2011 待定   4 铜加工生产企业安全应急预案 管理 制定 2011 待定   5 铜矿山酸性废水综合处理规范 管理 制定 2011 待定   6 铜选矿厂废水回收利用规范 管理 制定 2011 云南铜业集团有限公司   7 铜矿山低品位矿石可采选效益计算方法 管理 制定 2011 待定   8 镍火法冶金安全技术规范 管理 制定 2011 金川集团有限公司   9 镍气化冶金安全技术规范 管理 制定 2011 金川集团有限公司   10 镍湿法冶金安全技术规范 管理 制定 2011 金川集团有限公司   11 铜及铜合金棒线涡流探伤方法 方法 制定 2011 中国有色金属工业无损检测中心、中铝上海铜业有限公司、佛山市华鸿铜管有限公司、洛阳铜加工集团有限公司   12 铜及铜合金化学分析方法 Al2O3的测定 方法 制定 2011 洛阳铜加工集团有限公司   13 直接法氧化锌 产品 修订 2011 水口山矿务局 GB/T 3494-1996 14 铸造锡铅焊料 产品 修订 2011 云南锡业公司 GB/T 8012-2000 15 三氧化二锑 产品 修订 2011 锡矿山矿务局 GB/T 4062-1998 16 导电铜板和条 产品 修订 2011 西北铜加工厂、洛阳铜加工集团有限公司、佛山市华鸿铜管有限公司、浙江宏磊铜业股份有限公司、金川集团有限公司 GB/T 2529-2005 17 铜及铜合金术语 第1部分 矿产品和精炼产品 基础 修订 2011 待定 GB/T 11086-1989 18 铜及铜合金术语 第2部分 加工产品和铸件 基础 修订 2011 洛阳铜加工集团有限公司 GB/T 11086-1989 全国有色重金属标准化分技术委员会年会确定的2010年项目(行业标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 铜及铜合金性能试验试样制备方法 方法 制定 2011 中铝沈阳有色金属加工厂、浙江方圆检测集团股份有限公司   2 电真空器件用无氧铜棒线 产品 制定 2011 洛阳铜加工集团有限公司   3 高速铁路用青铜板带 产品 制定 2011 洛阳铜加工集团有限公司   4 高速铁路用青铜棒 产品 制定 2011 洛阳铜加工集团有限公司   5 高炉冷却壁用铜板 产品 制定 2011 洛阳铜加工集团有限公司   6 太阳能装置用铜带 产品 制定 2011 富威科技(吴江)有限公司、洛阳铜加工集团有限公司、菏泽广源铜带股份有限公司、绍兴力博集团   7 接插件用铜及铜合金异型带 产品 制定 2011 北京金鹰恒泰铜业有限公司、绍兴力博集团   8 导电用再生铜条 产品 制定 2011 巩义市新昌铜业有限公司   9 电工用再生铜线坯 产品 制定 2011 赣州江钨新型合金材料有限公司   10 高纯碲 产品 制定 2011 清远先导稀有材料有限公司、山东省阳谷祥光铜业有限公司   11 碲化镉 产品 制定 2011 清远先导稀有材料有限公司、山东省阳谷祥光铜业有限公司   12 铜靶材 产品 制定 2011 宁波江丰电子材料有限公司   13 红土镍矿化学分析方法—镍量的测定—火焰原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   14 红土镍矿化学分析方法—铁量的测定—重铬酸钾滴定法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   15 红土镍矿化学分析方法—磷量的测定—钼蓝分光光度法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   16 红土镍矿化学分析方法—钴量的测定—原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   17 红土镍矿化学分析方法—铜量的测定—原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   18 红土镍矿化学分析方法—氧化钙、氧化镁量的测定—原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   19 红土镍矿化学分析方法—二氧化硅量的测定—氟硅酸钾滴定法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   20 红土镍矿化学分析方法—钪量的测定—ICP-MS法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   21 红土镍矿化学分析方法—磷、铬、氧化钙、氧化镁、三氧化二铝量的测定—ICP-AES法 方法 制定 2011 北京矿冶研究总院;金川集团有限公司、鲅鱼圈出入境检验检疫局   22 钴化学分析方法 钠量的测定 原子吸收光谱法 方法 制定 2011 金川集团有限公司、深圳格林美高新技术股份有限公司   23 钴化学分析方法 氧量的测定 脉冲-红外吸收法 方法 制定 2011 金川集团有限公司、深圳格林美高新技术股份有限公司   24 钴化学分析方法 钙量的测定 电感耦合等离子体发射光谱法 方法 制定 2011 金川集团有限公司、深圳格林美高新技术股份有限公司   25 铍青铜板材和带材 产品 修订 2011 西北稀有金属材料研究院 YS/T 323-2002 26 航空散热管 产品 修订 2011 西北铜加工厂 YS/T 266-1994 27 塑覆铜管 产品 修订 2011 佛山市华鸿铜管有限公司、浙江海亮铜业有限公司、浙江宏磊铜业股份有限公司 YS/T 451-2002 28 有色金属精矿产品包装、标志、运输和贮存 基础 修订 2011 大冶有色金属公司、株洲冶炼集团公司、山东省阳谷祥光铜业有限公司、北方铜业有限公司等 YS/T 418 -1999 29 高纯铅 产品 修订 2011 峨眉半导体厂 YS/T 265-1994 30 重有色冶金炉窑热平衡测定与计算方法 闪速炉 基础 制定 2011 金川集团有限公司   31 重有色冶金炉窑热平衡测定与计算方法 铜合成炉 基础 制定 2011 金川集团有限公司   32 重有色冶金炉窑热平衡测定与计算方法 吹炼转炉 基础 修订 2011 金川集团有限公司 YS/T 118.15-1992 全国有色稀有金属、粉末冶金标准化分技术委员会年会确定的2010年项目(国家标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 锆及锆合金化学分析方法 锡量测定 方法 修订 2011 待定 GB/T 13747.1-1992 2 锆及锆合金化学分析方法 1,10-二氮杂菲分光光度法测定铁量 方法修订 2011 待定 GB/T 13747.2-1992 3 锆及锆合金化学分析方法 丁二酮肟分光光度法测定镍量 方法 修订 2011 待定 GB/T 13747.3-1992 4 锆及锆合金化学分析方法 二苯卡巴肼分光光度法测定铬量 方法 修订 2011 待定 GB/T 13747.4-1992 5 锆及锆合金化学分析方法 铬天青S分光光度法测定铝量 方法 修订 2011 待定 GB/T 13747.5-1992 6 锆及锆合金化学分析方法 2,9-二甲基-1,10-二氮杂菲分光光度法测定铜量 方法 修订 2011 待定 GB/T 13747.6-1992 7 锆及锆合金化学分析方法 高碘酸盐分光光度法测定锰量 方法 修订 2011 待定 GB/T 13747.7-1992 8 锆及锆合金化学分析方法 亚硝基R盐分光光度法测定钴量 方法 修订 2011 待定 GB/T 13747.8-1992 9 锆及锆合金化学分析方法 火焰原子吸收光谱法测定镁量 方法 修订 2011 待定 GB/T 13747.9-1992 10 锆及锆合金化学分析方法 硫氰酸盐分光光度法测定钨量 方法 修订 2011 待定 GB/T 13747.10-1992 11 锆及锆合金化学分析方法 硫氰酸盐分光光度法测定钼量 方法 修订 2011 待定 GB/T 13747.11-1992 12 锆及锆合金化学分析方法 钼蓝分光光度法测定硅量 方法 修订 2011 待定 GB/T 13747.12-1992 13 锆及锆合金化学分析方法 示波极谱法测定铅量 方法 修订 2011 待定 GB/T 13747.13-1992 14 锆及锆合金化学分析方法 催化示波极谱法测定铀量 方法 修订 2011 待定 GB/T 13747.14-1992 15 锆及锆合金化学分析方法 姜黄素分光光度法测定硼量 方法 修订 2011 待定 GB/T 13747.15-1992 16 锆及锆合金化学分析方法 氯化银浊度法测定氯量 方法 修订 2011 待定 GB/T 13747.16-1992 17 锆及锆合金化学分析方法 示波极谱法测定镉量 方法 修订 2011 待定 GB/T 13747.17-1992 18 锆及锆合金化学分析方法 苯甲酰苯基羟胺分光光度法测定钒量 方法 修订 2011 待定 GB/T 13747.18-1992 19 锆及锆合金化学分析方法 二安替比林甲烷分光光度法测定钛量 方法 修订 2011 待定 GB/T 13747.19-1992 20 锆及锆合金化学分析方法 发射光谱法测定铪量 方法 修订 2011 待定 GB/T 13747.20-1992 21 锆及锆合金化学分析方法 真空加热气相色谱法测定氢量 方法 修订 2011 待定 GB/T 13747.21-1992 22 锆及锆合金化学分析方法 惰气熔融库仑法测定氧量 方法 修订 2011 待定 GB/T 13747.22-1992 23 锆及锆合金化学分析方法 蒸馏分离-奈斯勒试剂分光光度法测定氮量 方法 修订 2011 待定 GB/T 13747.23-1992 24 锆及锆合金化学分析方法 库仑法测定碳量 方法 修订 2011 待定 GB/T 13747.24-1992 25 钼及钼合金棒 产品 修订 2011 待定 GB/T 17792-1999 26 钽铌化学分析方法 铌中钽量的测定 方法 修订 2011 待定 GB/T 15076.1-1994 27 钽铌化学分析方法 钽中铌量的测定 方法 修订 2011 待定 GB/T 15076.2-1994 28 钽铌化学分析方法 铜量的测定 方法 修订 2011 待定 GB/T 15076.3-1994 29 钽铌化学分析方法 铁量的测定 方法 修订 2011 待定 GB/T 15076.4-1994 30 钽铌化学分析方法 钼量和钨量的测定 方法 修订 2011 待定 GB/T 15076.5-1994 31 钽铌化学分析方法 铌中磷量的测定 方法 修订 2011 待定 GB/T 15076.7-1994 32 钽铌化学分析方法 铌中铁、镍、铬、钛、锆、铝和锰量的测定 方法 修订 2011 待定 GB/T 15076.10-1994 33 钽铌化学分析方法 铌中砷、锑、铅、锡和铋量的测定 方法 修订 2011 待定 GB/T 15076.11-1994 34 钽铌化学分析方法 钽中氮量的测定 方法 修订 2011 待定 GB/T 15076.13-1994 35 钒 产品 修订 2011 待定 GB/T 4310-1984 36 钨钼合金条 产品 修订 2011 待定 GB/T 4185-1984 37 钨杆 产品 修订 2011 待定 GB/T 4187-1984 38 钼杆 产品 修订 2011 待定 GB/T 4188-1984 39 掺杂钨条 产品 修订 2011 待定 GB/T 4189-1984 40 掺杂钼条 产品 修订 2011 待定 GB/T 4190-1984 41 钼及钼合金棒 产品 修订 2011 待定 GB/T 17792-1999 42 粉末冶金制品 表面粗糙度 参数及其数值 方法 修订 2011 待定 GB/T 12767-1991 43 硬质合金化学分析方法 电位滴定法测定钴量 方法 修订 2011 待定 GB/T 5124.3-1985 44 硬质合金化学分析方法 过氧化物光度法测定钛量 方法 修订 2011 待定 GB/T 5124.4-1985 45 金属粉末粒度组成的测定 干筛分法 方法 修订 2011 待定 GB/T 1480-1995 46 金属粉末(不包括硬质合金粉末)在单轴压制中压缩性的测定 方法 修订 2011 待定 GB/T 1481-1998 47 硬质合金常温冲击韧性试验方法 方法 61 细粉末粒度分布的测定 声波筛分法 方法 修订 2011 待定 GB/T 13220-1991 62 硬质合金可转位刀片圆角半径 产品 修订 2011 待定 GB/T 2077-1987 63 无孔的硬质合金可转位刀片 产品 修订 2011 待定 GB/T 2079-1987 64 硬质合金可转位铣刀片 产品
  • 世界知名矿企先后购置伊诺斯光谱仪
    热烈庆祝Mount ISA Mine(芒特艾萨矿),Newmont Mining(纽蒙特矿业公司), Glencore(嘉能可国际公司),江西铜业 先后购买奥林巴斯手持式光谱仪分析仪,金属或贵重金属(如铜、锌、铁和黄金)提取的过程控制,以提高成本效益和增加产品价值。铜提取为例,一般来说,铜提取过程包括以下步骤:粉碎硫化铜矿石(比如黄铜矿),泡沫浮选法选矿,使富集成为铜精矿,一般含铜(Cu)品位为20 - 30%。然后石英少与铜精矿混合,经闪速熔炼、氧化还原和阳极浇铸,最终产品(含量 99.0%纯铜)送往精炼厂生产含量 99.9%的铜。品位较低的矿石,需要经过选矿,使品位富集成为精矿。为正确选用各种选矿方法,要研究铜矿石的物质组份和结构构造;查明矿石的自然类型和工业类型;还要了解矿石中难选矿物的含量及其大致分布情况等。以铜矿为例,1.单一硫化铜矿石的选矿。一般采用浮选法选矿。2.多金属硫化矿石的选矿。一般根据其主要组份而形成的不同加工技术特性,分别采用混合浮选法、优先浮选法、混合优先浮选法、浮选和重选联合选矿法、浮选和磁选联合选矿法,以及浮选和湿法冶炼联合进行处理等。3.混合矿石选矿。一般均可采用浮选法,它可以单独处理,或与硫化矿石一起处理;也可采用浮选和湿法冶炼联合处理,即先用浮选法选出铜精矿,再将浮选后的尾矿用湿法冶炼处理。 4.氧化矿石的选矿。一般用浮选与湿法冶炼联合处理或用离析法与浮选联合处理;含结合式氧化铜高的矿石,一般用湿法冶炼处理。湿法冶炼主要适用于处理氧化矿石或含自然铜不高的单一矿石。由于使用的浸出剂不同,又分:硫酸浸出法——用以处理二氧化硅含量很高的酸性氧化矿石 ;氨浸出法——用以处理含多量碱性矿物的氧化矿石或自然铜贫矿; 细菌浸出法——用以处理低品位硫化矿石。奥林巴斯便携式XRD分析仪可以快速实时分分氧化矿石的晶相,帮助选择合适的选矿方法;在选矿过程中,实时确认化学反应的状态,决定是否需要添加矿料;反射炉熔炼主要是处理浮选后的铜精矿,-般要求精矿的含铜品位不得低于8%,最好为15~20%。铜精矿中的有害杂质砷、氟、锌、镁等,影响冶炼工艺和污染环境卫生,在矿料入炉时要进行控制,或在冶炼中加以回收处理。砷:以氧化状态存在,在冶炼过程中容易挥发,进入烟尘后污染大气,对人体有害;因此,一般要求铜精矿中砷的含量小于0.3%。冰铜中的砷通过转炉吹炼后,进入制酸系统的砷在转化器里使触媒逐渐位一般30~45%),冰铜经过吹炼而成为粗铜(含铜品位97~99%),粗铜再经过火法精炼或电解精炼而得到精铜(含铜品位99.9%以上)。有少量富铜矿石(一般含铜大于5%)可以不经过选矿,而与铜精矿混合直接入炉冶炼。氟:以氟化氢(HF)状态进入炉气,带入制酸车间,腐蚀破坏生产设备。一般要求铜精矿中氟的含量小于0.1%。锌:在冶炼过程中一部份以氧化锌(ZnO)状态进入渣中,增大渣的粘度,夹杂铜和影响铜的熔解;一部份以硫化锌(ZnS)的状态进入冰铜中,使冰铜呈粘滞或泡沫状,不利与渣分离。另外,当冰铜温度低于1200℃时,硫化锌(ZnS)结晶析出,形成炉结阻塞放铜口。因此,一般要求铜精矿中锌的含量小于6%;否则,要进行优先浮选。镁:以氧化镁(MgO)状态存在于含镁矿物中,铜矿石中含有滑石、蛇纹石、绿泥石、橄榄石等含镁高的矿物,易泥化,采用浮选时,多与铜矿物一起浮出,分选困难,而且容易形成泥饼,使磨矿流程不畅通。此外,含氧化镁(MgO)高的铜精矿入炉后使炉渣产生粘性,熔点增高并导致熄炉。因此,一般要求铜精矿中氧化镁(MgO)的含量小于5%奥林巴斯手持式光谱仪分析结果可靠、重现性好、最少的样品制备和操作简单等重要特点,可以快速分析砷、铜、锌、镁等元素的含量在快闪熔炼过程中,冰铜品位和熔炼矿渣中金属含量是影响随后的冶炼加工阶段(如氧化还原和精炼)和整体生产力的两个最重要的因素。冰铜中铜的品位低意味着铜还原不足和冰铜中铁(主要成分:铁硫化物(FeS)的含量影响氧化还原反应。冰铜中的铜的品位应该 48%,铁应 10%。冰铜品位可以通过改变输入空气或富氧空气的总氧比来调整。不适当的调整导致生产率降低,如铜渣和/资源浪费(工时和能源)。产生这种损失的最大的原因之一是缺乏正确分析测方法。奥林巴斯手持式光谱仪分析可以快速及时的分析冰铜中铜铁的含量,分析结果有ICP 分析结果基本吻合,帮助操作员确认将冰铜转入氧化还原炉中最好时机。深圳市莱雷科技发展有限公司是时奥林巴斯手持式光谱仪分析在中国的代理商,是OLYMPUS在中国的长期战略合作伙伴,为广大客户提供元素分析整体介绍方案及及时满意的售后服务。
  • 分享:分析化学发展过程中的重要历史人物传记
    1. 玻意耳,R. Boyle (1627~1691)   英国化学家、 物理学家和自然哲学家。1627年1月25日生于爱尔兰利斯莫尔,1691年12月30日卒于伦敦。1635年入伊顿公学学习。1639年赴欧洲游学,1644年回国。1654年在牛津开始系统地研究化学、医学和物理学,在家里建立了化学实验室,制备各种药物,逐渐成了一位实验化学家和物理学家。同时他又阅读了大量的英文、法文、拉丁文科学著作,认识到化学是一种重要的理性科学,并不仅仅是一种实用工艺。1663年当选为英国皇家学会会员,1680年当选为会长。   玻意耳是第一位把各种天然植物的汁液用作指示剂的化学家。他将汁液的酒精溶液滴在纸上,做成试纸来检验溶液的酸碱性,他用过的植物有紫罗兰、玫瑰花、洋红、石蕊等。直到今天,化学家还采用玻意耳的方法。他也是第一位给酸和碱下定义的化学家,他指出能将蓝色果汁变成紫红色的物质都是酸:颜色变化与此相反者则是碱。与此同时,他还研究很多检验方法,例如利用铜盐溶液是蓝色的来检验铜盐 利用能形成氯化银沉淀且沉淀在放置过程中逐渐变黑的现象来鉴定银。   玻意耳是近代化学的奠基人之一。他在化学学科和化学理论的发展上作出过重大贡献,是第一位阐述元素本性的科学家。化学主要起源于炼金术,到了15~16世纪,化学开始摆脱炼金术的束缚,但仍从属于医学和冶金,没能成为一门独立的科学。玻意耳从亲身的实践中体会到化学应该有其自身的目的,而不是医学和冶金学的从属品。玻意耳提出最重要的理论是化学元素概念。古希腊的亚里士多德早就提出四元素说,认为万物是由土、水、气、火四种元素构成的。帕拉采尔苏斯则提出三要素说,认为万物是由盐、硫、汞三种要素以不同比例构成的。玻意耳认为他们都没有涉及问题的本质,他认为元素是具有确定的、实在的、可察觉到的实物,它们应该是用一般化学方法不能再分为某些简单实体的实物。玻意耳第一次为化学元素下了明确的定义,使化学发展有了新的起点。   玻意耳还研究了磷和磷酸的性质,发现磷燃烧后产生白烟,它溶于水使溶液显酸性。磷与强碱溶液放在一起产生一种气体,它和空气接触后,生成缕缕白烟,即磷化氢的氧化反应。   玻意耳在物理学方面也有成就,研究得最多的对象是气体,其研究成果以发现气体的弹性(即可压缩性)最为有名。他在一支一端封死的U形玻璃管中充满水银,封闭的一端留有一部分空气。当加在空气上面的重量越大时,空气的体积就越小,从而证明了空气的体积与加在它上面的压力成反比,这就是著名的玻意耳定律。   玻意耳著有《怀疑派化学家》、《关于颜色的实验和考察》、《天然矿泉水实验室简编》、《空气发光》等多种书籍。   2. 马格拉夫,A.S. Marggraf (1709~1782)   德意志化学家。1709年3月3日生于柏林,1782年8月7日卒于柏林。1734年在弗赖贝格学习冶金学,后在普鲁士皇家药房工作。1754~1760年,任柏林科学院化学实验室主任,1760~1761年,任物理化学部主任,   1767年任科学院院长。曾为巴黎科学院的通讯院士。   他是分析化学的先行者,最早利用显微镜进行化学研究,改进了一些分析工具和天平,用火焰法区分钾和钠,对氧化钙、氧化镁和氧化铝进行了识别,建立了铁的试验法。   在无机化学方面,他最先制成黄血盐和氰化钾 支持燃素说。在有机化学方面,他1747年发现甜菜根中含有甜菜糖 还发现并提纯了樟脑。他是一个在多方面取得成就的化学家。著有《制糖的化学实验》   (1747)和《化学论文集》(1761~1767)。   3. 日夫鲁瓦, C.J.rfuluwa   在1729年,最早使用容量分析,用纯碳酸钾测定乙酸的浓度,他将乙酸逐滴加到一定量的碳酸钾溶液中,直到不再发生气泡为止。但容量分析是到了19世纪,由于成功地合成了各类指示剂,才得到广泛的应用。   4. 贝格曼,T.O. Bergman(1735~1784)   瑞典分析化学家。1735年3月9日生于卡特琳娜贝里,1784年7月8日卒于梅德维。曾在乌普萨拉大学学习。1761年任该校数学教授,1767年任化学教授。   贝格曼可称为无机定性、定量分析的奠基人。他首先提出金属元素除金属态外,也可以其他形式离析和称量,特别是以水中难溶的形式,这是重量分析中湿法的起源。当时还没有原子量,也没有化合物的分子式。贝格曼一生作了大量分析工作,对化学分析作过很多改进。1775年他编制出在当时最完备的亲和力表,表中将各种元素按亲和力(即反应和取代化合物中其他元素的能力)的大小顺序排列。此表受到广泛的赞扬。他曾多次分析矿泉水和矿物成分。过去为了测定化合物中金属的含量,必须先将它还原为金属单质,方法十分繁琐费力。贝格曼提出了一种新的方法,只须将金属成分以沉淀化合物的形式分离出来,如果事先已测知沉淀的组成,即可算出金属的含量。他在1780年出版的《矿物的湿法分析》一书中,提供了那一时期矿石重量分析法的丰富历史资料。这本著作涉及到银、铅、锌及铁的矿物通过湿法过程的重量分析法。所介绍的测定组分包括金、银、铂、汞、铅、铜、铁、锡、铋、镍、钴、锌、锑、镁和砷。1779年他还曾编著过一些书,系统地总结了当时分析化学发展所取得的成就。在书中介绍了许多检定反应,例如:用黄血盐检定铁、铜和锰,用草酸和磷酸铵钠检定钙,用硫酸检定钡和碳酸盐,用石灰水检验碳酸盐等。他还曾根据蓝色试纸遇酸变红的特性检验出&ldquo 固定空气&rdquo (二氧化碳)具有酸性,称它为&ldquo 气酸&rdquo 。他在分析工作中广泛使用过吹管分析,认为吹管是分析上很有价值的工具。他的论文收集在 6卷本的《物理和化学论文集》中。   5. 克拉普罗特,M.H. Klaproth (1743~1817)   德意志分析化学家和矿物学家。 1743年12月1日生于韦尼格罗德,1817年1月1日卒于柏林。1759年在一个药剂师处当学徒。1771年到柏林开设药店,并在一所外科医学院任教。1792年任柏林炮兵学校讲师。   1810年成为柏林大学第一任化学教授和柏林科学院院士。1795年当选为英国皇家学会会员。   他在分析化学方面做了重大改进并加以系统化。在重量分析中,强调沉淀必须烘干或灼烧至恒重。为了测定矿物中的金属含量,他采用称量适当的沉淀化合物,再利用换算因素求得金属含量。他最先记录下分析测定的物质成分的实际百分比。这样做,不仅可以发现分析过程中的误差,而且往往可以在被化验的矿物中发现新元素。他不仅改进了重量分析的步骤,还设计了多种非金属元素测定步骤。他准确地测定了近 200种矿物的成分及各种工业产品如玻璃、非铁合金等的组分。   克拉普罗特1789年分析沥青铀矿时发现元素铀并命名。同年分析锆石时发现元素锆。1795年分析匈牙利的红色电气石时,证实英国W.格雷哥尔1791年发现的新元素,并取名为钛。1798年证实1782年F.J.米勒· 冯· 赖兴施泰因在金矿中发现的新元素,并命名为碲。1803年证实同年J.J.贝采利乌斯发现的铈并命名。他是A.-L.拉瓦锡反燃素说的拥护者。编有《矿物学的化学知识》一书。   6. 贝托莱,C.-L. Berthollet (1748~1822)   法国化学家。1748年 12月9日生于上萨瓦省塔卢瓦尔,1822年卒于巴黎附近的阿尔克伊。最初入阿纳西学院学习。1768年在意大利都灵大学获医生资格。1778年任一印刷厂的检验员,后任厂长。1794年任高等师范学校教授。1780年当选为法国科学院院士。   1789年发现氯的漂白性质,并提出通过滴定靛蓝标准溶液来测定漂白液中氯含量的容量分析方法。   贝托莱1785年首先提出氨由氮和氢组成。1787年与A. -L.拉瓦锡等人共同发表化学命名法。1791年指出动物的机体中含有元素氮。他测定氰氢酸和氢硫酸的组成,发现它们的酸性,指明拉瓦锡提出的所有酸含有氧的理论是错误的。他主张物质的组成是可变的,反对J.-L.普鲁斯特提出的定比定律。因此,非整比化合物称为贝托莱体化合物。他发表过《亲和力定律的研究》(1801)论文,著有《论化学静力学》(1803) 一书。   7. 普鲁斯特,J.-L. Proust (1754~1826)   法国分析化学家。1754年9月26日生于昂热,1826年7月5日卒于昂热。1774年在巴黎学习化学。后迁居西班牙,先后在塞哥维亚、萨拉曼卡等地的一些学校中任教 1789年在马德里任教授。在马德里期间,西班牙国王查理四世为他装备了非常豪华的皇家实验室,任命他为实验室主任。因此,他的实验室极适合于做定量分析工作。1806年普鲁斯特离开西班牙访问巴黎。1808年法军攻占马德里时,皇家实验室被毁。1816年被选入巴黎科学院。   普鲁斯特的主要贡献是确立了定比定律。从A.-L.拉瓦锡和18世纪后期的著名化学家出版的著作中可以明显看出,化合物有固定组成的概念已被普遍接受。然而,当时法国的化学权威C.-L.贝托莱关于化合物的组成可变的观点仍很流行。普鲁斯特的更广泛、更系统和更精密的研究,使定比定律得以在严谨的科学实验的基础上确立。1799年他明确地阐述了这一定律。从1802年至1808年间,普鲁斯特分析了上千种样品,在《物理杂志》上发表许多文章,以确凿的实验数据击败了贝托莱的论点,确立了定比定律,并指出贝托莱所用的化合物样品是不纯的,因而普鲁斯特也是第一位正确区分纯净物和混合物的化学家。他还分离出葡萄糖,发现某些植物中有糖存在,区分出氧化物和氢氧化物之间的差别,用硫化氢从金属盐溶液中沉淀出重金属。   8. 盖-吕萨克,J.-L. Gay-Lussac (1778~1850)   法国化学家。1778年12月6日生于圣莱奥纳尔,1850年5月9日卒于巴黎。1797年入巴黎综合工科学校学习,1800年毕业。法国著名化学家C.-L.贝托莱请他到他的私人实验室当助手。1802年他任巴黎综合工科学校的辅导教师,后任化学教授。1906年当选为法国科学院院士。1809年任索邦大学物理学教授。1832年任法国自然历史博物馆化学教授。   真正的容量分析法的建立应归功于法国J.-L.盖-吕萨克。1824年他发表漂白粉中有效氯的测定,用磺化靛青作指示剂。随后他用硫酸滴定草木灰,又用氯化钠滴定硝酸银。这三项工作分别代表氧化还原滴定法、酸碱滴定法和沉淀滴定法。络合滴定法创自J.von李比希,他用银(Ⅰ)滴定氰离子。   盖-吕萨克1805年研究空气的成分。在一次实验中他证实,水可以用氧气和氢气按体积 1:2的比例制取。1808年他证明,体积的一定比例关系不仅在参加反应的气体中存在,而且在反应物与生成物之间也存在。1809年12月31日盖-吕萨克发表了他发现的气体化合体积定律(盖-吕萨克定律),在化学原子分子学说的发展历史上起了重要作用。他1802年发现了气体热膨胀定律。1813年为碘命名。1815年发现氰,并弄清它作为一个有机基团的性质。1827年提出建造硫酸废气吸收塔,直至1842年才被应用,称为盖-吕萨克塔。   9. 莫尔,K.F.moer   莫尔对容量分析作出卓越贡献,他设计的可盛强碱溶液的滴定管至今仍在沿用。他推荐草酸作碱量法的基准物质,硫酸亚铁铵(也称莫尔盐)作氧化还原滴定法的基准物质。   10.贝采利乌斯,J.J. Berzelius (1779~1848)   瑞典化学家。1779年 8月20日生于东约特兰省的林雪平,1848年8月7日卒于斯德哥尔摩。1796年入乌普萨拉大学医学系学习,1802年获医学博士学位。后任斯德哥尔摩医学院医学、植物学和药物学助理教授,1807年任教授。1815~1832年,任斯德哥尔摩的卡罗琳外科医学院的化学教授。1808   年选入斯德哥尔摩皇家科学院,1818~1832年,任终身秘书。他的研究工作涉及许多领域。   18世纪分析化学的代表人物首推J.J.贝采利乌斯。他引入了一些新试剂(如氢氟酸用于分解硅酸盐岩石和二氧化硅测定)和一些新技巧,并使用无灰滤纸、低灰分滤纸和洗涤瓶。他是第一位把原子量测得比较精确的化学家。除无机物外,他还测定过有机物中元素的百分数。他对吹管分析尤为重视。吹管分析可认为是冶金操作之微型化,即将少许样品置于炭块凹处,用氧化或还原焰加热,以观察其变化,从而获得有关样品的定性知识。此法沿用至19世纪,其优点是迅速、所需样品量少,又可用于野外勘探和普查矿产资源等。他创始了重量分析,最早分离出硅(1810)、钽(1824)和锆(1824) 详尽地研究了碲的化合物(1834)和稀有金属(钒、钼、钨等)的化合物。他大大改进了分析方法(使用橡皮管、水浴、干燥器、洗瓶、滤纸、吹管分析)和燃烧分析方法(1814)。   在发展原子论方面,贝采利乌斯认为,为了确立原子学说首先应以最大的精确度测出尽可能多的元素的原子量。1814年他发表了包含41种元素的原子量表,1818年增加到45种元素,1826年增加到50种元素。后一张表实际上同现在的数值一样(除了碱金属和银的数值是现代数值的2倍)。他发现了几种新元素:铈(1803)、 硒(1817)、钍(1828)。他还提出了新的元素符号体系,沿用至今。   在电化学方面,贝采利乌斯1814年提出了电化二元论:化合物都是由两种电性质不同(即带正电荷和负电荷)的组分构成的,开创了对分子中各原子间相互关系的探索。在研究金属和非金属的特性,以及解释无机化合物性质和制备过程方面获得成功。   在有机化学方面,贝采利乌斯在1806年最早提出&ldquo 有机化学&rdquo 这个名称。他发现了外消旋酒石酸,并由于它与酒石酸有相同的化学组成,但有不同的物理性质而认识到同分异构现象,并命名。1835年他发现了催化作用,并命名。   贝采利乌斯著有《化学教程》(2卷,1808~1812)和《电的化学作用和化学比例理论》(1814)。   11.罗塞, H. Rose ,(1795~1864 )   1829年,首次明确提出和制定出系统定性分析方法,并提出一个简明的系统分析图表。   12.比拉迪尼, H. de la Bellardiere   1826年, 首次制得碘化钠,并以淀粉为指示剂,将它应用于次氯酸钙的滴定。开创了&ldquo 碘量法&rdquo 的研究与应用。   13.李比希,J. V. Liebig (1803~1873)   德意志有机化学家。1803年 5月12日生于达姆施塔特(现属联邦德国),1873年4月18日卒于慕尼黑。他父亲是医药、染料、颜料和化学药品商人,有些货物在家里制造,因此李比希自幼就接触到化学实验。1818年曾当药剂师的学徒。1820年在波恩大学学习,一年后转学到埃朗根大学,1822年获哲学博士学位。同年到巴黎,常听J.-L.盖-吕萨克和P.-L.杜隆等著名化学家的讲演。不久就在盖-吕萨克的实验室中工作。1824年回到德国,任吉森大学化学教授,创立了著名的吉森实验室。这是世界上第一个系统地进行化学训练的教学实验室。1852年李比希任慕尼黑大学教授。1840年当选为英国皇家学会会员。1842年当选为法国科学院院士。   1830年,在前人工作基础上,将碳氢分析发展成为精确的定量分析技术,并对许多有机化合物进行分析,获得了相当精确的结果,写出了这些化合物的化学式。他最早使用银(Ⅰ)滴定氰离子,开创络合滴定法。但1945年施瓦岑巴赫发明了氨羧配位剂(乙二胺四乙酸,EDTA)之后,络合滴定法才迅速发展起来。   李比希在有机化学领域内的贡献多得惊人。他作过大量的有机化合物的准确分析,改进了有机分析的若干方法,定出大批化合物的化学式,发现了同分异构现象。他在化学上的重要贡献还有:发现并分析马尿酸(1829) 发现并制得氯仿和氯醛(1831) 与F.维勒共同发现安息香基并提出基团理论(1832),为有机结构理论的发展作出贡献 提出多元酸理论(1839)。1840年以后的30年里,他转而研究生物化学和农业化学。他用实验方法证明:植物生长需要碳酸、氨、氧化镁、磷酸、硝酸以及钾、钠和铁的化合物等无机物 人和动物的排泄物只有转变为碳酸、氨和硝酸等才能被植物吸收。这些观点是近代农业化学的基础。他大力提倡用无机肥料来提高收成。他还认为动物的食物不但需要一定的数量,还需要各种不同的种类,或有机物或无机物,而且须有相当的比例。他又证明糖类可生成脂肪。还提出发酵作用的原理。李比希一生共发表了 318篇化学和其他科学的论文。著有:《有机物分析》(1837)、《生物化学》(1842)、《化学通信》(1844)、《化学研究》(1847)、《农业化学基础》(1855)、《关于近世农业之科学信件》(1859)等。他还和维勒合编了《纯粹与应用化学词典》。1831年创办《药物杂志》并任编辑,1840年后此杂志改名为《化学和药物杂志》,他和维勒同任编辑。   14.本生, R. W. Bunsen, (1811~1899)   化学家。1811年3月31日生于格丁根,1899年8月16日卒于海德堡。曾在霍尔茨明登学院肄业,不久考入格丁根大学学习化学,1830年获哲学博士学位。随后他到德、法、奥地利、瑞士等地作科学研究旅行 3年。后在格丁根、马尔堡和布雷斯劳等地的大学任教。1852年任海德堡大学教授,直到1899   年退休。他1842年当选为伦敦化学会会员。1853年当选为法国科学院院士。1858年当选为英国皇家学会会员。   1859年与G.R.基尔霍夫一起发明了第一台以光谱分析为目的的分光镜,创立光谱分析法,并通过实践使其成为分析化学的一个重要分支。本生提出每一化学元素具有特征光谱线,为元素发射光谱分析奠定基础。并用以研究太阳的化学成分,证实了太阳上有许多地球上常见的元素,由此说明其他天体和地球在化学组成上的同一性。他和基尔霍夫借助于光谱分析,发现两个新元素铯(1860)和铷(1861)。   本生的科研成就很多,重大的有:他离析出二甲胂基氧,测定所有易挥发的二甲胂基化合物的蒸气密度,得出正确的化学式。本生这一研究工作,被J.J.贝采利乌斯用来证实他的理论:有机化合物和无机化合物类似,只是后者的元素被前者的基所代替。1841年本生发明锌-碳电池,后称本生电池。1853年发明本生灯,利用此灯检定出许多矿物的组分,这种灯一直沿用至今。1855年发明吸收比色计。他1860年获科普利奖章,1877年获戴维奖章,1898年获英国工艺协会的艾伯特奖章。著有《气体测量方法》(1857、1877)、《光谱化学分析》(1860年与基尔霍夫合著),1892年与H.E.罗斯科合著《光化学研究》。   15.弗雷泽纽斯, C. R. Fresenius,(1818~1897)   C.R.弗雷泽纽斯是19世纪分析化学的杰出人物之一,1841年发表《定性化学分析导论》一书,提出&ldquo 阳离子系统定性分析法&rdquo ,其阳离子分析方案一直沿用。该书于十九世纪中叶被译成中文,书名《化学考质》。他创立一所分析化学专业学校,至今此校仍存在 并于1862年创办德文的《分析化学》杂志,由其后人继续任主编至今。他编写的《定性分析》、《定量分析》两书曾译为多种文字,包括晚清时代出版的中译本,分别定名为《化学考质》和《化学求数》。他将定性分析的阳离子硫化氢系统修订为目前的五组,还注意到酸碱度对金属硫化物沉淀的影响。在容量分析中,他提出用二氯化锡滴定三价铁至黄色消失。   16.马格里特,F. Margueritte   1846年,首次应用高锰酸钾法测定铁。此后将该方法扩展,应用于测定其它可被还原为低价化合物的金属   17.勒克, E. Lunk   1877年,首次人工合成酸碱变色指示剂-酚酞。   18.贝仑特,R. Behrend   1893年,发明了电位滴定法,并且首先画出了电位滴定曲线。   19.奥斯特瓦尔得   1894年,以电离平衡理论为基础,第一次对酸碱指示剂的变色机理进行了解释。   20.高贝尔斯莱德, F. Goppelsroder   1901年,研究发现,利用混合物溶液的各组分在滤纸上扩散速度的不同所形成的色层,可以定性分析溶液的成分。   21.茨维特,С.Tswett (1872~1919)   俄国植物生理学家和化学家。1872年 5月14日生于意大利阿斯蒂,1919年6月26日卒于苏联沃罗涅日。1896年获日内瓦大学哲学博士学位后,全家移居俄国。1901年获喀山大学植物学学士学位。1902年任华沙大学讲师,1907年任兽医学院教授,1908年任华沙理工大学教授。   他最重大的贡献是发明分析化学中极重要的实验方法──色谱法。他的第一篇关于色谱法的论文发表在1903年华沙的《生物学杂志》上。1906~1910年的论文都发表在德国的《植物学杂志》上。由于他的论文发表在不大知名的期刊上,所以当时没有引起化学界的注意。在这几篇论文中,他详细地叙述了利用自己设计的分离装置,分离出胡萝卜素、叶绿素和叶黄素的过程,即将植物叶子的萃取液放在装填碳酸钙的玻璃柱中,用石油醚淋洗,组分在柱中分离形成色带。他将这种方法命名为色谱法,开创了色谱分析的先河。色谱的英文一词即来源于俄文。1931年,R.库恩才发现茨维特所发明色谱法的重要性,才使此法得到普遍的推广和应用。   茨维特应用化学方法研究细胞生理学。1900年他在树叶中发现了两种类型的叶绿素:叶绿素a和叶绿素b,后来又发现了叶绿素c,并分离出纯的叶绿素。   22.埃米希,F. Emich(1860~1940)   分析化学家。1860年9月5日生于格拉茨,1940年 1月22日卒于同地。1878~1884年,在格拉茨工业学院学习化学,1888年任该学院的讲师,1889年任副教授,1894~1931年任教授。埃米希还是维也纳科学院院士。   埃米希是公认的近代微量分析奠基人。他设计和改进微量化学天平,使其灵敏度达到微量化学分析的要求,改进和提出新的操作方法,实现毫克级无机样品的测定,并证实纳克级样品测定的精确度不亚于毫克级测定。他主要研究无机微量分析化学。19世纪90年代用显微镜观察各种沉淀反应,
  • 济南商品监管检测中心检出“二氧化硫银耳”
    昨天,济南市工商局商品监管检测中心“食品安全免费检测进社区”活动来到七里山东区,市民送检了30多种食品,经检测,有一个品种的银耳和两个品种的话梅肉二氧化硫含量超标。   昨天上午九点钟,4辆检测车开到了社区菜市场旁,工商人员将食品安全知识宣传展板一摆出,立即吸引了不少市民前来观看,并围着工商人员咨询食品安全知识,有的市民提着刚买的苔菜、韭菜、芹菜、生姜过来请工商检测人员帮忙检测。   市民徐女士特意跑回家将孩子喜欢吃的杏仁、密红果、红枣、话梅、苹果干、香蕉干拿来请工商检测人员检测一下是否合格。还有的居民将家里吃的咸鸭蛋拿来检测。陈女士则将刚买的海蜇、虾仁、扇贝、萝卜咸菜拿来检测,也有的将银耳、红枣、莲子等干果类食品拿来检测。   仅一会儿时间,市民送检食品就达33种。工商检测人员分别对蔬菜的农药残留、干果(菜)类的二氧化硫含量、咸鸭蛋、咸菜类的亚硝酸盐含量,海产品的甲醛含量进行了快速检测,发现一个品种的银耳、两个品种的话梅肉二氧化硫含量超标。   济南市商品监管检测中心负责人葛峰介绍,从近期食品检测情况看,省城蔬菜类农药残留超标现象很少,但话梅肉、糖姜片二氧化硫含量超标比较普遍。工商部门提醒市民,购买干制食品时不要贪图色泽鲜艳,并尽量到大型商场超市,便于维权。
  • 全自动乌氏粘度计在聚丙烯酸钠中的应用
    聚丙烯酸钠(PAAS),化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色粘稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得,无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。聚丙烯酸钠(PAAS)材料的相对分子质量因生产条件会有较大的波动,某些性质会随着相对分子质量的变化产生较大的差别,当聚丙烯酸钠(PAAS)材料相对分子量较小时,其状态为稀溶液,常用作水处理剂和油田助剂,当相对分子量增大时,聚丙烯酸钠(PAAS)材料的状态变为弹性凝胶,这时更多被用于絮凝剂或增稠剂之中。工业上使用乌氏粘度法测试特性黏度对聚丙烯酸钠(PAAS)材料加以规范,例如聚丙烯酸钠(PAAS)材料作为水处理剂时特性黏度被规定应处于(0.060~0.10dl/g,30℃)的区间之内,偏离这个范围的聚丙烯酸钠(PAAS)材料的水处理性能会大幅度下降。精准,高效的测试特性黏度是整个聚丙烯酰胺(PAAS)材料质量控制环节的重中之重。全自动乌氏粘度仪IV8000X系列具有操作方便,分子量适用范围广泛,数据重复性良好等优点,所以成为聚丙烯酸钠(PAAS)等高分子材料化验分析中的常用实验仪器,为聚丙烯酸钠(PAAS)材料的研发及生产提供更精准的实验数值参照。以杭州卓祥科技有限公司的IV8000X系列全自动在线稀释型乌氏粘度仪、MSB系列多位溶样块、ZPQ智能配液器一整套黏度测试设备为例。 IV8000X系列全自动在线稀释型乌氏粘度仪相较于传统的手动测试方法:⑴ 拥有更高的温控精度以及均匀度:IV8000X系列乌氏粘度仪所使用的HCT系列高精度恒温浴槽的温控精度优于“±0.01℃”,让实验得出的数据更精准,数据重复性更稳定。⑵ 特殊的检测方式:采用不锈钢铠装光纤,可满足测试不同颜色的样品,耐腐蚀,且使用寿命长。⑶ 粘度管不再是耗材:仪器自动排废液、清洗并干燥粘度管,粘度管无需从浴槽中取出,粘度管不易损坏,减少耗材成本支出。同时具有废液分类收集功能,减少废液回收成本及避免因多种废液混合导致的风险。⑷ 实验流程自动化:IV8000X系列自动稀释型乌氏粘度仪在 “单点法”的测量过程中能实现自动测量-自动排液-自动清洗-自动干燥的自动化实验流程,在“多点法”的测量过程中每个测量位都具有连续测量、在线自动稀释样品、自动混匀、自动清洗、自动干燥等功能,在多次测量及清洗干燥整个过程中无需人员看管。
  • 意大利VELP油脂氧化分析仪能分析什么
    OXITETS油脂氧化分析仪通过温度和压力这两个因素进行氧化过程加速, 该仪器测量了两个钛反应仓在恒定温度下氧的压力变化, 从而监测样品中反应性成分对氧的吸收情况, 并通过软件自动生成一个IP值,可用于食品/饲料/油/脂氧化稳定性分析。 OXISoft软件有不同的语言选择, 并提供了一个预安装的方法库,这些方法与各种各样的样本类型相关, 操作员可以使用和修改它们,或者创建个性化的方法, 为了获得可见的氧化曲线,测试样品应含有2-4%以上的不饱和脂肪酸。该软件具有如下几个方面的应用分析模块: 1、重复性:在同一样品或标准上进行一系列测试以确认其IP, 计算数据的准确性和重复性。2、新鲜度测定:当原材料的是否新鲜和价值相关时, 可以对原材料进行测定以确定其新鲜度。3、配方比较:在相同的条件下, 需要哪些成分才能创造出Z稳定的成品配方,通过对结果的比较,OXISoft&trade 将能够自动识别出较高的IP即用于食品研发应用的Z佳配方。4、包装比较:特别适用于测试哪种包装能使产品保持在xin鲜的状态。5、IP间隔测定:相同的样品再不同的时间取样来测定IP值, 了解存储不同时间的样本氧化稳定性的变化。6、货架期研究:在不同的温度下测试相同的产品,得到线性方程,操作者可以推断和估计样品在室温下的氧化稳定性。 OXISoft&trade 强大而直观的软件测试获得样品的氧化曲线, 其特征是诱导期(IP,诱导期是达到氧化起始点所需的时间, 对应于可检测到的酸败程度或氧化速率的突然变化,诱导期越长,抗氧化稳定性越好,操作员可以为单个测试创建测试报告,或者比较不同的分析以更好地解析数据。 OXITEST直接作用于整个样品, 不需要进行初步的脂肪分离,确保了对固体,半固体和液体样品, 原材料和成品测定具有代表性的结果。VELP 已经发布了OXITEST在多个应用领域的应用文章,同时多个实验室也使用该方法发表了多篇高质量的研究论文,OXITEST具有稳定,准确,重复性高的特点,其应用行业有:食品和饲料行业/制药和化工里行业/化妆品行业。
  • 天津大学首届“走进材料微观世界”微观摄影大赛作品集锦
    在我们肉眼看不到的纳米世界可能隐藏着意想不到的精彩一群天大学子用严谨的科学态度和鲜活的艺术创造力透过显微镜发现世界之美通过少许着色呈现自然之美在纳米的天地这些微小的结构有如美轮美奂的画作不禁让人感叹科学的奇妙腊 梅作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。采用水热法制备了泡沫镍上负载的Ni-Zn-S用于电催化水分解。棕色的泡沫镍像是梅花的树干,上面生长的一颗颗几微米的合金,像一朵朵鲜红的梅花。在寒冷的冬天,树叶还未见长出来几片,一朵朵鲜红的梅花却不畏寒冬,争先绽放,为败落稀零单调的寒冬,增添了闪亮的色彩。晴空樱花作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。该样品是采用水热法制备的泡沫镍上负载的Ni-Zn-S,用于电催化水分解。春暖花开,站在樱花树下,抬头仰望天空,樱花像一只粉色的蝴蝶在蔚蓝的天空下飞翔。泡沫镍像一棵树干,反应釜里的溶液像大地的养分,一直保持的溶液温度像太阳的光照,经历了十几个小时的保温,泡沫镍上不断的长出绽放的花朵。秋菊作者:胡瑾图片是用学院的Hitachi S-4800场发射扫描电子显微镜拍摄的。采用水热法制备了泡沫镍上负载的Zn-Co-S用于电催化水分解。世间万物,息息相关。如果不看下面的标尺,以为这就是一朵完美绽放的菊花。不禁感叹,在微观的世界,也存在着这么精致的花朵。它们在自己的小天地下静静地绽放。七彩作者:王禹轩拍摄仪器:冷场发射扫描电镜 s4800样品材料:本样品是通过1300度高温快速灼烧1分钟的纯钼,作为制备氧化物弥散强化合金(ODS)的第二相弥散体。ODS由于其优异的抗蠕变性能、良好的高温组织稳定性和良好的抗辐照性能,其常被应用于高温涡轮发动机叶片以及换热器管道等应用中。艺术处理:通过本方法处理纯钼展现出规整的微观结构,以此为基础通过后期处理试图描绘一幅彩虹色宝石原石的照片。通过不同颜色配色及灰色底色的映衬展现出整体的色彩丰富度。三维多孔碳材料作者:杨浩然样品材料为三维多孔碳材料,使用蔡司热场扫描电镜Sigma 300拍摄。样品以氯化钠为结构模板,葡萄糖为碳源,经过冻干和热处理后获得碳包覆氯化钠颗粒结构,水洗去除氯化钠模板后,获得完美的三维多孔结构。新颖性在于以氯化钠为模板,后续可以水洗去除,可以应用于能源转换与存储领域如锂电池钠电池及电催化方向。胭脂海棠闹春浓作者:眭思密应用背景:钠离子电池电极材料仪器信息:TEM JEM-2100f样品制备:样品为溶剂热法制备的MoS2/CNTs复合薄膜。纳米花状的MoS2附着于CNTs外壁,单壁CNTs管束交织形成网络,层层网络重叠形成薄膜。拍照难点:溶剂热反应中,MoS2随机分散于CNT外壁,该照片准确捕捉了二者之间的空间相对关系,并且单壁CNTs管束、MoS2片层边缘都清晰可见。图片描述:“海棠不惜胭脂色,独立蒙蒙细雨中”,图片好似一朵盛开在两个枝杈间的海棠花,像胭脂带妆的少女,是青春、活力、娇美的象征。作为报春的使者,她让大地回春、春意渐浓,从图片中可以看出其蓬勃的生命力。碳纳米管森林作者:张睿&李乐应用背景:单壁碳纳米管垂直阵列具有巨大的比表面积、优异的导电性、良好的化学稳定性以及有序的结构,被认为是电极材料的理想候选材料。仪器名称及型号:蔡司热场扫描电镜(sigma 300)样品制备过程的难度、新颖性:本实验开发了新型纳米颗粒催化剂,可以在二维、三维基底上负载催化剂,并能够利用CVD法在基底上合成碳纳米管阵列材料,具有普适性,便于进行材料的宏量制备。层峦叠翠作者:李乐仪器:原子力显微镜AFM5500作品介绍:氧化铝碳纳米管阵列。锂金属负极的体积变化是实现金属锂电池实际应用需克服的障碍。氧化铝-碳纳米管阵列可以有效降低局部电流密度、缓解锂在充放电过程的体积膨胀。利用原子层沉积法,实现氧化铝在阵列内的均匀沉积。难度点:材料顶部仍应满足均匀的高度差,证实沉积后样品结构的稳定性。艺术处理:样品三维图显示出均匀的高度差,展现出重峦叠翠的景象。五彩斑斓的石头作者:李乐仪器:透射电镜JEM-2100F作品介绍:氧化铝包覆四氧化三铁纳米颗粒,三维基体上生长高有序度碳纳米管阵列可以作为优良电极材料应用于锂、钠、钾离子电池。然而传统电子束蒸发镀膜法沉积用于生长碳纳米管阵列的催化剂,难以实现其在三维基体上的均匀负载。本实验制备的均匀分散的氧化铝包覆四氧化三铁催化剂能够实现在三维基体上的均匀负载,并在基体上生长高有序度碳纳米管阵列。难度点:氧化铝包覆四氧化三铁纳米颗粒应满足粒径均匀、高面密度,以实现高有序度碳纳米管阵列的生长。白珊瑚的深海家园作者:白翔仁作品说明:材料为原位合成氧化镁纳米颗粒团簇的SEM图片,使用S4800扫描电镜拍摄。纳米氧化镁颗粒单个粒径约为5-10 nm,成团簇状分布,单个团簇粒径为300 nm左右,附着在基底上。纳米颗粒导电性差,且粒径细小,通过调整拍摄参数,得到衬度良好、分辨率高的团聚形貌图。图片说明:经过上色处理的作品名为《白珊瑚的深海家园》,将图片灰度调整为绿度,将纳米氧化镁图案侧构建为海底礁石上分布的白珊瑚球的意象。幽暗的海底,一块礁石上,一个个白色的珊瑚球附着在上面,融入静谧的海底世界中。五彩池作者:白翔仁作品说明:材料为纳米颗粒增强铝基复合材料晶粒的STEM图片,使用F200透射电镜拍摄。材料呈现纳米晶组织,晶粒约为200 nm左右。样品通过打磨、Gatan离子减薄仪减薄,得到块体透射样品,通过拍摄参数,得出取向衬度良好、分辨率高的微观组织图片。图片描述:经过处理的作品名为《五彩池》,通过色谱上色及水波微处理,将不同程度的晶粒构建为水底卵石的意象。阳光照射下,水波微微荡漾,掩映着水底的卵石时隐时现,像传说中的五彩池一般。为进一步激发学生们的科研兴趣和创新意识,提升实验技能水平,由天津大学材料学院主办,材料科学与工程国家级实验教学示范中心承办的天津大学首届“走进材料微观世界”—微观摄影大赛于近日成功举办。此次大赛受到了天津大学资产处、天津大学分析测试中心和化工学院大型仪器测试平台的大力支持和积极参与。经历一个月的征稿,共收到来自材料学院、化工学院、理学院、建工学院等全校118名学生的161幅作品。天津大学资产与实验室管理处副处长张为对本次大赛给予了高度肯定,他认为大赛顺应了国家加强高等学校实践教学、实践育人的要求,加强了不同专业、不同领域学科的交流和进步,展现了参赛学生们的科学素养和创新精神。材料学院院长胡文彬向本次大赛中的工作人员和评委老师以及各支持单位表示衷心的感谢,寄语同学们能永葆初心,在科研路上砥砺前行,真正认识到科学和材料的魅力所在!微观纳米世界藏匿着许多美丽与惊喜,等待着与有心人的相遇
  • 肉类氧化稳定性分析好方法
    肉是人类饮食中最古老的食物之一,如今肉类生产已达到工业规模。肉类蛋白质含量很高,碳水化合物含量很低,但脂肪含量会因动物的种类、品种、身体的解剖部位和烹饪方式而有很大差异。由于细菌发现了营养丰富的基质,肉类是一种极易腐烂的产品。其中,脂质氧化导致异味。为了保存肉类,为了储存和食用,肉质、多汁、风味或颜色都要使用添加剂来保护。 食品最重要的质量变化之一是由不饱和脂肪酸吸收氧气,自由或酯化。脂肪的自动氧化是一种由氧气、光、高温、金属痕迹,有时还有酶推动的化学反应。 OXITEST油脂氧化分析仪可以测定各种类型样品的氧化稳定性,而不需要进行初步的脂肪分离。根据最常见的应用,OXITEST加速氧化过程是因为温度和氧气压力这两个加速因素。该仪器测量两个腔室内的绝对压力变化,监测样品中反应组分的吸氧,并自动生成IP值。IP定义:IP代表诱导期,它是到达氧化起始点所需的时间,对应于可检测的酸败程度或氧化速率的突然变化。诱导期越长,抗氧化稳定性越高。OXITEST为质量控制和研发实验室提供了以下检测:◆原材料和配料的质量控制◆运输和对货物的影响◆储存期研究◆产品开发与行为◆配方优化◆成分和替代成分测试◆流程优化◆包装研究和替代包装比较
  • 国家质检总局国标委发布94项分析测试国家标准
    11月10日,国家质检总局、国家标准委发布了398项国家标准。该批国家标准中,制定239项,修订159项 强制性标准43项,推荐性标准348项,指导性技术文件7项。标准名称、编号及实施日期在《中华人民共和国国家标准批准发布公告》(2010年第8号)中向社会发布。其中,与分析测试直接相关的国家标准共计94项。   附:与分析测试直接相关的国家标准 序号 国家标准编号 国  家  标  准  名  称 代替标准号 实施日期 1 GB/T 13071-2010 地质水样 234U/238U、230Th/232Th放射性活度比值的测定 萃淋树脂萃取色层分离α能谱法 GB/T 13071-1991 2011-2-1 2 GB/T 13072-2010 地质水样 226Ra/228Ra 放射性活度比值测定 射气法-β法 GB/T 13072-1991 2011-2-1 3 GB/T 14352.1-2010 钨矿石、钼矿石化学分析方法 第1部分:钨量测定 GB/T 14352.1-1993 2011-2-1 4 GB/T 14352.2-2010 钨矿石、钼矿石化学分析方法 第2部分:钼量测定 GB/T 14352.2-1993 2011-2-1 5 GB/T 14352.3-2010 钨矿石、钼矿石化学分析方法 第3部分:铜量测定 GB/T 14352.3-1993 2011-2-1 6 GB/T 14352.4-2010 钨矿石、钼矿石化学分析方法 第4部分:铅量测定 GB/T 14352.4-1993 2011-2-1 7 GB/T 14352.5-2010 钨矿石、钼矿石化学分析方法 第5部分:锌量测定 GB/T 14352.5-1993 2011-2-1 8 GB/T 14352.6-2010 钨矿石、钼矿石化学分析方法 第6部分:镉量测定 GB/T 14352.6-1993 2011-2-1 9 GB/T 14352.7-2010 钨矿石、钼矿石化学分析方法 第7部分:钴量测定 GB/T 14352.7-1993 2011-2-1 10 GB/T 14352.8-2010 钨矿石、钼矿石化学分析方法 第8部分:镍量测定 GB/T 14352.8-1993 2011-2-1 11 GB/T 14352.9-2010 钨矿石、钼矿石化学分析方法 第9部分:硫量测定 GB/T 14352.9-1993 2011-2-1 12 GB/T 14352.10-2010 钨矿石、钼矿石化学分析方法 第10部分:砷量测定 GB/T 14352.10-1993 2011-2-1 13 GB/T 14352.11-2010 钨矿石、钼矿石化学分析方法 第11部分:铋量测定 GB/T 14352.11-1993 2011-2-1 14 GB/T 14352.12-2010 钨矿石、钼矿石化学分析方法 第12部分:银量测定 GB/T 14352.12-1993 2011-2-1 15 GB/T 14352.13-2010 钨矿石、钼矿石化学分析方法 第13部分:锡量测定 GB/T 14352.13-1993 2011-2-1 16 GB/T 14352.14-2010 钨矿石、钼矿石化学分析方法 第14部分:镓量测定 GB/T 14352.14-1993 2011-2-1 17 GB/T 14352.15-2010 钨矿石、钼矿石化学分析方法 第15部分:锗量测定 GB/T 14352.15-1993 2011-2-1 18 GB/T 14352.16-2010 钨矿石、钼矿石化学分析方法 第16部分:硒量测定 GB/T 14352.16-1993 2011-2-1 19 GB/T 14352.17-2010 钨矿石、钼矿石化学分析方法 第17部分:碲量测定 GB/T 14352.17-1993 2011-2-1 20 GB/T 14352.18-2010 钨矿石、钼矿石化学分析方法 第18部分:铼量测定 GB/T 14352.18-1993 2011-2-1 21 GB/T 14353.1-2010 铜矿石、铅矿石和锌矿石化学分析方法 第1部分:铜量测定 GB/T 14353.1-1993 2011-2-1 22 GB/T 14353.2-2010 铜矿石、铅矿石和锌矿石化学分析方法 第2部分:铅量测定 GB/T 14353.2-1993 2011-2-1 23 GB/T 14353.3-2010 铜矿石、铅矿石和锌矿石化学分析方法 第3部分:锌量测定 GB/T 14353.3-1993 2011-2-1 24 GB/T 14353.4-2010铜矿石、铅矿石和锌矿石化学分析方法 第4部分:镉量测定 GB/T 14353.4-1993 2011-2-1 25 GB/T 14353.5-2010 铜矿石、铅矿石和锌矿石化学分析方法 第5部分:镍量测定 GB/T 14353.5-1993 2011-2-1 26 GB/T 14353.6-2010 铜矿石、铅矿石和锌矿石化学分析方法 第6部分:钴量测定 GB/T 14353.6-1993 2011-2-1 27 GB/T 14353.7-2010 铜矿石、铅矿石和锌矿石化学分析方法 第7部分:砷量测定 GB/T 14353.7-1993 2011-2-1 28 GB/T 14353.8-2010 铜矿石、铅矿石和锌矿石化学分析方法 第8部分:铋量测定 GB/T 14353.8-1993 2011-2-1 29 GB/T 14353.9-2010 铜矿石、铅矿石和锌矿石化学分析方法 第9部分:钼量测定 GB/T 14353.9-1993 2011-2-1 30 GB/T 14353.10-2010 铜矿石、铅矿石和锌矿石化学分析方法 第10部分:钨量测定 GB/T 14353.10-1993 2011-2-1 31 GB/T 14353.11-2010 铜矿石、铅矿石和锌矿石化学分析方法 第11部分:银量测定 GB/T 14353.11-1993 2011-2-1 32 GB/T 14353.12-2010 铜矿石、铅矿石和锌矿石化学分析方法 第12部分:硫量测定 GB/T 14353.12-1993 2011-2-1 33 GB/T 14353.16-2010 铜矿石、铅矿石和锌矿石化学分析方法 第16部分:碲量测定 GB/T 14353.16-1993 2011-2-1 34 GB/T 14506.1-2010 硅酸盐岩石化学分析方法 第1部分:吸附水量测定 GB/T 14506.1-1993 2011-2-1 35 GB/T 14506.2-2010 硅酸盐岩石化学分析方法 第2部分:化合水量测定 GB/T 14506.2-1993 2011-2-1 36 GB/T 14506.3-2010 硅酸盐岩石化学分析方法 第3部分:二氧化硅量测定 GB/T 14506.3-1993 2011-2-1 37 GB/T 14506.4-2010 硅酸盐岩石化学分析方法 第4部分:三氧化二铝量测定 GB/T 14506.4-1993 2011-2-1 38 GB/T 14506.5-2010 硅酸盐岩石化学分析方法 第5部分:总铁量测定 GB/T 14506.5-1993 2011-2-1 39 GB/T 14506.6-2010 硅酸盐岩石化学分析方法 第6部分:氧化钙量测定 GB/T 14506.6-1993 2011-2-1 40 GB/T 14506.7-2010 硅酸盐岩石化学分析方法 第7部分:氧化镁量测定 GB/T 14506.7-1993 2011-2-1 41 GB/T 14506.8-2010 硅酸盐岩石化学分析方法 第8部分:二氧化钛量测定 GB/T 14506.8-19932011-2-1 42 GB/T 14506.9-2010 硅酸盐岩石化学分析方法 第9部分:五氧化二磷量测定 GB/T 14506.9-1993 2011-2-1 43 GB/T 14506.10-2010 硅酸盐岩石化学分析方法 第10部分:氧化锰量测定 GB/T 14506.10-1993 2011-2-1 44 GB/T 14506.11-2010 硅酸盐岩石化学分析方法 第11部分:氧化钾和氧化钠量测定 GB/T 14506.11-1993 2011-2-1 45 GB/T 14506.12-2010 硅酸盐岩石化学分析方法 第12部分:氟量测定 GB/T 14506.12-1993 2011-2-1 46 GB/T 14506.13-2010 硅酸盐岩石化学分析方法 第13部分:硫量测定 GB/T 14506.13-1993 2011-2-1 47 GB/T 14506.14-2010 硅酸盐岩石化学分析方法 第14部分:氧化亚铁量测定 GB/T 14506.14-1993 2011-2-1 48 GB/T 14506.15-2010 硅酸盐岩石化学分析方法 第15部分:锂量测定 GB/T 14506.15-1993 2011-2-1 49 GB/T 14506.16-2010 硅酸盐岩石化学分析方法 第16部分:铷量测定 GB/T 14506.16-1993 2011-2-1 50 GB/T 14506.17-2010 硅酸盐岩石化学分析方法 第17部分:锶量测定 GB/T 14506.17-1993 2011-2-1 51 GB/T 14506.18-2010 硅酸盐岩石化学分析方法 第18部分:铜量测定 GB/T 14506.18-1993 2011-2-1 52 GB/T 14506.19-2010 硅酸盐岩石化学分析方法 第19部分:铅量测定 GB/T 14506.19-1993 2011-2-1 53 GB/T 14506.20-2010 硅酸盐岩石化学分析方法 第20部分:锌量测定 GB/T 14506.20-1993 2011-2-1 54 GB/T 14506.21-2010 硅酸盐岩石化学分析方法 第21部分:镍和钴量测定 GB/T 14506.21-1993 2011-2-1 55 GB/T 14506.22-2010 硅酸盐岩石化学分析方法 第22部分:钒量测定 GB/T 14506.22-1993 2011-2-1 56 GB/T 14506.23-2010 硅酸盐岩石化学分析方法 第23部分:铬量测定 GB/T 14506.23-1993 2011-2-1 57 GB/T 14506.24-2010 硅酸盐岩石化学分析方法 第24部分:镉量测定 GB/T 14506.24-1993 2011-2-1 58 GB/T 14506.25-2010 硅酸盐岩石化学分析方法 第25部分:钼和钨量测定 GB/T 14506.25-1993 2011-2-1 59 GB/T 14506.26-2010 硅酸盐岩石化学分析方法 第26部分, :, 钴量测定 GB/T 14506.26-1993 2011-2-1 60 GB/T 14506.27-2010 硅酸盐岩石化学分析方法 第27部分:镍量测定 GB/T 14506.27-1993 2011-2-1 61 GB/T 14506.28-2010 硅酸盐岩石化学分析方法 第28部分:16个主次成分量测定 GB/T 14506.28-1993 2011-2-1 62 GB/T 14506.29-2010 硅酸盐岩石化学分析方法 第29部分:稀土等22个元素量测定   2011-2-1 63 GB/T 14506.30-2010 硅酸盐岩石化学分析方法 第30部分:44个元素量测定   2011-2-1 64 GB/T 15922-2010 钴矿石化学分析方法 钴量测定 GB/T 15922-1995 2011-2-1 65 GB/T 15923-2010 镍矿石化学分析方法 镍量测定 GB/T 15923-1995 2011-2-1 66 GB/T 15924-2010 锡矿石化学分析方法 锡量测定 GB/T 15924-1995 2011-2-1 67 GB/T 15925-2010 锑矿石化学分析方法 锑量测定 GB/T 15925-1995 2011-2-1 68 GB/T 15926-2010 铋矿石化学分析方法 铋量测定 GB/T 15926-1995 2011-2-1 69 GB/T 15927-2010 砷矿石化学分析方法 砷量测定 GB/T 15927-1995 2011-2-1 70 GB/T 16559-2010 船舶溢油应变部署表 GB/T 16559-1996 2011-3-1 71 GB/T 17413.1-2010 锂矿石、铷矿石、铯矿石化学分析方法 第1部分:锂量测定 GB/T 17413.1-1998 2011-2-1 72 GB/T 17413.2-2010 锂矿石、铷矿石、铯矿石化学分析方法 第2部分:铷量测定 GB/T 17413.2-1998 2011-2-1 73 GB/T 17413.3-2010 锂矿石、铷矿石、铯矿石化学分析方法 第3部分:铯量测定 GB/T 17413.3-1998 2011-2-1 74 GB/T 17414.1-2010 铍矿石化学分析方法 第1部分:铍量测定 埃利罗菁R光度法 GB/T 17414.1-1998 2011-2-1 75 GB/T 17414.2-2010 铍矿石化学分析方法 第2部分:铍量测定 催化极谱法 GB/T 17414.2-1998 2011-2-1 76 GB/T 17415.1-2010 钽矿石、铌矿石化学分析方法 第1部分:钽量测定 GB/T 17415.1-1998 2011-2-1 77 GB/T 17415.2-2010 钽矿石、铌矿石化学分析方法 第2部分:铌量测定 GB/T 17415.2-1998 2011-2-1 78 GB/T 17416.1-2010 锆矿石化学分析方法 第1部分:锆铪合量测定 GB/T 17416.1-1998 2011-2-1 79 GB/T 17416.2-2010 锆矿石化学分析方法 第2部分:锆量和铪量测定 GB/T 17416.2-1998 2011-2-1 80 GB/T 17417.1-2010 稀土矿石化学分析方法 第1部分:稀土分量测定 GB/T 17417.1-1998 2011-2-1 81 GB/T 17417.2-2010 稀土矿石化学分析方法 第2部分:钪量测定 GB/T 17417.2-1998 2011-2-1 82 GB/T 17418.1-2010 地球化学样品中贵金属分析方法 第1部分:总则及一般规定 GB/T 17418.1-1998 2011-2-1 83 GB/T 17418.2-2010 地球化学样品中贵金属分析方法 第2部分:铂量和铑量的测定 硫脲富集-催化极谱法 GB/T 17418.2-1998 2011-2-1 84 GB/T 17418.3-2010 地球化学样品中贵金属分析方法 第3部分:钯量的测定 硫脲富集-石墨炉原子吸收分光光度法 GB/T 17418.3-1998 2011-2-1 85 GB/T 17418.4-2010 地球化学样品中贵金属分析方法 第4部分:铱量的测定 硫脲富集-催化分光光度法 GB/T 17418.4-1998 2011-2-1 86 GB/T 17418.5-2010 地球化学样品中贵金属分析方法 第5部分:钌量和锇量的测定 蒸馏分离-催化分光光度法 GB/T 17418.5-1998 2011-2-1 87 GB/T 17418.6-2010 地球化学样品中贵金属分析方法 第6部分:铂量、钯量和金量的测定 火试金富集-发射光谱法 GB/T 17418.6-1998 2011-2-1 88 GB/T 17418.7-2010 地球化学样品中贵金属分析方法 第7部分:铂族元素量的测定 镍锍试金-电感耦合等离子体质谱法   2011-2-1 89 GB/T 18340.1-2010 地质样品有机地球化学分析方法 第1部分:轻质原油分析 气相色谱法 GB/T 18340.1-2001 2011-2-1 90 GB/T 18340.2-2010 地质样品有机地球化学分析方法 第2部分:有机质稳定碳同位素测定 同位素质谱法 GB/T 18340.2-2001 2011-2-1 91 GB/T 18340.3-2010 地质样品有机地球化学分析方法 第3部分:石油重馏分中饱和烃族组分测定 质谱法 GB/T 18340.3-2001 2011-2-1 92 GB/T 18340.4-2010 地质样品有机地球化学分析方法 第4部分:石油重馏分中芳香烃族组分测定 质谱法 GB/T 18340.4-2001 2011-2-1 93 GB/T 18340.5-2010 地质样品有机地球化学分析方法 第5部分:岩石提取物和原油中饱和烃分析 气相色谱法 GB/T 18340.5-2001 2011-2-1 94 GB/T 18340.6-2010 地质样品有机地球化学分析方法 第6部分:汽油族组成测定 质谱法 GB/T 18340.6-2001 2011-2-1
  • 水中氨氮测定方法及操作步骤汇总介绍
    氨 氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1. 方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预 处 理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮 凝 沉 淀 法 概 述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪 器 100ml具塞量筒或比色管。 试 剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=1.84。 步 骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节pH至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (二)蒸 馏 法 概 述 调节水样的pH使在6.0—7.4的范围,加入适量氧化镁使呈微碱性(也可加入pH9.5的Na4B4O7-NaOH缓冲溶液使呈弱碱性进行蒸馏;pH过高能促使有机氮的水解,导致结果偏高),蒸馏释出的氨,被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定发时,以硼酸溶液为吸收液;采用水杨酸-次氯酸比色法时,则以硫酸溶液为吸收液。 仪 器 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管。 试 剂 水样稀释及试剂配制均用无氨水。 (1) 无氨水制备: ① 蒸馏法:每升蒸馏水中加0.1ml硫酸,在全玻璃蒸馏器中重蒸馏,弃去50ml初滤液,接取其余馏出液于具塞磨口的玻瓶中,密塞保存。 ② 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 (2) 1mol/L盐酸溶液。 (3) 1mol/L氢氧化钠溶液。 (4) 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐。 (5) 0.05%溴百里酚蓝指示液(pH6.0—7.6)。 (6) 防沫剂,如石蜡碎片。 (7) 吸收液:① 硼酸溶液:称取20g硼酸溶于水稀释至1L。 ② 硫酸(H2SO4)溶液:0.01mol/L。 步 骤 (1) 蒸馏装置的预处理:加250ml水于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,加热蒸馏,至馏出液不含氨为止,弃去瓶内残渣。 (2) 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调至pH7左右。加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏至馏出液达200ml时,停止蒸馏。定容至250ml。 采用酸滴定法或纳氏比色法时,以50ml硼酸溶液为吸收液,采用水杨酸-次氯酸盐比色法时,改用50ml 0.0 1mol/L硫酸溶液为吸收液。 注意事项 (1) 蒸馏时应避免发生暴沸,否则可造成馏出液温度升高,氨吸收不完全。 (2) 防止在蒸馏时产生泡沫,必要时加入少量石蜡碎片于凯氏烧瓶中。 (3) 水样如含余氯,则应加入适量0.35%硫代硫酸钠溶液,每0.5ml可除去0.25mg余氯。 (一) 纳氏试剂光度法GB7479--87 概 述 1. 方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2. 干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025mol/L(光度法),测定上限为2mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪 器 (1) 分光光度法。 (2) pH计。 试 剂 配制试剂用水应为无氨水。 1. 纳氏试剂 可选择下列一种方法制备。 (1) 称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2) 称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O64H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4. 铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 步 骤 1. 校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。 由测得得吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度得校准曲线。 2. 水样的测定 (1) 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。 (2)分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。 3. 空白试验:以无氨水代替水样,作全程序空白测定。计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(mg); V—水样体积(ml)。 精密度和准确度 三个实验室分析含1.14~1.16mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过9.5%;加标回收率范围为95~104%。 四个实验室分析含1.81~3.06mg/L氨氮的加标水样,单个实验室的相对标准偏差不超过4.4%;加标回收率范围为94~96%。 注意事项 (1) 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响。静置后生成的沉淀应除去。 (2) 滤纸中常含有痕量铵盐,使用时注意用无氨水洗涤。所用玻璃器皿应避免实验室空气中氨的沾污。 (二) 水杨酸-次氯酸盐光度法 GB7481--87 概 述 1. 方法原理 在亚硝基铁氰化钠存在下,铵与水杨酸盐和次氯酸离子反应生成兰色化合物,在波长697nm具最大吸收。 2. 干扰及消除 氯铵在此条件下,均被定量的测定。钙、镁等阳离子的干扰,可加酒石酸钾钠掩蔽。 3. 方法的适用范围 本法最低检出浓度为0.01mg/L,测定上限为1mg/L。适用于饮用水、生活污水和大部分工业废水中氨氮的测定。 仪 器 (1) 分光光度计。 (2) 滴瓶(滴管流出液体,每毫升相当于20±1滴) 试 剂 所有试剂配制均用无氨水。 1. 铵标准贮备液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 2. 铵标准中间液 吸取10.00ml铵标准贮备液移取100ml容量瓶中,稀释至标线。此溶液每毫升含0.10mg氨氮。 3. 铵标准使用液 吸取10.00ml铵标准中间液移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00μg氨氮。临用时配置。 4. 显色液 称取50g水杨酸〔C6H4(OH)COOH〕,加入100ml水,再加入160ml 2mol/L氢氧化钠溶液,搅拌使之完全溶解。另称取50g酒石酸钾钠溶于水中,与上述溶液合并移入1000ml容量瓶中,稀释至标线。存放于棕色玻瓶中,本试剂至少稳定一个月。 注: 若水杨酸未能全部溶解,可再加入数毫升氢氧化钠溶液,直至完全溶解为止,最后溶液的pH值为6.0—6.5。 5. 次氯酸钠溶液 取市售或自行制备的次氯酸钠溶液,经标定后,用氢氧化钠溶液稀释成含有效氯浓度为0.35%(m/V),游离碱浓度为0.75mol/L(以NaOH计)的次氯酸钠溶液。存放于棕色滴瓶内,本试剂可稳定一星期。 6. 亚硝基铁氰化钠溶液 称取0.1g亚硝基铁氰化钠{Na2〔Fe(CN)6NO〕2H2O}置于10ml具塞比色管中,溶于水,稀释至标线。此溶液临用前配制。 7. 清洗溶液 称取100g氢氧化钾溶于100ml水中,冷却后与900ml 95%(V/V)乙醇混合,贮于聚乙烯瓶内。 步 骤 1. 校准曲线的绘制 吸取0、1.00、2.00、4.00、6.00、8.00ml铵标准使用液于10ml比色管中,用水稀释至8ml,加入1.00ml显色液和2滴亚硝基铁氰化钠溶液,混匀。再滴加2滴次氯酸钠溶液,稀释至标线,充分混匀。放置1h后,在波长697nm处,用光程为10mm的比色皿,以水为参比,测量吸光度。 由测得的吸光度,减去空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(μg)对校正吸光度的校准曲线。 2. 水样的测定 分取适量经预处理的水样(使氨氮含量不超过8μg)至10ml比色管中,加水稀释至8ml,与校准曲线相同操作,进行显色和测量吸光度。 3. 空白试验 以无氨水代替水样,按样品测定相同步骤进行显色和测量。 计 算 由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(μg)。 氨氮(N,mg/L)= 式中,m—由校准曲线查得的氨氮量(μg); V—水样体积(ml)。 注意事项 水样采用蒸馏预处理时,应以硫酸溶液为吸收液,显色前加氢氧化钠溶液使其中和。 (三) 滴 定 法 GB7478--87 概 述 滴定法仅适用于进行蒸馏预处理的水样。调节水样至pH6.0~7.4范围,加入氧化镁使呈微碱性。加热蒸馏,释出的氨被吸收入硼酸溶液中,以甲基红-亚甲蓝为指示剂,用酸标准溶液滴定馏出液中的铵。 当水样中含有在此条件下,可被蒸馏出并在滴定时能与酸反应的物质,如挥发性胺类等,则将使测定结果偏高。 试 剂 (1) 混合指示液: 称取200mg甲基红溶于100ml 95%乙醇;另称取100mg亚甲蓝溶于50ml 95%乙醇。以两份甲基红溶液与一份亚甲蓝溶液混合后供用。混合液一个月配制一次。 注: 为使滴定终点明显,必要时添加少量甲基红溶液于混合指示液中,以调节二者的比例至合适为止。 (2) 硫酸标准溶液(1/2H2SO4=0.020mol/L): 分取5.6ml(1+9)硫酸溶液于1000ml容量瓶中,稀释至标线,混匀。按下述操作进行标定。 称取经180℃干燥2h的基准试剂级无水碳酸钠(Na2CO3)约0.5g(称准至0.0001g),溶于新煮沸放冷的水中,移入500ml容量瓶中,稀释至标线。移取25.00ml碳酸钠溶液于150ml锥形瓶中,加25ml水,加1滴0.05%甲基橙指示液,用硫酸溶液滴定至淡橙红色止。记录用量,用下列公式计算,硫酸溶液的浓度。 硫酸溶液浓度(1/2H2SO4,mol/L)= 式中,W—碳酸钠的重量(g); V—硫酸溶液体积(ml)。 (3)0.05%甲基橙指示液。 步 骤 1. 水样的测定 于全部经蒸馏预处理、以硼酸溶液为吸收液的馏出液中,加2滴混合指示液,用0.020mol/L硫酸溶液滴定至绿色转变成淡紫色止,记录用量。 2. 空白试验 以无氨水代替水样,同水样全程序步骤进行测定。 计 算 氨氮(N,mg/L)= 式中,A—滴定水样时消耗硫酸溶液体积(ml); B—空白试验硫酸溶液体积(ml); M—硫酸溶液浓度(mol/L); V—水样体积(ml); 14—氨氮(N)摩尔质量。 (四) 电 极 法 概 述 1. 方法原理 氨气敏电极为一复合电极,以pH玻璃电极为指示电极,银-氯化银电极为参比电极。此电极对置于盛有0.1mol/L氯化铵内充液的塑料管中,管端部紧贴指示电极敏感膜处装有疏水半渗透薄膜,使内电解液与外部试液隔开,半透膜与pH玻璃电极有一层很薄的液膜。当水样中加入强碱溶液将pH提高到11以上,使铵盐转化为氨,生成的氨由于扩散作用而通过半透膜(水和其他离子则不能通过),使氯化铵电解质液膜层内NH4+Ö NH3+H+的反应向左移动,引起氢离子浓度改变,由pH玻璃电极测得其变化。在恒定的离子强度下,测得的电动势与水样中氨氮浓度的对数呈一定的线性关系。由此,可从测得的电位确定样品中氨氮的含量。 2. 干扰及消除 挥发性胺产生正干扰;汞和银因同氨络合力强而有干扰;高浓度溶解离子影响测定。 3. 方法适用范围 本法可用于测定饮用水、地面水、生活污水及工业废水中氨氮的含量。色度和浊度对测定没有影响,水样不必进行预蒸馏,标准溶液和水样的温度应相同,含有溶解物质的总浓度也要大致相同。 方法的最低检出浓度为0.03mg/L氨氮;测定上限为1400mg/L氨氮。 仪 器 (1) 离子活度计或带扩展毫伏的pH计。 (2) 氨气敏电极。 (3) 电磁搅拌器。 试 剂 所有试剂均用无氨水配制。 (1) 铵标准贮备液: 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 (2) 100、10、1.0、0.1mg/L的氨标准使用液: 用铵标准贮备液稀释配制。 (3) 电极内充液:0.1mol氯化铵溶液。 (4) 氢氧化钠(5mol/L)-Na2-EDTA(0.5mol/L)混合溶液,贮于聚乙烯瓶中。 步 骤 1. 仪器和电极的准备 按使用说明书进行,调试仪器。 2. 校准曲线的绘制 吸取10.00ml浓度为0.1、1.0、10、100、1000mg/L的铵标准溶液于25ml小烧杯中,浸入电极后加入1.0ml氢氧化钠-Na2-EDTA溶液,在搅拌下,读取稳定的电位值(在1min内变化不超过1mV时,即可读数)。在半对数坐标线绘制E-logc的校准曲线。 3. 水样的测定 吸取10.00ml水样,以下步骤与校准曲线绘制相同。由测得的电位值,在校准曲线上直接查得水样的氨氮含量(mg/L)。 精密度与准确度 七个实验室分析含14.5mg/L氨氮的统一分发的加标地面水。实验室内相对标准偏差为2.0%;实验室间相对标准偏差为5.2%;相对误差为-1.4%。 注意事项 (1) 绘制校准曲线时,可以根据水样中氨氮含量,自行取舍三或四个标准点。 (2) 试验过程中,应避免由于搅拌器发热而引起被测溶液温度上升,影响电位值的测定。 (3) 当水样酸性较大时,应先用碱液调至中性后,再加离子强度调节液进行测定。 (4) 水样不要加氯化汞保存。 (5) 搅拌速度应适当,不使形成涡流,避免在电极处产生气泡。 (6) 水样中盐类含量过高时,将影响测定结果。必要时,应在标准溶液中加入相同量的盐类,以消除误差。
  • 食品添加剂标准变身“国家药典”
    据国家卫生部公告,胆钙化醇、氰钴胺等14种食品添加剂的产品标准,均按照《中华人民共和国药典》(2010年版)的质量要求进行生产和检验。这意味着,国家对食品添加剂的管理,将与新出台的国家药典相对接,使之更符合中国的具体国情、药品生产和传统用药习惯!   根据《中华人民共和国食品安全法》和卫生部等9部门《关于加强食品添加剂监督管理工作的通知》(卫监督发〔2009〕89号)规定,经审核,现指定胆钙化醇等14种食品添加剂的产品标准按照《中华人民共和国药典》(2010年版)相关质量要求和检验方法执行。   对此,国家标准频道认为:药品各生产、销售企业,应及时关注标准类的变动信息。做到信息最大程度的了如指掌,才能更好的避免不必药的麻烦。此外,作为消费者,应尽可能多的去了解所谓的食品添加剂,在药店里对应产品。所以,请大家在超市、认清楚食品标签的标注,切勿换了个名字,就不知道是啥了!   附:食品添加剂与《中华人民共和国药典》的相应品种   胆钙化醇等14种食品添加剂 食品添加剂 《中华人民共和国药典》中的相应品种 1 胆钙化醇 维生素D3 2 d-α醋酸生育酚 维生素E 3 植物甲萘醌 维生素K1 4 氰钴胺 维生素B12 5 烟酰胺 烟酰胺 6 泛酸钙 泛酸钙 7 硫酸镁 硫酸镁 8 氧化镁 氧化镁 9 硫酸亚铁 硫酸亚铁 10 富马酸亚铁 富马酸亚铁 11 氧化锌 氧化锌 12 柠檬酸锌 枸橼酸锌 13 碘化钠 碘化钠 14 碘化钾 碘化钾
  • “先进结构与复合材料”重点专项2022申报指南:拟启动1项任务
    4月27日,科学技术部发布国家重点研发计划“先进结构与复合材料”重点专项2022年度项目申报指南。指南中明确:2022年度定向指南部署围绕轻质高强金属及其复合材料的技术方向,拟启动1项指南任务,拟安排国拨经费不超过2000万元。项目统一按指南二级标题(1.1)的研究方向申报,实施周期不超过3年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。项目下设课题数不超过5个,项目参与单位总数不超过10家。项目设1名项目负责人,项目中每个课题设1名课题负责人。1. 轻质高强金属及其复合材料1.1 青海盐湖新型镁基材料及前端制造技术(共性关键技术类)研究内容:针对青海盐湖镁资源现状和氯化镁特点,研究无水氯化镁颗粒熔融与净化一体化装备和能耗控制系统,开发青海盐湖金属镁低能耗电解制备技术;研究电解金属镁熔液合金化原理及工艺,开发冶金短流程合金制造技术;研究盐湖金属镁深度除杂原理及工艺,发展盐湖金属镁低成本纯净化工艺技术,为镁合金结构材料更大规模应用创造条件;发展结合盐湖成分特点和当地产业特点的新型盐湖镁基结构材料,开发具有大规模应用前景的车用镁合金复杂零部件,实现在汽车上的示范应用;研究氧化镁、氢化镁等镁化合物产品,发展新型盐湖镁基耐火材料,实现盐湖镁基耐火材料在冶金领域的示范应用。考核指标:金属镁电解直流电耗12000千瓦时/吨,电流强度大于460千安,电流效率≥92%,实现3种及以上中间合金稳定生产,合金元素含量≥10wt.%,电解金属镁及中间合金产能≥5万吨/年;短流程冶金过程全流程电耗降低值≥850千瓦时/吨,镁合金锭坯、金属镁损耗≤3%,镁合金锭坯不良率≤0.5%,形成年产1万吨高品质镁合金锭坯示范生产线;电解金属纯镁深度纯净化后铁含量≤50ppm、镍含量≤5ppm,生产能力大于1万吨; 发展3种及以上盐湖镁合金结构材料,成本、力学与耐蚀性能和现有AM50(皮江法)相当,并在3种及以上车用复杂或重要构件上示范应用;高纯氧化镁、氢化镁产品的主含量大于99.5wt.%,综合性能与皮江法镁相当;与现有盐湖产品相比,高端镁质耐火材料寿命提高20%,应用新产品钢液中夹杂物量降低15%以上,年生产能力≥1万吨,实现工程示范应用。有关说明:定向择优。由教育部、中科院、青海省科技厅组织推荐,拟支持1项。申报项目中应不少于1个课题由青海省有关单位作为课题牵头单位。
  • 数十项光谱分析相关标准即将实施 ICP-OES方法成“主力军”
    标准先行,规范引领。对科学仪器及分析测试行业而言,相关标准的制修订和推行对仪器技术及分析方法的市场推广具有非常重要的价值和意义。  根据中华人民共和国中央人民政府“国家标准信息查询”信息,以“光谱”为关键词搜索(不完全统计),2021年伊始,有数十项光谱分析方法相关的新国标及行标实施或者即将实施。其中,国家标准26项、行业标准25项。特别值得注意的是,51项标准中,ICP-OES 方法31项,占比超过60%!  随着分光及检测器等关键元件的快速发展,电感耦合等离子体发射光谱技术也不断完善,已在地质、环保、化工、生物、医药、食品、冶金、农业等领域发挥着至关重要的作用。ICP-OES具有检出限低、准确度高、线性范围宽、多种元素同时测定等优点,其分析能力和技术的进步为元素分析带来了巨大的便利。业内人士分析道,相较于AAS和ICP-MS,ICP-OES有其非常适合的领域。比如,在环境领域,ICP-OES比ICP-MS更适合分析废水及固废样品,因为其基体耐受性更好。另外其进样系统以及光路是两个独立的系统,意味着其更“耐脏”,系统残留会更少;在食品检测中,ICP-OES比ICP-MS更适合营养元素的分析,因为其中营养元素浓度往往是ppm级,在ICP-MS里面很容易造成饱和,过高的浓度也会大大降低检测器的寿命,而在ICP-OES就不存在这些问题。而与AAS相比,ICP-OES多元素分析的效率还是比较高,而且其线性范围也是远好于AAS。如进行RoHS或者EN71-3等,鉴于应用上的优势,近年来ICP-OES的应用领域有了明显的扩展,大多数元素检测领域都有ICP-OES的身影,特别是在一些新兴领域的分析检测,同时市场采购量的逐年增加也证明了该类仪器有着更为广阔的应用前景。而相关标准方法的推出势头在一定程度上也显示出,ICP-OES已成为了原子光谱仪器的“主力军”!相信伴随着一些标准法规的实施,ICP-OES将在元素分析领域体现出更大的价值。除了ICP-OES方法之外,51项标准中,还有8项标准涉及了原子吸收光谱法,4项标准涉及了原子荧光光谱法,4项标准涉及X射线荧光光谱法,2项标准涉及近红外光谱法, 1项标准涉及拉曼光谱法,1项标准涉及直流电弧原子发射光谱法等。  仪器信息网统计部分如下:国家标准序号标准编号标准名称发布日期实施日期1GB/T 14352.19-2021钨矿石、钼矿石化学分析方法 第19部分:铋、镉、钴、铜、铁、锂、镍、磷、铅、锶、钒和锌量的测定 电感耦合等离子体原子发射光谱法2021/3/92021/10/12GB/T 14352.21-2021钨矿石、钼矿石化学分析方法 第21部分:砷量的测定 氢化物发生-原子荧光光谱法2021/3/92021/10/13GB/T 14352.22-2021钨矿石、钼矿石化学分析方法 第22部分:锑量的测定 氢化物发生-原子荧光光谱法2021/3/92021/10/14GB/T 39560.301-2020电子电气产品中某些物质的测定 第3-1部分:X射线荧光光谱法筛选铅、汞、镉、总铬和总溴2020/12/142021/7/15GB/T 39538-2020煤中砷、硒、汞的测定 氢化物发生-原子荧光光谱法2020/11/192021/6/16GB/T 20975.33-2020铝及铝合金化学分析方法 第33部分:钾含量的测定 火焰原子吸收光谱法2020/11/192021/10/17GB/T 20975.34-2020铝及铝合金化学分析方法 第34部分:钠含量的测定 火焰原子吸收光谱法2020/11/192021/10/18GB/T 39306-2020再生水水质 总砷的测定 原子荧光光谱法2020/11/192021/10/19GB/T 39356-2020肥料中总镍、总钴、总硒、总钒、总锑、总铊含量的测定 电感耦合等离子体发射光谱法2020/11/192021/6/110GB/T 39540-2020页岩气组分快速分析 激光拉曼光谱法2020/11/192021/6/111GB/T 39114-2020纳米技术 单壁碳纳米管的紫外/可见/近红外吸收光谱表征方法2020/10/112021/5/112GB/T 39138.3-2020金镍铬铁硅硼合金化学分析方法 第3部分:铬、铁、硅、硼含量的测定 电感耦合等离子体原子发射光谱法2020/10/112021/9/113GB/T 39143-2020金砷合金化学分析方法 砷含量的测定 电感耦合等离子体原子发射光谱法2020/10/112021/9/114GB/T 8151.22-2020锌精矿化学分析方法 第22部分:锌、铜、铅、铁、铝、钙和镁含量的测定 波长色散X射线荧光光谱法2020/9/292021/8/115GB/T 34609.2-2020铑化合物化学分析方法 第2部分:银、金、铂、钯、铱、钌、铅、镍、铜、铁、锡、锌、镁、锰、铝、钙、钠、钾、铬、硅含量的测定 电感耦合等离子体原子发射光谱法2020/9/292021/8/116GB/T 20975.9-2020铝及铝合金化学分析方法 第9部分:锂含量的测定 火焰原子吸收光谱法2020/6/22021/4/117GB/T 20975.25-2020铝及铝合金化学分析方法 第25部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/6/22021/4/118GB/T 20975.36-2020铝及铝合金化学分析方法 第36部分:银含量的测定 火焰原子吸收光谱法2020/6/22021/4/119GB/T 38744-2020机动车尾气净化器中助剂元素化学分析方法 铈、镧、镨、钕、钡、锆含量的测定 电感耦合等离子体原子发射光谱法2020/4/282021/3/120GB/T 15076.6-2020钽铌化学分析方法 第6部分:硅量的测定 电感耦合等离子体原子发射光谱法2020/3/62021/2/121GB/T 15076.11-2020钽铌化学分析方法 第11部分:铌中砷、锑、铅、锡和铋量的测定 直流电弧原子发射光谱法2020/3/62021/2/122GB/T 13747.3-2020锆及锆合金化学分析方法 第3部分:镍量的测定 丁二酮肟分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/123GB/T 13747.4-2020锆及锆合金化学分析方法 第4部分:铬量的测定 二苯卡巴肼分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/124GB/T 4698.10-2020海绵钛、钛及钛合金化学分析方法 第10部分:铬量的测定 硫酸亚铁铵滴定法和电感耦合等离子体原子发射光谱法(含钒)2020/3/62021/2/125GB/T 38513-2020铌铪合金化学分析方法 铪、钛、锆、钨、钽等元素的测定 电感耦合等离子体原子发射光谱法2020/3/62021/2/126GB/T 15076.7-2020钽铌化学分析方法 第7部分:铌中磷量的测定 4-甲基-戊酮-[2]萃取分离磷钼蓝分光光度法和电感耦合等离子体原子发射光谱法2020/3/62021/2/1行业标准序号标准编号标准名称批准日期实施日期1SH/T 1829-2020塑料 聚乙烯和聚丙烯树脂中微量元素含量的测定 电感耦合等离子体发射光谱法2020/12/192021/4/12YB/T 4850-2020直接还原铁 全铁、磷、硫、二氧化硅、三氧化二铝、氧化钙和氧化镁含量的测定 波长色散X射线荧光光谱法2020/12/92021/4/13YS/T 273.17-2020冰晶石化学分析方法和物理性能测定方法 第17部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/14YS/T 273.16-2020冰晶石化学分析方法和物理性能测定方法 第16部分:锂含量的测定 火焰原子吸收光谱法2020/12/92021/4/15YS/T 1396.2-2020二氯四氨铂化学分析方法 第2部分:镁、钙、铁、镍、铜、铑、钯、银、铱、金、铅含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/16YS/T 1395.2-2020二氯二氨钯化学分析方法 第2部分:银、金、铂、铑、铱、铅、镍、铜、铁、锡、铬含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/17YS/T 832-2020丁辛醇废催化剂化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/18YS/T 955.3-2020粗银化学分析方法 第3部分:金含量的测定 火试金富集-电感耦合等离子体原子发射光谱法2020/12/92021/4/19HG/T 5763-2020茂金属聚烯烃催化剂中金属元素的测定 电感耦合等离子体发射光谱法2020/12/92021/4/110HG/T 5747-2020水处理剂 镍、锰、铜、锌含量的测定 电感耦合等离子体发射光谱(ICP-OES)法2020/12/92021/4/111YS/T 1363-2020二氧化碲化学分析方法 铜、银、镁、镍、锌、钙、铁、铋、硒、铅、钠、锑和砷含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/112YS/T 739.3-2020铝电解质化学分析方法 第3部分:钠、钙、镁、钾、锂元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/113YS/T 273.17-2020冰晶石化学分析方法和物理性能测定方法 第17部分:元素含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/114YS/T 273.16-2020冰晶石化学分析方法和物理性能测定方法 第16部分:锂含量的测定 火焰原子吸收光谱法2020/12/92021/4/115YS/T 1396.2-2020二氯四氨铂化学分析方法 第2部分:镁、钙、铁、镍、铜、铑、钯、银、铱、金、铅含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/116YS/T 1395.2-2020二氯二氨钯化学分析方法 第2部分:银、金、铂、铑、铱、铅、镍、铜、铁、锡、铬含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/117YS/T 832-2020丁辛醇废催化剂化学分析方法 铑含量的测定 电感耦合等离子体原子发射光谱法2020/12/92021/4/118YS/T 955.3-2020粗银化学分析方法 第3部分:金含量的测定 火试金富集-电感耦合等离子体原子发射光谱法2020/12/92021/4/119HG/T 5763-2020茂金属聚烯烃催化剂中金属元素的测定 电感耦合等离子体发射光谱法2020/12/92021/4/120HG/T 5747-2020水处理剂 镍、锰、铜、锌含量的测定 电感耦合等离子体发射光谱(ICP-OES)法2020/12/92021/4/121SN/T 5233-2020进出口纺织原料 原棉回潮率测定 近红外光谱法2020/8/272021/3/122SN/T 5248-2020进口载金树脂物料中金含量的测定方法 火焰原子吸收光谱法2020/8/272021/3/123SN/T 5251-2020进出口石油焦中钠、铝、硅、钙、钛、钒、锰、铁、镍、硫含量的测定 波长色散X射线荧光光谱法2020/8/272021/3/124SN/T 5249-2020沉淀水合二氧化硅中铁、锰、铜、铝、钛、铅、铬、钙、镁、锌、钾、钠含量的测定 电感耦合等离子体原子发射光谱法2020/8/272021/3/125SN/T 5248-2020进口载金树脂物料中金含量的测定方法 火焰原子吸收光谱法2020/8/272021/3/1
  • 全自动乌氏粘度计测定聚丙烯酸钠(PAAS)极限黏数
    聚丙烯酸钠,化学式为(C3H3NaO2)n,是一种新型功能高分子材料和重要化工产品,固态产品为白色或浅黄色块状或粉末,液态产品为无色或淡黄色黏稠液体。由丙烯酸及其酯类为原料,经水溶液聚合而得。无味,溶于氢氧化钠水溶液,在氢氧化钙、氢氧化镁等水溶液中沉淀,聚丙烯酸钠还具有很强的吸水性,常规聚丙烯酸钠的吸水率(纯净水)是其自身的数百倍,改进后的产品可以达到数千倍。常被用作水处理剂、盐水精制及胶乳增稠,也可用作食品增粘、乳化。随着国民经济的飞速发展,水处理的必要性日益突出,絮凝技术是提高水处理效率的最常用技术之一。特别是作为絮凝剂的高相对分子质量聚丙烯酸钠,已经成为国内外科研人员竞相研究的课题。研究丙烯酸及其共聚单体的反相乳液聚合,首先应对乳化剂的选配、引发剂体系的选择及其用量、聚合温度及时间的确定等方面进行探讨,研究体系的中和度、共聚单体的种类和配比、单体总浓度、非极性溶剂的种类和混配等。应继续发展和完善现有的聚合方法和工艺条件,对各个聚合机理及聚合动力学进行深入研究,开发新的高效、合理的聚合引发体系,探讨高性能的缓聚剂,探索更有效的聚合方法,研究如何提高相对分子质量以优化其性能,研究高固含量聚合和新技术在各聚合方法中的应用,研制高分子型的乳化剂,探索反相微乳液聚合方法,从而使聚丙烯酸钠从实验室研究向产业化、工业化进军。随着经济建设的蓬勃发展,科学技术的不断进步,对高分子水溶性的聚合物尤其聚丙烯酸类的产品性能要求会越来越高,其势必会有更广阔的发展前景。 目前毛细管法测定聚丙烯酸钠(PAAS)极限粘数是行业内作为控制产品质量重要的指标之一,按HG/T 2838-2010中描述的步骤测定PAAS的极限黏数,溶剂优先选择氢氧化钠和硫氰酸钠,温度为30℃。实验方法如下:实验所需仪器:卓祥全自动粘度仪、干燥箱、万分之一电子天平。实验所需试剂:氢氧化钠溶液(80g/L)、硫氰酸钠溶液(101g/L)、纯水、乙醇。1、溶剂粘度的测定:卓祥全自动粘度仪设置到30℃温度值并且稳定后,加入硫氰酸钠溶液(101g/L),软件中启动测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。2、粘度管的清洗:启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。3、PAAS稀溶液样品的制备:称取**g试样置于培养皿中,用氢氧化钠溶液调节试液的PH值至**,然后放入干燥箱中干燥,箱中冷却至室温待用,用万分之一天平称量**干燥试样,到0.2mg,置于烧杯中,加入硫氰酸钠溶液溶解,全部转移至溶量瓶中,用硫氰酸钠溶液稀释至刻度,摇匀待用。4、样品粘度的测定:加入样品试液,启动软件中特定公式测试,连续测定三次,误差不超过0.2s,取其平均值t(s)。5、粘度管的清洗:再次启动卓祥全自动粘度仪清洗、干燥程序,仪器自动将粘度管清洗干燥后待用。6、通过自动测量软件自动计算得出对应的数据及报表。
  • 青海省启动实施2010年第一批重大科技专项项目
    近日,青海省科技厅下达了2010年第一批重大科技专项项目计划,并启动实施了“青海省三江成矿带(纳日贡玛—莫海拉亨)铅锌矿综合评价及技术应用开发”、“餐厨废弃物资源化处理成套技术及装备开发与示范”、“1MW光伏并网逆变器研制及在锡铁山10MW电站中应用”、“以青海盐湖氯化镁和ADC发泡剂副产碳酸钠为原料年产2.5万吨高纯氧化镁新工艺工业化实验研究”等4项重大科技专项,资助经费达536万元,当年资助420万元。   “青海省三江成矿带(纳日贡玛—莫海拉亨)铅锌矿综合评价及技术应用开发”项目在充分收集和消化前人基础地质研究与矿产资源勘查资料的基础上,针对制约本地区找矿突破的关键问题,以区域成矿学和找矿系统学为指导,区域构造-成岩-成矿为主线 以成矿地质背景、成矿系统和演化、矿床模式为基础 宏观资料分析和具体靶区找矿解剖相结合 区域基础地质研究和典型矿床研究相结合 路线地质剖面、矿点异常调查与室内测试分析相结合 科研和矿产勘查相结合的技术路线,依托青藏专项,力争使该地区的地质找矿工作短期内有较大的突破,项目的实施符合青海省经济社会发展的需要。   “餐厨废弃物资源化处理成套技术及装备开发与示范”项目通过物理干化、湿热处理、厌氧发酵、混合物料发酵等技术的集成与创新,研发适用于不同区域类型的餐厨废弃物资源化处理技术及成套工艺装备,对减少环境污染,在全国餐厨废弃物资源化利用方面有重要的示范作用。   “1MW光伏并网逆变器研制及在锡铁山10MW电站中应用” 项目所研发的MW(兆瓦)级并网光伏逆变器,10MW级光伏并网电站设计集成等关键技术及设备将在锡铁山10MW光伏电站中得到应用和验证,有利于推动大型并网光伏发电系统的规模化应用,对促进青海光伏产业发展具有重要意义。   “以青海盐湖氯化镁和ADC发泡剂副产碳酸钠为原料年产2.5万吨高纯氯化镁新工艺工业化实验研究”项目以钾肥企业副产的老卤和ADC发泡剂副产碳酸钠为原料制备高纯氯化镁,工艺路线合理、易于连续化生产,符合循环经济产业政策,对于盐湖资源综合利用具有重要意义。   2009年青海省科技厅开始启动实施重大科技专项,重大科技专项以支持循环经济、生态经济、新能源经济和民生经济构成的特色经济发展和加强科技能力建设为主,从解决青海省经济建设和社会发展最为紧迫的重大问题出发,通过核心技术突破和资源集成,争取一定时限内在关键共性技术和重大工程上取得新突破。重大专项注重产学研结合,坚持以企业为主体,突出体现了以科技对循环经济、生态经济、新能源经济和民生经济支撑和引领,为绿色发展提供了强有力的科技支撑。
  • 这些光谱相关国标即将实施 涉及AAS、FTIR、XRF等
    在国家标准目录中,有7项光谱标准已于今年3月9日发布,并将于今年10月1日正式实施,其中涉及到火焰原子吸收光谱仪、火花原子发射光谱仪、原子荧光光谱仪、傅里叶红外光谱仪以及波长色散X射线荧光光谱仪五大类光谱仪器。小编发现,有越来越多的标准主要起草单位是科学仪器厂商,比如GB/T 6609.30就有岛津公司的身影,所谓“质量提升,标准先行”,仪器厂商绝对不能小看标准的重要性!更多关于标准的详细内容可点击标准号下载,仪器信息网提供最全,最新的资料!标准号标准名称GB/T 4333.8-2022硅铁 钙含量的测定 火焰原子吸收光谱法GB/T 41404-2022铂合金中铂含量的测定 火花原子发射光谱法(差减法)GB/T 41331-2022染料产品中砷、汞、锑、硒的测定 原子荧光光谱法GB/T 24581-2022硅单晶中III、V族杂质含量的测定 低温傅立叶变换红外光谱法GB/T 8152.16-2022铅精矿化学分析方法 第16部分:氧化钙含量的测定 火焰原子吸收光谱法GB/T 6609.30-2022氧化铝化学分析方法和物理性能测定方法 第30部分:微量元素含量的测定 波长色散X射线荧光光谱法GB/T 3286.11-2022石灰石及白云石化学分析方法 第11部分:氧化钙、氧化镁、二氧化硅、氧化铝及氧化铁含量的测定 波长色散X射线荧光光谱法(熔铸玻璃片法)另外,日期小编还整理过今年11月即将实施的标准,详情可点击查看:最新公布的光谱仪器相关标准
  • 线上课堂丨油脂氧化稳定性分析解决方案
    线上课堂丨油脂氧化稳定性分析解决方案 食品中油脂自动氧化是导致货架期缩短的一个重要的因素,通过油脂氧化分析仪可以模拟、加速油脂被氧化的过程,分析油脂品质及抗氧化能力,也可推算食品的货架期,也可用于食品新鲜度测定、配方比较、包装比较以及ip间隔测定等。此次线上直播课还将为您带来油脂氧化分析仪 新案例分享!!!课题:油脂氧化稳定性分析解决方案油脂氧化分析仪 品牌:意大利velp具体安排时 间:2020年3月27日 10:00-11:00主讲人:曹大伟 高级技术工程师看课方式:扫描二维码即可 联系方式组织单位: 北京盈盛恒泰科技有限责任公司请扫描以下二维码立即报名~
  • 3.15晚会海能发布权威解决方案:别让话梅“硫“下隐患!
    今天,3月15日,CCTV-2财经频道315晚会如约而至。两个多小时的时间里,过半的时间被用来披露食品安全相关的内容。网络订餐卫生、义齿重金属、红参泡糖、食品中铅、二氧化硫、菌落、过氧化值超标,食品安全问题俨然成为消费者权益受到危害的重灾区!  针对以上问题,海能仪器第一时间做出反应,科学解读相关问题,提供一手解决方案,希望对您有所帮助。    别让话梅“硫“下隐患!解决方案五事件3.15晚会披露,郑州市恒力源食品有限公司甜话梅二氧化硫残留量超标。危害解读大家日常饮食中的常用食材,深受广大消费者的喜爱。但是在其制作过程中,不法商家往往会为了色泽好看而采用硫磺熏蒸。我国传统的特产食品如蜜饯、凉果的加工中多数采用浸硫或熏硫的方法对原料或半成品进行漂白、脱色、抗氧化和防腐。长期食用硫磺熏蒸过的食品会造成肠道功能紊乱,严重损害人体的消化系统。熏蒸用的工业硫磺由于纯度不高,可能还含有砷等有害微量元素,对人体的危害较大。  解决方案:  本文主要是利用二氧化硫测定仪将样品中二氧化硫完全蒸馏出来,再用自动电位滴定仪滴定。其蒸馏原理同国标玻璃蒸馏仪一样,使用仪器操作更简单快速。1 实验原理  依据GB5009.34-2003 第二法 蒸馏法2 仪器与试剂  二氧化硫测定仪SOA100  电位滴定仪T960  盐酸(1+1)   乙酸铅溶液(20g/L)   碘标准溶液[c(1/2)I2]=0.050mol/l     二氧化硫测定仪SOA1003 实验方法  3.1 样品预处理  样品用剪刀剪碎,充分混匀后,准确称取3.0g于消化管中。  3.2 蒸馏    消化管中加入200ml水,加入10ml(1+1)盐酸,立即上机进行蒸馏。用锥形瓶装25ml乙酸铅溶液(20g/L)进行吸收,吸收管要在吸收液液面以下。蒸馏6min后,蒸馏液的体积约为200ml。用少量去离子水冲洗吸收管,做三组平行,同时进行空白试验。蒸馏开始后,吸收液开始变浑浊,生成白色沉淀。    3.3 滴定  把吸收液转移至滴定杯并放入磁子,选择甘汞参比电极和铂电极用电位滴定仪进行氧化还原滴定,选择常量滴定,设置滴定参数,开始滴定。  4. 结果与讨论  表1 二氧化硫的测试结果    参照国标方法,采用二氧化硫测定仪和全自动电位滴定仪测试话梅中的二氧化硫含量,操作方法简单、蒸馏滴定速度快、准确有效、省时省力,可用于一般常规检测。另外友情提示广大消费者,在购买话梅时,选择正规的渠道购买。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制