当前位置: 仪器信息网 > 行业主题 > >

激光陀螺仪

仪器信息网激光陀螺仪专题为您提供2024年最新激光陀螺仪价格报价、厂家品牌的相关信息, 包括激光陀螺仪参数、型号等,不管是国产,还是进口品牌的激光陀螺仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光陀螺仪相关的耗材配件、试剂标物,还有激光陀螺仪相关的最新资讯、资料,以及激光陀螺仪相关的解决方案。

激光陀螺仪相关的论坛

  • 【原创】现代陀螺仪的工作原理

    现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。  陀螺仪原理上就是运用物体高速旋转时,角动量很大,旋转轴会一直稳定指向一个方向的性质,所制造出来的定向仪器.传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。Vali等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。

  • 【原创大赛】指尖陀螺热引发的产品质量思考

    【原创大赛】指尖陀螺热引发的产品质量思考

    [align=left]文/张欢(华测检测 轻工及玩具产品线)[/align] 从今年年初开始,一股“指尖陀螺热”从北美兴起,以迅雷不及掩耳之势风靡全球。大到商场,小到路边摊,随处可见指尖陀螺的身影。这款老少皆宜、好上手、成本低的指尖玩物,号称可以帮助多动症和自闭症孩子集中注意力,还能释放压力、缓解焦虑情绪。很多商家看准了指尖陀螺的市场前景,开始大肆生产、销售。由于生产工艺良莠不齐,由此引发很多质量问题,值得我们深思。[b]1 什么是指尖陀螺?[/b] 指尖陀螺是一种一个轴承对称结构、可以在手指上空转的小玩具,它是由一个双向或多向的对称体作为主体,在主体中间嵌入一个轴承的设计组合,整体构成一个可平面转动的新型物品,这种物品的基本原理相似于传统陀螺,但是需要利用几个手指进行把握和拨动才能让其旋转。主要材质有:金属、塑料、橡胶。 有玩家表示,在手指与旋转着的轴承接触的过程中,会体验到很舒服的触感。同时,指尖陀螺也不光是转起来那么简单,各路大神早已研究出花式玩法——单手互换位置,左右手凌空飞接,或双人抛接,简直要把这小小的陀螺玩成了“风火轮”。[b]2 指尖陀螺火爆市场[/b] 2016年,还鲜有人知道指尖陀螺为何物。2017年,短短半年指尖陀螺就火遍大街小巷了,在青少年当中成为几乎人手一个的休闲工具:边走边转,边吃边转,边听课边转,边看书边转......各大视频网站被指尖陀螺的各式玩法霸屏,玩家们争相点击,转发。指尖陀螺在天猫、京东商城的售价从9.9元~666元不等,一度稳居各大平台的热销榜。由于成本造价低,市场前景广阔,很多商家看中了这次商机,大批量的投入生产,今年上半年宁波镇海慈溪等地数千家轴承企业也成为了主要受益者,制作陀螺所需的608型轴承订单加班加点也供不应求,价格甚至翻番。3 [b]火爆背后“安全隐患”多[/b] 由于很多企业盲目跟风大批量投入生产,制作工艺良莠不齐,导致指尖陀螺火爆市场后,安全问题频发。3.1 小部件引发窒息危害。[align=center][img=,690,469]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012244569899_2144_3051334_3.jpg!w690x469.jpg[/img][/align][align=center](图1)[/align]指尖陀螺流入市场暴露问题最多的就是小部件问题。今年上半年,华测玩具实验室接到大量指尖陀螺的测试需求,其中涉及最多的不合格项目就是小部件相关条款。如图1所示,指尖陀螺的连接件,经过扭力、拉力测试,极易脱落为小部件,如果误被吞食,会造成窒息危害。[img=,616,451]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012245078669_6312_3051334_3.jpg!w616x451.jpg[/img]据英国《每日邮报》(Daily Mail)报道,今年5月,美国德州一名10岁的小女孩将指尖陀螺放入口中,其中的金属小零件松脱,卡在了女孩的食道里(见X光片),差点窒息,幸好医生及时手术后取出,否则后果不堪设想。在美国也已发生多起因指尖陀螺零件遭儿童误食而导致的意外受伤案例。此外,装配了LED灯的陀螺在旋转时可以发出彩色灯光,增加了玩者乐趣,但不少产品为了方便更换电池没有将电池盒盖进行固定,使用者徒手就可打开,导致纽扣电池脱落。如果使用者是儿童就可能发生吞食,其中的强碱性物质将带来食道溃疡、烧伤等致命伤害以及肠梗阻等危险。3.2 小陀螺自燃危害大。[img=,690,383]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012245169299_7591_3051334_3.jpg!w690x383.jpg[/img]市场的火爆催生了很多功能多样的新产品,比如内置锂电、带蓝牙扬声器的款式以及配有LED灯的陀螺等。但由于其结构设计不合理,新款陀螺在抢占市场的同时也衍生了各种新问题。指尖陀螺陆续传出起火自燃事件也让家长们不寒而栗。7月份,美国加州一名12岁的小女孩在给指尖陀螺充电时,陀螺突然冒烟,导致女孩的手被严重烫伤。nbc25news报道了密歇根的一户家庭,女主人在给指尖陀螺充电的过程中,后者起火,并且灼伤了地毯,幸好被及时发现,没有酿成大灾。女主人称,当时距离开始充电30分钟还不到。另据WBRC,阿拉巴马的州的Kimberly Allums一家在前几天也遭遇了类似的事故,自己小孩在给陀螺充电45分钟后,产品着火,吓得孩子尖叫。据美国消费品安全委员会的最新消息,他们已经对锂电池陀螺的自燃问题展开调查。3.3 工艺粗糙易划伤手指[b][img=,508,438]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012245286349_6045_3051334_3.jpg!w508x438.jpg[/img] [/b]个别厂家急于投产销售,只顾生产速度,忽视产品质量。制作工艺粗糙,指尖陀螺的可触及部分暴露尖点、利边。在指尖陀螺高速运转时,儿童碰触极易划伤手指。部分陀螺的叶片由金属制成,增加了划伤手指的风险。3.4 铅含量超标一名美国独立研究者在一些指尖陀螺中发现了铅。她随机测试了三只指尖陀螺,结果发现其中一个的铅含量高达19000ppm。一般意义上,科学家认为低于90ppm的铅是儿童玩具的安全阈值,该指尖陀螺铅含量严重超标。此外,调查发现,平均11个指尖陀螺中有两个会存在铅成分超标的问题,孩子如果玩性大发把陀螺放进嘴里,后果也会很严重。有研究表示,喷漆玩具漆层中含量较高的可溶性铅慢慢进入儿童体内,导致铅中毒,可能出现贫血、消化不良、腹泻等症状,甚至严重的会影响儿童的智商。[b]4 CPSC发布指尖陀螺行业指南[/b]针对以上安全问题,CPSC发布了指尖陀螺的行业指南:4.1 对于12岁以上人群使用的指尖陀螺:没有强制性的美国消费品安全委员会的规定。然而,带有充电电池的指尖陀螺的制造商和零售商应确保充电锂离子电池使用的电压、电流和温度合乎适当的操作规格。没有适当的电池管理系统(BMS)的充电式指尖陀螺可能会导致过热和火灾的风险。美国消费品安全委员会建议所有带电池的指尖陀螺,无论一般用途产品和儿童产品,都遵守美国玩具标准ASTM F963-16,第4.25节电池操作的玩具中的电池规定。4.2 对于12岁及以下的儿童产品,必须符合以下检测和标签规定:1) 总铅含量要求;2) 油漆中铅含量要求;3) 邻苯二甲酸酯限量要求;4) 美国玩具安全标准ASTM F963-16要求;5) 产品和包装上必须具有永久性可追溯信息。6) CPC证书儿童产品必须由美国消费品安全委员会认可的实验室进行检测,以符合上述所有相关的安全规定。[b]5 CPSC 要求生产商、分销商和零售商应尽的义务[/b]根据美国《消费品安全法》第15节,消费品的生产商、分销商和零售商有法律义务,在得到能够有理由支持关于一种产品的下述结论的信息时,向本委员会报告:不符合适用的消费品安全规则;不符合《消费品安全法》或本委员会执行的任何其它法律规定的任何其它规则、法规、标准或者禁令;带有可能产生重大产品危害的缺陷;或者造成严重伤害或者死亡的不合理风险。[b]6 消费者如何避免伤害?[/b]首先,建议消费者一定要购买正规商家的指尖陀螺,不要一味的图便宜,购买劣质的三无产品。同时一定要按照使用说明书的要求进行使用。其次,由于儿童缺乏安全意识,所以父母一定要做好监管工作。首先,由于指尖陀螺极易产生小部件,所以指尖陀螺一定不能给三岁以下儿童玩耍。家长要提醒孩子不能把指尖陀螺放进嘴里,玩耍过程中脸部不要靠近,以免造成划伤。最后,对于需充电的指尖陀螺,家中最好装有烟雾警报系统,一旦陀螺着火,能第一时间起到警报作用。一定要使用玩具自带的充电线充电,充电过程中,最好有成人看管,一旦电量充满,立刻拔掉充电线,避免过度充电导致玩具过热,产生火灾。[b]7 企业如何规避风险?[/b]生产企业在产品设计之初就应该充分理解法规/标准要求,要严格按照标准要求进行生产,从而规避风险点。产品设计过程中,要加强品质监管和控制,避免玩具边缘出现尖点、利边。产品结构要足够牢固,避免出现部件脱落,造成窒息危害。包装上要有正确的年龄标识及相应的警告语,提醒消费者注意相关危害。儿童产品对材料性能及有害物质的管控会更为严格,在原材料采购时选择优质的供应商极为重要。对于装配了锂电池、纽扣电池的,还要格外关注电池安全。锂电池要严把品质关,避免使用劣质锂电池导致充电时起火等隐患,纽扣电池不能使用可徒手打开的卡扣式,而应使用螺钉固定。产品出口不同的国家或地区,必须要首先满足相应的法规/标准要求,而这些法规/标准往往项目和限制都会有所差异,因此对成品进行送检,确认其符合性是产品质控的主要手段之一。生产企业要密切关注标准更新,第一时间了解标准修订内容,及时调整产品设计方案。企业要留意产品召回信息,了解召回原因,改进产品,避免同类产品被召回。

  • 【分享】陀螺为什么不倒----别莱利曼

    陀螺旋转的时候为什么不会倒在小时候曾经玩过陀螺的成千上万个人里面,恐怕没有多少人能够正确地回答这个问题,为什么一个直立着转甚至歪斜着转的陀螺会出乎意料地不倒呢?是什么力量把它维持在这种好像很不稳定的状态呢?难道它能不受重力的作用吗? 原来,这里有一种极有趣的力的相互作用。陀螺的原理很不简单,这里不打算深入研究。这里只谈一谈旋转着的陀螺所以能够不倒的基本原因。http://www.pep.com.cn/oldimages/pic_88989.gif图172是一个照着箭头所指的方向旋转着的陀螺。请注意它边上写着A字的那一部分,和在它对面写着B字的那一部分。A的部分在离开你,而B的部分在向着你转过来。现在再看,当你把陀螺的轴向你自己这一面侧倒的时候,这两部分会起什么样的运动。你这样推它,就是使A的部分的运动向上斜,B的部分的运动向下斜;使这两部分都得到一种跟自己本来的运动成直角的推动。可是,陀螺在很快旋转的时候,它的圆周速度非常大,而你推它的时候所给它的那个速度却很小。一个小速度和一个大速度结合而成的速度,自然跟圆周的大速度相差不大。所以陀螺的运动几乎没有改变。陀螺好像抵抗着一切想把它推倒的力。同时陀螺越重和转得越快,就越能顽强地抵抗推倒它的力。这就是陀螺能够不倒的原因。这个解释,在本质上同惯性定律有直接关系。陀螺上的每一个点,都在一个跟旋转轴垂直的平面里沿着一个圆周转。按照惯性定律,每一个点随时都竭力想使自己沿着圆周的一条切线离开圆周。可是所有的切线都同圆周本身在同一个平面上。因此,每一个点在运动的时候,都竭力想使自己始终留在跟旋转轴垂直的那个平面上。由此可见,在陀螺上所有跟旋转轴垂直的那些平面,也竭力在维持自己在空间的位置。这就是说,跟所有这些平面垂直的那旋转轴本身,也竭力在维持自己的方向。http://www.pep.com.cn/oldimages/pic_88990.gif我们不准备研究陀螺在外力作用下所发生的一切运动。这需要做很多解释,未免会枯燥无味。我只想解释一下,一切旋转物体所以能够使它们的旋转轴的方向保持不变,原因在哪里。旋转物体的这种性质正被现代技术广泛地利用着。在现代轮船和飞机上装置的各种回转仪,像罗盘、稳定器等,都是根据陀螺原理造成的。旋转的作用保证了炮弹和枪弹飞行的稳定性,也可以用来保证人造卫星、宇宙火箭等在真空中运动的稳定性。陀螺似乎只是一种简单的玩具,谁知它竟有这么多的用途!

  • 【原创】【农业仪器原创】食品安全:欠抽的陀螺

    食品安全--被抽打的陀螺  核心提示:虽然很多措施在运行:逐渐严格的食品生产控制,连续出台的食品生产标准,以及不断加强的食品安全检测和食品安全宣传,然而食品污染事件依然频发,"安全食品"这只"陀螺"一直未能稳健旋转起来,是"陀螺"本身的问题,还是"抽打"的方法和力道不对?  食品安全引起全社会广泛关注,起于2009年1月爆发的三鹿"三聚氰胺奶粉"事件。虽然之前也发生过"苏丹红""大头娃娃"等事件,但尚且属于局部事件,影响范围和影响深度都不及"三聚氰胺奶粉"事件来的猛烈。以此为起点,之后陆续在地方或者全国范围内发生了"苏丹红一号"事件、"龙口粉丝掺假"、"金浩茶油""金华火腿敌敌畏""人造鸡蛋""食品添加剂"等等一系列食品被污染的案例。大有受污染食品以及污染源头越来越多的趋势。同时,各方声音开始对食品安全口诛笔伐,中央和地方在这一问题上倍感压力,采取了高压的态势,然而"一而再,再而三"事故的发生,让我们不禁开始反思,我们的食品到底出了什么问题?  首先我们要问的是为什么食品安全如此受关注?这是因为食品事故往往潜伏期很长。欧洲疯牛病的潜伏期长达5年之久,而"三聚氰胺奶粉"在未被曝光之前,也已经存在了很长时间。这就意味着即使发现受害案例,食品也已经被食用了很长一段时间,只能进行事后处置,很难做到事前预测。更为严重的是,遭受不安全食品危害的群体往往来自婴幼儿,因为他们的免疫力和抵抗力最弱,对受污染食品的反应也最直接和最快捷。从"三聚氰胺奶粉"到"双酚A"奶瓶,莫不如此。这样产生的危害后果就不仅仅影响到某一群体或者某一范围,而是整整一代人。也正因为此,在"食品安全"问题上,无论是监管者还是消费者,都倾向于"宁可错杀一千,也不放过一个"的监管理念和监管诉求。任何的行业和组织,当已经运行到必须用严刑峻法来进行管制的时候,已经与行业利益关系不大,而是关系到人的生命底线。而一个关系到生命底线的社会问题,引起全社会的广泛关注,也是一种必然。  其次我们想要了解的是污染食品产生于那个环节?从一粒种子入土到一颗果实入口,从种植、施肥、收获到加工、仓储、运送以致出售、食用,在这一过程之中,哪一个环节最容易受到污染?这恰恰是监测的重点。从已发生的案例来看,在全产业链中,都有可能产生事故。转基因种子是否会对人类健康产生影响?病虫害防治应该如何规范农药使用?进行深加工应当避免那些污染源?产品出炉质量如何把关?储存期时间如何界定以如何回收? 这是一个系统工程,但是在这一链条当中,食品流通环节可以说是防治食品安全事故的"防火墙"。意识到食品流通环节的重要性,是避免食品安全事故发生的关键棋子。有些地方已经逐渐开始在这一环节着力整治,例如河南已经在洛阳了建立了全省首个流通环节食品安全检测中心,该中心安装有食品色素检测仪、农药残留检测仪等32种先进检验检测仪器设备,具备元素分析、农药残留、食品添加剂等372项(类)项目监测和对1000多种食品进行检验检测和对比确证的能力。这就大大提高食品安全监管科技含量和快速反应能力。一些部门也针对食品流通环节专门制定监督管理办法,这如同管住了"前门后院",使得监管能力得到了质的提升。  在笔者看来,这些对于食品安全的监管还远远不够,要杜绝食品安全事故的发生,还需依靠"两手",一手制度建设,一手技术应用。  继续严格审查和检查食品生产许可证制度,提高食品生产的进入门槛,以此可规范生产流程和有效监督生产过程,亦可实现后续食品事故的追踪机制。完善食品安全生产规章制度,对于食品大类可进行细化,以规范操作工序。建立食品安全事故追责制,加大对食品安全事故的惩治力度。还可建立食品安全公示系统,加强监控。值此"两会"期间,食品安全立法正在被提及,这是食品安全制度建设的根本和基础。  技术方面,物联网技术正在被广泛接受和逐步应用,把物联网技术应用于食品领域的思路很值得赞赏。如此不仅可以实现食品生产到出售的"正序"监督,而且一旦出现食品不安全的迹象,可实现从购买到种植的"倒查"。另外,此项技术的在农业领域的铺开,对于提升我国农业核心竞争力也大有裨益。  过去几年,我们目睹乃至亲身体会了食品安全这只"陀螺"不甚流畅的旋转,一方面是我们在制度建设上遗留的缺陷,使其"重心不稳,状况频发",另一方面,是我们监测、监督、追踪这只"鞭子"抽打的还不够用力,着力点还不够准确。"前车之鉴,后车之师",希望食品安全这只"陀螺"能够旋转地越来越平稳、越来越顺畅。

  • 【转帖】四川特别提示:严禁采食胶陀螺菌

    四川特别提示:严禁采食胶陀螺菌据我们了解,农村有少数人在采食胶陀螺菌,为了避免造成不必要的伤害,请广大农户严禁采食。 胶陀螺是生长在段木木耳、香菇菌棒上的一种常见杂菌,中文名叫胶陀螺菌,中文别名叫猪嘴蘑、木海螺,是一种有毒的菌类,食用后会导致光过敏,严重者则会导致失明。 黑褐色,似陀螺状又似猪咀。直径约4cm,高2-3cm,质地柔软具弹性。除子实层面光滑外,其它部分密布簇生短绒毛。夏秋季在桦树、柞木等阔叶树的树皮缝隙成群或成丛生长。主要分布在吉林、河北、河南、辽宁、四川、甘肃、云南等。 采食后,中毒发病率达35%。属日光过敏性皮炎型症状。潜伏期较长,食后3小时发病,一般在1-2天内发病。开始多感到面部肌肉抽搐,火烧样发热,手指和脚趾疼痛,严重者皮肤出现颗粒状斑点,指针剌般疼痛,皮肤发痒难忍。在日光下越重。经4-5天后渐好转,病程长者可达15天。发病过程中伴有轻度恶心,呕吐、其毒素属光过敏物质卟啉(porphyrins),故经光照后产生过敏反应。一般用抗组织胺药物扑尔敏、苯海拉明等脱敏药物效果良好。另外,此菌含过敏性物质可能经研究用于医药等方面。 胶陀螺往往出现在栽培木耳、香菇的段木上,与有益菌争夺养分,影响其产量。

  • 塞子脱落的问题

    PDA试管培养基和生理盐水灭菌后,当打开锅盖后,发现很多的硅胶塞(棉塞)已经脱落了,请问大家是怎么回事啊,以前从来没有过,但是这一周开始每天都有锥形瓶的塞子脱落

  • 视网膜脱落

    谁知道为什么会引起视网膜脱落?视网膜脱落手术后注意事项?

  • 膜脱落区域的异常物质分析

    膜脱落区域的异常物质分析

    各位大神/专家! 玻璃上镀膜,膜层脱落。下图为膜脱落区域的FT-IR图,请教各位专家大神,膜脱落区域有什么异常物质吗? 十分感激! [img=,690,305]https://ng1.17img.cn/bbsfiles/images/2023/10/202310171648056381_3221_5193766_3.png!w690x305.jpg[/img]

  • 激光腔镜超声波清洗机

    一、设备名称:激光腔镜超声波清洗机;二、设备型号:VGT-1407FS;三、设备用途:清洗激光腔镜表面污垢、并干燥;四、设备能力: 节拍3~11分钟(可依据生产进度调节);五、设备描述: VGT-1407FS为激光腔镜超声波清洗系统,设备共有14个功能槽,配置有浸泡系统、循环过滤系统、自动恒温系统抛动系统、超声波清洗系统、慢拉脱水系统、热风烘干系统、密闭气缸门系统、抽风装置等。设备采用环保型水溶剂洗涤、纯水漂洗,为环保型清洗机; 清洗过程中工件通过超声波高频产生的“气化现象”的冲击和系统自身不停地作上下运动,增加了液体的摩擦,从而使工件表面的污垢能够迅速脱落,实现其高清洁度的目的。六、清洗流程 1超声浸泡洗(抛动) → 2超声洗剂洗(抛动) →3超声洗剂清洗(抛动) →4超声回用纯水漂洗(抛动) →5超声洗剂漂洗(抛动)→ 6超声洗剂洗(抛动) →7超声强碱漂洗(抛动) →8超声纯水漂洗(抛动) →9超声纯水漂洗(抛动) →10超声纯水漂洗(抛动) →11超声纯水漂洗(抛动) →12超声纯水漂洗(抛动) →13慢拉脱水 →14热风烘干或离心脱水。七、如何测试激光腔镜超声波清洗系统的作业能力1、激光腔镜超声波清洗机作业能力的衡量指标有很多,空化强度和谐振频率都包括在内,当然要测量出其具体大小也能判断超声波清洗机的状态。这两大指标有不同的表示方法,与其相关的因素也是不同的,需要针对性的进行说明。2、超声波清洗机所产生的空化强烈程度与两方面有关,一是气泡崩溃所产生的机械力,而就是气泡的多少。而这些因素与清洗过程中的温度、压力等都有密切的联系。3、这都有专门的装置来完成,在测量的时候,只需要保持信号发生器的输出一定,那么在某一频率点上,超声波清洗机变幅杆的位移振幅就会达到极限值,从而得出对应的谐振频率。4、在准确测量到超声波清洗机的这两大技术指标之后,对于设备工作能力的了解将会更加清晰,能够为超声波清洗机更好的投入使用提供有力保障。

  • Postnova推出脱机的和在线-脱机两用的21角度静态激光散射仪

    如题,在PN3621型21角度激光散射检测器的基础之上,德国Postnova分析仪器公司推出了完全脱机型、脱机-在线两用型21角度激光散射仪!即日起,我们上海积利科学仪器有限公司将为国内用户提供这两款静态激光散射仪产品。并且,现有客户的已经装机了的PN3621型在线MALS检测器,也可以升级为在线-脱机两用型激光散射仪,但是需要另付费。

  • 【讨论】转子中的样品不会脱落?

    还没有真正的感觉一下那台200M的瓦力安的转子与样品管间的作用力,今天体验了一下bruker的,感觉可以把样品管夹住,不会脱落。但是,记得王老师讲解的时候转子比较松,那样到探头里面岂不是很容易样品管就有脱落到探头,损坏探头的危险?谁可以回答一下?我觉得很危险的,是不是因该尽快换一个?那个东西一般说来要多少钱?

  • 【讨论】脱落酸研究的请进

    脱落酸提取的量出奇的少,想找人交流一下提取过程中是不是有什么值得注意的会严重影响提取量的因素?QQ 70632443。

  • 用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型

    用于激光颗粒测试技术的非球形颗粒的椭圆衍射模型任中京 王少清( 山东建材学院科研处 济南250022)提要:激光颗粒大小测试的结果与颗粒形状密切相关。通过对椭圆衍射谱的研究, 提出在激光粒度分析中以椭圆谱代替球形颗粒谱。计算机模拟计算与对金刚砂实测的结果表明椭圆衍射模型可以有效地抑制粒度反演结果的展宽, 更准确地获得非球形颗粒群的粒度分布。关键词 激光衍射, 椭圆模型, 颗粒大小分析, 颗粒形状, 反演1 引言  由于颗粒大小对粉末材料的重要影响, 颗粒粒度测试在建材、化工、石油等许多领域已经成为一种不可缺少的检测技术。由于颗粒形状的多样性, 无论何种测量方法, 均需要颗粒模型。通常假定颗粒为球体, 与被测颗粒等体积的球体直径称为粒径, 或称等效粒径 。然而球体模型在激光衍射(散射) 粒度分析技术中却遇到严重困难—对非球形颗粒测试常常产生较大误差, 表现为所测得的粒度分布较真实分布有展宽且偏小。来自日本和美国的颗粒测试报告也有相同的倾向 。从光学原理上看,激光粒度分析技术是通过检测颗粒群的衍射谱来反演颗粒群的尺寸分布的。非球形颗粒的衍射谱与球体有很大不同: 前者是非圆对称的, 而后者是圆对称的。欲使二者具有可比性需要新的物理模型, 新的模型应满足: 1) 更加逼近真实颗粒;2)对一系列颗粒有普遍的适用性;3)可给出衍射谱解析式;4)在激光测粒技术中能校正颗粒形状引起的测量误差;5)能函盖球体模型。本文将证明椭圆衍射模型是满足以上条件的最佳选择。2 非球形颗粒衍射模型的椭圆屏逼近颗粒虽然是三维物体, 但是在激光测粒技术中其横截面是使光波发生衍射的主要几何因素, 因此只需研究与入射光垂直的颗粒横截面。球体衍射模型即是取颗粒的体积等效球的投影圆作为该颗粒的衍射模型。如图1 所示, 将形状任意颗粒的横截面视为一衍射屏。可分别做出其轮廓的最大内接圆和最小外接圆。设外圆直径为2b, 内圆直径为2a。分别以2a, 2b 为长短轴做椭圆。下面将证明该椭圆屏即为与图1 所示的颗粒横截面等效的非圆屏的最佳解析逼近。2. 1非圆屏与椭圆屏的几何关系由图1 可见,与非球颗粒相对应的椭圆屏的面积S e 恰好为其横截面外接圆与内接圆面积的几何中值,而与该椭圆屏面积相等的圆( 面积等效圆) 的直径Do 恰好为其长短轴2a 与2b 的几何中值。http://ng1.17img.cn/bbsfiles/images/2013/05/201305281105_441929_388_3.jpg此颗粒对球体的偏离可用形状系数K 表示, K 定义为:K=b/a[fon

  • 【分享】地球周围发现时空漩涡 爱因斯坦预言得证实

    地球周围发现时空漩涡 爱因斯坦预言得证实http://www.people.com.cn/mediafile/pic/20110509/59/5199730781624781003.jpg 这是一张示意图,显示引力探测卫星-2号正在太空测量地球周围存在的时空扭曲效应  据美国宇航局网站报道,爱因斯坦的预言再一次得到了证实!科学家们经过仔细的检测,发现地球周围确实存在时空漩涡,并且其各项参数和爱因斯坦广义相对论预言的完全符合。  这是此间在美国宇航局总部举行的一场新闻发布会上公布的消息,探测的结果来自对该局实施的引力探测卫星B(GP-B)计划的数据分析结果。  引力探测卫星B项目首席科学家,斯坦福大学物理学家弗朗西斯·艾福瑞特(Francis Everitt)表示:“正如广义相对论预言的那样,地球附近确实存在时空扭曲。”  而美国华盛顿大学圣路易斯分校的克利福德·威尔(Clifford Will)表示:“这是一个历史性的时刻。”威尔是爱因斯坦理论研究方面的专家,他目前正担任美国国家研究理事会一个独立下设委员会的主席职务。这一委员会于1998年由美国宇航局创立,其主要目的便是对引力探测卫星B的数据进行检查和评估。他说:“有一天,今天的这个实验将被作为经典案例写进物理学教科书。”  根据爱因斯坦的相对论,空间和时间是交织在一起的,形成一种被他称为“时空”的四维结构。地球的质量会在这种结构上产生“凹陷”,这很像是一个成年人站在蹦床上陷进去的情形。爱因斯坦指出,引力的本质仅仅只是物体围绕这种时空凹陷的曲线边缘运动的外在表现。  如果地球是静止的,那这种扰动将不复存在。但是地球并非静止不动,我们的地球在不停旋转,这种旋转会产生扰动,尽管非常轻微,但仍然会产生一种四维漩涡。而这就是2004年发射进入太空的引力探测卫星-B所要探测的目标。  实验的原理  这一实验项目背后的科学原理非常简单:科学家们将一个陀螺仪送上地球轨道,使它的一个旋转轴指向一颗遥远的恒星作为参考点。在没有任何外力作用的情况下,这一旋转轴应当永远指向这一颗恒星。但如果空间是扭曲的,那么陀螺仪的指向会随着时间推移发生改变。通过对这种改变的精密检测,科学家们能了解时空弯曲的相关信息。  这说起来似乎很简单,但真正做起来却非常艰难。  首先,制造引力探测器B中4个高精度陀螺仪需要用到精度极高的球体。事实上,这些陀螺仪内部的转子是人类迄今制造过的最完美球体。它们的大小约相当于一个乒乓球,由熔凝石英和硅材料制成,其相对完美球体的误差在任何方向都不超过40个原子的厚度。这样高的精度是必须的,因为如果不是这样做,那么这些陀螺仪转轴的晃动将出现误差。  根据爱因斯坦理论进行的估算显示,地球周围空间的时空扭曲将导致陀螺仪旋转轴出现每年0.041弧秒的改变。1弧秒等于1/3600度。为了测出这样微小的改变量,GP-B探测器必须具备0.0005弧秒的精度。这就相当于让你测量放在100英里(约合161公里)之外的一张纸的厚度。  对此,威尔说:“GP-B探测器项目的工程师们不得不发明一整套全新的技术来满足这种不可思议的要求。”  举几个例子,工程师们开发了一种“无拖曳”卫星技术,它可以让卫星擦过地球最外层大气却不会造成对其内部陀螺仪的扰动。他们还开发出独特的技术来防止地球磁场穿透探测器从而影响其测试精度。最后,他们还设计出一种技术来测量陀螺仪的旋转角度,但整个过程中不会触碰到陀螺仪从而对其造成影响。  即便克服了制造和设计上的技术困难,进行这项精度空前的实验本身同样是一个巨大的挑战,但经过一年的数据收集和将近5年的数据分析,GP-B项目的科学家们认为他们已经几乎接近完成这项工作。  艾福瑞特说:“我们测量到测地线效应值为+6.600或-0.017,惯性系拖曳效应值为+0.039或-0.007。”  测地线效应是指由于地球的静止质量引起的陀螺旋转轴改变,也即时空的凹陷。而惯性系拖曳效应则是由于地球自转导致的陀螺旋转轴改变,也即时空的扭曲。测量得到的这两组数据都和爱因斯坦理论的预测非常吻合。

  • 穿戴式设备将爆发 未来人会随身带十几个传感器

    国外媒体报道,微软Xbox业务负责人Don Mattrick日前在公司内部的TechForum大会上表示未来十年可穿戴式智能设备会迅速发展,他认为未来我们至少会在身上穿着10个传感器,用于收集各种信息。  这十个传感器会包含哪些?虽然Don Mattrick并未详细介绍,但我们现在就可以根据已有的信息进行一番合理的YY。  光从手机来看,至少就有摄像头、GPS芯片、重力加速度传感器、光线感应器等。  而炒了很久一直未上市的Google Glass将是穿戴式智能设备的一大方向,它具有拍照、声控、视频通话等功能,还可以接入网络。相比手机,Google Glass需要实时监测使用者的动作和位置,需要更多的传感器,所以摄像头、加速传感器、指南针、陀螺仪之类更少不了,而且还会更精密。  至于近段时间广受关注的智能手表,更是各种传感技术的高度集成。例如手表的体积小,没有大尺寸的触屏供你操作,各种功能的实现需要更加精确的动作感应来实现。即使离开智能的概念,现有的手表早就开始集成气压/高度/水深计、温度计、罗盘、血压计、重力感应器、太阳能面板、红外发射器、电波接收器等。  从微软方面来看,虽然目前没有穿戴式设备的具体消息放出,但相关的储备技术已经有了不少。例如微软在测试一个名为Joule的心脏检测仪,内置触摸屏和GPS、蓝牙等功能,戴在手腕上,即可用于健身也可用于医疗。  微软Xbox 360的Kinect体感外设大家已经很熟悉了,它其中就集成了包括激光测距仪和3D摄像头等设备。传言称微软有一个叫Project Fortaleza的研究计划,是一个类似Google Glass的眼镜,但技术更进一步,具有增强现实的功能,可以配合Kinect在Xbox上实现更酷的游戏体验。  不过谁知道这项技术会不会扩展到更广泛的用途中呢,Kinect最早也是只用在游戏中,现在不也在医疗和工程等行业里得到应用了吗?  除了这些硬的东西,微软在线服务部门总裁Qi Lu还透露未来会为穿戴式智能设备**特别优化的Bing搜索服务,并且这些设备的用户与好友进行信息的分享。

  • 激光测距仪的应用与使用

    激光测距仪是利用激光对目标的距离进行准确测定的仪器。激光测距仪在工作时向目标射出一束很细的激光,由光电元件接收目标反射的激光束,计时器测定激光束从发射到接收的时间,计算出从观测者到目标的距离。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一。激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。它是提高高坦克、飞机、舰艇和火炮精度的重要技术装备。激光测距仪利用红外线测距或激光测距的原理测距原理基本可以归结为测量光往返目标所需要时间,然后通过光速c =299792458m/s 和大气折射系数n 计算出距离D。由于直接测量时间比较困难,通常是测定连续波的相位,称为测相式测距仪。当然,也有脉冲式测距仪,需要注意,测相并不是测量红外或者激光的相位,而是测量调制在红外或者激光上面的信号相位。建筑行业有一种手持式的激光测距仪,用于房屋测量,其工作原理与此相同。激光测距仪使用时需要注意的问题:激光测距仪不能对准人眼直接测量,防止对人体的伤害。同时,振动仪一般激光测距仪不具防水功能,所以需要注意防水。最新的美国里奥波特激光测距仪,由于在美国当地主要适用于户外狩猎爱好者,所以制作之处的优势即是可以防水防雾,配有丛林树木枝叶涂彩。激光器不具备防摔的功能,数字风速仪所以激光测距仪很容易摔坏发光器。    激光测距仪维护:   ① 经常检查仪器外观及时清除表面的灰尘脏污、油脂、霉斑等。   ② 清洁目镜、物镜或激光发射窗时应使用柔软的干布。严禁用硬物刻划,以免损坏光学性能。  ③ 本机为光、机、电一体化高精密仪器,使用中应小心轻放,严禁挤压或从高处跌落,以免损坏仪器。

  • 【转贴】激光拉曼光谱仪的应用

    激光拉曼光谱仪的应用无机化合物的分析   化学结构的测定--无机化合物对称性强,用红外光谱法很难解决,而拉曼光谱测无机原子团的结构、以及测络合物的结构是很方便的。   (1)对于汞离子在水溶液中,是以Hg+或Hg2+存在的,用红外光谱是无法确定的。因这两种离子在红外光谱上都无吸收带。在拉曼光谱中可看到(Hg--Hg)2+的强偏振线在169cm-1出现。   (2)铊离子在水溶液中是以一价形式存在。因拉曼光谱没有二价铊离子的强偏振线。   (3)镓的特征价过去曾有人提出所谓二氯化镓的实验式,如果如此,它应有顺磁性。但与实际不符。后来有人推断其结构可能是Cl2Ga-GaCl2镓原子间有一键,可能有两种构型:  ① 交错式属D2i点群(如丙二烯的氢)。   ② 平面式属C2v点群(乙烯中的氢)。   前者应出现九条拉曼线,有三条是偏振的,后者应出现六条拉曼线,也有三条偏振的。但实际结果表明其熔盐仅有四条拉曼线,其中只有一条是高度偏振的。其他皆为退偏振的。因此上述结构是不可能存在的。实验结果表明,其拉曼谱与水溶液中GaCl4-拉曼光谱相同:     GaCl2cm-1   GaCl4 cm-1      115       114      退偏振      153       149      退偏振      346       346      强偏振      380       386      退偏振因此所谓二氯化镓,其结构应为[Ca][Gacl]其中一个镓原子为三价,另一镓原子为一价。   无机化合物组成分析有三方面   ⑴测定强酸的离解度   ⑵测定溶液中络合物的稳定常数。  ⑶测定杂质和混合物的组成。  用红外光谱测定无机离子是比较困难的。这或因为所测对象是水溶液,或因为强氢键的形成而造成的谱带变宽,总之吸收带复杂化而不利于测定。拉曼光谱则不受水的影响,也无需特殊装置,拉曼光谱对无机离子或分子,以及它们的络合物的分析都是很方便的。硝酸根、硫酸根、高氯酸根、硫氰酸根等阴离子,其特征频率不正离子的性质和它的物理状态影响。   对于杂质的测定,例如亚硝酸根中微量硝酸根,用其他方法测定是很难办到的。而用激光拉曼光谱法则很方便。这是因硝酸根和亚硝酸根在拉曼谱上的特征吸收带互不干扰。特别是亚硝酸根的特征拉曼带810cm-1正好作天然内标,硝酸根的拉曼特征谱带在1055 cm-1.测1055cm-1谱带强度与810cm-1谱带强度之比,由工作曲线可检出。检出极为0.2%。

  • 如何区分铝合金铸锭的显微疏松与二次相脱落(疏松假像)?

    如何区分铝合金铸锭的显微疏松与二次相脱落(疏松假像)?

    如何区分铝合金铸锭的显微疏松与二次相脱落(疏松假像)?下面两个图是显微疏松还是抛光金相试样时造成的二次相脱落?http://ng1.17img.cn/bbsfiles/images/2014/03/201403061617_492134_2219273_3.jpghttp://ng1.17img.cn/bbsfiles/images/2014/03/201403061617_492135_2219273_3.jpg

  • 【资料】激光原理及其应用

    激光是二十世纪六十年代出现的一种新型光源——激光器发出的光。激光一词的本意是受激辐射放大的光。1960年美国休斯研究实验室的梅曼制成了第一台红宝石激光器,1961年9月中国科学院长春光学精密机械研究所制成了我国第一台激光器。此后,在激光器的研制、激光技术的应用以及激光理论方面都取得了巨大进展,并带动了一些新型学科的发展,如全息光学、傅立叶光学、非线性光学、光化学等,激光还与当今的重点产业——信息产业密切相关。与激光有关的诺贝尔物理学奖获得者有:1964年,美国汤斯、原苏联巴索夫和普洛霍罗夫因在激光理论上的贡献而获奖。1981年美国肖洛因发展激光光谱学及对激光应用作出的贡献、美国布隆伯根因开拓与激光密切相关的非线性光学共同获奖。1997年美国朱棣文、科恩和飞利浦因首创用激光束将原子冷却到极低温度的方法共同获奖。 激光原理一.物质与光相互作用的规律光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202115_32995_1634962_3.gif[/img]微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为=△E/h(h为普朗克常量)。1. 受激吸收(简称吸收)处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。2. 自发辐射粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,既使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611202116_32996_1634962_3.gif[/img]3. 受激辐射、激光1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。可以设想,如果大量原子处在高能级E2上,当有一个频率 =(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。这种在受激辐射过程中产生并被放大的光就是激光。二.粒子数反转爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统计分布律。按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。如何从技术上实现粒子数反转是产生激光的必要条件。理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。

  • 激光粒度仪主要类型

    [font=微软雅黑][size=10.5pt][color=#333333]激光粒度仪是通过颗粒的衍射或散射光的空间分布(散射谱)来分析颗粒大小的仪器,采用Furanhofer衍射及Mie散射理论,测试过程不受温度变化、介质黏度,试样密度及表面状态等诸多因素的影响,只要将待测样品均匀地展现于激光束中,即可获得准确的测试结果。主要应用于建材、化工、冶金、能源、食品、电子、地质、军工、航空航天、机械、高校、实验室,研究机构等领域。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]激光粒度仪主要类型:[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]1.静态激光[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]  能谱是稳定的空间分布。主要适用于微米级颗粒的测试,经过改进也可将测量下限扩展到几十纳米。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]2.动态激光[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]  根据颗粒布朗运动的快慢,通过检测某一个或二个散射角的动态光散射信号分析纳米颗粒大小,能谱是随时间高速变化。动态光散射原理的粒度仪仅适用于纳米级颗粒的测试。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]3.光透沉降[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]  通常所说激光粒度仪是指衍射和散射原理的粒度仪,光透沉降仪,依据的原理是斯托克斯沉降定律而不是激光衍射/散射原理,因此这类仪器不能称作激光粒度仪。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]  在以往的粒度分析技术方法中,通常采用筛分或沉降法。常用的沉降法存在检测速度慢(特别是小颗粒)、重复性差、非球形颗粒误差大、不适用于混合物料(即颗粒的比重必须一致才能更准确)、动态范围较窄等缺点。激光衍射法的发明,彻底克服了沉降法的缺点,大大降低了劳动强度,加快了样品检测速度(从半小时到一分钟)。[/color][/size][/font][font=微软雅黑][size=10.5pt][color=#333333]  激光衍射法测量颗粒大小的依据是:小颗粒对激光的散射角较大,大颗粒对激光的散射角较小。通过测量散射角,可以计算出颗粒的尺寸。光学理论是以迈克尔斯理论和弗朗霍夫理论为基础的。[/color][/size][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制