当前位置: 仪器信息网 > 行业主题 > >

液体储量仪

仪器信息网液体储量仪专题为您提供2024年最新液体储量仪价格报价、厂家品牌的相关信息, 包括液体储量仪参数、型号等,不管是国产,还是进口品牌的液体储量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液体储量仪相关的耗材配件、试剂标物,还有液体储量仪相关的最新资讯、资料,以及液体储量仪相关的解决方案。

液体储量仪相关的论坛

  • 【求助】GC进样中的液体闪烁测量仪

    听工程师提到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]进样中吹扫捕集法中有一个液相闪烁测量仪,这个东西是干什么的啊?有没有大侠尽可能详细的介绍介绍啊?急啊!我在百度上查到这些: 液体闪烁测量仪原理为通过闪烁体(液体状态)将放射能转变为光子,然后将光子导入光电倍增管的光阴极,在高压作用下,将光子转变成光电子,经过光电倍增管,最后在阳极上产生一个电脉冲,通过计数装置将脉冲记录。液体闪烁测量仪解决了β粒子,尤其是低能β粒子的测量问题。由于样品均匀分散在闪烁体中,对低能β粒子(例如3H、14C)测量效率高。 在吹扫捕集法中它起什么作用呢?

  • 液体体积的度量仪器使用方法

    [b]1.量筒的使用[/b]量筒是用来量取液体体积的仪器,根据不同的需要,选用不同容量的量筒,读数时应使眼睛的视线和量筒内液体弯月面的最低点保持水平,偏高或偏低都会造成误差。[b]2.移液管的使用[/b]要求准确地移取一定体积的液体时,可以使用移液管,使用前应先用洗液、自来水、蒸馏水洗至内壁不挂水珠。然后用少量被量取的液体洗三遍。吸取液体时,右手拇指及中指拿住移液管的上端标线以上部位,使管下端伸入液面下约1厘米,左手拿吸耳球慢慢吸上液体,管子则随着容器中液体液面的下降而往下伸。当管中液体上升到刻度标线以上时,左手移开吸耳球,右手迅速用食指堵住管口。然后使管子下端离开液体,靠在容器壁上,稍微放松食指,同时轻轻转动移液管。要知道,化学试剂的存放与取用要求万万马虎不得,实验室所用试剂,很多都是易燃易爆、有腐蚀性或有毒的。因此在使用时,一定严格遵守有关规定,以保证安全。

  • 低本底液体闪烁谱仪

    做环境检测 有项目是测水和环境空气中的氚 需要用到低本底液体闪烁谱仪。 求推荐 品牌型号 ,感谢大家! 另外对低本底a/b测量仪有了解的 老师也请推荐一款吧 ,测水中总a/b。谢谢!

  • 啤酒机如何精准控制液体流量

    啤酒机如何精准控制液体流量

    [font=宋体][color=#1E1F24][back=white]如今随着生活的智能化,啤酒机也可以实现定量输出,那么啤酒机是如何实现这个功能的呢,[/back][/color][/font][font=宋体][color=#222222][back=white]其实只需要在啤酒机里安装一个霍尔流量计就可以实现。[/back][/color][/font][font=宋体][color=#1E1F24]霍尔流量计内部由磁铁和叶轮组成,顶部有一个霍尔元件。当液体从管道流入到流量计内部时,会带动叶轮转动。叶轮的转动会产生霍尔效应。简单来说,就是当一个导体置于磁场中时,会产生一个电动势,这个电动势的大小与磁场和导体在磁场中的位置有关。[/color][/font][align=center][img=霍尔流量计,633,195]https://ng1.17img.cn/bbsfiles/images/2023/09/202309151415500914_2229_4008598_3.jpg!w633x195.jpg[/img][/align][font=宋体][color=#1E1F24]在[url=https://www.eptsz.com]霍尔流量计[/url]中,叶轮的转动会改变磁场和霍尔元件之间的相对位置,从而产生一个脉冲信号。啤酒机设备会接收这个脉冲信号,并根据脉冲信号的频率或数量来判断液体的流量变化。[/color][/font][font=宋体][color=#1E1F24]啤酒机设备根据流量计输出的脉冲值来控制啤酒的输出量。例如,当脉冲频率增加时,啤酒的输出量可能会增加;当脉冲频率减小时,啤酒的输出量可能会减少。[/color][/font]

  • 如何对容器中导电或非导电液体进行物位测量

    物位测量仪表是测量液态和粉粒状材料的液面和装载高度的工业自动化仪表。测量块状、颗粒状和粉料等固体物料堆积高度,或表面位置的仪表称为料位计;测量罐、塔和槽等容器内液体高度,或液面位置的仪表称为液位计,又称液面计;测量容器中两种互不溶解液体或固体与液体相界面位置的仪表称为相界面计。 电容物位计是利用电容量的变化来测量容器内介质物位的测量仪表,在容器内,由电极和导电材料制造的容器壁构成了一个电容。对于一个给定的电极,被测介质的介电常数不变时,给电极加一个固定频率的测量电压,则流过电容的电流取决于电容电极间介质的高度,并与之成比例。电容物位计是基于电容量的改变,来进行物位测量的,用电容物位计测量物位的一个基本要求是:被测介质的相对介电常数(被测介质与空气的介电常数之比)在测量过程中不应变化。 电容物位计适应于容器中导电或非导电液体、固体(块状、粉状、细粒状或卵石状)的物位测量。

  • 简析液体涡轮流量计的注意事项

    液体涡轮流量传感器可水平、垂直安装,垂直安装时流体方向必须向上。液体应充满管道,不得有气泡。安装时,液体流动方向应与传感器外壳上指示流向的箭头方向一致。传感器上游端至少应有20倍公称通径长度的直管段,下游端应不少于5倍公称通径的直管段,其内壁应光滑清洁,无凹痕、积垢和起皮等缺陷。传感器的管道轴心应与相邻管道轴心对准,连接密封用的垫圈不得深入管道内腔。传感器应远离外界电场、磁场,必要时应采取有效的屏蔽措施,以避免外来干扰。为了检修时不致影响液体的正常输送,建议在传感器的安装处,安装旁通管道。传感器露天安装时,请做好放大器及插头的防水处理。当流体中含有杂质时,应加装过滤器,过滤器网目根据流量杂质情况而定,一般为20~60目。当流体中混有游离气体时,应加装消气器。整个管道系统都应良好密封。最后,用户应充分了解被测介质的腐蚀情况,严防传感器受腐蚀。常州市成丰流量仪表有限公司的LWGY基本型涡轮流量传感器可测量液体的瞬时流量和累计体积总量,也可以对液体定量控制。传感器具有精度高、寿命长、操作维护简单等特点,广泛用于工厂、油田、化工、冶金、造纸等行业,是流量计量和节能的理想仪表。

  • 关于物位测量仪表的一些基础信息

    基本概念: 物位是指物料相对于某一基准的位量,是液位、料位和相界而的总称。 (1)液位。储存在各种容器中的液体液面的相对高度或自然界的江、河、湖、海以及水库中液体表面的相对高度。 (2)料位。容器、堆场、仓库等所储存的固体颗粒、粉料等的相对高度或表面位置o (3)相界面位置。同一容器中储存的两种密度不同旦互不相溶的介质之间的分界面位置。通常指液—液相界面、液—固相界面。物位的测量即是指以上三种位置的测量,其结果常用绝对长度单位或百分数表示。测量固体料位的仪表称为料位计,测量液位的仪表称为液位计,测量相界面位置的仪表称界面计。根据我国生产的物位测量仪表系列和工厂实际应用情况,液位测量占有相当大的比例,故在此主要介绍工厂常用的液位测量仪表,其原理也适应其他物位测量。物位测量仪表的分类:物位测量方法很多,测量范围较广,可从儿毫米到几十米,甚至更高,且生产I艺对物位测量的要求也各不相同。因此,工业上所采用的物位测量仪友种类繁多,技其工作原理可分为:(1)直读式物位测量仪表。它利用连通器原理,通过与被测容器连通的玻璃管或玻璃板来直接显示容器中的液位高度,是最原始但仍应用较多的液位计。(2)静压式物仪测量仪表。它是利用液校或物料堆积对某定点产生压力,测量该点压力或测量该点与另一参考点的压差而间接测量物位的仪表。这类仪表共有压力计式物位计、差压式液位计和吹气式液位计3种。(3)浮力式物位测量仪表。这是一种依据力平衡原理,利用浮于一类悬浮物的位置随液面的变化而变化来反映液他的仪表。它又分为浮子式、浮筒式和杠杆浮球式3种。它们均可测量液位,且后两种还可测量液—液相界面。 (4)电气式物位测量仪表。它是将物位的变化转换为电量的变化,进行间接测量物位的仪表。根据电量参数的不同,可分为电容式、电阻式和电感式3种,其中电感式只能测量液位。(5)声学式物位测量仪表。利用超声波在介质中的传播速度及在不同相界面之间的反射特性来检测物位。它可分为气介式、液介式和固介式3种,其中气介式可测液位和料位;液介式可测液位和液—液相界面;固介式只能测液位,比如:防爆型超声波液位计(6)光学式物位测量仪表。它是利用物位对光波的遮断和反射原理来测量物位的。有激光式物位计,可测液位和料位,: (7)核辐射式物位测量仪表。放射性同位素所放出的射线穿过被测介质时.被吸收而减弱,其衰减的程度与被测介质的厚度(物位)有关。利用这种方法可实现液位和料位的非接触式检测。 除此以外,还有重锤式、音叉式和旋翼式3种机械式物位测量仪表,以及微波式、热电式、称重式、防爆型超声波液位计、射流式等多种类型,且新原理、新品种仍在不断发展之中。物位测量仪表按仪表的功能不同又可分为连续测量和位式测量两种.前者可实现物位连续测量、控制、指示、记录、远传、调节等,后者比较简单价廉,主要用于定点报警和自动进出物料的自动化系统。 返回——仪器仪表网

  • 【求购】液体的流量计,密度计与粘度计

    用途:物料的在线供给监测。液体主要成分:含5%的HF的硫酸溶液,因此需要在线的测量仪器能抗腐蚀,尤其是能抗HF的腐蚀。不知道在这个领域,哪个公司的产品性最好阿?

  • 果汁机如何实现液体流量的控制

    果汁机如何实现液体流量的控制

    [font=宋体][color=#333333][back=white]果汁机是我们日常生活中常见的小家电之一,而实现液体流量的控制是果汁机正常运行的关键。通常在设备内部安装霍尔流量计来实现流量的精准控制。[/back][/color][/font][font=宋体][color=#333333][back=white]霍尔流量计是一种基于霍尔效应原理的流量测量仪器,它通过检测液体流过的体积或质量来实现流量的控制。在果汁机中,霍尔流量计通常安装在果汁机的出口处,用于测量果汁的流量。[/back][/color][/font][align=center][img=霍尔流量计,360,360]https://ng1.17img.cn/bbsfiles/images/2023/08/202308081623588337_1860_4008598_3.jpg!w360x360.jpg[/img][/align][font=宋体][color=#333333][back=white]在果汁机中,[url=https://www.eptsz.com]霍尔流量计[/url]通过测量果汁的流量来控制果汁的输出,可以实现果汁的均匀出流,避免浪费和溢出,还可以监测果汁的流量。[/back][/color][/font][font=宋体][color=#333333][back=white]考虑流量范围、精度要求和流体性质等因素,可以选择适合果汁机的霍尔流量计,实现果汁的均匀出流和安全运行。[/back][/color][/font]

  • 抽液阀抽不出液体

    waters1515型色谱抽液阀抽不出液体,且冲系统流出液体的量明显少于设定的流量?各位大佬帮帮忙,新手一枚!

  • 非接触式液位开关可以检测哪些液体

    [font=Calibri][font=宋体]非接触式液位开关因其高精度和可靠性,广泛应用于各种液体检测领域。主要分为光电分离式、[/font] [font=宋体]电容式以及管道非接触式三种类型。[/font][/font] [font=Calibri] [/font] [font=Calibri][font=宋体]光电分离式液位开关利用光学原理进行液位检测。这种传感器通过发射和接收光线来感知液体的存在。由于液体和空气对光线的折射率不同,传感器能够快速识别液体的界限。这种方法的最大优点是高可靠性和较少的维护需求,因为它不受液体物理性质的直接影响。它非常适合用于清水管道中,如在扫地机器人、洗地机和咖啡机等设备中检测液位。[/font][/font] [font=Calibri][font=宋体]电容式液位开关则通过电容变化来检测液体的存在。当液体接触到传感器时,它的电容值会发生变化,从而改变传感器的输出。然而,这种传感器容易受到环境温湿度变化的影响,可能导致感度衰减,从而影响其稳定性和可靠性。因此,在需要处理复杂环境的应用中,电容式传感器可能不如光电分离式稳定。[/font][/font] [font=Calibri][font=宋体]管道非接触式液位开关是一种创新型的检测技术。这种传感器通过夹在水管外部来进行液位检测,不需要与液体直接接触。它常见于光电管道传感器,这类传感器有效地解决了传统机械式液位开关的低精度问题以及卡死失效的问题。此外,它也克服了电容式传感器感度衰减带来的不可控性失效。光电管道传感器通过利用红外光学组件和特殊设计的感应线路来判断液体的存在,提供了高效稳定的液位检测能力。[/font][/font] [font=Calibri][font=宋体]这些[url=https://www.eptsz.com]非接触式液位开关[/url]的应用十分广泛,不仅可以在家用电器如饮水机、加湿器、洗碗机等设备中有效监测液位,还可以在工业场合中用于液体存储和输送的监测。它们的设计能够确保液位检测的准确性和稳定性,从而提高设备的整体性能和可靠性。[/font][/font]

  • 色谱柱无液体流出

    [color=#444444]色谱柱接到仪器上,走了很久的流动相,竟然没有液体流出....但是还是显示压力正常,2500psi,检查无漏液,泵工作正常,不知道该怎么排查原因了[/color]

  • 液相手动进样器进样时有液体溢出

    麻烦各位帮帮忙!我用手动进样器进样,每次我把针插进去时都会有液体溢出,不管是在load位置还是在inject位置都是这样,请问这样的问题会不会对我后面进样产生问题啊?但是我进样后得到的峰的保留时间和峰面积有都差不多,不知道该怎么办了?麻烦各位帮帮忙 谢谢各位了

  • 【分享】英科学家研制出液体防弹衣

    据英国每日邮报报道,近日,科学家最新研制一种液体防弹衣,当防弹衣里的液体物质接触子弹的猛烈冲击时会瞬间变硬,这种奇特的防弹衣被研究人员称为“防弹奶蛋糊”。据悉,英国科学家研制出一道保密化学公式配制“防弹奶蛋糊”,再与传统的凯夫拉尔纤维材料结合在一起,最终成功打造出这种“超级防弹衣”。研究人员介绍称,液体物质与凯夫拉尔纤维材料粘在一起,当子弹击中防弹衣,液体物质承受冲击力则越变得坚硬。他们希望这款超级防弹衣能够制作得更轻、更柔软,成为前线士兵贴身的防弹背心。科学家之所以将它称为“防弹奶蛋糊”,是因为该材料的分子结合方式和变黏稠变坚硬的过程,非常类似于搅拌甜点蛋奶糊。这项前沿科技是由英国布里斯托尔市BAE航空与航天系统公司的科学家小组设计的,该公司主要负责研制全球防御和安全系统的武器和装备。BAE公司设计和材料科技商业部负责人斯图尔特-彭尼(Stewart Penney)说:“当这款防弹衣遭受子弹攻击时,其液体材料将与奶蛋糊非常相似。该技术的原理最好是用汤匙搅拌奶蛋糊来解释,当液体状态时你用汤匙搅拌,几乎感觉不到阻力,但液体物质与传统凯夫拉尔纤维材料结合在一起时,你就会明显感到阻力的存在,随着搅拌的速度加快,‘奶蛋糊’就变得越来越硬。当子弹撞击该材料时,它就瞬间变硬,吸收子弹撞击产生的冲击力。”这种防弹衣之所以会瞬间变硬,是由于使用了“衰减浓度”液体,这种液体与凯夫拉尔纤维增强材料结合在一起,当遭受冲击力和压力时它们会结合得更加紧密,变得坚硬。目前英军使用的军用防弹衣较厚重,限制了士兵们灵活性,在阿富汗等战争环境中十分不便。相比之下,这款最新研制的液体防弹衣使用的原材料较少,并且更轻、更小,为士兵灵活性作战提供了机动性。该款超级防弹衣不仅可使士兵增强灵活性,还比传统防弹衣的厚度减少45%。科学家在测试中,将300米每秒的圆珠射向31层未加工的凯夫拉尔纤维和10层凯夫拉尔纤维与液体物质构成的“防弹奶蛋糊”。佩尼强调称,测试结果显示,后者被圆珠撞击形成的凹坑很浅,而前者的抗撞击效果则差一些,并且沉重的传统防弹衣已逐渐不适应现代战争环境。目前,这种超级防弹衣除计划用于军事人员,还可用于其它的防护性用品,比如:增强防护衣的保护效果,为警察和救护工作人员提供保护等

  • 【求助】岛津14C的TCD出口有液体流出

    请老师帮忙:岛津14C的TCD一个出口(接空的不锈钢填充柱作参比柱)有油状液体流出,而且这空柱进TCD的地方拆下来也有液体,发现该气路压力很高,为什么会有液体?我们都只气体进样,哪来的油状液体?

  • 【仪器心得】+PerkinElmer Quantulus? GCT 6220液体闪烁计数仪

    【仪器心得】+PerkinElmer Quantulus? GCT 6220液体闪烁计数仪

    【仪器心得】+PerkinElmer Quantulus GCT 6220液体闪烁计数仪[font=黑体]1[/font][font=黑体]、简介[/font][font=宋体]珀金埃尔默公司[/font][font=宋体]PerkinElmer[/font][font=宋体]于1978年进入中国,40余年期间在环境健康、食品安全、生命科学、实验室服务、大数据整体信息化解决方案、诊断等业务领域建立了强大的技术和售后服务团队。[/font][font=宋体]PerkinElmer[/font][font=宋体]先后推出MicroBeta、Tri-Carb、Quantulus GCT等系列液体闪烁计数仪产品,该系列仪器是需要进行放射性检测的学术界、新药研究、环境分析和政府研究人员的必备。[/font][font=黑体]2[/font][font=黑体]、液体闪烁计数仪的介绍[/font][font=宋体]液体闪烁计数仪(LSC)是使用液体闪烁体(闪烁液)接受射线并转换成荧光光子的放射性计量仪。液体闪烁计数法是一种放射性碳定年技术,主要测定发生β[color=#0d0e00]核衰变[/color][/font][font=宋体]的放射性核素,尤其对低能β更为有效,依赖于放射性核素发射的β粒子与闪烁液中的一个构成成分闪烁体之间的相互作用。[/font][font=宋体]PerkinElmer Quantulus GCT 6220[/font][font=宋体]液体闪烁计数仪中独有的锗酸铋检测器防护装置,以及防护补偿降低背景技术 (GCT) 相结合,可进一步降低仪器本底,增强仪器灵敏度从而准确测量接近本底的样品活度。尤其是适用于需要检测超低水平Alpha和Beta放射性的环境应用。[/font][font=宋体]其中典型应用有:考古学样品的放射性碳测年;饮用水中氚、氡、镭和铀的测量以及总α放射性、总β放射性的测定;食品、醇和生物燃料中14C的测定;核电厂氚和14C辐射的评估;石油勘探中的示踪物测量;红酒、食醋的鉴别等等。[/font][font=宋体][img=,361,149]https://ng1.17img.cn/bbsfiles/images/2022/03/202203271527181325_9396_1613776_3.jpg!w690x299.jpg[/img][/font][font=宋体] Quantulus GCT 6220[/font][font=宋体] [/font][font=宋体][img=,242,196]https://ng1.17img.cn/bbsfiles/images/2022/03/202203271527341079_4231_1613776_3.jpg!w690x558.jpg[/img][/font][font=宋体]计数图谱[/font][font=宋体] [/font][font=黑体]3[/font][font=黑体]、液体闪烁计数仪应用情况[/font][font=宋体]GB/T29649-2013[/font][font=宋体]《生物基材料中生物基含量测定 液闪计数器法》,以及GB/T 22099-2008《酿造醋酸与合成醋酸的鉴定方法》,都是基于以下原理:碳14由于受到宇宙射线中子对氮14原子的作用,不断地形成于大气上层。它在空气中迅速氧化,形成二氧化碳并进入全球碳循环。动植物在它们的一生中都从二氧化碳中吸收碳14,当它们死亡后,就停止与生物圈的碳交换,其碳14含量开始减少,减少的速度由放射性衰变决定。而由亿万年形成的化石原料(石油、煤、天然气)及其衍生产品中的C14活性接近于0,因此,通过对C14不稳定碳的鉴定,便可判定该产品是全部或部分来自于石油衍生制品(合成)。[/font][font=宋体]美国材料实验协会ASTM D6866标准,利用超低本底液体闪烁技术,测定不同原料来源的泡沫材料中放射性碳同位素14C含量,转化为生物基含量,从而用于鉴别生物基泡沫材料。[/font][font=宋体]在此方法中,通过测定碳-14衰变时产生的β粒子数,得出碳-14的衰变数,间接测定碳-14的含量。由于天然成分碳-14含量在一定范围内,而化工合成的碳由于大量衰变,只有微量残存,因此,通过液体闪烁计数仪测定碳-14含量可以进行天然与合成的分别。[/font][font=宋体]基于上述方法原理,还可以用于年份酒的鉴别,如中国食品发酵工业研究院[/font][font=宋体]秦人伟[/font][font=宋体]利用碳-14测定年份酒的时间,就是利用液体闪烁计数仪。[/font][font=宋体] [/font][font=黑体]4[/font][font=黑体]、使用感受[/font][font=宋体]液体闪烁计数仪的使用方便,液体样品前处理也简单,只需要加入闪烁液与样品混合均匀,就可以上仪器测定。在维护方面,[/font][font=宋体]除了常规检查和清洁之外,不需要特别的预防性维护。[/font][font=宋体]还有以下优点:[/font][font=宋体]闪烁光的寿命极短,分辨时间很短,无需作死时间校正;[/font][font=宋体]对于能量低,射程短、易被空气和其它物质吸收的α射线和低能β射线(如3H和14C),有较高的探测效率,液体闪烁计数器是α射线和低能β射线的首选测量仪器;[/font][font=宋体]由于能量转换过程中光子产额与射线能量成正比,且形成的脉冲大小与光子产额成正相关,进而可以进行α、β能谱分析;因本底计数率小,可以进行低本底精确测量;自动化程度高,可以处理多批次试样及程序控制。[/font][font=宋体]就目前我们主要用于香精香料天然度鉴别与年份酒鉴别的情况,有以下需要克服的问题:[/font][font=宋体]由于碳-14的半衰期相当长(约5730年),约5.7万年衰变完。而且通常每克碳每分钟只有几十个C原子衰变(β-衰变),同时碳-14的β粒子能谱既连续又低于一般放射性同位素。计数值较低,导致各不同年份酒中碳-14的变化不是很显著。因此,使用液体闪烁计数仪测定不同年份原酒中碳-14,只能确定大致范围,准确度还需提高。利用放射性同位素C14变化规律,测得的是年份酒平均贮存时间,而不能分别提供各年份酒的比例。[/font][font=宋体]与闪烁液溶解性的问题,需要尝试不同性质的闪烁液,如测定3H和14C,水溶还是脂溶闪烁液的选择。有些香精香料,如丙三醇、乳酸,在闪烁液的溶解性不好解决。[/font]

  • [求助] 有一种液体溶于另一种液体这种说法吗?

    如题,固体溶于液体可以说成溶解,液体可以溶于液体吗?还是只能说是两种液体混合?我需要翻译以下一段话:5% mix (impurity in the drug):0.5 ml solution A in 9.5 ml solution B.其中solution A为杂质溶液,solution B为样品溶液。可以说成是0.5ml杂质溶液溶于9.5ml样品溶液吗?还是只能说将0.5ml杂质溶液与9.5ml样品溶液混合?谢谢。

  • D S C能测出液体的分解放热峰吗?

    请问D S C能测出液体的分解放热峰吗?目前我们用D S C-100测了几个液体样,只出现吸热峰,没出现放热峰,应该是液体气化后从坩埚缝中跑走了,换了中压坩锅后,液体产生压力后直接把坩埚顶开了,请问目前市场有足够抗力的坩埚出售的,各种同仁,你们遇到这种情况是怎么处理的?

  • 如何选用合适的流量测量仪表

    由于流量测量仪表的种类多,适应性也不同,因此正确选用流量测量仪表对保证流量测量精度十分重要: (1)选用流量测量仪表时要考虑工艺允许压力损失,最大最小额定流量、使用场合特点以及被测流体的性质和状态(如液体、气体、蒸汽、粉末、导电性、压力、温度、数度、重度、腐蚀、气泡和脉动流等),还要考虑对仪表的精度要求,以及测量瞬时值、积算值等。 (2)节流装置或其他差压感受元件与差压计配套,可用于测量各种性质及状态的液体、气体与蒸汽的流量,一般用在大50mm管径的流量测量;标推孔板适用于测量干净的液体、气体或蒸汽流量;喷嘴可用于测量高压、过热蒸汽的流量;文丘里管适用于精密测量干净或脏污的液体或气体;偏心孔板和圆缺孔扳适用于介质含有沉淀物、悬浮物的流量测量;1/4圆喷嘴适用于测量黏度大、流速低、雷诺数小的流体;毕托管适用于流量较大而不允许有显著压力损失的场合,但测量精度较低。 (3)计量部门应选用精度等级较高的仪表,如椭圆齿轮流量计、旋转活塞流量计流量计、涡轮流量计、旋涡流量计、侧贴式液位开关等。 (4)电磁流量计只能用于导电液体的测量,如酸、碱、盐、泥砂状流体等。 (5)金屑转子流量计和靶式流量计可以测量高黏度、腐蚀性介质的流量,它可远传和自动调节。 (6)差压流量计和靶式流量计是均方根刻度。在选择刻度时,最大流量为满刻度的95%,正常流量为满刻度的70%—80%,最小流量为满刻度的30%;其他流量仪表是线性刻度,在选择刻度时,最大流量为满刻度的90%,正常流量为满刻度的50%—70%,最小流量为满刻度的10%—20%。

  • 移液枪枪头挤出时为啥粘一点液体

    [url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]枪头挤出时为啥粘一点液体

  • GPC不出液体 压力为零怎么办

    一:泵可以正常运转。二:不连柱子,泵的出液口没有液体。三:之前操作不当空跑半小时。请问可能出现的问题及解决办法。新人没有赏金,抱歉了。

  • 【资料】离子液体简介!

    离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH3)N03的合成(熔点12℃) 。这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体。一般而言,离子化合物熔解成液体需要很高的温度才能克服离子键的束缚,这时的状态叫做“熔盐”。离子化合物中的离子键随着阳离子半径增大而变弱,熔点也随之下降。对于绝大多数的物质而言混合物的熔点低于纯物质的熔点。例如NaCl的熔点为803℃,而50 %LICI-50 %AICl3(摩尔分数)组成的混合体系的熔点只有144℃。如果再通过进一步增大阳离子或阴离子的体积和结构的不对称性,削弱阴阳离子间的作用力,就可以得到室温条件下的液体离子化合物。根据这样的原理,1915年RH.Hurley和T.P Wiler首次合成了在环境温度下是液体状态的离子液体。他们选择的阳离子是正乙基吡咤,合成出的离子液体是溴化正乙基吡咤和氯化铝的混合物。但这拼中离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有束刺激作用。直到1976年,美国Cblorado州立大学的Robert利用AICl3/Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽。1982年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃在这以后,离子液体的应用研究才真正得到广泛的开展。

  • 【求助】请教关于有机液体前處理的方法

    各位大虾好: 本人实验室刚刚收到一个样品好像是胶类的东西需要测试PBBs/PBDEs,大家都没有做有机液体前處理的经验,请教大家应该用什么方法啊? 同时问下比如油脂、油墨类需要测试ROHS又该如何做前處理呢! 大家讨论下哦谢谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制