当前位置: 仪器信息网 > 行业主题 > >

液体浓量仪

仪器信息网液体浓量仪专题为您提供2024年最新液体浓量仪价格报价、厂家品牌的相关信息, 包括液体浓量仪参数、型号等,不管是国产,还是进口品牌的液体浓量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液体浓量仪相关的耗材配件、试剂标物,还有液体浓量仪相关的最新资讯、资料,以及液体浓量仪相关的解决方案。

液体浓量仪相关的论坛

  • 【求助】GC进样中的液体闪烁测量仪

    听工程师提到[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]进样中吹扫捕集法中有一个液相闪烁测量仪,这个东西是干什么的啊?有没有大侠尽可能详细的介绍介绍啊?急啊!我在百度上查到这些: 液体闪烁测量仪原理为通过闪烁体(液体状态)将放射能转变为光子,然后将光子导入光电倍增管的光阴极,在高压作用下,将光子转变成光电子,经过光电倍增管,最后在阳极上产生一个电脉冲,通过计数装置将脉冲记录。液体闪烁测量仪解决了β粒子,尤其是低能β粒子的测量问题。由于样品均匀分散在闪烁体中,对低能β粒子(例如3H、14C)测量效率高。 在吹扫捕集法中它起什么作用呢?

  • 液体体积的度量仪器使用方法

    [b]1.量筒的使用[/b]量筒是用来量取液体体积的仪器,根据不同的需要,选用不同容量的量筒,读数时应使眼睛的视线和量筒内液体弯月面的最低点保持水平,偏高或偏低都会造成误差。[b]2.移液管的使用[/b]要求准确地移取一定体积的液体时,可以使用移液管,使用前应先用洗液、自来水、蒸馏水洗至内壁不挂水珠。然后用少量被量取的液体洗三遍。吸取液体时,右手拇指及中指拿住移液管的上端标线以上部位,使管下端伸入液面下约1厘米,左手拿吸耳球慢慢吸上液体,管子则随着容器中液体液面的下降而往下伸。当管中液体上升到刻度标线以上时,左手移开吸耳球,右手迅速用食指堵住管口。然后使管子下端离开液体,靠在容器壁上,稍微放松食指,同时轻轻转动移液管。要知道,化学试剂的存放与取用要求万万马虎不得,实验室所用试剂,很多都是易燃易爆、有腐蚀性或有毒的。因此在使用时,一定严格遵守有关规定,以保证安全。

  • 低本底液体闪烁谱仪

    做环境检测 有项目是测水和环境空气中的氚 需要用到低本底液体闪烁谱仪。 求推荐 品牌型号 ,感谢大家! 另外对低本底a/b测量仪有了解的 老师也请推荐一款吧 ,测水中总a/b。谢谢!

  • 如何对容器中导电或非导电液体进行物位测量

    物位测量仪表是测量液态和粉粒状材料的液面和装载高度的工业自动化仪表。测量块状、颗粒状和粉料等固体物料堆积高度,或表面位置的仪表称为料位计;测量罐、塔和槽等容器内液体高度,或液面位置的仪表称为液位计,又称液面计;测量容器中两种互不溶解液体或固体与液体相界面位置的仪表称为相界面计。 电容物位计是利用电容量的变化来测量容器内介质物位的测量仪表,在容器内,由电极和导电材料制造的容器壁构成了一个电容。对于一个给定的电极,被测介质的介电常数不变时,给电极加一个固定频率的测量电压,则流过电容的电流取决于电容电极间介质的高度,并与之成比例。电容物位计是基于电容量的改变,来进行物位测量的,用电容物位计测量物位的一个基本要求是:被测介质的相对介电常数(被测介质与空气的介电常数之比)在测量过程中不应变化。 电容物位计适应于容器中导电或非导电液体、固体(块状、粉状、细粒状或卵石状)的物位测量。

  • 【求购】液体的流量计,密度计与粘度计

    用途:物料的在线供给监测。液体主要成分:含5%的HF的硫酸溶液,因此需要在线的测量仪器能抗腐蚀,尤其是能抗HF的腐蚀。不知道在这个领域,哪个公司的产品性最好阿?

  • 简析液体涡轮流量计的注意事项

    液体涡轮流量传感器可水平、垂直安装,垂直安装时流体方向必须向上。液体应充满管道,不得有气泡。安装时,液体流动方向应与传感器外壳上指示流向的箭头方向一致。传感器上游端至少应有20倍公称通径长度的直管段,下游端应不少于5倍公称通径的直管段,其内壁应光滑清洁,无凹痕、积垢和起皮等缺陷。传感器的管道轴心应与相邻管道轴心对准,连接密封用的垫圈不得深入管道内腔。传感器应远离外界电场、磁场,必要时应采取有效的屏蔽措施,以避免外来干扰。为了检修时不致影响液体的正常输送,建议在传感器的安装处,安装旁通管道。传感器露天安装时,请做好放大器及插头的防水处理。当流体中含有杂质时,应加装过滤器,过滤器网目根据流量杂质情况而定,一般为20~60目。当流体中混有游离气体时,应加装消气器。整个管道系统都应良好密封。最后,用户应充分了解被测介质的腐蚀情况,严防传感器受腐蚀。常州市成丰流量仪表有限公司的LWGY基本型涡轮流量传感器可测量液体的瞬时流量和累计体积总量,也可以对液体定量控制。传感器具有精度高、寿命长、操作维护简单等特点,广泛用于工厂、油田、化工、冶金、造纸等行业,是流量计量和节能的理想仪表。

  • 【资料】离子液体简介!

    离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH3)N03的合成(熔点12℃) 。这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体。一般而言,离子化合物熔解成液体需要很高的温度才能克服离子键的束缚,这时的状态叫做“熔盐”。离子化合物中的离子键随着阳离子半径增大而变弱,熔点也随之下降。对于绝大多数的物质而言混合物的熔点低于纯物质的熔点。例如NaCl的熔点为803℃,而50 %LICI-50 %AICl3(摩尔分数)组成的混合体系的熔点只有144℃。如果再通过进一步增大阳离子或阴离子的体积和结构的不对称性,削弱阴阳离子间的作用力,就可以得到室温条件下的液体离子化合物。根据这样的原理,1915年RH.Hurley和T.P Wiler首次合成了在环境温度下是液体状态的离子液体。他们选择的阳离子是正乙基吡咤,合成出的离子液体是溴化正乙基吡咤和氯化铝的混合物。但这拼中离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有束刺激作用。直到1976年,美国Cblorado州立大学的Robert利用AICl3/Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽。1982年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃在这以后,离子液体的应用研究才真正得到广泛的开展。

  • 果汁机如何实现液体流量的控制

    果汁机如何实现液体流量的控制

    [font=宋体][color=#333333][back=white]果汁机是我们日常生活中常见的小家电之一,而实现液体流量的控制是果汁机正常运行的关键。通常在设备内部安装霍尔流量计来实现流量的精准控制。[/back][/color][/font][font=宋体][color=#333333][back=white]霍尔流量计是一种基于霍尔效应原理的流量测量仪器,它通过检测液体流过的体积或质量来实现流量的控制。在果汁机中,霍尔流量计通常安装在果汁机的出口处,用于测量果汁的流量。[/back][/color][/font][align=center][img=霍尔流量计,360,360]https://ng1.17img.cn/bbsfiles/images/2023/08/202308081623588337_1860_4008598_3.jpg!w360x360.jpg[/img][/align][font=宋体][color=#333333][back=white]在果汁机中,[url=https://www.eptsz.com]霍尔流量计[/url]通过测量果汁的流量来控制果汁的输出,可以实现果汁的均匀出流,避免浪费和溢出,还可以监测果汁的流量。[/back][/color][/font][font=宋体][color=#333333][back=white]考虑流量范围、精度要求和流体性质等因素,可以选择适合果汁机的霍尔流量计,实现果汁的均匀出流和安全运行。[/back][/color][/font]

  • [求助] 有一种液体溶于另一种液体这种说法吗?

    如题,固体溶于液体可以说成溶解,液体可以溶于液体吗?还是只能说是两种液体混合?我需要翻译以下一段话:5% mix (impurity in the drug):0.5 ml solution A in 9.5 ml solution B.其中solution A为杂质溶液,solution B为样品溶液。可以说成是0.5ml杂质溶液溶于9.5ml样品溶液吗?还是只能说将0.5ml杂质溶液与9.5ml样品溶液混合?谢谢。

  • 如何选用合适的流量测量仪表

    由于流量测量仪表的种类多,适应性也不同,因此正确选用流量测量仪表对保证流量测量精度十分重要: (1)选用流量测量仪表时要考虑工艺允许压力损失,最大最小额定流量、使用场合特点以及被测流体的性质和状态(如液体、气体、蒸汽、粉末、导电性、压力、温度、数度、重度、腐蚀、气泡和脉动流等),还要考虑对仪表的精度要求,以及测量瞬时值、积算值等。 (2)节流装置或其他差压感受元件与差压计配套,可用于测量各种性质及状态的液体、气体与蒸汽的流量,一般用在大50mm管径的流量测量;标推孔板适用于测量干净的液体、气体或蒸汽流量;喷嘴可用于测量高压、过热蒸汽的流量;文丘里管适用于精密测量干净或脏污的液体或气体;偏心孔板和圆缺孔扳适用于介质含有沉淀物、悬浮物的流量测量;1/4圆喷嘴适用于测量黏度大、流速低、雷诺数小的流体;毕托管适用于流量较大而不允许有显著压力损失的场合,但测量精度较低。 (3)计量部门应选用精度等级较高的仪表,如椭圆齿轮流量计、旋转活塞流量计流量计、涡轮流量计、旋涡流量计、侧贴式液位开关等。 (4)电磁流量计只能用于导电液体的测量,如酸、碱、盐、泥砂状流体等。 (5)金屑转子流量计和靶式流量计可以测量高黏度、腐蚀性介质的流量,它可远传和自动调节。 (6)差压流量计和靶式流量计是均方根刻度。在选择刻度时,最大流量为满刻度的95%,正常流量为满刻度的70%—80%,最小流量为满刻度的30%;其他流量仪表是线性刻度,在选择刻度时,最大流量为满刻度的90%,正常流量为满刻度的50%—70%,最小流量为满刻度的10%—20%。

  • 【仪器心得】+PerkinElmer Quantulus? GCT 6220液体闪烁计数仪

    【仪器心得】+PerkinElmer Quantulus? GCT 6220液体闪烁计数仪

    【仪器心得】+PerkinElmer Quantulus GCT 6220液体闪烁计数仪[font=黑体]1[/font][font=黑体]、简介[/font][font=宋体]珀金埃尔默公司[/font][font=宋体]PerkinElmer[/font][font=宋体]于1978年进入中国,40余年期间在环境健康、食品安全、生命科学、实验室服务、大数据整体信息化解决方案、诊断等业务领域建立了强大的技术和售后服务团队。[/font][font=宋体]PerkinElmer[/font][font=宋体]先后推出MicroBeta、Tri-Carb、Quantulus GCT等系列液体闪烁计数仪产品,该系列仪器是需要进行放射性检测的学术界、新药研究、环境分析和政府研究人员的必备。[/font][font=黑体]2[/font][font=黑体]、液体闪烁计数仪的介绍[/font][font=宋体]液体闪烁计数仪(LSC)是使用液体闪烁体(闪烁液)接受射线并转换成荧光光子的放射性计量仪。液体闪烁计数法是一种放射性碳定年技术,主要测定发生β[color=#0d0e00]核衰变[/color][/font][font=宋体]的放射性核素,尤其对低能β更为有效,依赖于放射性核素发射的β粒子与闪烁液中的一个构成成分闪烁体之间的相互作用。[/font][font=宋体]PerkinElmer Quantulus GCT 6220[/font][font=宋体]液体闪烁计数仪中独有的锗酸铋检测器防护装置,以及防护补偿降低背景技术 (GCT) 相结合,可进一步降低仪器本底,增强仪器灵敏度从而准确测量接近本底的样品活度。尤其是适用于需要检测超低水平Alpha和Beta放射性的环境应用。[/font][font=宋体]其中典型应用有:考古学样品的放射性碳测年;饮用水中氚、氡、镭和铀的测量以及总α放射性、总β放射性的测定;食品、醇和生物燃料中14C的测定;核电厂氚和14C辐射的评估;石油勘探中的示踪物测量;红酒、食醋的鉴别等等。[/font][font=宋体][img=,361,149]https://ng1.17img.cn/bbsfiles/images/2022/03/202203271527181325_9396_1613776_3.jpg!w690x299.jpg[/img][/font][font=宋体] Quantulus GCT 6220[/font][font=宋体] [/font][font=宋体][img=,242,196]https://ng1.17img.cn/bbsfiles/images/2022/03/202203271527341079_4231_1613776_3.jpg!w690x558.jpg[/img][/font][font=宋体]计数图谱[/font][font=宋体] [/font][font=黑体]3[/font][font=黑体]、液体闪烁计数仪应用情况[/font][font=宋体]GB/T29649-2013[/font][font=宋体]《生物基材料中生物基含量测定 液闪计数器法》,以及GB/T 22099-2008《酿造醋酸与合成醋酸的鉴定方法》,都是基于以下原理:碳14由于受到宇宙射线中子对氮14原子的作用,不断地形成于大气上层。它在空气中迅速氧化,形成二氧化碳并进入全球碳循环。动植物在它们的一生中都从二氧化碳中吸收碳14,当它们死亡后,就停止与生物圈的碳交换,其碳14含量开始减少,减少的速度由放射性衰变决定。而由亿万年形成的化石原料(石油、煤、天然气)及其衍生产品中的C14活性接近于0,因此,通过对C14不稳定碳的鉴定,便可判定该产品是全部或部分来自于石油衍生制品(合成)。[/font][font=宋体]美国材料实验协会ASTM D6866标准,利用超低本底液体闪烁技术,测定不同原料来源的泡沫材料中放射性碳同位素14C含量,转化为生物基含量,从而用于鉴别生物基泡沫材料。[/font][font=宋体]在此方法中,通过测定碳-14衰变时产生的β粒子数,得出碳-14的衰变数,间接测定碳-14的含量。由于天然成分碳-14含量在一定范围内,而化工合成的碳由于大量衰变,只有微量残存,因此,通过液体闪烁计数仪测定碳-14含量可以进行天然与合成的分别。[/font][font=宋体]基于上述方法原理,还可以用于年份酒的鉴别,如中国食品发酵工业研究院[/font][font=宋体]秦人伟[/font][font=宋体]利用碳-14测定年份酒的时间,就是利用液体闪烁计数仪。[/font][font=宋体] [/font][font=黑体]4[/font][font=黑体]、使用感受[/font][font=宋体]液体闪烁计数仪的使用方便,液体样品前处理也简单,只需要加入闪烁液与样品混合均匀,就可以上仪器测定。在维护方面,[/font][font=宋体]除了常规检查和清洁之外,不需要特别的预防性维护。[/font][font=宋体]还有以下优点:[/font][font=宋体]闪烁光的寿命极短,分辨时间很短,无需作死时间校正;[/font][font=宋体]对于能量低,射程短、易被空气和其它物质吸收的α射线和低能β射线(如3H和14C),有较高的探测效率,液体闪烁计数器是α射线和低能β射线的首选测量仪器;[/font][font=宋体]由于能量转换过程中光子产额与射线能量成正比,且形成的脉冲大小与光子产额成正相关,进而可以进行α、β能谱分析;因本底计数率小,可以进行低本底精确测量;自动化程度高,可以处理多批次试样及程序控制。[/font][font=宋体]就目前我们主要用于香精香料天然度鉴别与年份酒鉴别的情况,有以下需要克服的问题:[/font][font=宋体]由于碳-14的半衰期相当长(约5730年),约5.7万年衰变完。而且通常每克碳每分钟只有几十个C原子衰变(β-衰变),同时碳-14的β粒子能谱既连续又低于一般放射性同位素。计数值较低,导致各不同年份酒中碳-14的变化不是很显著。因此,使用液体闪烁计数仪测定不同年份原酒中碳-14,只能确定大致范围,准确度还需提高。利用放射性同位素C14变化规律,测得的是年份酒平均贮存时间,而不能分别提供各年份酒的比例。[/font][font=宋体]与闪烁液溶解性的问题,需要尝试不同性质的闪烁液,如测定3H和14C,水溶还是脂溶闪烁液的选择。有些香精香料,如丙三醇、乳酸,在闪烁液的溶解性不好解决。[/font]

  • 【求助】液体标准品的配制

    之前好象有类似的关于标准品配制的帖子,但一时没有找到,故重提一下:大部分的农残标准品可能是液体的,不知道大家是如何配制的?以何种方式配制准一些呢?是把1ml直接当1mg还是直接称重呢?

  • 【求助】求推荐粘度测量仪器

    实验室想测量某液体粘度,液体较贵重,必须回收,看到自动测量仪器比较贵,所以考虑毛细管,不知道选乌氏怎么样?另外乌氏的稀释和非稀释型该怎么选,诚心求教

  • 傅若农:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱

    [b][color=#0000ff]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[color=#0000ff][url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#0000ff]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#0000ff]第二讲:傅若农:从三家公司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#0000ff]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#0000ff]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#0000ff]第五讲:傅若农:气-固色谱的魅力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141104/145381.shtml][color=#0000ff]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000ff]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150106/150406.shtml][color=#0000ff]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150211/153795.shtml][color=#0000ff]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][/url][/color][url=http://www.instrument.com.cn/news/20150312/155171.shtml][color=#0000ff]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]第十一讲:[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/color][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][color=#0000ff]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/color][/url][b]前言[/b]  作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。  前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方法。[b]1、基本情况[/b]  由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有些困难,逊色于薄层色谱和液相色谱。如果使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行脂质组学研究的基本方法。用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。  近年把离子液体用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161-175)[b]2、室温离子液体作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/b]  室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根(-)、四氟硼酸根(-)、硝酸根(NO3-)、三氟甲基磺酰亚胺(-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离α-甲基吡啶和β-甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ( ) 及相应的氯化物( )用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了和色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490)[b](1).室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的特点[/b]  室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,它们非常适应毛细管色谱柱的多方面要求:[b](a) 蒸汽压低[/b]  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺()的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的要求。[align=center]表1 在不同温度下的蒸汽压[/align][table][tr][td][align=center]温度/℃[/align][/td][td][align=center]蒸汽压/P×10[sup]2[/sup] (Pa)[/align][/td][/tr][tr][td][align=center]184.5[/align][/td][td][align=center]1.22(0.92 mmHg柱)[/align][/td][/tr][tr][td][align=center]194.4[/align][/td][td][align=center]2.29(1.72 mmHg柱)[/align][/td][/tr][tr][td][align=center]205.5[/align][/td][td][align=center]5.07 (3.8 mmHg柱)[/align][/td][/tr][tr][td][align=center]214.4[/align][/td][td][align=center]8.74 (6.6 mmHg柱)[/align][/td][/tr][tr][td][align=center]224.4[/align][/td][td][align=center]15.2 (11.4 mmHg柱)[/align][/td][/tr][tr][td][align=center]234.4[/align][/td][td][align=center]27.4 (20.5 mmHg柱)[/align][/td][/tr][tr][td][align=center]244.3[/align][/td][td][align=center]46.6 (35.0 mmHg柱)[/align][/td][/tr][/table][b](b) 粘度高[/b]  室温离子液体的粘度高,适合于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。[b](c) 湿润性好[/b]  要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。[b](d)热稳定性好[/b]  大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220-250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335-405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。[align=center][img=,537,347]http://img1.17img.cn/17img/old/NewsImags/images/201561710517.jpg[/img][/align][align=center]图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较[/align][b](e) 极性高[/b]  固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及π-电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。[align=center]表 2 几种商品离子液体固定相的极性 [/align][table=536][tr][td][align=left]商品色谱柱[/align][/td][td][align=left]组成[/align][/td][td][align=left]McRynolds 极性(P)[/align][/td][td][align=left]相对极性数(p.N.)*[/align][/td][/tr][tr][td][align=left]SLB-IL 111[/align][/td][td][align=left] 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]5150[/align][/td][td][align=left]116[/align][/td][/tr][tr][td][align=left]SLB-IL 100[/align][/td][td][align=left]1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺[/align][/td][td][align=left]4437[/align][/td][td][align=left]100[/align][/td][/tr][tr][td][align=left]TCEP[/align][/td][td][align=left]1,2,3-三(2-氰乙氧基)丙烷[/align][/td][td][align=left]4294[/align][/td][td][align=left]94[/align][/td][/tr][tr][td][align=left]SLB-IL 82[/align][/td][td][align=left]1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]3638[/align][/td][td][align=left]82[/align][/td][/tr][tr][td][align=left]SLB-IL 76[/align][/td][td][align=left]三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]3379[/align][/td][td][align=left]76[/align][/td][/tr][tr][td][align=left]SLB-IL 69[/align][/td][td][align=left]未知 [/align][/td][td][align=left]3126[/align][/td][td][align=left]70[/align][/td][/tr][tr][td][align=left]SLB-IL 65[/align][/td][td][align=left]未知 [/align][/td][td][align=left]2834[/align][/td][td][align=left]64[/align][/td][/tr][tr][td][align=left]SLB-IL 61[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐[/align][/td][td][align=left]2705[/align][/td][td][align=left]61[/align][/td][/tr][tr][td][align=left]SLB-IL 60[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活)[/align][/td][td][align=left]2666[/align][/td][td][align=left]60[/align][/td][/tr][tr][td][align=left]SLB-IL 59[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]2624[/align][/td][td][align=left]59[/align][/td][/tr][tr][td][align=left]SupelcoWax[/align][/td][td][align=left]100%聚乙二醇[/align][/td][td][align=left]2324[/align][/td][td][align=left]52[/align][/td][/tr][tr][td][align=left]SPB-5MS[/align][/td][td][align=left]5%二苯基/95%二甲基)硅氧烷[/align][/td][td][align=left]251[/align][/td][td][align=left]6[/align][/td][/tr][tr][td][align=left]Equity-1[/align][/td][td][align=left]100%聚二甲基硅氧烷[/align][/td][td][align=left]130[/align][/td][td][align=left]3[/align][/td][/tr][/table][align=center]*相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性[/align][align=center](McRynolds 极性指标是上世纪60年代中期研究建立的一种[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691)[/align][align=left]几种离子液体色谱柱的结构和性能见表3[/align][align=center]表3:几种离子液体色谱柱的结构和性能[/align][align=center][img=,439,481]http://img1.17img.cn/17img/old/NewsImags/images/2015617101819.png[/img][/align][align=center][img=,440,494]http://img1.17img.cn/17img/old/NewsImags/images/2015617101838.png[/img][/align][align=center][img=,453,584]http://img1.17img.cn/17img/old/NewsImags/images/2015617101858.png[/img][/align][b]3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4[/b][align=center]表4 离子液体色谱柱在脂肪酸甲酯分离中应用[/align][table=555][tr][td]1[/td][td]SLB-IL111[/td][td]奶油中的脂肪酸[/td][td]使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体[/td][td]1[/td][/tr][tr][td]2[/td][td]SLB-IL 82 和 SLB-IL 100[/td][td]水藻中的脂肪酸[/td][td]这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。一维:聚二甲基硅氧烷二维:SLB-IL 82 和 SLB-IL 100[/td][td]2[/td][/tr][tr][td]3[/td][td]SLB-IL100[/td][td]鱼的类脂中反式20碳烯酸顺反异构体的分析[/td][td]用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57[/td][td]3[/td][/tr][tr][td]4[/td][td]SLB-IL111[/td][td]分离16碳烯酸顺反异构体和其他不饱和脂肪酸[/td][td]如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。[/td][td]4[/td][/tr][tr][td]5[/td][td]SLB-IL111[/td][td]分离脂肪酸顺反异构体[/td][td]SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸[/td][td]5[/td][/tr][tr][td]6[/td][td][align=left] SLB-IL100[/align][/td][td]牛奶和牛油中的脂肪酸顺反异构体[/td][td]使用全二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],把离子液体柱用作第一维色谱柱一维:SLB-IL100二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷[/td][td]6[/td][/tr][tr][td]7[/td][td]SLB-IL 100(快速柱)[/td][td]生物柴油中的脂肪酸甲酯(C1-C28)[/td][td]SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]。[/td][td]7[/td][/tr][tr][td]8[/td][td]SLB-IL100[/td][td]分离C[sub]18:1[/sub], C[sub]18:2[/sub], 和 C[sub]18:3[/sub]顺反异构体[/td][td]SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱[/td][td]8[/td][/tr][tr][td]9[/td][td]SLB-IL111SLB-IL100SLB-IL82SLB-IL76SLB-IL61SLB-IL60SLB-IL59[/td][td]评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能[/td][td]IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开[/td][td]9[/td][/tr][tr][td]10[/td][td]SLB-IL59SLB-IL60SLB-IL61SLB-IL76SLB-IL82 SLB-IL100 SLB-IL111[/td][td]用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体[/td][td]除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系[/td][td]10[/td][/tr][tr][td]11[/td][td]SLB-IL111[/td][td]使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸[/td][td]使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 μm)快速分离食用油(例如奶油)中的反式脂肪酸[/td][td]11[/td][/tr][tr][td]12[/td][td]SLB-IL111[/td][td]使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸[/td][td]在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体[/td][td]12[/td][/tr][/table][b]表中文献[/b][table][tr][td]1[/td][td]Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat .[b]J. Chromatogr.A,2012, 1233:137-146[/b][/td][/tr][tr][td]2[/td][td][align=left]Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. [b]J. Chromatogr.A, 2011, 1218:3056-3063[/b][/align][/td][/tr][tr][td]3[/td][td]Ando Y.Sasaki, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase. [b]J. Am. Chem. Oil Soc.,2011,88:743-748[/b][/td][/tr][tr][td]4[/td][td][align=left]Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography-mass-spectrometry using ionic-liquid coated capillary column. [b]J.Chromatogr.A2011,1218: 9384- 9389[/b][/align][/td][/tr][tr][td]5[/td][td][align=left]Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. [b]J.Chromatogr.A, 2011,1218: 545-554[/b][/align][/td][/tr][tr][td]6[/td][td][align=left]Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers .[b]J. Chromatogr. A, 1217 (2010) 775-784[/b][/align][/td][/tr][tr][td]7[/td][td]Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase. [b]J. Chromatogr.A[/b], [b]2009,1216:8992-8997[/b][/td][/tr][tr][td]8[/td][td]Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids. [b]Anal. Chem., 2009, 81:5561-5568[/b][/td][/tr][tr][td]9[/td][td]Dettmer K, Assessment of ionic liquid stationary phases for the [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] analysisof fatty acid methyl esters,[b]Anal Bioanal Chem[/b] ,2014, 406:4931-4939[/td][/tr][tr][td]10[/td][td]Characterisation of capillary ionic liquid columns for gaschromatography-mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, [b]Anal Chim Acta[/b] , 2013 803:166- 173[/td][/tr][tr][td]11[/td][td]Inagaki S,Numata M, Fast [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] Analysis of Fatty Acid Methyl Esters Using a HighlyPolar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,[b]Chromatographia[/b] , 2015,78:291-295[/td][/tr][tr][td]12[/td][td]Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography-flame ionisation detector equipped with highly polar ionic liquid capillary column, [b]Food Chemistry[/b] , 2014 160:39-45[/td][/tr][/table] 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。

  • 关于物位测量仪表的一些基础信息

    基本概念: 物位是指物料相对于某一基准的位量,是液位、料位和相界而的总称。 (1)液位。储存在各种容器中的液体液面的相对高度或自然界的江、河、湖、海以及水库中液体表面的相对高度。 (2)料位。容器、堆场、仓库等所储存的固体颗粒、粉料等的相对高度或表面位置o (3)相界面位置。同一容器中储存的两种密度不同旦互不相溶的介质之间的分界面位置。通常指液—液相界面、液—固相界面。物位的测量即是指以上三种位置的测量,其结果常用绝对长度单位或百分数表示。测量固体料位的仪表称为料位计,测量液位的仪表称为液位计,测量相界面位置的仪表称界面计。根据我国生产的物位测量仪表系列和工厂实际应用情况,液位测量占有相当大的比例,故在此主要介绍工厂常用的液位测量仪表,其原理也适应其他物位测量。物位测量仪表的分类:物位测量方法很多,测量范围较广,可从儿毫米到几十米,甚至更高,且生产I艺对物位测量的要求也各不相同。因此,工业上所采用的物位测量仪友种类繁多,技其工作原理可分为:(1)直读式物位测量仪表。它利用连通器原理,通过与被测容器连通的玻璃管或玻璃板来直接显示容器中的液位高度,是最原始但仍应用较多的液位计。(2)静压式物仪测量仪表。它是利用液校或物料堆积对某定点产生压力,测量该点压力或测量该点与另一参考点的压差而间接测量物位的仪表。这类仪表共有压力计式物位计、差压式液位计和吹气式液位计3种。(3)浮力式物位测量仪表。这是一种依据力平衡原理,利用浮于一类悬浮物的位置随液面的变化而变化来反映液他的仪表。它又分为浮子式、浮筒式和杠杆浮球式3种。它们均可测量液位,且后两种还可测量液—液相界面。 (4)电气式物位测量仪表。它是将物位的变化转换为电量的变化,进行间接测量物位的仪表。根据电量参数的不同,可分为电容式、电阻式和电感式3种,其中电感式只能测量液位。(5)声学式物位测量仪表。利用超声波在介质中的传播速度及在不同相界面之间的反射特性来检测物位。它可分为气介式、液介式和固介式3种,其中气介式可测液位和料位;液介式可测液位和液—液相界面;固介式只能测液位,比如:防爆型超声波液位计(6)光学式物位测量仪表。它是利用物位对光波的遮断和反射原理来测量物位的。有激光式物位计,可测液位和料位,: (7)核辐射式物位测量仪表。放射性同位素所放出的射线穿过被测介质时.被吸收而减弱,其衰减的程度与被测介质的厚度(物位)有关。利用这种方法可实现液位和料位的非接触式检测。 除此以外,还有重锤式、音叉式和旋翼式3种机械式物位测量仪表,以及微波式、热电式、称重式、防爆型超声波液位计、射流式等多种类型,且新原理、新品种仍在不断发展之中。物位测量仪表按仪表的功能不同又可分为连续测量和位式测量两种.前者可实现物位连续测量、控制、指示、记录、远传、调节等,后者比较简单价廉,主要用于定点报警和自动进出物料的自动化系统。 返回——仪器仪表网

  • 红外仪器如何装液体池?

    今天我装液体池不知为什么,一装样品液就发现不好,一竖起来池内液体就不停的向下流,无法测试。请教各位老师了,谢谢!!!

  • 高效液体色谱与离子色谱能否通用?

    我公司做一个有机物时需高效色谱,而在做氯化钙成品分析和原料浓盐酸时需分析其中的氟离子含量,请教各位高手,有无将两者功能合而为一的仪器,即综合了液体色谱和[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]功能的仪器,从而以节省企业添置仪器的费用。谢谢!

  • 【分享】流量仪表在国内的发展趋势

    流量仪表的原理多达10余种,类型不少于200多。在工业自动化系统中,它是信号源头,数量虽只占系统自动化仪表的1/5,但价格约占1/3;在科学评估节能降耗、污染排放中占监控仪表一半以上。因此,它在国民经济中有着重要的地位。从流量仪表的类型来看,由于节流装置较为笨重,技术含量相对较低,国外厂商基本未涉足这类产品的中国市场,我国工程中选用这类仪表也主要立足于国内产品,年销售量不少于20万台,约6亿元人民币以上。 电磁流量计仍是流量仪表中的热点,居于首位。我国各大仪表厂包括上海光华、威尔泰、开封仪表,重庆川仪,都将其列为主要产品。据美国ARC咨询公司评估,中国近年由于特别重视环境保护,依靠上水、下水、冶金、矿山、纸浆、制药业的高速发展,而带动了超声波流量计的发展。超声的优点较多,既准确、压损又小,特别适宜贵重流体的贸易计量,国内外都较重视,只是国内展品多为测液体的,测气体的虽也有几家,应用于现场、特别是用于贸易结算尚存在一些问题 早期流量仪表为纯机械就地显示,如容积式流量计,不仅结构复杂笨重,重量、口径比很大;且其中的转动件因磨损需经常维修。随着工业管道口径日益增大,插入式仪表以其结构简单、轻巧、拆装简便,日益受到用户青睐,而近十年发展最快的电磁、超声流量仪表,管道中更是没有任何转动件、阻力件,结构更为简洁,且压损小,准确度高,是最有发展潜力的流量仪表。

  • 小型液体流量计是如何控制液体流量的

    小型液体流量计是如何控制液体流量的

    [font=宋体]能点科技小型流量计根据工作原理可分为两种,霍尔流量计和光电流量计,霍尔式流量计的工作原理是基于霍尔效应。这种流量计的主要组成部分是一个带有两极磁铁的叶轮,叶轮置于垂直于磁场中。当叶轮转动时,它会产生一个[/font]GS[font=宋体]值,这个值会转换成脉冲信号输出。这个脉冲信号可以用来测量液体的流量。[/font][font=宋体]光电式流量计则利用叶轮切割光通路产生的脉冲信号。这种流量计的主要特点是不含磁铁,纯光学感应。这使得其对水质保护更好。这种流量计适合透光率高的液体,但对于透光性差的液体可能会有差异。[/font][align=center][img=小型流量计,639,367]https://ng1.17img.cn/bbsfiles/images/2023/11/202311241625346881_5347_4008598_3.jpg!w639x367.jpg[/img][/align][font=宋体]在选择合适的小型流量计时,需要考虑多种因素,包括液体的特性流速范围、系统压力、操作条件等。在某些情况下,用户还需要考虑流量计的耐用性和可靠性,以及是否需要认证或校准。[/font][font=宋体]霍尔式和[url=https://www.eptsz.com]光电式流量计[/url]都是精确测量液体流量的有效工具。对于不同的应用场景和需求,用户需要根据实际情况选择最适合的流量计。[/font]

  • 【求助】去液体气泡用的超声仪

    记得之前求助说给跑电泳的液体去气泡的方法是用超声,小菜鸟再问一下:超声用的是什么仪器呀?能不能给一些具体的信息?老板要给实验室买新东西了,想乘机买个这个冬冬,请达人们推荐一下吧!

  • 液体相对密度浓度测定仪

    [url=http://www.f-lab.cn/liquid-densimeters/300g.html][b]液体相对密度浓度测定仪GP-300G[/b][/url]是专业为液体相对密度测定和液体浓度测定设计的相对密度[b]测试仪器[/b],适用于:化学溶液、食品工业、水产养殖业、漱口、医药等液体相对密度测试。[b]液体相对密度浓度测定仪GP-300G[/b]按照GB/T13531、T5526、T5009、ASTM、JIS、ISO标准,采用阿基米德原理的浮力法和排水法,可快速显示密度和浓度。[b]液体相对密度浓度测定仪GP-300G特殊[/b]:●设有上限和下限,并配有蜂鸣器。●只需50cc,即可快速显示液体密度。任何重量都可以作为标准值,操作方便。●能与恒温水箱配合,能在所需温度下测试液体密度。●重量附件可根据液体性质选择。●称重精度0.001g时,增加空气浮力误差补偿功能。●本机可根据试液比重直接显示溶液浓度。[img=液体相对密度浓度测定仪]http://www.f-lab.cn/Upload/GP-300G.jpg[/img]

  • 液体密度的测量

    概念:物理学上用来表示物质分布密集程度的物理量。定义为物质质量与其体积的比值可以用于气、固、液体。实际检测中使用的密度还有印刷上的光密度、粉末颗粒的堆密度等,我这里只讨论最简单的液体的密度的测量。液体密度的测量可以为工艺设计提供数据、推测物质的纯度、快速确定物质的浓度等。在许多液体产品的中间控制和成品检验中,密度是一项重要的指标。密度测定方法:(1)体积称重法:根据概念,只要得知一定的体积的液体的重量,就可以算出密度。采用这一原理测量的方法有密度瓶法。当然我们还有更简单的方法:用[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]取一定体积的液体在电子天平上称,由于无法控温,只能用于要求不高的场合。(2)浮力法:根据阿基米德物体所受浮力与体积、密度关系原理所做的测定方法有密度(浮)计、以及我们表面张力仪和天平所带的密度附件。密度计由干管和躯体两部分组成,干管是一顶端密封的、直径均匀的细长圆管,熔接于躯体的上部,内壁粘贴有固定的刻度标尺,躯体为一直径较粗的圆管,底部呈圆锥形或半球状,填有适当质量的重物,可以垂直稳定地漂浮在液体中。测量时要根据测液体密度值的范围密度计。根据不同浓度的液体密度不同,可以将其刻度改为浓度表示来测定酒精浓度、糖度、盐度等。(3)U型管法:利用U型管的振荡频率与其质量关系制作的仪器,它用的样品量少,精度高。我们有一台DMA4000密度计,温度可以控制在15-40度,密度范围0-3g/ml,精度为小数点后4位,2ml样40秒内出数。但有一个含微小颗粒的样品,始终不能读数,还以为机器有了问题,再清洗后拿水校正,发现一切正常,所以以后对样品的测试还是要选择的。

  • 【求助】液体自己跑了

    之前用几个宽口玻璃瓶装着一些液体,是一些类似煤油的东西,但没有气味的,具体知道是什么油。每个都没有装满瓶子,还旋上盖子,过几天偶然发现液体不知怎么跑出来了,瓶子四周都是那种液体,标签都变模糊了。后来又试了一次,还是老样子,不知是什么原因?

  • 阿贝折光仪测液体的问题

    普通阿贝折光仪的精度则会受被测试液体的影响。我想知道会受到液体那些方面的影响,相对应的影响又会是什么?请各位详细说说,谢谢

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制