当前位置: 仪器信息网 > 行业主题 > >

液位控制计

仪器信息网液位控制计专题为您提供2024年最新液位控制计价格报价、厂家品牌的相关信息, 包括液位控制计参数、型号等,不管是国产,还是进口品牌的液位控制计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液位控制计相关的耗材配件、试剂标物,还有液位控制计相关的最新资讯、资料,以及液位控制计相关的解决方案。

液位控制计相关的论坛

  • 微机控制电液伺服压力试验机

    微机控制电液伺服压力试验机

    YAR系列(二柱式)微机控制电液伺服压力试验机 ·主机跨度大,压缩空间可调节,适合于大型构件试验; ·5000、10000、20000kN机为双油泵配置,空载时低压大流量泵快速充液完成快速进、回程,加载时自动切换成高压小流量泵,极大地节约电能消耗,大大提高工作效率;·油源采用压差伺服技术,电机消耗功率随负荷而变化,因而功率损耗小,噪声低,发热量少,油温升低;·电液比例伺服阀作为控制执行元件,对油清洁度要求低,使用寿命长;匀试验力速率、恒试验力、恒速控制功能; ·测量分辨力高,全程范围内不变化,且内外不分档; ·具有过流、过速、超试验力、超行程等保护功能;http://ng1.17img.cn/bbsfiles/images/2012/06/201206011517_369725_2290385_3.jpg

  • 什么是光电液位控制器

    什么是光电液位控制器

    [font=宋体][back=white]光电液位控制器是一种利用光电传感技术来实现液位控制的设备。它通过光电传感器对液体的光反射或透射进行检测,从而实现对液位的监测和控制。[/back][/font][back=white] [/back][font=宋体][back=white]光电液位控制器的工作原理是利用光电传感器发射出的光束与液体的接触面发生反射或透射,通过接收器接收到的光信号来判断液位的高低。当液位达到设定的阈值时,光电液位控制器会触发相应的控制动作,如开关电路、报警或自动控制等。[/back][/font][align=center] [img=光电液位传感器,601,371]https://ng1.17img.cn/bbsfiles/images/2023/09/202309071404373511_9614_4008598_3.jpg!w601x371.jpg[/img][/align][font=宋体][back=white]相比传统的浮球液位开关,光电液位控制器具有许多优势。首先,光电液位控制器的体积小巧,安装方便,适用于各种容器和管道的液位控制。其次,光电液位控制器不需要直接接触液体,因此不受液体的颜色、腐蚀性和杂质的影响,具有更高的可靠性和稳定性。此外,光电液位控制器还可以实现非接触式的液位检测,避免了浮球易卡死和水垢加重等问题,提高了液位检测的精度和准确性。[/back][/font][back=white] [/back][font=宋体][back=white][url=https://www.eptsz.com]光电液位控制器[/url]通过光电传感技术实现了对液位的准确监测和控制,具有体积小、可靠性高和安装方便等优势。在液位控制领域,光电液位控制器是一种更好的选择。[/back][/font]

  • 【资料】WAW-600B微机控制电液伺服万能试验机(双控制)

    [b][color=#3300ff][img]http://www.okyiqi.com/uploadfile/081201200632.jpg[/img]WAW-600B微机控制电液伺服万能试验机(双控制)[/color][/b]一、主要功能及特点:试验机主机采用液压缸下置式:液压油缸在试验机的下部,活塞在液压力的作用下向上顶,可实现对试样的压缩、弯曲、剪切试验;上下钳口座为全开式结构,装夹试样方便,稳定性好。该结构设计合理、简洁、稳定性好,可靠、易维护,液压伺服加载系统, ,确保系统高精高效、低噪音、快速响应, 实现对试验的自动控制加载、换向;[b]WAW-600B微机控制电液伺服万能试验机[/b]微机控制及处理系统:a:电液伺服控制系统:准确完成试验过程中试验参数的设定、试验过程的自动控制、数据采集、处理、分析、存储及显示(试验数据包括:上下屈服点、抗拉强度、断裂强度、弹性模量、各点延伸率、非比例伸长等)。它除了具备基本的试验力、试样变形、活塞位移和试验进程的闭环控制及等速应力、等速应变、等速试验力、等速位移、试验力保持、位移保持等控制功能外,还具备方便快捷的开环控制功能。b: 试验力,峰值、试样变形、活塞位移、试验曲线的屏幕显示功能,全键盘输入操作和控制模式智能设置专家系统,实现了控制模式的任意设置和各种控制方式之间的平滑切换,使系统具有最大的灵活性。加、卸载平稳,试验过程中既可进行程序控制,同时兼有固定程序的“快捷键“操作,也可采用鼠标灵活调整试验速度;[img=326,257]http://www.okyiqi.com/uploadfile/20081201200223769.jpg[/img] c:可以按GB228-2002《室温材料 金属拉伸试验方法》等国家标准的要求完成试验的数据自动采集和处理。试验过程能够模拟再现和试验数据的再分析、试验曲线放大、比较、遍历。试验曲线可任意选择坐标轴,并可自由放大和缩小;d:基于WindowsXP操作系统的试验软件,放大器调零、传感器标定采用可靠的硬件支持和软件支持相结合使得品质更臻完美;可对使用者实行分权限管理,具有多种图形显示窗口和单位换算功能;e:试验数据以数据库化管理,可以进行网络数据库通讯和管理;f:试验机具有扩展和更新能力;g:强大的自检功能。 6、保护功能: a) 油缸限位保护;b) 液压系统过载溢流保护;c) 试验力过载保护;d) 过流、过压保护;e) 试样破断时安全保护;f) 试验结束自动保护。 [b]二、WAW-600B微机控制电液伺服万能试验机主要技术指标:[/b]1、最大试验力:600kN2、试验力测量范围及精度:0-600kN;0-300kN;0-120kN;0-60kN;4级;试验力精度:优于±1%(从每档满量程的20%起) 3、 变形测量范围及精度:分1;2;5;10四档测量;优于±0.5%FS4、 位移测量范围及精度: 250mm;优于0.01mm5、 拉伸钳口之间最大距离(包括活塞行程): 600mm6、 上下压盘之间的最大距离: 550mm7、 圆试样夹持直径: Ф13-40mm8、 扁试样夹持宽度及厚度: 70mm ;0-30mm9、 上下压盘尺寸: Ф160mm10、 弯曲试验支座间距: 10-500mm11、 活塞最大行程: 250mm12、 应力速度范围: 1MPa/S-25MPa/S13、 应变速度范围: 0.00025/S-0.0025/S14、 拉伸速度: 0.5-70mm/min15、 试验空间调整速度: 120mm/min16、 主机尺寸(长x宽x高包括活塞行程mm): 890×580×2400m17、 控制台尺寸(长x宽x高mm): 1200x800x1100 mm18、 总功率:3.0kW[b]三、WAW-600B微机控制电液伺服万能试验机控制部分技术参数:[/b]〈1〉、试验力测量显示部分:(1).测量方式: 采用高精度油压传感器测量试验力(2).量程转换方式: 自动\手动切换(3).试验力显示方式: 微机屏幕显示〈2〉、变形测量显示部分:(1).测量方式: 采用高精度引伸计测量试样变形(2).量程转换方式: 自动/手动切换(3).变形显示方式: 微机屏幕〈3〉、位移测量显示部分:(1).测量方式: 采用高精度光电编码器测量活塞位移(2).变形显示方式: 微机屏幕〈4〉、自动控制部分:(1).控制方式: 微机自动控制/手动控制两种模式(2).自动控制阀: 进口高精度高频宽电液伺服阀(3).控制模式:a.等速率活塞行程控制:等速设定范围:0.5-70mm/min 控制范围:活塞置零点---活塞行程最大点b.等速率试验力控制:速度设定范围:0.1-2.0满量程/min控制范围:5-100%满量程c.等速率应变控制:速度设定范围:0.1-50%/min控制范围:伸长满量程的5-100%伸长满量程0.1-100mmd.金属材料自动拉伸试验控制:应力速率控制:1-50MPa/sec等速率活塞行程控制:0.5-50mm/min带有试样破断而自动停止机能 (4).试验条件设定方式:人机对话形式:微机键入式(5).试验条件设定项目: 试样截面积、控制速度、保持点、保持时间等〈5〉手动控制部分: 开环功能:可手动控制试验力、位移、变形。三、[b]WAW-600B微机控制电液伺服万能试验机[/b]基本配置1、下置式试验机主机(600kN) 1台2、综合操作台 1台3、液压试样夹紧系统(控制台内) 1套主要元件:3.1、液压泵机组 1套 3.2 、电磁换向阀 1套 3.3 、叠加溢流阀 1套4、液压伺服加载系统 1套5、高精度油压传感器 1套6、变形测量引伸计(标距100mm 变形25mm北京钢院) 1支7、位移测量装置 1套8、附具类: 8.1、拉伸附具(圆钳口 Ф13-40mm;平钳口0-30; ) 各1套8.2、压缩附具(Φ 160mm ) 1套8.3、弯曲附具 (10-500mm) 1套9、联想微机(M260E/ P4/160G/17”液晶) 壹台 10.A4激光打印机(HP1008 ) 壹台11、 试验机WindowsXP中文版软件 1份.

  • (四柱式)微机控制电液伺服压力试验机

    微机控制电液伺服压力试验机主机为移动横梁式结构,压缩空间可调节,下压板制成小车式可沿着导轨运动,方便于大型试件的装卸。因此,适合于金属和非金属制品、大型结构件、建筑构件的压缩性能试验,配备相应的附件还可以做弯曲性能试验。试验机的全数字测量控制系统与压差液压伺服技术及计算机技术相结合,实现了试验力、位移的闭环控制。http://www.kx4u.net/upload/file/images/20111125085708.jpg特点: ·主机跨度大,压缩空间可调节,适合于大型构件试验; ·5000、10000、20000kN机为双油泵配置,空载时低压大流量泵快速充液完成快速进、回程,加载时自动切换成高压小流量泵,极大地节约电能消耗,大大提高工作效率;·油源采用压差伺服技术,电机消耗功率随负荷而变化,因而功率损耗小,噪声低,发热量少,油温升低;·电液比例伺服阀作为控制执行元件,对油清洁度要求低,使用寿命长; ·测控系统具有自动清零、自动标定、自动诊断、自动存储功能,匀试验力速率、恒试验力、恒速控制功能; ·测量分辨力高,全程范围内不变化,且内外不分档; ·可在windows2000/xp中文操作系统下工作。 ·具有过流、过速、超试验力、超行程等保护功能;

  • 微机控制压力试验机

    微机控制压力试验机产品描述:一、技术参数:1、最大试验力? 2、测量范围:80~2000KN(0~2000kN显示)3、力值精度:≤±1%ㄓ庞谝患叮? 4、压力传感器精度:0.1/F.S5、横梁空间: 365mm6、试验空间:310mm7、上下压盘尺寸:220*220mm8、活塞行程:150mm9、过载保护:超满量程的2%,系统自动停机,破形后自动卸载;活塞达到极限位置保护。10、电机功率:2.5KW 11、力控制速度范围:0-1500KN/min12、加荷可以连续长时间保持恒压(电脑自动控制微机控制压力试验机)13、具有手动、自动两套加荷系统,转换方便。14、全程无分档,自动调零,标定简单。15、油缸下置式。16、油源控制:液压比例阀控制调节速度,换向阀控制方向;油泵最大使用压力约:31.5MPa;油泵流量:10L/min;电机功率:2.5KW17、工作电压:380V/220V18、主机尺寸(长*宽*高):1000*600*1800mm19、油源尺寸(长*宽*高):500*500*1000mm20、随机配备联想电脑、HP A4激光打印机;联想电脑:型号:启天M4400,CPU:ICP D 347,内存:256M ,硬盘:80G,显示器:17”纯平。21、微机控制压力试验机软件验收标准: (1)、位移、力值各传感器可以自动清零。主界面上另设手动清零按钮。 (2)、加载速度、间隔时间等可以根据试验要求设定? (3)、在试验模块内可以根据试块输入面积、领期、试验员、序列号、日期等参数。 (4)、保压模式下:可以任意设定恒定压力值,保持时间任意,电脑自动控制,可以连续多级保压。 (5)、可显示 力-时间曲线,自动换算兆帕值,并可以自动保存到设定表格中,同时将各曲线一并保存到表格中。并能通过打印机打印试验报告。 (6)、试验报告在软件中有编辑器,用户可根据自己要求对试验报告自行编辑、设计、更改。 (7)、比例阀、换向阀实现自动控制,自动调节。 (8)、送油阀、回油阀实现手动控制时使用。

  • 【原创】超声波液位计是很好的控制器也是数字液位仪表

    超声波液位计是一种很好的控制器,它也是一种数字液位仪表,在测量行业中的应用是很广泛的,能够适应不同行业的测量需求,而且它还可以在恶劣的环境下进行测量。先进的检测技术和计算技术,提高了仪表的测量精度,丰富的软件功能对干扰回波有抑制功能,广泛应用于电力、冶金、化工、建筑、粮食、给排水等行业,既可测量液体物料也可测量固体物料。随着工业自动化的飞速发展,对工业仪表的要求程度越来越高,国内生产超声波液位计的厂家还是沿用国外第一代的技术,当我们经过几年的现场实践和总结基本把产品做的稳定可靠的时候,进口仪表已经有了更先进的产品,譬如说高频脉冲型号的,带吹扫的,抛物面天线的,带瞄准器的,近期还推出了3D信号的。超声波液位计采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂,采用雷达脉冲波技术的液位计,功耗低,可用二线制的供电,容易实现本质安全,精确度高,适用范围更广。

  • 24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    24位AD和16位DA串级PID控制器在超高精度张力控制中的应用

    [size=16px][color=#ff0000]摘要:针对目前张力控制器中普遍存在测量控制精度较差和无法实现串级控制这类高级复杂控制的问题,本文介绍了具有超高精度和多功能的新一代张力控制器。这种新一代张力控制器具有24位AD模数转换、16位DA数模转换、双精度浮点运算和0.01%的最小输出百分比,同时还就有远程设定点和变送输出功能,可方便的实现两个参量的串级控制,并可进行手动和自动控制的开关切换,极大提高了张力控制的精密度,更是适合一些特殊应用中的微张力控制,甚至可以进行张力设定程序曲线的精确控制。[/color][/size][align=center][size=16px][img=微张力控制,650,272]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110946105710_7747_3221506_3.jpg!w690x289.jpg[/img][/size][/align][size=18px][color=#ff0000][b]1. 问题的提出[/b][/color][/size][size=16px] 张力控制是一种对在两个加工设备之间作连续运动或静止的被加工材料所受的张力进行自动控制的技术。在各种连续生产线上,各种带材、线材、型材及其再制品,在轧制、拉拔、压花、涂层、印染、清洗以及卷绕等工序中常需要进行张力控制。[/size][size=16px] 张力控制中所用到的张力控制器是一种由单片机或者一些嵌入式器件及外围电路开发而成的系统,主要由A/D和D/A转换器以及高性能单片机等组成。在张力控制过程中,首先直接设定要求控制的张力值,让张力传感器采集的信号(一般为毫伏级别)作为张力反馈值,比较两者的偏差后,经内部智能PID运算处理后,调节执行机构,自动控制材料的放卷、中间引导及收卷的张力,达到系统响应最快的目的。目前的张力控制器普遍还存在以下几方面的问题:[/size][size=16px] (1)测量精度较低:普遍采用12位AD模数转换器,个别国外产品用了16位AD模数转换器,对于一些高精度的张力传感器输出显然无法准确测量,测量精度无法满足高精度控制要求。[/size][size=16px] (2)控制输出精度较差:普遍采用12位DA数模转换器,个别国外产品用了14位DA数模转换器,对于一些高精度的张力控制无能为力。[/size][size=16px] (3)浮点运算精度较低:目前市场上商品化张力控制器的PID运算基本都是采用单浮点方式进行,运算精度较低,输出百分比的最小调节量只有0.1%,无法进行超高精度的张力控制。[/size][size=16px] (4)传感器输入信号类型少:在各种张力控制中会采用到多种不同的传感器,如超声波探头,浮辊,电位器和激光等,这些不同传感器所输出的信号类型和量程有多种形式,但目前绝大多数张力控制器的输入型号类型非常有限,且不能方便的进行测量范围调整。[/size][size=16px] (5)功能简单:绝大多数张力控制器只能进行单变量的控制,如收放卷的扭矩控制,过程张力中的速度控制以及浮辊张力控制,但只能选择其中的一种控制参数,缺乏两个参数同时控制的功能,无法采用更高级的控制形式——串级控制来更好实现准确的张力调节。[/size][size=16px] (6)PID参数无法自整定:在有些张力控制过程中,需要准确无超调的PID控制,快速且自动的选择合适的PID参数则显着尤为重要,而目前大多张力控制器缺乏这种PID参数自整定功能。[/size][size=16px] 针对目前张力控制器中普遍存在的问题,特别是为了实现超高精度张力控制,本文将详细介绍超高精度工业用PID调节器及其在超高精度张力控制过程中的应用,特别还介绍了串级控制功能的具体应用。[/size][size=18px][color=#ff0000][b]2. 超高精度PID控制器[/b][/color][/size][size=16px] VPC-2021系列PID调节器是一种标准形式的工业用控制器,有单通道和双通道两个系列,具有96×96mm、96×48mm 和48×96mm三种尺寸规格,如图1所示。[/size][align=center][size=16px][color=#ff0000][b][img=01.超高精度PID控制器系列,650,223]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110948313448_487_3221506_3.jpg!w690x237.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图1 VPC2021系列超高精度PID控制器[/b][/color][/size][/align][size=16px] VPC2021系列PID控制器的最大优点是具有超高精度检测和控制能力,具有24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。主要技术指标如下:[/size][size=16px] (1)真彩色IPS TFT长寿命LED背光、全视角液晶显示。[/size][size=16px] (2)独立的单回路和双回路控制,每个通道控制输出刷新率50ms,独立的PID控制功能,每个通道都可进行独立的手动和自动控制切换。[/size][size=16px] (3)万能型信号检测能力,即每通道都具备47种输入信号形式,仅需通过设置即可完成信号类型和量程选择,由此可满足各种规格和形式的张力探测器的引入。除了能测量各种张力传感器、位置传感器给出的模拟电压、电流和电阻信号之外,还可以测量各种温度传感器和压力传感器等各种信号,传感器输出端直接接入控制器并在控制器上进行选择即可使用。[/size][size=16px] (4)单、双通道独立控制输出,输出信号有线性电流、线性电压、继电器输出、固态继电器输出和可控硅输出五种形式,可用于直接驱动电气比例阀(或电子压力转换器)进行张力控制,也可以驱动各种阀门和加热器等执行机构进行真空度、压力和温度等参数的控制。[/size][size=16px] (5)具有远程设定点、变送和正反向控制功能,使得串级控制和分程控制成为可能。[/size][size=16px] (6)采用自主改进型PID算法,支持对PV微分和无超调控制算法。5组PID存储和调用,10组输出限幅等实用功能 。每个通道采用独立的PID参数 , 且可独立的进行PID参数自整定。[/size][size=16px] (7)支持数字和模拟远程 操 作 功 能,支持标准MODBUS RTU通讯协议。[/size][size=16px] (8)带传感器馈电供电功能(24V,50mA)。[/size][size=16px] (9)支持一路过程变量变送功能,变送的过程变量可选PV测量值、SV设定值、控制输出值和偏差值,变送输出类型有4-20mA, 0-10mA, 0-20mA, 0-10V, 2-10V, 0-5V, 1-5V七种。[/size][size=16px] (10)两组开关量光隔输入端,可以实现各种应用功能的灵活应用切换。[/size][size=16px] (11)随机配备强大的控制软件,可通过软件进行控制参数设置、运行控制、过程曲线显示和存储,非常便于过程控制的调试。[/size][size=18px][color=#ff0000][b]3. 串级控制在张力控制中的应用[/b][/color][/size][size=16px] 在典型的张力控制中多采用PID控制方式,由人工设定所需运行张力。设定值与张力传感器测量值进行比较计算后,PID控制器调节执行机构实现张力的稳定输出。典型张力控制器结构如图2所示。[/size][align=center][size=16px][color=#ff0000][b][img=02.典型单参数张力PID控制结构示意图,450,119]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110949423425_329_3221506_3.jpg!w690x183.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图2 典型单参数张力控制结构示意图[/b][/color][/size][/align][size=16px] 图2所示的采用单参数进行张力控制的方法在很多实际应用中并不能满足需要,往往需要引入第二个参数进行控制,由此需要PID串级控制方式,其结构如图3所示。[/size][align=center][size=16px][color=#ff0000][b][img=03.双参数串级控制PID张力控制结构示意图,600,165]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950250802_7112_3221506_3.jpg!w690x190.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图3 双参数串级控制PID张力控制结构示意图[/b][/color][/size][/align][size=16px] 在图3所示的串级控制系统中包含了主和次两个闭环控制回路:[/size][size=16px] (1)次控制回路包括传感器1、执行机构和次PID控制器,其中将进入外围执行机构膜的参量作为次回路的控制参数。[/size][size=16px] (2)主控制回路则包括了传感器2、次控制回路、外围执行机构和主PID控制器,其中将外围执行机构的产出参数作为主回路的控制参数。[/size][size=16px] 由此可见,串级控制的核心是解决主PID控制器输出和次PID控制器的输入问题,采用一般的工业用PID控制器很难实现上述复杂的功能,如果采用PLC控制也需要复杂编程和相应硬件支持。为此,本解决方案采用了两台标准化的,且高精度多功能的PID控制器(VPC2021-1系列),具体接线如图4所示。[/size][align=center][size=16px][color=#ff0000][b][img=04.串级控制系统PID调节器接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950400632_8989_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图4 串级控制系统PID调节器接线示意图[/b][/color][/size][/align][size=16px] 如图4所示,具有变送功能的主PID控制器,在主输入端口接收传感器2测量信号,然后根据所设置的固定值进行PID自动控制,相应的控制输出信号(输出值或偏差值)经过变送转换为4~20mA, 0~10mA, 0~20mA, 0~10V, 2~10V, 0~5V和1~5V七种模拟信号中的任选一种,并传送给次PID控制器的次输入端。[/size][size=16px] 具有远程设定点功能的次PID控制器,在次输入端口接收主PID控制器的变送信号作为变化的设定值,然后根据主输入端口接收到的传感器信号,进行PID自动控制,控制信号经主输出端口连接执行机构,对外部执行机构进行自动调节。[/size][size=16px] 需要注意的是,如果主PID控制器输出的控制信号能被次PID控制器次输入通道接收,且输入信号类型和量程与主输入通道接入的传感器一致,也可采用普通PID控制器作为主控制器。[/size][size=16px] 另外,从图4可以看出,由于VPC2021-1单通道PID控制器具有远程设定点功能,由此就可以很容易实现外部手动张力调节,而只需增加一个旋转电位器即可。手动调节接线如图5所示。[/size][align=center][size=16px][color=#ff0000][b][img=05.串级控制系统PID调节器手动和自动切换接线示意图,690,193]https://ng1.17img.cn/bbsfiles/images/2023/04/202304110950566532_2083_3221506_3.jpg!w690x193.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#ff0000][b]图5 串级控制系统PID调节器手动和自动切换接线示意图[/b][/color][/size][/align][size=16px] 如图5所示,通过主PID控制器上连接的纽子开关,可以实现手动和自动功能切换。当切换到手动控制时,则可以通过接在主PID控制器次输入端子上的电压信号发生器,就可以实现手动调节控制。[/size][size=18px][color=#ff0000][b]4. 总结[/b][/color][/size][size=16px] 综上所述,通过采用新一代的超高精度多功能PID控制器,可以实现各种应用场景下的张力控制。与传统的张力控制器相比,新一代的张力控制器主要具有以下优势:[/size][size=16px] (1)超高精度:24位AD模数转换、16位DA数模转换和双精度浮点运算能力,0.01%的最小输出百分比。[/size][size=16px] (2)多功能:最多2通道的张力控制,可实现串级控制,可进行手动和自动功能切换。[/size][size=16px][/size][size=16px][/size][align=center][color=#ff0000]~~~~~~~~~~~~~~~~~~~[/color][/align]

  • 液位控制仪表系统故障分析步骤

    (1)液位控制仪表系统指示值变化到最大或最小时,可以先检查检测仪表看是否正常,如指示正常,将液位控制改为手动遥控液位,看液位变化情况。如液位可以稳定在一定的范围,则故障在液位控制系统;如稳不住液位,一般为工艺系统造成的故障,要从工艺方面查找原因。  (2)差压式液位控制仪表指示和现场直读式指示仪表指示对不上时,首先检查现场直读式指示仪表是否正常,如指示正常,检查差压式液位仪表的负压导压管封液是否有渗漏;若有渗漏,重新灌封液,调零点;无渗漏,可能是仪表的负迁移量不对了,重新调整迁移量使仪表指示正常。  (3)液位控制仪表系统指示值变化波动频繁时,首先要分析液面控制对象的容量大小,来分析故障的原因,容量大一般是仪表故障造成。容量小的首先要分析工艺操作情况是否有变化,如有变化很可能是工艺造成的波动频繁。如没有变化可能是仪表故障造成。

  • 【分享】微机控制万能试验机安装环境

    微机控制万能试验机安装环境:微机控制万能试验机采用微机控制电液伺服阀加载和手动液压加载、主体与控制框分置的设计,具有操作方便、工作稳定可靠、试验精度高、加力平稳的特点,适用于金属、水泥、混凝土、塑料等材料的拉伸、压缩、弯曲、剪切试验。 建议在满足下列条件的环境中安装和使用本设备: a.清洁、干燥、无震动,周围有供试验和维护用的空间(≥0.7m); b.室温为10℃-35℃。

  • 什么是光电液位控制传感器?

    什么是光电液位控制传感器?

    [size=24px][font=宋体]在当今电子时代,光电传感器仍有许多应用,发展速度也很快,特别是随着智能机器的出现,对传感器的使用变得更加依赖。光电传感器的特性使得它在未来能够得到更多的发展。[/font][font=宋体]而可以用来控制液位的光电传感器,简称光电液位传感器。它可以控制电磁阀、水泵等,从而实现半自动化或全自动。有很多方法,取决于不同产品的选择。[/font][font=宋体]光电液位传感器就是利用光学折射原理来检测液位。光电液位传感器利用这种现象来区分有水状态和无水状态,从而将其转换为电平信号输出。光电液位传感器内部有一个红外发射管,当传感器处于水的状态时,光线会在水中发生折射;它在无水状态下不会折射。[/font][img=,600,324]https://ng1.17img.cn/bbsfiles/images/2022/10/202210081755422476_2512_4008598_3.jpg!w600x324.jpg[/img][font=宋体]对比[/font][font=宋体]原始机械式的浮球液位传感器来说,其可靠性及精度、稳定性方面都可以维持在一个较高的范围内,具有液位控制精度高、一致性强、可靠性高、寿命长的特点。[/font][font=宋体]液位传感器配合控制器可以实现液位控制,当被测液体到达传感器[/font][font=宋体]检测[/font][font=宋体]位置时,芯片[/font][font=宋体]就会[/font][font=宋体]输出高电平或低电平信号,然后与控制器配合实现对液位的控制。然后在液位下降到没有液体时,传感器可以发出信号实现缺水预警,或者驱动水泵加水。在液位上升到设定一个位置时,传感器检测到后可以实现满水提醒并控制水泵停止工作。[/font][/size]

  • 分离式光电液位传感器是如何控制水位的

    分离式光电液位传感器是一种创新的液位控制技术,通过独特的设计和应用方式,实现了对水位的精准监测和控制。这种传感器采用了传统光学传感器的基础,但在设计上有了重大改进。传统光学传感器需要直接置于水箱内部,而分离式液位传感器则将菱镜部分设计成一体化,并置于水箱外部,通过光学组件分离感应水位,解决了水箱移动加水的难题。分离式液位传感器的工作原理十分巧妙。其内部集成了光学电子元件,通过外置的感应方式,实现了无接触、无机械运动的水位检测。这种设计不仅使传感器寿命更长,而且具有高精度、快速反应的特点,同时还支持个性化定制,满足不同用户的需求。[align=center][img=非接触式液位检测,660,440]https://ng1.17img.cn/bbsfiles/images/2024/03/202403191530008680_3779_4008598_3.jpg!w660x440.jpg[/img][/align]安装分离式[url=https://www.eptsz.com]光电液位传感器[/url]非常简便,只需在水箱上设计菱镜结构,即可从外部实现水位感应,无需直接接触水箱内部。这种安装方式不仅方便快捷,而且避免了外部结构件对水位传感器的干扰,也更容易清洁,有效地避免了细菌滋生的问题。这种先进的技术已经在多个领域得到了广泛的应用,如加湿器、冲奶机、净水器、热水器、咖啡机、洗碗机、电蒸锅、冷气扇、家电宠物饮水机、水泵、鱼缸、智能机器人、洗地机等工业设备中都可以看到它的身影。通过分离式光电液位传感器,这些设备可以实现更精确、更可靠的水位控制,提升了整体的使用体验和效率,为用户带来了诸多便利。

  • 液质联用仪控制电脑维修感悟

    [align=center]Qtof6510[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]控制电脑维修感悟[/align] 该仪器控制电脑为惠普两款固定型号的工作站,其它品牌和型号的电脑均无法控制仪器。我们的电脑是HP XW4600 workstation,随仪器采购购置,直到最近在使用中突然无法正常进入系统,表现为开机界面中断、重启无线重复,无法进入XP操作系统。1、联系仪器厂家说是电脑本身系统问题不归仪器厂家负责,让找电脑厂家维修,要是能准备好仪器厂家要求的两款特定电脑,可以以付费上门安装仪器控制软件的方式解决问题。2、咨询电脑维修厂家,每家说法都不太一样,报价也不一样,最后带着电脑去了惠普售后,到了之后等了一会,然后给插上电试了一下,姑且说是给检测了一下,其实也没见有啥操作,就说主板坏了,老式电脑主板需要等配件半个月左右,到时再根据具体维修情况看哪里还需要更换,估计维修周期1个月吧,光一块主板费用就是2000元,价格让人无语。最后没有维修又拿回来。3、有其他老式电脑和新电脑但都无法替换,因为人家就用那两款,如何解决。自己找了一台与其类似的电脑hp Compaq,仪器控制软件居然能装上,按照提示装完后进行IP地址配置,instrument configuration配置仪器,都正常通过。打开控制软件进行调谐,基本正常,但是到最后调谐报告却无法正常完整弹出,先不管,反正调谐能通过,只是无法正常显示而已。在软件上建立方法运行样品正常,本以为问题解决,可是结果在序列进样时会突然中断,结果只是能用但用着闹心,可能这就是所谓的bug。考虑电脑系统不是那台坏电脑XW4600的系统,于是想直接复制那台电脑系统,问题又来了,XW4600电脑是磁盘阵列raid设置,常规Upan启动根本不行,于是开机又更改为正常形式,备份系统,还原到hp Compaq电脑,更新电脑驱动,问题依旧,还是存在调谐报告无法完整显示和序列中断。暂时先凑合用吧,就是别扭。4、维修方案又回到已经坏了的XW4600电脑,网上买了个二手主板,换上原来的CPU后开机又提示时间未设置无法进入系统,考虑可能是电池没电了,有换了一块主板电池,再次开机提示风扇未检测到,一看机箱风扇没转,用手试了一下,风扇比较卡,估计坏了,还是无法正常开机。从废旧电脑找了个四线调速风扇,换上之后还是提示风扇未检测到。找了个专业人士问了一下,原来风扇可以根据温度调整转速进而调节机箱散热风量,所以不是常规的两根线,而是四根接线。于是调整线序后风扇开机转了,但是还是没有进入系统,卡在开机内存检测过程,仔细核对手边的维修配件,原来工作站的内存条与一般电脑内存条不同,是专用的,换好专用内存条后,开机正常,然后继续装仪器控制软件,进行相关设置,正常使用。 维修过程耗时较长,也很是艰难,但是真的更加了解了电脑的结构,也提供一种电脑故障解决方案,可能这款电脑有其独到的配置和驱动程序,其它的电脑很难替换满足需要,同时也是建议厂家使用更通用的电脑,使得维修更便捷。

  • 微机控制冲击试验机操作规范

    1、测量试样尺寸。如有条件可用投影仪检查试样缺口处的形状尺寸及加工精度是否符号标准要求,剔除不合试验要求的试样,然后对试样编号,并记下各试样缺口横截面处的尺寸。2、确定试验温度。将试样放入保温容器中,使用确切的介质保温。冷却介质液面高于试样25mm以上。待达到选定的试验温度并稳定后开始计算保持时间,保温时间一般不少15分钟。取样的手钳应和试样一起保温。3、检查冲击试验机,使摆锤刀口处于两支承钳口的中心。校正钳口间的距离为 。并检查其空打时指针是否从上止点(最大刻度)带至下止点(零刻度)证明确无能量损耗,方能进行正式试验,然后举起摆锤,将摆锤固定于规定的高度,同时把指针拨到最大刻度处,使微机控制冲击试验机控制杆处于冲击试验的预备位置。4、用手钳取出试样,尽快稳定地放于支座上,缺口背向摆锤刀口,并保证缺口平分面和摆锤刀口心中线重合。其偏差不应超过0.2mm。为满足这一要求,放试样时可用标准样板使缺口对准钳口中,分别处于钳口的中心,或用试样端面作为基准,在支座上放置定位块,使试样的缺口平分面处于钳口的中心,但试祥从冷却筒取出直到被冲断,时间间隔应不超出5 秒。5、拉动控制杆,使摆锤自由落下,冲断试样,从刻度盘上读出冲击吸收功( J ),要求精确到1( J )。6、拉动控制杆,使摆锤停止摆动。捡起冲断的试样,记下试样号及冲击吸收功Akv。同时将微机控制冲击试验机冲断的试样浸于无水酒精中,以防止断口锈蚀,待冲击试验结束后,用电吹风吹干试样,并评定结晶状断口面积百分数,记入试验记录中。实验注意事项:1、操作摆锤冲击试验机时需严格按照安全操作规程进行,在摆锺摆动平面内严禁站人或堆物。2、在试样未放妥时,绝不能随便抬高控制杆,以免摆锤落下伤人。3、摆锤未刹停前。绝不能在微机控制冲击试验机附近跑动或捡被冲断的试样。

  • 微机控制电液伺服板材弯曲试验机

    板材弯曲试验机主要用于板材、棒材、螺纹钢等弯曲性能的检测及其韧性试验,全面满足GB/T232《金属材料弯曲试验方法》,试验机适合于轧钢厂、中厚板厂、钢铁研究院所、建筑质量监督站等单位科学研究和质量检测。http://www.kx4u.net/upload/photo/fd131311234255d26854a608649be3e8.jpg■特点◎ 主机按结构分为:四柱式、整体框架式;◎ 控制方式:伺服控制或手动控制;◎ 弯曲、压平一次连续完成,效率高;◎ 垂直活塞具有行程定位功能,利于批量试验;◎ 主油缸上置,侧向油缸在框架两侧均匀配置;◎ 设有支距定位机构,进程节流同步调节;◎ 压辊直径配套供应,更换简便;◎ 设有弯曲角度指示器;◎ 具有超压、超行程保护等功能;◎ QAL系列采用电液伺服技术,实现恒试验力、匀试验力速率、恒速闭环控制。并具有自动回位、自动控制弯曲角度等功能。■主要技术指标型 号QEL-200QAL-200QEL-500QAL-500QEL-1000QAL-1000QEL-2000QAL-2000最大垂直力(kN)(弯曲力)20050010002000最大水平力(kN)(压平力)2003005001000支距范围(mm)40~30050~30060~30080~400支辊直径(mm)φ30φ50φ60φ80支(压)辊长度(mm )120160200260活塞行程(mm)垂直向250300水平向160200最大试验速度(mm/min)垂直向350180250130水平向350180230120整机功率(kw)4.411.0弯心压辊直径系列(由用户根据试验要求自行确定)6、8、10、12、14、18、20、24、28、30、32、36、40、44、46、50、54、56、60、70、80、90、100、110、120、128、160、180

  • 液压万能试验机生产如何控制质量

    液压万能试验机采用机电一体化设计,主要由负荷感测器、变送器、处理器、负荷驱动器、电脑及彩色喷墨打印机构成。高精度调速电动机可设置五档或七档试验速度。各集成构件间均采用插接方式连接。功能与作用电脑全程控制并显示试验全过程和曲线、微机自动传输试验设置与试验资料。用户可按各自要求修改试验报告,输出标准报告,通过对成组试验曲线的叠加分析,可准确掌握质量调控参数。多方式的资料查询功能,可使管理者清晰把握质量控制发展变化趋势。 液压万能试验机的检定方法,其特征在于,首先根据被检区间的力值,选择标准拉力试样,标准拉力试样的力值为该区间满量程力值的60%~90%之间选择,将标准拉力试样装夹在液压万能试验机,引伸计或应变片将标准拉力试样的伸长量显示出来,根据胡克定律,将伸长量换算为拉力值,再与度盘上与标准拉力试样相同的力值点进行对比,根据比对值的差来确定试验机技术状态及精度。 液压万能试验机用途:本机可对金属、非金属以及构件进行拉伸、压缩、弯曲、剪切、剥离、撕裂、蠕变等试验。软件系统:采用高精度的单片微机控制系统。根据试验机被检区间的力值,将相应力值的标准拉力试样装夹在试验机上,让拉力试验机继续对标准拉力试样进行拉伸,引伸计或应变片将标准拉力试样的伸长量显示出来,将伸长量换算为拉力值,再与拉力试验机度盘上与标准拉力试样相同的力值点进行对比,根据比对值的差来确定试验机技术状态及精度。本方法利用胡克定律,根据标准拉力试样的伸长量换算为力值与试验机度盘力值进行对比,来确定试验机的精度。该方法极大的简化了检定的操作过程,对试验机原始拉伸状态的日常检定带来极大方便和标准化。

  • 商用咖啡机是如何控制液体流量的

    商用咖啡机是如何控制液体流量的

    [font=宋体][color=#1E1F24]商用咖啡机作为餐饮业的重要设备,需要精确控制液体流量,以确保咖啡或其他饮料的口感和品质。其中,小型霍尔流量计在此过程中发挥了关键作用。[/color][/font][font=宋体][color=#1E1F24]霍尔流量计是一种精确度高、一致性强的流量测量设备,它利用霍尔效应原理,将叶轮置于垂直于磁场中,通过叶轮转动产生的GS值转换成脉冲信号输出。这种设备有多种高低流量控制,可以满足不同商用咖啡机的需求。其体积小,安装简易,符合FDA和FLGB等食品安全标准,同时也支持流量定制,以满足不同客户的需求。[/color][/font][font=宋体][color=#1E1F24]在商用咖啡机中,霍尔流量计通常与水流开关配合使用。当水箱中的水流入咖啡机内部时,水流开关会触发霍尔流量计开始工作。霍尔流量计的叶轮在磁场中旋转,产生脉冲信号,该信号被商用咖啡机接收并用于控制液体流量。[/color][/font][align=center][img=流量开关控制,633,195]https://ng1.17img.cn/bbsfiles/images/2023/11/202311161531042827_6225_4008598_3.jpg!w633x195.jpg[/img][/align][font=宋体][color=#1E1F24]通过这种方式,商用咖啡机可以精确控制水的流量,从而确保咖啡的口感和品质。同时,霍尔流量计的一致性和高精度也使得不同批次的咖啡口感更加一致,为消费者提供了更好的体验。[/color][/font][font=宋体][color=#1E1F24][url=https://www.eptsz.com]小型霍尔流量计[/url]在商用咖啡机中发挥了重要作用,其精确度高、一致性强、多种高低流量控制、体积小、安装简易等特点使得商用咖啡机能够更好地控制液体流量,从而确保咖啡的口感和品质。[/color][/font]

  • 果汁机如何实现液体流量的控制

    果汁机如何实现液体流量的控制

    [font=宋体][color=#333333][back=white]果汁机是我们日常生活中常见的小家电之一,而实现液体流量的控制是果汁机正常运行的关键。通常在设备内部安装霍尔流量计来实现流量的精准控制。[/back][/color][/font][font=宋体][color=#333333][back=white]霍尔流量计是一种基于霍尔效应原理的流量测量仪器,它通过检测液体流过的体积或质量来实现流量的控制。在果汁机中,霍尔流量计通常安装在果汁机的出口处,用于测量果汁的流量。[/back][/color][/font][align=center][img=霍尔流量计,360,360]https://ng1.17img.cn/bbsfiles/images/2023/08/202308081623588337_1860_4008598_3.jpg!w360x360.jpg[/img][/align][font=宋体][color=#333333][back=white]在果汁机中,[url=https://www.eptsz.com]霍尔流量计[/url]通过测量果汁的流量来控制果汁的输出,可以实现果汁的均匀出流,避免浪费和溢出,还可以监测果汁的流量。[/back][/color][/font][font=宋体][color=#333333][back=white]考虑流量范围、精度要求和流体性质等因素,可以选择适合果汁机的霍尔流量计,实现果汁的均匀出流和安全运行。[/back][/color][/font]

  • 微机控制压力试验机的维护及保养方法

    微机控制压力试验机的使用人员必须十分熟悉设备的操作方法和性能,严格按照设备说明书上的要求来进行设备操作,在使用的同时进行很好的维护。微机控制压力试验机对使用人员一般都有哪些要求呢。  一:三好  用好设备,管好设备,修好设备。  二:四会  会使用,会维护、会点检,会紧急处理故障。  三:五不准  不准让设备在超负荷下运行;不准乱拆、乱装、乱改;不准随意取消微机控制压力试验机安全装置;不准考试不合格人员上岗操作及独立从事维护工作;不准无证无经验人员操作及检修设备。  四:四保持  设备“四保持”的内容保持设备的外观整洁;保持设备的结构完整性;保持设备的性能和精度;保持设备的自动化程度

  • 咖啡机如何实现控制液体流量

    咖啡机如何实现控制液体流量

    [align=left][font=宋体]自动咖啡机在使用的时候为了保证咖啡口味,需要严格控制液体流量,如何精准实现液体流量的控制?今天能点科技带大家了解一下。[/font][/align][align=left][font=宋体]其实只需在咖啡机内部装一个小型流量计即可实现,霍尔流量计利用霍尔效应,把带有两极磁铁的叶轮置于垂直于磁场中,通过叶轮转动产生的[/font] GS [font=宋体]值转换成脉冲信号输出,多应用于饮水机、咖啡机、饮料机等需要控制流量的设备。[/font][/align][align=center][img=,639,367]https://ng1.17img.cn/bbsfiles/images/2023/11/202311281547511691_1474_4008598_3.jpg!w639x367.jpg[/img][/align][align=left][font=宋体]将[url=https://www.eptsz.com]霍尔流量计[/url]安装于出水口附近,确保其能够实时、准确地监测到流过的水量。用户设定所需的咖啡浓度和体积后,咖啡机的控制系统会根据这些数据计算出所需的水量。霍尔流量计则确保实际流出的水量与设定值相符,从而实现液体流量的精确控制。[/font][/align][align=left][font=宋体]小型霍尔流量计不仅体积小巧,而且响应迅速、测量准确,非常适合在咖啡机这种需要快速、精确控制液体流量的场景中使用。同时,由于其工作原理不涉及机械部件,因此维护起来也更为方便。[/font][/align]

  • 微机控制弹簧试验机技术特点

    微机控制弹簧试验机是目前市场上自动化程度最高的弹簧试验机了,一般客户在选型的时候出了了解必须的技术参数意外,我们还会考虑客户做试验机是不是够多,需要查看的数据是不是有特殊要求,甚至当地质监局是不是有特殊要求等。一般的客户会选购自动弹簧试验机,多数是液晶显示的,一般质监局,质检公司或者对自动化程度要求较高的我们建议微机控制弹簧试验机。这样一步到位省去了以后的很多升级改造。下面简单描述微机控制弹簧试验机的技术特点:a、拉伸试验:对各种拉伸弹簧做拉伸试验;压缩试验:对各种压缩弹簧做压缩试验。b、测量方法:通过变形测力值、通过高度测力值、通过力值测变形、通过力值测高度.c、批量试验:对相同参数的试样,一次设定后可顺次完成;批量检测;不用单独设参数。d、试验软件:中文WINDOWS界面,菜单提示,鼠标操作;e、显示方式:数据和曲线随试验过程动态显示;能够观察到弹簧做实验过程中的变化;相对于前两种过程更直观。f、四种曲线:力值--位移曲线、力值--变形曲线、位移--时间曲线、变形--时间曲线g、过程实现:试验过程、测量、显示和分析等均由微机完成;h、自动保存:试验结束,试验数据和曲线自动保存;后期能够查询到以往的数据;不用单独的记录下来。i、试验报告:可按用户要求的格式编制报告并打印;j、适用于院校和质检部门的抽检。

  • 微机控制冲击试验机软件操作规程

    1 微机控制冲击试验机试验完毕,点击“落摆”按钮,摆锤自动落到0度角位置停止,退出试验状态。关闭该控制软件,计算机和机器电源2 反复操作第8步,完成一批试样的试验,试验结果自动保存。在“打开”按钮里可找到每批次的实验结果。3 将试样放到钳口正确位置,点击“退销”,安全销弹出,点击“试验冲击”按钮。试验开始,摆锤冲击完毕后,自动挂摆,软件自动记录本次冲击的能量。多次试验后软件自动记录计算最大值最小值和平均值。4 点击“试验开始”,确认一切准备就绪,点击“取摆”按钮,摆锤自动扬摆,挂钩,安全销弹出。5 将摆锤稳在0度位置无摆动,点击“角度置零”按钮,使软件角度显示为零。6 点击软件左上角按钮“试样”,将试样参数输入完毕后,点击“确定”,即可完成试样信息创建,启动自动保存试验数据功能。7 点击微机控制冲击试验机软件右上方“标称能量”下面的能量选择,调整能量档位,调到与当前摆锤能量相符的档位。8 将计算机数据连接线安装好,打开软件ImpactStar(系统参数;摩擦损失等调试人员已设定,客户不必设定,可直接操作)。9 接通电源开关,指示灯应亮。按钮盒子上的钮子开关拨到“开”的位置,当按动“取摆”按钮时,摆锤应在您面对微机控制冲击试验机正面位置时,做逆时针转动,若方向不对,应立即将钮子开关拨到“关”的位置,然后切断电源改变电源相序。10 本微机控制冲击试验机采用三线四线制50赫兹380伏电源,请务必正确连接,并接通地线。

  • 液氮罐压力控制调试要点

    调试液氮罐压力控制的关键步骤与要点在液氮罐压力控制调试过程中,确保系统稳定性和安全性是至关重要的。正确的调试能够保证罐体内部压力在安全范围内波动,从而有效控制液氮的气化速率和供应稳定性。 1. 系统初始化与基础设置首先,确保液氮罐已正确安装并连接至压力控制系统。启动控制系统,进行初始化设置,包括设定操作界面语言和初始设备校准。根据罐体的设计压力和容量设定初始参数,并校准传感器以确保精确度和准确性。 2. 压力传感器校准与调整接下来,进行压力传感器的校准。使用标准气体压力表对系统进行初步校准,并通过系统界面调整传感器灵敏度和范围。确保传感器能够准确捕捉液氮罐内部压力的微小变化,以便及时反馈给控制系统。[img=,400,300]https://ng1.17img.cn/bbsfiles/images/2024/07/202407291018390931_1042_6088378_3.jpg!w400x300.jpg[/img] 3. 控制阀门调试与响应速度优化调试控制阀门以确保其响应速度和精确度。根据液氮罐的使用需求和供应压力范围,设置阀门的开度和关闭速度。通过系统监控,调整阀门反馈信号的延迟时间,最大程度上避免系统压力突变和波动。 4. 系统稳定性测试与调整进行系统稳定性测试,模拟不同负载条件下的压力变化。监测罐体压力的波动情况,并根据实时数据调整控制系统的PID参数。优化控制算法,使系统能够快速响应压力变化,并维持在设定的安全压力范围内。 5. 安全保护措施与紧急应对策略设定安全保护措施,包括超压报警、阀门自动关闭等紧急应对策略。确保系统在异常情况下能够自动切换至安全模式,并及时通知操作人员。定期进行安全性能测试和设备维护,以确保液氮罐压力控制系统的长期稳定运行。通过以上关键步骤和详细解答,液氮罐压力控制系统可以达到最佳性能和安全保障。正确的调试过程不仅确保了系统的稳定性,还提高了液氮供应的可靠性和效率。我们也可以采用定制一套全[url=http://www.cryoworkes.com/]自动液氮泵[/url]设备自动补充液氮,达到一个供液平衡的作用。

  • 串级控制和超高精度PID调节器在微张力精密控制中的应用

    串级控制和超高精度PID调节器在微张力精密控制中的应用

    [size=16px][color=#339999][b]摘要:采用当前的各种涂布机很难适用气体扩散层这类脆性材料的涂布工艺,需要控制精度更高的微张力控制系统。为此本文基于串级控制原理,提出了采用双闭环PID控制模式和超高精度PID张力控制器的解决方案,一方面形成浮动摆棍闭环和主动辊闭环构成的串级控制回路,另一方面是采用目前测控精度最高的工业用PID控制器,结合相应配套的高精度传感器和执行器,可真正实现微张力的精密控制。[/b][/color][/size][align=center] [img=微张力精密控制,690,225]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628010805_2785_3221506_3.jpg!w690x225.jpg[/img][/align][size=16px] [/size][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 气体扩散层(GDL)在燃料电池中起到支撑催化层、收集电流、传导气体和排出反应产物水的重要作用,常用于质子交换膜燃料电池,在具体生产工艺中需要在GDL材料表面定量涂布一层特定功能涂料。由于GDL基体层材料较脆,涂布工艺过程中易造成基体层材料断裂或撕裂,转弯处易折断,在高温状态下材料比常温下更脆弱,一般要求涂布过程中控制张力设定在5~10N很窄的一个范围内,且还需要在此微张力范围内具有较高的控制精度。[/size][size=16px] 传统涂布设备,浮动摆辊均为气缸驱动,直线电位器反馈摆辊位置。存在以下问题:[/size][size=16px] (1)无法精确控制摆辊位置。[/size][size=16px] (2)气缸行程只有一个方向,需要料膜的张力平衡气缸推力,易造成GDL脆性材料拉伸。[/size][size=16px] (3)摆辊瞬间偏移至一端时,料膜张力瞬间增大或减小,极易造成GDL脆性材料的撕裂甚至断裂。[/size][size=16px] (4)张力控制器中的模数转换AD精度和数模转换DA精度较低,最小输出百分比也只能达到0.1%,无法提供更高精度的测量和控制。[/size][size=16px] 由此可见,为实现GDL脆性材料的微张力控制,实现具有精度高、张力小、控制稳的伺服电机驱动的浮动摆辊微张力控制是氢能材料制备的关键技术,为此本文提出了相应的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为实现涂布工艺中的微张力高精度控制,本文提出的解决方案包含以下两方面的内容:[/size][size=16px] (1)采用双闭环PID控制形式调节料膜张力,即对浮动摆棍和主动辊进行独立的PID控制。[/size][size=16px] (2)采用超高精度的双通道PID控制器,每个通道都具有24位AD、16位DA和0.01%最小输出百分比。[/size][size=16px] 解决方案所涉及的微张力控制系统结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=双闭环微张力控制系统结构示意图,500,200]https://ng1.17img.cn/bbsfiles/images/2023/07/202307261628351448_1980_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 双闭环微张力控制系统结构示意图[/b][/color][/size][/align][size=16px] 在图1所示的双闭环控制系统中,浮动摆辊PID闭环控制的具体过程是根据工艺要求,给控制器输入张力值,控制器根据张力传感器信号与设定张力值之差进行快速PID计算后输出控制信号,此控制信号控制浮动摆辊伺服驱动器和伺服电机动作,从而使浮动摆棍产生偏移使得料膜张力快速达到设定值。[/size][size=16px] 浮动摆辊的PID闭环控制过程主要是通过浮动摆辊偏移来调节料膜张力,主动辊速度仍为主机速度,并未参与调节。当浮动摆辊伺服电机持续动作调节料膜张力时,浮动摆辊偏差会导致累积,最终达到浮动摆辊位置报警值。因此仅由浮动摆辊伺服电机调节料膜张力不能完全解决张力不稳、精度不高的问题,为此增加主动辊PID闭环控制实现张力的精准控制。[/size][size=16px] 第二路主动辊PID闭环控制的具体过程是在浮动摆辊PID闭环控制实现调节后,由于浮动摆辊偏离中位,位移传感器跟随浮动摆辊偏移产生对应的偏移电压信号并输入给控制器,控制器根据此偏移电压信号与0V值的正负偏差进行快速PID计算后输出控制信号,此信号控制主动辊伺服驱动和主动辊伺服电机来改变主动辊速度,使得浮动摆棍回到中位,最终实现GDL脆性材料的微张力精准控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决微张力的精密控制问题,具体优点如下:[/size][size=16px] (1)解决方案所采用的双闭环控制结构,实际上是一个非常典型的串级控制结构,因此充分利用了串级控制结构的优势,更利于实现高精度张力的控制。[/size][size=16px] (2)制约微张力精密控制的另一个主要因素是控制器的精度普遍不高,采用PLC很难达到超高的采集和控制精度。因此,本解决方案中采用了超高精度的双通道PID控制,既使用了串级控制功能,又实现了超高精度的PID控制。[/size][size=16px] 当然,传感器和执行器精度也是制约微张力精密控制的因素,为了真正实现微张力的精密控制,还需在使用串级控制和超高精度PID控制器的基础上,配备相应高精度的传感器和执行器。[/size][size=16px][/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align][align=center][b][color=#339999][/color][/b][/align]

  • 液氮容器的维护与保养策略及成本控制

    液氮容器的维护与保养策略及成本控制

    液氮容器在现代科研、医疗和工业生产中扮演着重要角色,其稳定的运行对于保障实验室和生产线的正常运转至关重要。为了确保液氮容器的安全、高效运行,维护与保养策略及成本控制显得尤为重要。[img=,640,360]https://ng1.17img.cn/bbsfiles/images/2024/01/202401100929326225_8237_3312634_3.jpg!w640x360.jpg[/img][img=,612,408]https://ng1.17img.cn/bbsfiles/images/2024/01/202401100929328707_4834_3312634_3.jpg!w612x408.jpg[/img]  定期检查与维护  液氮容器的定期检查是确保其安全运行的关键步骤。在日常使用中,应定期对液氮容器进行外观检查和内部检测。外观检查包括检查液氮容器壁面是否有明显损伤或腐蚀,以及阀门、管道等部件是否完好。内部检测则需要借助专业设备对容器内部的真空度、液氮液位等参数进行监测,以确保容器内部的运行状态。根据统计数据显示,定期检查可以降低液氮容器因故障造成的损失达到百分之四十。[b]  液氮损耗控制[/b]  另一个重要的维护与保养策略是控制液氮损耗。液氮的损耗主要来自于两个方面,一是容器本身的保温性能,二是使用过程中的漏气。针对容器本身的保温性能,可以采取更新绝缘材料、加强封口等措施来减小损耗。而对于漏气问题,则需要通过定期检查密封件、阀门等部件,并严格控制容器使用环境,以减少液氮的损耗。据调查数据显示,有效控制液氮损耗可以节约维护成本超过百分之三十。[url=http://www.mvecryoge.com/]金凤液氮罐[/url][b]  设备更新与技术培训[/b]  液氮容器作为高科技设备,其更新换代速度较快。及时进行设备更新是确保液氮容器持续高效运行的关键。新型液氮容器可能具备更好的保温性能、更智能的监控系统等优点,可以帮助降低维护成本和液氮损耗。同时,对液氮容器操作人员进行技术培训也至关重要。技术培训可以提高操作人员对液氮容器的使用和维护意识,降低人为操作失误带来的风险。根据调查数据显示,设备更新和技术培训可以将维护成本降低20%以上。[b] 更多内容关注班德液氮罐网[/b]

  • 微机控制全自动压力试验机,推动水泥行业发展

    我们都知道在水泥行业长期沿用的手动式压力试验机,是很烦的一件事情,知道吗现在又发明了一种全自动的压力试验机器了。它使用的功能很好可以减少工作人民的艰苦,还可以减少工作时间,象这样一算,时间比以前少了不少,事情也多做了不少,真是想的非常好。具体还是看看下面怎么说的吧。 新型微机控制电液式全自动压力试验机所取代。该机采用电液直接数字控制技术对试验机实施控制,可以显著提高控制精度,拓展量检范围和加荷速度调节范围。日前,研制开发出了微机控制电液式全自动压力试验机,以其选材考究、工艺先进、自动化程度高、平稳性好等诸多功能,形成了自身的独特优势,产品不仅受到了用户的青睐和好评,而且畅销全国各地,实现了生产厂家和使用厂家“双赢”的局面。 新一代微机控制电液式压力试验机采用了全新的数字伺服阀为核心的电液直接数字控制技术,由微机控制加载和数据处理,测量范围宽,加载精度高,自动化程度高,目前广泛使用的手动式压力试验机的最新换代产品之一。 电液直接数字控制技术,是当今自动控制领域新兴的热门技术之一,其主要特点是将传统控制与计算机控制相结合,用数字信号直接对系统进行控制,从而提高控制系统的重复精度、抗干扰性和稳定性。 凯锐开发的微机控制全自动电液式试验机,依靠完善的质量保证体系和完备的检测手段,产品多次荣获优质产品称号,均获得良好的使用效果。

  • 咖啡机液体流量如何实现定量控制

    咖啡机液体流量如何实现定量控制

    [font=宋体][color=#1E1F24][back=white]咖啡机液体流量的定量控制在咖啡制作过程中起着至关重要的作用。为了确保每一杯咖啡的口感和质量一致,咖啡机需要能够精准地控制液体的流量。而实现这一目标的关键就在于安装一个小型流量计。[/back][/color][/font][font=宋体][color=#1E1F24][back=white]在咖啡机内部安装一个小型流量计,是实现咖啡机液体流量定量控制的常用方法。而霍尔流量计作为一种精确度高、一致性强的流量计,被广泛应用于咖啡机等领域。它具有体积小、安装简易等特点,并符合[/back][/color][/font][font='Segoe UI',sans-serif][color=#1E1F24][back=white] FDA[/back][/color][/font][font=宋体][color=#1E1F24][back=white](美国食品和药物管理局)和[/back][/color][/font][font='Segoe UI',sans-serif][color=#1E1F24][back=white] FLGB[/back][/color][/font][font=宋体][color=#1E1F24][back=white](食品设备安全法规)的相关要求。[/back][/color][/font][align=center][img=小型流量计,639,367]https://ng1.17img.cn/bbsfiles/images/2023/10/202310161638194487_8485_4008598_3.jpg!w639x367.jpg[/img][/align][font='Segoe UI',sans-serif][color=#1E1F24][back=white] [/back][/color][/font][font=宋体][color=#1E1F24][back=white][url=https://www.eptsz.com]霍尔流量计[/url]利用霍尔效应来实现流量的测量和控制。它通过将带有两极磁铁的叶轮置于垂直于磁场中,当液体经过叶轮时,叶轮的转动会产生霍尔电压,从而将流量转换成脉冲信号输出。这样,咖啡机就可以根据接收到的脉冲信号来准确计量流量,并控制液体的流速。[/back][/color][/font][font=宋体][color=#1E1F24][back=white]霍尔流量计不仅具有高精度和一致性,还支持多种高低流量的控制。通过调整流量计的参数,咖啡机可以根据需要定制不同的流量范围,从而满足不同用户的口味偏好。无论是制作浓郁的意式咖啡还是清淡的美式咖啡,咖啡机都能够根据设定的流量控制准确地调配咖啡粉和水的比例,从而保证每一杯咖啡的口感和质量一致。[/back][/color][/font][font=宋体][color=#1E1F24][back=white]咖啡机液体流量的定量控制可以通过在咖啡机内部安装一个小型霍尔流量计来实现。这种流量计具有精确度高、一致性强、体积小、安装简易等特点,并符合相关的食品安全法规要求。利用霍尔效应,流量计能够将液体流量转换成脉冲信号输出,从而实现咖啡机对液体流量的精准控制。无论是制作浓郁的意式咖啡还是清淡的美式咖啡,咖啡机都能够根据设定的流量参数,准确地调配咖啡粉和水的比例,保证每一杯咖啡的口感和质量一致。[/back][/color][/font]

  • 微机控制压力机的选购注意事项

    微机控制压力试验机的选购应从以下几方面停止比拟: 一、起首应思索需求测试资料拉力范畴。拉力范畴的差别,决议了所运用传感器的差别,也就决议了压力机的构造,但此项对价钱的影响不大。关于普通软包装出产厂家,拉力范畴在200牛顿的了就曾经充足。因而也决议了微机控制压力试验机应用单臂式的就能够了。与单臂式绝对应构造的是门式构造,它是顺应比拟大的拉力,如一吨或以上。以是软包装厂家根本用不着。 二、 实验行程的题目。依据软包装薄膜的需求测试的功能和请求,行程在500-600mm就能够。资料伸长率超越1000%的能够选用行程1000或是1200mm。 三、 规范设置装备摆设题目。智能化的三种根本设置装备摆设:主机、微电脑、另有打印机,假如微电脑功用强能够间接打印。别的也可装备平凡电脑。有了电脑,就能够停止庞大的数据剖析,如数据编纂,部分缩小,可调解陈诉方式,停止成组模样形状的统计剖析。如配用电脑,厂家应给装备响应程序节制体系。 四、输入效果。实验效果输入效果可恣意设置:最鼎力值、伸长率,抗拉强度、定力伸长、定伸长力值、屈从强度,弹性模量、最大实验力8项。这能够说是微电脑操纵时,输入的最面面俱到的效果。外洋一些厂家的产物,普通能够输入这8项。大陆有的厂家能够输入5-6项,有的厂家就只能输入最鼎力值,均匀值,最小值三项。 五、在可做实行项目上。 软包装请求微机控制压力试验机一机多用,即在装备差别夹具的根底上,可做拉伸、紧缩、弯曲、扯破、剪切、180度剥离、90度剥离实验。 市道市情上有一些高等压力机除以上项目外,因其传感器精度高还开辟出了能够测试摩擦系数摩擦系数测试仪。 六、产物机器重要设置装备摆设:传动,有丝杠传动和齿条传动,前者昂贵,用于高精度,测试反复性高;后者廉价,用于低精度,测试反复性低。 丝杠,对拉力精度丈量具有决议感化。普通的有滚珠丝杠,梯形丝杠,普通丝杠。此中,滚珠丝杠的准确度最高,然则其功能的发扬要靠电脑伺服体系操纵才干发扬,整套价钱也比拟昂贵。应用普通丝杠和梯形丝杠就能够到达软包装所请求的精度,即0.5-1%精度。 传动,有齿轮传动和链条传动,前者昂贵,用于高精度;后者廉价,用于低精度。 传感器,重要本钱在于寿命,光电感到是此中比拟先辈的技能,普通可用十万次以上,入口和大陆局部合股厂家能够到达。 七、实验速率。 国度规范规则实验速率为200mm/min, 市道市情设置装备摆设有的在10~500 mm/min,有的在0.01~500 mm/min,前者普通运用平凡调速体系,本钱较低,粗拙影响精度;后者运用伺服体系,价钱昂贵,精度高,关于软包装企业,选用伺服体系,调速范畴1~500mm/min的就充足了,如许既不影响精度,价钱又在公道范畴之内。 八、丈量精度。 精度题目,包罗测力精度,速率精度,变形精度,位移精度。这些精度值最高都可到达正负0.5。但关于普通厂家,到达1%精度就充足了。别的,力值辨别率简直都能到达十万分之一。 以上根本设置装备摆设在三万元阁下。 当前市场上用于检测资料拉伸功能的拉力实验机许多,然则并非一切的实验机都合适软包装资料的拉伸实验,本文分离我国资料检测规范,剖析了选择软包材检测的微机控制压力试验机时应特别存眷的目标。 塑料和橡胶的拉伸功能是其力学功能中最紧张、最根本的功能之一,它在很大水平上决议了该种塑料和橡胶的运用场所。拉伸功能的优劣,能够经过拉伸实验来检测。

  • 在微流控系统中如何选择合适的流量控制装置

    在微流控系统中如何选择合适的流量控制装置

    [size=13px][b][color=#339999]摘要:针对微流控技术中的压力和流量控制,本文介绍了目前常用的两类装置:注射泵和压力泵,重点介绍了这两种装置的性能特点,并对这两种压力控制装置进行了简要的分析对比。分析结论是压力泵将逐渐替代注射泵的应用,特别是压力泵在结合各种传感器和切换阀等配件后,在实现超高的响应性、稳定性和可重复性等前提下,更能涵盖几乎所有的微流体应用,并拓展进入相关新兴领域。[/color][/b][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~~~~~~~[/color][/b][/align][b][size=18px][color=#339999]1. 引言[/color][/size][/b][size=13px] 微流控([/size][size=13px]Microfluidics[/size][size=13px])是一种精确控制和操控微尺度流体的技术,又称其为芯片实验室([/size][size=13px]Lab on a Chip[/size][size=13px])或微流控芯片技术。通过微流控技术可以把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块芯片上并自动完成分析的全过程。[/size][size=13px][size=13px] [/size]一个典型的微流控系统主要由流量控制装置和微流控芯片两部分组成,其中流量控制装置由多个部件组成,包括泵,阀门,传感器、储液管,管线等,用于气体、液体或液体混合物的微流量精密控制,流量一般低于[/size][size=13px]50ml/min[/size][size=13px]。[/size][size=13px][size=13px] [/size]微流体技术中微流量控制的基本原理是通过外力把所需要的气体或液体推入微流控芯片内,这些外力可由外部的驱动泵或压力控制装置提供。目前,研究人员主要使用的两种类型微流量控制装置分别是微量注射泵和高精度压力控制器,本文将针对这两种微流量控制装置进行分析比较,为微流控技术的实际应用提供有效的技术支持。[/size][b][size=18px][color=#339999]2. 微量注射泵[/color][/size][/b][size=13px][size=13px] [/size]微量注射泵是以往微量蠕动泵和循环泵的升级替代产品,是微流控领域经常使用的一种流量控制系统。微量注射泵可分为两类:价格便宜但会产生流量振荡的普通注射泵和价格偏贵但可以提供更高流量稳定性的无脉动注射泵。几种典型的微流量注射泵如图[/size][size=13px]1[/size][size=13px]所示。[/size][align=center][b][color=#339999][img=微流控压力泵和注射泵性能的详细分析和比较,690,138]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932237145_4550_3221506_3.jpg!w690x138.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]1 [/size][size=13px]几种典型的微流量注射泵[/size][/color][/b][/align][size=13px][size=13px] [/size]微量注射泵的主要优势是易于使用。无脉冲注射泵的主要弱点是时间响应性太慢,微流控芯片内的流量变化需要几秒到几个小时后才能达到稳定的流速,这种慢响应的弊端也是微量注射泵在数个应用领域如微液滴的制备内应用的主要限制因素。但随着采用能达到微米或纳米步长的步进电机技术,以及增加注射泵微机械部件接触的精密度,注射泵机械部件的生产质量,实验装置的流阻,实验用导管和芯片的弹性与高流阻特性等,可解决上述问题。注射泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])可以快速实现微流控实验装置的搭建。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])新型无脉冲的注射泵可产生低于[/size][size=13px]1%[/size][size=13px]的流动稳定性。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])注射液体量对于长时间的实验来讲是可知的。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵产生的最大压力可达几百个[/size][size=13px]bar[/size][size=13px]左右。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])器件内的平均流量不会因器件流阻的实际变化而发生变化(注射泵因高压而发生停止运动除外)。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])流量的响应时间在几秒到几小时内变化,这依赖于流体的阻力。响应时间的快慢可通过使用特定的微流体导管来进行调节。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])因没有流量计,在暂态过程(几秒到几个小时)中,用户不知道实际的液体流量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])如果器件的流阻增加(如因通道堵塞或灰尘产生),微量注射泵产生的压力会无限制的增加。产生的压力增加到一定程度便会反过来损坏器件。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])微量注射泵无法实现死端通道(类似集成微流控阀)内流体的流量控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])注射泵驱动的液体体积总量是有限制的,而不是无限的。[/size][size=13px][size=13px] [/size]([/size][size=13px]6[/size][size=13px])如果需要知道流体系统内部的压力,需要配备压力传感器。[/size][size=13px][size=13px] [/size]([/size][size=13px]7[/size][size=13px])即使是使用无脉冲的微量注射泵,也需要根据具体的实验条件来仔细的选择注射器的大小,以此来避免注射泵的步进电机造成的液体流量的周期性脉动。[/size][size=13px][size=13px] [/size]([/size][size=13px]8[/size][size=13px])流量的脉冲振荡效应可以通过使用一致性较好的微流体导管来进行降低。[/size][size=13px][size=13px] [/size]([/size][size=13px]9[/size][size=13px])环境的温度变化会对引起管路材料收缩并改变管路的内径,而内径的微小变化会导致流速发生四次方的巨大变化。同时温度改变也会引起流体内气泡的体积变化而产生不希望的流体位移,这些最终都会对微流体注射泵性能带来严重影响。[/size][b][size=18px][color=#339999]3. 微量压力泵(压力控制器)[/color][/size][/b][size=13px][size=13px] [/size]微量压力泵是一种控制容器中样品流量的新型装置,即通过在压力下将样品平稳注入微流体芯片。目前多数微流控研究都是通过使用压力控制器来完成的,因为它们可以在微流控芯片中以快速响应时间([/size][size=13px]80ms[/size][size=13px])建立无脉冲流。压力驱动的流动装置无延迟地传播流体中的压力变化,允许快速流动切换。由于没有移动的机械部件,压力驱动流的平稳运行得到进一步增强。[/size][size=13px][size=13px] [/size]目前市场上有许多不同类型的精密压力调节器,各有特点。压力调节器类型的选择取决于特定需求和应用,然而,所有压力调节器都需具备一个特点,那就是能够高精度的控制液体的流动。下图是几种典型的国外微流体压力调节器产品。[/size][align=center][b][color=#339999][img=02.几种典型的微流量压力泵,690,141]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250932511670_1765_3221506_3.jpg!w690x141.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]2 [/size][size=13px]几种典型的国外微流量压力泵[/size][/color][/b][/align][size=13px][size=13px] [/size]压力和流量是一个对应关系,即通过控制施加在液体上的压力,也可以控制流体的流速,至于采用压力控制模式,还是采用流速控制模式,需要根据具体应用需要进行选择。下面是微流控装置中这两种控制模式的结构示意图。[/size][align=center][b][color=#339999][img=03.微流控装置中的压力和流量两种控制模式,690,289]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933358798_241_3221506_3.jpg!w690x289.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]3 [/size][size=13px]微流控装置中的压力和流量两种控制模式[/size][/color][/b][/align][size=13px][size=13px] [/size]如图[/size][size=13px]3[/size][size=13px]所示,在压力控制模式中,压力控制器通过调节样品储液容器上方的气体压力,将样品流体注入到微流控芯片中。为了解微流控芯片中所注入样品流体的流量,需要在微流控芯片的进口端或出口端增加一个流量传感器。如果此流量传感器作为压力控制器的测量信号,则会形成一个反馈闭环控制回路,可实现样品流体的精密流量控制。[/size][size=13px][size=13px] [/size]由此可见,与高精度注射泵相比,如图[/size][size=13px]4[/size][size=13px]和图[/size][size=13px]5[/size][size=13px]所示,通过将压力控制器与流量传感器相结合,可以实现超精确和快速响应的流量控制。[/size][align=center][b][color=#339999][img=04.注射泵和压力泵的微流控流量控制时间响应效果对比图,350,294]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250933539524_3049_3221506_3.jpg!w400x337.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]4 [/size][size=13px]注射泵和压力泵的微流体流量控制时间响应性效果对比图[/size][/color][/b][/align][align=center][b][color=#339999][img=05.注射泵和压力泵的微流控流量控制稳定性效果对比图,690,321]https://ng1.17img.cn/bbsfiles/images/2023/06/202306250934166653_4218_3221506_3.jpg!w690x321.jpg[/img][/color][/b][/align][align=center][b][color=#339999][size=13px]图[/size][size=13px]5 [/size][size=13px]注射泵和压力泵的微流体流量控制稳定性效果对比图[/size][/color][/b][/align][size=13px][size=13px] [/size]压力控制泵的优缺点如下:[/size][size=13px][size=13px] [/size]优点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])压力源允许无脉冲的流量流动。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])驱动液体的体积量可达到几升的液体量。[/size][size=13px][size=13px] [/size]([/size][size=13px]3[/size][size=13px])响应时间最快可达到[/size][size=13px]9 ms[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]4[/size][size=13px])允许死端或者封闭通道内的液体控制。[/size][size=13px][size=13px] [/size]([/size][size=13px]5[/size][size=13px])当使用流量计时,允许同时控制液体的流量和压力。[/size][size=13px][size=13px] [/size]缺点:[/size][size=13px][size=13px] [/size]([/size][size=13px]1[/size][size=13px])最高压力会受到限制,目前常用的压力控制器的最高输出压力仅能达到[/size][size=13px]8bar[/size][size=13px],但采用新型的压力控制器,最高输出压力可达[/size][size=13px]50bar[/size][size=13px]。[/size][size=13px][size=13px] [/size]([/size][size=13px]2[/size][size=13px])当压力不平衡时,尤其是在多个输入口进行流量切换时,压力控制器可能会产生倒流(可使用开关阀门来解决这种倒流现象)。[/size][b][size=18px][color=#339999]4. 总结[/color][/size][/b][size=13px][size=13px] [/size]综上所述,每种微流体控制系统都有各自的缺点和优点。注射泵方便,并且已经使用了很长时间,然而当面临复杂或需要精细控制微流体时,性能会受到限制(响应时间,波动和温度等等),这在微流体实验中经常碰到这种情况。[/size][size=13px][size=13px] [/size]压力泵越来越多地被使用,因为它是为微流体开发的,它完全满足用户的期望(响应性、稳定性、可重复性等等)。压力控制技术几乎涵盖了所有的微流体应用([/size][size=13px]97%[/size][size=13px]以上),并开始进入其它相关领域,如生物学和化学。同时,配套压力控制器的可选配件如传感器和切换阀等非常广泛,可以针对实验的需求而加以选择,同时这些选配件的价格下降使得其应用领域更加广泛。[/size][align=center][size=13px]~~~~~~~~~~~~~~~~~[/size][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制