当前位置: 仪器信息网 > 行业主题 > >

加热恒环器

仪器信息网加热恒环器专题为您提供2024年最新加热恒环器价格报价、厂家品牌的相关信息, 包括加热恒环器参数、型号等,不管是国产,还是进口品牌的加热恒环器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合加热恒环器相关的耗材配件、试剂标物,还有加热恒环器相关的最新资讯、资料,以及加热恒环器相关的解决方案。

加热恒环器相关的论坛

  • 陶瓷加热器和电加热器在恒温恒湿试验箱中的区别是什么?

    陶瓷加热器和电加热器在恒温恒湿试验箱中的区别是什么?

    [b][url=http://www.instrument.com.cn/netshow/C27540.htm]恒温恒湿试验箱[/url][/b]具有高温试验、低温试验、高低温循环试验等试验条件。当然,高温试验条件需要加热器加热。设备有陶瓷加热器和电加热器两种加热器。这两种加热器有什么区别?从以下四点:[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/09/202209291634576309_7074_1760631_3.jpg!w600x600.jpg[/img][/align]  1.恒温恒湿试验箱的两种加热方法,价格相同,输出功率相同,陶瓷加热器比电加热管便宜。  2.在传播效率方面,陶瓷加热器的换热效率远于电加热器。在制造商痛苦的温度控制问题上,陶瓷加热器更容易控制温度。  3.与恒温恒湿试验箱的使用寿命相比,陶瓷加热器的加热丝直接暴露在外,与空气接触:在金属管和氧化镁粉的双重保护下,电加热管的加热丝几乎与空气隔离,因此电加热器的使用寿命将远远大于陶瓷加热器。  4.就设备的安全性而言,电加热器的加热周围有密集的氧化镁粉绝缘层,外部由金属管保护,因此在电气性能和机械性能方面优于陶瓷加热器。  恒温恒湿试验箱广泛应用于电子、电气产品和其他产品部件材料在储存和运输过程中对温度环境的适应性试验。特别是电气性能的机械性能的变化。它采用温度控制的平衡温度调节方法,自动获得从高温到低温或从低温到高温的可靠试验温度。因此,这也是目前大多数制造商使用电加热器的主要原因。

  • 【原创】关于石墨炉纵向加热与横向加热的分析比较!!!

    自原苏联科学家沃夫发明石墨炉坩埚分析法并经马斯曼改为石墨炉以来,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]无火焰分析—石墨炉分析法一直采用的是纵向加热的石墨管,这种方法已发展到高级阶段,使石墨炉方法成为元素分析最灵敏的检测方法。到1980年,美国P-E公司发明了纵向Zeeman效应的扣背景方法,由于需要在纵向即沿光轴方向产生高强度的磁场,空气隙一般只有25—30mm很难安装石墨锥,所以不得以只能将石墨锥改为横向,就产生了石墨管横向加热技术,为了商业上的需要,P-E公司就对横向加热的技术大加赞扬,根据其宣传由于采用了计算机辅助制造技术,使横向加热的石墨管温度均匀背景吸收降低等诸多优点。但经过近二十年的发展,这一技术并不完善。事实证明使用横向加热石墨管完全是在纵向Zeeman校背景时不得以而为之的技术,横向加热并不具备当初设计的诸多优点。所以美国P-E公司自己生产的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],有横向向Zeeman校正时使用横向加热的石墨管,而使用D2灯背景校正时仍然使用纵向加热的石墨管。即使到现在为止,世界上除了中国以外没有其他国家在使用D2灯背景校正技术时使用横向加热石墨管。在中国有的厂家没有Zeeman校正,却在使用横向加热石墨管。从无火焰技术的原理来分析,纵向加热石墨管具有一系列优点,是当前发展成熟、性能优良的技术。1.根据石墨炉的分析原理,由于背景干扰的影响石墨炉分析时信号的峰面积分很难稳定,所以目前仍然采用峰高的计量方法。2.信号的峰高与石墨炉分析时石墨管的加热速度快慢有关,加热越快分析的灵敏度越大,反之则灵敏度越低。3.实践与理论证明,石墨管的重量(尺寸)越小其加热速度就越快,反之石墨管越大,其加热速度就降低。4.前横向加热的石墨管其重量为纵向加热石墨管的五倍左右,所以其加热速度大大降低,造成分析灵敏度下降。5.由于横向加热石墨管的重量、尺寸加大,达到所需要的温度需要相当大的功率,最少要达十千瓦以上,这样大的 瞬时功率将对实验室的电源造成很大的干扰,会影响其他仪器设备的稳定性。6.横向加热石墨管由于结构复杂,很难造出性能一致的石墨管,更不能达到温度的均匀,所以实际应用时的每只石墨管性能均不一致,给客户造成很大麻烦。由于石墨管为耗材,寿命有限,每换一次石墨管均需要重新摸索操作条件。7.纵向加热石墨管,呈桶型,容易加工制造,能保证其一致性,因为性能稳定,且具可换性,分析数据一致,使用方便。综上所述,纵向加热石墨管技术仍然是分析灵敏度最高,便于更换、使用方便、重复性好的分析技术。

  • 【讨论】关于石墨管的纵向加热与横向加热的区别

    关于石墨管纵向加热与横向加热的分析比较(文章转自别人)自原苏联科学家里沃夫发明石墨坩埚分析方法并经马斯曼改为石墨炉以来,原子吸收无火焰分析——石墨炉分析方法一直采用的是纵向加热的石墨管,这种方法已发展到高级阶段,使石墨炉方法成为元素分析最灵敏的检测方法。到1980年以后,美国P-E公司发明了纵向Zeeman效应的扣背景方法,由于需要在纵向即沿光轴方向产生高强度的磁场,空气隙一般只有25-30mm,很难安装石墨锥,所以不得已只能将石墨锥改为横向,就产生了石墨管的横向加热技术,为了商业上的需要,P-E公司就对横向加热技术大加赞扬,根据其宣传由于采用了计算机辅助制造技术,使横向加热的石墨管温度均匀背景吸收降低等诸多优点。但经过近二十年的发展,这一技术并不完善。事实证明使用横向加热石墨管完全是在纵向Zeeman校背景时不得已而为之的技术,横向加热并不具备当初设计的诸多优点。所以美国P-E公司自己生产的原子吸收,有纵向Zeeman校正时使用纵向加热石墨管,而使用D2灯背景校正时仍然使用纵向加热石墨管。即使到现在为止,世界上除中国以外没有其他国家在使用D2灯背景校正时使用横向加热石墨管。在中国有的厂家没有Zeeman校正,却使用横向加热石墨管,实在是很奇怪的事情。从无火焰技术的原理来分析,纵向加热石墨管具有一系列优点,是当前发展成熟、性能优良的技术。1.根据石墨炉的分析原理,由于背景干扰的影响石墨炉分析时信号的峰面积分很难稳定,所以目前仍然采用峰高计量方法。2.信号的峰高与石墨炉分析时石墨管的加热速度快慢有关,加热速度越快,分析灵敏度越大,反之则灵敏度降低。3.实践与理论均证明,石墨管的重量(尺寸)越小其加热速度越快,反之石墨管越大,其加热速度就会降低。4.目前横向加热的石墨管其重量为纵向加热石墨管的五倍左右,所以其加热速度大大降低,造成分析灵敏度下降。5.由于横向加热石墨管的重量、尺寸加大,达到所需温度需要相当大的功率,最少要达十千瓦以上,这样大的瞬时功率将对实验室的电源造成很大的干扰,会影响其它仪器设备的稳定性。6.横向加热石墨管由于其结构较复杂,很难制造出性能一致的石墨管,更不可能达到温度均匀,所以实际应用时每支石墨管性能均不一致,给用户造成很大麻烦。由于石墨管为消耗材料,寿命有限,每换一次石墨管均需要重新摸索操作条件,实在不是明智之举。7.纵向加热石墨管,呈桶形,容易加工制造,能保证其一致性,因而性能稳定,且具有互换性,分析数据一致,使用方便。  综上所述,纵向加热石墨管技术仍然是分析灵敏度最高、便于更换、使用方便、重复性好的分析技术。请各位大神发表一下各自的看法,谢谢!

  • 【资料】关于石墨管的纵向加热与横向加热的区别

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=95303]关于石墨管的纵向加热与横向加热的区别[/url]石墨炉横向加热与纵向加热区别,供大家参考[B][center]关于石墨管纵向加热与横向加热的分析比较[/center][/B]自原苏联科学家里沃夫发明石墨坩埚分析方法并经马斯曼改为石墨炉以来,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]无火焰分析——石墨炉分析方法一直采用的是纵向加热的石墨管,这种方法已发展到高级阶段,使石墨炉方法成为元素分析最灵敏的检测方法。到1980年以后,美国P-E公司发明了纵向Zeeman效应的扣背景方法,由于需要在纵向即沿光轴方向产生高强度的磁场,空气隙一般只有25-30mm,很难安装石墨锥,所以不得已只能将石墨锥改为横向,就产生了石墨管的横向加热技术,为了商业上的需要,P-E公司就对横向加热技术大加赞扬,根据其宣传由于采用了计算机辅助制造技术,使横向加热的石墨管温度均匀背景吸收降低等诸多优点。但经过近二十年的发展,这一技术并不完善。事实证明使用横向加热石墨管完全是在纵向Zeeman校背景时不得已而为之的技术,横向加热并不具备当初设计的诸多优点。所以美国P-E公司自己生产的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],有纵向Zeeman校正时使用纵向加热石墨管,而使用D2灯背景校正时仍然使用纵向加热石墨管。即使到现在为止,世界上除中国以外没有其他国家在使用D2灯背景校正时使用横向加热石墨管。在中国有的厂家没有Zeeman校正,却使用横向加热石墨管,实在是很奇怪的事情。从无火焰技术的原理来分析,纵向加热石墨管具有一系列优点,是当前发展成熟、性能优良的技术。1.根据石墨炉的分析原理,由于背景干扰的影响石墨炉分析时信号的峰面积分很难稳定,所以目前仍然采用峰高计量方法。2.信号的峰高与石墨炉分析时石墨管的加热速度快慢有关,加热速度越快,分析灵敏度越大,反之则灵敏度降低。3.实践与理论均证明,石墨管的重量(尺寸)越小其加热速度越快,反之石墨管越大,其加热速度就会降低。4.目前横向加热的石墨管其重量为纵向加热石墨管的五倍左右,所以其加热速度大大降低,造成分析灵敏度下降。5.由于横向加热石墨管的重量、尺寸加大,达到所需温度需要相当大的功率,最少要达十千瓦以上,这样大的瞬时功率将对实验室的电源造成很大的干扰,会影响其它仪器设备的稳定性。6.横向加热石墨管由于其结构较复杂,很难制造出性能一致的石墨管,更不可能达到温度均匀,所以实际应用时每支石墨管性能均不一致,给用户造成很大麻烦。由于石墨管为消耗材料,寿命有限,每换一次石墨管均需要重新摸索操作条件,实在不是明智之举。7.纵向加热石墨管,呈桶形,容易加工制造,能保证其一致性,因而性能稳定,且具有互换性,分析数据一致,使用方便。  综上所述,纵向加热石墨管技术仍然是分析灵敏度最高、便于更换、使用方便、重复性好的分析技术。http://www.instrument.com.cn/bbs/shtml/20071204/1080385/——raoqun20

  • 原子吸收—石墨管纵向加热与横向加热的分析比较

    自原苏联科学家 LOV`V 发明石墨坩埚分析方法并经马斯曼改为石墨炉以来,一直采用的是纵向加热的石墨管,这种方法已发展到高级阶段,使石墨炉方法成为元素分析最灵敏的检测方法。  到 1980 年以后,美国 P-E 公司发明了纵向 Zeeman 效应的扣背景方法,由于需要在纵向即沿光轴方向产生高强度的磁场,空气隙一般只有 25 -30mm ,很难安装石墨锥,所以不得已只能将石墨锥改为横向,就产生了石墨管的横向加热技术,为了商业上的需要, P-E 公司就对横向加热技术大加赞扬,根据其宣传由于采用了计算机辅助制造技术,使横向加热的石墨管温度均匀背景吸收降低等诸多优点。但经过近二十年的发展,这一技术并不完善。事实证明使用横向加热石墨管完全是在纵向 Zeeman 校背景时不得已而为之的技术,横向加热并不具备当初设计的诸多优点。所以美国 P-E 公司自己生产的原子吸收,有纵向 Zeeman 校正时使用纵向加热石墨管,而使用D 2 灯背景校正时仍然使用纵向加热石墨管。即使到现在为止,世界上除中国以外没有其他国家在使用D 2 灯背景校正时使用横向加热石墨管。在中国有的厂家没有 Zeeman 校正,却使用横向加热石墨管,实在是很奇怪的事情。  从无火焰技术的原理来分析,纵向加热石墨管具有一系列优点,是当前发展成熟、性能优良的技术。  • 根据石墨炉的分析原理,由于背景干扰的影响石墨炉分析时信号的峰面积分很难稳定,所以目前仍然采用峰高计量方法。  • 信号的峰高与石墨炉分析时石墨管的加热速度快慢有关,加热速度越快,分析灵敏度越大,反之则灵敏度降低。  • 实践与理论均证明,石墨管的重量(尺寸)越小其加热速度越快,反之石墨管越大,其加热速度就会降低。  • 目前横向加热的石墨管其重量为纵向加热石墨管的五倍左右,所以其加热速度大大降低,造成分析灵敏度下降。  • 由于横向加热石墨管的重量、尺寸加大,达到所需温度需要相当大的功率,最少要达十千瓦以上,这样大的瞬时功率将对实验室的电源造成很大的干扰,会影响其它仪器设备的稳定性。  • 横向加热石墨管由于其结构较复杂,很难制造出性能一致的石墨管,更不可能达到温度均匀,所以实际应用时每支石墨管性能均不一致,给用户造成很大麻烦。由于石墨管为消耗材料,寿命有限,每换一次石墨管均需要重新摸索*作条件,实在不是明智之举。  • 纵向加热石墨管,呈桶形,容易加工制造,能保证其一致性,因而性能稳定,且具有互换性,分析数据一致,使用方便。  综上所述,纵向加热石墨管技术仍然是分析灵敏度最高、便于更换、使用方便、重复性好的分析技术。

  • 原子吸收横纵向加热的区别

    PE700和800的加热方式不同?请高手给解释下。最好解释下横向和纵向的区别以及优缺点。还有市场上领先的仪器里采用的都是什么加热方式呢

  • 【讨论】论横向加热与纵向加热

    横向加热的优点:1,特别适合对复杂基体的样品进行痕量和超痕量分析2,沿光束方向的石墨管温度严格均匀一致3,可显著降低基体效应和消除记忆效应4,避免纵向加热石墨管引起的灵敏度损失和污染干扰5,原子化温度低6,延长石墨管寿命7,温度梯度低8, 除残效率高从目前的现状和未来发展方向来看,横向加热肯定是优于纵向加热的。[B]这个问题已经讨论过了——raoqun20[/B]http://www.instrument.com.cn/bbs/shtml/20080627/1328928/http://www.instrument.com.cn/bbs/shtml/20071204/1080385/

  • 横向加热与纵向加热比较

    石墨炉原子吸收光谱法分析中,横向加热比纵向加热优点多,您认同吗?为什么?日常分析中,石墨管选择的标准是什么?欢迎讨论!

  • 请教7694E顶空进样器加热效率问题

    各位好:本人去年刚毕业踏入工作,经验严重缺乏,在这里请各位多多指点包涵。 本人在工作中遇到了如下的问题:在用Agilent 7694E顶空进样器进行水中乙醇含量检验时,发现重现性极差。气相色谱仪在进行别的样品检验时重现性良好,因此色谱仪的问题可以排除。所用的顶空条件为:平衡温度:90℃,定量环温度:100℃,传输线路温度:110℃,平衡时间20min。知道该条件的平衡温度太高,可是没办法,这是药典中规定的。对此进行了如下实验:1.将平衡温度降低至70℃,发现重现性良好。2.平衡温度90℃,用Agilent 7697A顶空进样器进行实验,发现重现性良好。并且灵敏度比7694E采用相同条件时高出近一倍。3.用水浴先将顶空瓶加热至近90℃,然后放入7694E进样,发现重现性良好。公司一共有两台7694E,均为这种情况。7697A只有一台。由以上实验现象给出了如下的猜测:7694E的加热效率不高,无法在20min内将顶空瓶加热到设定的平衡温度。由于实验为本人单独设计,必然存在很多的不足和漏洞。所得出的猜测也仅是一面之词,不知是否有与我遇到类似情况的同行?希望各位同行或者仪器工程师能给予指点。万分感谢!申明:此处绝无贬低7694E的意思。

  • Agilent 7694E 顶空进样器加热效率

    各位好:本人去年刚毕业踏入工作,经验严重缺乏,在这里请各位多多指点包涵。 本人在工作中遇到了如下的问题:在用Agilent 7694E顶空进样器进行水中乙醇含量检验时,发现重现性极差。气相色谱仪在进行别的样品检验时重现性良好,因此色谱仪的问题可以排除。所用的顶空条件为:平衡温度:90℃,定量环温度:100℃,传输线路温度:110℃,平衡时间20min。知道该条件的平衡温度太高,可是没办法,这是药典中规定的。对此进行了如下实验:1.将平衡温度降低至70℃,发现重现性良好。2.平衡温度90℃,用Agilent 7697A顶空进样器进行实验,发现重现性良好。并且灵敏度比7694E采用相同条件时高出近一倍。3.用水浴先将顶空瓶加热至近90℃,然后放入7694E进样,发现重现性良好。公司一共有两台7694E,均为这种情况。7697A只有一台。由以上实验现象给出了如下的猜测:7694E的加热效率不高,无法在20min内将顶空瓶加热到设定的平衡温度。由于实验为本人单独设计,必然存在很多的不足和漏洞。所得出的猜测也仅是一面之词,不知是否有与我遇到类似情况的同行?希望各位同行或者仪器工程师能给予指点。万分感谢!申明:此处绝无贬低7694E的意思。

  • 氘灯和横向加热石墨炉的搭配是先天的畸形

    最近出现的“毒胶囊”事件,对原子吸收石墨炉的关注超出了以往的任何时候,有的企业在检测铬元素的时候经常遇到背景干扰严重导致检测结果不正常的效果,用了扣背景也没起到任何效果,我在这里只想做一个简单的原理性说明:横向加热的石墨管是在塞曼扣背景的基础上才出现的产物,如果不用塞曼扣背景,横向加热的石墨管就相当于是张冠李戴,没有任何优势可言。国产的横向加热石墨管加工工艺和材料都远没达到进口标准,加热温度基本到2200度就到达极限了,检测100个样品就要更换(这还算是好的),且更换步骤及其麻烦,大概要半天时间。单个石墨管的成本是纵向石墨管价格的五倍左右。氘灯搭配横向石墨管的配置全世界只有中国能干出来,这种搭配我想在几年之内必将被淘汰出局。已经购买的用户我只能表示同情了。采购大型分析仪器最重要的还要看实际应用效果。

  • CE-2型气液平衡数据测定仪电加热棒采购

    CE-2型气液平衡数据测定仪电加热棒采购

    实验室用的CE-2型气液平衡数据测定仪的电加热棒可能烧了,连上电不起加热作用了。给厂家打电话说那个型号的仪器太老了,现在零件没有了。问一下哪里有卖的啊!图片是这样子的:http://ng1.17img.cn/bbsfiles/images/2015/04/201504300950_544154_2984502_3.png

  • 横向加热石墨管的现状和技术突破

    横向加热石墨管已经出来好多年了,但是横向加热石墨管的现状到什么程度了?有什么无法逾越的技术难点?将来的石墨管是什么样子的?横向石墨管是不是会取代纵向加热石墨管?[em10] [em10] [em10] ,望大家跟我讨论,我随时在论坛恭候!!

  • 【转帖】国产和进口横向加热平台石墨管的性能比较

    国产和进口横向加热平台石墨管的性能比较 王芬 钟永聪 王海燕 倪桦来源:国家城市供水水质监测网成立十周年科技论文集摘 要:通过对PE公司的THGA石墨管与国家地质实验测试中心研制的高灵敏度横向加热平台石墨管性能的比较,表明后者的石墨管的性能优良并有更大性价比,完全可以替代进口。 关键词:石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光度法、石墨管、性能、性价比。 1.引言 目前许多国内城镇给排水系统的水质监测站都配置了国外优秀品睥的石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]用于检测水中的痕量金属元素含量。在使用石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]进行检测时要消耗大量的石墨管但原装进口石墨管一般都比较昂贵,因此寻找国产石墨管.减少测定时的消耗,都是大家非常关心的问题。本文作者用美国PE公司的5100ZL石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url],对PE公司的THGA石墨管与国家地质实验测试中心研制的高灵敏度横了 加热平台石墨管作了比较,结果表明国家地质实验测试中心研制的高灵敏度横向加热平台石墨管的性能可与PE公司的THGA石墨管相媲美,其性价比甚至大大优于PE公司的THQA石墨管一完全可以替代进口。 2、实验部分 2.1实验方法 本文选择原子化温度低的铅和原子化温度高的钴、镍作待测元素。测定铅、钴时,由自动进样器进样15μl: 基体改进剂5μl。测定镍时.由自动进样器进样20μl:2.2仪器及试剂 美国PE公司的5100zl石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url];带PE软件的工作站;AS-71自动进样器 铅、钴、镍空心阴极灯;PE公司的THGA石墨管(用PE tube表示);国家地质实验测试中心研制的高灵敏横向加热平台石墨管(用YY3 tube表示);99.99%氩气;大连化学物理研究所的除氧管。 国家标准物质研究中心提供的铅、钴、镍单元素标准溶液,1000ug/ml,根据需要配成使用溶液,保持1%HNO3(v/v)酸度;铅的基体改进剂(1%NH4H2PO4+0.1%HNa2HPO4);钴的基体改进剂(0.3%Mg(NO3)2);二次蒸馏水。2.3仪器的工作条件仪器的工作条件见下表1。仪器的工作条件表(表1)元素 波长(nm) 狭缝(nm) 灯电流(mA) 程序升温过程 温度℃ 升温时间(s) 保持时间(s) 铅 283.3 0.7 10 干燥阶段1 110 1 30 干燥阶段2 130 15 10 灰化阶段 850 10 20 原子化阶段 1500 0 3 清除阶段 2000 1 2 钴 242.5 0.2 30 干燥阶段1 110 1 30 干燥阶段2 130 15 10 灰化阶段 1400 10 10 原子化阶段 2400 0 4 清除阶段 2500 1 2 镍 232.0 0.2 25 干燥阶段1 110 1 30 干燥阶段2 130 15 10 灰化阶段 1100 10 10 原子化阶段 2300 0 5 清除阶段 2500 1 2 3、结果3.1灵敏度比较分别用不同的石墨管制作待测元素的标准曲线,求得其特征质量mo(pg/0.0044A),见表2。不同石墨管的特征质量mo(pg/0.0044A)(表2)石墨管 铅 钴 镍 PE tube 33.2 27.5 23.6 YY3 tube 23.1 13.2 18.3 3.2精密度试验及石墨管性能稳定性比较 分别用不同的石墨管测定高低两个浓度的待测元素配制样10次.得出其标准偏差和相对标准偏差,见表3。海口监测站自2002年1月起开始使用YY3 tube石墨管,实践证明YY3 tube石墨管性能稳定,每支石墨管的灵敏度、精密度、寿命有很好一致性,与PE tube石墨管的一致性相当。并且每支石墨管在其寿命期的灵敏度、精密度都有很好的稳定性。在其寿命未期灵敏度、精密度明显改变以便及时换石墨管,这样可以防止石墨管在运行时断裂而损坏石墨锥。不同石墨管的精密度项目 标准偏差(SD μg/l) 相对标准偏差(%RSD) 标准偏差(SD μg/l) 相对标准偏差(%RSD) 铅 样品含量(μg/l) 5.00 25.0 PE tube 0.17 3.07 0.13 0.51 YY3 tube 0.14 2.53 0.12 0.47 钴 样品含量(μg/l) 5.00 20.0 PE tube 0.36 4.53 0.45 1.91 YY3 tube 0.37 4.65 0.46 1.95 镍 样品含量(μg/l) 10.0 30.0 PE tube 0.59 5.62 0.95 3.00 YY3 tube 0.29 2.76   2.49  3.4不同石墨管的寿命 以相同的仪器条件测水样品中铅含量,统计5支石墨管的平均寿命,见表4石墨管 PE tube YY3 tube 寿命(次数) 406 819 3.5不同石墨管的价格石墨管 PE tube YY3 tube 价格(元/支) 1393 265 4.结论 通过比较,表明国家地质实验测试中心研制的高灵敏度磺向加热平台石墨管的性能可与PE公司的THGA一手相媲美,其性价比甚至大大优于PE公司的THGA石墨管,完全可以替代进口。国家地质实验测试中心除可提供高灵敏度横向加热平台石墨管外,还提供其它类型的石墨管.各监测站可根据自已的石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]光谱仪类型选择使用不同类型的石墨管。

  • 微电脑轴承加热器

    注意事项  1:该机自动检测探头,若无探头则无法启动;  2:严禁无加热轴而启动主机;  3:加热工件应尽量选择较大的加热轴,以提高工作效率;  4:轴承最高温度不得超过120℃;  5:取走工件注意高温,以防烫伤;  6:请不要将探头长时间置工件上在,以延长探头的使用寿用途:  轴承加热器,主要用于对轴承、齿轮、衬套、轴套、直径环、滑轮、收缩环、连接器等多种类型的金属件进行加热,通过加热使之膨胀,达到过盈装配的需要。微电脑轴承感应加热器结构:  轴承感应加热器由主机及控制箱组合一体安装在一手车上,移动式结构,便于现场施工灵活应用,可拆装的轭铁是直接用来穿套轴承或其它加热工件之用。扁平吊带,中空扳手

  • 箱式加热器冷热冲击试验箱

    箱式加热器冷热冲击试验箱,箱式加热器冷热冲击试验技术参数性能:在无试验负荷、无层架情况下稳定2小时后测定的性能。另外,关于温度上升及下降时间是指风冷式在室温+25℃、空载时的性能。2.1内箱尺寸:W400H350D350(mm)50L2.2外型尺寸:约W1550H1680D1700(mm)(外形以最终实物为准)2.3高低温区温度范围:A、高温区部分:RT+10℃~+200℃;B、低温区部分:-10℃~-55℃;C、冲击范围:?+60℃~+150℃?/?-40℃~-10℃?2.4试验方式:气动风门切换2温区或3温区;2.5升降温速率:升温时间:+60℃~200℃20min降温时间:+20℃~-55℃60min三箱式冷热冲击试验箱,三箱式冷热冲击试验箱体材料外箱材料:SUS304#不锈钢或A3双面镀锌钢板,表面喷塑处理;(如选用镀锌A3冷轧钢板表面静电喷塑外壳,工期须延长三天。)内箱材料:不锈钢板SUS#304;箱体保温材料:硬质聚氨酯泡沫+玻璃纤维;门保温材料:硬质聚氨酯泡沫空气调节通道:风机、加热器、蒸发器、风门、温度传感器;标准配置:样品隔层架2个、调整脚4个、调整轮6个三箱式冷热冲击试验箱,三箱式冷热冲击试验电气控制系统:1.控制器:触屏中英文显示器+PLC?控制软件?+温控模块2.运行方式:程序方式?1?控制对象试验区曝露温度高温恒温区预热温度低温恒温区预热温度低温恒温区除霜温度?2?指示精度0.1℃?3?输入热电偶TDIN?4?控制方式微电脑PID+SSR控制品达试验设备有限公司是一家?事?、?和生?可靠性及?境?的公司,是?唯一能同?生?、力?的?家。我司?有一支?高效的人才?,冷热冲击试验箱,自主?有?械?及?展能力,生?的?符合GB、ISO、BS、ASTM、UL、JIS、CE等?。主?品:环试设备恒温恒湿试验箱、高低温(交变湿热)试验箱、快速温度变化(湿热)试验箱、冷热(高低温度)冲击试验箱、高温试验箱、步入式恒温恒湿试验室、步入式高低温(交变湿热)试验室、淋雨试验箱/室、砂尘试验箱/室、PCT试验机热老化类老化房(烧机房)、老化柜(烧机柜)、烤箱、烘箱综合老化紫外光耐气候试验箱、氙灯耐气候试验箱、臭氧老化试验箱复合试验温度湿度振动三综合试验箱、温度湿度盐雾(盐干湿)复合式试验箱

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制