当前位置: 仪器信息网 > 行业主题 > >

表面阻值仪

仪器信息网表面阻值仪专题为您提供2024年最新表面阻值仪价格报价、厂家品牌的相关信息, 包括表面阻值仪参数、型号等,不管是国产,还是进口品牌的表面阻值仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合表面阻值仪相关的耗材配件、试剂标物,还有表面阻值仪相关的最新资讯、资料,以及表面阻值仪相关的解决方案。

表面阻值仪相关的资讯

  • 绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?
    绝缘电阻仪器体积电阻表面电阻测试仪使用前都要注意什么?绝缘电阻仪器体积电阻表面电阻测试仪使用前请仔细阅读以下内容,否则将造成仪器损坏或电击情况。1. ◇检查仪器后面板电压量程是否置于10V档,电流电阻量程是否置于104档。2. ◇接通电源调零,(注意此时主机不得与屏蔽箱线路连接)在“Rx”两端开路的情况下,调零使电流表的显示为0000。然后关机。3. ◇应在“Rx”两端开路时调零,一般一次调零后在测试过程中不需再调零。 4. ◇测体积电阻时测试按钮拨到Rv边,测表面电阻时测试按钮拨到Rs边,5. ◇将待测试样平铺在不保护电极正中央,然后用保护电极压住样品,再插入被保护电极(不保护电极、保护电极、被保护电极应同轴且确认电极之间无短路)。6. ◇电流电阻量程按钮从低档位逐渐拨,每拨一次停留1-2秒观察显示数字,当被测电阻大于仪器测量量程时,电阻表显示“1”,此时应继续将仪器拨到量程更高的位置。测量仪器有显示值时应停下,在1min的电化时间后测量电阻,当前的数字乘以档次即是被测电阻。7. ◇测试完毕先将量程拨至(104)档,然后将测量电压拨至10V档, 后将测试按钮拨到中央位置后关闭电源。然后进行下一次测试。8. ◇接好测试线,将测试线将主机与屏蔽箱连接好。量程置于104档,打开主机后面板电源开关按钮。从仪器后面板调电压按钮到所要求的测量电压。(比如:GBT 1692-2008 硫化橡胶 绝缘电阻率的测定 标准中注明要求在500V电压进行测定,那么电压就要升到500V)9. ◇禁止将“RX”两端短路,以免微电流放大器受大电流冲击。10. ◇不得在测试过程中不要随意改动测量电压。11. ◇测量时从低次档逐渐拨往高次档。12. ◇接通电源后,手指不能触及高压线的金属部分。13. ◇严禁在试测过程随意改变电压量程及在通电过程中打开主机。14. ◇在测量高阻时,应采用屏蔽盒将被测物体屏蔽。15. ◇不得测试过程中不能触摸微电流测试端。16. ◇严禁电流电阻量程未在104档及电压在10V档,更换试样。技术指标1、电阻测量范围 0.01×104Ω~1×1018Ω2、电流测量范围为 2×10-4A~1×10-16A3、仪器尺寸 285mm× 245mm× 120 mm4、内置测试电压 100V、250V、500V、1000V5、基本准确度 1% (*注)6、内置测试电压 100V、250、500、1000V7、质量 约2.5KG8、供电形式 AC 220V,50HZ,功耗约5W9、双表头显示 3.1/2位LED显示安全注意事项1. 使用前务必详阅此说明书,并遵照指示步骤,依次操作。2. 请勿使用非原厂提供之附件,以免发生危险。3. 进行测试时,本仪器测量端高压输出端上有直流高压输出,严禁人体接触 ,以免触电。4. 为避免测试棒本身绝缘泄漏造成误差,接仪器测量端输入的测试棒应尽可 能悬空,不与外界物体相碰。5. 当被测物绝缘电阻值高,且测量出现指针不稳现象时,可将仪器测量线屏 蔽端夹子接 上。 例如: 对电 缆测缆 芯与 缆壳的 绝缘 时,除 将被 测物两 端分 别接于 输入 端与高压 端, 再将电 缆壳 ,芯之 间的 内层绝 缘物 接仪器 “G”,以消 除因 表面漏 电而 引起的测 量误 差。也 可用 加屏蔽 盒的 方法, 即将 被测物 置于 金属屏 蔽盒 内,接 上测 量线。
  • 新型表面等离子体共振光谱仪研制成功
    4月10日,中科院计划财务局组织专家对长春应用化学研究所承担的院科研装备研制项目“集成电化学方法的表面等离子体共振及其高通量分析仪器”进行了现场验收。验收专家分别听取了项目的结题、财务和用户使用报告,审阅了项目组提交的验收材料,并实地考察了研制样机的示范性实验操作,一致同意该项目通过验收。 专家现场考察样机   表面等离子体共振光谱(SPR)技术是一种全新的生物化学分析方法,具有实时、免标记等独特的检测优点,可广泛应用于生物分析、无机材料、化学分析和材料科学等领域,逐渐成为国际传感器领域的研究热点。实现具有时间分辨采集功能的SPR仪器方法,开发具有我国自主知识产权的新型电化学传感器、检测器和联用仪器是当前科技生产的迫切需求。   项目组以开发研制具有时间分辨测量能力、电化学检测系统、高通量成像分析模块的表面等离子体共振分析检测系统为目标,经过2年多的努力,研制开发出具有自主知识产权的具有时间分辨、电化学联用、成像测量等功能模块的表面等离子体共振光谱仪,可应用于界面小分子吸附反应动力学及涉及小分子相互作用的分析测量中,并可实现与多种电化学暂态、稳态技术方法的联用;该仪器设计新颖,利用二像素光学位置阵列传感器件,极大地提高了SPR光谱测量的时间响应;通过与多种电化学暂态及稳态技术方法的联用,拓宽了SPR光谱仪器的应用领域。   该项目研制开发的表面等离子体共振光谱及其联用仪器设备已经通过长春市产品质量监督检验院技术测试认证,现已小规模研制工程样机15台,并在清华大学、吉林大学、长春应化所、化学所、西北师范大学、东南大学、福州大学等科研和教学单位试用,效果良好。   该集成仪器系统将可广泛应用于电极界面纳米结构复合材料的电化学制备、修饰、电化学衍生及电极界面的自组装、生物芯片分析、医疗卫生、食品、毒品毒物分析等领域,是对目前SPR领域仪器方法的有益补充,具有广阔的市场前景。   该项目研制期间发表科研论文21篇;申请发明专利7项,4项已获授权;培养博士研究生7名,硕士研究生2名。
  • 大连化物所成功研制红外光谱仪真空吸附及表面反应原位表征系统
    6月13日,由中科院大连化学物理研究所公共分析测试组(DNL2001)邵建平承担的中国科学院仪器设备功能开发技术创新项目——“红外光谱仪的真空吸附及表面反应原位表征系统研制”顺利通过项目验收。验收专家组由中科院东北先进制造与材料制备区域中心梁爽副研究员、长春应化所科技处朱琳副处长、沈阳自动化所刘金德研究员、沈阳金属所刘萌副研究员、中科院大连化学物理研究所王峰研究员组成,朱琳副处长担任组长。   验收专家组听取了项目负责人的项目研制工作报告和财务报告、测试专家组的测试报告,审查了相关技术资料,并对研制成果的运行情况进行了现场核查。专家组认为:所研制开发的新型真空吸附和表面反应红外光谱原位表征实验系统、及新型石英红外池,设计理念先进,工艺精巧,可靠性、实用性强,为拓展红外光谱仪用于催化材料性质的原位表征提供了有效的实验技术支撑。该项目成果具有重要的实验应用价值和一定的推广价值。该项目实现了设备功能开发目标,完成了实施方案规定的各项任务,一致同意该项目通过验收。   该项目是科学院首批立项支持的仪器设备功能开发项目。项目的认真执行、规范验收和实际成果,对中科院大连化学物理研究所后续该类项目的申请、执行和组织验收起到了积极的示范意义。
  • 国产热表面电离质谱仪通过仪器性能鉴定
    2023年9月18日,西安交通大学组织专家在西安对西安交通大学、西北核技术研究院等联合研制的国产热表面电离质谱仪进行了仪器性能鉴定。鉴定委员会由来自中国核学会、中国计量科学院研究院、中核四〇四有限公司、中国工程物理研究院、中国原子能研究院、中核建中核燃料元件有限公司、中国核动力研究设计院、西北大学、暨南大学、西安交通大学、中国科学院青海盐湖研究所、中国科学院地球环境研究所等单位的14名国内专家组成,其中中国质谱学会原理事长、中国核学会李金英研究员为专家组组长,中国计量科学研究院首席科学家王军研究员为副组长。西安交通大学电气工程学院党委书记梁得亮教授、仪器科学与技术学院党委书记韦学勇教授、仪器科学与技术学院院长赵立波教授、科研院处长陈黎教授及项目组成员等30余人参加会议。科研院陈黎处长主持鉴定会。西安交通大学电气工程学院梁得亮教授首先代表学院感谢各位专家长期以来对国产质谱仪器的关心,质谱仪作为分析仪器皇冠上的“明珠”,国产化问题一直备受关注,希望各位专家多提宝贵建议,对国产仪器客观评价,帮助项目组进一步做好仪器迭代升级。中国质谱学会原理事长、中国核学会李金英研究员在线上主持仪器研制汇报与指标测试汇报环节。项目组技术骨干袁祥龙工程师对国产热表面电离质谱仪的研制目标、关键技术、工程化、未来展望等方面进行了汇报。项目组在国家重大科学仪器设备开发专项、国家重点研发计划等多项重点项目支持下,开展了离子光学理论研究、关键部件研制、测控软件开发、仪器工艺及可靠性迭代等多项工作,取得系列创新成果。中国计量科学研究院王松副研究员在国产热表面电离质谱仪上开展了为期三天的现场测试,会议上介绍了仪器指标测试大纲与测试报告,并分享了个人在国产仪器方面的使用感受。在听取了项目组和第三方测试单位的汇报后,鉴定委员会进行了热烈的讨论,认为国产磁质谱仪器十年磨一剑,取得了令人瞩目的成果、令人振奋,向项目组表示祝贺。专家们结合实际应用场景,就特定核素同时测量、探测器技术方案、微弱信号检测等与项目组进行了深入技术探讨;最后,还对仪器长期稳定性考核、自动化样品处理、知识产权布局等方面提出了具体建议。研究团队学术带头人李志明教授最后总结了团队磁质谱仪器研发历程、目前面临的挑战和未来研发计划,表示研究团队将以本次鉴定会为契机,“咬定青山不放松”,持续做好性能指标先进、“皮实耐用”的国产化质谱仪器。18日下午,鉴定委员会及其他与会专家到现场实地考察了国产热表面电离质谱仪,观看了仪器功能演示、软件操作和关键零部件研制情况,并现场开展样品测试。项目组现场还对在研的高分辨辉光放电质谱仪、高分辨气体质谱仪等仪器的关键部件进行了介绍。鉴定委员会一致认为:该仪器主要技术指标与国外先进商业仪器相当,其中峰形系数、系统稳定性和丰度灵敏度(带阻滞过滤器)指标优于国外仪器;突破了多工位热离子源、磁-电双聚焦离子光学设计、高稳定磁场控制、多接收离子探测等关键技术,在仪器设计与关键部件研制方面有多项创新,实现了同位素丰度高精密测量;自主开发了点样仪、样品带成型及焊接装置、样品带去气装置等全套辅助设备,可满足日常分析要求。热表面电离质谱是被公认为同位素分析最精确的分析方法之一,是一种准确的、可用于校准其他分析方法的参考技术,被广泛应用于核工业、同位素地球化学、计量标准、油气勘探、海洋学等领域。国产热表面电离质谱仪成功通过鉴定将推动我国高端磁质谱仪器向国产化替代迈进,打破关键领域仪器设备“受制于人”的被动局面,具有里程碑意义。
  • 大连化物所“表面光化学动力学研究装置”通过验收
    大连化物所分子反应动力学国家重点实验室1102组承担的中科院重大科研装备研制项目“表面光化学动力学研究装置”于11月23-24日通过了中科院计划财务局组织的专家组的现场测试和验收。   以中国科技大学朱俊发教授为组长的测试专家组在11月23日全天对建成的“表面光化学动力学研究装置”的各项指标进行了认真测试,给出的测试报告认为“测试结果表明,该研究装置完全达到甚至优于各项设计指标,运转良好,而且操作简便。该设备将为研究表面光化学动力学提供强大的、性能独特的研究平台”。   以清华大学莫宇翔教授为组长的验收专家组于11月24日听取了项目负责人杨学明做的研制工作报告、经费收支报告、设备使用报告和测试组组长做的测试报告,审核了相关的文件档案,提问和质询了有关问题。经充分讨论后,专家组形成的验收意见认为本项目研制成功的实验装置“基于超高真空系统、采用可调谐飞秒激光技术和质谱技术,具有原位测量和高灵敏度的特点”,“将为研究表面光化学动力学提供强大的、性能独特的研究平台”。专家组一致同意该项目通过验收。
  • 世界上第一台岩石表面凝结水水量测量装置通过检测
    石窟文物防治水患保护取得重大突破   由云冈石窟研究院和中国地质大学(北京)共同完成的科研课题"云冈石窟凝结水监测研究",成功研制出世界上第一台岩石表面凝结水水量测量装置,揭示了云冈石窟洞窟内部凝结水形成机理和规律,并找到了减少石窟表面凝结水形成的方法,填补了国际石窟凝结水研究领域的学术空白,10月30日被授予第三届全国文物保护科学和技术创新奖。   世界文化遗产云冈石窟石雕的风化问题一直是困扰文物保护工作者的难题,而水是引起石质文物风化最重要的因素之一。影响石窟石雕风化的水主要有凝结水等四种形式,因没有建立起洞窟内部环境监测系统和合适的测量装置来准确测定岩石表面凝结水量,凝结水对石质文物的影响在国际文化遗产保护领域一直未能得到应有的重视,导致凝结水形成规律与机理的研究在国际上一直处于学术空白。   "云冈石窟凝结水监测研究"课题组为研究云冈石窟洞窟内部凝结水形成机理和形成规律,建立了洞窟环境监测系统并进行了连续观测,确定了控制凝结水生成的主控因子,揭示了洞窟内部凝结水形成的规律。课题组利用密闭气流循环干燥原理,研制成功世界上第一台岩石表面凝结水水量测量装置,并首次测定了不同时段石窟内部形成的凝结水量和不同季节洞窟岩壁的渗水量。采用除湿机降低空气相对湿度,找到了减少石窟表面凝结水形成的有效方法。课题于2003年11月开始,2006年12月提交验收并顺利通过国家文物局组织的验收,代表了我国在该研究领域的最新成果和最高水平,并已在世界文化遗产龙门石窟、大足石刻、高句丽壁画墓等的凝结水研究中得到推广应用。   该课题由云冈石窟研究院黄继忠研究员主持完成。"文物保护科学和技术创新奖"是我国在文化遗产保护科技领域的最高奖项,由国家文物局负责组织实施,每5年评审一次。"云冈石窟凝结水监测研究"是我省自新中国成立以来第二次荣获全国文物保护科学和技术创新奖,此前,由黄继忠博士主持完成的科研课题 "煤尘对云冈石窟的影响"曾于2005年获得第二届全国文物保护科学技术创新奖二等奖,黄继忠博士成为全国唯一一位两次获得该奖项的权威学者。
  • 中科院科研装备研制项目“从超高真空到常压的 表面光谱原位表征系统”顺利验收
    p   5月26日,中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“从超高真空到常压的表面光谱原位表征系统”通过了中科院条件保障与财务局组织的专家验收。 /p p   项目负责人邱恒山向专家组详细汇报了项目的实施情况和仪器装备最终所达到的性能指标。测试组专家到现场进行了各项性能指标的实际测试,验收组专家审阅了项目的相关验收材料和经费使用情况。经过测试组专家和验收组专家的综合评议,专家组给予高度评价并一致认为该研制装备的各项性能指标均达到预期目标。 /p p   该项目将表面谱学的方法引入到了光催化领域的研究中,通过大量的创新性设计,实现真空腔体本底真空度优于3× 10-10 mbar,高压腔内真空度在10-9 mbar到1000 mbar之间可变并可由质谱原位检测 可传样样品则可以实现加热(1000 K)、冷却(100 K)和测温 通过高压腔与真空红外谱仪的密封连接,装备最终可以实现样品在高压腔内不同气体压力、不同温度和不同光照条件下的真空(偏振)红外谱的原位检测。与会专家一致认为该项目的实施有助于开展气固(光)催化反应机理的系统研究,在分子水平上获得反应的微观信息,是对现有研究方法的重要补充和全新发展。 /p p   中科院条财局装备办公室主任张红松、新疆理化所副所长崔旺诚出席会议。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201706/insimg/9309c784-241c-4d39-944f-95765aa8d3d7.jpg" title=" W020170531466982123675.jpg" / /p p style=" text-align: center " 从超高真空到常压的表面光谱原位表征系统 /p p br/ /p
  • 新型非离子表面活性剂在自上而下蛋白质组学中的应用
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的Letter,Nonionic, Cleavable Surfactant for Top-Down Proteomics [1],文章的通讯作者是威斯康星大学麦迪逊分校的葛瑛教授和Kyle A. Brown博士。非离子表面活性剂是从细胞中溶解和纯化蛋白质的通用工具,是结构生物学中使用的关键试剂。N-dodecyl-β-D-maltoside(DDM)是最受欢迎的非离子表面活性剂之一,用于从非变性环境中提取蛋白质进行下游生物学实验。然而,表面活性剂的存在,即使是像DDM这样温和的表面活性剂,依然会对自上而下蛋白质组学分析产生不利影响。与表面活性剂相关的信号抑制一般是由低分子量物质较高的电离效率和信噪比引起的。此外,表面活性剂的存在会对常见的前端蛋白质分离技术产生负面影响,例如对于反相液相色谱(RPLC)而言,可能会导致再现性和稳健性方面的潜在问题。克服表面活性剂在下游蛋白质组学分析中的不兼容性问题的一种方法是插入一个可裂解键(例如酸或光不稳定键),能够在质谱分析之前降解为无害的副产物。然而通常用于蛋白质组学的可裂解表面活性剂含有变性阴离子基团,如硫酸盐,不能用于需要非变性条件的应用。因此,急需开发一种可以在非变性条件下辅助传统的蛋白质制备方法的可裂解表面活性剂,并能适用于下游蛋白质组学分析。本文中,作者首次使用了一种非离子型可裂解的表面活性剂N-decyl-disulfide-β-D-maltoside(DSSM),用于自上而下的蛋白质组学。(图1)  图1. DSSM在蛋白质组学中的应用  首先,作者在变性条件下,用碳酸酐酶(29.1 kDa)评价了DSSM与ESI-MS分析的相容性。表面活性剂通过TCEP在4℃条件下降解2 h,在DSSM降解和离心后,没有观察到不溶性降解产物。    图2. DSSM与完整蛋白ESI-MS分析的相容性。  作者进一步评估了DSSM与RPLC-MS的兼容性,以研究膜蛋白。膜蛋白是一类重要的药物靶点,由于其固有的低溶解性和低丰度,通常难以使用自上而下蛋白质组学进行研究。作者对一种模型离子通道蛋白KcsA进行了DSSM辅助膜蛋白组学分析。使用氯仿:甲醇:水沉淀法去除不相容的缓冲组分(盐、洗涤剂等)后,在DSSM (2× CMC)中溶解KcsA。表面活性剂用TCEP(在水中或50%异丙醇中)降解,用CID进行RPLC-MS/MS破碎。结果显示,作者成功地表征了防止通道失活的突变(E71A)。(图3)    图3.DSSM溶解膜蛋白的自上而下蛋白质组学  最后,作者利用DSSM提取哺乳动物细胞内源性蛋白,表面活性剂降解后直接用RPLC MS/MS进行分析。在采用TopPIC对数据进行分析之后,作者通过四次LC-MS/MS实验从206个蛋白质组中鉴定出276种proteoform。作者证明了DSSM是一种有价值的用于细胞裂解的表面活性剂,并可以用于RPLC-MS/MS分析进行proteoform鉴定。  图4. 使用DSSM从细胞裂解液中提取的内源性蛋白质的自上而下蛋白质组学总的来说,作者证明DSSM可以促进膜蛋白的自上而下蛋白质组学表征,以确定序列变异和翻译后修饰(PTMs)。未来在蛋白质组学实验和结构生物学研究中,DSSM可以作为DDM的一般替代品。  撰稿:张颖编辑:李惠琳文章引用:Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.  李惠琳课题组网址 www.x-mol.com/groups/li_huilin  参考文献  Brown KA, Gugger MK, Yu Z, Moreno D, Jin S, Ge Y. Nonionic, Cleavable Surfactant for Top-Down Proteomics. Anal Chem. 2023 Jan 6.
  • 小科普:肺功能和肺泡表面活性物质
    存在于肺泡内液气界面的肺表面活性物质的生理意义有:防止肺水肿、维持大小肺泡的稳定性和降低吸气阻力。肺表面活性物质还有减弱表面张力对肺毛细血管中液体的吸引作用,防止液体渗入肺泡(肺水肿)。根据Laplace定律,P=2T/r(P是肺内的压力,T是肺泡表面张力,r是肺泡半径)。假设大、小肺泡的表面张力一样,那么肺泡内压力肺泡半径成反比,大的肺泡,压力小;小的肺泡,压力大。如果这些肺泡彼此连通,小肺泡塌陷,大肺泡膨胀,肺泡将失去稳定性。但实际并未发生这种情况,这因为肺泡存在着表面活性物质→降低肺泡表面张力→防止小肺泡的塌陷+防止大肺泡的膨胀破裂,保持大小肺泡的稳定性,有利于吸入气在肺内得到较为均匀的分布。此外,肺泡表面活性物质能降低表面张力,即促进肺扩张→降低吸气阻力。肺弹性阻力使肺具有回缩倾向,故成为肺扩张的弹性阻力,肺组织的弹性阻力仅约占肺总弹性阻力的1/3,而表面张力的约占2/3。因此,表面张力对肺的张缩有重要的作用。肺弹性阻力的来源:肺弹性阻力来自肺组织本身的弹性加回缩力和肺泡内侧的液体层同肺泡内气体之间的液-气界面的表面张力所产生的回缩力。肺充气时,在肺泡内衬液和肺泡气之间存在液-气界面,从而产生表面张力。球形液-气界面的表面张力方向是向中心的,倾向于使肺泡缩小,产生弹性阻力。肺泡表面活性物质由肺泡Ⅱ型细胞合成并释放,分子的一端是非极性疏水端,另一端是极性亲水端,是复杂的脂蛋白混合物,主要成分是二棕榈酰卵磷脂(DPPC)。DPPC分子垂直排列于液-气界面,单分子层分布在液-气界面上,并随肺泡的张缩而改变其密度。肺泡表面活性物质的密度越大,降低表面张力的作用越强。成年人患肺炎、肺血栓时,表面活性物质减少→表面张力↑→肺泡塌陷→肺不张。初生儿因缺乏表面活性物质,发生肺不张和肺泡内表面透明质膜形成,造成呼吸窘迫综合症,导致死亡。现在已可应用抽取羊水并检查其表面活性物质含量的方法,协助判断发生这种疾病的可能性,采取措施,加以预防。例如,如果含量缺乏,则可延长妊娠时间或用药物(糖皮质类固醇)促进其合成。
  • DX系列比表面积仪-正极材料磷酸铁锂比表面积测试
    在动力电池界,三元锂和磷酸铁锂是最常用的两种锂离子电池。三元锂电池因为其正极材料中的镍钴铝或镍钴锰而得名“三元”,而磷酸铁锂电池的正极材料为磷酸铁锂。由于三元锂电池当中的钴元素是一种战略金属,全球的供应价格连年来一路飙升,相较之下,磷酸铁锂电池中没有钴这种价格昂贵的金属,更加便宜。因此,更多的造车企业采用磷酸铁锂电池来降低生产成本,抢占市场份额。在过去的2021年,磷酸铁锂凭借高性价比优势成为市场选择的宠儿,主流材料生产企业大多实现扭亏为盈,而下游动力方面需求的强劲支撑也使其在年末阶段面对高价的碳酸锂原料依然积极扫货。2022年1月国内磷酸铁锂产量为5.91万吨,同比增长158.9%,环比小幅提升3.3%。2021年1-12月国内动力电池装机量达到154.5Gwh,同比增长142.8%,其中磷酸铁锂电池在7月实现对三元电池产量与装机量的双重超越后,领先优势不断扩大,1-12月累计装机量达到79.8Gwh,占比51.7%,同比增幅达到227.4%,其中宁德时代、比亚迪和国轩高科分列磷酸铁锂电池装机前三甲,CR3集中度超过85%。从生产企业来看,德方纳米凭借稳定的客户渠道和产能优势,全年产量继续领跑;国轩高科在储能和自行车领域开疆拓土,自产铁锂需求稳健,紧随其后;湖南裕能、贝特瑞、湖北万润是市场供应的坚实后盾。考虑到未来全球动力电池与储能电池需求,预计2025年全球磷酸铁锂正极材料需求约为98万吨,对应市场规模约为280亿元。伴随着宁德时代年产8万吨磷酸铁锂投资项目签署,磷酸铁锂新一轮周期即将来临。大规模的量产也必将刺激比表面积分析仪的市场需求。众所周知,比表面积分析仪在锂离子电池行业有着广泛的应用需求,主要应用于正极材料、三元前驱体材料、负极材料、隔膜涂覆用氧化铝等材料的比表面积测试。比表面积过大的石墨粉在粉碎过程中更易于使其晶型结构发生改变,小颗粒石墨粉中菱形晶数量相对较多,而菱方结构的石墨具有较小的储锂容量,使电池的充放电容量有所降低。另外比表面积过大,单位重量总表面积就会很大,需要的包覆材料越多,导致电极材料的堆积密度减小而体积能量密度下降。如果能准确的对各种原材料进行比表面积测试,在一定程度上有助于研判后续产品的性能。磷酸铁锂作为动力电池的正极材料,其比表面积与电池的性能密切相关。通常情况下,磷酸铁锂的比表面积与碳含量呈线性关系。生产中有比表面积测试仪进行测试。比表面积太小,说明材料的碳包覆量不够,直接体现是电池内阻偏高、循环性能不好。比表面积过大,说明材料的碳包覆量过高,直接的体现是材料的电化学性能极好,但易团聚、极片加工困难,且涂布不均匀等。行业标准《YS/T1027-2015磷酸铁锂》明确规定了磷酸铁锂比表面积测试方法及流程。快速高效、精确规范的测试离不开性能优良的测试仪器,JW-DX系列快速比表面积测试仪,测试方法及数据符合《YS/T 1027-2015磷酸铁锂》的要求。JW-DX比表面积测试仪采用专利号为20140320453.2的吸附法专利测试,完全避免了常温下样品脱附不完全带来的测试误差,非常适合粉体生产厂家的在线快速测定。测试范围:比表面测试范围:0.0001m2/g,重复精度:±1%产品特性:1、测试速度快,5分钟测试一个样品;2、吸附峰的峰形尖锐,灵敏度大幅提高;3、独立4个分析站,实现了多样品的无干扰、无差异测试;4、外置式4站真空脱气机,避免污染测试单元。
  • 液滴无损转移仿生功能表面的设计与制备
    液滴的高效抓取和无损释放在医学中的药物融合或靶向转移、冷凝器表面或芯片实验室热耗散等领域有着重要的应用。目前,液滴转移往往由两个具有不同粘附性的表面去实现,即将液滴从低粘附浸润表面转移至高粘附浸润表面,且液滴的无损、自由释放较难实现。最近,北京理工大学先进结构技术研究院陈少华、刘明课题组设计并制备了一种新型的多级微结构仿生功能表面,可利用同一表面实现液滴的高效抓取和无损释放。该表面由磁颗粒填充的微尺度平板阵列结构组成,微平板尺寸为5mm×0.12mm×1mm,每个微平板左右两侧分别分布有尺寸为60μm×60μm×50μm的矩形凹槽阵列结构和尺寸为0.1mm×0.05 mm×1mm的矩形条带阵列结构,如图1所示。该研究首先使用精度为10μm的3D打印机(nanoArch S140,摩方精密)制备实验模板,再结合倒模法制备出具有磁响应特性的多级微结构阵列表面。图1 微平板阵列功能表面的 (a)结构示意图及其(b)实验制备简图磁场作用下,操控微平板产生定量的弯曲大变形,使含矩形凹槽阵列的表面完全暴露,其粘附力高达252μN,接触角为151º,呈现类似玫瑰花瓣的高粘附浸润特性,可有效抓取体积较大的液滴;旋转磁场使其形变恢复,表面粘附力降低至57μN,呈现类似荷叶的低粘附浸润特性。进一步对微平板阵列结构的几何特征参数进行优化设计,结合表面在类玫瑰花瓣高粘附状态和类荷叶低粘附状态之间自由切换的特性,可将此多级仿生表面有效地作为液滴无损转移的“机械手”,液滴无损释放及其转移过程见图2-3所示。图2液滴的无损、自由释放行为图3 液滴无损转移过程该成果以“Amechanical hand-like functional surface capable of effciently grasping andnon-destructivelyreleasing droplets”为题发表在国际顶级期刊Chemical Engineering Journal (IF = 13.273,中科院工程技术类分区一区)上。北京理工大学先进结构技术研究院和机械与车辆学院博士后刘明为文章第一作者,陈少华教授为通讯作者,彭志龙教授、姚寅副教授和博士研究生李程浩参与了该工作,此工作得到了国家自然科学基金(No.12032004, 11872114, 12102041)和中国博士后科学基金(No. 2021M690401)的支持与资助。原文链接:https://authors.elsevier.com/c/1dtwc4x7R2YpjE官网:https://www.bmftec.cn/links/10
  • 仪器表征,科学家首次提出钙钛矿材料表面处理新策略!
    【科学背景】随着太阳能技术的快速发展,钙钛矿太阳能电池(PSCs)因其高效能和低成本制造引起了广泛关注。钙钛矿材料作为下一代光伏材料,单结PSCs的转换效率已经超过了26%,显示出巨大的潜力。然而,钙钛矿太阳能电池在商业化应用中仍面临许多挑战,其中最关键的是操作稳定性问题。尽管当前的研究在提高初始效率方面取得了显著进展,但要实现与硅基太阳能电池相媲美的使用寿命,还有许多技术难题需要克服。钙钛矿材料存在许多离子缺陷,这些缺陷在制造和使用过程中会影响器件性能和稳定性。为了解决这些问题,科学家们开发了多种表面处理策略,如铅氧盐、离子液体、自组装单分子层和二维钙钛矿层等。这些方法在一定程度上提高了钙钛矿太阳能电池的性能和稳定性。然而,这些处理方法通常仅在制造阶段有效,难以在设备操作和储存过程中处理新生成的缺陷。而环境应力因素(如湿度、热量和光照)会加剧这些缺陷的形成,进一步影响设备的长期稳定性。为此,香港城市大学冯宪平教授与牛津大学Henry J. Snaith教授等科学家们提出了一种“活性处理剂”的概念,通过包含动态共价键(DCBs)的材料来实现钙钛矿的动态修复。这种方法不仅在制造过程中对钙钛矿薄膜进行处理,还能在设备操作和储存期间持续发挥作用。具体来说,科学家们利用一种含有阻滞尿素/硫代氨基甲酸酯键(HUBLA)的Lewis酸碱材料,这种材料在水和热的作用下能够生成新的活性剂,动态钝化钙钛矿中的缺陷,从而提高设备的性能和稳定性。本研究中,HUBLA材料被用于钙钛矿太阳能电池的表面处理。在暴露于湿气或热量时,HUBLA会生成新的活性剂,进一步钝化钙钛矿中的缺陷。实验结果表明,这种处理策略显著提升了钙钛矿太阳能电池的性能,器件的转换效率达到了25.1%。此外,在氮气环境下85°C的条件下,经过约1500小时的老化测试,HUBLA处理的设备保持了其初始PCE的94%;在空气中85°C和相对湿度30%的条件下,经过1000小时的老化测试,设备保持了其初始PCE的88%。【科学亮点】1. 实验首次提出了实时响应的钙钛矿表面处理策略:利用含有动态共价键(DCBs)的HUBLA材料,该材料在水和热的激活下可以动态修复钙钛矿,从而增强器件的性能和稳定性。这种策略不仅在制造过程中对沉积的钙钛矿薄膜进行处理,还在器件制造后继续发挥作用。2. 实验通过HUBLA及其生成物实现了高效能器件:&bull 通过HUBLA材料与钙钛矿光电活性层中的离子缺陷发生反应,生成新的钝化剂,从而钝化缺陷并提高器件性能。&bull HUBLA材料在暴露于湿气或热量的情况下,可以释放额外的Lewis碱,进一步钝化钙钛矿中的缺陷。这一特性使得器件能够在环境应力下自我修复,保持高效能。3. 实验结果表明,使用HUBLA的钙钛矿太阳能电池(PSC)性能显著提高:&bull 实验实现了转换效率(PCE)达到25.1%的高性能钙钛矿太阳能电池。&bull HUBLA设备在氮气环境中85°C下经过约1500小时的老化测试,仍能保持其初始PCE的94%。&bull 在空气中85°C和相对湿度30%的条件下,经过1000小时的老化后,HUBLA设备仍能保持其初始PCE的88%。4. 提出了一种新型的“活性处理剂”概念:HUBLA材料通过动态共价键技术,在器件操作和存储期间响应环境应力动态修复钙钛矿,从而提升了器件的稳定性和长期性能。这种方法为解决钙钛矿太阳能电池中因环境应力导致的性能衰退问题提供了一种有效的新途径。【科学图文】图1:HUBLA 的动态反应、水解和氧化还原穿梭。图2. 钙钛矿薄膜上HUBLA的动态反应和钝化。图3. 钙钛矿薄膜的稳定性。图4:钙钛矿光伏电池的性能和稳定性。【科学结论】本文开发并应用了一种新型的动态共价键材料——阻滞尿素/硫代氨基甲酸酯键(HUBLA),用于改善钙钛矿太阳能电池(PSC)的性能和稳定性。传统上,钙钛矿材料由于其在湿热环境下易于形成缺陷而限制了其长期稳定性,这对其商业化应用构成了挑战。HUBLA的引入不仅使得钙钛矿能够在制造过程中得到更好的控制,还能在器件使用后动态地修复新生成的缺陷。通过与水和热的相互作用,HUBLA能够释放出新的活性剂,进一步钝化钙钛矿中的离子缺陷,从而显著提升了器件的长期稳定性和性能。具体来说,实验结果显示,经过HUBLA处理的钙钛矿太阳能电池在高温和潮湿条件下的长期老化测试中,保持了高达94%的初始转换效率(PCE),表明其在应对恶劣环境条件下的优越性能。未来,基于动态共价键的表面处理策略可能不仅局限于太阳能电池领域,还有望在其他光电器件以及功能性材料的设计和性能优化中发挥重要作用,推动能源技术的进步和应用拓展。原文详情:Wang, WT., Holzhey, P., Zhou, N. et al. Water- and heat-activated dynamic passivation for perovskite photovoltaics. Nature (2024). https://doi.org/10.1038/s41586-024-07705-5
  • 北京精微高博新型动态比表面仪鉴定会
    中国分析测试协会于2016年4月10日在北京组织鉴定专家对“一种新型动态吸附法比表面仪”研发成果进行了技术鉴定。专家们听取了北京精微高博科学技术有限公司有关人员所做的研制报告、测试报告、科技成果查新报告、用户报告,观看了性能测试及功能演示,进行了质询。在此基础上,经专家们认真讨论,一直认为:1、提供的鉴定材料齐备,符合技术鉴定要求。2、新型动态比表面仪创新点为:直接采用动态吸附法测定比表面积,避免了脱附不完全带来的误差;通过隔离阀把多样品管分割独立,实现了多样品的无干扰测试,保证了多样品测试的高度一致性;每个样品的信号不被冲淡,吸附峰尖锐,对每个样品的吸附平衡进行独立判断。测试的灵敏度、准确性和效率大幅提高。3、该技术已获得发明专利授权,专利号:ZL 2014 1 0320453.2。4、该仪器已达到国际同类产品的先进水平,具有良好的市场前景。鉴定专家组一致同意通过该仪器的技术鉴定。北京理工大学材料科学系王琳教授(左一)钢研纳克检测技术有限公司教授级高工陈吉文(左二)北京化工大学化学工程系曹达鹏教授(左三)中国分析测试协会研究员汪正范教授(左四)清华大学材料科学系吴晓东教授(右一)北京精微高博科学技术有限公司总经理古燕玲女士(右二)中国分析测试协会秘书长张渝英教授(右三)北京精微高博科学技术有限公司董事长钟家湘教授(右四)此次鉴定的新技术JW-DX对每个样品吸附引起的氮浓度该表不被其他样品冲淡,吸附峰尖锐,尤其对小比表面样品,测试的灵敏度大幅提高。对每一个样品的吸附饱和状态实行一对一的独立判断,测试的准确性和重复性大大提高,而且测试结果与静态容量法有很好的对应性;测试过程只是吸附过程,不需要吸附再脱附的繁杂过程,而且样品的更换采用隔离、快速装拆,测试时间大为节省,每个样品只需五分钟;这种新技术正在电池行业小比表面材料的测试中推广应用,取得了突出地效果。
  • JACS:华东理工刘培念/李登远课题组表面合成领域最新研究成果!
    二维晶体到晶体的转化是一种重要的分子晶体制备方法,可以通过不同的化学反应实现从一种晶体直接向其它各种晶体材料的转化,在晶体工程领域展现出独特的优势。晶体到晶体的转化是一种复杂的动态过程,涉及到共价键的断裂和形成,各种瞬态中间体中分子的几何形状、构型和构象,以及各种晶体微结构的变化。因此,在固体基底表面实现高化学选择性和高立体选择性的二维晶体到晶体的转化仍然是一个巨大的挑战。近日,华东理工大学刘培念教授/李登远副教授课题组通过异腈的表面[1+1+1]环加成反应,原位制备了基于C–HCl氢键作用的二维三轴烯晶体,并发展了高化学选择性和立体选择性保持的逆-[2+1]环加成反应,实现了从异腈向三轴烯到累积三烯二维晶体的定向转化(图一)。通过扫描隧道显微镜(STM)和非接触原子力显微镜(nc-AFM)直接观察到了多种二维晶体转变过程中的关键反应中间体,并结合理论计算阐明了逆-[2+1]环加成反应涉及到三元碳环的开环、次序性的脱氯/氢钝化和脱异腈的过程,并且三轴烯到累积三烯二维晶体转化是一种逐步外延生长机制。基于异腈成环/开环反应的二维晶体转化:图一:从异腈向三轴烯到累积三烯二维晶体的定向转化首先,设计合成了氯代联苯异腈前体分子Cl-ICBP,成功地在Ag(111)表面进行了高化学和非对映选择性的表面[1+1+1]环加成反应,得到了具有同向构型的三轴烯分子;然后通过C–HCl氢键作用实现了对映选择性的三轴烯分子识别和组装,原位制备了雪花状多孔型的二维三轴烯晶体。随后,373 K下退火发现雪花状多孔型二维三轴烯晶体发生了相变,部分结构转化成了更稳定的具有周期性的三角孔型二维三轴烯结构(图二和三)。下载化学加APP到你手机,更加方便,更多收获。图二:二维三轴烯晶体的形成和相变图三:二维三轴烯晶体的高分辨率结构表征进一步退火至393-433 K后,规整的三轴烯相完全消失,少量规整的累积三烯相出现。在不规整相中,我们直接观察到了各种逆-[2+1]环加成反应的中间体,包括三轴烯开环中间体、脱氯和脱异腈后形成的反式累积三烯金属有机中间体和少量顺式累积三烯(图四和五)。这些中间体的直接观察说明了逆-[2+1]环加成反应涉及到三元碳环的开环、脱氯、氢钝化和脱异腈的过程。图四:直接观测三轴烯到累积三烯转化的中间体图五:两个反向平行C-AgN键连接的累积三烯短链的高分辨结构表征当退火到513-553 K后,成功制备出大面积二维反式累积三烯晶体。高分辨的STM和nc-AFM结构表征表明,新形成的二维晶体是由反式累积三烯、Ag和Cl吸附原子组成。反式累积三烯和Ag吸附原子通过选择性的N–Ag–N配位反应形成了同向构型的Ag配位反式累积三烯链,然后与表面吸附的Cl原子通过C–HCl氢键作用,最终形成了大面积、稳定的二维反式累积三烯晶体(图六和七)。图六:形成的二维累积三烯晶体图七:二维累积三烯晶体的高分辨结构表征为了阐明三轴烯向累积三烯转化的反应机理,对包括三元碳环的开环、脱氯、氢钝化和脱异腈过程进行了理论计算。结果表明,开环和脱氯反应具有相似的能垒;脱异腈反应是能垒最高的过程,氢钝化是能量低的过程。结合实验结果和理论计算,提出了一种立体选择性保持的逆-[2+1]环加成反应机理,即三轴烯首先发生开环反应释放环张力,形成开环中间体I,中间体I依次进行脱氯/氢钝化以得到开环中间体II。最后,II经过立体选择性保持的脱异腈反应得到反式累积三烯产物,同时释放异腈单体(图八)。图八:理论计算的三轴烯向累积三烯转化路径为了探索三轴烯向累积三烯二维晶体转化的过程,我们对含有二维三轴烯晶体的样品进行了程序性退火和大规模STM成像。在433 K下对三轴烯样品进行退火后,偶尔会观察到被不规整相包围的相对规整、带有明显突起的累积三烯相;进一步在473 K下退火后发现相对规整、带有明显突起的累积三烯相的尺寸增加,同时不规整相的大小和数量减少;当同一样品进一步退火到513 K时,表面以平面规整的累积三烯相为主,尺寸可达到亚微米级,其中明显的突起部分几乎完全消失。这些实验结果表明,三轴烯向累积三烯二维晶体转变是一种逐步外延生长机制,其过程涉及高化学和立体选择性保持的逆-[2+1]环加成反应以及基于N–Ag–N配位反应和C–HCl氢键作用的对映选择性分子识别和组装(图九)。图九:二维累积三烯晶体的逐步外延生长相关成果近期以“Two-Dimensional Crystal Transition from Radialene to Cumulene on Ag(111) via Retro-[2+1] Cycloaddition”为题发表于J. Am. Chem. Soc. 2023, doi:10.1021/jacs.3c00962。该论文的通讯作者是华东理工大学化学与分子工程学院刘培念教授和李登远副教授,第一作者为该课题组博士研究生刘建伟、王瑛和亢丽霞。该研究工作得到了国家杰出青年科学基金等研究经费的资助。
  • 硅表面生长纳米激光器技术问世
    据美国物理学家组织网近日报道,美国加利福尼亚大学伯克利分校科学家利用新技术直接在硅表面生长出了极微小的纳米柱,形成一种亚波长激光器,这一成果将为制造纳米光学设备如激光器、光源检测仪、调制器、太阳能电池等带来新的突破。   硅材料奠定了现代电子学的基础,但它在发光领域还有很多不足之处。工程人员转向了另外一族名为III-V半导体的新材料,以此来制造光基元件,如发光二极管和激光器。   加利福尼亚大学伯克利分校的研究人员通过金属—有机化学蒸发沉积的方法,在400摄氏度条件下,用一种III-V族材料铟镓砷在硅表面生长出纳米柱。这种纳米柱有着独特的六角形晶体结构,能将光线控制在它微小的管中,形成一种高效导控光腔。它能在室温下产生波长约950纳米的近红外激光,光线在其中以螺旋形式上下传播,经过光学上的相互作用而得以放大。   研究人员指出,将III-V和硅结合制成单一的光电子芯片面临的最大障碍是,目前制造硅基材料的工业生产设备无法与制造III-V设备兼容。“要让III-V半导体在硅表面上生长,与硅制造设备兼容是关键,但由于经济和技术方面的原因,目前的硅电子生产设施很难改变。我们选用了一种能和CMOS(互补金属氧化半导体,用于制造集成线路)兼容的生长工艺,在硅芯片上成功整合了III-V纳米激光器。传统方法生长III-V半导体,要在700摄氏度或更高温度下进行,这会毁坏硅基电子元件。而新工艺在400摄氏度下就能生长出高质量III-V材料,保证了硅基电子元件正常发挥功能。”主要研究人员、加州大学伯克利分校电学工程与计算机科学教授康妮张-哈斯南说。   张-哈斯南还指出,这种亚波长激光器技术将对多科学领域产生广泛影响,包括材料科学、晶体管技术、激光科学、光电子学和光物理学,促进计算机、通讯、展示和光信号处理等领域光电子学的革命。“最终,我们希望加强这些激光的特征性能,以实现光子和电子设备的结合。”
  • 2013全国表面分析科学会议——标准宣贯
    仪器信息网讯 2013 年8月20-21日,&ldquo 2013 全国表面分析科学与技术应用学术会议暨表面分析国家标准宣贯及X 射线光电子能谱(XPS)高端研修班&rdquo 召开期间,北京师范大学吴正龙和清华大学姚文清对《GB/T 25185 表面化学分析 X射线光电子能谱 荷电控制和荷电校正方法的报告》、《GB/T 28894-2012/ISO 18117:2009 表面化学分析 分析前样品的处理》及《20110883-T-469/ISO 18116:2005(E) 表面化学分析-分析样品的制备和安装指南》进行了宣贯。 北京师范大学吴正龙   《GB/T 25185 表面化学分析 X射线光电子能谱 荷电控制和荷电校正方法的报告》于2010年发布。吴正龙介绍说:&ldquo 该标准主要阐述了XPS分析非导电样品时,荷电的产生(积累)、分布变化等,提供了荷电控制和校正方法。为XPS准确表征非导电样品中元素价态提供了技术指导。标准的资料性附录中列举了各种荷电控制和校准具体方法。&rdquo 清华大学姚文清   姚文清介绍了《GB/T 28894-2012/ISO 18117:2009 表面化学分析 分析前样品的处理》及《20110883-T-469/ISO 18116:2005(E) 表面化学分析-分析样品的制备和安装指南》。这两项标准当中对不同类型样品的制样方法和存放容器选择,以及样品安装方式等内容进行了规定,以降低样品处理过程中的表面污染,获得准确的表面化学分析结果。   这三项标准均由全国微束分析标准化技术委员会表面分析分技术委员会主导制定。姚文清介绍说:&ldquo 全国微束分析标准化技术委员会表面分析分技术委员会(SAC/TC38/SC2)成立于1997年9月15日,是国际标准化组织表面化学技术委员会(ISO/TC201)的国内对口单位。主要负责参与表面化学分析国际标准和国家标准的制定和审定、国际标准的转化工作。设有X射线光电子能谱(XPS)、俄歇电子能谱(AES)、二次离子质谱(SIMS)、辉光放电光谱(GDS)等工作组。&rdquo   &ldquo 表面分析分技术委员会共有委员23人,主任委员由中国科技大学丁泽军担任,副主任委员为国家纳米科学中心沈电洪、北京师范大学吴正龙、清华大学姚文清,中科院化学所刘芬担任副秘书长。另外还包括了3家单位委员:高德英特(北京)科技有限公司、赛默飞世尔科技(中国)有限公司、岛津企业管理(中国)有限公司。&rdquo   &ldquo 截至2013年7月底,已由表面分析分技术委员会主导制定发布了1项ISO国际标准,22项国家标准,10项标准获得国家标准立项计划。参与制定发布ISO国际标准1项。&rdquo 姚文清说。   另外,会议中吴正龙对国际表面化学分析技术委员会(ISO/TC 201)做了介绍,目前ISO/TC 201建立有9个分技术委员会和1个工作组,包括:术语(SC1)、总则(SC2)、数据管理和处理(SC3)、深度剖析(SC4)、俄歇电子能谱(SC5)、二次离子质谱(SC6)、X射线光电子能谱(SC7)、辉光放电谱(SC8)、扫描探针显微术(SC9)、全反射X射线荧光光谱(WG2)。 会议现场
  • 北大彭海琳团队:通过梯度表面能调制集成晶圆级超平面石墨烯
    石墨烯等二维材料的载流子迁移率高、光-物质相互作用强、物性调控能力优,在高带宽光电子器件领域具有重要的科学价值和广阔的应用前景。当前,发展与主流半导体硅工艺兼容的二维材料集成技术受到业内广泛关注,其中首要的挑战是将二维材料从其生长基底高效转移到目标晶圆衬底上。然而,传统的高分子辅助转移技术通常会在二维材料表面引入破损、皱褶、污染及掺杂,严重影响了二维材料的光电性质和器件性能。因此,实现晶圆级二维材料的无损、平整、洁净、少掺杂转移是二维材料面向集成光电子器件应用亟待解决的关键问题。  针对这一难题,北京大学化学与分子工程学院彭海琳课题组与国防科技大学秦石乔、朱梦剑课题组合作,设计了一种梯度表面能调控(gradient surface energy modulation)的复合型转移媒介,可控调节转移过程中的表界面能,保证了晶圆级超平整石墨烯向目标衬底(SiO2/Si、蓝宝石)的干法贴合与无损释放,得到了晶圆级无损、洁净、少掺杂均匀的超平整石墨烯薄膜,展示了均匀的高迁移率器件输运性质,观测到室温量子霍尔效应及分数量子霍尔效应,并构筑了4英寸晶圆级石墨烯热电子发光阵列器件,在近红外波段表现出显著的辐射热效应。该转移方法具有普适性,也适用于其它晶圆级二维材料(如氮化硼)的转移。研究成果以“Integrated wafer-scale ultra-flat graphene by gradient surface energy modulation”为题,于9月15日在线发表在《自然-通讯》(Nature Communications 2022, 13, 5410)。  文章指出,二维薄膜材料从一表面到另一表面的转移行为主要由不同表界面间的能量差异决定。衬底的表面能越大,对二维薄膜有更好的浸润性及更强的附着能,更适合作为薄膜转移时的“接受体”;反之,衬底的表面能越小,其更适合作为薄膜转移时的“释放体”。因此,作者设计制备了表面能梯度分布的转移媒介【如图1,聚二甲基硅氧烷(PDMS)/PMMA/冰片】,其中冰片小分子层吸附在石墨烯表面,有效降低了石墨烯的表面能,保证石墨烯向目标衬底贴合过程中,衬底的表面能远大于石墨烯的表面能,进而实现良好的干法贴合;另一方面,转移媒介上层的PDMS高分子膜具备最小的表面能,能够实现石墨烯的无损释放。此外,该转移方法还有以下特点:PDMS作为支撑层可以实现石墨烯向目标衬底的干法贴合,减少界面水氧掺杂;容易挥发的冰片作为小分子缓冲层能有效避免上层PMMA高分子膜对石墨烯的直接接触和残留物污染,得到洁净的石墨烯表面;高分子PMMA层的刚性使得石墨烯转移后依旧保持超平整的特性。图1 晶圆级二维材料的梯度表面能调控转移方法  基于梯度表面能调控转移的石墨烯薄膜具备无损、洁净、少掺杂、超平整等特性,展现出非常优异的物理化学性质(如图2)。转移后4英寸石墨烯晶圆的完整度高达99.8%,电学均匀性较好,4英寸范围内面电阻的标准偏差仅为6%(655 ± 39 Ω/sq)。转移到SiO2/Si衬底上石墨烯的室温载流子迁移率能够达到10000 cm2/Vs,并且能够观测到室温量子霍尔效应以及分数量子霍尔效应(经氮化硼封装,1.7K)。基于SiO2/Si衬底上4英寸石墨烯晶圆,成功构筑了热电子发光阵列器件,在较低的电功率密度下(P = 7.7 kW/cm2)能够达到较高的石墨烯晶格温度(750K),并在近红外波段表现出显著的辐射热效应(如图3)。  图2 梯度表面能调控转移的石墨烯晶圆。(a)无损转移到SiO2/Si衬底上高完整度4英寸石墨烯晶圆;(b)超平整石墨烯与粗糙石墨烯褶皱数目的对比(5×5 μm2范围内)及典型的原子力显微镜图片对比(内嵌图);(c)转移后4英寸石墨烯晶圆的面电阻;(d)梯度表面能调控与传统湿法转移的石墨烯的电学转移曲线对比;(e)转移到SiO2/Si上的石墨烯在不同温度下的霍尔曲线及室温量子霍尔效应;(f)转移后石墨烯(氮化硼封装,1.7 K)的朗道扇形图,表现出分数量子霍尔效应。  图3 晶圆级石墨烯热电子发光阵列器件。(a)石墨烯热电子发光示意图;(b)基于4英寸晶圆石墨烯的热电子发光阵列;(c)石墨烯热电子发光阵列的光学显微镜照片;(d)器件在电功率密度为3.0 kW/cm2时的红外照片;(e)器件在不同电功率密度下的辐射光谱;(f)石墨烯晶格温度随电功率密度的变化。  此外,梯度表面能调控转移方法可作为晶圆级二维材料(石墨烯、氮化硼、二硫化钼等)向工业晶圆转移的通用方法,有望为高性能光电子器件的集成奠定技术基础。  该论文的共同通讯作者为北京大学彭海琳教授和国防科技大学秦石乔教授、朱梦剑副研究员。共同第一作者是北京大学前沿交叉学科研究院博士研究生高欣、北京大学化学学院博士毕业生郑黎明、国防科技大学前沿交叉学科学院罗芳博士、北京大学化学学院博雅博士后钱君。其他主要合作者还包括北京大学化学学院刘忠范教授、北京大学材料学院林立特聘研究员、北京石墨烯研究院尹建波研究员和孙禄钊研究员、及长春工业大学高光辉教授等。  该研究工作得到了国家自然科学基金委、科技部、北京分子科学国家研究中心、腾讯基金会等项目资助,并得到了北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台的支持。  原文链接:https://doi.org/10.1038/s41467-022-33135-w
  • 表面增强拉曼(SERS)距离临床应用还有多远?
    目前,对很多应用来说,拉曼光谱已发展成为一种强大的表征技术。但如果要使其在临床分析中更有效,还需要做更多的工作。  随着激光的发现,以及后续激光器和探测器技术的进步,以前发展缓慢的拉曼光谱进入了一个高速的发展阶段。目前,已经证明了拉曼光谱在生物大分子分析方面的应用价值,包括蛋白质、DNA、活细胞、组织和微生物的检测和诊断。  然而,拉曼散射是一个很弱的过程,只有一百万分之一的光子才会发生弹性散射现象。另外一个问题,自体荧光也阻碍了拉曼技术在生物学中的应用。幸运的是,70年代早期,一个新颖的现象被发现,分子接触(或非常接近)贵金属表面,如银和金,拉曼散射信号就会增加了1011倍,由此表面增强拉曼散射(SERS)也就发展起来了。除了散射增强之外,SERS还可以有效淬灭自体荧光。  尽管现在SERS在生物结构的分析方面已经有很多研究,但在我看来,在科学研究和临床应用之间还有一定的距离。此外,如果没弄明白临床应用的需求和流程,这种技术也不可能转化为真正的应用。  例如,对于从一个生物SERS实验中收集的数据,还有几个问题需要仔细考虑,以得到清晰的解释。首先,对于感兴趣的样品的SERS衬底类型需要仔细的选择。它应该是一个纳米结构的表面或胶体纳米颗粒,如金纳米颗粒(AuNP)或银纳米颗粒(AgNP)。如果样品是活细胞,AuNPs或AgNPs是很好的选择。如果样品是微生物,表面或胶体纳米颗粒衬底是最好的。  选择最合适的衬底之后,再现性和适用性的测试也是很重要的。评估获得的光谱信息时应该考虑官能团和贵金属表面的选择性相互作用,如SH、NH2,因为这些交互作用定义了环境。  十年来,我们对这项技术是否可以应用到临床决策中进行了评估。我们利用实验室中发展起来的样品制备方法和检测技术分析了活细胞和死细胞、组织和微生物样本。我们认为还有很多工作需要去做来探索该技术的潜力,因为生物样品不仅非常复杂,而且不同样本之间也存在产异性。  临床中,快速识别传染性微生物在疾病干预方面至关重要。虽然有许多研究证明了利用SERS可以快速识别微生物,但是从临床样本中识别它们的能力尚不清楚。  生物样品的复杂性,如血液和尿液,是减少了解样品状态所需时间的一个主要的障碍。例如,尿液样本中可能有许多化学物质,包括尿素和肌酸酐、溶解的离子、白色和红色的血细胞、蛋白质连同传染性病原体。如果没有完全的清洗或分离,这些成分可能会干扰或阻碍SERS的检测,同时也势必增加分析时间。当然,其中还有几个问题需要解决以确定尿样的感染状况。第一个问题很简单:样品是否感染? 1毫升尿样中细菌的数量决定了答案,尿液样本包含细菌数大于105cfu /ml被认为感染。然后,我们必须问哪种病原体存在?然后再问是否有一个SERS可以识别的标识物来显示尿液是否感染?这项技术是否可以用于细菌样本的定量分析?这项技术能识别病原体吗?  我们已经知道, SERS可以识别细菌,但从复杂样品中识别细菌仍需进一步的努力以加快这一进程。在我看来,对于以上的部分问题得到积极的答案并不是很远的事情,而且也将缩短SERS进入提高临床决策这个位置所需的时间。  作者:Mustafa Culha  Mustafa Culha的实验室在叶迪特佩大学遗传和生物工程系,该实验室持续进行光谱技术的实用研究,如表面增强拉曼散射(SERS)揭示活细胞、死细胞相互作用,发展用于医学和生物医学的新颖的检测和诊断工具。他在同行评议的国际期刊和几本书的章节中撰写了70多篇论文,拥有若干生物分析化学和纳米技术方面的专利。他是Nanotechnology杂志的SERS研究和Nanoparticle Research纳米生物的特刊编辑,同时他也是应用光谱学编委员会的成员。
  • “2013全国表面分析科学与技术应用学术会议”通知
    关于召开&ldquo 2013全国表面分析科学与技术应用学术会议&rdquo 通知   (通知)   随着我国航天、微电子、信息产业、材料科学、能源及环境领域等高新技术的迅猛发展,表面分析技术正起着越来越重要的作用。此外,随着我们科技实力的增强,各高校和研究机构购置大量新的表面分析仪器,拓展了表面分析学科的发展。为了推动表面分析学科及其应用技术的发展以及与其他学科的融合,加强同行之间交流与合作,建立表面分析学科和技术表面的交流平台,由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,国家大型科学仪器中心-北京电子能谱中心、北京师范大学分析测试中心和北京大学分析测试中心共同承办,在北京举办&ldquo 2013全国表面分析科学与技术应用学术会议&rdquo 。   研讨会将于2013年8月20-21日在北京西郊宾馆举行,热忱邀请各位表面分析专家、学者参加,期望各位专家、学者与其他参会者进行广泛交流,探讨电子能谱表面分析与材料研究的共同发展,进一步拓展电子能谱表面分析技术在材料领域内的应用。   一、 学术委员会   主 任:朱永法,教授,清华大学   副主任:梁齐,教授,上海交通大学   成 员(以姓名首字母排序):   程 斌,教授,北京化工大学   陈 建,研究员,中山大学   丁泽军,教授,中国科技大学   董林, 教授,南京大学   付晓国,研究员,核工业部表面物理与化学国家重点实验室   郭建东,教授,中科院物理所表面物理国家重点实验室   郝建薇,教授,北京理工大学   李崧,教授,北京师范大学   刘柯钊,研究员,核工业部表面物理与化学国家重点实验室   刘芬,副研究员,中科院化学所   马农农,高工,中国电子科技集团公司第四十六所   宋伟杰,研究员,中国科学院宁波材料技术与工程研究所   宋武林,教授,华中科技大学   吴正龙,教授,北京师范大学   王金淑,教授,北京工业大学   王海,副研究员,中国计量科学研究院   谢景林,高工,北京大学   姚 琲,教授,天津大学   姚文清,高工,清华大学   卓尚军,研究员,中科院上海硅酸盐所   郑遗凡,教授,浙江工业大学   朱 健,副教授,上海师范大学   张毅,高工,宝山钢铁股份有限公司研究院   二、 会议组委会: 主 任: 朱永法 北京电子能谱中心、清华大学分析中心 副主任:李崧 北京师范大学分析测试中心 谢景林 北京大学分析测试中心 秘书长: 姚文清 北京电子能谱中心、清华大学分析中心   吴正龙 北京师范大学分析测试中心 成 员: 宗瑞隆 北京电子能谱中心、清华大学分析中心   李展平 北京电子能谱中心、清华大学分析中心   张占男 北京电子能谱中心、清华大学分析中心   常崇艳 北京师范大学分析测试中心   金波 北京师范大学分析测试中心   三、 会议时间、地点:   会议时间:2013年8月20-21日   报到时间:2013年8月19日全天   会议地点:北京西郊宾馆   四、 会议网站域名:http://m2020.meeting163.com   为便于加强同行间的交流与联系,请加入表面分析研究群,QQ:141579868。(进群后将群名片改为&ldquo 单位+姓名&rdquo )   五、 征文要求   1. 论文投稿中、英文不限。   2. 论文篇幅:一页,请不要标页码。论文题目:三号黑体,居中。作者名:小四号楷体,居中。单位名、市名、邮编:小五号宋体,加圆括号,居中,下空一行。论文正文:五号宋体。   3. 正文中小标题:五号黑体。图表:图表与正文上下、左右都隔一行或一字的空隙。小五号字体。参考文献:小五号宋体,引用不超过5篇。   4. 为扩大交流会学术成果影响,优秀论文将推荐给相关核心、EI期刊发表。   六、 截稿日期   1. 截稿日期:2013年8月10日前。   2. 摘要及全文请发至zhangzn@tsinghua.edu.cn   七、 会议注册费   一般代表1000元,学生代表800元。会务费包含论文集、通讯录、专家费、会场费及会议期间餐费。住宿会务组统一安排,费用自理。   会议不组织旅游。   汇款信息如下:   开户行:工行北京分行海淀西区支行   帐号:0200004509089131550   收款单位:清华大学   备注:化学系姚文清会务费   八、 会务组联系   联 系 人:姚文清,吴正龙   联系电话:010-62783586,010-58805597   电子邮箱: yaowq@tinghua.edu.cn,wuzhenglong36@sina.com   主办单位:高校分析测试中心研究会   全国微束分析标准化技术委员会表面分析分技术委员会 承办单位:国家大型科学仪器中心-北京电子能谱中心   北京师范大学分析测试中心   北京大学分析测试中心   媒体支持:仪器信息网 我要测   北京超星数字图书馆   2013.7.25     会议日程安排 日期 日程安排 备注 8.19星期一 报到、注册 北京西郊宾馆 8.20星期二 开会 北京西郊宾馆 8.21星期三 开会 北京西郊宾馆   参会回执表 单位名称 联系人 地 址 邮 编 姓 名 性别 职务 电 话 传真/E-mail 手 机 演讲人 职 务 住宿标准 单间 ○ 合住 ○ 发言题目 是否提交会议论文: 是○ 否○ 论文题目:   注:为便于订房,请各参会者在7月10日之前将回执发送至:张占男 zhangzn@tsinghua.edu.cn。
  • 【精彩视频回放】聚焦新材料研究 多种表面分析技术各显其能——第三届表面分析技术应用论坛成功召开
    p   表面科学是上世纪60年代后期发展起来的一门学科,目前已经成为国际上最为活跃的学科之一。材料表面的成分、结构、化学状态等与内部有明显的不同,而表面特性对材料的物理、化学等性能影响很大。随着我国新材料领域研究的深入,表面分析技术也日益发挥其重要的作用。当前,全球已经开发了数十种常用的表面分析技术,如X射线光电子能谱(XPS)、二次离子质谱(SIMS)、扫描探针显微镜(SPM)、辉光放电光谱(GDS)、俄歇电子能谱(AES)等。 /p p   为了积极推动表面分析科学与应用技术的快速发展,加强同行之间交流合作,展示表面分析技术在新材料研究中的进展,5月20日,仪器信息网联手国家大型科学仪器中心-北京电子能谱中心、中国分析测试协会高校分析测试分会举办“第三届表面分析技术应用论坛——表面分析技术在新材料研究中的应用”网络主题研讨会,七位专家就相关的研究领域分享了高质量的报告。 /p p   此次应用研讨会内容立足表面分析技术在新材料研究中的应用,既有某一课题的科研进展综述,也有某一方向的研究成果分享、最新标准解读,以及相关仪器使用介绍等。组织方希望通过此次表面分析技术应用论坛的平台,让与会者深入交流,共同提升理论与技术水平, 促进表面分析科学研究队伍的壮大。本次会议由国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清主持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/85014051-a8d5-4da7-874c-4853820e8013.jpg" title=" 姚文清.jpg" alt=" 姚文清.jpg" / /p p style=" text-align: center " strong 国家大型科学仪器中心-北京电子能谱中心副主任、清华大学分析表面分析室主任、高级工程师姚文清 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201905/uepic/80a5fb64-a7ff-4e04-a2d4-f343cc70cb41.jpg" title=" 报告嘉宾.png" alt=" 报告嘉宾.png" / /p p   清华大学张强教授主要从事能源材料研究,尤其是在金属锂、锂硫电池和电催化方面开展了一系列的工作。本次报告中,他从能源存储与转化的新机遇讲起,针对工作金属锂界面上的SEI(界面层),以及如何获得稳定的SEI,如何诱导金属锂均匀沉积等多个话题给大家介绍了其所开展的研究工作。报告题目: strong 《The Working Surface of Li Metal Anode in Safe Batteries》。 /strong /p p   计量、标准、合格评定(检测和认证认可)对人类社会进步和工业发展发挥着不可或缺的基础性作用,2006年联合国与国际标准化组织(ISO)正式明确“计量、标准化、合格评定”为国家质量基础(National Quality Infrastructure,简称 NQI)的三大构成要素。石墨烯由于其独特的性能使其成为代表性的新材料而受到各国政府的产业支持。中国计量科学研究院任玲玲研究员在简要回顾计量、标准的基础上,重点介绍针对急需有序规范发展的石墨烯粉体材料开展的NQI技术研究及成果实施。 strong 报告题目:《石墨烯粉体材料计量、标准及合格评定全链条实施》。 /strong /p p   X射线光电子能谱(XPS)是表面分析领域中的一种崭新的分析技术,通过测量固体表面约10个纳米层左右被激发出光电子的动能,进而对固体样品表面的元素成分进行定性、定量或半定量及价态分析。XPS作为一种分析各种材料表面的重要工具,目前广泛应用于与材料相关的基础科学和应用科学领域,包括各种催化材料、纳米材料、高分子材料、薄膜材料、新型光电材料、金属以及半导体等表面性能研究。岛津宋玉婷博士介绍了XPS的技术特点及应用案例。 a href=" https://www.instrument.com.cn/webinar/Video/play/105159/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《X射线光电子能谱最新应用进展》 /strong /span /a /p p   以氮化镓和砷化镓为代表的III-V族化合物,都是直接带隙半导体材料,通过掺杂或能带设计可以调控光电等物理特性,在光电领域具有独特优势。表面分析技术常被用于研究半导体材料及器件性能,分析表面形貌、组分、化学态、结构及能带等信息。本次报告,中国科学院半导体研究所赵丽霞研究员介绍了几个利用表面分析技术在研究III-V半导体光电材料和器件的典型工作。 strong 报告题目:《表面分析技术在III-V族半导体光电材料器件中的应用》 /strong 。 /p p   扫描隧道显微镜是当前表面物理和化学研究的重要实验设备。扫描隧道显微镜的基本原理是基于量子力学的隧穿效应,隧穿电流与隧穿结的高度灵敏性使扫描隧道显微镜具有原子级的空间分辨能力。扫描隧道显微镜的主要功能包括表面形貌成像、表面电子态密度测量、及原子分子操纵。中科院物理研究所陆兴华研究员的报告通过几个典型应用来展示扫描隧道显微镜的这些基本功能,并对扫描隧道显微镜技术的未来发展方向作了简单的介绍。 a href=" https://www.instrument.com.cn/webinar/Video/play/105162" target=" _blank" strong span style=" color: rgb(255, 0, 0) " 报告视频精彩回放:《扫描隧道显微镜技术》。 /span /strong /a /p p   飞行时间二次离子质谱(TOF-SIMS)能以极高的灵敏度(ppm~ppb)探测到包括H在内的所有元素及其化合物信息,被誉为是一种普适的分析技术。清华大学分析中心李展平博士的报告介绍了TOF-SIMS的基本原理、技术特点,以及它在环境等各种领域的应用。 a href=" https://www.instrument.com.cn/webinar/Video/play/105160" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《飞行时间二次离子质谱分析技术及其应用》。 /strong /span /a /p p   三氧化钼是一种用途广泛的材料,在催化、抗菌等领域内有独特的应用。MoO sub 3 /sub @SiO sub 2 /sub 是常见三氧化钼的使用形态,几十年来已经用不少方法进行过很多研究。北京化工大学程斌分享了其实验室对MoO3@SiO2的最近研究方法与结果。 a href=" https://www.instrument.com.cn/webinar/Video/play/105161/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong 报告视频精彩回放:《氧化钼在MoO3@SiO2上分布的研究》 /strong /span /a /p p   虽然会议已经结束,但是精彩仍在继续,仪器信息网已经将部分报告老师的现场讲座视频上传到仪器信息网网络讲堂,想要重复学习或者没机会参与会议直播的网友,可以点击 strong 报告视频精彩回放 /strong 进行学习与分享。 /p
  • 不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案表面残留油污检测仪
    不锈钢等离子清洗效果评估|钢板表面油脂污染情况检测方案测试说明客户:德国Relyon Plasma公司样品:不锈钢板测量设备:析塔清洁度仪FluoScan 3D污染物:福斯溶剂型防锈油Fuchs Anticorit MKR 4目标采用荧光法测量不锈钢表面污染情况,检查等离子清洗的效果及其影响参数。操作过程首先,将不锈钢板放在60°C的超声波清洗槽中,使用碱性清洗剂清洗15分钟,然后用去离子水彻底冲洗并干燥不锈钢板。随后,在不锈钢板上滴一滴Anticorit MKR 4防腐蚀油,并用实验室用布擦拭。然后,使用析塔FluoScan 3D清洁度检测仪,采用荧光法,高分辨率扫描钢板,检测钢板上的防腐蚀油分布。荧光法是一种对油膜厚度敏感的测量,测试结果以RFU(相对荧光单位)显示,RFU值越低,表面越干净。等离子清洗对于等离子体清洗,手持等离子体设置piezobrush® PZ3被连接到析塔SITA FluoScan 3D(自动检测清洁度的测试台)的移动轴上,使得可以通过自动化进行等离子清洗处理。piezobrush® PZ3在测试板上以编程的移动路径移动,同时等离子体以恒定的移动速度开启,并与钢板表面保持恒定的距离。为了说明速度(清洗时间)的影响,首先以2.5mm/s的速度进行处理,然后在清洗时间一半的位置上,以5mm/s的速度进行处理。测量结果图1:未清洗的不锈钢板上的荧光测量结果图2:等离子清洗后的不锈钢板上的荧光测量结果结论荧光测量的结果表明,使用等离子清洗的两个区域比钢板的其他部分干净很多。清洗时间越长,清洗效果越好。荧光法适用于在等离子清洗后轻松和快速地监测清洗结果,通过测量可以确定影响等离子清洗的参数,达到最佳的清洗效果,同时降低成本。使用析塔FluoScan 3D清洁度仪自动检测测量零件清洁度,高分辨率扫描零件,最终以图像化呈现零件污染程度不同的区域。析塔FluoScan 3D自动表面清洁度检测仪广泛运用在不同的清洗工艺(水基、溶剂、激光、等离子.....),可以灵活应用在实验室或生产车间。翁开尔是德国析塔中国独家代理商,欢迎致电咨询析塔自动清洁度检测系统。
  • 关于召开“2014全国表面分析科学与技术应用学术会议”第一轮通知
    为积极推动表面分析科学与应用技术的快速发展,加强同行之间的交流合作、仪器共享,展示相关的新成就、新进展 建立表面分析的交流平台,形成自由研讨的学术氛围,让思想碰撞出火花,并共同提升理论与技术水平,促进表面分析科学研究队伍的壮大 由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会主办,四川大学分析测试中心、北京电子能谱中心协办,在成都举办&ldquo 2014年全国表面分析科学与技术应用学术会议&rdquo 。   会议将于2014年8月28-31日在成都市举行,热忱邀请各位表面分析专家、学者踊跃投稿并参与会议,并进行广泛深入的交流。现就会议相关事宜通知如下:   一、学术委员会   主 任:朱永法,教授,清华大学   副主任:梁 齐,教授,上海交通大学   成 员:(以姓名首字母排序)   程 斌,教授, 北京化工大学   陈 建,研究员,中山大学   丁泽军,教授, 中国科技大学   董 林,教授, 南京大学   伏晓国,研究员,核工业部表面物理与化学国家重点实验室   郭建东,教授, 中科院物理所表面物理国家重点实验室   郝建薇,教授, 北京理工大学   李 崧,教授, 北京师范大学   刘柯钊,研究员,核工业部表面物理与化学国家重点实验室   刘 芬,副研究员,中科院化学所   马农农,高工, 中国电子科技集团公司第四十六所   苗 伟,教授, 清华大学   宋伟杰,研究员,中国科学院宁波材料技术与工程研究所   宋武林,教授, 华中科技大学   吴正龙,教授, 北京师范大学   王金淑,教授, 北京工业大学   王 海,副研究员,中国计量科学研究院   谢景林,高工, 北京大学   姚 琲,教授, 天津大学   姚文清,高工, 清华大学   卓尚军,研究员,中科院上海硅酸盐所   郑遗凡,教授, 浙江工业大学   朱 健,副教授,上海师范大学   张 毅,高工, 宝山钢铁股份有限公司研究院   二、重要时间及会议初步安排   2014年06月01日 第一轮通知和论文征稿   2014年07月30日 第二轮通知(论文投稿结束、论文录用通知和日程安排)   2014年08月15日 第三轮通知(会议详细安排)   三、会议召开   会议时间:2014年08月28-31日(28日报到,29-30日开会,31日离会)。   会议地点:成都市   四、会议注册   (1)会议注册费:一般代表1000元/人,学生代表800元/人。会务费包括论文集、通讯录、专家费、会场费及会议期间餐费。   (2)会议住宿:会务组统一安排,费用自理。   (3)会议不组织考察。   五、论文征集   本次会议将面向全国征集与会有关主题方面研究的综述、学术论文,并印刷论文集作为会议资料。符合本次会议主题的相关研究内容均可投稿。请将论文摘要安排在1页A4纸内,投递到会务组邮箱。论文格式不拘,但请留下联系方式。   六、厂商赞助及展示   欢迎国内外分析仪器公司、厂商赞助会议并到会介绍和展出产品。本次会议欢迎有关分析仪器公司就产品研发的相关问题和进展做学术报告。   七、会务组联系:   联系人:蒋小明 博士   联系电话:13550047458  电子邮箱:jjxm100@163.com   主办单位:高校分析测试中心研究会   全国微束分析标准化技术委员会表面分析分技术委员会   协办单位:四川大学分析测试中心   2014年6月16日   参会人员报名名单 姓名 工作单位 职称/职务 联系电话 电子邮件 住宿要求   填好后请发到会务组邮箱。报名截止期7月30日。未报名者不能保证预定住宿。
  • 智能手机上的表面力学
    如今“一部手机走天下”,已成为现实,智能手机的出现改变了我们的生活。它使我们原来许多物品逐步变得可有可无,渐渐成为我们生活中的伴侣。从1992年第一部智能手机的出现,到如今,手机已生重大革命;从触摸屏取代小键盘,再到大触摸屏手机的出现,彻底改变了手机行业。OLED智能手机显示屏的结构智能手机必须能够很好地抵抗使用过程中产生的外界应力。每次用户操作手机时,手机都会受到震动或刮擦,例如从口袋或袋子中取出手机或把他放在桌子上时。智能手机制造商正在努力实现显示屏、框架以及智能手机外壳的最佳耐刮性。人们使用各种方法来量化耐划伤性能——最合适的两种方法是划痕测试和纳米压痕测试。本应用报告将展示这两种方法在智能手机显示屏抗划擦性和能硬度表征中的应用。纳米压痕和纳米划痕测试纳米压痕测试是一种可以测量薄膜和小体积材料的硬度、弹性模量、蠕变和附着力的方法。用预先定义的载荷将金刚石棱锥压头压入被测材料表面,并记录压入深度。硬度、弹性模量和其他性能是使用ISO14577 标准通过载荷-位移曲线获得的。划痕试验是一种表征涂层附着力和耐划痕性的方法。划痕试验通常使用球形金刚石压头进行,该压头在载荷增加的情况下“划痕”涂层表面,从而产生涂层分层。临界载荷对应于分层或其他类型的粘合剂开始损伤时的载荷,并作为量化表面层或材料的附着力或耐刮擦性的方法。纳米划痕测试仪纳米压痕测试仪1划痕测试保护玻璃耐划性能测试智能手机显示屏的保护玻璃通常由Gorilla玻璃制成,它是一种铝硅酸盐玻璃,并通过浸泡在高温钾盐离子交换槽中进行增韧,防止裂纹扩展和阻止缺陷生成。Gorilla玻璃具有极高的硬度和耐刮擦性,重量轻,光学性能优异。然而,即使如此坚硬且耐划伤的玻璃也可能被划伤,因此有一项正在进行的研究旨在通过表面沉积保护陶瓷层进一步提高其耐划伤性。由于陶瓷层非常薄(~100nm),最适合表征耐划伤性的仪器是安东帕尔纳米划痕测试仪(NST3)。下图显示了在100 nm氧化铝(Al2O3)保护层的Gorilla玻璃上,使用半径为2μm的球形针尖进行高达50 mN的渐进加载试验的结果。氧化铝沉积层的典型破坏形态如图1所示。图1: 在光学显微镜下观察到的划痕后典型失效形貌图2通过临界载荷值(Lc1)下划痕深度(Pd)、残余深度(Rd)和摩擦系数(CoF)的突然变化,对失效进行了显微镜观察,得到关于氧化铝层抗划伤性的重要信息:临界载荷(Lc)越高,抗划伤性越好。图2:划痕实验过程中记录的信号智能手机屏幕上的浅划痕的自修复(恢复)智能手机显示屏上的大多数划痕都很深,肉眼可见(图3)。如果用户希望再次获得平滑的显示,通常必须更换前面板。为了验证清除过程是否有效,并确定可以修复的最大划痕深度,我们在恒定载荷下创建了几个系列的划痕。每一系列划痕都是在不同的载荷下进行的,以获得不同的划痕深度,并且可以评估恢复过程的可靠性。由于必须产生非常浅的划痕,NST3用于创建划痕。图3: 智能手机屏幕上的划痕除了产生可控划痕外,由于扫描后功能,纳米划痕测试仪 (NST3)还可以用作轮廓仪。测量受损智能手机屏幕的表面轮廓,从而评估已存在的划痕深度。测量设置的典型示例如图4所示。在划痕轮廓采集结束时,可以从划痕软件 导出数据,并直接由合适的分析软件(如TalyMap Gold)处 理,以确定预先存在的划痕深度(图5)。根据结果,制造商可以决定是否可以翻新智能手机屏幕。图 4: 使用NST3测量智能手机屏幕的表面轮廓图5: TalyMap软件分析预先存在的划痕的表面轮廓,以确定划痕深度(0.26μm)显示屏塑料/金属外壳的耐刮擦性位于智能手机显示屏旁边的显示屏框架上的油漆容易被划伤,尤其是边缘(图6)。因此,制造商希望提高显示屏框架上油漆的耐刮擦性和附着力。图6: 智能手机外壳上的磨损在这个案例研究中,比较手机外壳上两种不同薄膜的耐刮擦性能和附着力。薄膜的厚度约为30um,对此类薄膜进行划痕测试的最合适的仪器是Rvetest(RST3)或Micro CombiTester(MCT3),他们施加载荷最高达200N(RST3)30N(MCT3),最大划痕深度1mm,使用半径为200um的球形压头和渐进力载荷模式进行划痕1试验,划痕的全景成像如图7所示。图7:两种油漆划痕全景成像涂层1号和2号样品进行比较,2号的分层发生在较低的载荷且损坏也比较严重,2号的耐刮擦性能也不如1。因此,1应能抵抗较长时间的刮擦,其使用应优先于抗刮擦性较差的2。2纳米压痕测试玻璃体上有机薄膜的硬度和弹性模量智能手机显示屏的一个重要组成部分是有机薄膜,有机薄膜已经在OLED显示器中得到广泛应用。它们代表了智能手机显示屏市场的很大一部分,而且在灵活性方面具有的巨大优势,可以开发可折叠手机。有机薄膜的硬度和弹性模量等力学性能非常重要,因为它们表明了薄膜的质量,可以用来预测耐久性。有机电致发光(OLED)层的厚度在100纳米到500纳米之间,其力学性能的测量需要非常灵敏的仪器。安东帕尔超纳米压痕测试仪(UNHT3)具有合适的载荷和位移分辨率,可以可靠地测试这样的薄膜。图8显示了沉积在玻璃基板上的七种OLED薄膜的典型测量结果,每层的厚度约为100nm,最大压入深度控制在10nm。图8: 七种OLED薄膜典型载荷-位移曲线在每个样品上进行了五次最大载荷为300μN的压痕实验, 压痕载荷-位移曲线获得的每个样品的硬度和弹性模量 (图9)所示:弹性模量在33 GPa到55 GPa之间变化,硬度在280 MPa到400 MPa之间变化,标准偏差约为5%, 这证实了各层的均匀性良好,并允许安全区分各。A、B 和D层的硬度最高,C和F层的硬度最低。结果表明,UNHT3 可以用于非常薄的层的机械性能的可靠表征,从而有助于开发新的OLED层。图9: 七个OLED薄膜的硬度和弹性模量光学透明粘合剂(OCA)的机械性能光学透明粘合剂(OCA)是一种薄的粘合薄膜。例如:在智能手机行业中用于将显示器的不同组件之间连接。不仅这些薄膜的粘合性能很重要,而且它们的力学性能也很重要,因为它们决定了OCA的使用方式。安东帕尔生物压痕测试仪已用于测量此类粘合剂。生物压痕仪可以测量粘附力,还可以获得薄膜的刚度(弹性模量)和其与时间相关的特性(蠕变)。保证薄膜牢固地粘附着在基体上,以避免薄膜弯曲,这一点至关重要。在这个案例研究中,我们对三种不同的胶进行了表征:一种柔软的(a),弹性模量(E)约为0.35 MPa,两种较硬的(B,C),弹性模量约为208 MPa和约80 MPa,其中最大压入深度均控制在薄膜厚度的15%左右。图10:生物压痕仪用于测量附着在玻片上的OCA薄膜这些实验使用了半径为500μm的球形针尖,对于较薄的薄膜,建议使用半径较小的针尖,以避免基底的影响。最大压入载荷为0.5mN,最大压入深度在1μm和16μm之间变化,最大载荷下的保持时间为30秒。图11显示三种OCA薄膜的三种压痕曲线的比较,在针尖接近样品表面时,记录了粘附力。尽管在每个样品的不同区域进行了测量,但测量结果显示出良好的重复性。这表明,尽管粘合性能取决于两个接触部件的表面状态,但由于一个样品上的粘合力和所有压痕曲线非常相似,因此达到了稳定状态。图11:三种不同弹性模量OCA薄膜(A、B、C)的压痕曲线对比。4纳米压痕测试划痕测试和纳米压痕测试是智能手机显示屏的重要测试方 法,因为它们可以模拟现实生活中的情况,如冲击或硬物划伤。划痕测试适用于研究保护智能手机显示屏的覆盖玻璃的耐划痕性。该方法也有助于表征薄膜显示框上的附着力,从而选择附着力最佳的粘合剂。最后,该技术还可用于测量屏幕上预先存在的划痕的最大深度,评估其是否可以翻新。纳米压痕测试用于测量沉积在显示器玻璃上的功能薄膜的硬度和弹性模量。力学性能反映了新型显示器开发过程中 薄膜的质量。此外,纳米压痕法允许测定用于安装智能手机屏幕的光学透明粘合剂(OCA)薄膜的粘弹性和力学性。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 液滴萃取表面分析LESA讲座将召开
    液滴萃取表面分析:新颖的质谱分析工具   演讲人: 美国 Advion 公司产品经理 Daniel Eikel 博士   时 间: 2014年5月13日 星期二 上午 09:30&ndash 11:30   地 点: 北京市西城区南纬路甲2号,药物研究所东楼5层会议室   联系人: 王争 01064399978-0   摘要   液滴萃取表面分析(LESA)为最新的、全自动的、基于芯片的多通道纳升电喷雾离子化质谱分析法(Chip-based nanoESI-MS)。它的出现为运用灵敏度和选择性高但耗时、难重现及低通量的传统nanoLC-nanoESI-MS法进行简单、快捷的表面(例如组织切片、MALDI 点样板、干血斑)分析成为可能。Eikel博士将首先对LESA-MS 如何补充并提高业界多年以来所沿用的黄金标准般的 nanoLC-MS技术和其他质谱方法如MALDI-MSI 质谱成像技术、充分发挥现代高端质谱仪的潜能展开讨论。同时,他将说明如何通过 LESA-MS 研究药物在组织内的分布和代谢,以获取比 MALDI-MSI 技术提供的更加有效和更加丰富的信息。此外,他还将对开发并应用包含高分辨&ldquo shotgun&rdquo 质谱法、&ldquo 靶标&rdquo 串联质谱分析法、结合特定官能团化学修饰和实时液滴萃取细胞培养液样品等组合方案来完整鉴定、表征和定量各种细胞株中多种脂质类物质加以详细的介绍。最后,他将阐明如何运用新开发的 Chip-Mate nanoESI 解决方案来获得稳定的纳升电喷雾,以减少 nanoLC-MS 样品分析中的失败几率。   专访 Jack Henion 教授,点击观看详细内容   质谱NanoMate离子源:市场需求永无止境   演讲人简介   Daniel Eikel 博士为美国 Advion 公司质谱离子源产品经理,有着18年的质谱应用、研发和管理经历,在液质联用尤其是离子源和质谱仪的创新、制造和市场化方面有着丰富的知识和经验。Daniel 毕业于德国 University of Hanover 和 Veterinary Medical University (VMU)获分析化学和毒理学博士学位和博士后。本科和硕士毕业于德国 Philipps-University Marburg 化学系。   2000-2002 于德国 Justus-Liebig 大学研究1&mu m以下空间高分辨 MALDI 成像技术和利用 FT-ICR 对 MHC class II 多肽进行解序。2005-2007 任美 NIH 糖尿病、消化、肾脏疾病研究所蛋白质组学与质谱核心设施研究员,研究无阻流电泳 (FFE)、蛋白质去除、和糖蛋白的高分辨 FTMS 质谱分析。   2007年加入 Advion,历任应用科学家、高级应用科学家和产品经理,负责nanoLC-nanoESI 产品的研发、应用与市场推广,推出了 RePlay、单杆小型化质谱 CMS、干血斑 LESA-MS、以及于2012年美国ASMS质谱年会期间刚刚发布的新型封闭式芯片纳喷离子源 - ChipMate。Eikel 博士已发表论文18篇,出席过54个学术研讨会和大型会议并发言,并拥有2项专利。 讲座报名回执 姓名 手机 电子邮箱 座机 传真 单位部门 单位地址 其他人员 □ 同单位同部门 □ 同单位不同部门 □ 不同单位 姓名 手机 电子邮箱 座机 传真 单位部门 单位地址
  • “2016全国表面分析科学与技术应用学术会议”第二轮通知
    为积极推动表面分析科学与应用技术的快速发展,加强同行之间的交流合作、仪器共享,展示相关的新成就、新进展 建立表面分析的交流平台,形成自由研讨的学术氛围,让思想碰撞出火花,并共同提升理论与技术水平,促进表面分析科学研究队伍的壮大 由高校分析测试中心研究会、全国微束分析标准化技术委员会表面分析分技术委员会、北京分析测试协会表面分析专业委员会主办,昆明理工大学分析测试研究中心、国家大型科学仪器中心-北京电子能谱中心及昆明红源会展有限公司协办,在昆明举办“2016年全国表面分析科学与技术应用学术会议”。会议将于2016年8月10-12日在云南省昆明市举行,热忱邀请各位表面分析专家、学者踊跃投稿并参与会议,并进行广泛深入的交流。现就会议相关事宜通知如下:  一、学术委员会  主 任:朱永法,教授,清华大学  副主任:李崧,教授,北京师范大学  成 员:(以姓名首字母排序)  程 斌,教授, 北京化工大学  陈 建,研究员,中山大学  丁泽军,教授, 中国科技大学  董 林,教授, 南京大学  伏晓国,研究员,核工业部表面物理与化学国家重点实验室  郭建东,教授, 中科院物理所表面物理国家重点实验室  郝建薇,教授, 北京理工大学  李 崧,教授, 北京师范大学  刘柯钊,研究员,核工业部表面物理与化学国家重点实验室  刘 芬,副研究员,中科院化学所  马农农,高工, 中国电子科技集团公司第四十六所  宋伟杰,研究员,中国科学院宁波材料技术与工程研究所  宋武林,教授, 华中科技大学  吴正龙,教授, 北京师范大学  王金淑,教授, 北京工业大学  王 海,副研究员,中国计量科学研究院  谢景林,教授级高工, 北京大学  姚 琲,教授, 天津大学  姚文清,高工, 清华大学  卓尚军,研究员,中科院上海硅酸盐所  郑遗凡,教授, 浙江工业大学  朱 健,副教授,上海师范大学  张 毅,高工, 宝山钢铁股份有限公司研究院  二、会议地点及日程安排  会议地点:昆明理工大学莲华校区管理经济学院MBA中心报告厅  会议日程:2016年8月10日 全天报到  2016年8月11-12日 报告、交流  2016年8月13日 专家返程  三、会议注册  (1)会议注册费:一般代表1200元/人,学生代表1000元/人。  (2)会议食宿:会务组统一安排,费用自理。  (3)会议不组织考察。  (4)本次会议委托昆明红源会展有限公司代收会务费,并开具会务费发票。  四、论文征集  本次会议将面向全国征集与会有关主题方面研究的综述、学术论文,并印刷论文集作为会议资料。符合本次会议主题的相关研究内容均可投稿。请将论文摘要投递到会务组邮箱,截止时间7月25日。论文格式不拘,但请留下联系方式。  五、厂商赞助及展示  欢迎国内外分析仪器公司、厂商赞助会议并到会介绍和展出产品。本次会议欢迎有关分析仪器公司就产品研发的相关问题和进展做学术报告。  六、会务组联系:  会务联系人:闵春刚,0871-65110975,155-5977-1773,  QQ:395931769, 邮箱:minchungang@163.com  夏艺萌,184-6808-1161,  QQ: 809798360, 邮箱:809798360@qq.com  传真: 0871-65111617  联系地址: 云南省昆明市学府路304号,650093  主办单位:高校分析测试中心研究会  全国微束分析标准化技术委员会表面分析分技术委员会  北京分析测试协会表面分析专业委员会  协办单位: 昆明理工大学-分析测试研究中心  国家大型科学仪器中心-北京电子能谱中心  昆明红源会展有限公司  2016年6月20日  参会回执及会议论文摘要模板请点击:http://www.instrument.com.cn/conference/Detail/index.asp?CName=CONF63472
  • 西安交通大学张辉课题组《Materials & Design》:PμSL 3D打印花瓣状微结构表面实
    受自然生物学启发制备的具有不同润湿特性的功能性表面在液体收集、液滴操纵、减阻及油水分离和药物输送系统等领域蓬勃发展。值得注意的是,功能性拒水表面成为其中一个热门议题。荷叶上的超疏水现象表明由亲水材料制成的具有特殊微纳结构的表面可以实现疏水甚至超疏水特性。因此,越来越多的研究人员致力于设计和制造独特的微纳结构使得由亲水材料组成的表面呈现出超疏水的特性,进而实现更多特定的功能。随着3D打印技术的逐步发展,越来越多的复杂结构如蘑菇头状、重入蘑菇头状、打蛋器状及仿弹尾虫表面等被设计和制备以实现一定的拒水效果。尽管相关研究提出了具有各种形状的拒水微结构,但这些形状大多具有蘑菇状形式。设计3D 微结构并深入探索机理,从而进一步提高拒水及液滴承载性能仍然是一个挑战。最近,对猪笼草的研究表明,猪笼草口缘区域微腔结构的锐利边缘和弓形曲线具有将液体钉扎在弯曲结构上的超强能力,该能力甚至可以克服重力。据此,西安交通大学机械工程学院张辉副教授等提出了一种新型 3D 打印仿生超疏水花瓣状微结构表面,其灵感来自猪笼草口缘区域的水钉扎效应。该团队利用高精度3D打印技术(nanoArch P140,摩方精密)实现了花瓣状微结构表面的制备。具有花瓣状微观结构的亲水性树脂具有宏观超疏水性和优异的拒水性。与普通蘑菇形结构相比,优化后的花瓣状结构承载力最大增加率为58.3%。相应的机理分析表明,锋利的边缘效应和弓形曲线效应是造成这种超排斥性能的原因。然后团队进行了对几何特征(花瓣数量P、结构间隙S及花瓣结构占比K)对花瓣状微结构表面液滴承载能力影响的实验研究。覆盖微结构数、接触角变化和最大崩溃体积参数反映了不同参数表面的液滴承载能力。优化后的微结构阵列(花瓣数量P为4,结构间隙S为100 μm,花瓣结构占比K为0.5)与普通蘑菇形微结构相比,液滴承载力的最大增加率为58.3%。当滴加液滴至 3D 打印花瓣状微结构表面上时,液滴将覆盖多个花瓣状微结构组成的方形阵列区域。微结构顶面上的液滴呈现锯齿形边界。弓形曲线和花瓣状结构的锋利边缘的协同作用作为能量屏障,限制了水滴的铺展和崩溃。由于花瓣微结构材料本身具有亲水性,液滴沿花瓣拉伸形成凹形液体边界曲线,类似于液体在平行侧壁中的流动情况。相似的液体边界曲线形状和具有锐角边缘的弓形曲线导致花瓣状微结构表面具有较高的水约束力。花瓣状微结构表面具有优异拒水性可用于超大液滴承载、微反应器、无损液滴搬运、倾斜表面液滴快速脱附、油水分离、气泡保持和减阻等领域。图1 a 猪笼草口缘区域及其微腔结构;b 花瓣状微结构表面设计及3D打印模型;c 3D打印的平面表面接触角约为55°,具有花瓣状微结构的表面具有宏观超疏水性,其接触角约为160°,即使表面倒置,水滴也会粘附在表面上。图2 a 液滴在花瓣状微结构阵列的顶部沿微结构边缘呈现锯齿形边界;b 液滴与微结构之间的接触边界示意图;c 亲水花瓣微结构拉伸液滴以及平行侧壁间液体的粘附和拉伸效果。 图3 花瓣状微结构表面应用a超大液滴承载;b 微反应器;c 无损液滴搬运;d 倾斜表面液滴快速脱附;e 油水分离;f 气泡保持和减阻实验
  • 中科院声学所完成声表面波气相色谱仪研制
    p   声表面波气相色谱仪因体积小、检测快、反应灵敏,被广泛应用于爆炸物、水污染、有毒害气体等多种物质的检测,为环保、公共安全提供了便捷、高效的检测手段。但长期以来,该类仪器主要依靠进口。 /p p   近期,中国科学院声学研究所超声技术中心研究员何世堂团队完成了声表面波气相色谱仪的研制,实现了该类仪器的国产化。 /p p   声表面波气相色谱仪是基于声表面波传感器与气相色谱分离联用的有机气体分析仪,气相色谱将有机混合物分离成纯组分之后,由声表面波传感器进行定量检测,具有灵敏度高、色谱柱升温速度快(每秒约20 ℃)、体积小等特点,可实现痕量气体的广谱(挥发和半挥发性有机物)、快速(5分钟内)、高灵敏度(ppb~ppt级)现场分析,在公共安全、环境监测、食品和药品检测等方面有广阔的应用前景。 /p p   在仪器研制过程中,何世堂团队对声表面波气相色谱仪的响应机理进行了理论分析,计算出仪器的质量检测下限 设计仪器的核心部件——声表面波(SAW)检测器,并分析SAW检测器表面不同区域的灵敏度,根据分析结果优化检测器及检测器与分离系统的对接参数。此外,何世堂团队在设计进样富集和色谱分离系统、声表面波检测系统、数控系统和辅助系统等多个分系统的基础上,进行系统集成并研制出声表面波气相色谱仪样机。样机的检测下限降低至国外同类仪器的一半,相当于性能提高了一倍。 /p p   除传统的分析检测爆炸物、毒品、人体气味、水污染等功能外,何世堂团队还基于该仪器以麝香为样品开发了中药成分的检测功能。相关研究有望为中药质量监管提供技术支撑。在后续的研究中,团队将侧重分析方法方面的研究,使声表面波气相色谱仪的检测更精准、性能更完善,并与应用领域相结合,开发出具有领域针对性的快检仪器。 /p p   相关研究成果发表在《应用声学》上。 /p p   论文题目:声表面波气相色谱仪及其应用 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201804/insimg/08a1be87-63e3-43a1-84e9-9a257fc2f7b8.jpg" title=" 001.jpg" / /p p style=" text-align: center " 声学所声表面波气相色谱仪原理图 /p
  • MARWIS应用于机场跑道表面状况评估
    MARWIS应用于机场跑道表面状况评估背景 根据国际民航组织(ICAO)的有关要求,有关缔约国应于2021年11月4日起,使用“全球报告格式”报告跑道表面状况。跑道表面状况的报告将从传统的跑道摩阻特性测试转变为跑道表面状况评估。这是对机场跑道适航性评估和报告的一次重大变革,对机场的管理水平于场务人员的专业能力提出了更高要求。 起降性能评估 为了提供必要信息以确保特别是针对起飞和降落达到所要求的安全水平,航空业引进了TALPA(起降性能评估)标准,该标准根据污染物类型和厚度评估跑道状况,以此向机场交通管理人员提供评估飞机制动性能的有效信息。RCC(跑道状况代码)报告,这是一个允许对危险或障碍物进行快速识别的自明代码。用于跑道气象评估的新技术 改善飞机起飞和降落安全的方法之一是采用移动式跑道状况传感器MARWIS(见图1)形式的新技术。作为嵌入式道面传感器和固定式气象传感器等普通AWOS(自动气象观测系统)设备的一个附加装置,MARWIS改善了跑道(RWY)状况的确定并对交通管理员、飞行员和塔台的跑道状况代码进行了数字化处理。为此,它提供了一个新的工具箱对跑道状况处理和转化的机场工作流进行数字化处理,使其成为一个正确且不会过时的编码,它为降落准备带来了哪些具体改变? 快速及数字化 可将紧凑型MARWIS安装在所有类型的机场巡逻车辆上,它能直接传送跑道状况,如干燥、潮湿、湿润、雪、雪泥、冰、含融雪剂潮湿和极度潮湿等数据信息。MARWIS可向移动装置(如平板电脑)和固定式输出装置(如控制中心(TWR))发布该数据。因此,它可在跑道评估期间在巡逻车上为交通管理员提供支持,无需巡逻车再迂回绕道。另外,MARWIS 可发布气象相关的摩擦系数值,范围在0.1至0.82之间(由低到高)。这意味着智能型传感器可检测不同跑道污染水平下(从干燥到有水、冰或雪覆盖)的摩擦力,并将此信息直接输入MDSS(维护决策支持系统)软件ViewMondo。 采用MARWIS进行评估具有两个决定性优势:飞行员可获得更多用于决策的信息,而工作流程耗时更少,因为自动的数据采集缩短了跑道封锁的时间。TALPA工作流程的珍贵时间由此得以释放,通常这一用时不得超过10分钟。但数据仍由机场交通管理员控制,因为通过ViewMondo 软件可对巡逻车内移动输出装置直接发布的跑道状况代码进行修改,以防观察所需或飞行员通过反馈信息要求降级。RCC/ RCAM报告可打印或由巡逻车直接通过电子邮件发送至塔台(见图2中的数据流程)。 为了能提供确切的位置数据,可将跑道上的独立点储存于路线的主数据内并通过平板电脑或GPS模块等输出装置跟踪。这对TALPA来说尤为重要,因为其必须按照三个分区逐一报告跑道状态。 未来航空任务的展望 综上所述,众多不同的跑道评估和维护方法盛行于机场业务中,而这则意味着尚无正式有效的国际标准。TALPA的引入将成为航空业向全球解决方案迈出的一步。而跑道状况评估或测量方面,目前也没有可用的标准,机场技术人员只能根据具体情况选择相应的最佳方法。 Lufft生产的移动式传感器MARWIS可立即发布气象相关的摩擦系数、水膜高度、跑道状况、含冰量和露点,以及表面和空气温度,是一个能根据ICAO规范成功执行TALPA的最为通用且不过时的设备。
  • 贝士德取得多项比表面积仪专利技术
    ◆贝士德取得具有吹风加热功能的比表面仪专利 专利名称:具有吹风加热功能的比表面仪 专利号: ZL200920110451.5 2010年,国家知识产权局授权贝士德仪器科技(北京)有限公司研发成果&lsquo 具有吹风加热功能的比表面仪&rsquo 专利。贝士德仪器科技(北京)有限公司此专利产品是一种具有吹风加热功能的比表面仪。该比表面仪通过在仪器主机中增加吹风加热装置,可使样品管快速升温,从而降低背景噪声影响,提高后续测试的精度和分辨率。该专利的获得,使贝士德公司的比表面仪突破了普通比表面仪升温较慢、噪声过高从而造成结果不精确的瓶颈,其精度、分辨率均能达到国内领先水平。 比表面仪包括:仪器主机,仪器主机内主要设有电路和气路两部分,电路部分包括电源供电电路、液氮杯升降控制电路、传感器和信号检测采集电路;气路部分包括气源、连接气源与仪器主机的连接管路、气路流量检测显示装置和检测器,仪器主机内设有多个样品管,多个样品管并联设置在气路中,样品管的出气端经管路与检测器连接。 此款比表面仪最大的特点在于,该比表面仪携有吹风加热装置,吹风加热装置的出风端与各样品管相对应,吹风加热装置的控制端分别与所述仪器主机内电路电气连接,从而实现程控风热助脱功能,保证得到尖锐快速的脱附峰,减少背景误差。误差的降低及人性化的完成声音提示,使得贝士德仪器科技(北京)有限公司的此款具有吹风加热功能的比表面仪在同行业中处于领先地位。 当样品在液氮温度-195.8℃下吸附饱和后要升温脱附时,需要使温度迅速升高,使吸附在粉体表面的氮气迅速脱附出来进入检测器,在之前的半自动化仪器中通常使用人为将液氮杯更换为水杯,利用水大比热的特性使样品温度迅速升高到常温,但在全自动化仪器中,如果放弃辅助加热脱附,进行自然升温脱附,由于玻璃的导热系数很低,升温缓慢,将使脱附峰矮而宽,降低灵敏度和分辨率,使背景噪声影响增大,损失测试精度。 比表面积是单位质量物质的表面积(㎡/g),它是超细粉体材料,特别是纳米粉体材料最重要的物性之一,是用于评价他们的活性、吸附、催化等多种性能的重要物理属性。因此在各种超细粉体材料的研究、制造和应用过程中,测定其比表面积是十分重要的。随着超细粉体材料和纳米材料的迅猛发展,生产和应用各种超微氧化锌、氧化铝、碳酸钙、钴酸锂、锰酸锂、碳黑、石墨等几乎所有粉体材料的领域都需测定产品的比表面积,测定比表面积的仪器已成为许多研究单位、大专院校和工厂不可缺少的重要设备。贝士德仪器科技(北京)有限公司是国内早期专业从事全自动氮吸附比表面积测试仪的研发、生产、销售、维修、技术支持、培训及售后服务的厂家,是北京中关村科技园认定的高新技术企业。 产品同质化已经成为市场竞争的一大壁垒,突破同质化,就意味着走向成功。贝士德公司此款专利的诞生,表明贝士德走出了一条科技创新的道路。独树一帜,研发创新,是贝士德公司长期领先国内外市场的根本保证。能够为广大客户提供更优质的服务,是贝士德公司全体员工工作的根本出发点。严谨为科技,诚心为客户,是贝士德公司最终的奋斗目标。在增强自身产品科技含量的同时,也为以后能够更好的服务广大使用客户做出了硬件上方面的准备。 ◆贝士德取得气体净化冷阱及比表面仪专利 2010年,国家知识产权局授权柳剑锋研发成果&lsquo 气体净化冷阱及比表面仪&rsquo 专利,专利号为ZL200920110450.0。贝士德仪器科技(北京)有限公司此专利产品是一种气体净化冷阱及比表面仪。 该产品为一种气体净化冷阱及比表面仪,属于气体净化装置领域。该气体净化冷阱包括:冷凝管和液氮杯;所述液氮杯内盛有液氮,所述冷凝管的管体设置在液氮杯的液氮内,冷凝管的一端为进气口,冷凝管的另一端为出气口。该比表面仪包括:控制电路和气路,该比表面仪还包括气体净化冷阱;所述气体净化冷阱,串联设置在该比表面仪样品管前的进气气路中。通过将具有进气口和出气口的冷凝管设置在液氮杯中,形成气体净化冷阱。该气体净化冷阱用在比表面仪中时,串联设置在比表面仪中气体进入样品管的气路中,使通过该冷凝管的气体中的杂质冷凝,从而最大限定的净化进入样品管被测试的气体。 该专利的优点是具有国内唯一的气体净化冷阱功能,使气体纯度提高10倍以上。比表面测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;如30ml/min的流速中120min内停留在粉末表面的水的量为 0.14ml(标况下的体积),而对于500mg比表面积为1m2/g的材料,在其表面形成水的单分子层吸附所需要的水蒸汽的量为:0.069? ml(标况),与实际停留在粉末表面的水量相当,材料表面已经被水分饱和;如不处理,测试结果将不可能准确。 同时,专利已经形成产业化生产,并最终成为国内著名的比表面仪品牌,H-2000系列全自动氮吸附比表面积测试仪的诞生,意味着我国粉体比表面仪的发展突破了质的飞跃,并标志着我国粉体比表面测试方面达到国际水平。 随着超细粉体材料和纳米材料的迅猛发展,生产和应用各种超微氧化锌、氧化铝、碳酸钙、钴酸锂、锰酸锂、碳黑、石墨等几乎所有粉体材料的领域都需测定产品的比表面积,测定比表面积的仪器已成为许多研究单位、大专院校和工厂不可缺少的重要设备。贝士德仪器科技(北京)有限公司是国内早期专业从事全自动氮吸附比表面积测试仪的研发、生产、销售、维修、技术支持、培训及售后服务的厂家,是北京中关村科技园认定的高新技术企业。 产品同质化已经成为市场竞争的一大壁垒,突破同质化,就意味着走向成功。贝士德公司此款专利的诞生,表明贝士德走出了一条科技创新的道路。独树一帜,研发创新,是贝士德公司长期领先国内外市场的根本保证。能够为广大客户提供更优质的服务,是贝士德公司全体员工工作的根本出发点。严谨为科技,诚心为客户,是贝士德公司最终的奋斗目标。在增强自身产品科技含量的同时,也为以后能够更好的服务广大使用客户做出了硬件上方面的准备。 ◆ 贝士德取得具有原位吹扫功能的比表面仪专利 2010年,国家知识产权局授权柳剑锋研发成果&lsquo 具有原位吹扫功能的比表面仪&rsquo 专利,专利号为:ZL200920110453.4。贝士德仪器科技(北京)有限公司此专利产品是一种具有原位吹扫功能的比表面仪。 贝士德公司此款专利是一种具有原位吹扫功能的比表面仪。比表面仪包括:仪器主机,仪器主机内设有电路和气路两部分,电路部分包括电源供电电路、液氮杯升降控制电路、传感器和信号检测采集电路;气路部分包括气源、连接气源与仪器主机的连接管路、气路流量检测显示装置和检测器,仪器主机内设有多个样品管,多个样品管并联设置在气路中,样品管的出气端经管路与检测器连接;其特征在于,该比表面仪还包括原位吹扫装置,所述原位吹扫装置为多个吹扫炉,各吹扫炉均设置在仪器主机内,分别设置在各样品管下面,吹扫炉的电热控制端与所述仪器主机内电路电气连接。 该专利具有国内唯一的一体式原位加热吹扫装置;并具有吹扫程序定时功能。仪器在国内唯一具有一体式吹扫装置(非分体式),解决了脱气、测试一体化问题,实现了试样原位处理,只需一次安装,与空气零接触,保证了样品预处理的高效性与有效性。应用该专利的3H-2000系列仪器具有的一体化吹扫处理系统相对分体吹扫炉具有两个优势:一是操作方便,只需一次安装;二是处理效果更好,避免了拆装样品管时样品再次与空气接触。通过原位吹扫装置,实现不用将样品管移出比表面仪的仪器主机,即可进行原位吹扫,操作更简洁。3H-2000系列全自动氮吸附比表面积测试仪的诞生,意味着我国粉体比表面仪的发展突破了质的飞跃,并标志着我国粉体比表面测试方面达到国际水平。 比表面积是单位质量物质的表面积(㎡/g),它是超细粉体材料,特别是纳米粉体材料最重要的物性之一,是用于评价他们的活性、吸附、催化等多种性能的重要物理属性。因此在各种超细粉体材料的研究、制造和应用过程中,测定其比表面积是十分重要的。随着超细粉体材料和纳米材料的迅猛发展,生产和应用各种超微氧化锌、氧化铝、碳酸钙、钴酸锂、锰酸锂、碳黑、石墨等几乎所有粉体材料的领域都需测定产品的比表面积,测定比表面积的仪器已成为许多研究单位、大专院校和工厂不可缺少的重要设备。 贝士德仪器科技(北京)有限公司是国内早期专业从事全自动氮吸附比表面积测试仪的研发、生产、销售、维修、技术支持、培训及售后服务的厂家,是北京中关村科技园认定的高新技术企业。 产品同质化已经成为市场竞争的一大壁垒,突破同质化,就意味着走向成功。贝士德公司此款专利的诞生,表明贝士德走出了一条科技创新的道路。独树一帜,研发创新,是贝士德公司长期领先国内外市场的根本保证。能够为广大客户提供更优质的服务,是贝士德公司全体员工工作的根本出发点。严谨为科技,诚心为客户,是贝士德公司最终的奋斗目标。在增强自身产品科技含量的同时,也为以后能够更好的服务广大使用客户做出了硬件上方面的准备。 ◆ 贝士德取得氮气浓度检测器专利 2010年,国家知识产权局授权柳剑锋研发成果&lsquo 氮气浓度检测器&rsquo 专利,专利号为:ZL200920110455.3。 贝士德仪器科技(北京)有限公司该专利为一种氮气浓度检测器。该检测器包括:参比池、测量池和四个热敏电阻;四个热敏电阻连接形成电桥电路,形成的电桥电路中两个相对设置的热敏电阻设置在参比池内,电桥电路中另外两个相对设置的热敏电阻设置在测量池内,电桥电路的两个电极作为输入测量电压的输入电极,另外两个电极作为输出电信号的输出电极。该检测器在检测氮气浓度时,使作为基准参比的氮气浓度为零的基准载气通过参比池,使被检测的载气与氮气的混合气体通过测量池,根据输出电信号值的变化,即可确定被检测混合气体中的氮气浓度。 该专利的优点是具有国内唯一的氮气分压色谱法检测系统,检测精度唯一达到0.01%。BET多点法测试中,按BET理论要求氮气浓度需要从5%调整到30%,氮气浓度检测是BET法比表面积测试结果准确度的关键环节。在氮气浓度测试方面,目前国内同类仪器采用分别测量氮气和载气流量的方式来求氮气浓度。所采用的进口霍林威尔流量传感器的标称极限精度是0.1-0.5ml/min,对于5ml/min的氮气流速的测试最高精度只能达到2%。而采用该专利色谱浓度传感器热导池直接测试氮气浓度,精度可达到0.01%,且不受流速影响氮气浓度检测器精度之高,在国内同行当中处于领先地位。同时,专利已经形成产业化生产,并最终成为国内著名的比表面仪品牌&mdash &mdash 3H-2000系列全自动氮吸附比表面积测试仪。专利的发明及仪器的诞生,意味着我国粉体比表面仪的发展突破了质的飞跃,并标志着我国粉体比表面测试方面达到国际水平。 比表面积是单位质量物质的表面积(㎡/g),它是超细粉体材料,特别是纳米粉体材料最重要的物性之一,是用于评价他们的活性、吸附、催化等多种性能的重要物理属性。因此在各种超细粉体材料的研究、制造和应用过程中,测定其比表面积是十分重要的。随着超细粉体材料和纳米材料的迅猛发展,生产和应用各种超微氧化锌、氧化铝、碳酸钙、钴酸锂、锰酸锂、碳黑、石墨等几乎所有粉体材料的领域都需测定产品的比表面积,测定比表面积的仪器已成为许多研究单位、大专院校和工厂不可缺少的重要设备。 贝士德仪器科技(北京)有限公司是国内早期专业从事全自动氮吸附比表面积测试仪的研发、生产、销售、维修、技术支持、培训及售后服务的厂家,是北京中关村科技园认定的高新技术企业。 产品同质化已经成为市场竞争的一大壁垒,突破同质化,就意味着走向成功。贝士德公司此款专利的诞生,表明贝士德走出了一条科技创新的道路。独树一帜,研发创新,是贝士德公司长期领先国内外市场的根本保证。能够为广大客户提供更优质的服务,是贝士德公司全体员工工作的根本出发点。严谨为科技,诚心为客户,是贝士德公司最终的奋斗目标。专利的发明,在增强自身产品科技含量的同时,也为以后更好的服务广大使用客户做出了硬件上方面的准备。 ◆ 贝士德取得比表面仪U型样品管专利 2010年,国家知识产权局授权柳剑锋研发成果&lsquo 比表面仪U型样品管&rsquo 专利,专利号为ZL200920110452.X。 贝士德仪器科技(北京)有限公司研发的&lsquo 比表面仪U型样品管&rsquo 属于比表面仪用的样品管。该样品管为U形管,U形管的一端为进气口,另一端为出气口,U形管一端管体的管径大于另一端管体的管径。该U型样品管通过U形管两端的管体的管径不一径,一端管体的管径大于另一端管体的管径,形成由粗到细的U形管。 该专利最大的创新点在于,贝士德公司的&lsquo 比表面仪U型样品管&rsquo 保证测试精度的同时,使得样品管装样方便并不局限于粉末样品测试。色谱法比表面测试用的样品管在国内同行业中面临着这样一个矛盾:色谱法要求管路的内径尽量的细,以减少紊流效应;但过细的样品管使得在实际应用中装样和清洗很不方便;&lsquo 比表面仪U型样品管&rsquo 巧妙的使用大进小出的样品管形式,大口径端使填装样品和清洗都很方便,小口径出气可以不增加紊流效应。 目前,该专利已经形成产业化生产,并最终成为国内著名的比表面仪品牌&mdash &mdash 3H-2000系列全自动氮吸附比表面积测试仪。国内目前只有3H-2000系列仪器使用&lsquo 比表面仪U型样品管&rsquo 。也意味着我国粉体比表面仪的发展突破了质的飞跃,并标志着我国粉体比表面测试方面达到国际水平。 比表面积是单位质量物质的表面积(㎡/g),它是超细粉体材料,特别是纳米粉体材料最重要的物性之一,是用于评价他们的活性、吸附、催化等多种性能的重要物理属性。因此在各种超细粉体材料的研究、制造和应用过程中,测定其比表面积是十分重要的。随着超细粉体材料和纳米材料的迅猛发展,生产和应用各种超微氧化锌、氧化铝、碳酸钙、钴酸锂、锰酸锂、碳黑、石墨等几乎所有粉体材料的领域都需测定产品的比表面积,测定比表面积的仪器已成为许多研究单位、大专院校和工厂不可缺少的重要设备。 贝士德仪器科技(北京)有限公司是国内早期专业从事全自动氮吸附比表面积测试仪的研发、生产、销售、维修、技术支持、培训及售后服务的厂家,是北京中关村科技园认定的高新技术企业。 此款专利的诞生,解决了&ldquo 小量进,大量出&rdquo 的矛盾,U形管的出现,使身为3H-2000系列仪器打破了业内同质化竞争的局面。独树一帜,研发创新,是贝士德公司长期领先国内外市场的根本保证。能够为广大客户提供更优质的服务,是贝士德公司全体员工工作的根本出发点。严谨为科技,诚心为客户,始终是贝士德公司最终的奋斗目标。
  • 精准医疗 | 准确测量皮肤表面积,3D扫描仪助力整形外科手术高效开展
    近年来,3D数字化技术在医疗行业的应用十分广泛,尤其是在口腔医学、骨科手术、矫形康复、生物医学工程等细分领域中,已成为数字化精准医疗基础手段之一。随着3D数字化技术在医疗领域的不断普及,在整形外科领域也逐渐被应用于临床治疗中,为患者带来福音。本期,小编将分享一则使用3D扫描技术帮助临床医生准确测量软组织扩张患者皮肤缺损表面积的应用案例。案例背景软组织扩张术作为一种革命性的整形外科治疗手段,已广泛应用于全身多个部位各种病损的治疗,在瘢痕修复、耳、鼻等多器官再造及体表肿瘤、先天性巨大痣等多个领域发挥着重要的作用。图片源自于网络小编解读:软组织扩张术是指将硅胶制成的软组织扩张器,经手术植入皮下或肌层下,通过定期注入生理盐水,使表面皮肤及软组织逐渐被延伸扩大,从而提供“额外”的皮肤和软组织,用以修复邻近组织的缺损。传统测量手段目前在临床上测量扩张皮肤面积的主要手段为薄膜涂色法、几何测量法、湿布取样法等。但这些方式存在一些弊端,如:1、测量过程较为复杂繁琐2、无法精确地实时评估扩张皮肤的表面积有多大3、无法精确地实时评估皮肤缺乏需要多少皮肤基于此,广州中山大学附属第一医院整形外科 刘祥厦课题组提出了一种创新性的方法,就是利用三维扫描技术在术前对皮肤缺损面积及扩张后获得的皮瓣表面积进行精确的评估。3D数字化解决方案(部分患者案例展示)3D扫描临床医生为患有先天性巨大痣及小耳畸形症病人实施皮肤软组织扩张术后,深圳木比白科技的技术人员利用先临三维EinScan Pro系列多功能三维扫描仪获取了患者软组织扩张后的皮肤表面积。扫描过程展示部分扫描数据展示测量分析获取患者耳、痣及扩张器的三维模型后,课题组李泽泉医生利用软件对患者正常耳表面积、先天性巨痣&小耳畸形、每次扩张后的组织扩张器及其底面积进行三维测量及对比分析。数据重建最后,根据这些三维扫描的测量结果和其他相关因素,如皮肤的质地和扩张的总体积,综合判断是否进行第二阶段的重建。目前,这个新型技术手段在深圳木比白科技有限公司的协助下已应用于临床治疗中,帮助医生准确地做出了11例软组织扩张器重建患者的术前决策,并成功进行软组织扩张的重建。经临床研究证明,3D扫描技术与其他测量方式相比具有简单快捷,测量精度高,抗干扰能力强,立体构建图像逼真等优点,在软组织扩张术治疗中为确定扩张器的尺寸和第二阶段手术时间提供了有效的基础数据保障,为整形外科医生的决策提供帮助,让术前设计更客观、更科学。END非常感谢广州中山大学附属第一医院整形外科和深圳木比白科技有限公司为此案例提供素材。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制