当前位置: 仪器信息网 > 行业主题 > >

病毒载定仪

仪器信息网病毒载定仪专题为您提供2024年最新病毒载定仪价格报价、厂家品牌的相关信息, 包括病毒载定仪参数、型号等,不管是国产,还是进口品牌的病毒载定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合病毒载定仪相关的耗材配件、试剂标物,还有病毒载定仪相关的最新资讯、资料,以及病毒载定仪相关的解决方案。

病毒载定仪相关的资讯

  • 【解决方案】如何高效表征基因治疗中腺相关病毒载体?
    基因治疗是通过将修饰的基因传递至靶细胞中,从而把患者体内的突变基因替换为相对应的健康基因拷贝来实现治疗或者预防疾病的目的。与传统的药物治疗相比,基因治疗是从根本上对疾病进行控制,所以有着非常好的发展前景,在世界范围内得到越来越多医药行业的关注和投入。 将正常基因(外源)导入生物细胞内必须借助一定的技术方法或载体,基因转移的方法分为生物学方法、物理方法和化学方法。 病毒越来越多的用作载体,用于传递基因治疗的遗传物质和疫苗应用。重组腺相关病毒(recombinant Adeno-Associated Viruses, rAAV)是基因治疗最为常用的病毒载体之一。 一、如何开发高效安全的 rAAV 疗法?为了开发通过受控和经济的制造工艺生产的高效的 rAAV 疗法,需要解决从病毒衣壳设计到确定最佳工艺和配方条件,再到全面质量控制的多重挑战。应对这些挑战,需要针对 rAAV 样品下列属性进行量身定制的分析表征: Ø 测定衣壳蛋白或者颗粒滴度(capsidor particle titer)Ø 完整 rAAV 颗粒的百分比Ø 空-载比(Full-empty ratio)Ø 颗粒的粒径Ø 聚集体形成(aggregate formation)Ø 热稳定性(Thermal stability)Ø 基因组释放(genome release)Ø 衣壳电荷(capsid charge)等 而所有这些都可能影响最终产品的关键质量属性(CQA)。 通常,rAAV 滴度和病毒载量是使用酶联免疫吸附试验(ELISA)、定量聚合酶链式反应(qPCR)、液滴数字聚合酶链式反应(ddPCR)、分析超速离心(AUC)和电子显微镜(EM)的技术组合测定的。这些方法通常既费时又费力,而且其准确性和精确性也值得怀疑[1]。因此,业内越来越需求一种不依赖于使用专用试剂和昂贵的参考标准品的快速分析解决方案。 动态光散射(DLS)、多角度动态光散射(MADLS)、电泳光散射(ELS)、尺寸排阻色谱-多角度光散射(SEC-MALS)、纳米颗粒跟踪技术(NTA)、等温滴定量热法(ITC)和差式扫描量热法(DSC)可以提供有关病毒载体的关键分析和质量属性的重要信息,从而能够对多种参数进行表征、比较和优化。 样品关键参数马尔文帕纳科的技术方案衣壳蛋白尺寸DLS、NTA衣壳蛋白及转基因的绝对分子量SEC-MALS (OMNISEC)衣壳滴度或颗粒计数MADLS, SEC-MALS(OMNISEC), NTA含基因病毒颗粒百分比分析SEC-MALS (OMNISEC)聚集形成分析DLS, MADLS, SEC-MALS (OMNISEC), NTA碎片化分析SEC-MALS (OMNISEC)热稳定性分析DLS, DSC高级结构分析DSC血清型鉴定DSC衣壳解聚及基因组注入DLS, DSC衣壳蛋白尺寸ITC电荷分析ELS表1 总结了病毒载体研究中各种重要的关键属性(CQA),以及马尔文帕纳科可以对应提供表征此类信息的各项技术。 DLS、MADLS、SEC-MALS、NTA、ITC和DSC属于无标记的生物物理技术,需要最少程度的方法开发,并且可以很容易的应用于各个阶段,强化了基因治疗开发的分析工作流程。 二、高效的表征技术概念解读动态光散射(DLS)动态光散射(DLS)是一种非侵入式技术,可以测量由颗粒分散体系或分子溶液引起的散射光强度随时间的波动。由于进行布朗运动的颗粒或者分子的随机运动,散射光的强度会随之发生波动。使用自相关算法分析这些强度波动可以确定平移扩散系数,随后根据斯托克斯-爱因斯坦方程确定流体力学尺寸。多角度动态光散射(MADLS)多角度动态光散射(MADLS)通过使用三个不同的检测角度(背面、侧面和正面)并将获取的光散射信息组合成一个与角度无关(Angular-Independent)的粒径分布,从而可以对多模态的样品进行更高分辨率的尺寸测定。应用MADLS技术的扩展还可以测量出颗粒浓度(Concentration)。电泳光散射(ELS)电泳光散射(ELS)测定来自在电场中进行电泳的颗粒或者分子的散射光的频移(Frequency Shift),并能够计算出Zeta电位。颗粒的Zeta电位是颗粒在特定介质中获得的总电荷,可用于预测分散体系的稳定性并深入了解所研究的颗粒的表面化学。尺寸排阻色谱(SEC)尺寸排阻色谱(SEC)是一种分离技术,可根据分子进出柱中多孔凝胶基质的流体力学半径来分离分子。搭配一系列先进的检测器,如光散射(LS)、UV、RI和粘度,可以测量绝对分子量、分子大小、特征粘度、支化和其他参数。差式扫描量热法(DSC)差式扫描量热法(DSC)是一种直接分析天然蛋白质或其他生物分子热稳定性的技术,无需外在荧光素或者内源荧光,它通过测定在恒定的升温速率下使生物分子发生热变性过程中的热容变化来实现。 案例研究 | 综合使用多种技术表征 rAAV性状:衣壳分子量、聚集状态、滴度、稳定性… … 1,空 rAAV5 衣壳分析SEC-MALS (OMNI-SEC)测量产生的关键数据是绝对分子量,与柱保留时间或用于校准系统的任何标准无关。在空rAAV的情况下(Fig.1 和表2),主要单体的Mw为3.84 x 106 g/mol。空衣壳蛋白的理论分子量为3.8 x 106 g/mol,证实该分析结果符合预期。 图1 rAAV5 空壳三重色谱图表2 rAAV5空壳的定量参数 Mw/Mn 描述样品的分散性,接近1的值表示峰中有单个群体,远高于1的值表示峰内有多个群体。在空 rAAV 的情况下,单体和二聚体的 Mw/Mn 值接近1,表明是单一群体。聚集体和碎片 Mw/Mn 值显著高于1,表明单个峰内具有不同分子量的多个群体(表2)。 样品的分数(Fraction of Sample)描述了样本在群体之间的分布情况,在这种情况下,84.7% 的样品是单体。蛋白质分数(Fraction of Protein)表示样品中衣壳的百分比;在这种情况下,单体是99.8%的衣壳。这证实样品是空的 rAAV5 。从这种单一分析方法中获得的另一个关键信息是样品滴度;在这种情况下,对于空的 rAAV5,测得的滴度为 5.91x1013 vp/mL。 2,完整 rAAV5 衣壳分析完整 rAAV5衣壳的SEC-MALS (OMNISEC) 分析如图2和表3所示。对于主要的单体峰,计算出的符合Mw为4.49 x 106 g/mol,其中86%为衣壳。这样,完整的rAAV5的蛋白质组分的Mw为3.86 x 106 g/mol,与表2中的空rAAV5衣壳生成的数据一致。单体部分占比93%,样品具有总滴度7.48 x 1013 vp/mL。 图2 完整 rAAV5 的三重色谱图表3 完整 rAAV5 的定量参数 3,rAAV5 稳定性研究病毒衣壳的稳定性和功能是一种平衡行为。病毒衣壳必须足够稳定以包含和保护其中的基因组,与宿主细胞表面结合,它们必须提供足够的构象稳定性以在复制位点释放基因货物。 AAV载体脱壳的机制仍然知之甚少。衣壳脱壳和基因组释放似乎需要结构变化。基于差示扫描荧光法和差示扫描量热法(DSC)收集的AAV热稳定性已发表数据,AAV热转变的Tm值与衣壳解聚过程有关,可作为AAV血清型的鉴定指标;一种血清型的空AAV衣壳和完整AAV衣壳的Tm值通常非常相似,并且它们与衣壳动力学、衣壳脱壳和基因组释放没有明显的相关性。 图3 空rAAV5 和完整 rAAV5的DSC数据比较,扣除空白和基线的DSC数据。垂直方向标记的区域具有明显不同的热转变过程。表4 从DSC获得的空 rAAV5 和完整 rAAV5 样品的热稳定性结果 文章中记录的完整和空 rAAV5 样品的DSC曲线叠加(图3),根据空 rAAV5 和完整rAAV5 样品的整体 DSC 图谱差异以及热稳定性参数(如 Tonset 和 Tm2,表 4),可以在图 3 中 DSC 曲线上识别出四个不同的区域,它们可以暂且归因于以下几点:#1■ 仅在完整的 rAAV5 中出现的区域,从50℃一直延展至 75℃,这个过程大约 30 分钟。这可能归因于热应激下衣壳蛋白结构和稳定性变化导致的 ssDNA 的动力学控制下的注射;#2■在空 rAAV5 中出现的最明显的预转变过程;#3■ 主要转变过程,即协同的 rAAV5 衣壳蛋白发生解组装,这由具有血清型特异性的 Tm 值所决定;#4■ 仅在完整 rAAV5 中出现的另外的转变过程,很可能归因于 ssDNA 的解链。结论:以上几例是综合应用马尔文帕纳科多种互补技术对基因治疗常用的AAV载体一些关键属性的表征,这些无标记生物物理技术需要最少的方法开发,可以从衣壳设计阶段到开发、配方开发和药物原料和产品进行深入表征,加强体内基因治疗开发的分析工作流程。 详细内容可参文献 (Pharmaceutics 2021, 13(4), 586 https://doi.org/10.3390/pharmaceutics13040586)[1] Burnham, B. Nass, S. Kong, E. Mattingly, M. Woodcock, D. Song, A. Wadsworth, S. Cheng, S.H. Scaria, A. O’Riordan, C.R. Analytical ultracentrifugation as an approach to characterize recombinant adeno-associated viral vectors. Hum. Gene Ther. Methods 2015, 26, 228–242 三、纳米粒度及电位分析仪:DLS/ ELS/ MADLS 马尔文帕纳科 Zetasizer Ultra 纳米粒度及Zeta电位分析仪具有真正的多角度动态光散射技术(MADLS® ),提供更高的粒度测量分辨率,及与角度无关的粒度结果,并能够测量颗粒浓度。图4 Zetasizer Ultra纳米粒度及Zeta电位分析仪 四、OMNISEC 凝胶渗透色谱仪:GPC/SEC马尔文帕纳科OMNISEC凝胶渗透色谱仪是一套完整的凝胶渗透/尺寸排阻色谱(GPC)/(SEC),有前端色谱分离系统、检测器和软件组成,是灵敏准确的多检测器GPC/SEC 系统,可以准确测定:Ø 绝对分子量和分子量分布Ø 特性粘度和分子结构Ø 样品浓度Ø 以及其他多种关键参数图5 OMNISEC凝胶渗透色谱仪 五、PEAQ-DSC 微量热差示扫描量热仪:DSC 马尔文帕纳科 MICROCLA PEAQ-DSC 微量热差示扫描量热仪能够帮助用户快速确认维持高级结构稳定性的最佳条件,提供简洁、无缝的工作流程和自动化批量数据分析,其所提供的热稳定性信息被业内视为“金标准”技术,是一种非标记、全局性的数据。图6 MicroCal PEAQ-DSC 微量热差示扫描量热仪 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • naica®微滴芯片数字PCR系统量化造血干细胞移植儿童巨细胞病毒感染的病毒载量
    导读中国疾病预防控制中心国家病毒病预防控制研究所和中国首都儿科研究所的科学家在Canadian Journal of Infectious Diseases and Medical Microbiology上发表了题为The Viral Load of Human Cytomegalovirus Infection in Children following Hematopoietic Stem Cell Transplant by Chip Digital PCR的文章。文中应用naica® 微滴芯片数字PCR系统建立了芯片数字PCR(cdPCR)方法,能够精准定量HSCT前后儿童HCMV感染的病毒载量。质粒pUC57-UL83的cdPCR检测限为103拷贝/ml,qPCR检测限为297拷贝/ml。cdPCR检测HCMV AD169毒株的结果为146拷贝/ml,表明cdPCR的灵敏度高于qPCR。人类巨细胞病毒(HCMV)是一种普遍存在的β-疱疹病毒,已感染发展中国家高达90%的人口。作为一种常见病原体,HCMV感染在免疫抑制个体中引起了显著的发病率和死亡率,特别是在接受了造血干细胞移植(HSCT)的患者中,原因是原发感染后潜伏感染的主要靶细胞是造血细胞。对于HSCT后的高危儿童,应在出现临床症状之前检测HCMV感染,因为HCMV病毒的载量及变化与HSCT儿童HCMV感染的发展和严重程度高度相关。因此,HCMV病毒载量的定量检测对患儿的治疗至关重要。应用亮点:▶ 使用naica® 微滴芯片数字PCR系统开发了一种快速、直观、简便和准确的检测HSCT前后儿童HCMV病毒的绝对定量方法。▶ 通过质粒和培养毒株验证naica® 微滴芯片数字PCR系统灵敏度、特异性和重复性。实验方法:作者从首都儿科研究所儿童医院收集了122名异体造血干细胞移植患儿、3名自体造血干细胞移植患儿样本(男/女:73/52),中位年龄7.5岁。该研究通过质粒和培养毒株验证naica® 微滴芯片数字PCR系统灵敏度、特异性和重复性均优于qPCR。在HSCT前后,通过qPCR和cdPCR检测所有供体和受体血清中的HCMV病毒载量。实验结果:作者通过含有pUC57-UL83基因的质粒DNA分别评估cdPCR和qPCR的动态范围。cdPCR的检测限 (LOD) 为103拷贝/ml (2.0拷贝/反应),qPCR的LOD为297拷贝/ml。结果表明,cdPCR的灵敏度高于qPCR。为了评估cdPCR数据的重现性,作者使用质粒建立了HCMV DNA拷贝数的标准曲线。分析cdPCR检测的变异系数(CV、标准差/平均值)。结果表明,cdPCR检测具有良好的重复性(CVHCMV在125个HSCT患儿的检出率为30.40% (38/125),HCMV病毒载量范围为107拷贝/ml-6600拷贝/ml。男性组的检出率为30.14% (22/73),女性组的检出率为30.77% (16/52)。在0-12岁HSCT后HCMV阳性儿童中,HCMV的检出率为89.47% (34/38)。在0-6岁组中,男性的检出率为25.64% (10/39),女性的检出率为22.58% (7/31)。在7-12岁组中,男性的检出率为39.29% (11/28),女性的检出率为40% (6/15)。12岁以上患儿HCMV检出率为33.33% (4/12),男性检出率为16.67% (1/6),女性检出率为50% (3/6)。结果如表3所示。综上所述, cdPCR方法在HCMV检测领域比qPCR更敏感,能快速、直观、简便和准确的检测HSCT患儿HCMV感染率及病毒载量。参考文献:1.P. Griffiffiffiths, I. Baraniak, and M. Reeves, “,e pathogenesis of human cytomegalovirus,” Journal of Pathology, vol. 235, no. 2, pp. 288–297, 2015.2.L. Dupont and M. B. Reeves, “Cytomegalovirus latency and reactivation: recent insights into an age old problem,” Reviews in Medical Virology, vol. 26, no. 2, pp. 75–89, 2016.naica® 六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica® 六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
  • 【热点应用】高级多检测器SEC表征腺相关病毒载体的方法
    #本文由马尔文帕纳科应用专家冯慧庆供稿# 基因治疗是生物制药行业中一个快速增长的领域,通过基因治疗可实现疾病的治疗或预防。其中,重组腺相关病毒(rAAV)是目前基因治疗领域研究较多的一类病毒载体。腺相关病毒(adeno-associated virus, AAV)是微小病毒科(Parvoviridae)家族的成员之一,一般,研究中采用的重组腺相关病毒载体(Recombination adeno-associated virus, rAAV)是在非致病的野生型AAV基础上改造而成的基因载体,由于其种类多样、免疫原性极低、安全性高、宿主细胞范围广、扩散能力强、体内表达基因时间长等,rAAV被视为最有前途的基因研究和基因治疗载体之一。目前,rAAV的准确定量分析和表征的难度是阻碍基因治疗快速发展的关键因素。我们常常需要对rAAV进行综合全面表征,比如衣壳数量、实心率、颗粒尺寸、聚集体比例等。传统情况,rAAV滴度和病毒载量采用ELISA、ddPCR、AUC和EM等技术进行测量。但这些方法通常费时费力,而且精确度不高。本文通过GPC/SEC和多角度动态光散射(MADLS)两种分析技术分析rAAV5样品,展示了快速、准确和可靠地定量测量AAV的病毒滴度(AAV Titer)和实心率(% full AAV)的方法。 01仪器参数OMNISEC GPC/SEC多检测器系统非常适合于生物医药行业,可用于全面表征rAAV样品。OMNISEC包含一个示差折光检测器(RI),紫外线全波长阵列检测器(UV-Vis 190-900 nm)和光散射检测器,仅需一次进样,可精确测量绝对分子量、聚集体比例、病毒滴度和实心率。与传统HPLC不同,测量过程不依赖柱保留体积,也不需要一系列标样进行色谱柱校正。图1显示了使用OMNISEC测量的CQA关键质量参数。02检测方法我们采用Empty和Full rAAV5两个样品作为分析案例。Full rAAV5 载有已知分子量为785 kg/mol的PFB-GFP ssDNA。经qPCR和ELISA测量方式可知,该样本的病毒滴度为2.5x1013。采用色谱柱P4000和P3000串联,对rAAV样品的进行色谱分离。由OMNISEC软件采集分析测试结果,其中硬件系统包含OMNISEC RESOLVE(包含泵、自动进样器和柱温箱)和OMNISEC REVEAL(包含示差、UV/PDA和直角90°/小角7°光散射检测器)。样品经过分离洗脱后,使用共聚物分析方法确定样品两种不同组分的浓度和分子量。计算方法如下:其中,ConcCapsid是衣壳浓度(mg/mL),NA是阿伏伽德罗数,Mwcapsid是衣壳的分子量(g/mol),ConcDNA是DNA浓度(mg/mL),MwSeqDNA是来自序列的ssDNA的分子量。因此,通过计算出的颗粒浓度,可以很容易地得出样品实心率的百分比。 03检测结果案例一:图2显示了Empty rAAV5的三检测色谱图。RI信号由红色曲线表示,260 nm紫外信号由紫色曲线表示,直角光散射(RALS)信号由绿色曲线表示。样品包含四个部分:单体峰保留体积(RV)在12.5ml,碎片在16ml ,二聚体在10.5ml ,聚集体在8.5ml 。使用共聚物分析方法,可以得到表1结果。单体的分子量为3.84×106g/mol。衣壳的理论分子量为3.8×106g/mol,证实分析结果与预期相符。MW/Mn为分子量分布,描述了样品的分散性,单体和二聚体的值接近1,而聚集体和片段均显着高于1,表明在同一峰内有多个不同分子量的组分。Fraction of Sample表示样品组分百分含量,单体所占百分比为84.7%。Fraction of Protein显示了样品中衣壳的百分比,单体包含99.8%的衣壳。这证实了样本确实是Empty rAAV5。最后Empty rAAV5样品总滴度为5.91x1013Vp/ml。 案例二:第二个样品Full rAAV5的三检测器色谱图如图3所示。图中显示了与Empty rAAV5截然不同的色谱峰。分析色谱图可以看出,只包含两个不同的组分,其中单体峰,大概12.5ml RV处,包含Full 和Empty rAAV5的混合物,而聚集体出现在8ml RV处。测试结果见表2。对于主体的单体峰,计算出其混合物分子量为4.49×106g/mol,其中86%为衣壳。rAAV5的蛋白质组分的分子量为3.89×106g/mol,这与表1中Empty rAAV5 的数据一致。单体是总体的93.2%,样本的总滴度为7.48x1013VP/ml。其中单体包含78% Full rAAV5,22% Empty rAAV5。需要注意的是,这种分析方法假设样品要么是Full ,要么是Empty ,忽略部分装载或过度装载情况。Zetasizer Ultra纳米粒度及电位仪可以使用MADLS方式快速确定病毒滴度。从OMNISEC获得的数据与Zetasizer Ultra的粒子滴度进行了比较,两种技术之间有很好的相关性,见图4。另外,本文将Full rAAV5和Empty rAAV5以确定比例混合,来对Full rAAV5样品进行分析。表3显示了每个样品的预期值和实际值Full rAAV百分比。图5显示了期望值和实际值之间有很强的相关性,证实了OMNISEC确定样品实心率结果的可靠性。为了进一步评估OMNISEC对rAAV样品准确表征能力,我们进行了rAAV5样品的热应力稳定性研究,同时,基于ZS Ultra对聚集体的极高灵敏度,我们利用了ZS Ultra表征rAAV5聚集体的微小变化。测试条件是将rAAV5样品置于25oC到80oC之间进行测试。在不断加热过程中,在每个温度下测量rAAV5样品的粒径。在25oC和35oC之间,没有观察到粒径的变化。从35oC开始,可以观察到粒径开始增大,这表明样品开始发生变化(图6A)。30oC和45oC下的数据比较清楚地显示了这些样品之间的大小差异(图6B)。我们选择45oC条件,对OMNISEC进行进一步稳定性研究。将rAAV5样品在稳定在45oC,分别在2min 、5min、10min和15min后,取样品到OMNISEC上测试。图7色谱叠加图显示样品发生了明显的变化,聚集体百分含量增加,单体浓度含量降低。表4显示MW在此潜伏期内保持稳定,单体峰中的AAV百分比也保持稳定。结论:在这项研究中,我们展示了OMNISEC和Zetasizer Ultra在综合分析表征rAAV5样品的能力,以及将两者联合使用的应用价值。 OMNISEC多检测SEC系统将示差折光检测器、紫外全波长检测器、光散射检测器集成一体化设计,具有更高的灵敏度和准确度,通过一次进样分析,可提供各种血清型AAV样品的绝对分子量、衣壳大小、滴度、实心率、聚集体、片段和样品稳定性等关键质量属性。虽然这些参数中很多都可以使用传统的生物化学方法来确定,但OMNISEC提供了更为简单、可靠的方法,正逐渐成为一种表征分析AAV通用的技术工具。
  • 【热点应用】Zetasizer精准表征慢病毒载体 (LV) 颗粒粒径及滴度
    本文摘要本文通过介绍马尔文帕纳科纳米粒度及电位仪Zetasizer Ultra用于慢病毒载体颗粒粒径及载体滴度表征的实验设置及检测结果。让您快速实现慢病毒载体(LV)关键质量属性的评估。慢病毒载体(Lentiviral vector, LV)是在HIV-1病毒基础上改造而成的病毒载体系统,可以将外源基因或外源的shRNA有效地整合到宿主染色体上,从而达到持久性表达目的序列的效果。可有效地感染神经元细胞、肝细胞、心肌细胞、肿瘤细胞、内皮细胞、干细胞等多种类型的细胞,从而达到良好的的基因治疗效果。对于一些较难转染的细胞, 如原代细胞、干细胞、不分化的细胞等,使用慢病毒载体,能大大提高目的基因或目的shRNA的转导效率,且目的基因或目的shRNA整合到宿主细胞基因组的几率大大增加,能够比较方便快捷地实现目的基因或目的shRNA的长期、稳定表达。(部分内容来自百度百科)所以,在体外实验及体内实验的研究中慢病毒载体(LV)与腺病毒(Ad)和腺相关病毒(AAV)同为主流的病毒载体系统。其颗粒粒径约为90-120nm。在慢病毒载体(LV)的生产工艺中,有无团聚体 (aggregate),以及载体滴度(titer)的高低是重点考察的关键质量属性(CQAs)。Zetasizer Ultra纳米粒度仪通过对LV颗粒的粒径及载体滴度的表征,快速实现CQAs的测量。Zetasizer Ultra 纳米粒度电位仪实验方法设定使用Zetasizer Ultra-Red以及小体积石英比色皿(ZEN2112)进行相应的粒径和滴度测定。样品测试体积为20µ L,LV折射率、吸收率分别设置为1.45和0.001。分析结果通过多角度动态光散射(multi-angle DLS, MADLS)技术,我们对LV粒度大小及分布进行表征(图1) 。图中有两个粒径分布峰,分别位于106.4以及430.6nm,这说明体系中除了LV单体,还有团聚体产生。图1 LV样品的光强粒径分布图图2 LV样品的载体滴度此外,除了基于MADLS技术得到的颗粒的准确粒径分布图,我们还得到对应尺寸的载体滴度信息(图2)。可以看到LV单体的颗粒浓度约1x1012个颗粒/mL,团聚体颗粒浓度约为1x1010个颗粒/mL,仅为单体的1%。单体和聚集体浓度相差较大的情况下,Zetasizer仍可很好的区分单体和聚集体。点击拓展阅读:Zetasizer用于rAAV颗粒粒径及衣壳滴度
  • 全球首位女性艾滋治愈者出现|ddPCR确认病毒载量极低不可检出
    2023年3月,美国威尔康奈尔医学院的研究人员在Cell 期刊上发表" HIV-1 remission and possible cure in a woman after haplo-cord blood transplant "的论文。研究显示,一名混血女性艾滋病患者在接受干细胞移植37个月后,停止了抗艾滋病毒治疗,之后她的体内连续18个月没有检测到HIV-1。根据伯乐生命科学公众号发文表示,在接受 CCR5Δ32/Δ32 单倍相合脐带移植(脐带血细胞结合成人单倍干细胞)治疗急性髓系白血病(AML)后,经 ddPCR 确认血液中 HIV 载量极低不可检出,艾滋病可能得到了治愈。该患者成为继“柏林病人”、“伦敦病人”、“杜塞尔多夫病人”之后,第四例经发表的艾滋病治愈病例,被称为“纽约病人”。同时,也是全球首次成功治疗的女性艾滋病患者。此前,有两名男子通过 CCR5 Δ 32 纯合子突变异体成体干细胞移植治愈了艾滋(注:作者投稿时为 2 名男子治愈者,现为 3 名)。但是,CCR5Δ32 纯合子突变在人群中十分罕见,这严重限制了干细胞移植治愈 HIV 的可行性。Hsu Jingmei 团队将 CCR5Δ32/Δ32 脐带血细胞结合病人亲属的干细胞进行移植,同时解决 CCR5 Δ 32 纯合突变和 HLA 配型的难题,使患者的肿瘤和艾滋病都得到了缓解,目前缓解已持续 4.8 年。移植后 37 个月,患者停止服用抗艾滋病病毒药物(ATI),停药后超过 18 个月,病人血液中仍然没有出现 HIV-1 载量反弹。Hsu Jingmei 团队曾在2021年开发了基于 Bio-Rad QX200 平台的 ddPCR HIV-1 检测 assay,用于检测和监测隐匿性 HIV-1 感染。经过实验室和临床评估,该 assay 结果稳定可靠,重复性好,表现出非常高的分析特异性和接近单拷贝水平的检测灵敏度,检测下限(LoD)为 4.09 拷贝/百万外周血单核细胞(4.09 copies/million PBMCs)。
  • 赛多利斯中文刊物《病毒载体的加速开发、生产与监控》面世
    p style=" text-align: justify " strong ——一本指南带你深入了解开发疫苗载体的各种工具和技术 /strong br/ /p p style=" text-align: justify "   工艺强化的目标在于提高生产率,同时缩短时间、减少对产品和操作人员造成的污染和环境风险,以及减少操作量。Sartorius Stedim Biotech(SSB)于2018年9月正式推出英文刊物《病毒载体的加速开发、生产与监控》,聚焦:强化病毒载体生产过程的工具和技术。中文版已经面世。 /p p style=" text-align: justify "   一本指南带你深入了解开发疫苗载体的各种工具和技术 并探讨病毒载体生产商可以用于强化其生产工艺,实现更高生产率的各种方法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/46182a4f-7597-45e5-b941-c3139d4654be.jpg" title=" image1.png" alt=" image1.png" width=" 321" height=" 382" style=" width: 321px height: 382px " / /p p style=" text-align: center " strong 目录 /strong /p p style=" text-align: center " 《病毒载体开发、生产和工艺强化》 /p p style=" text-align: center " 《一次性平台加速病毒疫苗的开发和生产》 /p p style=" text-align: center " 《ABL Europe用于病毒载体生产的GMP工厂》 /p p style=" text-align: center " 《一次性生物反应器的生物安全考量》 /p p style=" text-align: center " a href=" http://url.ifenghuotai.cn/5i5" target=" _blank" 下载中文刊物 /a /p p style=" text-align: justify "    strong 《病毒载体开发、生产和工艺强化》 /strong /p p style=" text-align: justify "   2018年4月,Sartorius Stedim Biotech(SSB)在荷兰阿姆斯特丹诺富特酒店主办了一场病毒疫苗生产商研讨会。在此次研讨会上,来自ABL Europe、Janssen Vaccines和Max Plank Institute的嘉宾发表了三场演讲。这些外部演讲者同来自SSB的疫苗工艺和工艺强化专家一起进行了交谈。此次研讨会旨在概述可用于开发疫苗载体的各种工具和技术,并深入探讨病毒载体生产商可以用于强化其生产工艺,实现更高生产率的各种方法。 /p p style=" text-align: justify "   第一篇文章《病毒载体开发、生产和工艺强化》汇总了该研讨会上发表的演讲。三场客座演讲强调了需要强化病毒载体生产:生产高滴度和高载体量的劳动密集型的工艺步骤,需要进行仔细的工艺优化。赛多利斯依托其一次性使用技术平台,提供了各种工具和技术,以降低疫苗生产期间的资本成本并减少能源和水消耗。 /p p style=" text-align: justify "    strong 《一次性平台加速病毒疫苗的开发和生产》 /strong /p p style=" text-align: justify "   在第二篇文章《一次性平台加速病毒疫苗的开发和生产》中,Amé lie Boulais描述了如何将预定义技术相互集成,以便开发和生产各种疫苗。 /p p style=" text-align: justify "   SSB正在投入大量的资源来了解未来疫苗行业的生产需求。我们正在探索实施下一代疫苗一次性平台的最佳方式,避免重复各种候选疫苗的工作,从而缩短上市时间、降低生产成本和风险以及提高灵活性。根据我们的经验,每一种疫苗的工艺都是独特的。一种疫苗产品具有独特的特征。用于生产的细胞系都有自己细微的差别,生产工艺将面临单独的安全考虑。因此,需要使用多个平台来涵盖不同的细胞形态。Amé lie在该篇文章中还列举了病毒载体生产商可以在其工艺中使用的上下游加工技术的例子。 /p p style=" text-align: justify "    strong 《ABL Europe用于病毒载体生产的GMP工厂》 /strong /p p style=" text-align: justify "   即使著名的跨国制药公司通常也不具备生产直径较大的(& gt 0.2 μm)病毒载体或复制病毒载体,或二者同时生产的能力和专业知识,尤其是工业规模的批次。作为对用于病毒载体加工和一次性设计的SSB平台的重要支持,第三篇文章《ABL Europe用于病毒载体生产的GMP工厂》中所述的ABL生产现场有能力帮助生产用于各种应用,如溶瘤细胞、疫苗和基因疗法产品等的病毒载体。 /p p style=" text-align: justify " strong   《一次性生物反应器的生物安全考量》 /strong /p p style=" text-align: justify "   所有这些工作都不能忽略对安全和工艺灵活性的持续需求。第四篇文章《一次性生物反应器的生物安全考量》探讨了一次性使用组件在病毒载体生产中的风险因素。作者讨论了预防袋子破裂和过滤器堵塞,以及确保加工设备的稳定性,防止受到长期工作压力和温度影响的各种方式。在用于疫苗生产的一次性技术选择中,操作员的安全性是一个考量的重点。作者最后总结说道,公司在未来挑选生物反应器平台的时候,必须对一次性生物反应器供应商是否具备缓解生物安全风险的能力进行慎重考核,以便到采购时做出有根据的决定。 /p p style=" text-align: justify "   赛多利斯将近期发布刊物的部分内容。如果你感兴趣,欢迎下载刊物。敬请期待! /p p style=" text-align: justify "    strong 关于赛多利斯斯泰帝 /strong /p p style=" text-align: justify "   赛多利斯斯泰帝 (Sartorius Stedim Biotech) 是国际领先的生物制药行业设备和服务的供应商,为全球生物制药的开发与生产提供安全、及时、经济的一体化解决方案。作为完整解决方案的供应商, 赛多利斯斯泰帝提供几乎涵盖生物制药工艺所有步骤的产品组合。公司致力于推广一次性使用技术和增值服务,满足生物制药行业快速发展的技术需求。公司总部位于法国欧巴涅,在巴黎的欧洲交易所上市 因其位于欧洲、北美和亚洲的生产与研发中心以及遍布全球的销售网络而享誉世界。 /p
  • 赛默飞完成对Novasep病毒载体制造业务收购
    1月15日,生命科学行业服务和技术的领先供应商Groupe Novasep SAS(Novasep)宣布,赛默飞已经完成了对Novasep在比利时的病毒载体制造业务Henogen S.a.的收购,收购金额约为7.25亿欧元现金。Novasep的病毒载体制造业务为生物技术公司和大型生物制药客户提供疫苗和疗法的合同制造服务。Novasep的病毒载体业务位于比利时的Senefe和Gosselies,拥有7000多平方米最先进的临床和商业生产能力。该公司成立于20多年前,拥有约400名员工,在广泛的病毒载体领域拥有丰富的运营和技术经验,预计2020年收入为8000万欧元(约9500万美元)。赛默飞执行副总裁Michel Lagarde说:“Novasep的病毒载体业务是一个极好的战略契合点,因为赛默飞将继续在全球扩展其细胞和基因疫苗和治疗的能力。他们在欧洲的制造能力补充了我们在北美的四个开发和制造基地。此外,他们还带来了一支极具才华的团队,在广泛的病毒载体领域拥有超过20年的经验。这种结合将有利于我们在该地区寻求支持和能力的全球客户,以及为欧洲内外的患者提供新药的欧洲客户。”Novasep总裁兼首席执行官Michel Spagnol说:“赛默飞是我们病毒载体业务及其未来发展的杰出合作伙伴。我们多样化的客户群将受益于我们的病毒载体服务能力与赛默飞世尔的规模和能力的结合。我们有才华的员工将为一个致力于为患者提供开创性新药的组织带来深厚的专业知识。”该业务将是实验室产品和服务部门的制药服务业务的一部分。关于NovasepNovasep是一家为生命科学分子提供经济高效和可持续制造解决方案的全球供应商。Novasep的独特服务包括工艺开发服务、净化设备和交钥匙工艺、合同制造和复杂活性分子服务,适用于制药、生物制药、精细化工、食品和功能性配料以及发酵和化学商品行业。
  • 文献速递│荷载溶瘤病毒干细胞在急性髓系白血病中的应用研究
    急性髓系白血病(Acute Myeloid Leukemia, AML)是一组具有髓系特征的多发性异质性恶性肿瘤。通过化疗、放疗、造血干细胞移植、支持性治疗和靶向治疗等方式,可以提高患者五年总存活率;但是,与其他血液肿瘤相比,AML的治疗效果较差,最常见的表现是缓解后复发。因此,对于复发和化疗耐药的患者来说,迫切需要寻找新的具有有效和可控副作用的治疗药物和技术。溶瘤病毒(Oncolytic Virus, OVS)是一类具有复制能力的肿瘤杀伤型病毒,通过直接溶解感染的肿瘤细胞和间接增强宿主的抗肿瘤免疫力来介导肿瘤细胞的破坏。其种类有:新城疫病毒(Newcastle disease virus, NDV)、单纯疱疹病毒-1(Herpes simplex virus-1, HSV-1)、呼肠孤病毒(Reovirus)和溶瘤腺病毒(Oncolytic adenovirus)等。由于OVS优先破坏肿瘤细胞,而对正常细胞无害,同时越来越多的研究证据表明,AML细胞感染溶瘤病毒会显著增加肿瘤细胞的死亡率,这为AML的治疗提供了新的方法和思路,已经在多个临床试验中进行了安全性和可行性的探索。然而,B淋巴细胞会对血液循环中的OVS产生中和抗体(Neutralizing Bntibodies、NAbs),从而阻止病毒的传播,最终会降低病毒的治疗效果。▲ OVS的双重作用模式,优先靶向并杀死癌细胞,而对正常细胞几乎没有有害的影响间充质干细胞(Mesenchymal stem cells, MSCs)是一类存在于多种组织(如骨髓、脐带血和脐带组织、胎盘组织、脂肪组织等),具有多向分化潜力的多能干细胞。在过去的十年中,MSCs被认为是OVS的理想载体,其原因有:(1)、MSCs为病毒提供了一个复制场所;(2)、MSCs能避免被免疫系统清除;(3)、MSCs确保病毒能到达肿瘤部位;(4)、MSCs会分泌细胞因子,增强抗肿瘤免疫反应。然而,携带溶瘤病毒的人脐带来源的间充质干细胞(Human umbilical cord-derived MSCs, Huc-MSCs)的抗肿瘤效果及其分子机制尚不清楚。▲ 间充质干细胞的分化潜力近日,贵州医科大学成体干细胞转化研究重点实验室赵星和何志旭教授课题组首次报道Huc-MSCs作为呼肠孤病毒的细胞载体,并使用博鹭腾AniView100多模式动物活体成像系统检测携带呼肠孤病毒的Huc-MSCs和MSCs在活体内对AML的治疗效果和抗肿瘤效果。该工作有助于提升研究人员对MSCs携带OVS的抗肿瘤机制的理解,并可能为临床治疗AML提供新的策略。相关成果已在国际著名期刊《International Immunopharmacology》发表。评价携带呼肠孤病毒的Huc-MSCs在体内的治疗效果。根据荧光素酶报告基因可用于体内移植的Huc-MSCs的定量,将呼肠孤病毒(Luc-MSCs-Reo)负载于Huc-MSCs,并静脉注射注射到AML小鼠模型内。通过博鹭腾AniView100多模式动物活体成像系统进行成像,结果显示Huc-MSCs位置同肿瘤THP-1细胞定位相同。小鼠的Kaplan-Meier生存曲线结果表明,接受呼肠孤病毒感染的Huc-MSCs的小鼠的中位存活时间比接受裸鼠呼肠孤病毒的小鼠显著增加。这些数据证实了Huc-MSCs作为呼肠孤病毒载体具有良好的治疗效果。▲ 携带呼肠孤病毒的Huc-MSCs对AML小鼠模型的治疗作用评价携带呼肠孤病毒的MSCs的体内抗肿瘤效果。建立具有免疫活性的小鼠AML模型,通过博鹭腾AniView100多模式动物活体成像系统进行成像,结果显示标记DIR的MSCs和呼肠孤病毒感染的MSCs对C1498肿瘤具有肿瘤归巢能力,提示携带呼肠孤病毒的MSCs维持其固有的向肿瘤细胞迁移的能力。根据各组的肿瘤体积和重量、肿瘤中的病毒RNA定量显示、治疗后小鼠血清干扰素-γ和肿瘤坏死因子-α水平及免疫组织化学法观察到肿瘤中CD8的表达结果,可得MSCs有效地将呼肠孤病毒运送到肿瘤部位,并触发小鼠的免疫反应,对肿瘤生长有明显的抑制作用。这些结果证实了MSCs载体能够增强呼肠孤病毒的抗肿瘤效果。▲ 携带呼肠孤病毒的MSCs对C57BL/6小鼠C1498肿瘤的治疗作用
  • 赛多利斯与五加和基因科技达成战略合作,共建基因治疗病毒载体生产平台
    仪器信息网讯 2021年6月18日,国际领先的生物工艺完整解决方案提供者赛多利斯与国内基因治疗先行者五加和基因科技于北京大兴生物医药产业基地举行战略合作签约仪式。双方将展开深度技术合作,共同搭建高效、具有成本优势且符合GMP要求的基因治疗病毒载体生产平台。双方将携手推出面向行业从业者的工艺技术培训项目,为高速发展中的中国基因治疗行业培养更多优质人才,推动基因治疗产业在中国的商业化和长期发展。内容提要:双方将展开深度合作,整合技术优势,共同开发并优化高效、具有成本优势且符合GMP要求的基因治疗病毒载体生产平台,为客户降本增效;双方将携手推出面向基因治疗从业者的工艺技术培训,旨在为高速发展的本土基因治疗行业输出更多人才,完善行业生态;这项合作致力于赋能本土基因治疗赛道,加速中国基因治疗商业化,早日惠及更多患者,让基因药“治得好,用得起”。“国内基因治疗行业在积累多年后正式进入发展快车道。五加和在病毒载体领域深耕多年,跟赛多利斯有悠久的合作历史。此次的合作有助于加速本土基因药物的上市速度和成本降低,最终使药物研发团队和患者受益。”五加和基因科技创始人兼董事长董小岩先生表示:“国内基因治疗药物受众群体巨大,‘没得治’和‘用不起’是患者面临的首要问题。我们的最终目的是让中国老百姓都能用上基因药。不但要‘治得好’,还要‘用得起’。”“本次合作是基于长期的相互信任。作为生物工艺完整解决方案领导者,我们高度重视细胞和基因治疗在中国的快速发展,正在持续加大投入。” 赛多利斯生物工艺及解决方案事业部中国区负责人王旭宇女士表示,“赛多利斯的技术和产品在基因治疗领域拥有独特的创新优势:高通量的ambr® 平台结合MODDE® 的DoE实验设计方法可有效加速上游工艺开发速度;CIMmultus® 整体柱在提高AAV(腺相关病毒)的纯化收率的同时有效去除空壳病毒,从而提高生产效率。五加和基因科技是深耕病毒载体基础研究的专家——本次合作将充分结合双方的优势。不但要为国内的基因治疗企业提高工艺效率,还要从长期考虑,为行业输出更多人才,加速基因治疗在中国的商业化进程。”关于赛多利斯赛多利斯是国际领先的生命科学研究和生物制药行业合作伙伴。集团的实验室产品及服务板块为生物制药企业以及各类科研机构提供创新的实验室设备及产品,以满足客户开展高端科研实验和严苛的质控需求。集团的生物工艺解决方案板块提供全套的生物制药设备,并专注于一次性解决方案,帮助客户安全高效地生产生物药品和疫苗。集团营业额保持着两位数的年均增长率,并通过收购互补性技术不断扩大我们的业务范围。2020财年,集团销售额达23.4亿欧元。截止2020年,集团拥有约11,000名员工,60多个生产和销售基地,服务于全球用户。关于五加和基因科技五加和基因科技为客户提供从药物设计到商业化⽣产的⼀体化CDMO解决⽅案。公司技术团队在病毒载体领域潜心耕耘20余年,拥有AAV(腺相关病毒)、HSV(单纯疱疹病毒)、AdV(腺病毒)、LV(慢病毒)等多种临床级病毒载体制备经验。五加和基因于北京建有两个中试与研发基地共7000多平⽶,CDMO服务范围包括科研服务、符合GMP要求的中试和临床级制品的制备服务、质量研究服务和注册申报服务,满⾜客户从早期研发、新药临床试验申报和I/Ⅱ/Ⅲ期临床试验的要求。
  • 《污水中新型冠状病毒富集浓缩和核酸检测方法标准》发布(可下载)
    4 月 6 日,国家卫健委法规司发布“关于发布推荐性卫生行业标准《污水中新型冠状病毒富集浓缩和核酸检测方法标准》的通告”,其中规定了污水中新型冠状病毒富集浓缩和核酸检测方法,适用于生活污水、医疗机构污水中新型冠状病毒富集浓缩和核酸检测。点击此处下载高清PDF电子版:WST799—2022 《污水中新型冠状病毒富集浓缩和核酸检测方法标准》新冠病毒严重威胁人类健康,迫切需要更多的监测途径作为疫情监测预警新冠病毒疫情已发展成“全球性大流行病”,严重威胁人类健康和社会经济发展,且近日国内部分城市疫情出现反弹现象,众多地区无症状感染者数量增加,可见防控形势具有长期性和复杂性。至今为止,临床病毒筛查是疫情预警防控的主要手段,但是基于临床检测的预警是在已出现病例之后再对其居住社区及密切接触人员开展流行病学回溯,考虑到新冠病毒3-14天潜伏期和出现明显症状之后再去医院诊断的时间,这种预警方式具有一定的滞后性,所以当下迫切需要更多的监测途径作为疫情监测预警的补充,从而有效阻断病毒传播、降低疫情发生的损失。污水站的新冠病毒密度已成为新冠病毒传播的一个早期预警信号据《科学通报》报道,2021年6月份香港大学张彤教授团队在一栋未出现确诊者大楼的多份污水样本中检测出新冠病毒,此举为社区公共卫生防控监测提供早期预警信息,亦成为采取后续防疫措施的重要依据;武汉疫情期间,湖北省环科院等在武汉疫区医院化粪池上层泥水和污水处理设施污泥样品中检出了病毒核酸;广州疾控中心的流行病学调查证明了粪便排泄物是新冠病毒传播的重要载体;清华大学也在北京新发地疫情暴发之前的小红门污水处理厂进水中检出了病毒核酸;国外同样已有多家研究机构在疫情爆发伊始或爆发前就在市政污水中检出新冠病毒,今年1月21日,美国疾病控制与预防中心 (CDC)就曾经发布报告称,新冠病毒的变种奥密克戎(Omicron)很有可能在美国首例确诊病例官宣的一周多前,就已经存在于纽约市的废水中了。由此可见,通过监测城镇污水站进水中新冠病毒的密度变化可以及时反映出污水处理厂服务区域人群的病毒感染情况污水站的新冠病毒密度已成为新冠病毒传播的一个早期预警信号。而且,城镇污水厂能够覆盖大部分人群,与基于临床检测的病毒预警相比,基于污水中新冠病毒监测的疫情预警覆盖面更广,时效性更强,经济社会成本更低,这对于公共部门开展防疫工作有重要意义。随着新一轮新冠疫情的猛烈来袭,生活污水中新冠病毒密度正在大幅增加,污水处理厂站一线工作人员感染风险大幅上升,大家应该提高警惕,并做好相关的防护工作。在美国,据央视财经3月17日报道,美国疾控中心在过去两周内对各地污水处理站进行检测后公布的数据显示,超过三分之一的污水处理点检测出新冠病毒密度增加,其中有 37% 的涨幅在 100% 以上,有 30% 的涨幅超过 1000% 。而在3月1日至3月10日期间,美国疾病控制与预防中心 (CDC)监测的超过三分之一的废水样本点都显示出新冠病毒呈上升趋势。如何防止新冠病毒通过污水传播?首先,尽可能接种加强针疫苗。相关研究显示,2针mRNA疫苗或腺病毒载体疫苗对奥密克戎产生的中和抗体下降明显(三针灭活对奥密克戎的中和能力待研究确认),原有疫苗接种方式效果大减。因此, 接种加强针就成为了污水处理工作人员的必要任务之一,尤其是感染风险较高的运维人员、化验人员,更是应该优先安排接种疫苗。其次,规范操作流程,降低感染风险。相对来说,污水处理厂的污水提升泵站、粗细格栅、旋流沉沙池等预处理段,以及污泥脱水间属于高风险场所,最有可能造成病毒等病原体暴露并引发操作人员感染风险,所以应该更加规范操作流程。结合实际情况,可以采取以下防护措施:1、现场操作人员加强自我防护意识,在上岗前佩戴好口罩和手套等基本防护用品,尽量做到不与污水、污泥、砂砾、栅渣等直接接触;2、针对进水泵房、预处理段、污泥脱水工段操作以及化验取水采样,提高防护等级,除口罩和手套外,配备护目镜和防护服;3、由于污水厂需要经常记录数据,建议保持给笔消毒,并且人手一只笔,防止交叉感染;4、加强集中排气口的消毒,要求人员尽可能避开排放口的气流;5、作业完毕后,及时对防护用具进行全面清洗消毒,加强个人卫生,勤洗手、勤消毒;6、定期对预处理段产生的栅渣进行消毒处理,及时安排运输车辆对栅渣进行清理转运。第三,污水处理厂加强消毒杀菌。根据国家卫健委发布的《新型冠状病毒肺炎诊疗方案》,新型冠状病毒对紫外线和热敏感, 56 ℃ 30min 、乙醚、 75% 乙醇及含氯消毒液等脂溶剂均能有效灭火病毒。应该说,污水处理行业虽然不像医务人员那样身处抗疫第一线,但 作为应战新冠病毒的 “第二战场”,污水处理人员同样面临着巨大的感染风险。在之前的疫情中,尽管困难重重,但污水处理行业仍然克服艰难险阻,保持了全国5000多座污水厂的正常运行。如今,新的一轮疫情卷土重来,污水处理行业再次面临巨大的考验。建议各地环保部门在加强监管的同时,还要给予一定的帮助扶持,并在医疗废水处理环节加强预处理,尽可能保证达标排放,从而避免对下游污水处理厂造成冲击,减少污水处理环节的压力。
  • 226万!黑龙江省疾病预防控制中心病毒序列基因载体合成仪等采购项目
    项目编号:[230001]FDGJ[CS]20220072项目名称:免疫规划实验室设备采购采购方式:竞争性磋商预算金额:2,269,200.00元采购需求:合同包1(分析仪器):合同包预算金额:2,269,200.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他分析仪器病毒序列基因载体合成仪66cm*77cm*53cm1(台)详见采购文件2,150,000.00-1-2其他分析仪器多道电动移液器15-300ul4(支)详见采购文件53,200.00-1-3其他分析仪器多道移液器30-300ul4(支)详见采购文件44,000.00-1-4其他分析仪器多道移液器5-50ul2(支)详见采购文件22,000.00-本合同包不接受联合体投标合同履行期限:合同签订后45个日历日内交货
  • 榜首!新羿生物登顶中关村前沿大赛病毒检测领域TOP10
    6月18日下午,2020中关村国际前沿科技创新大赛病毒检测技术专场决赛“云”上PK,新羿生物带来的基于数字PCR的新型冠状病毒核酸检测产品,为清华大学成果转化项目,该产品的特点是可实现核酸单分子级检测且不依赖于标准曲线的定量。新羿生物所自主研发的微液滴数字PCR技术,不仅可用于新型冠状病毒核酸检测,更是可在感染、肿瘤和出生缺陷领域广泛应用的下一代分子诊断新平台。该项目凭借其技术上明显优势得到评委的高度认可和好评,成功登顶TOP10榜首。新羿生物新冠解决方案新羿生物新冠病毒数字PCR检测产品,除了可用于新冠筛查外,有望在抗疫中可发挥如下独特作用:有接触史的无症状感染者排查;疑似患者复核,可用于荧光PCR检测可疑样本判定;新冠病毒感染患者治疗评估,观察病毒载量动态变化;新冠药物评价;新冠患者病毒转阴复核,用于指导出院。新羿TD-1数字PCR系统新冠病毒 2019-nCoV 核酸检测试剂盒新羿生物新冠解决方案特点灵敏度高:检测下限3copies/反应;定量准确:无需标准品和标准曲线;通量较高:一次PCR可以完成96样本;操作简便:一步上样,操作简单;封闭检测:全封闭体系检测,可防止气溶胶污染,预防假阳性;特异性好:与其他常见呼吸道病原体(病毒、细菌、真菌)无交叉反应。新羿生物抗疫之路2020年初,新冠疫情发生后,新羿生物及时联合清华大学生物医学工程系等单位协同开展科技攻关,在新羿数字PCR系统的基础上开发了新型冠状病毒2019-nCoV核酸检测试剂盒(数字PCR法)。春节也坚持做攻关研发,每个新羿人都要为新冠抗疫贡献自己的力量。近日的北京疫情风险升高,新冠战斗警报再次拉响。新冠病毒的核酸检测是确诊过程中的重要环节,新羿人会加快科技攻关,为打赢疫情防控阻击战提供强大科技支撑。新羿新冠产品经多家疫情防控重点医院和重点实验室使用,产品的技术优势得到了多方专业机构的认可,并已获欧盟CE市场准入资质。
  • 厦大牵头研发的鼻喷流感病毒载体新冠肺炎疫苗获批紧急使用!
    12月2日,经国家卫生健康委提出建议,国家药品监督管理局组织论证同意,由厦门大学、香港大学、万泰生物联合研发的鼻喷流感病毒载体新冠肺炎疫苗(以下简称“鼻喷苗”)获批紧急使用!该疫苗是我国布局新冠疫苗应急攻关的五条技术路线之一,也是全球最早进入临床试验以及迄今唯一在三期临床试验中验证了安全性和广谱有效性的黏膜免疫新冠疫苗。鼻喷苗采用经特别改造以提高安全性和有效性的双重减毒甲型流感病毒作为载体,插入新冠病毒刺突蛋白RBD基因片段研制而成。流感病毒具有与新冠病毒(尤其是奥密克戎变异株)高度重叠的从鼻腔开始的全呼吸道易感细胞解剖分布特点,因此该疫苗通过鼻腔喷雾方式接种可以模拟病毒自然感染方式在呼吸道形成预防新冠病毒入侵的第一线免疫屏障,且与肌肉注射式新冠疫苗诱导全身性保护的机制彼此互补,有利于形成更全面的保护。研究显示鼻喷苗可诱导包括细胞免疫、体液免疫、固有免疫和训练免疫等多维度保护性免疫应答从而发挥广谱保护效果,因此基本不受病毒抗体逃逸突变的影响,对原型株或是包括奥密克戎BF.7、XBB、BQ.1.1变异株在内的迄今各主要变异株的保护性免疫应答强度相当。鼻喷苗三期临床试验是全球第一个黏膜免疫新冠疫苗的随机对照保护效力试验,在菲律宾、南非、越南和哥伦比亚等国入组了31038名18-91岁志愿者。临床试验数据显示,无论作为基础免疫还是序贯加强免疫,鼻喷苗对奥密克戎变异株感染导致的新冠病毒病(COVID-19)具有良好保护效果:(1)对住院及以上严重疾病的保护效力为100%;(2)在既往无其它新冠疫苗免疫史人群中,对症状较明显病例(具有3个及以上新冠相关症状)的保护效力为67%;对包括仅有轻微症状者在内的所有症状性感染的保护效力为55%;(3)在既往有新冠灭活疫苗免疫史的人群中,序贯加强鼻喷苗与用安慰剂加强相比,对症状较明显病例的相对保护效力为63%。此外,鼻喷苗安全性极佳,疫苗组和安慰剂组不良反应发生率相同且症状轻微,未发生疫苗相关严重不良事件。基于老年人和有基础慢病等脆弱人群是疫苗应用的最优先群体的考虑,该研究特别提高了志愿者中的老年人和有基础慢病人群的比例,共包含了4557名60岁以上老年人、4441名慢病患者(高血压、糖尿病、呼吸道疾病等),结果显示鼻喷苗对老年人、慢病人群的保护效力不弱于中青年健康人群,在各个群体中均表现出很好的安全性,疫苗组的不良反应情况与安慰剂对照组相当。鼻喷苗有效性好、广谱抗变异、安全性高、便捷无痛、接受度高,并且在老年人群、慢病人群中同样有极佳安全性和有效性,接种禁忌症少,可为我国高危群体疫苗犹豫难题的破解提供有力武器。鼻喷苗优先用于老年/慢病等高危人群的序贯加强以及疫苗犹豫人群的免疫,可显著降低我国高危人群的重症及死亡风险,避免医疗资源挤兑的大规模发生,为今后我国全面开放提供更全面保障。鼻喷苗的研发工作由夏宁邵教授牵头,获得了国家重点研发计划应急攻关项目、国家自然科学基金专项项目、教育部疫苗与分子诊断集成攻关大平台项目、教育部高校新冠肺炎防治科技攻关重点项目、福建省科技重大专项应急攻关项目、福建省自然科学基金杰青/重点项目、厦门市科技计划专项应急攻关项目、厦门大学“双一流”学科建设项目等支持。
  • 非洲猪瘟PCR检测仪-一款屠宰场神器猪瘟病毒现场检测仪#2022已更新
    非洲猪瘟PCR检测仪-一款屠宰场神器猪瘟病毒现场检测仪#2022已更新بكرللكشفعنحمىالخنازيرالأفريقية-قطعةأثريةمنذبحالخنازير【品牌型号:天合环境TH-P800】在2018年,非洲猪瘟疫病席卷了我国生猪养殖行业,并且给我国各大中小型养殖场带来了严重的打击,使养殖者损失惨重,此次非洲猪瘟不仅导致了猪肉价格一路飙升,而且还导致了我国众多生猪养殖人员对其所养殖的生猪进行了紧急扑杀,对于全国的生猪养殖者都造成了无法估量的损失,同时也在很长时间内造成了养殖者停养的现象。但是随着目前疫病的消退以及养殖利润的客观性,很多养殖者都有再次养殖的想法,所以,在新的养殖工作中,必须掌握对于非洲猪瘟的防控技术,对非洲猪瘟的检测工作,避免悲剧的再次发生。一、仪器用途非洲猪瘟病毒检测是非洲猪瘟防控工作的重要举措,意义重大。为进一步提高非洲猪瘟病毒检测结果准确性,规范非洲猪瘟病毒诊断制品生产、经营和使用行为,2021年1月1日起,各有关部门和单位在动物检疫或疫病监测、诊断中,对生猪及其产品开展非洲猪瘟病毒检测,应当使用已取得农业农村部核发的产品批准文号的非洲猪瘟病毒诊断制品,确保检测结果准确。天合非洲猪瘟PCR检测仪(实时荧光定量PCR仪支持变温检测)用于运行病毒检测实验,并对实验数据进行分析 仪器既可在实验室内操作,又可用于野外科学实验,配合相应试剂,对取自待检测样本的分析物或其他分析物中的目标核酸进行快速、准确的定性检测。天合非洲猪瘟检测仪配套非洲猪瘟病毒荧光pcr检测试剂盒、非洲猪瘟病毒荧光pcr核酸检测试剂盒均已经获得农业农村部产品批准,可以满足非洲猪瘟核酸现场快速检测需求。可定量快速畜牧类疾病诊断如非洲猪瘟、禽流感、猪瘟、猪蓝耳、伪狂犬等疾病,广泛应用于养殖场、屠宰场、食品加工厂、肉产品深加工企业、农业农村部、畜牧局、检验检疫单位使用。实验员需要经过实验室技术和仪器、软件操作的专门培训,具备熟练的相关操作技能。二、仪器特点1.体积小,重量轻,易于携带。轻松满足外出实验的需求。2.内置7寸高清电容屏PDA,触屏操作,简便快捷。3.Marlow高品质Peltier制冷片,结合德国高端PT1000温度传感器以及电性电阻加热补偿边缘的温度控制模式,最大升温速度7℃,最大降温速度5℃,大大缩短实验时间。4.整板3s快速采光模式,保证实验结果孔位一致性。5.简洁直观的软件引导,轻松开启检测实验。三、非洲猪瘟PCR检测仪应用领域□基础科学研究□病原体检测□肉制品掺假□转基因检测□食品安全检测□药物开发及合理用药□基因表达□水体监测四、技术参数样品容量:8x0.2ml、支持8联管适用耗材:常见透明PCR耗材,8x0.2ml排管,0.2ml单管反应体系:5-120ul反应模式体系加热/制冷模块:进口半导体热电模块温度控制范围:4°C-99℃升降温平均速率≥2°C/秒温控精度:≤±0.1°C温度均匀性:≤±0.2°C温控区域数量:多点(2点)梯度数:0个梯度温度范围:无梯度孔数:无激发光源:免维护led激发光波长范围:400-700nm检测部件:进口光电检测器检测通道数:标配1通道(FAM)适用染料和探针:FAM/SYBR Green I软件功能:荧光定量PCR系统软件 实时扩增反应曲线功能 特定标本实时反应曲线显示 数据分析功能 阴阳结果自动判定功能 图形化显示功能。噪音:45 dB屏幕尺寸:7英寸(HD)触摸屏:电容式外接USB:支持数据导入导出热盖:自动压力调节外观尺寸:(长宽高)355X200X124mm净重:约2.5Kg
  • 新品发布|GatorPro:支持AAV病毒载体分析,32通道并行数据采集
    近日,Gator Bio正式推出重磅新品—GatorPro高通量非标记生物分子相互作用分析仪,可用于抗体开发过程中的动力学、表位分组和定量实验。仪器还支持病毒载体分析相关的多种血清型AAV定量及空壳率测定。GatorPro产品应用亮点:
  • 珀金埃尔默宣布将收购基于病毒载体的基因传递技术领导者SIRION Biotech
    SIRION Biotech的解决方案将巩固珀金埃尔默在细胞和基因治疗研发领域不断增长的地位珀金埃尔默宣布,其已达成协议,将收购SIRION Biotech GmbH公司。SIRION是一家全球领先的基于病毒载体的基因传递技术提供商。其技术可有效提升细胞和基因疗法研发中涉及到的基因传递效率。此次收购预计将在2021年第三季度完成。SIRION总部位于德国慕尼黑。公司目前已建立了强大的授权产品组合,为十多家大型制药和生物技术公司提供产品和技术,用于超过25种疾病和病症研究。SIRION的加入将在生物制药和碱基编辑技术领域,与珀金埃尔默此前收购的Horizon Discovery形成有力互补。Horizon提供基于CRISPR、CRISPRi和RNAi等技术的基因编辑和调控解决方案,以及定制细胞株。此外,此次收购还将进一步拓宽珀金埃尔默现有的细胞和基因研究解决方案,主要包括行业领先的高内涵、小动物活体影像和细胞全景绘制筛选技术;新兴的免疫检测;多模式细胞检测平台以及先进的自动化、微流控、信息学及分析平台。珀金埃尔默公司总裁兼首席执行官Prahlad Singh在评论该项收购协议时说:“目前70%的基因治疗试验都基于病毒载体。鉴于像癌症这样的疾病治疗中对靶向性、高效传递工具的需求不断增长,我们预计它将继续保持强劲势头。通过将SIRION创新的‘高效传递技术’与Horizon基因编辑工具和表型研究解决方案相结合,我们将能更好地支持、简化并加速细胞和基因治疗工作流程。”SIRION首席执行官Christian Thirion博士补充说:“我们很高兴与珀金埃尔默合作,继续扩大我们在细胞和基因治疗中病毒载体技术方面的领先地位。珀金埃尔默强大的产品组合,将极大地帮助我们更好地进入基因组分析、基因编辑和碱基编辑技术等领域,我们也将从其强大的全球布局和覆盖中获益。”关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有约14000名专业技术人员,服务于190个国家和地区,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2020年,珀金埃尔默年营收达到约38亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn关于SIRION Biotech GmbH SIRION Biotech成立于2005年,致力于推进用于基因和细胞治疗以及疫苗开发的新一代病毒载体技术。SIRION发展了新型的用于治疗的病毒载体,并利用基于慢病毒、腺病毒和类腺病毒的专利技术平台,加速了合作伙伴的药物研发进程。更多信息,请浏览www.sirion-biotech.com.
  • 珀金埃尔默宣布将收购基于病毒载体的基因传递技术领导者SIRION Biotech
    近日,珀金埃尔默宣布,其已达成协议,将收购SIRION Biotech GmbH公司。SIRION是一家全球领先的基于病毒载体的基因传递技术提供商。其技术可有效提升细胞和基因疗法研发中涉及到的基因传递效率。此次收购预计将在2021年第三季度完成。SIRION总部位于德国慕尼黑。公司目前已建立了强大的授权产品组合,为十多家大型制药和生物技术公司提供产品和技术,用于超过25种疾病和病症研究。SIRION的加入将在生物制药和碱基编辑技术领域,与珀金埃尔默此前收购的Horizon Discovery形成有力互补。Horizon提供基于CRISPR、CRISPRi和RNAi等技术的基因编辑和调控解决方案,以及定制细胞株。此外,此次收购还将进一步拓宽珀金埃尔默现有的细胞和基因研究解决方案,主要包括行业领先的高内涵、小动物活体影像和细胞全景绘制筛选技术;新兴的免疫检测;多模式细胞检测平台以及先进的自动化、微流控、信息学及分析平台。珀金埃尔默公司总裁兼首席执行官Prahlad Singh在评论该项收购协议时说:“目前70%的基因治疗试验都基于病毒载体。鉴于像癌症这样的疾病治疗中对靶向性、高效传递工具的需求不断增长,我们预计它将继续保持强劲势头。通过将SIRION创新的‘高效传递技术’与Horizon基因编辑工具和表型研究解决方案相结合,我们将能更好地支持、简化并加速细胞和基因治疗工作流程。”SIRION首席执行官Christian Thirion博士补充说:“我们很高兴与珀金埃尔默合作,继续扩大我们在细胞和基因治疗中病毒载体技术方面的领先地位。珀金埃尔默强大的产品组合,将极大地帮助我们更好地进入基因组分析、基因编辑和碱基编辑技术等领域,我们也将从其强大的全球布局和覆盖中获益。”关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有约14000名专业技术人员,服务于190个国家和地区,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2020年,珀金埃尔默年营收达到约38亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。关于SIRION Biotech GmbHSIRION Biotech成立于2005年,致力于推进用于基因和细胞治疗以及疫苗开发的新一代病毒载体技术。SIRION发展了新型的用于治疗的病毒载体,并利用基于慢病毒、腺病毒和类腺病毒的专利技术平台,加速了合作伙伴的药物研发进程。
  • 分子影像是研究病毒的重要手段——访中科院武汉病毒所公共技术服务中心高级工程师高丁博士
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 作为人类疾病的主要病原体之一,病毒结构简单,可作为某些遗传性疾病治疗、肿瘤治疗、基因疫苗等药物研发的基因工程载体 此外,病毒基因简单,对病毒基因进行研究可揭开生物界细胞基因调控和表达的许多未解之谜。可以说,病毒研究对人类社会有着广泛而重要的意义,应用覆盖生物医药、疾控、农业、畜牧业等领域。那么做病毒研究的一般工作流程是怎样的呢?都需要用到哪些高精尖的科学仪器呢? /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   近日,仪器信息网来到中国科学院武汉病毒研究所公共技术服务中心(以下简称“公共技术服务中心”),就以上问题采访了公共技术服务中心高级工程师高丁博士。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/3b1bca23-d97b-4cf2-b2b7-411799af38ac.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong 中科院武汉病毒所公共技术服务中心高级工程师 高丁 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 特色的分子影像技术平台 /strong /span /p p   据高丁博士介绍,分子影像是贯穿病毒研究工作的主线。“比如病毒与宿主细胞之间的相互作用,还有病毒本身的形态、结构分析等,在分子生物学基础上,每一步实验最后都要由显微成像技术来进行验证。” /p p   目前,公共技术服务中心具备从高分辨率显微成像一直到活体动物成像的技术平台。包括: /p p    span style=" color: rgb(79, 129, 189) " 光学显微成像系统: /span 超高分辨率荧光显微镜、双碟片活细胞荧光共聚焦显微镜、双光子超分辨点扫描共聚焦显微镜 /p p    span style=" color: rgb(79, 129, 189) " 组织切片成像分析系统: /span 多光谱病理切片成像系统、数字切片扫描分析系统 /p p    span style=" color: rgb(79, 129, 189) " 活体成像系统: /span 2D/3D小动物活体成像系统 /p p   span style=" color: rgb(79, 129, 189) "  电子显微成像系统: /span 300KV冷冻透射电子显微镜、200KV透射电子显微镜、100KV透射电子显微镜、场发射扫描电镜 /p p    span style=" color: rgb(79, 129, 189) " 流式细胞分析系统: /span 分选流式细胞仪、分析流式细胞仪、质谱流式细胞仪 /p p   武汉病毒所的分子影像平台是其特色的技术平台。“我们这一套东西已经发展了几十年,在技术积累和传承方面都很成熟和完善,比较有优势。” /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 从高分辨率显微成像到动物活体影像,横跨微观到宏观的多尺度研究手段 /strong /span /p p   近几年来,武汉病毒所仪器平台建设在最早的以电子显微镜技术为特色的科研服务基础上,扩展了荧光显微镜方向和一些生物大分子分析仪器,先后引进了珀金埃尔默(PerkinElmer)公司的Operetta高内涵筛选系统、UltraVIEW VoX双碟片活细胞荧光共聚焦显微镜、IVIS Spectrum小动物活体三维成像系统、Vectra多光谱组织成像系统等仪器,涵盖从细胞到活体到组织的各研究对象,完成了从微观到宏观各尺度科研手段的覆盖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/391966ef-787a-4ac0-a6d6-1878340029a2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong Operetta 高内涵筛选系统 /strong /p p   引进这些仪器是出于何种考虑呢?高丁解释说:“我们在做平台建设时,主要是考虑到从生物学的尺度上来完善仪器的使用链,包括从分子成像一直到活体动物成像,中间跨度从分子、病毒、细菌、细胞器、细胞、组织、器官到小动物这样横跨纳米到厘米级尺度的成像。所以我们一直在补充完善整个平台,就是为了实现整个跨尺度的研究。研究病毒是从它的生物大分子开始,一直研究到它对活体的影响,所以这个仪器链也是必须的。” /p p   从尺度上来讲,双碟片活细胞荧光共聚焦显微镜可以用来研究病毒侵染、细胞内病毒与细胞器之间相互作用关系的实验,观察病毒的动态。高内涵筛选系统可以在稍微宏观一点的基础上看药物对病毒侵染的影响,并且可以在细胞学水平对药物的抗病毒效果进行评价。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/014d9be3-3b5b-43e6-8a21-3b788f1a6031.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong Vectra多光谱组织成像系统 /strong /span /p p   从前做药物筛选就是做一些生化试验,比如在96孔板上加各种药物、病毒蛋白和宿主蛋白,来分析它们之间的相互作用,是用化学手段或者是分子生物学手段间接测得一些数据,并不能完全反应真实的相互作用关系。这时就需要双碟片活细胞荧光共聚焦显微镜、高内涵筛选系统在活细胞内或者组织细胞内对几万甚至几十万个细胞做进一步可视化分析,用可视化的数据来进一步验证实验结果。“借助双碟片活细胞荧光共聚焦显微镜,我们实现了在活细胞水平对病毒侵染细胞过程的实时观测 借助Opereta高内涵筛选系统,我们建立基于细胞表型的抗病毒药物筛选平台,并基于我们完善的抗病毒药物评价体系,我们跟很多药企建立了横向合作关系,产生了良好的社会效益,同时也发挥了我们所的病毒库资源优势。” /p p   做完细胞水平的研究后,就可以进入到活体小动物水平的研究了。用小动物活体成像系统观察病毒在小动物体内的繁殖、侵染过程,以及药物与病毒之间的相互作用。 /p p   “我们做实验就是要从体外做到细胞级,再做到动物级。这三个层级是完全不同的情况,不能互相替代,所以整个仪器链条一定要补充完整才行。”高丁博士如是说。 /p p   仪器用在工业领域往往是在做重复的工作,而科学研究则有很大差别。生物学研究涉及各种各样的实验,科研院所内不同课题组、不同研究人员的研究方向都不一样,因此要求共享的大型仪器性能要尽可能高,功能要尽可能丰富。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 病毒研究要求更高灵敏度、成像速度及安全性 /strong /span /p p   那么现有技术是否能完全满足病毒研究的要求呢?高丁博士表示,还需进一步提升荧光显微镜的灵敏度和成像速度。“对于病毒学来说,要做一些病毒侵染、示踪实验,观察病毒在细胞内的一些些动态行为,以及病毒与细胞内细胞器或蛋白的相互作用。因为病毒在细胞内运动速度非常快,这就需要荧光显微镜在很短的曝光时间内捕捉到细小的相互作用关系。病毒非常小,能染上的荧光也比较弱,现有技术的成像速度和灵敏度还是不够,这样就会丢失很多信息。所以需要提升荧光显微镜的灵敏度和成像速度来捕捉病毒的行为。” /p p   高丁博士介绍说,中心现在用的UltraVIEW VoX双碟片活细胞荧光共聚焦显微镜,可以在保持高分辨率的同时实现快速成像。“UltraVIEW VoX的成像速度大概是30帧/秒,分辨率大概是250纳米左右。这个速度比以前已经提高很多了,灵敏度也得到了保证,已经初步能实现我们想拍的一些画面和视频。但是对于病毒学研究来说,对于成像的速度和灵敏度以及分辨率还有更高的要求,对仪器供应商来说还有更大的提升空间。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/16a8c880-2f1b-4514-81c7-df7eb6bdffdf.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong UltraVIEW VoX双碟片活细胞荧光共聚焦显微镜 /strong /p p   高丁博士承担了中科院仪器研制项目。“我们这个所比较特殊,有高等级生物安全实验室,里面摆放不了高精密的大型仪器。所以我们根据这个需求,想设计一套方案来实现P3以下的实验可以在生物安全实验室外面做。因为生物安全实验室对场地和仪器有要求,日常消毒会破坏摆放在里面的高精密仪器。但是实验室进出非常麻烦,而且需要频繁进行过氧化氢腐蚀性消毒,价值几百万的仪器遇到腐蚀的东西很快就坏掉了。所以我们就希望能研究出满足生物安全等级的仪器,把实验带到常规实验室去做。” /p p    span style=" font-family: 宋体, SimSun " strong span style=" color: rgb(0, 0, 0) " 高丁简历 /span /strong /span /p p span style=" font-family: 宋体, SimSun "   高丁,男,博士,高级工程师,2012年毕业于中科院武汉病毒研究所。现为中国科学院武汉病毒研究所分析测试中心负责人。负责研究所大型仪器平台的管理、维护、开发工作。长期从事病毒蛋白纳米自组装及其应用研究,包括SV40病毒衣壳蛋白包装纳米颗粒机制 多层级复杂杂合病毒纳米结构的构建 基于病毒衣壳蛋白的多尺度微纳米包装颗粒细胞递送系统 包装颗粒的病毒抗体检测应用等。 /span /p p span style=" font-family: 宋体, SimSun "    strong 关于中科院武汉病毒所所级公共技术服务中心 /strong /span /p p span style=" font-family: 宋体, SimSun "   武汉病毒所公共技术服务中心由50年代电镜室发展而来,经历电镜室、分析测试中心、所级中心三个阶段,是研究所下属独立建制的技术支撑平台。中心实行“科学管理、开放共享、服务科研”的运行机制,由分管所领导担任中心主任,实行主任负责制。中心下设平台管理委员会、公共技术平台管理办公室,以及五个专业技术实验室(中心),包括分析测试中心、实验动物中心、BSL-3实验室、放射性同位素实验室。 /span /p p span style=" font-family: 宋体, SimSun "   中心作为研究所公共技术服务平台,负责统一管理研究所公用科研设施和仪器设备,确保这些设施设备在高度共享公用的机制下运行,同时参与制定研究所公用科研设施和仪器设备的发展规划、购置方案,面向所内外开展各类实验技术培训。 /span /p p span style=" font-family: 宋体, SimSun "   中心共有工作人员25人,其中正高2人,副高4人 拥有博士学位3人,硕士学位9人。中心现有共享仪器设备228台套,设备总价值达12941万元,共享设备年有效总机时数117244小时,其中由中心集中管理的仪器设备共36台/套(5254万元),年有效机时数达53290小时 委托学科组管理的仪器设备共192台/套(7687万元),年有效总机时:63954小时,总平均共享率79%。 /span /p p span style=" font-family: 宋体, SimSun "   其中分析测试中心包含电子显微平台、荧光显微平台和生物大分子分析平台等。主要仪器有:300KV冷冻透射电子显微镜、200KV透射电子显微镜、100KV透射电子显微镜、场发射扫描电镜、超高分辨率荧光显微镜、双碟片共聚焦显微镜、双光子荧光显微镜、病理切片全景扫描系统、光谱型病理切片成像仪、小动物活体成像仪、质谱流式细胞仪、分选流式细胞仪、分析流式细胞仪、生物大分子相互作用分析仪,分析型超速离心机、冷冻超速离心机等。 /span /p
  • 793万!新疆维吾尔自治区疾控中心艾滋病检测试剂-病毒载量检测试剂项目
    一、项目基本情况项目编号:XJHY-JKZX-BDSJ-01项目名称:新疆维吾尔自治区疾控中心艾滋病检测试剂-病毒载量检测试剂项目采购方式:公开招标预算金额(元):7934400最高限价(元):/采购需求: 标项名称:新疆维吾尔自治区疾控中心艾滋病检测试剂-病毒载量检测试剂项目 数量:1 预算金额(元):7934400 简要规格描述或项目基本概况介绍、用途:采购病毒载量检测试剂一批,具体详见采购文件。 备注:合同履约期限:标项 1,具体详见采购文件。本项目(否)接受联合体投标。二、获取招标文件时间:2024年02月22日至2024年02月29日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:政采云平台线上方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件)售价(元):0三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:新疆维吾尔自治区疾病预防控制中心地 址:碱泉一街380号联系方式:0991-26230102.采购代理机构信息名 称:新疆华域建设工程项目管理咨询有限公司地 址:乌鲁木齐市五星北路194号联系方式:18899517090、176909709993.项目联系方式项目联系人:张伟、杨猛、马成武电 话:18899517090、17690970999
  • 793万!新疆维吾尔自治区疾控中心艾滋病检测试剂-病毒载量检测试剂项目
    一、项目基本情况项目编号:XJHY-JKZX-BDSJ-01-2项目名称:新疆维吾尔自治区疾控中心艾滋病检测试剂-病毒载量检测试剂项目(二次)采购方式:公开招标预算金额(元):7934400最高限价(元):/采购需求: 标项名称:新疆维吾尔自治区疾控中心艾滋病检测试剂-病毒载量检测试剂项目(二次) 数量:1 预算金额(元):7934400 简要规格描述或项目基本概况介绍、用途:采购病毒载量检测试剂一批,具体详见采购文件。 备注:合同履约期限:标项 1,具体详见采购文件。本项目(否)接受联合体投标。二、获取招标文件时间:2024年03月14日至2024年03月21日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外)地点:政采云平台线上方式:供应商登录政采云平台https://www.zcygov.cn/在线申请获取采购文件(进入“项目采购”应用,在获取采购文件菜单中选择项目,申请获取采购文件)售价(元):0三、对本次采购提出询问,请按以下方式联系1.采购人信息名 称:新疆维吾尔自治区疾病预防控制中心地 址:碱泉一街380号联系方式:0991-26230102.采购代理机构信息名 称:新疆华域建设工程项目管理咨询有限公司地 址:乌鲁木齐市五星北路194号联系方式:18899517090 176909709993.项目联系方式项目联系人:杨猛 马成武电 话:18899517090 17690970999
  • Nature:广谱抗体再添抗疫新武器 北大团队破解新冠病毒演化趋势
    自新冠病毒奥密克戎变异株出现以来,其子代变异株井喷式涌现,并呈现出“趋同演化”的趋势,大量中和抗体药物和康复者血浆已经“被逃逸”,这给新冠疫情的防控带来了十分严峻的考验。“趋同演化”现象的形成机制以及演化终点亟需深入探究。北京大学生物医学前沿创新中心(BIOPIC)、北京昌平实验室曹云龙研究员/谢晓亮教授课题组联合中国食品药品检定研究院王佑春课题组于2022年12月19日在《自然》(Nature)杂志在线发表了题为“Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution”的研究论文,系统地探究了新冠病毒受体结合域(RBD)“趋同演化”的机制,并前瞻性地对病毒未来突变演化方向进行了预测,为广谱疫苗和抗体药物的设计与研发提供了宝贵的理论与数据支持。研究人员对不同免疫背景人群中分离得到的抗体进行了大规模中和测定和逃逸图谱表征,发现病毒趋同进化产生的变异株几乎逃逸了目前所有中和抗体药物、疫苗接种者或康复者血浆,包括BA.5突破感染者血浆。并且,由于“免疫印迹”现象的存在,奥密克戎亚型变体突破感染后产生的抗体多样性逐渐降低,特别是BA.5突破感染,这提示基于BA.5变异株研发的疫苗加强针不能对新出现变异株产生良好的交叉防感染保护效果。另外,研究者基于抗体的大规模中和测定和逃逸图谱表征的数据建立了一个计算模型,对病毒演化方向进行了合理预测。尽管这些新突变株,特别是其中的XBB、BQ.1.1和CH.1.1等支系具有前所未有的免疫逃逸能力,作者团队此前筛选出的广谱中和抗体药物组合SA55+SA58,特别是SA55,仍然强效中和所有主要突变株和未来短期内可能流行的突变株,且能同时具有治疗和预防作用,是目前唯一已知能够高效中和所有新突变株的、处于临床阶段的药物抗体,相关论文此前于12月初发表于知名生命科学期刊《细胞报道》(Cell Reports)。该抗体具有广谱中和能力强、将很难被未来变异株逃逸、半衰期长等特征,将特别适用于不适合接种疫苗的老年人、免疫缺陷人群等群体的防护。本研究最早于2022年9月16日在线发布于bioRxiv预印本平台,是世界首篇系统性研究新冠病毒“趋同演化”机制,预测病毒进化方向的研究论文,在国际学术界引起了广泛关注。病毒的持续突变演化使得多种较高增长优势的变异株陆续涌现,BA.2.3.20、BA.2.75.2及其支系,乃至最近出现的BQ.1.1和XBB等变异株相比于BA.5都具有更高的增长优势。尽管它们的进化过程各不相同,处于奥密克戎的不同支系,但其受体结合结构域(RBD)上的突变都集中于R346、K356、K444、V445、G446、N450、L452、N460、F486、F490、R493和S494等位点,呈现出“趋同演化”的趋势(图1)。图1 奥密克戎亚型变体RBD蛋白携带的突变中和测定的数据提示“趋同演化”产生的变异株具有极强的逃逸能力,绝大多数中和抗体药物都被以XBB为代表的变异株逃逸(图2),包括此前已初步进入国内市场的阿斯利康公司Evusheld(“恩适得”)预防抗体药物。由于此类新突变株的流行,美国FDA也取消了礼来公司Bebtelovimab(贝特洛韦单抗)的使用授权。唯一的例外是作者团队开发的SA55抗体,它是目前唯一对包括XBB和BQ.1.1等在内的所有突变株仍旧有效的进入临床阶段的抗体药物(图3)。图2 奥密克戎亚型对中和抗体药物的逃逸情况图3 广谱中和抗体SA55和SA58血浆中和数据也显示,XBB,CH.1.1和BQ.1.1.10(或BQ.1.18)等毒株不仅逃逸了三针灭活疫苗接种者的血浆,也几乎完全逃逸奥密克戎BA.1/BA.2/BA.5突破感染者的血浆样本,显示出极大的免疫逃逸能力(图4)。图4 奥密克戎亚型逃逸疫苗接种者与康复者血浆中和为了探究不同奥密克戎变异株呈现“趋同演化”现象的具体机制,团队从BA.1、BA.2或BA.5突破感染康复者体内富集了抗原特异性记忆B细胞,发现其中大部分记忆B细胞交叉结合新冠原始株和奥密克戎变异株,印证了之前作者团队报道的存在于奥密克戎突破感染中的“免疫印迹”现象。基于高通量深度突变扫描技术,团队对不同来源的3051个交叉结合新冠原始株与奥密克戎变异株的抗体进行了突变逃逸图谱测定与聚类分析(图5a),发现奥密克戎特别是BA.5变体突破感染刺激产生的有效中和抗体种类明显减少,产生的主要是E2.2、E3和F1等不竞争ACE2结合表位且中和能力较弱的抗体(图5b-d)。图5 奥密克戎亚型变异株突破感染刺激产生抗体的表位表征基于抗体逃逸图谱、抗体中和活性、RBD突变对于ACE2亲和力变化等数据,团队建立了一个模型,分别计算了BA.2和BA.5突破感染刺激产生抗体的突变逃逸图谱(图6a),结果显示,BA.5突破感染刺激产生抗体的突变逃逸位点显著减少,表明其结合表位多样性明显减少。这提示,免疫印迹现象使得奥密克戎变异株突破感染刺激产生中和抗体表位多样性降低,导致免疫压力集中,从而加速了病毒的趋同进化。在此基础上,研究者基于2022年8—9月真实世界的主流免疫状态,基于计算模型预测了BA.2.75和BA.5的进化趋势(图6b),这在随后趋同进化产生的新毒株中得到验证。图6 免疫印迹效应加速了抗体逃逸突变的趋同进化另外,研究人员基于BA.2.75和BA.5突变株的预测进化趋势,设计了携带不同RBD和NTD预测突变组合的假病毒(图7a),并测定了这些假病毒对不同中和抗体药物和血浆样本的中和情况及ACE2亲和力(图7b-g),结果显示,对BA.5或BA.2.75突变株最少引入5个突变就可以逃逸包括BA.5突破感染者在内的不同免疫状态下的几乎所有血浆样本。并且,合成的假病毒与之后真实世界流行的BQ.1.1支系、CH.1.1支系等高度相似,验证了预测模型的准确性。图7 趋同逃逸突变的累积能够几乎完全逃逸BA.1/BA.2/BA.5突破感染血浆的中和作用本研究揭示了“免疫印迹”造成的奥密克戎突破感染刺激产生抗体表位多样性降低,进而导致免疫压力集中化,促使新冠病毒RBD蛋白发生趋同演化的现象,这些积累趋同进化突变的病毒在获得极强突变逃逸能力的同时,也保持了较高ACE2亲和力。本研究中的预测方法为预测病毒突变演化趋势、开发广谱疫苗和抗体药物提供了参考资料,且具有扩展到其他体系的潜力。同时,研究结果也提示,基于BA.5突变株研发的疫苗对于其他变体的交叉保护效果很可能不够理想,进一步开发设计能够克服免疫印迹、激活广谱中和抗体的新型疫苗至关重要。而以SA55+SA58抗体组合为代表的广谱中和抗体既可以通过鼻喷给药方便快捷地在呼吸道建立短效预防,又可以通过注射实现感染初期的治疗和中长期预防,特别适用于保护高风险的医护人员以及不宜接种疫苗的免疫缺陷人群和老年人。SA55与SA58已经授权给科兴生物进一步开发,初步的单盲随机对照试验显示,喷雾吸入一次提供的即时保护可维持6—12小时,预防感染效率可达到80%以上,且成本较低,方便使用,目前正在进行更严谨的临床试验,预计将来可以大规模推广。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、王菁、宋玮良,中国食品药品检定研究院于原玲为Nature论文的共同第一作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员、谢晓亮教授、中国食品药品检定研究院王佑春研究员为Nature论文的共同通讯作者。北京昌平实验室、北京大学生物医学前沿创新中心曹云龙研究员,北京大学博士研究生简繁冲、张志莹、阿依江伊斯马衣,地坛医院郝晓花博士,北京协和医学院鲍琳琳研究员为Cell Reports论文的共同第一作者。北京昌平实验室、北京大学曹云龙研究员、谢晓亮教授、肖俊宇教授,北京协和医学院秦川教授,地坛医院金荣华院长为Cell Reports论文的共同通讯作者,北京大学、昌平实验室、动物所、中检院、科兴公司等单位的相关科研人员为共同作者。本系列研究得到科技部、昌平实验室基金、国家自然科学基金和北京市科技计划支持。参考文献[1] Cao, Y. et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature (2022).[2] Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature (2022).[3] Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature (2022).[4] Cao, Y. et al. Rational identification of potent and broad sarbecovirus-neutralizing antibody cocktails from SARS convalescents. Cell Rep. (2022)专家点评:清华大学医学院祁海教授:这一工作深入探究了构成当前新冠大流行的多个奥密克戎毒株对人类群体免疫的逃逸规律。曹云龙/谢晓亮联合团队发现,多个奥密克戎株亚型在受体结合蛋白上都显现出相同或类似的逃逸突变。这些突变,在保证病毒结合其受体的同时,躲避了之前中和抗体的抑制作用。这说明,人群序贯疫苗接种和自然感染所构建起的群体免疫,的确在阻断并降低既往毒株感染;同时,这种群体免疫的压力,也为未来病毒变异留下了越来越少的潜在逃逸路径。那么,我们是否可以根据已有的群体免疫状态和现有毒株的受体结合蛋白,来预测未来最有可能出现的逃逸突变呢?曹云龙/谢晓亮联合团队利用他们开发的一种高通量深度突变扫描(DMS)方法,分析、鉴定了BA5和BA2可能逃逸群体免疫的突变。非常重要的是,他们预测出来的突变,确实出现在了其它具有流行潜力的毒株上。曹云龙/谢晓亮联合团队这项研究所提供的这种预测能力,可以帮助我们更高效地设计广谱抗新冠疫苗,也会使我们更可能为所有潜在逃逸现有群体免疫的毒株准备好“特效药”。中国科学院生物物理所王祥喜研究员:新冠病毒一直在持续性进化,衍生出多种突变株;然而在奥密克戎出现之后,新冠病毒的演变速度明显加快。近半年来,就有BA.5、BF7、BA.2.75、BQ、XBB等近十种新突变株在一些国家成为主要流行突变株。这些新突变株往往其传染性和抗体逃逸能力都在增强。总体来讲,人类对新冠病毒的研究是被动地跟着病毒跑,一个新突变株出现后再去了解它的病毒特性,去探究新突变株对现有疫苗和药物的影响。如何前瞻性预测病毒演变的方向,提前预判未来一段时间内可能出现的突变株具有重要的战略意义。2022年12月19日,北京大学谢晓亮/曹云龙团队联合中检院王佑春团队在Nature上发表题为“Imprinted SARS-CoV-2 humoral immunity induces convergent OmicronRBD evolution”的研究论文,这是该团队继新冠中和抗体、新冠疫苗效果评估、追踪新突变株免疫逃逸特性后,又一系统性而创新性工作。该项研究有五点重要发现:1)从庞大的数据库中分析出近期有几十个新突变株其生长优势超越BA.5,且这些突变株有一定的共性,在某些特定位点携带相同或相似的突变,呈现趋同进化规律;2)这些新突变株展示出极强的抗体逃逸特性,基本逃逸国际上已批准上市的抗体药物;3)一个抗体对组合SA55/SA58(也是该团队的研究成果)依然高效中和这些新突变株;最后两点更精彩:4)从原始株感染康复者、BA.1/BA.2/BA.5突破感染者等不同免疫背景分离2000余株抗体,并绘制出不同免疫背景下抗体谱系特征。相对之前的免疫背景,BA.5突破感染者的主要中和抗体类别相对单一,非中和抗体比例提高,更容易滋生病毒变异去逃逸宿主免疫;5)利用高通量酵母展示技术精准绘制出抗体免疫逃逸图谱,与BA.2突破感染的免疫背景相比,BA.5突破感染中和抗体的免疫逃逸位点相对集中且大多出现在近期出现的突变株上。实验数据与真实世界监测结果高度一致。这一研究成果能够实现对未来一段时间内新突变株的精准预测,预先了解这些新突变株的病毒特性能够为科学精准防控留出宝贵的时间窗口。
  • 蒋兴宇课题组新进展:纳米非病毒载体的CRISPR/Cas9高效递送系统
    p    /p p style=" text-align: center " img title=" a.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/c80fad62-dcaf-4761-a774-9bbbf05e3b0b.jpg" / /p p style=" text-indent: 2em " CRISPR/Cas9系统作为基因编辑技术的弄潮儿,具有巨大的潜在应用。但是目前大部分方法都是利用病毒载体导入到生命体,所以极大地限制了其在临床的应用前景。 /p p   然而,病毒载体对宿主细胞可能产生致癌、致突变的风险,因此不能实现对CRISPR/Cas9系统的高效而安全的递送已经成为阻碍该技术临床应用的主要瓶颈。生物材料领域的科学家尝试着利用人工载体,例如脂质体、纳米材料等把编码的CRISPR/Cas9的质粒导入细胞。 /p p   蒋兴宇课题组发展了基于金纳米颗粒-脂质体体系的光控释放纳米递送系统。他们将金纳米颗粒表面修饰TAT多肽,使纳米颗粒表面带正电荷,能够和带负电荷的表达Cas9蛋白和引导RNA的质粒(Cas9/sgRNA plasmid)结合,形成一个整体上带负电荷的“纳米核”,再在该“核”外包裹带正电荷的脂质体层(DOTAP, DOPE, Cholesterol)以及PEG2000-DSPE,形成一个具有核壳结构的纳米颗粒。 /p p & nbsp /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/64d9c61c-e409-49f1-a4ff-8f9ea26c4938.jpg" / /p p   该纳米颗粒可以通过细胞的胞吞及溶酶体逃逸途径进入细胞浆,在514纳米激光照射下金颗粒和TAT之间的金-硫键被打开从而将修饰在金颗粒上的TAT多肽解离下来,与TAT多肽通过静电相互作用结合的Cas9/sgRNA plasmid也随之解离下来并在TAT多肽的指引下穿过细胞核膜进入细胞核。利用该纳米载体,研究组在体外体内实现了对肿瘤癌基因polo-like-kinase-1(Plk-1)的靶向敲除并有效控制了肿瘤的生长和转移。 /p p   该工作是在前期工作的基础上发展而来的。在稍早的一些工作中,蒋兴宇课题组成功利用微流控系统高通量筛选了54种纳米递送系统并最终优选了脂质体系统成功递送了Cas9/sgRNA plasmid到动物体内,实现了对肿瘤Plk-1基因的高效敲除(NPG Asia Mater, 9, e441, 2017) 在此基础上,他们又发展了基于金纳米簇-脂质体的递送系统并成功递送Cas9蛋白和sgRNA plasmid靶向动物的Plk-1基因,实现了对肿瘤的有效抑制(Adv Sci, 4, 1700175, 2017)。 /p p   蒋兴宇课题组的系列研究工作得到了国家自然科学基金委、中科院纳米先导专项以及中科院“创新团队国际合作伙伴计划”等项目的支持。 /p
  • naica®微滴芯片数字PCR系统应用于废水处理污泥中新冠病毒SARS-CoV-2载量监测
    导读自2019年底新冠肺炎疫情爆发以来,已经在人类粪便和城市废水中广泛检测到SARS-CoV-2。新冠病人的粪便可以重复检测到SARS-CoV-2 RNA(有时甚至在呼吸道样本已经检测不到的情况下),并且与疾病的临床严重程度无关。在多个国家的城市废水中也广泛检测到SARS-CoV2 RNA,但检测到的浓度比人的粪便低几个数量级。未经处理的废水中SARS-CoV-2 RNA的存在导致了基于废水的流行病学(WBE)的发展,以早期检测社区新型冠状病毒肺炎的传播,这也引起了人们对废水处理(WWT)过程尤其是在其终产物WWT污泥中SARS-CoV-2的命运以及相关风险的关注。法国巴黎地区跨省废水处理工会(SIAAP)和巴黎萨克莱大学的科学家在Environmental Research发表了题为Fate of SARS-CoV-2 coronavirus in wastewater treatment sludge during storage and thermophilic anaerobic digestion的文章。文中应用naica®微滴芯片数字PCR系统对WWT污泥中SARS-CoV-2进行绝对定量,为持续监测WWT污泥中的新冠病毒载量提供了具有应用价值的检测方法。应用亮点:▶ 使用naica®微滴芯片数字PCR系统开发了一种快速、直观、简便的WWT污泥中SARS-CoV-2绝对定量的方法。▶ naica®微滴芯片数字PCR系统可以实时监测高热厌氧消化后WWT污泥中SARS-CoV-2载量,不受抑制剂影响,特别适合低浓度,低丰度样本。实验方法:作者采集了不同的废水处理厂的新鲜污泥,研究WWT污泥在储存 (4℃、室温) 或高热厌氧(AD)消化 (50℃)后SARS-CoV-2稳定性。部分污泥中掺入了新型冠状病毒肺炎患者中分离出的SARS-CoV-2颗粒和/或BCoV(牛冠状病毒)作为加标对照。作者通过RT-qPCR测定了新鲜WWT污泥在4℃和室温条件下SARS-CoV-2颗粒RNA的载量。为了降低可能含有的PCR抑制剂对样品中SARS-CoV-2检测的影响,作者使用灵敏度更高的naica®微滴芯片数字PCR系统,持续监测高热厌氧消化5天过程中SARS-CoV-2颗粒的RNA水平。实验结果:新鲜WWT污泥在4℃ 55天和20℃左右环境温度25天储存条件下SARS-CoV-2颗粒的RNA的载量维持在一个相对稳定的水平。但在高热厌氧消化过程中,SARS-CoV-2和BCoV RNA水平迅速下降,持续5天处理后最终水平接近检测极限。▲图1 部分污泥中掺入了新型冠状病毒肺炎患者中分离出的SARS-CoV-2颗粒和/或BCoV(牛冠状病毒)作为加标对照。该图展示了加标或未加标的新鲜 WWT 污泥在高热厌氧消化过程中SARS-CoV-2和BCoV RNA 水平的动态变化。为了降低可能含有的PCR抑制剂对样品中SARS-CoV-2检测的影响,作者使用抑制剂耐受能力更佳的naica®微滴芯片数字PCR系统来检测高热厌氧消化过程中的SARS-CoV-2水平。GU/g:厌氧消化反应器样品中每克含有的基因组单位。期刊介绍:Environmental Research创刊于1967年,隶属于爱思唯尔出版集团。该杂志的主要发表评估化学品和微生物污染对人类健康影响的文章,2022年影响因子8.431,JCR分区为Q1。参考文献:1.Adelodun B, Kumar P, Odey G, et al. A safe haven of SARS-CoV-2 in the environment: prevalence and potential transmission risks in the effluent, sludge, and biosolids. Geosci, 2022, 101373.2.Ahmed W, Bertsch P M, Bibby K, et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ, 2020a, 191, 110092.
  • 无需纯化的病毒表征系统! 全自动病毒荧光检测分析系统
    在基因治疗领域,慢病毒载体(Lentivirus)是一种复制较慢的逆转录病毒,由HIV-1改造而来,常作为基因治疗的载体使用。慢病毒载体的制备流程需要对病毒的物理滴度和感染滴度进行检测。1. 现有的检测手段(如p24 ELISA)因病毒中p24蛋白的含量不同、含有p24蛋白的杂质(如外泌体)等因素的影响,无法地表征病毒的物理滴度,且此类方法均无法对空载病毒(无p24蛋白)进行表征,这就给感染滴度的检测带来了误差。2. 在复杂的病毒工业化制备流程中,只测量末端纯化产品的滴度,无法真实反映各个生产环节的生产效率,而对各个生产环节的样品都进行纯化表征会浪费大量人力物力。目前研究者亟需一种无纯化、快速、检测下限低的病毒表征手段。3. 目前的病毒表征手段,均无法将病毒的物理参数如粒径(与载体聚合相关)与蛋白质组分析联系起来。因此,这些技术无法分析病毒滴度受样品聚集或病毒破裂与分解影响的情况,因此无法区分单分散制剂与聚集样品。 对于上述问题,美国NanoView公司所开发的全自动病毒荧光检测分析系统是一款无需纯化的、全自动的可对病毒进行表征分析的全新设备。该设备能够提供全方位的病毒表征信息,包括病毒粒径、病毒表面和内部病毒蛋白、病毒物理滴度、空载比检测、病毒转导效率及假型定量表征等。操作简单,结果可靠。全自动病毒荧光检测分析系统的基本原理是一种基于特异性免疫捕获技术,允许研究者直接分析特定群体的病毒。通过配套的试剂盒,客户一次性能够分析多达16个不同的样本,大大节省了时间和经济成本。和传统的病毒表征手段相比,全自动病毒荧光检测分析系统有如下优势: 无需纯化NanoView的LentiView™ 技术可以对慢病毒进行检测,将蛋白质组信息与物理病毒滴度结合起来,无需样品纯化。只需 35 µl 未纯化或纯化的样品,检测浓度低至106VP/ml。无需担心纯化带来的误差,更地测量样品间的表征和表达信息的差异。慢病毒示意图 全方位的病毒粒径分析全自动外泌体荧光检测分析系统能够对20 nm的病毒进行全方面的表征,无论是粒径分布、空载病毒与完整病毒的假型分析均可在一次测试中得到。并且所用来测试的样本无需进行纯化,避免因纯化带来的样本偏差。 病毒滴度病毒物理滴度的常用检测方法是p24 ELISA。该方法测量p24衣壳蛋白的浓度并将其转化为病毒物理滴度。样品中溶解的p24、不同病毒p24含量的不同以及病毒聚集会影响检测准确性。此外, p24 ELISA无法检测缺少衣壳(空载)的颗粒。LentiView™ 可对样品中病毒进行高灵敏度的定量检测,获得滴度数据,区分完整和空载病毒并识别样品中杂质如可能经过纯化带有的外泌体等。 红色荧光抗体标记病毒的内部p24衣壳蛋白,用蓝色荧光抗体标记VSV-G,同时表达p24和VSV-G的病毒显示粉红色,并由 NanoView专用软件计数。 完整/空载病毒颗粒的比例NanoView的LentiView™ 技术可以简单快速地分析出完整/空载病毒颗粒的比例,区分完整(成功转导)和空载病毒并识别样品中杂质,而完整/空载病毒颗粒的比例是确定转导效率的主要依据。 完整病毒是表达VSV-G和/或ETL,且表达衣壳蛋白p24的病毒颗粒,空载病毒是表达VSV-G和/或ETL,未表达衣壳蛋白p24的病毒颗粒LentiView™ 芯片表面固定的抗VSV-G抗体捕获病毒后,即可检测表面和内部蛋白标记物。在LentiView™ 获得荧光图像中,绿色荧光点代表没有衣壳的VSV-G+病毒颗粒,黄色荧光点代表含有衣壳的完整病毒颗粒。 病毒转导效率我们使用LentiView™ 对三种不同的慢病毒样品进行了表征,检测病毒颗粒亚群,进而研究这些载体的转导效率。三种不同的慢病毒样品分别为野生型慢病毒 (VSV wt)、含高浓度质粒的工程化靶向配体 (ETL-HC)、含低浓度质粒的工程化靶向配体 (ETL-LC)。三种慢病毒载体的转导效率 转导效率与物理滴度的对比 根据病毒碎片粒径和病毒粒径的差别,对每一种载体中的病毒和病毒碎片数量进行统计。50nm以上的病毒与50nm以下的病毒碎片的比例和载体的转导效率之间存在很强的相关性。载体转导效率和病毒与病毒碎片比例的对比 完全定制化客户通过ViroFlex技术使用连接蛋白连接任意定制化的捕获抗体,并结合到ViroFlex芯片表面进而捕获所需的病毒,在自己的实验室里轻松进行高度定制化的检测。 ViroFlex的芯片捕获抗体排布示意图 ViroFlex定制化检测原理:先将连接蛋白与所需的定制抗体连接再将连接抗体的连接蛋白与ViroFlex芯片表面的连接蛋白抗体连接所需的定制抗体从而结合到了芯片上将样品在芯片上孵育,定制抗体即可特异性捕获病毒每个芯片多可结合两种定制化捕获抗体ViroFlex芯片的捕获原理(左)与普通芯片的捕获原理(右)示意图 ExoViewTM参数信息:颗粒大小分辨范围:20nm低检测浓度为106 VP/mL所需样本体积:35 μL激发波长:410 nm,488 nm,555 nm,640 nm,750nm可一次检测16个样本,每个样本可同时检测6个不同亚型及4种生物标记的荧光定位捕获抗体:一个芯片多允许6种捕获抗体(+阴性对照)荧光通道:4个荧光通道
  • 再添力证!管轶从多批被走私的穿山甲中发现新冠病毒
    p   1月20日,管轶教授在接受财新网的采访后,遭到大量责骂和攻击。但他和团队一直在汕头大学和香港大学联合病毒研究所中紧张工作,对新冠病毒及其引发的疾病进行系统研究,帮助当地医院筛查、检测,优化检测试剂盒与治疗方案,并参与对病毒的进化与溯源的研究。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/382e8c6e-8d49-4dc5-b85b-e213fb6118be.jpg" title=" 微信图片_20200220092101.jpg" alt=" 微信图片_20200220092101.jpg" / /p p   刚刚,管轶教授和广西医科大学胡艳玲教授作为共同通讯作者在预印本网站bioRxiv 发表题为: span style=" color: rgb(192, 0, 0) " strong Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China /strong /span strong span style=" color: rgb(0, 112, 192) " /span /strong 的最新研究论文。 /p p   研究团队对广西和广东反走私行动中查获的多个穿山甲样本进行检测, strong 并在穿山甲样本中发现了冠状病毒 /strong ,属于此次新冠病毒的两个亚型,其中一个受体结合域与新冠病毒密切相关。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/34dbc9cc-e822-45ec-aba3-5a037b059978.jpg" title=" 微信图片_20200220092558.jpg" alt=" 微信图片_20200220092558.jpg" / /p p    span style=" color: rgb(192, 0, 0) " strong 此次发现穿山甲冠状病毒的多个谱系及其与新冠病毒的相似性表明,穿山甲应被视为此次新型冠状病毒的可能中间宿主,再次强调应禁止在菜市场等交易穿山甲等野生动物。 /strong /span /p p   这是继2月6日, strong 华南农业大学宣布发现穿山甲为新型冠状病毒潜在中间宿主后 /strong 的又一力证。 /p p   管轶团队收集了2017年8月至2018年1月期间广西海关在反走私行动中查获的18个冷冻穿山甲的(肺,肠,血液)等43个组织样品。 /p p   令人惊讶的是,高通量测序显示在43个样本中的六个(两个肺,两个肠,一个肺肠混合物,一个血液)存在冠状病毒。 /p p   接下来,研究团队对2018年5月至7月之间收集的另一批穿山甲样品进行了进一步的qPCR检测。发现12只穿山甲的19个样本(九个肠组织,十个肺组织)中,三个肺组织样本呈冠状病毒阳性。 /p p   然后,管轶团队联系了广州海关技术中心,中心重新检测了他们在三月份的反走私行动中查获的五份存档的穿山甲样品,这些样本中同样发现了冠状病毒。 /p p   这些在穿山甲中发现的冠状病毒的基因组, strong 与新型冠状病毒(SARS-CoV-2)基因组相似率在85.5%—92.4% /strong ,并在系统进化树中代表了新冠病毒的两个亚型,其中之一(GD/P1L和GD/P2S)与新冠病毒密切相关。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/daed83a7-f337-40be-a198-27b30c10debb.jpg" title=" 微信图片_20200220092753.jpg" alt=" 微信图片_20200220092753.jpg" / /p p   新型冠状病毒(SARS-CoV-2)属于β冠状病毒属的Sarbecovirus亚属,先前已经注意到, strong Sarbecovirus亚属的冠状病毒成员经历了广泛的基因重组 /strong 。 /p p   管轶团队进一步进行了重组分析,分析结果显示,蝠冠状病毒ZC45和ZCS21包含多个SARS-CoV相关谱系(基因组区域2、5、7)和新冠病毒相关谱系(包括此次穿山甲中发现的病毒谱系)的基因组片段 (区域1、3、4、6、8)。 /p p   然而,更值得注意的是在穿山甲冠状病毒、蝙蝠冠状病毒RaTG13和新冠病毒之间观察到了推测的重组信号,特别是新冠病毒与广东穿山甲冠状病毒的受体结合域的氨基酸序列相似性高达97.4%。但蝙蝠冠状病毒RaTG与新冠病毒的受体结合域的氨基酸相似度仅为89.2%。 /p p   但系统发育分析表明,广东穿山甲冠状病毒并非新冠病毒的最接近亲缘关系。因此,研究团队推测,广东穿山甲冠状病毒与新冠病毒之间的氨基酸相似性可能是由于趋同进化而不是重组引起的。 /p p   迄今为止, strong span style=" color: rgb(192, 0, 0) " 穿山甲是除蝙蝠以外唯一被新冠病毒相关冠状病毒感染的哺乳动物 /span /strong 。 /p p   在这项研究中,管轶团队在穿山甲中发现了两个冠状病毒谱系,且它们都与新冠病毒(SARS-CoV-2)相关。这表明 strong 穿山甲极可能是这些冠状病毒的长期宿主 /strong 。 /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 以上内容来源:BioWorld /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 新冠病毒来源及宿主研究进程一览 /strong /span /p p   1月22日,国家疾控中心主任、中国科学院院士高福在国务院召开的首场武汉疫情新闻发布会上表示,目前来看, strong 新型冠状病毒的来源是武汉一家海鲜市场非法销售的野生动物 /strong 。 /p p   2020年1月21日,中国科学院上海巴斯德研究所郝沛研究员、军事医学研究院国家应急防控药物工程技术研究中心钟武研究员和中科院分子植物卓越中心合成生物学重点实验室李轩研究员合作,研究发现武汉冠状病毒和SARS/类SARS冠状病毒的共同祖先都是和HKU9-1类似的病毒。并推测和SARS一样, strong 武汉冠状病毒的自然宿主也可能是蝙蝠 /strong ,在从蝙蝠到人的传染过程中很可能存在未知的中间宿主媒介。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/847f56a1-838e-4f48-9a8c-d8ca2acb2f16.jpg" title=" 微信图片_20200220092800.jpg" alt=" 微信图片_20200220092800.jpg" / /p p   2020年1月22日,北京大学、广西中医药大学、宁波大学及武汉生物工程学院联合攻关,该研究团队发现 strong 蛇是最有可能造成当前武汉新型冠状病毒(2019-nCoV)感染的野生动物 /strong 。 /p p   然而,仅仅一天之后的2020年1月23日,发现SARS病毒来源于中华菊头蝠的中科院武汉病毒所石正丽团队认为 strong 蝙蝠才是最有可能的携带武汉新型冠状病毒(2019-nCoV)的野生动物 /strong 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/be2683fd-4cc9-41f1-a5fa-03cd7a024446.jpg" title=" 微信图片_20200220092807.jpg" alt=" 微信图片_20200220092807.jpg" / /p p style=" text-align: center " 石正丽团队成员,中间为石正丽教授 /p p   1月24日,北京大学工学院生物医学工程系教授朱怀球团队最新研究预测表明,蝙蝠和水貂可能是新型冠状病毒的两个潜在宿主 strong ,蝙蝠是它的最主要来源,中间宿主可能是水貂 /strong 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202002/uepic/8e867e0f-3e28-4f00-8e8a-7f2ce4218be0.jpg" title=" 微信图片_20200220092810.jpg" alt=" 微信图片_20200220092810.jpg" / /p p   2月6日,华南农业大学宣布发现 strong 穿山甲为新型冠状病毒潜在中间宿 /strong strong 主 /strong 。 /p
  • 再+2!19款新冠病毒快检试剂盒通过国家药监局审批
    p   近日,南京诺唯赞医疗科技有限公司新型冠状病毒(2019-nCoV)IgM/IgG抗体检测试剂盒(胶体金法)和珠海丽珠试剂股份有限公司新型冠状病毒(2019-nCoV)IgM/IgG抗体检测试剂盒(胶体金法)产品获国家药监局批准注册。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/6be443da-41cd-43a4-8b5a-f3e93ce6c8fe.jpg" title=" news 0316-2.jpg" alt=" news 0316-2.jpg" / /p p style=" text-align: center " strong span & nbsp 南京诺唯赞新型冠状病毒抗体检测试剂盒 strong style=" text-align: center white-space: normal " 过审页面 /strong /span /strong /p p   南京诺唯赞医疗科技有限公司成立于2016年,是一家国家高新技术企业。专注于体外诊断试剂及仪器的研发、生产、销售和服务,产品覆盖心脑血管、优生优育、肿瘤、肾功能、感染、儿童呼吸道等领域。此前,诺唯赞也成功研发出新型冠状病毒(2019-nCoV)核酸检测试剂盒并通过江苏省医疗器械检验所注册检验。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/0d8d3afb-8e0e-4f29-9b97-6e59b5c2ab91.jpg" title=" news 0316-1.jpg" alt=" news 0316-1.jpg" / /p p style=" text-align: center " strong span 珠海丽珠新型冠状病毒抗体检测试剂盒过审页面 /span /strong /p p   珠海丽珠试剂股份有限公司成立于1989年,是丽珠集团下属专业从事体外诊断试剂、仪器研发、生产和营销的高科技企业。丽珠试剂产品领域涵盖了肝炎、艾滋病、性传播疾病、优生优育、药物浓度监测、肿瘤标志物监测及血液核酸筛查等领域。此次过审的新冠病毒抗体检测试剂盒是珠海丽珠试剂股份有限公司与中国科学院武汉病毒研究所联合研制,基于胶体金免疫层析技术,检测人血清、血浆和静脉全血样本中新型冠状病毒(2019-nCoV)IgM抗体和IgG抗体,可以作为核酸检测外的一种补充检测手段。 /p p   在国家卫健委3月4日发布的《新型冠状病毒肺炎诊疗方案(试行第七版)》中,明确了实验室检查应考虑血清学检查,包含IgM和IgG指标的情况。截至目前,国家药品监督管理局共应急审批新冠病毒检测试剂产品19个。 /p p 附已批准清单: /p table border=" 0" cellpadding=" 0" cellspacing=" 0" style=" " colgroup col width=" 48" style=" width:48px" / col width=" 271" style=" width:271px" / col width=" 129" style=" width:129px" / col width=" 138" style=" width:139px" / /colgroup tbody tr height=" 19" style=" height:19px" class=" firstRow" td height=" 19" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px background-color: rgb(184, 204, 228) " align=" center" valign=" middle" strong 序号 /strong /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px background-color: rgb(184, 204, 228) " align=" center" valign=" middle" strong 产品名称 /strong /td td width=" 126" style=" border: 1px solid rgb(0, 0, 0) padding: 5px background-color: rgb(184, 204, 228) " align=" center" valign=" middle" strong 注册人 /strong /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px background-color: rgb(184, 204, 228) " align=" center" valign=" middle" strong 注册证号 /strong /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 1 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 上海之江生物科技股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400057 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 2 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 上海捷诺生物科技有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400058 /td /tr tr height=" 57" style=" height:57px" td height=" 57" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 3 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(联合探针锚定聚合测序法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 华大生物科技(武汉)有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400059 /td /tr tr height=" 57" style=" height:57px" td height=" 57" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 4 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 华大生物科技(武汉)有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400060 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 5 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 中山大学达安基因股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400063 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 6 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 圣湘生物科技股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400064 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 7 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 上海伯杰医疗科技有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400065 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 8 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)抗体检测试剂盒(胶体金法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 广州万孚生物技术股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400176 /td /tr tr height=" 57" style=" height:57px" td height=" 57" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 9 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)抗体检测试剂盒(胶体金法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 英诺特(唐山)生物技术有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400177 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 10 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 六项呼吸道病毒核酸检测试剂盒(恒温扩增芯片法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 成都博奥晶芯生物科技有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400178 /td /tr tr height=" 57" style=" height:57px" td height=" 57" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 11 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 北京卓诚惠生生物科技股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400179 /td /tr tr height=" 57" style=" height:57px" td height=" 57" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 12 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)IgM抗体检测试剂盒(磁微粒化学发光法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 博奥赛斯(重庆)生物科技有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400182 /td /tr tr height=" 57" style=" height:57px" td height=" 57" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 13 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)IgG抗体检测试剂盒(磁微粒化学发光法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 博奥赛斯(重庆)生物科技有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400183 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 14 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 迈克生物科技股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400184 /td /tr tr height=" 57" style=" height:57px" td height=" 57" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 15 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)抗体检测试剂盒(化学发光微粒子免疫检测法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 厦门万泰凯瑞生物技术有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400198 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 16 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)IgM抗体检测试剂盒(胶体金法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 广东和信健康科技有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400199 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 17 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒2019-nCoV核酸检测试剂盒(荧光PCR法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 武汉明德生物科技股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400212 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 18 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)IgM / IgG抗体检测试剂盒(胶体金法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 南京诺唯赞医疗科技有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400239 /td /tr tr height=" 38" style=" height:38px" td height=" 38" width=" 48" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " align=" center" valign=" middle" 19 /td td width=" 271" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 新型冠状病毒(2019-nCoV)IgM/IgG抗体检测试剂盒(胶体金法) /td td width=" 138" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 珠海丽珠试剂股份有限公司 /td td width=" 165" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " 国械注准20203400240 /td /tr /tbody /table p br/ /p
  • 像“特洛伊木马”,空气污染让流感病毒深入肺部
    空气污染究竟是否会加重呼吸系统病毒感染?现在,中国科学家发现,答案是肯定的。中国科学院生态环境研究中心(以下简称生态中心)刘思金研究员团队与中国科学院微生物研究所(以下简称微生物所)方敏研究员等合作,发现大气细颗粒物可以打破流感病毒本身在动物体内散播方式,像“特洛伊木马”一样将病毒运送到细胞中,同时让病毒更容易进入肺脏深部,甚至进入肝脏、脾脏和肾脏等肺外器官。相关研究近日发表于《科学进展》(Science Advances) 期刊。“我们的研究详细阐释了空气污染如何影响呼吸道感染,说明了考虑空气质量管理和减少空气污染政策的紧迫性。”论文共同通讯作者刘思金对《中国科学报》说。诞生在校车上的合作2020年9月里的一天,担任环境化学与生态毒理学国家重点实验室副主任的刘思金像往常一样搭乘校车从研究所前往中国科学院大学雁栖湖校区给研究生上课。这段一个多小时的教学之旅,他喜欢在车上和邻座的老师学生们聊聊感兴趣的研究。这一次,刘思金遇到了方敏,交流中,他们发现了共同感兴趣的话题:空气污染与呼吸系统感染性疾病。近年来,越来越多的研究表明,PM2.5等大气颗粒物可以吸附携带多种病原微生物,但它们是否会增加人群的疾病风险及其相关机制并不清楚。刘思金团队主要开展大气细颗粒物暴露的健康危害研究,特别关注颗粒物诱发机体损伤效应的过程和机制;方敏团队主要从事病原微生物感染和免疫、病原与宿主互作的研究,在流感病毒的致病机理研究方面做了大量的工作。这让他们对大气细颗粒物如何影响呼吸系统病毒感染这个长期未解答的跨学科问题都十分感兴趣。两人越聊越投机,短短的旅途上,初步的合作意向已经达成。随后,两个团队合作申请了国家自然科学基金委的面上项目,以及原创性探索项目。他们开始以流感病毒为研究对象,着手研究大气细颗粒物与病毒感染之间的关系与机制。“之所以选择流感病毒,是因为流感病毒是造成呼吸系统感染的重要病原之一,并且可以在微生物所的生物安全二级实验室进行操作。我们也在小鼠流感病毒感染模型的建立方面积累了一些技术方法和实操经验。”论文共同通讯作者方敏对《中国科学报》说。细颗粒化身“特洛伊木马”流行病学研究表明,当空气污染严重时,人类呼吸道病毒传播似乎也会增加。空气中细颗粒与病毒究竟如何协作?合作团队选择了四种具有不同来源和组成的颗粒物来验证其与病毒之间的相互作用,包括大气环境中采集的PM2.5、以二氧化硅为主要成分的粉尘颗粒、通过生物质燃烧形成的生物炭颗粒以及由化石燃料燃烧产生的碳黑颗粒。“大气中的病毒不是纯粹自由态存在的,它往往是有载体的。我们发现,细颗粒物就可以作为一个载体,它们可以像‘特洛伊木马’一样将病毒运送到细胞中。”刘思金比喻说。值得注意的是,研究者发现,细颗粒物与病毒的相互作用在很大程度上依赖于其物理化学性质。例如PM2.5比其他三种细颗粒物吸附的病毒要多得多,因为它具有较高的表面积和孔隙率等特性。生物炭的病毒载量紧随其后。那么,装载在细颗粒物上的病毒是否可以感染呢?研究者通过经典的血凝素实验对细颗粒物与病毒的复合物进行了检验。“血凝素(HA)是流感病毒表面的一种糖蛋白,它能够与多种禽类和哺乳动物红细胞上的血凝素受体结合,引起红细胞凝集。”方敏介绍,研究发现细颗粒物与病毒复合物的凝聚能力是纯病毒的70%~90%,其活性在培养4小时后保持不变,这说明被吸附或者沉积在颗粒物上的病毒仍然具有较高的感染活性。针对搭载“特洛伊木马”的病毒被机体吸入后产生的损伤效应,合作团队发现所有的细颗粒物都能在不同的程度上增强病毒对细胞的感染并促进了病毒的出芽和释放。更为重要的是,小鼠实验发现颗粒物可以运载病毒进入肺脏深部,并且突破气血屏障,到达肝脏、脾脏和肾脏等肺外器官,导致小鼠产生更严重的损伤效应,包括全身性炎症、局部组织损伤和体重减轻等。“由于颗粒物的载体作用,改变了流感病毒在呼吸道的分布,并运载病毒到达肺外器官。与单独的病毒相比,复合体由于颗粒性质更容易被细胞摄取,这个过程可以不依赖病毒特异性受体。另外,颗粒物可以通过脂筏促进子代病毒出芽释放,导致病毒的整个感染过程被重排和加速了。”方敏解释说。红细胞上的流感颗粒(蓝色;人工着色),可搭载细颗粒进入细胞图片来自:NIBSC / SPL/Nature“摸着石头过河”《自然》(Nature)对这项研究进行了专文报道,认为该研究“有助于解释为什么空气污染严重时流感病毒感染更加严重”。“我们的研究为空气污染对呼吸道感染的影响提供了详细的见解,也表明了考虑空气质量管理和进一步减少空气污染政策的紧迫性。”刘思金说。刘思金课题组成员、论文第一作者董政告诉《中国科学报》,该研究从2020年9月开始,到现在花费了将近三年时间。由于研究中涉及到环境化学、病毒学以及免疫学等跨学科知识和技术方法,很多实验思路和方法都需要“摸着石头过河”,才能逐步建立。董政说,“做研究有趣的地方正在于克服一个又一个难题后的喜悦感。”不过,研究者表示,这项研究也有一定的局限性,如实验室模拟与真实的环境条件可能存在差别,同时实验动物与人体存在很大的差别,单纯动物实验得到的结论不能完全外推到人体,接下来仍需要更多的研究对此进行深入探索。空气中的细颗粒,如PM2.5、灰尘、生物炭和碳黑,可吸附不同数量的病毒,形成传染性的细颗粒-病毒复合物。复合物通过非病毒受体依赖的途径感染宿主细胞,引导病毒的内化和出芽。不同的细颗粒负载的病毒沿着呼吸道分布在不同的位置,并运输到更远处的肺外器官图片来源:受访对象
  • 快速高效判断病毒活性,何惧“疫”军突起
    农历庚子年春节,“疫”军突起,新型冠状病毒(2019-nCoV)肆虐中华大地,全国上下正在面临一场疫情阻击战。医务工作者日以继夜救治病患,科研人员加班加点投入到抗击新冠病毒的相关研究中。在病毒学研究中,病毒空斑实验(virus plaque assay)将各稀释度的病毒液接种到单层细胞培养环境中,吸附2小时后,在单层细胞上覆以琼脂糖,病毒感染细胞并在细胞中增殖,使细胞破裂死亡。由于固体介质的限制,释放的病毒只能由最初感染的细胞向四周扩展。经过几个增殖周期,便形成一个局限性病变细胞区,即病毒空斑。理论上,当病毒液充分稀释后,获得的每个空斑均源于最初感染细胞的一个病毒颗粒。空斑实验是病毒滴定,筛选病毒突变株,检测病毒抗体和抗病毒药物研究的常规手段。区别于传统的只检测病毒颗粒的PCR和免疫荧光方法,病毒空斑实验检测有活性的感染性病毒颗粒,即空斑形成数(PFU)。目前,病毒空斑实验主要还是通过人工计数的方式在6孔,12孔或24孔板里实现。这样的操作速度慢,主观因素大,出错率高;尤其当病毒活性比较高时,很难准确统计出空斑数。相比之下,利用成像配合自动计数的方法可以提高病毒空斑的检测通量,提升计数的准确性。如下图所示,用AlexaFluor™ 488染色的病毒进行空斑实验,在病毒空斑形成后通过明场成像和荧光成像,可以看到感染后病毒引起宿主细胞的结构改变,也称为细胞病变效应(CPE)。这类效应可能是或者细胞裂解导致单层(溶斑)出现孔洞(A),也可能是形态改变如细胞脱离(非溶斑)(B)。利用模块化的分析算法,计算机可以非常准确地判断出这两种细胞病变状态。如图C中,红色标注的是溶斑空洞,而蓝色的则是非溶斑的细胞脱离。为了验证计算机分析的准确性,研究人员进行了人工计数和计算机分析的比对实验。将病毒按不同倍数进行稀释,进行空斑实验。实验完成后,由3名分析人员进行人工计数,同时利用EnSight™ 多模式检测仪进行成像和空斑计数分析(下图)。实验结果显示:人工计数和自动图像分析都具有非常好的线性回归,其R2值非常相似。但是当病毒稀释倍数很低(病毒浓度高)的时候,人工计数就很难实现了 ,如下图中的1:20和1:10两个病毒浓度点(图D)。从空斑计数结果看(图E),第一次实验在人工可计数的病毒浓度下,计算机分析和人工计数值基本一值;但第二次实验中,在1:160和1:640两个病毒浓度下,2号分析人员明显高估了空斑的个数。这也说明人工计数存在一定的主观性,具有计数值偏离真实值的风险。以上实验是使用珀金埃尔默的EnSight™ 多模式检测系统完成的。结果表明成像自动分析可以显著提升病毒空斑实验的通量以及实验结果的准确性和稳定性。珀金埃尔默公司的EnSight™ 多模式检测仪是一款集传统酶标技术和高速微孔成像于一体的系统。EnSight™ 成像模块专为高速高效的细胞成像而设计,采用先进的sCMOS相机以降低信号背景噪音,激光自动聚焦以快速成像,固态光源 (LED) 以进行短时照明;配备高内涵(HCS)图像分析内核的软件Kaleido™ ,使图像数据准确地转化成数字信息。同时,EnSight™ 的Alpha和TR-FRET等模块,可以在成像的同时检测同一样品中其他生化指标,让研究变得多维度,让科研人员对实验结果有更好的把握。扫描下方二维码,即可下载珀金埃尔默EnSight™ 多模式检测系统相关资料。
  • OPTON微观世界|病毒-亦敌亦友
    截止目前,新型冠状病毒已经冠肺炎已经引起全世界超8800万冠肺炎确诊病例,此次新冠肺炎疾病平均死亡率约2%左右,造成了数万名患者死亡,营造成了全球的经济形势下行。其实在人类历史上,有多种病毒会引起的疾病大流行,造成的伤亡远远大于此次新冠肺炎。天花病毒(Smallpox virus) 该病毒会引发烈性传染病天花,感染天花病毒的患者在痊愈后脸上会留有麻子,“天花”由此得名。天花是人类历史上发病率最高、死亡者最多的传染病。在16-18世纪,每年死于天花的人数,欧洲约为50万人,亚洲约为80万人,而整个18世纪欧洲人死于天花的总数,则约在1.5亿人以上。19世纪至20世纪初,天花依然横行无忌;这种状况一直持续到20世纪下半叶。 登革热病毒,该病毒通过蚊子叮咬进行传播,可引发急性传染病登革热。这种疾病最初发生在热带地区,通常大多是发生在这些地区的雨季,这种环境下极易滋生大量携带病毒的蚊子。传染病的爆发规模越来越大,情况越来越严重,其中登革热出血热的比例也越来越大。全球每年发生5000万~1亿个登革热病例,有24.5亿人受到感染的威胁。登革热影响所有年龄的人,但是大部分的登革热却发生在年龄15岁以下的儿童。马尔堡病毒 该病毒最早在1967年发现于德国马尔堡,引发的传染病称为马尔堡出血热。该病毒可以通过体液(血液、排泄物、唾液、呕吐物等)传播。病患者病状为发高烧,腹泻、呕吐,身体各孔穴严重出血。通常病发后一周死亡。病发死亡率为25%至100%。对于这种具高度传染能力,而同时致命的疾病,目前没有任何疫苗或医治的方法。埃博拉病毒 该病毒可引发急性传染病埃博拉出血热,可通过身体接触传染,是现存的毒性最大的病毒,导致患者病死率高达50%~90%。目前还还没有有效抵御这种病毒的疫苗和药物。它以极其恐怖的传播方式和速度像幽灵一样在非洲游荡,从1976年至2012年爆发了23次。2014年7月,埃博拉病毒再次在非洲大爆发,其感染和死亡人数已经超过以往任何一次,并且还在继续蔓延,并无被控制的迹象。甲型流感病毒 流感病毒分为三个型别,即甲型、乙型和丙型。其中甲型流感病毒是我们已经较为熟悉的一种,也是最危险的一种。历史上最骇人的一场流感发生于1918年,这场场全球性流感夺走了5000万条生命,其罪魁祸首就是名为H1N1的甲型流感病毒。令人闻之色变的禽流感也是一种甲型流感,近年来流行的H5N1、H7N9都是对人类危害较大的禽流感。甲型流感的可怕之处在于它可以通过短时间内的基因重组而演化出新的病株,每重组一次毒性增强、传染性增大,且能导致原有的治疗方法失效。患者感染后的症状主要表现为高热、咳嗽、流涕、肌痛等,多数伴有严重的肺炎,严重者心、肾等多种脏器衰竭导致死亡,病死率很高。SARS冠状病毒 该病毒可引发重症急性呼吸综合征,即我们熟知的SARS。据世界卫生组织公布的信息,SARS患者的平均死亡率为9.6%左右,最高可能达到14%~15%。该病于2002年在中国广东顺德首发,并扩散至东南亚乃至全球,直至2003年中期疫情才被逐渐消灭。该病为呼吸道传染性疾病,主要传播方式为近距离飞沫传播或接触患者呼吸道分泌物。 病毒与其他生物不同,病毒没有细胞结构,只能在宿主细胞内繁殖,病毒可以引起人类、动植物、昆虫的多种疾病。可见,病毒作为很多疾病的罪魁祸首,给人类带来了很多的灾难。 但是病毒也是有分类的,并不是所有的病毒都会感染人类。并且由于病毒在细胞内繁殖速度快,数量巨大,结构简单等特点,也为人类的生物技术带来了天然的载体。由于一般病毒的尺寸很小,只有几十到一百纳米,所以常规只能用透射电子显微镜才可以观察到,但是随着现代电镜技术的发展,扫描电镜也可以对其进行观察。下图是场发射扫描电镜STEM模式下拍摄的噬菌体病毒的照片。未经染色处理的T4-Phage噬菌体,使用STEM探测器获取高衬度图像(左),噬菌体的结构示意图 这是基于这种噬菌体病毒而发展起来的称为“噬菌体展示”的技术给人类制药带来了巨大的飞跃。这让能感染细菌的病毒可以用来进化新的蛋白质。噬菌体技术可产生抗体,用以中和毒素,对抗自身免疫性疾病以及治疗转移性癌症。 “噬菌体展示”技术的基本原理就是将编码多肽的外源DNA片段与噬菌体表面蛋白的编码基因融合后,以融合蛋白的形式呈现在噬菌体的表面。被展示的多肽或蛋白可保持相对的空间结构和生物活性并暴露于噬菌体表面。导入各种各样外源基因的一群噬菌体,就构成了一个呈现各种各样外源肽的展示库。当用一个蛋白质去筛查一个噬菌体展示库时,具体的操作过程其实是用这个蛋白质与该库中的全部噬菌体同时进行反应,以测试蛋白质与噬菌体的结合能力。所用的蛋白质会选择性地同(暴露于特定噬菌体表面的)某个外源肽相结合,从而分离出展示库里的某个特定的噬菌体。噬菌体展示技术示意图 噬菌体展示技术构建抗体库省去细胞融合步骤,避免了因杂交瘤不稳定而反复亚克隆的繁琐程序,极大的提高库容量,从杂交瘤的几千个克隆升至106个。噬菌体展示技术可以直接得到抗体基因,便于进一步构建各种基因工程抗体,还可用于一些难于制备的抗体,如弱免疫原、毒性抗原等,以及人源化抗体。由于噬菌体展示技术周期短,在细菌中增值,因此适用于抗体的大规模工业化生产。噬菌体抗体库的巨大优势,让其在后基因组时代具有多种应用。该项技术也获得了2018年诺贝尔化学奖的殊荣。 人们已经使用此种噬菌体展示的方法,对抗体进行定向进化,从而获得新的药物。第一个用这种方法获得的药物阿达木单抗(adalimumab),于2002年获批并用于类风湿性关节炎,牛皮癣和炎性肠道疾病,,阿达木成为销售额最高的生物药“药王”,仅2017年销售额就达到184.3亿美元。 由此可见,病毒并不是仅仅是人类的敌人,只要我们了解了其基因表达的特点,将所需的蛋白质进行直接表达,也可以是人类的生产工具,让其为人类工作。
  • naica® 微滴芯片数字PCR助力华盛顿大学科学家在同时监测HIV病毒载量和检测SARS-CoV-2感染研究
    COVID-19大流行中断了对艾滋病病毒感染者的常规护理,严重影响了对艾滋病病毒感染者的诊断和治疗。如果感染SARS-CoV-2, 艾滋病病毒感染者的发病率和死亡率会增加。据报道,近日在南非发现新冠新型变异毒株Omicron可能由艾滋患者体内进化而来。因此密切监测HIV血浆病毒载量(VL)并筛查SARS-COV-2感染就显得尤为迫切。近日,来自华盛顿大学的Gaurav K Gulati和Nuttada Panpradist等科学家在medRxiv平台上提交文章《Inexpensive workflow for simultaneous monitoring of HIV viral load and detection of SARS-CoV-2 infection》的预印本。通过开发一种新的工作流程,同时定量艾滋病毒载量和检测SARS-CoV-2。文中使用naica微滴芯片数字PCR系统对RNA浓度进行精准定量,用于新方案的评估。文章中作者基于Boom方法开发了一种内部RNA提取方法,从血浆、鼻腔分泌物(NS)或二者混合物中进行RNA提取,对HIV长末端重复序列(LTR) 、SARS-CoV-2核衣壳基因区域(N1、N2)和人类核糖核酸酶 P(RP)进行RT-qPCR分析,估计血浆病毒载量并对HIV/SARS-CoV-2状态进行分类(HIV为病毒学失败或抑制,SARS-CoV-2为阳性、假定阳性、阴性或不确定)。首先,作者将包含HIV LTR检测扩增区域或N1/N2检测的DNA片段作为RNA生成的起始DNA构建体。使用 T7 RNA聚合酶将DNA构建体转化为RNA。为了对体外转录的RNA浓度进行精准定量,作者使用naica微滴芯片数字PCR系统对RNA浓度进行绝对定量(图1)。从图中可以看出通过检测OD值并不能对RNA浓度进行精准定量,因此最终利用数字PCR的结果对RNA的浓度进行了校正。图1:数字PCR量化体外转录的RNA标准浓度随后将合成的不同浓度的HIV RNA与血浆样本进行混合构成人造血浆样本,合成的不同浓度的SARS-CoV-2 RNA与NS进行混合构成人造NS样本,分别采用内部提取方法和标准提取方法对血浆样本中HIV、NS样本中SARS-CoV-2和血浆和NS混合样本中HIV和SARS-CoV-2进行灵敏度检测。同时采用133个临床样本,其中40个血浆样本(30个HIV血清阳性),67个NS样本(31个SARS-CoV-2阳性)和26个血浆和NS混合样本(26个HIV阳性,10个SARS-CoV-2阳性)进行评价(图2)。结果表明:内部提取对HIV的检测限为200拷贝/mL,对SARS-CoV-2的检测限为100拷贝/mL。对于血浆样本,两种方法测量的HIV病毒载量水平呈正相关(人造样本的R2:0.98, 临床样本R2: 0.81)。在对NS样本使用内部提取方法时,排除不确定结果,与标准提取方法相比,95%的一致性(25个阳性,6个假定阳性和31个阴性)。对于血浆和NS混合样本,两种方法测量的HIV病毒载量水平呈正相关(人造样本的R2:0.98, 临床样本R2: 0.71)。SARS-CoV-2检测结果显示阳性和阴性分类是100%一致性。图2:使用两种不同提取方法从血浆和NS混合样本中共同提取的RNA中获得的HIV LTR 和SARS-CoV-2 Cq值的比较.(a)比较标准与内部提取方法性能的实验设计方案。(b)来自内部提取方法的SARS-CoV-2 LTR、N1、N2和人 RP (阴性样本的对照)测定的Cq值。(c)基于两种提取方法的结果对样本进行分类。通过两种方法提取的样本中测得的(d)LTR、(e)N1和(f)N2的散点图。综上所述,作者开发的内部提取方法可以从单独的血浆或血浆和NS混合样本提取RNA来确定艾滋病病毒感染者是否存在SARS-CoV-2感染,从而有可能简化HIV管理和SARS-CoV-2检测。将这两种病毒的检测结合起来可以有效的减少COVID-19对艾滋病毒治疗的影响。medRxiv是由耶鲁大学(Yale University)、非营利研究和教育机构冷泉港实验室(The Cold Spring Harbor Laboratory,CSHL)和BMJ出版集团(英国医学会下属专业医学出版机构,British Medical Journal)创建的,服务器由CSHL拥有和操作。medRxiv为研究人员在期刊出版前分享、评论和接收有关其工作的反馈提供了一个平台。medRxiv旨在提高科学发现的开放性和可及性,加强研究人员之间的协作,记录想法的来源,并通过更及时地报告已完成的研究,为正在进行和计划的研究提供信息。原文:https://doi.org/10.1101/2021.08.18.21256786naica六通道微滴芯片数字PCR系统法国Stilla Technologies公司naica六通道微滴芯片数字PCR系统,源于Crystal微滴芯片式数字PCR技术,自动化微滴生成和扩增,每个样本孔可实现6荧光通道的检测,智能化识别微滴并进行质控,3小时内即可获得至少6个靶标基因的绝对拷贝数浓度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制