当前位置: 仪器信息网 > 行业主题 > >

波长微量仪

仪器信息网波长微量仪专题为您提供2024年最新波长微量仪价格报价、厂家品牌的相关信息, 包括波长微量仪参数、型号等,不管是国产,还是进口品牌的波长微量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合波长微量仪相关的耗材配件、试剂标物,还有波长微量仪相关的最新资讯、资料,以及波长微量仪相关的解决方案。

波长微量仪相关的论坛

  • 【讨论】三价铁光度法的波长

    在测定微量三价铁时,选用硫氰酸铵显色,有人说波长应该在480nm,还有的说应该在510nm,还有的说应该在530nm,请大家发表一下意见,究竟是以哪个波长为准?

  • 紫外线辐照度测试的波长问题-紫外线测量仪

    在GB/T16422.1-2006的5.1.7.3节中有如下表述:有些类型的设备提供了测试特定波长范围(如300nm-400nm或300nm-800nm)或以一个单波长(如340nm)为中心的窄波带的辐照度。有些报告中也显示: 光源:UVA-340(波长340nm) 辐照度:0.76w/㎡/nm这里的340nm应该不是指波长恰好为340nm的光波,应该是一个范围,比如339.5nm-340.5nm,标准中也说是一个窄波带。那么这个波长的公差到底是多少呢?有没有相关的标准呢待大拿释疑

  • 首个中红外波长超级反射镜制成

    来自奥地利、美国和瑞士的科学家组成的国际科研团队,研制出了首个中红外波长范围超级反射镜,有望用于测量微量温室气体或用于切割和焊接的工业激光器等领域。研究论文发表于最新一期《自然通讯》杂志。在可见光波长范围内,现有金属反射镜的反射率为99%。在近红外范围,专用反射镜涂层的反射率高达99.9997%;但迄今最好的中红外反射镜的反射率为99.99%,光子丢失率是近红外超反射镜的33倍。人们一直希望将超反射镜技术扩展到中红外领域,以促进很多领域取得重大进展,如测量与气候变化有关的微量气体、分析生物燃料,以及提升广泛应用于工业和医疗领域的切割激光器和激光手术刀的性能等。此次,研究团队研制出的中红外超反射镜的反射率高达99.99923%。为制造出中红外超级反射镜,研究团队结合传统薄膜涂层技术与新型半导体材料和方法,开发出一种新涂层工艺。为此,他们先研制出直径为25毫米的硅基板,然后让高反射半导体晶体结构在10厘米的砷化镓晶片上生长,接着将其分成更小的圆形反射镜,再将这些反射镜安装到硅基板上,得到了超级反射镜并证明了其性能。[b]研究人员指出,这款新型超反射镜的一个直接应用是显著提高中红外气体分析光学设备的灵敏度,可准确计量微量环境标志物,如一氧化碳等。[/b][来源:科技日报]

  • 酶标仪单、双波长检测的比较

    在用酶联免疫法测定抗原或抗体时,不论是定量试验还是定性试验都要求使用酶标仪进行测定。一般的酶标仪在测定中均有单波长和双波长的模式,并且采用的都是垂直光路。但在日常工作中有时会不太重视单波长和双波长的选择,对使用单、双波长给测定结果带来的较大差异也不很了解,并且实际工作中也出现了使用单波长检测导致抗HCV部分弱阳性的漏检。因此,本人就酶标仪在选择单、双波长使用方面谈谈个人的体会,供同道参考。一 材料和方法1.材料 由上海科华公司提供的乙肝表面抗原测定试剂盒;eppendorf 20-20ul的[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url][/color][/url]。2.仪器 上海科华公司的ST-360酶标仪和BIO-RAD 550酶标仪。3.方法 底物液配制:底物液A、B各5ml混合,加入微量酶标记物,再加入5ml终止液,呈微黄色,混匀待用;利用上海科华公司提供的乙肝表面抗原试剂盒的酶标板,用94孔中准确加入150ul配制好的上述底物液,另2孔中加入150ul已终止的空白底物液作空白。在BIO-RAD 550酶标仪上分别进行450nm单波长和450nm及655nm(无630nm)的双波长检测,在ST-360上分别进行450nm单波长和450nm及630nm的双波长检测吸光度各两次。二 结果  1.分别对所得结果进行统计,发现单、双波长测定结果有较大的差异,双波长测定结果的CV值远小于单波长测定,结果见表1。2.对ST-360两次重复测定结果进行分析,结果基本一致,见表2。表1酶标板吸光度在两台酶标仪上的测定统计结果酶标仪 BIO-RAD550 ST-360 波长 450nm 450nm+655nm 450nm 450nm+630nm 最小值 0.125 0.126 0.130 0.131 最大值 0.154 0.139 0.153 0.141 均值 0.1356 0.1329 0.1399 0.1361 标准差 0.00671 0.00267 0.00467 0.00247 CV(%) 4.94 2.01 3.34 1.82 最大值/最小值 1.232 1.103 1.177 1.076 表2 ST-360酶标仪两次吸光度测定统计结果波长 450mnm 450nm+630nm 1 2 1 2 最小值 0.130 0.129 0.131 0.131 最大值 0.153 0.152 0.141 0.141 均值 0.1399 0.1391 0.1361 0.13711 标准差 0.00467 0.00495 0.00247 0.00229 CV(%) 3.34 3.56 1.82 1.67 三 讨论  1.酶标仪与分光光度计、自动生化分析仪等的吸光度测定有所不同,一般分光光度计是水平光路,而酶标仪则是垂直光路,但测定原理相同,都是使用朗伯-比耳定律,测定的都是样本的吸光度。垂直光的特点是标本吸光度受液体浓缩或稀释的影响小,不足之处是受被测样本液面是否水平、酶标板透光性、孔底是否平整等的影响较大。2.酶标仪在用单波长测定吸光度时,除受到测定干扰(样本的浊度、干扰色等)和电路干扰(包括噪音、漂移、电压等)等因素外,受液体表面张力的影响也很大。在检测过程中,由于液体表面张力的作用,液体的表面不是一个平面,而是形成一个凹面,从侧面看似凹透镜,这样不可避免会影响光路的正常通过。由于凹液面的影响,光线在通过液体时,除正常被液体吸收一部分外,尚有部分被折射和反射(如光线通过凹透镜那样),影响吸光度的检测。而酶标仪使用的又是通过光导纤维传播的点光源,如果每次能在同一部位检测,吸光度的重复性将得到保证,但由于机械运动等造成的误差,不可能保证每孔都在相同部位被检测,因此造成了孔与孔之间有一定的差异。结果见表1,整块板单波长检测的CV在3%以上,吸光度最高值和最低值的相对误差达17%以上。3.在双波长测定中,减少了测定干扰和电路干扰,因此测定结果明显好转,结果见表1,整块板样本的CV在2%以下。ST-360在进行稳定性观察中,如表2所示,两次检测结果基本一致,这表明ST-360的稳定性较好。同时,从表1也可以看到,科华公司生产的ST-360与BIO-RAD 550的检测结果一致,两者的检测性能基本相同。4.由于液体表面张力的不同,导致单波长测定时的误差较大。并且用不同的洗涤剂会影响到最后加入底物和终止液后的液面情况,用加入表面活性剂的洗涤液清洗后,形成的液面更凹,对单波长检测的影响更大,并且与表面活性剂的浓度成正比。而且中性蒸馏水洗涤后,单、双波长检测的结果基本一致。5.在酶联免疫法测定抗原抗体中,由于所使用的底物不论是邻苯二胺(OPD)-H2O2,还是四甲基联苯胺(TMB)-H2O2,显色终止后,在630nm和655nm处的吸光度值都只有吸收峰处(492nm/450nm)吸光度值的1%以下,因此,利用双波长检测,不会影响检测灵敏度。建立在进行酶联免疫检测时,酶标仪比色应该首选双波长。这样可以提高临界值处标本的分析正确度,减少实验误差。

  • 【求购】求购微量核酸定量仪

    公司欲购买微量核酸定量仪一台,请大家帮个忙,有在使用这个仪器的,可以把仪器牌子型号说一声,给俺参考下http://simg.instrument.com.cn/bbs/images/brow/em09502.gif。仪器厂家销售商也可以联系15095049758

  • 【原创大赛】波长位移与波长电机的纠葛

    【原创大赛】波长位移与波长电机的纠葛

    近日,维修了一台紫外分光光度计波长位移的故障,感到很有趣,故记下于君共赏。仪器型号:U-2800仪器故障:波长左右位移,没有规律。检修过程:(1)开机初始化后检查氘灯特征谱线基本正常,见图-1所示:http://ng1.17img.cn/bbsfiles/images/2012/12/201212031424_408995_1602290_3.jpg图-1 初始化后的氘灯特征谱线(2)其后当仪器工作一段时间后发现所测的结果的重现性不良,表现形式为样品的峰高发生了位移。为了排除样品的原因,则用钬玻璃来确认;图-2是钬玻璃图谱:http://ng1.17img.cn/bbsfiles/images/2012/12/201212031425_408996_1602290_3.jpg图-2 钬玻璃图谱通过上图可以看出,361nm处的波长变为357nm了,整体波长位移了-4nm;这就可以明确地判断出波长位移的原因不是样品而是在仪器方面。(3)再次检查氘灯的656.1nm的波长精度,发现竟然波长位移了115nm,简直不可思议,见图-3所示:http://ng1.17img.cn/bbsfiles/images/2012/12/201212031427_408997_1602290_3.jpg图-3 氘灯656.1nm的波长位移到771nm处啦!(4)于是重新开机,仪器在初始化时却出现了“波长初始化错误”的提示,见图-4所示:http://ng1.17img.cn/bbsfiles/images/2012/12/201212031429_408999_1602290_3.jpg图-4 提示波长初始化错误产生这种错误提示的原因是:仪器的波长偏移得太多了,因此仪器通电开机后实施的波长初始化时在656.1nm波长附近寻找不到氘灯的特征波长之故。(5)根据上述检查情况判断,问题可能出在波长电机那里,即波长电机的转速没有与驱动信号同步,也就是所谓的波长电机产生了“失步”的故障。根据仪器设计原理,波长电机转动的圈数的多少即代表了波长移动了多少,而电机转动的圈数多少又是受电脑程序控制的。常见产生电机“失步”的故障一般有两个方面的原因:第一是电机传动丝杠光洁度变差增加了传动阻力。于是就在电机传动丝杠上加注了一些机油,但是故障如前。丝杠照片见图-5所示:http://ng1.17img.cn/bbsfiles/images/2012/12/201212031431_409001_1602290_3.jpg图-5 波长传动机构其次是电机驱动电路故障,于是更换了电路板;更换后仪器通电开机,初始化后检查波长精度正常,见图-6所示:http://ng1.17img.cn/bbsfiles/images/2012/12/201212031433_409002_1602290_3.jpg图-6 更换电路板后的波长精度但是仪器工作半小时后,其波长再次发生了位移,见图-7所示:http://ng1.17img.cn/bbsfiles/images/2012/12/201212031433_409003_1602290_3.jpg图-7 波长偏移了41.6nm(6)通过上述记录我发现一个有趣的规律,那就是该仪器一般都是在开

  • 直读光谱仪用关心波长范围吗?

    看不同厂家直读光谱仪 波长范围都不一样,对测试有影响吗?我以前一直做原子吸收的,直读光谱仪测试的波长大多也走在420nm以下吗?

  • 【转帖】药典中有关物质检测检测波长的确定

    有关物质检查,包括对产品中残留合成原料、中间体、副产物及可能的降解产物的检查,是控制药品质量的重要指标,目的是检查药品中所含的上述杂质是否符合安全性的要求,同时也是药品稳定性评价中需重点考察的项目。 有关物质检查常用的方法之一是HPLC主成分自身对照法(紫外检测器),即将HPLC色谱图中杂质峰面积与主成分自身对照液峰面积进行比较,以确定杂质限度是否合格。采用此方法时确定的检测波长是否合理直接影响到方法的可行性,因此检测波长的选择是方法学研究的重要内容。 在审评中发现一些申报单位在采用HPLC主成分自身对照法检查有关物质时直接或间接地以主成分的最大吸收波长作为检测波长,由于有关物质检查的对象是杂质,若将主药的最大吸收波长确定为检测波长,则杂质在此波长下的吸收可能偏低,某些杂质甚至无吸收,这样会造成对杂质含量的低估甚至漏检,从而不能反映产品的真实质量,影响了对品种质量可控性及稳定性的评价。1.直接将主药的最大吸收波长选作检测波长。2.简单地套用含量测定的色谱条件。在HPLC法进行含量测定时,为提高方法的灵敏度,降低干扰,往往选用主成分的最大吸收波长作为检测波长。若套用含量测定的色谱条件,实际仍是以主药的最大吸收波长作为有关物质检测波长。 3.以样品进行破坏性试验(酸、碱、热、光照、氧化等)后的溶液做紫外扫描,将扫描图谱中最大吸收波长确定为有关物质的检测波长。因破坏性试验后溶液中存在尚未破坏的主药、降解产物、辅料等,此溶液的紫外吸收为各成分紫外吸收的加和,并不能反映降解产物的紫外吸收特性。由于未破坏主药所占比例较大,故破坏性试验后溶液的最大吸收波长一般仍为主药的最大吸收波长。 采用HPLC主成分自身对照法检查有关物质,其前提之一是需检查的杂质与主成分在确定的检测波长下应有相近的紫外吸收(响应值接近),选择检测波长时需对产品中可能存在的杂质(合成原料、中间体、副产物以及降解产物)的紫外吸收特性进行研究。已知杂质的紫外吸收特性可采用对其流动相溶液直接进行扫描的方法考察,未知杂质(如未知降解产物等)可通过二极管阵列检测器考察其紫外吸收情况,根据各主要杂质及主成分的紫外吸收特性,选取响应值基本一致的波长作为有关物质的检测波长。若对不同杂质难于找到均适宜的检测波长,可考虑选择在不同波长下分别测定,也可考虑采用加校正因子的主成分自身对照法。只有经试验研究确认主成分的最大吸收波长符合有关物质检查对测定波长的要求时,为方便操作,可选作有关物质的检测波长,以与含量测定的色谱条件一致。 另外,HPLC主成分自身对照法检查有关物质比较适用于对微量杂质总量的控制,也可用于单个杂质的限度(一般不超过0.5%)控制。对于具有明确归属的已知杂质,建议采用杂质对照品法进行检查。对于有毒有害杂质,更应采用杂质对照品法单独测定,并制定严格的限度。 转自——中国植提论坛

  • 【求助】问下波长的问题

    我用的普析AFG-990的仪器,开机自检后有个寻峰的设置,但是常常寻峰出来的波长和预设的波长不完全一致,比如锰,设定波长为279.5,寻峰出来结果为279.77,这种情况需要更改波长吗?还是直接略过?超过多大范围需要更改波长或重新波长校正?

  • 求助关于原子吸收波长范围测试的问题

    看过一篇文章说[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的波长范围达不到190-900会边缘能量不足,需要测量波长范围,这篇文章说测量方法是分别测量波长两端的噪声,再测量波长两端的信号,得出信噪比,我想请教的是噪声和信号分别用什么方法测量出来的啊?信号测量是用什么元素样品测量的呢?得出的信号值和噪声值是吸光度吗?谢谢了

  • 【每天一问】(13)常用波长范围~

    分光光度法是通过测定被测物质在特定波长处或一定的范围内的吸光度或发光强度,对物质进行定性定量的分析方法。常用的波长范围为200-400nm ()400-760nm ()760-2500nm ()2500-25000nm ()A:近红外光区 B: 中红外光区 C: 可见光区 D:紫外光区请找出相对应的光区,填人空中。参与活动,积分奖励~

  • 【求助】关于波长范围内的吸光度的问题

    对于某些物质的吸光度检查,说在某个波长范围内的吸光度不得超过某个值(如乙醇中的吸光度检查说250--260波长范围内不得过0.06,270---340不得过0.02),这个值是指最大吸光度还是总的吸光度呢?

  • 原子吸收波长范围

    大多数厂家的原子吸收的波长范围是190-900nm.只要很少的厂家写为180-900nm? 有啥实际意义呢?

  • ICP波长范围什么意义

    我们准备买ICP,请教2个问题请问:有的厂家波长范围很宽,如岛津范围是166-847nm,有的光谱仪没有这么高,但仪器却更高端,这是什么原因?难道仅仅是因为广告宣传的原因,是不是波长范围越大越好呢?另外,岛津宣称焦距是1m,是不是焦距也越长越好呢?我看很多高端的焦距比岛津的小好多?

  • 【原创大赛】分光光度计检定波长误差和杂散光项目的意义

    分光光度计检定波长误差和杂散光项目的意义 分光光度计可用于许多部门的化学物质定量分析,也是被纳入强制检定目录的计量仪器,它的准确度在实验中极其重要。目前我国的计量检定规程规定分光光度计计检定中需要检定波长误差、透射比测量准确度、杂散光等参数,其中,波长误差和杂散光的检定是经常不被重视的项目。这两项参数到底有没有检定的不要呢?今天我们就讨论一下这些参数进行检定的意义与目的。 一、波长误差 波长误差定义为波长测量值与真实值之差,其实质是仪器波长指示器的波长读数与单色系统实际给出的波长值之差。分光光度计的波长误差包括系统误差和随机误差。波长系统误差根据来源可分为两种情况: 1、波长机构误差:来源于仪器单色系统与波长装置在制造中的缺陷。如仪器单色系统内的色散元件、透镜或反射镜,波长装置中的度盘刻线、传动机构等零部件在制造过程中不可避免存在一定的加工误差。这些加工误差对生产过程来说是随机产生的,但对仪器就形成了固有的系统误差。 2、波长调整误差:由于单色系统与波长装置未调节到最佳状态造成的。有可能是波长装置各部件与狭缝的相对位置未处于最佳状态,或使用过程中相对位置移开了最佳状态,由此产生的误差可能很大,但可以通过调整减小或消除。 当仪器存在波长误差时,若分析中采用绝对测量法测量样品浓度,测量结果与波长有密切关系,因此时根据波长指示器设置的波长测定点实际已偏离了文献在提供吸收系数或计算公式时规定的波长。当规定的波长测定点位于尖锐的吸收峰上时,波长点的较小位移也会引起吸光度测量值的较大变化。在与已知浓度标样比较求得未知浓度的相对测量法中,如果波长误差在已知和未知样品分别测量中大小与方向基本相同,已知和未知样品同时在仪器上直接比对,波长误差对测量结果的影响可忽略不计。 二、杂散光 杂散光全称杂散辐射率,定义为仪器探测器在给定标称波长处所吸收的辐射中,夹杂有不属于入射辐射光束的或入射光束带通以外的辐射光线通量和总辐射光线通量之比,其主要来源有: 1、仪器内部光学元件加工时造成的散射缺陷及元件表面受灰尘、油污、划痕等造成的污染、擦伤; 2、单色器暗盒内部表面涂料的性质、表面不平整、划痕等造成的反射、散射; 3、狭缝口的缺陷; 4、狭缝较宽带入的带通之外的辐射及暗盒与吸收样品室未盖严从外部漏入的光线; 5、未经样品吸收而直达检测器的标称波长及被样品部分吸收的非标称波长的剩余部分; 6室内环境空气不清洁,由悬浮微粒造成的散射。 杂散光给分光光光度计测量带入的误差不可低估,是一重要分量。当杂散光不被样品吸收时,吸光度测量值总是低于其真实值,且随样品浓度增大吸光度增高而误差增大。当杂散光有可能被样品吸收时,对吸光度测量值的影响就比较复杂,不仅与杂散光的波长分布有关,还与被测样品的光谱特性有关,但总是使测量值高于真实值。所以杂散光会对采用绝对测量法测量时带入误差。用相对测量法求未知样品浓度时,由于杂散光影响吸光度与浓度的线性关系,只有在未知样品与已知样品同时比对且浓度较接近时,引起的影响可忽略不计。 结束语 可见检定规程所规定的所有检定项目都是有实际的检测意义的,这些参数、指标在仪器使用过程中如果存在较大的误差,就会对测量结果产生明显影响,所以在检定过程中,严格执行检定规程是十分必要的。

  • 【求助】内参比波长

    我们的液相紫外检测器,有1项要设内参比波长,出厂内参比波长为360,怎么理解这内参比波长啊?

  • 关于HPLC主成分自身对照法检查有关物质时检测波长确定的讨论

    关于HPLC主成分自身对照法检查有关物质时检测波长确定的讨论审评二部张玉琥有关物质检查,包括对产品中残留合成原料、中间体、副产物及可能的降解产物的检查,是控制药品质量的重要指标,目的是检查药品中所含的上述杂质是否符合安全性的要求,同时也是药品稳定性评价中需重点考察的项目。有关物质检查常用的方法之一是HPLC主成分自身对照法(紫外检测器),即将HPLC色谱图中杂质峰面积与主成分自身对照液峰面积进行比较,以确定杂质限度是否合格。采用此方法时确定的检测波长是否合理直接影响到方法的可行性,因此检测波长的选择是方法学研究的重要内容。在审评中发现一些申报单位在采用HPLC主成分自身对照法检查有关物质时直接或间接地以主成分的最大吸收波长作为检测波长,由于有关物质检查的对象是杂质,若将主药的最大吸收波长确定为检测波长,则杂质在此波长下的吸收可能偏低,某些杂质甚至无吸收,这样会造成对杂质含量的低估甚至漏检,从而不能反映产品的真实质量,影响了对品种质量可控性及稳定性的评价。在有关物质检测波长确定方面,申报资料中比较常见的做法有:1.直接将主药的最大吸收波长选作检测波长。2.简单地套用含量测定的色谱条件。在HPLC法进行含量测定时,为提高方法的灵敏度,降低干扰,往往选用主成分的最大吸收波长作为检测波长。若套用含量测定的色谱条件,实际仍是以主药的最大吸收波长作为有关物质检测波长。3.以样品进行破坏性试验(酸、碱、热、光照、氧化等)后的溶液做紫外扫描,将扫描图谱中最大吸收波长确定为有关物质的检测波长。因破坏性试验后溶液中存在尚未破坏的主药、降解产物、辅料等,此溶液的紫外吸收为各成分紫外吸收的加和,并不能反映降解产物的紫外吸收特性。由于未破坏主药所占比例较大,故破坏性试验后溶液的最大吸收波长一般仍为主药的最大吸收波长。采用HPLC主成分自身对照法检查有关物质,其前提之一是需检查的杂质与主成分在确定的检测波长下应有相近的紫外吸收(响应值接近),选择检测波长时需对产品中可能存在的杂质(合成原料、中间体、副产物以及降解产物)的紫外吸收特性进行研究。已知杂质的紫外吸收特性可采用对其流动相溶液直接进行扫描的方法考察,未知杂质(如未知降解产物等)可通过二极管阵列检测器考察其紫外吸收情况,根据各主要杂质及主成分的紫外吸收特性,选取响应值基本一致的波长作为有关物质的检测波长。若对不同杂质难于找到均适宜的检测波长,可考虑选择在不同波长下分别测定,也可考虑采用加校正因子的主成分自身对照法。只有经试验研究确认主成分的最大吸收波长符合有关物质检查对测定波长的要求时,为方便操作,可选作有关物质的检测波长,以与含量测定的色谱条件一致。另外,HPLC主成分自身对照法检查有关物质比较适用于对微量杂质总量的控制,也可用于单个杂质的限度(一般不超过0.5%)控制。对于具有明确归属的已知杂质,建议采用杂质对照品法进行检查。对于有毒有害杂质,更应采用质对照品法单独测定,并制定严格的限度。

  • 【求助】关于截止波长的疑问

    从一些资料看到关于截止波长的观点。1,溶剂的紫外截止波长指当小于截止波长的辐射通过溶剂时,溶剂对此辐射产生强烈吸收,此时溶剂被看作是光学不透明的,它严重干扰组分的吸收测量。 2,其测量是将溶剂装入1cm的比色皿,以空气为参比,逐渐降低入射波长,溶剂的吸光度A=1时的波长称为溶剂的截止波长。也称极限波长。 疑问,比如 水的紫外截止波长为200nm,甲醇的紫外截止波长为205nm,乙腈的紫外截止波长为190nm。 是不是我们在200nm 就不能使用水来做溶剂。在205nm就不能使用甲醇来做溶剂,190nm就不能使用乙腈来做溶剂。希望知道的版友都来讨论一下

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制