当前位置: 仪器信息网 > 行业主题 > >

泊头联轴器

仪器信息网泊头联轴器专题为您提供2024年最新泊头联轴器价格报价、厂家品牌的相关信息, 包括泊头联轴器参数、型号等,不管是国产,还是进口品牌的泊头联轴器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合泊头联轴器相关的耗材配件、试剂标物,还有泊头联轴器相关的最新资讯、资料,以及泊头联轴器相关的解决方案。

泊头联轴器相关的论坛

  • 新能源汽车电池测试中曲轴故障如何解决?

    新能源汽车电池测试中,每个配件的性能好坏都能影响整个新能源汽车电池测试的运行,所以,如果新能源汽车电池测试中曲轴发生故障的话,建议及时解决为好。  如果遇到新能源汽车电池测试的曲轴箱内产生大量泡沫话,检查曲轴箱内润滑油起泡沫发生了液击,主要有以下两个方面的原因造成的:新能源汽车电池测试润滑油中混有大量冷媒,当压力降低时,冷媒就会蒸发严重、产生大量泡沫,对此,应将曲轴箱内的冷媒抽空。还有可能是曲轴箱内加入的润滑油太多,连杆大头搅动润滑油造成了大量泡沫,对此,应将曲轴箱内过多的润滑油放出一些,使油位达到规定的油面线即可。  如果新能源汽车电池测试曲轴箱内压力升高的话,可能是活塞环密封不严,从而导致高压向低压串气,应更换新的活塞密封环。  如果排气阀片关闭不严,造成曲轴箱内压力升高,需要检查排气阀片座的密封性,如果密封不严,应及时更换新的阀片。如果缸套与机座的密封性变差,应将缸套拆下,把接合处清理干净并密封好,重新装配好即可。如果曲轴箱内进入过多冷媒,蒸发后导致压力升高。只要将曲轴箱内过多的冷媒抽空即可。  如果新能源汽车电池测试曲轴箱内有敲击声,需要检查连杆大头瓦与轴拐、轴颈的间隙是否过大,此时,应调整间隙,或者直接更换新瓦。如果主轴承与主轴颈之间的间隙过大,就会发生碰撞与摩擦,产生敲击声,应修理或更换新瓦,检查是否是开口销断裂,连杆螺母有松动,如果是,应更换新的开口销,并将连杆螺母紧固好,如果联轴器中心不正或联轴器键槽处已松动。应调整连轴器或检修键槽或更换新键。如果主轴承钢珠磨损,轴承架断裂的话,建议更换新的轴承即可。  新能源汽车电池测试中每个配件的性能都不能忽视,同时在配件的选择上面建议选择知名品牌的配件为好,性能更有保障。

  • 每周一贴谈设计——滤头

    每周一贴谈设计——滤头

    烧结金属丝网滤材最高精度,何况Agilent的金属滤头孔隙本身就大于Waters的。当然,烧结金属网的孔径分布较烧结金属粉末更为均匀。但在20um以下的过滤系统是烧结金属粉末的天下。关于清洁,不锈钢的滤头基本可以用4mol/L的硝酸进行快速清洗或反冲;而玻璃滤头,agilent的建议是清洗或更换。“每周一贴谈设计系列“汇总:《每周一贴谈设计——液流》《每周一贴谈设计——滤头》《每周一贴谈设计——真空脱气机【安捷伦】》《每周一贴谈设计——真空脱气机【沃特世】》《每周一贴谈设计——比例阀及混合【兼求职】》《每周一贴谈设计——泵及压力》《每周一贴谈设计——自动进样系统》《每周一贴谈设计——光电二极管阵列检测器》

  • 示波器电流探头,探头的选择及使用

    正确的探头选择会扩展和增强仪器的性能,而错误的探头选择往往会降低你的系统性能。对探头特性的深思熟虑会帮助保证你的仪器性能满足你的应用要求。虽然对合适的探头主要考虑是它的负载影响和信号逼真度的传送。但物理参数例如:探头尺寸大小、电缆长度和与被测装置互相连接的适配器对你测量的成功可能更重要。在高频段正确使用探头也是很重要的。 许多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 不要把示波器与地隔离开而浮置起来。用单端探头做差分测量是很危险的。通常示波器的输入端与地之间接有10pF或15pF电容,也有少数大型示波器在输入端与地之间接有100pF的电容,若用它做差分测量,由于存在不平衡的容性负载,使信号扭曲。 量无零点参考信号时,用差分探头能解决这些问题,用两个探头分别接在示波器的两个通道上,设置示波器显示出两者相减的结果,此两探头应选用匹配好的一对,所谓匹配好实际上是指两探头的电缆要一样长,即对信号的延迟要一样,其输入电容、电阻和衰减也一样。用微调电容可以减小两者的差别。 多信号源都有一个接地参考点(OV),用无源的或有源的单端探头都能很好地工作。如果信号源的参考点不是OV,就应使用差分测量法,否则会发生短路现象,损坏仪器。 以上信息由Agitek整理,希望对大家有所帮助。

  • 搅拌设备的用途、分类

    [size=4]在选择搅拌容器时,应根据生产规模(即物料处理量)、搅拌操作目的和物料特性确定搅拌容器的形状和尺寸,在确定搅拌容器的容积时应合理选择装料系数,尽量提高设备的利用率。如果没有特殊需要,釜体一般宜选用最常用的立式圆筒形容器,并选择适宜的筒体高径比(或容器装液高径比)。若有传热要求,则釜体外须设置夹套结构。夹套种类有整体夹套、螺旋挡板夹套、半管夹套、蜂窝夹套,传热效果依次提高但制造成本也相应增加。   当搅拌釜卧式放置时,大多进行半釜操作。因此卧式釜与立式釜相比有更多的气-液接触面积,因而卧式釜常用于气-液传质过程,如气-液吸收或从高粘度液体中脱除少量易挥发物质,另一方面,卧式釜的料层较浅,有利于搅拌器将粉末搅动,并可借搅拌器的高速回转使粉体抛扬起来,使粉体在瞬间失重状态下进行混合。   搅拌容器的材料要满足生产工艺的要求,例如耐压、耐温、耐介质腐蚀,以及保证产品清洁等。由于材料的不同,搅拌容器的制造工艺、结构也有所不同,因此可分为钢制搅拌设备、搪玻璃搅拌设备和带衬里的搅拌设备等。装衬里的目的是为了耐蚀或保护产品的清洁,衬里的种类很多,主要有不锈钢、铝、钛、铅、镍、锆、耐酸瓷砖、辉绿岩板、橡胶等。   搅拌设备一般由容器部分、传动装置、换热设备、搅拌装置、轴封装置组成。在工业生产中的应用范围很广,尤其是化学工业中,很多的化工生产都或多或少地应用着搅拌操作。搅拌设备在很多场合是作为反应器来应用的。例如在三大合成材料的生产中,以搅拌设备作为反应器的约占反应器总数的90%。   一、搅拌设备的用途及分类:   1、用途:   在水处理工艺中,搅拌设备主要用于药剂的溶解、稀释、混合反应和投加混凝剂或助凝剂。   2、分类:   (1)按搅拌功能分:混合搅拌设备、搅动设备、悬浮搅拌设备、分散搅拌设备等。   (2)按搅拌方式分:机械搅拌设备、水力搅拌设备、气体搅拌设备、磁力搅拌设备等   (3)按搅拌目的分:溶药搅拌设备、混合搅拌设备、絮凝搅拌设备、澄清搅拌设备、消化池搅拌设备和水下搅拌设备等。   (4)按液体的循环流动形式分:轴向流和径向流搅拌器两类。   3、搅拌设备的基本结构和工作原理:   基本结构:   主要由搅拌器、传动装置及搅拌轴系三大部分组成。   (1)搅拌器主要由搅拌桨(或叶轮)和附属构件组成   (2)传动装置由电动机、减速机以及支架等组成   (3)搅拌轴系由搅拌轴、轴承和联轴器等组成。   工作原理:   水处理工艺对搅拌的要求可分为混合、搅动、悬浮、分散四种。   (1)混合是通过搅拌作用,使与水的比重、粘度不同的物质在水中混合均匀   (2)搅动是通过搅拌使混合液强烈流动,以提高传热、传质的速率   (3)悬浮是通过搅拌作用,使原来静止在水体中可沉降的固体颗粒或液滴悬浮在水体中   (4)分散是通过搅拌作用,使气体、液体或固体分散在水体中,增大不同物相的接触面积,加快传热和传质过程。一言以蔽之,实现搅拌的目的是通过能量的传递。   4、搅拌器的形式与结构:   桨式搅拌器:平桨、折叶桨桨式搅拌器结构简单,其桨叶一般用扁钢制造的,强度不够时需加肋,单面加肋效果好。   (1)分类:平直叶桨式搅拌器和折叶桨式搅拌器   (2)特点:转速低,对粘度较敏感,桨叶不宜过长。   (3)应用:适用于介质粘度低的液体。主要用于药剂溶解和混合。   推进式搅拌器:一般用铸铁、铸钢整体铸造而成,有时也采用焊接。   (1)特点:以容积循环为主,循环速率高,剪切作用小,上下翻腾效果好。   (2)应用:药剂溶解和悬浮操作。www.yxhhj.com   涡轮式搅拌器:   (1)分类:开启式和圆盘式两类,桨叶有平直叶、弯叶和折叶   (2)特点:可使液体均匀地由垂直方向的运动改变成水平方向的运动,自涡轮流出的高速液流沿切线方向散开,从而在整个液体内得到剧烈搅动。   (3)应用:搅拌器广泛用于快速溶解和进行乳化操作   其它型式搅拌器其它类型的搅拌器还有框式、锚式、螺杆式、螺带式等,在此不做赘述。   5、搅拌器附件:   搅拌器的附件主要有挡板或导流筒。其设置原因是搅拌器转速高时易产生漩涡流,影响搅拌效果,剧烈打旋的液体结合漩涡作用,对搅拌轴产生冲击作用,从而影响搅拌器的使用寿命。   6、传动装置:   作用:   提供能量2.5.2组成:主要由电动机、减速机和机架组成:  (1)电动机   (2)减速机:   立式减速机:   主要有:三角皮带减速机、两级齿轮减速机、摆线针轮减速机和谐波减速机四种。在水处理工艺中,通常采用摆线针轮减速机。它的特点:结构紧凑、体积小、重量轻、效率高、减速比大、寿命长、故障少、过载能力强、耐冲击。特别适用于起动频繁和正反转兼有的场合。   7、搅拌轴:   (1)功能:主要是用来固定搅拌器,并从减速装置的输出轴取得动力,在带动搅拌器转动的同时,将功率传递给搅拌器以克服其旋转时遇到的阻力偶矩而对流体作功。   (2)组成:搅拌轴主要分为轴颈(支承部分)、轴头(安装部件)、轴身(杆件部分)。   (3)轴端结构分类:   ①凸缘联轴器轴端结构。   ②夹壳式联轴器轴端结构。   ③推进式搅拌器的轴端结构联轴器。   (1)作用:将两个独立的轴牢固地连在一起,以进行传递旋转运动和功率   (2)基本要求:最主要是应确保两根联接轴的同心,有时还应具有一定的减少震动缓和冲击的能力。   (3)结构形式:   ①凸缘联轴器   ②夹壳联轴器   ③套筒联轴器   ④弹性圈柱销联轴器   8、轴承:   (1)作用:为搅拌轴设置的支承   (2)分类:   ①按承载方式:   向心轴承(主要承载径向荷载)   推力轴承(主要承载轴向荷载)   向心推力轴承(径向、轴向荷载)   ②按轴承工作时的摩擦性质。   9、水处理工艺中常用的机械搅拌设备:   溶液搅拌设备:   (1)JBT型推进式搅拌机:   它采用螺旋桨叶式搅拌器,并同钢制搅拌罐配套,罐内设有挡板和水下支承,罐体内衬玻璃钢。适用于大、中型污水处理厂或给水厂投加絮凝剂或混凝剂的溶解和稀释搅拌。   (2)SJ型带罐框架式搅拌机:   一般同钢制搅拌罐配套,罐体内衬玻璃钢,防腐性能好,桨叶主轴和罐体也可采用不锈钢材质。特点是搅拌强度大且均匀。根据介质的性质和搅拌桨外缘线速度分别用于药剂的溶解、混合和反应。常用于给水处理厂投加絮凝剂、助凝剂的溶解稀释、混合及反应等过程。   混合搅拌设备:   (1)WHJ型机械混合搅拌机,具有产生对流循环和剧烈涡流的特点,从而使混凝剂与水快速充分混合,以满足混凝工艺的要求。   (2)JBJ型折桨式混合搅拌机,具有运行平稳,搅拌均匀的特点,适用于大水量的混合搅拌。此外还有可调式(移动式)搅拌机、ZJ型折桨式搅拌机[1]、LJB型推进式搅拌机等。   絮凝搅拌设备:   (1)LJF型立轴式机械絮凝搅拌机   (2)WJF型卧轴式机械絮凝搅拌机   反应搅拌设备:   (1)SJB型双桨搅拌机   (2)WFJ、LFJ型反应搅拌机   潜水搅拌推流器:   (1)QJB型潜水搅拌器   (2)DQT型低俗潜水推流器 [/size]

  • 示波器高压探头的操作说明及使用注意事项

    操作说明:连接探头衰减端的地线(鳄鱼夹)到好的接地点或可靠的接地测试端。连接BNC头到示波器的BNC输入端口。选择示波器要求的量程范围。注意:请务必在连接测试前把高压电源关闭。注意事项:请勿将测试设备的接地线从地面接线柱上移开。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404021025091607_2636_5294479_3.jpg!w690x690.jpg[/img]接地连接是探头安全操作的一个关键点。当高压测量的时候,如果没有这种连接将可能导致人身伤害或者对连接的示波器、探头产生损害。在探头测试端测试连接高压前,要先连接好地线,并且地线连接不能轻易挪开,直到高压测试端远离高压源。不能把接地线与高压电源连接或者把探头测试端接地。打开高压源前,要保证身体的任何部位都没有和测试设备接触。测量电压时,请牢记被测电压是实际读数的 1000 倍。在移走接地夹前,要把探头高压测试端从高压源上断开。

  • 【转帖】仪器仪表展区势头稳健 示波器市场风起云涌

    2011年4月8日-10日,第77届中国电子展将在深圳隆重召开,而中国电子展的传统品牌展区——“仪器仪表展区”在第77届中国电子展上依然独领风骚,创下了参展商300多家的佳债。其中长期合作的专业行业协会--中国电子仪器行业协会精心组团参展,以中国电子科技集团第41研究所为旗帜的30多家国内仪器生产企业,携各自看家产品集体亮相,集中展示中国本士电子仪器企业的崭新风貌。而全球仪器界巨头们此次也纷纷携新品出击,彰显“大家”风范。 享誉全球的德国罗德与施瓦茨公司的产品范围非常广泛,覆盖了很宽的应用领域。信号源,频谱仪,示波器,矢量网络分析仪,功率计,接收机,手机综合测试仪,电磁兼容测试系统等产品,广泛应用于无线通信、国防、航天、电子产品研发、制造、汽车、教育等产业。通信设备与系统测试产品,在空中交通管制、军事通信、安全通信等领域有着极好的口碑。在本届电子展上将重点展示其全新产品——R&S®RTM/RTO示波器,带宽从500MHz到2GHz,具有丰富的测试功能与高精度,数据捕获率非常高;图形化的操作界面,更加方便;分析更快,所见更多;是信号完整性分析和电源分析的理想选择。 R&S®FSVR 实时频谱仪是业界第一款将完整的信号分析、频谱测量功能与实时频谱分析功能完美结合的测试仪表。在实时频谱仪模式下,FSVR能轻松地检测各种偶发、超短瞬变信号。FSVR的无死区实时检测能力都成为其独特的优势。FSVR是在R&S®FSV的基础上设计的,并且测试速度较业界同类频谱仪快多达5倍。 无独有偶,固纬电子,台湾首批电子测试测量仪器领域的专业制造商,经过36年的用心经营,已成为全球公认的专业仪器生产商之一。如今,固纬电子涉及了从示波器、频谱分析仪、信号发生器、电源、基础测试测量仪器到电池测试系统、环境测试设备等300多种产品。在此次电子展上也带来了示波器的新品——GDS-3000系列,采用VPO(Visual Persistence Oscilloscope)信号处理技术,以高速波形更新率以及多层次余辉显示来提高波形显示能力。设计采用了高速FPGA并行处理方式,取代了传统的串行处理方式,大大地提高数据处理速度以及波形获取速度。由于VPO技术示波器对于所显示的信号包含幅度、时间和信号强度3维来显示每个波点,相对于一般传统的数字存储示波器,GDS-3000高速的采样能力更适合观测如视频、偶发信号和浪涌电流等瞬间事件等信号。 在中国电子展仪器仪表展区,其他测试测量产品与示波器如火如荼的景象遥相呼应,众多国内外领先厂商踊跃参展,如:电子通信测量仪器的日本日置、常州同惠、杭州远方、苏州泰思特等;光学仪器的桂林桂光、迈待、麦克奥迪、宁波正特等;检测机构的中国赛宝,深圳计量质量检测研究院,谱尼测试等 仪器仪表展区历来以电子通信测量仪器、电工仪器、光学仪器、分析仪器和检测认证机构为众,今年,由于国内外企业看好中高端市场,纷纷带来各自的拳头产品和新品在华南市场上一决雌雄,尤其是电子通信测量仪器和示波器,因其应用极其广泛,更是新品众多,定会让参会者目不暇接,获益良多!

  • 示波器电流探头可分为无源和有源两类,它们的区别是什么?

    示波器电流探头可分为无源和有源两类,它们的区别是什么?

    示波器电流探头是根据法拉第原理设计的用于测量导线中干扰电流信号的磁环,本质上是一个匝数为1的变压器。电流探头用来测量流过导线的电流量。示波器电流探头可分为无源和有源两种,区别是:无源探头的缺点是不能测量直流型号,低频截止频率通常在100Hz以上,优点是成本低。无源交流探头按嵌头结构可分为分芯型和实心型两种。分芯的嵌头可以手动开启和关闭,优点是探头可以很容易地夹在电流测量导线上。当测量完成后,钳口可以打开,探头可以移动到另一根导线上。[img=,690,517]https://ng1.17img.cn/bbsfiles/images/2022/08/202208221634395832_5106_5787068_3.jpg!w690x517.jpg[/img]有源探头按常见的钳口形式分为两种:一种是嵌入式结构,另一种是柔性结构。嵌入式结构电流探头一般是由强磁性材料制成的磁芯,这种流过的电流很大,磁芯容易产生磁饱和,因此无法准确测量。柔性探头是采用空芯交流电流传感器,所以在大电流不饱和的情况下,所以柔性探头一般用来测量大电流,而只能测量交流。PinTech品致,全球示波器探头品牌,示波器探头技术标准倡导者,专业提供差分探头,电流探头,示波器探头,柔性探头,高压放大器,功率放大器,数字万用表,示波器等耐压测试仪,高压测试棒。

  • 水环式真空泵的工作原理

    真空泵和压缩机在设备前,用手转变联轴器,包管泵内没有卡住和其它损坏表象。整套设备运抵设备地址时,若是包装已损坏或受潮,以及泵曾经出厂八个月以上时,应在设备前悉数拆开查看。若是真空泵或压缩机正常,将泵和电动机设备在泵座上时,应校对电动机轴与泵轴的同心度,由于若是电动机轴与泵轴之间有极小的歪斜也会引起轴承发热和零件的严峻磨损。校对办法如下:将直尺平行放在联轴器上,在整个圆周的任何方位直尺应与联轴器圆周彻底密合,没有空隙,且联轴器的轴向空隙持平时,则达到了所恳求的同心度。 电动机与泵轴,即便有极小的歪斜,也会引起轴承发热和零件过早磨损等严峻后果,若是设备正确,用后即能轻松地转变泵轴。在泵的进气口应设备过滤设备,以防异物进入泵腔内。若是必须改动设备方位时,应注重分离器的联接管路不宜过长,转弯不宜过急,不然水和气在管道中的活动丢失必将添加,然后添加了泵排气端的压力,这样就降低了气量和真空度,添加了功率耗费,泵的排气管应与汽水分离器进撖这相连,当作压缩机运用时,汽水分离器的排气管应和运用压缩空气的体系相连接。广告删除了!

  • 【原创大赛】【欧波同材料分析研究中心】扫描电镜新技术——同轴透射菊池衍射(TKD)技术的应用

    【原创大赛】【欧波同材料分析研究中心】扫描电镜新技术——同轴透射菊池衍射(TKD)技术的应用

    [align=center][b]扫描电镜新技术——同轴透射菊池衍射(TKD)技术的应用[/b][/align][b][b]引言[/b][/b]扫描电镜中的被散射电子衍射技术(EBSD)在确定材料结构、晶粒尺寸、物相组成以及晶体取向甚至是应力状态标定都有一定的涉及。通过电子衍射技术的进一步发展,Keller与Geiss基于EBSD技术相同的硬件与软件,通过改变样品台的倾角,使得荧光闪烁体信号接收器在样品下方接收透射电子衍射信号,从而代替原先的背散射信号。这种新技术称为Transmission Kikuchi diffraction(TKD)也由于它的信号接收方式特点也被称为t-EBSD。由于接收信号的方式由被散射电子信号转为透射电子信号,其分辨率得到了明显的提升,由原来的EBSD技术的几十纳米(20-30nm平行于电子束的方向,80-90nm垂直于电子束的方向)提高到了TKD技术的10纳米。由于电子束与材料交互作用体积的减少,分辨率提高,使得分析超细晶材料以及其中的纳米颗粒的到了实现。为了改善电子衍射信号接收能力,一种新型的电子束-样品-接收器(on-axis TKD)共轴TKD式的几何设计在法国洛林大学([i]Université de Lorraine[/i])与布鲁克公司联合组装使用,这个新装置不仅可以接收菊池花样还可以接收衍射点的信息。虽然此时TKD的说法已经不能十分贴切的描述实际情况,应该改为扫描电镜中的透射衍射(Transmission Diffraction )更为合理。由于传统上TKD缩写已经被普遍接受,所以我们在本文中以共轴透射菊池衍射(on-axis TKD)来表述此种新方法。这种新型的接受方法比传统的非共轴TKD(off-axis TKD)方法得到更高的信号强度。同时,共轴TKD方法由于其接收信号的对称性,可以使得原先非共轴TKD方法得到的扭曲的信号得以矫正。本文的主要目的是揭示透射衍射花样随着不同试验条件、样品参数(电子束入射强度、样品与探测器的距离、样品的厚度、样品的原子序数)的变化规律。帮助试验人员选择衍射花样中的合适的衍射数据(点、线、带),以及相应的设置电镜与样品的参数。最后在实际的纳米材料中采用TKD技术对样品进行纳米尺度的分析研究。[b][b]试验方法[/b][/b]所有的试验都是基于ZEISS Supra 40型号与ZEISS Gemini SEM进行的,配备的设备是Bruker e-Flash[sup]1000[/sup]摄像机,对应的探测器型号是Bruker OPTIMUS。如图1所示,传统的TKD系统与on-asix TKD系统的探头接收方向并不相同。图2表示了FIB制样方法获得的楔形单晶Si薄片式样,样品厚度在25nm到1[color=#262626]μm之间,[/color]用于后续的试验检测。[align=center][img=,663,178]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161059079581_831_2516543_3.png!w663x178.jpg[/img][/align][align=center]图1 (a)同轴式透射菊池衍射(on-axis TKD) (b)传统非同轴透射菊池衍射(off-axis TKD);(c)电子背散射衍射(EBSD)[/align][align=center][img=,527,199]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161059266550_6119_2516543_3.png!w527x199.jpg[/img][/align][align=center]图2 实验用的FIB砌削的楔形Si单晶样品的SEM图像[/align][b]电子束入射能量、样品厚度以及原子序数对TKD衬度的影响[/b]1衍射衬度的种类在同轴TKD技术中,收集到的衍射花样衬度不仅仅受到显微镜参数的影响,对于不同的观察样品其衍射花样衬度也会有所不同。目前,样品的厚度与入射电子的加速电压是日常应用过程中最基本的影响因素,样品的密度与原子序数也是重要的影响参数,但是目前无法对其进行系统的分析。同时,信号接受探测器的摆放角度、与样品的测试距离也是在实际操作中影响信号接受质量的因素之一。我们可以把衍射花样分为两类:衍射斑点与菊池花样。菊池花样有三种不同的衬度:线衬度、亮带衬度、暗带衬度。2 菊池线与菊池带菊池线的形成原因在于,如果样品足够厚,那么将会产生大量以各种不同方向运动的散射电子;也就是说,电子与样品发生非相干散射。这些电子与晶体平面作用发生布拉格衍射。菊池线的形成有两个阶段,一是由于声子散射形成的点状的非连续的发射源,如图3(A)所示。第二是由于这些散射后的电子将相对于面hkl以[url=#3_8][color=#333333]θ[/color][/url][sub]B[/sub]运动(如图3B所示),从而与这些特定晶面发生布拉格衍射。因为散射电子沿各个方向运动,衍射书将位于两个圆锥中的一个内(如图3C)。换言之,因为入射k矢量有一定的范围,而不是单一确定的k矢量,所以观察到的衍射电子的圆锥而不是确定的衍射束。考虑与hkl晶面成[url=#3_8][color=#333333]θ[/color][/url][sub]B[/sub]角度方向的所有矢量所构成的圆锥,称之为Kossel圆锥,并且圆锥角(90-[url=#3_8][color=#333333]θ[/color][/url][sub]B[/sub])非常小。由于荧光屏/探测器是平面并且几乎垂直于入射束,Kossel圆锥将以抛物线形式出现。如果考虑近光轴区域,这些抛物线看上去就像两条平行线。有时把这两条菊池线和他们之间的区域称为“菊池带”。[align=center][img=,690,483]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161059578322_3496_2516543_3.png!w690x483.jpg[/img][img=,690,671]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161100087772_157_2516543_3.png!w690x671.jpg[/img][/align][align=center][img=,690,833]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161100463231_6823_2516543_3.png!w690x833.jpg[/img][/align]图3(A)样品在某一点处所有电子散射的示意图(B)部分散射电子以布拉格角[url=#3_8][color=#333333]θ[/color][/url][sub]B[/sub] 入射特定hkl晶面而发生衍射(C)这些圆锥与Ewald球相交,由于[url=#3_8][color=#333333]θ[/color][/url][sub]B[/sub]很小,在衍射花样上产生了近似直线的抛物线[color=#262626]3 布拉格衍射斑点[/color][color=#262626]与TEM中的衍射斑点形成原理相似,TKD中衍射斑点是由于低角弹性散射形成的,低角弹性散射是连续的,然而在高角范围内,随着与原子核的相互作用,散射分布并非连续,这也就解释了为何衍射斑点只能在低散射角度的区域才能够观察到。[/color]图4显示了单晶Si样品中,随着厚度变化引起的衍射信息变化,在样品较薄的区域我们可以看出衍射斑点的信息,随着样品厚度的增加,衍射斑点信息消失。菊池花样在样品时很薄的区域,衬度模糊,而在样品厚度很大时,衬度表现的较弱,其它阶段花样都比较清晰[color=#262626]。图5中可以看出,随着入射电子能量的降低,衍射斑点也逐渐消失。由此,可以认为衍射斑点的强度在样品厚度一定的前提下,可以认为是入射电子能量的函数。[/color][align=center][color=#262626][img=,664,620]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161101409704_3414_2516543_3.png!w664x620.jpg[/img][/color][/align][align=center]图4 单晶Si在不同厚度下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 [/align][align=center](a)43nm (b)45nm (c)48nm (d)52nm (e)65nm (f)100nm (g)200nm (h)300nm (i)1000nm 加速电压E=15keV,探测器样品距离DD=29.5mm,光阑尺寸60[color=#262626]μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images[/color][/align]随着加速入射电子的加速电压的变化,透射菊池衍射花样的变化,可以看出,与图4中的变化规律相似。可以看出入射电子能量与样品厚度在对花样的衬度影响方面扮演着同样的角色。但是其原理并不完全一样,随着入射电子加速电压的降低,菊池带的宽度逐渐变窄。[color=#262626]图6所示,[/color]基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系,[color=#262626]可以看出入射电子的能量是产生电子衍射斑点的样品厚度的函数。[/color][align=center][color=#262626][img=,662,417]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161102043308_9090_2516543_3.png!w662x417.jpg[/img][/color][/align][align=center]图5 单晶Si在不同加速电压下共轴透射菊池衍射(on-axis TKD)产生的透射衍射花样 加速电压(a)30keV (b) 25keV (c)20keV (d)15keV (e)10keV (f)7keV;样品厚度d=150nm,探测器样品距离DD=29.5mm,光阑尺寸60[color=#262626]μm,束流强度2nA,图像捕获时间(a-h)200ms×30images (i)990ms×30images[/color][/align][align=center][/align][align=center][img=,332,288]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161102207634_9209_2516543_3.png!w332x288.jpg[/img][/align][align=center]图6 Si、Ti两种材料随着电子入射能量以及样品厚度变化为变量的布拉格衍射斑点显示示意图[/align][align=center][color=#262626] [/color][/align][b][b]实际样品测试[/b][/b]纳米材料由于其优异的力学、光学以及催化性能,在材料研究领域中已经成为新的研究热点。其中纳米金属材料由于其优异的力学性能已经得到了广泛的研究,特别是纳米孪晶铜材料,是最早研究的纳米金属材料之一,但是由于其晶粒尺寸小于100nm,其孪晶片层只有十几个甚至几纳米(图7),使得以往的结构研究手段多采用透射电镜(TEM)的方法。但是由于TEM难以对大量晶粒的取向进行统计分析,这就需要用到扫描电镜的EBSD技术,介于传统的EBSD技术的分辨率的局限,一直少有纳米级别的分析。那么有了TKD的新型技术,就可以对纳米级别的材料进行细致的分析。[align=center][img=,690,1049]https://ng1.17img.cn/bbsfiles/images/2018/08/201808161102381001_6739_2516543_3.png!w690x1049.jpg[/img][/align][align=center]图7 纳米孪晶铜的TEM观察[/align]由于纳米孪晶的制备方法多采用电沉积的方法,得到薄膜形式的材料。所以在生长厚度方向上由于厚度较薄(约20nm),本次实验是用金(Au)薄膜样品进行观察,采用的是场发射扫描电镜Zeiss Merlin Compact 以及Bruker OPTIMUS 同轴TKD探测器进行观察。结果如图8所示,可以看出片层结构的分布,经过进一步的分析,可以看出片层结构之间的界面角度为60度,可以确定为纳米孪晶,并且通过测量可以确定片层宽度仅有2nm。基于共轴TKD技术,让以往在SEM中难以完成的纳米结构的织构组织分析成为可能。并且对纳米尺度材料的性能提升提供了进一步的实验支持。[align=center][img=,575,328]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211340333533_4548_3237657_3.png!w575x328.jpg[/img][/align][align=center][img=,690,337]https://ng1.17img.cn/bbsfiles/images/2018/08/201808211341036428_8760_3237657_3.png!w690x337.jpg[/img][/align][align=center]图8 (a)纳米金颗粒的孪晶结构PQ图与IPFZ叠加显示;(b)(a)图中线段处角度分布图[/align][b][b]小结[/b][/b]1. 共轴式透射菊池衍射技术可以在衍射花样中获得更加广泛的衍射信息:布拉格衍射斑点、菊池线以及菊池带2. 随着样品厚度的增加,衍射斑点、菊池线、菊池带依次产生。在样品较薄的状态下,菊池带呈现明亮的带状,随着样品后的增加,深色衬度在在带中出现并缓缓变暗,直至带状衬度明锐显现。3. 样品厚度与入射电子能量可以作为相关联的变量,影响着衍射信息的衬度;减小样品厚度相当于增加入射电子能量。也就是说要得到特定的衍射衬度,可以调整样品的厚度与调整入射电子束的能量这两种方法是等价的。4. 基于等离子体与声子的自由程的模型计算了出现衍射斑点的情况下,样品厚度与电子入射能量的关系。可以看出这二者呈线性关系,且根据元素的不同样品厚度与入射电子能量的比值的常数也有所差别。5. 采用共轴TKD技术测试了纳米孪晶铜的纳米片层结构,并且分辨出了2nm尺度的孪晶片层结构。

  • 日本COXIAL RELAY CX-520-D 12伏线圈SPDT N型母头同轴继电器

    日本COXIAL RELAY CX-520-D 12伏线圈SPDT N型母头同轴继电器是一款专为高频信号切换设计的高性能电子元件,广泛应用于无线通信、广播电视、工业自动化等多个领域。以下是对该产品的详细介绍: [b]一、产品概述[/b] 品牌与型号:该继电器由COXIAL RELAY品牌生产,型号为CX-520-D,是一款集成了高频信号切换、电气隔离和机械稳定性于一体的同轴继电器。 额定电压与电流:支持12V DC的额定电压,确保在不同电源条件下的稳定工作。关于额定电流的具体数值,可能因产品批次或特定规格而有所差异,但通常该类继电器设计用于小电流控制,以驱动高频信号的切换。 触点形式与配置:采用单刀双掷(SPDT)触点形式,支持两个输出端之间的快速切换,适用于需要频繁切换信号路径的应用场景。同时,配备N型母头接口,便于与各种高频设备连接,确保信号传输的稳定性和可靠性。 [b]二、技术特点[/b] [list=1][*] [font=-apple-system, BlinkMacSystemFont, &]高频性能[/font]:CX-520-D同轴继电器特别适用于高频信号的切换,能够支持高达数GHz的频率范围,满足多种高频应用场景的需求。其高频性能优异,确保信号在切换过程中的稳定性和准确性。 [*] [font=-apple-system, BlinkMacSystemFont, &]低插入损耗与高隔离度[/font]:在高频信号传输过程中,该继电器具有极低的插入损耗,有助于保持信号的完整性和功率水平,减少信号衰减。同时,在信号切换的非导通状态下,提供高隔离度,有效隔离不同通路上的信号,避免信号串扰和干扰。 [*] [font=-apple-system, BlinkMacSystemFont, &]快速响应与高精度[/font]:继电器具有快速的响应时间,能够在短时间内完成信号的切换,满足高频信号快速切换的需求。同时,其切换时间快速且一致,确保了信号传输的精确性和稳定性。 [*] [font=-apple-system, BlinkMacSystemFont, &]长寿命与耐用性[/font]:采用高品质材料和先进工艺制造,CX-520-D同轴继电器具有较长的预期寿命,能够承受多次的开关操作而不影响性能。其耐用性确保了设备在长时间使用过程中的稳定性和可靠性。 [*] [font=-apple-system, BlinkMacSystemFont, &]小型化设计[/font]:为了适应现代电子设备的紧凑结构,该继电器采用小型化设计,占用空间小,便于集成到各种设备中。这有助于提升设备的整体性能和可维护性。 [/list] [b]三、应用领域[/b] CX-520-D 12伏线圈SPDT N型母头同轴继电器广泛应用于以下领域: [list=1][*] [font=-apple-system, BlinkMacSystemFont, &]无线通信[/font]:作为信号切换的关键部件,在无线通信系统中实现不同频段或不同天线之间的快速切换,提高通信系统的灵活性和可靠性。 [*] [font=-apple-system, BlinkMacSystemFont, &]广播电视[/font]:在广播电视发射系统中,作为同轴转换开关的关键部件,实现主备发射机的快速切换和故障保护,确保广播信号的连续性和稳定性。 [*] [font=-apple-system, BlinkMacSystemFont, &]工业自动化[/font]:在工业自动化控制系统中,用于高频信号的检测、切换和控制,提高生产线的自动化水平和生产效率。同时,其稳定性和可靠性也确保了工业设备在恶劣环境下的正常运行。 [*] [font=-apple-system, BlinkMacSystemFont, &]医疗设备[/font]:在医疗设备中,如高频手术刀、射频治疗仪等,用于高频信号的精确控制和保护,确保医疗设备的安全性和有效性。 [/list] [b]四、总结[/b] 日本COXIAL RELAY CX-520-D 12伏线圈SPDT N型母头同轴继电器以其优异的高频性能、低插入损耗、高隔离度和快速响应等特点,在无线通信、广播电视、工业自动化和医疗设备等领域得到了广泛应用。其高品质的材料和先进工艺确保了产品的稳定性和可靠性,是高频信号切换的理想选择。

  • 球磨机结构的介绍

    球磨机亦为单仓磨,由给料部,进料部、轴承部、简体部、出料部、传动部,减速部、电动机等组。给料部——球磨机给料是倾料式溜槽送料,其仰角要大丁所磨物料的静摩擦角。斜溜槽断面下半部以半圆为好(无死角),.方形也能使用。给料溜槽和进料部联接处有密封装置。一般使用密封填料〔石棉绳.石墨填料〕将联接处密闭。其作用是防止进料时,物料由于下料后在进料部堆积而往外倒料,也有在进料部轴颈空心处装上螺旋进料器或勺式给料器,.将给料部内的物料和液体挖人进料部。进料部——为了更好地输送物料,进料端空心轴内装有一铸钢衬套。衬套上铸有螺旋推进线,螺旋线是左旋还是右旋要根据磨机转动方向而定,但必须使物料能通过螺旋推入磨机筒体内。轴承部——前后主轴承为空心轴,是由半圆型滑动轴承所支承,即轴承下部有半圆形的轴瓦。轴衬材料为轴承合金。轴承座上部有油管向轴上喷琳润滑油以起润滑和冷却作用。轴承底座在球磨机进料端可以沿轴向滑动,用以解决磨机工作时温度上升导致磨机筒体受热膨胀问题。它可以避免由于限制膨胀伸长而产生的轴向温度膨胀应力。筒体部——筒体是用普通Q235A钢板卷制而成。筒体两端有大法兰和铸钢制的磨端盖连接。筒体的出料端即在出料处的端盖和筒体连接处有筛板以阻止钢球和钢段流出料端。筒体内装有一定重里、按一定比例配比直径为25一150 mm的钢球或钢段作为研磨体。筒体内衬有一定形状和材质的衬板,不仅可以防止筒体遭受磨损。而且衬板的形状影响钢球的运动规律,从而影响粉磨效率。衬板材质有高锰钢、高烙铸铁、中锰球铁和橡胶等,衬板的厚度通常为50-130mm。衬板和筒体之间垫有胶合板、橡皮垫、石棉橡胶垫等。衬板一般用螺栓固定在筒体上,螺帽下面有橡胶圈和金属垫圈,防止料浆漏出。筒体上有人孔.停机后打开密闭的人孔盖,可以进去更换衬板,隔板、筛板或补充钢球钢段。出料部——空心轴出料端内装有一个斜截头圆维形铸钢衬套,衬套上铸有螺旋叶片,衬套外装有一固定不转动的筛网。料或料浆从衬套中流出经过筛网筛出磨小的钢球、钢段后流出磨机外。传动部——单仓球磨机一般是边缘传动,现亦有中心传动的。在筒体出料端和端盖连接处有大齿圈。电动机通过联轴器及减速器与高速轴联接,也有用同步电机通过齿轮联轴器带动小齿轮传动筒体大齿圈的。减速器低速轴处也是通过联轴器和小齿轮联接,带动小齿轮转动促使大齿圈和小齿轮齿合传动回转而将筒体回转起来。边缘传动可以根据地点,安装需要制成右传动、左传动两种。

  • 日本TOHTSU CX600NL 12VDC东京通商同轴继电器N型母头

    日本TOHTSU CX600NL 12VDC东京通商同轴继电器N型母头是一款专为高频信号传输设计的优质产品,以下是对该产品的详细介绍: [b]一、产品概述[/b] 品牌与制造商:CX600NL同轴继电器由日本东京通商(TOHTSU)生产,该公司是电子元件领域的知名品牌,以其卓越的产品质量和先进的技术赢得了市场的广泛认可。 型号与规格:CX600NL,支持12V直流(12VDC)供电,采用N型母头设计,便于与N型同轴连接器对接,适用于多种高频信号传输场景。 [b]二、技术特点[/b] [list=1][*] [font=-apple-system, BlinkMacSystemFont, &]高频性能[/font]:CX600NL专为高频信号应用设计,能够处理高频信号的传输和切换,确保信号在传输过程中的稳定性和低损耗。 [*] [font=-apple-system, BlinkMacSystemFont, &]低插入损耗[/font]:作为同轴继电器,CX600NL在关闭状态下具有极低的插入损耗,这有助于保持信号的完整性和功率水平,减少信号在传输过程中的衰减。 [*] [font=-apple-system, BlinkMacSystemFont, &]高隔离度[/font]:继电器在非导通状态下能够提供高隔离度,有效隔离不同通路之间的信号,防止信号串扰和干扰,确保信号传输的纯净度。 [*] [font=-apple-system, BlinkMacSystemFont, &]快速切换能力[/font]:CX600NL具备较短的切换时间,能够迅速响应信号变化,满足高频信号快速切换的需求。 [*] [font=-apple-system, BlinkMacSystemFont, &]耐用性与可靠性[/font]:采用高品质材料和精密的制造工艺,确保继电器在长时间工作中保持稳定的性能和可靠的开关动作。 [/list] [b]三、应用领域[/b] 由于其出色的电气性能和机械特性,CX600NL同轴继电器广泛应用于以下领域: [list=1][*] [font=-apple-system, BlinkMacSystemFont, &]通信系统[/font]:在通信基站、中继站等场合中,用于实现高频信号的切换和传输,确保通信信号的稳定性和可靠性。 [*] [font=-apple-system, BlinkMacSystemFont, &]广播系统[/font]:在广播电台、电视台等广播设备中,用于音频和视频信号的切换和分配,提升广播节目的质量。 [*] [font=-apple-system, BlinkMacSystemFont, &]测试测量[/font]:在射频测试仪器、网络分析仪等设备中,用于模拟和测试高频信号的切换性能,为科研和测试提供有力支持。 [*] [font=-apple-system, BlinkMacSystemFont, &]汽车电子[/font]:在汽车电子系统中,用于高频信号的切换和控制,提高汽车电子设备的性能和可靠性。 [/list] [b]四、总结[/b] 日本TOHTSU CX600NL 12VDC东京通商同轴继电器N型母头是一款性能卓越、稳定可靠的高频信号传输设备。其高频性能、低插入损耗、高隔离度、快速切换能力和耐用性等特点,使得它在通信系统、广播系统、测试测量和汽车电子等领域中得到了广泛应用。无论是对于信号传输质量有严格要求的应用场景,还是对于设备稳定性和可靠性有较高要求的场合,CX600NL都能提供理想的解决方案。

  • 超声波测厚仪探头使用注意事项

    [url=http://www.dscr.com.cn/show.asp?id=374]超声波测厚仪[/url]可以测量金属材质、管道、压力容器、板材(钢板、铝板)、塑料、铁管、PVC管、玻璃等其他特殊材料的厚度;也可以测量工件表面油漆层等带涂层的材料;广泛应用于制作业、金属加工业、化工业、商检业等检测领域。  超声波测厚仪探头如果以构造来分类可以分为直探头、斜探头、带曲率探头、聚焦探头和表面波探头。  下面小编来讲一下,超声波测厚仪探头如何维护  1.探头不能投掷、跌落以及使用猛力拉扯。  2.使用的时候,探头的两根电缆线插入和拔出的时候应手握电缆线的金属部分,防止探头断线。  3.现场工作俄时候,探头应尽量避免在粗糙不平的表面上磨动,仪延长探头的使用寿命。  4.探头使用完之后,应及时擦去探头上的耦合剂,保持探头的清洁.  相关阅读:超声波测厚仪如何保养  一、使用超声波测厚仪时应小心轻放,避免碰撞。  二、仪器每次使用完毕后,应将仪器主机和探头擦干净,放入仪器箱内保存。  三、仪器长期不使用时,须将电池取出。  四、若仪器出现故障无法使用时,则需要返回原厂进行维修。  五、试块的清洁

  • 【分享】磁力反应釜的工作原理

    磁力驱动是八十年代开发的一种新型传动密封技术。磁力驱动反应釜的关键部件磁力耦合传动器是一种利用永磁材料进行耦合传动的传动装置。磁力耦合器利用磁钢透过奥氏体不锈钢仍能相互吸引的原理,制作一不锈钢密封罩体与釜体固定连接,形成静密封腔,实现对搅拌轴开孔处的密封。密封罩体内外各设一用永磁材料制作的转子,由于磁铁具有异性相吸,同性相斥的特性,内外转子通过磁力作用在轴向上和旋轴方向相互定位。当电机带动外转子旋转时,内转子则跟随同步旋转。内转子再通过联轴器带动釜内搅拌轴旋转,达到搅拌目的。磁力驱动改变了传统机械密封和填料密封的那种通过轴套或填料密封搅拌轴的动密封结构为静密封结构,釜内介质完全处于由釜体与密封罩体构成的密封腔内,彻底解决了填料密封和机械密封因动密封而造成的无法克服的泄露问题,使反应介质绝无任何泄露和污染。

  • 日本TOYO TSUSHO CX-531N RF 12V同轴继电器带N型母头

    日本TOYO TSUSHO CX-531N RF 12V同轴继电器带N型母头是一款专为高频信号切换设计的电子元件,具有出色的高频性能和稳定的电气特性,广泛应用于多个领域。以下是对该产品的详细介绍: [b]一、产品概述[/b] 品牌与型号:该产品由日本东洋津造(TOYO TSUSHO)生产,型号为CX-531N,是一款结合了高频信号切换和电气隔离功能的同轴继电器。 额定电压:支持12V DC的额定电压,确保在不同电源条件下的稳定工作。同时,它可能还支持一定的电压范围,如9Vdc至15Vdc,但标称电压为12Vdc。 射频特性:CX-531N专为RF(射频)应用设计,能够处理高频信号,频率范围广泛,包括但不限于适用于高频信号传输的场合,如可能涵盖UHF频段(300MHz~3GHz)或更高频率。其带有的N型母头连接器是高频信号传输的优选,具有优良的电气性能和机械稳定性。 [b]二、技术特点[/b] [list=1][*][font=-apple-system, BlinkMacSystemFont, &]高频性能[/font]:[list][*]CX-531N在高频段下表现出色,具有低插入损耗和高隔离度等特性,确保信号在切换过程中的质量和稳定性。[*]N型母头连接器的使用进一步提升了高频信号的传输效率和质量。[/list][*][font=-apple-system, BlinkMacSystemFont, &]电气性能[/font]:[list][*]工作电流在12Vdc时,根据类似型号的数据,可能约为115mA至160mA(具体数值需参考产品手册)。[*]线圈电阻在特定温度下(如20°C)可能约为一定范围内的值,同样需参考产品手册获取准确数据。[/list][*][font=-apple-system, BlinkMacSystemFont, &]切换速度[/font]:[list][*]包括拉入时间和退出时间在内的切换时间参数对于高频信号切换至关重要。CX-531N具有快速的切换速度,确保高频信号能够快速准确地切换。[/list][*][font=-apple-system, BlinkMacSystemFont, &]稳定性与可靠性[/font]:[list][*]采用高品质材料和先进工艺制造,确保继电器在长时间使用过程中保持稳定的性能和可靠的开关动作。[*]具有高可靠性和耐用性,通常预期寿命可达数百万次操作,满足高频信号切换的长期需求。[/list][*][font=-apple-system, BlinkMacSystemFont, &]安装方式[/font]:[list][*]通常通过螺丝或其他固定方式安装在适当位置,便于集成到各种设备中。[/list][*][font=-apple-system, BlinkMacSystemFont, &]工作环境[/font]:[list][*]工作温度范围广泛,如-25°C至+50°C(或类似范围),确保继电器在不同环境条件下都能正常工作。[/list][/list] [b]三、应用领域[/b] CX-531N RF 12V同轴继电器带N型母头广泛应用于以下领域: [list=1][*] [font=-apple-system, BlinkMacSystemFont, &]通信系统[/font]:在通信基站、中继站等场合中,用于实现高频信号的切换和传输,确保通信网络的稳定性和可靠性。 [*] [font=-apple-system, BlinkMacSystemFont, &]广播电视[/font]:在广播电视发射系统中,用于主备发射机的快速切换和故障保护,确保广播信号的连续性和稳定性。 [*] [font=-apple-system, BlinkMacSystemFont, &]测试测量[/font]:在高频信号测试仪器中,作为信号切换的关键部件,进行信号测试和校准。 [*] [font=-apple-system, BlinkMacSystemFont, &]工业自动化[/font]:在工业自动化控制系统中,用于高频信号的检测、切换和控制,提高生产线的自动化水平和生产效率。 [/list] [b]四、总结[/b] 日本TOYO TSUSHO CX-531N RF 12V同轴继电器带N型母头以其优异的高频性能、稳定的电气特性和广泛的应用领域,成为高频信号切换领域的佼佼者。无论是在通信系统、广播电视、测试测量还是工业自动化等领域,它都能提供可靠的信号切换和传输解决方案,助力各种设备的高效运行。

  • 高压反应釜基本结构供参考

    由反应容器、搅拌器及传动系统、冷却装置、安全装置、加热炉等组成。 1、 釜体、釜盖采用1Cr18Ni9Ti不锈钢加工制成,釜体通过螺纹与法兰联接,釜盖为正体平板盖,两者由周向均布的主螺栓、螺母紧固联接。 2、 高压釜主密封口采用A型的双线密封,其余密封点均采用圆弧面与平面、圆弧面与圆弧面的线接触的密封形式,依靠接触面的高精度和光洁度,达到良好的密封效果。 3、 釜体外装有桶型碳化硅炉芯,电炉丝穿于炉芯中,其端头由炉壳侧下部穿出,通过接线螺柱,橡套电缆与控制器相连。 4、 釜盖上装有压力表,爆破膜安全装置,汽液相阀,温度传感器等,便于随时了解釜内的反应情况,调节釜内的介质比例,并确保安全运行。 5、 联轴器主要由具有很强磁力的一对内、外磁环组成,中间有承压的隔套。搅拌器由伺服电机通过联轴器驱动。控制伺服电机的转速,便可达到控制搅拌转速的目的。 6、 隔套上部装有测速线圈,连成一体的搅拌器与内磁环旋转时,测速线圈便产生感应电动势,该电势与搅拌转速相应,该电势传递到转速表上,便可显示出搅拌转速。 7、 磁联轴器与釜盖间装有冷却水套,当操作温度较高时应通冷却水,以及磁钢温度太高而退磁。 8、 轴承采用不锈钢轴承或高强电化石墨,耐摩损,且维修周期长

  • Thermo玻璃同轴雾化器哪里有卖?

    我想问Thermo玻璃同轴雾化器哪里有卖?看到有GE的雾化器,仪器原配的是GE生产的吗?用起来会是一样的吗?还有直接从厂家怎么买?国内有代理吗?怎样最便宜啊?

  • 高速离心机驱动部件振动的原因

    [color=#333333][url=http://www.biosafer.cn/productlist-T636.html]高速离心机[/url]在使用和操作中容易发生部件振动,而离心机发生振动就可能导致离心机在使用中对离心物产生影响,那么高速离心机驱动部件振动原因是什么呢[/color][color=#333333]?[/color][color=#333333]下面小编为您讲解:[/color][color=#333333]通过对[url=http://www.chinanoted.com/]高速离心机[/url]的驱动部件进行了分析。分析认为,引起振动的原因是多因素的,其中主要包括转子的剩余不平衡量、电机转子的剩余不平衡量、电机与驱动组件的联接方式和减振器的设置等。根据动力学原理,转子在一定转速下运转时的乎衡方程式为[/color][color=#333333] G+M(e+y)CO [/color][color=#333333]:[/color][color=#333333](y +y)[/color][color=#333333]。[/color][color=#333333]其中影响较大的是转子的偏心量[/color][color=#333333]e[/color][color=#333333]及挠度[/color][color=#333333]Y[/color][color=#333333],而这两者与转子的制造精度、传动轴的几何尺寸和轴承的支承位置有关。该振源将造成径向和轴向同时振动,主要在径向。根据这一原理, 我们仔细分析了原设计图, 发现原结构在径向上无任何减振装置,而在轴向上又重复破振。[/color][color=#333333]第二,转子与转子盖的影响[/color] [color=#333333]检查发现,原转子与转子盖之间的配台有[/color][color=#333333]2ram[/color][color=#333333]的间隙。第三,弹性联轴器的影响。由于转子和电机始终存在不同程度的剩余不平衡量,这两个不平衡量就是两个不同的振源。在直接驱动结构的高速离心机上,这两个振源叉不得不连接起来,这就需要设计一个有效隔离开两个振源的联轴器。该机原设计的联轴器为一个开有方孔的尼龙套。虽然尼龙套能起一定的阻尼隔振作用,但用在此处还不能满足使用要求。针对上面提出的问题,我们首先在原驱动结构上增加了橡皮隔振圈来隔离径向振动,转子与转子盖之间的间隙由原来的[/color][color=#333333]2ram[/color][color=#333333]减小到[/color][color=#333333]0.1mm[/color][color=#333333],联轴器由原来的尼龙套改[/color][color=#333333]为我们称之为万象联轴器的结构。[/color]

  • 如何使用示波器

    示波器是观察数字电路实验现象、分析试验中的问题、测量实验结果必不可少的重要仪器。在家电维修的过程中使用示波器已十分普遍。而正确、熟练地使用示波器,是初学维修人员的一项基本功。现介绍示波器正确的使用方法:[b]一、面板介绍1.亮度和聚焦旋钮[/b]亮度调节旋钮用于调节光迹的亮度(有些示波器称为"辉度"),使用时应使亮度适当,若过亮,容易损坏示波管。 聚焦调节旋钮用于调节光迹的聚焦(粗细)程度,使用时以图形清晰为佳。[b]2.信号输入通道[/b]常用示波器多为双踪示波器,有两个输入通道,分别为通道 1(CH1)和通道 2(CH2),可分别接上示波器探头,再将示波器外壳接地,探针插至待测部位进行测量。[b]3.通道选择键(垂直方式选择)[/b]常用示波器有五个通道选择键:(1)CH1:通道 1 单独显示;(2)CH2:通道 2 单独显示;(3)ALT:两通道交替显示;(4)CHOP:两通道断续显示,用于扫描速度较慢时双踪显示;(5)ADD:两通道的信号叠加。维修中以选择通道 1 或通道 2 为多。[b]4.垂直灵敏度调节旋钮[/b]调节垂直偏转灵敏度,应根据输入信号的幅度调节旋钮的位置,将该旋钮指示的数值(如 0.5V/div,表示垂直方向每格幅度为 0.5V)乘以被测信号在屏幕垂直方向所占格数,即得出该被测信号的幅度。[b]5.垂直移动调节旋钮[/b]用于调节被测信号光迹在屏幕垂直方向的位置。[b]6.水平扫描调节旋钮[/b]调节水平速度,应根据输入信号的频率调节旋钮的位置,将该旋钮指示数值(如 0.5ms/div,表示水平方向每格时间为 0.5ms),乘以被测信号一个周期占有格数,即得出该信号的周期,也可以换算成频率。[b]7.水平位置调节旋钮[/b]用于调节被测信号光迹在屏幕水平方向的位置。[b]8.触发方式选择[/b]示波器通常有四种触发方式:(1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形;(2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形;(3)电视场(TV):用于显示电视场信号;(4)峰值自动(P-P AUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。该方式只有部分示波器(例如 CALTEK 卡尔泰克 CA8000 系列示波器)中采用。[b]9.触发源选择[/b]示波器触发源有内触发源和外触发源两种。如果选择外触发源,那么触发信号应从外触发源输入端输入,家电维修中很少采用这种方式。如果选择内触发源,一般选择通道 1(CH1)或通道 2(CH2),应根据输入信号通道选择,如果输入信号通道选择为通道 1,则内触发源也应选择通道 1。[b]二、测量方法1.幅度和频率的测量方法(以测试示波器的校准信号为例)[/b](1)将示波器探头插入通道 1 插孔,并将探头上的衰减置于"1"档;(2)将通道选择置于 CH1,耦合方式置于 DC 档;(3)将探头探针插入校准信号源小孔内,此时示波器屏幕出现光迹;(4)调节垂直旋钮和水平旋钮,使屏幕显示的波形图稳定,并将垂直微调和水平微调置于校准位置;(5)读出波形图在垂直方向所占格数,乘以垂直衰减旋钮的指示数值,得到校准信号的幅度;(6)读出波形每个周期在水平方向所占格数,乘以水平扫描旋钮的指示数值,得到校准信号的周期(周期的倒数为频率);(7)一般校准信号的频率为 1kHz,幅度为 0.5V,用以校准示波器内部扫描振荡器频率,如果不正常,应调节示波器(内部)相应电位器,直至相符为止。[b]2.示波器应用举例(以测量 788 手机 13MHz 时钟脉冲为例)[/b]手机中的 13MHz 时钟信号正常是开机的必要条件,因此维修时要经常测量有无 13MHz 时钟信号。步骤如下:(1)打开示波器,调节亮度和聚焦旋钮,使屏幕上显示一条亮度适中、聚焦良好的水平亮线;(2)按上述方法校准好示波器,然后将耦合方式置于 AC 档;(3)将示波器探头的接地夹夹在手机电路板的接地点,探针插到 788 手机 CPU 第脚;(4)接通手机电源,按开机键,调节垂直扫描水和平扫描旋钮,观察屏幕上是否出现稳定的波形,如果没有,一般说明没有 13MHz 信号。

  • 【原创】温州“染色馒头”

    据新华社电 记者17日从温州市工商部门了解到,一家每天制售数千个“染色馒头”的无证作坊已被温州市龙湾区工商局查处。近期,上海“问题馒头”事件引发社会广泛关注,4月15日,温州市工商部门对流通领域食品安全展开专项整治。当天,龙湾区工商执法人员根据此前摸底的情况,来到龙湾区状元甘岙村甘中路一家馒头作坊检查,发现民房大院内停着几辆三轮车,车上用棉被遮盖。掀开棉被,下面尽是热气腾腾刚出锅的实心馒头。现场另一处还堆放着大量蒸熟的馒头,其中有不少是黄色的“玉米馒头”。执法人员用手一捏,发现双手立刻被染黄。执法人员在现场同时查获一瓶瓶“柠檬黄”、一袋袋“糖精钠”及玉米香精等添加剂。执法人员称,相关食品法规规定,“柠檬黄”、“糖精钠”等均属面包违禁添加剂,不允许在馒头中使用。执法人员说,玉米馒头比普通馒头价格高,该作坊在馒头生产过程中涉嫌违法添加“柠檬黄”色素,将白面染成黄澄澄的“玉米馒头”。

  • 磁力驱动搅拌器的发展和应用

    随着医药、食品、有机合成、石油化工以及核工业等行业的发展,工业中对一些易燃、易爆、有毒、强腐蚀性和贵重介质的搅拌或搅拌反应过程的要求越来越严格,对反应设备清洗和灭菌的要求也十分苛刻。因此,在上述工况中所使用的搅拌釜或搅拌反应釜,其密封要求是应做到零泄漏。在此背景下,磁力密封技术已成为必然的选择,磁力釜(或磁力搅拌器)应运而生 。磁力釜以静密封结构取代动密封,该结构无接触传递力矩,能彻底解决机械密封与填料密封的泄漏问题,并且搅拌部件处于绝对密封状态,是石油化工、有机合成、食品加工、生物制药过程中进行硫化、氢化、氧化及发酵等反应的选择趋势。原理及结构磁力搅拌器是磁力联轴器与搅拌装置的结合,是磁力传动技术的成功应用之一。所谓磁力传动是指以现代磁学为基础,利用永磁材料之间磁力耦合作用实现无接触传递力矩的一种实用技术。磁力传动由磁力联轴器来完成。磁力搅拌器的结构主要包括马达、搅拌装置、主动磁转子、从动磁转子以及隔离套等零部件。其中马达通过传动轴将动力传递给主动磁转子,在磁力耦合的作用下从动磁转子开始转动,从而带动与从动磁转子联接在一起的搅拌装置转动,以达到搅拌的目的。 圆筒式磁力搅拌器圆筒式磁力耦合传动搅拌器是以外磁环套内磁环,并在内外磁环之间设置隔离套,三者同心安装,工作面均为圆柱面,磁体呈瓦形。该传动形式传递力矩较大,对高黏度的物料也有足够的力矩进行充分搅拌,适用于高转速场合。因此,生产用设备主要采用该形式的磁力传动搅拌器。 圆盘式磁力搅拌器圆盘式磁力耦合传动搅拌器中两磁环相向安装,工作面为互相平行的平面,磁体呈扇形。在耦合传动的两磁环之间,通常需设隔离密封罩。该传动形式可简化磁钢的几何尺寸和磁力传动装置的轴向尺寸,但传递的力矩较小,故通常只适用于实验室进行气、液相混合反应的小型反应釜等低转速场合 。实验室用磁力搅拌器目前实验室中使用的搅拌器主要有电动搅拌器和磁力搅拌器两种。实验室用磁力搅拌器主要用于加热或加热搅拌同时进行,适用于黏稠度不是很大的液体或固液混合物。使用时,先将液体放入容器中,再将搅拌子放入液体中,当底座产生磁场后,利用磁力耦合和漩涡的原理,带动搅拌子做圆周循环运动,从而达到搅拌液体的目的。虽然磁力驱动搅拌技术现已取得了很大的成果,但还有很多需要攻克的问题,如:磁场的存在会干扰周围环境 目前常规的下磁力搅拌系统在定位轴的轴瓦处开有导流槽,使罐体内液体进入轴瓦对其进行润滑及在线清洗,但是在生物反应器中罐内细胞培养液进入轴瓦后,细胞培养液中细胞会被碾碎破坏掉,无法正常完成培养 磁力搅拌器的设计目前还没有一套系统和完善的设计方法,磁路的设计、转矩的计算均建立在实验或半实验的基础上,精度有待进一步提高 磁力传动机构的进一步小型化和大型化、高温环境下设计的进一步完善、结构材料和构件的开发选择等都是需要努力的方向。因此,有必要对磁力搅拌技术做更深入的研究和探索,使其不断发展、完善并为科研和生产服务。

  • 可360度全方位减薄的特殊FIB透射取样Lift Out (附带简易明了图解透射样品制备流程)

    现阶段FEI,蔡司的双束FIB系统用于透射取样设备,基本上是3轴方向: 伸缩,“左右”移动,“上下”倾斜而做过透射制样的人都会发现,如果在微操作手臂拿起透射薄片时,如果能360度旋转的话将对于透射样品的减薄具有非常重要的意义,也更加提高了透射样品制备效率。即一般FIB取样设备只能从透射薄片的一侧一直减薄Polish, 而此特殊Lift Out装置是可以让操作控制取出来透射薄片全方位(360度)任一角度进行减薄。即为4轴方向的移动。X 20mm Y 20mm Z 5mm R unlimited Tilt +/- 10 其他更大的移动范围可以定制

  • 微电脑轴承加热器

    注意事项  1:该机自动检测探头,若无探头则无法启动;  2:严禁无加热轴而启动主机;  3:加热工件应尽量选择较大的加热轴,以提高工作效率;  4:轴承最高温度不得超过120℃;  5:取走工件注意高温,以防烫伤;  6:请不要将探头长时间置工件上在,以延长探头的使用寿用途:  轴承加热器,主要用于对轴承、齿轮、衬套、轴套、直径环、滑轮、收缩环、连接器等多种类型的金属件进行加热,通过加热使之膨胀,达到过盈装配的需要。微电脑轴承感应加热器结构:  轴承感应加热器由主机及控制箱组合一体安装在一手车上,移动式结构,便于现场施工灵活应用,可拆装的轭铁是直接用来穿套轴承或其它加热工件之用。扁平吊带,中空扳手

  • 高压反应釜使用注意事项说明

    高压反应釜由反应容器、搅拌器及传动系统、冷却装置安全装置、加热炉等组成釜体、釜盖采用1Cr18Ni9Ti不锈钢加工制成。    釜体通过螺纹与法兰联接釜盖为正体平板盖,两者由周向均布的主螺栓、螺母紧固联接高压釜主密封口采用A型的双线密封,其余密封点均采用圆弧面与平面、圆弧面与圆弧面的线接触的密封形式,依靠接触面的高精度和光洁度,达到良好的密封效果釜体外装有桶型碳化硅炉芯,电炉丝穿于炉芯中,其端头由炉壳侧下部穿出,通过接线螺柱,橡套电缆与控制器相连釜盖上装有压力表,爆破膜安全装置,汽液相阀,温度传感器等,便于随时了解釜内的反应情况,调节釜内的介质比例,并确保安全运行联轴器主要由具有很强磁力的一对内、外磁环组成,中间有承压的隔套。    搅拌器由伺服电机通过联轴器驱动。控制伺服电机的转速,便可达到控制搅拌转速的目的隔套上部装有测速线圈,连成一体的搅拌器与内磁环旋转时,测速线圈便产生感应电动势,该电势与搅拌转速相应,该电势传递到转速表上,便可显示出搅拌转速磁联轴器与釜盖间装有冷却水套,当操作温度较高时应通冷却水,以及磁钢温度太高而退磁轴承采用1Cr18Ni9Ti不锈钢轴承或高强电化石墨,耐摩损,且维修周期长。    工业上在高压下进行化学反应的设备。有的附有搅拌或传热装置。高压反应釜应放置在室内。在装备多台高压釜时,应分开放置。每间操作室均应有直接通向室外或通道的出口,应保证设备地点通风良好在装釜盖时,应防止釜体釜盖之间密封面相互磕碰。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制