当前位置: 仪器信息网 > 行业主题 > >

应变变送器

仪器信息网应变变送器专题为您提供2024年最新应变变送器价格报价、厂家品牌的相关信息, 包括应变变送器参数、型号等,不管是国产,还是进口品牌的应变变送器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合应变变送器相关的耗材配件、试剂标物,还有应变变送器相关的最新资讯、资料,以及应变变送器相关的解决方案。

应变变送器相关的资讯

  • 标准解读 |《汽车用金属材料圆棒室温高应变速率拉伸试验方法》
    10月26日,中国汽车工程学会正式发布由泛亚汽车技术中心有限公司联合中国汽车技术研究中心有限公司、清华大学苏州汽车研究院、中国飞机强度研究所、ITW集团英斯特朗公司、道姆光学科技(上海)有限公司、东风汽车集团有限公司等单位联合起草的CSAE标准《汽车用金属材料圆棒室温高应变速率拉伸试验方法》(T/CSAE 233-2021)。本标准提出的金属材料圆棒高应变速率拉伸试验方法适用于汽车底盘用的铸造、锻件类零件材料的高应变速率拉伸测试。本标准在GB/T 228.1-2010及GB/T 30069.2-2016基础上,对金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的规定,以确保棒材高应变速率拉伸测试的准确性。当前,汽车底盘用的铸造类零件如Knuckle和Mount等零件的材料高速拉伸曲线是CAE碰撞分析中重点关注技术参数,为了建立CAE分析用高速拉伸所需数据库,提高碰撞安全分析的准确性,需要借助高速拉伸机、三维光学测试(Digital Image Correlation, DIC)技术获取金属棒材的应力、应变场数据。目前对于铸铁、铸铝的圆棒试样的高速拉伸测试还没有相应的国际、国内标准,各整车企业及总成制造商对铸件材料的高应变率拉伸试验方法未见详细说明,测试结果也存在在较大差异,由此带来该对底盘类铸件材料性能和可靠性的评价存在诸多差异。起草工作组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了GB/T 30069 《金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。编制组在充分总结和比较了国内外金属材料高应变速率拉伸测试方法标准、调研了国内外对车用铸、锻方法制造的零件用的金属材料棒材的试验方法的基础上,参考了《GB/T 30069 金属材料 高应变速率拉伸试验》和《ISO 26203 金属材料高应变率拉伸试验》,并确定板材的测试与棒材的测试有明显不同。通过金属材料棒材在不同高应变速率下拉伸时,对试样的夹具,应力测试方法,样件尺寸及装夹,应变测试等方面作了较详细的研究和试验。高应变速率拉伸测试系统是由高速拉伸机,高速相机,光源,数据采集及分析系统,同步器,夹具,散斑制备装置,应变片粘贴设备等部分组成。试验时,确保设备的连接可靠,经过静态速率试验确认力、速度、对中性及相机、数据采集均正常的情况下开始正式测试。编制组基于国内外行业研究现状,通过正交矩阵进行试验方案设计,共48组试验,每组数据需要完成3根样条。随后又增加汽车底盘锻压零件最小壁厚3毫米小直径样条的测试。合格的样条必须断在标距内。所有测试结果不需过滤处理,直接反映整个系统的测试状态和结果。经过一系列试验,为标准的制定奠定可靠的基础。首先是确定试验夹具,根据不同的拉伸设备,可以设计不同的设备连接方式,考虑到试样是圆形截面,推荐使用螺纹接头连接试样,螺纹的长度也进行了优化试验,选择大于2倍平行段长度。而且在夹具上做出平面以粘贴应变片。对夹具的选材上也做了研究,选用常用的45钢和钛合金进行比对。通过图1的试验结果,推荐使用钛合金材料,硬度28~38HRC,以减少夹具的固有震荡信号。图1 钛合金和45#钢夹具及分别在100-1s时的拉伸曲线在应变片的粘贴和标定方面做了详细的试验,在本标准中给出了具体阐述,尤其指明标定的系数R2≥0.999。设备状态的确认中,如果测试力的同时还需要测试应变,设备需要连接额外的数据线,试验前需检查所有的连线是否牢固连接,尤其是信号触发线。每次测试前先在静态试验机上低应变速率拉伸,然后在高速试验机上以同样的速率拉伸同一批次的试样检验设备。静态试验根据 GB/T 228.1-2010规定进行。为了验证验证圆棒试样的应变是否需要三维测试,分别用单台和两台相机试验,发现当使用单台相机时,大截面尺寸(5毫米直径棒材)会出现由于散斑扭曲导致跟踪不了散斑变化产生测量误差或试验失效,因此当出现散斑测试的应变变化跟不上力值变化时,应使用两台相机测试。如图2、3所示。铸铝(左) 铸铁(右)图2 一台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线铸铝(左) 铸铁(右)图3 两台相机照片-铸铁及铸铝的应变-时间&应力-时间的曲线标准起草组对于数据采集频率也做了研究,图像拍照及采集系统的采样频率应考虑试样断裂时间。当应变速率≤100s-1时,所取得的应变有效数据大于力值的采样数据,而且一般会大于400。当应变速率100s-1时,应变的有效数据会急剧下降,应调整应变的采集频率和拍摄参数,最终应变的有效采集不低于100个点。否则不能有效测出弹性模量及剪切模量。对于拉伸速度偏差认可的确认,各测试单位做了详细讨论,考虑到高应变率速度的影响因素复杂,因此给出按照最大力对应的应变划分不同平均速度的限制要求。即当最大力对应的应变率大于5%时,实际应变速率的平均值推荐在目标应变速率的±5%以内,当最大力对应的应变率小于5%时,记录实际应变速率到报告中。试样尺寸也是本标准重点考虑的内容,较短的测试长度有助于获得高的应变速率,但测量长度不能过小,否则不能保证反映材料的性能。因此参考静态的标准及高应变速率拉伸的现有标准,制作了4种不同的试样并测试。试样的装夹方式,尺寸及夹具材料在标准中得到具体描述。优化后的的试样如图4,并给出推荐尺寸。 图4 典型的试样尺寸说明:(1)尺寸公差为0.05mm,平行段工作部分粗糙度0.32,同轴度为0.01毫米。(2)推荐区域直径为5mm,=10mm,=15mm,R=16mm,=5mm,=35mm,D=12mm,或者区域直径为3mm,=10mm,=15mm,R=12mm,=5mm,=35mm,D=6mm。综上所述,该标准围绕车用金属材料的使用工况,对3毫米直径以上的哑铃型拉伸试样进行充分的试验,给出了从夹具,散斑制作,相机标定,系统试验前验证,试样尺寸与装夹,力的测试,数据采集及处理等方面系统的说明,试验准确性高,试验失效率低,同时避免不同试验员试验结果差异等问题。本标准充分考虑了汽车行业用到的铸件和锻件零件,具有普遍适用性,可以为CAE仿真高效地提供更加准确可靠的材料数据。与目前使用的GB/T 30069 《金属材料 高应变速率拉伸试验》和ISO 26203 《金属材料高应变率拉伸试验》中的方法协调统一,互不交叉,提供了标准外的常用形状试样的高应变速率下的详细试验方法,对现有标准起到补充作用。
  • 德图变送器在西门子温室中的应用
    在温室中,环境条件扮演着相当重要的角色,因为即便是非常微小的温度波动都可能导致严重的后果。举例来说:在夜间,温度仅降低一度,温室中的供暖系统就必须连续工作满一小时,才能将温室环境重新调节过来。对植物造成的影响暂且不提,这种温度波动所造成的成本花费及能源浪费就已经非常巨大了。所以对于温室系统中温度、湿度、灌溉的调节工作来说,精准而可靠的测量技术是必不可少的。在西门子德国的I&S部(工业系统及技术服务部),德图的在线测量技术成为温室系统专家们可靠的工作助手。   I&S部门的技术总监,Andreas Bruckerhoff先生是温室自动化方面的权威,他们的客户遍布全世界,有大型的温室、园艺公司、以及很多知名公司的研发部门。在其温室自动化这个复杂的系统中,德图testo 6651和testo 6681变送器扮演着核心的角色。   Bruckerhoff已将新变送器的购买计划推迟了好几个月,因为他在等待德图2007下半年投放市场的最新版仪器。“有了testo,问题就简单多了” Bruckerhoff如是说,“完美的技术,一流的服务,同时德图还负责帮你校准。最重要的是,产品的性价比很好,而且只要带上适当的工具,现场就可以对仪器进行校准”。   温室自动化系统中变送器的使用绝非易事,这位自动化专家解释道“温室中的高湿环境以及植物保护所使用的多种活跃媒介使得变送器的使用环境变得恶劣,所以我们使用的变送器产品必须是坚固耐用的,3个月就瘫痪掉的,可绝对不行”。所以他们一直在努力寻找适合的温湿度测量探头,直到后来遇到了testoAG,,并与之成为了良好的合作伙伴。德图现在正和西门子合作开发一款专业用于温室环境的温室探头,现已进入测试阶段,不久将会以系列产品的形式面世。
  • 德图温湿度、风速变送器监测建筑“呼吸”
    11月21日下午16点,历时6天的第十一届中国国际高新技术成果交易会(简称高交会)在深圳圆满闭幕。在这场科学发展、全面推进创新的盛会上,建筑科研单位首度亮相,其中一座节能建筑的模型在高交会馆八号馆展出,吸引了众多参观者的目光。 这栋名叫建科大厦的建筑不仅是深圳市可再生能源利用城市级示范工程,而且是国家第一批可再生能源示范工程。这座建筑外形普通,甚至毫不起眼,但却使用了诸多节能科技成果。 比如,建科大厦采用了自然通风节能设计,经过精确计算,建筑采用了&ldquo 吕&rdquo 字形体形和平面,为室内通风创造了良好条件 设计中根据房间使用功能和时间上的差异,对不同的楼层区域采用了不同的空调方式。据测算,通过这些能源利用措施,建科大厦比普通大厦可节能65%。&ldquo 它是&lsquo 能够呼吸&rsquo 的建筑。&rdquo 深圳市建筑科学院院长叶青介绍。 在这栋&ldquo 有生命的建筑&rdquo 里,监控建筑的&ldquo 呼吸&rdquo 也是很重要的一环。只有充分掌握建筑环境里的温度、湿度、风速等诸多环境参数,这栋建筑才能根据办公区域人员的多和少,自动调节水平带窗,在窗墙比、自然采光、隔热防晒间找到最佳平衡点。在这里,德图的在线温湿度变送器大展身手,全面监测建筑环境中温度、湿度、风速等诸多环境参数,提供优异精度的数据,让管理人员全方位实时掌握建筑 &ldquo 呼吸&rdquo 状态成为可能。 多年来,德图的温湿度变送器一直是干燥处理及其他关键环境的策略首选。高品质温湿度变送器的核心在于高品质的传感器。从1996至2001,testo的湿度传感器历时5年,走过世界9大国家权威实验室,接受不同的方式的检测,精度都优于1%RH。如此强有力的保证,也是深圳建科大厦选择德图温湿度变送器的原因。&ldquo 深圳建科大厦一共用了150多台testo变送器,涵盖风速、温湿度、温度的测量,德图能以如此大的力度参与中国绿色节能第一楼的建设和维护,我作为产品经理,是非常骄傲的!&rdquo 德图产品经理吴保东高兴的表示。
  • 梅特勒托利多M800多参数智能彩屏变送器全新上市
    梅特勒托利多始终致力于技术变革和产品创新。最新推出的 M800 系列多参数智能变送器,结合了梅特勒托利多新一代的智能传感器技术(ISM,彩色触摸屏操作,让分析测量更简单、更快捷、更准确!) - 新一代iMonitor传感器诊断功能 配合梅特勒托利多的ISM智能传感器,持续监测传感器健康状况,提供连续的实时智能诊断。iMonitor技术可以提前告诉您何时需要对传感器进行维护、校准或替换,大大降低您的维护工作量并最大程度降低故障出现的几率。 - 多参数多通道技术 M800变送器可以同时进行四个过程参数的测量,这些参数可以是电导率/电阻率、TOC、pH、ORP、溶氧、溶解臭氧与流量的任意组合。多通道多参数技术使用户选型更加便捷,同时降低用户库存成本。 - 大屏幕、高精度LCD彩色触摸屏 大屏幕、高分辨率彩色触摸屏,操作界面更简单。 - 数字智能传感器技术 领先的数字传感器技术消除传感器与变送器之间易于出错的模拟信号传输,提升过程测量的速度和精确度。 了解详情,请致电:4008-878-788
  • 山东仁科测控:建大仁科NB型温湿度变送器的具体应用
    NB-IoT窄带物联网是IoT领域一个新兴的技术,具备超低功耗、超强覆盖、超低成本、超大链接、大容量等优势,可以广泛应用于多种行业,如通讯机房、远程抄表、智慧农业、档案馆、厂矿、暖通空调、楼宇自控等个方面领域。山东仁科测控技术有限公司在现有NB网络基础上,自主开发研制了建大仁科NB型温湿度变送器,自成一个独立的体系,相较于传统的物联网传感器具有明显的部署优势与维护优势,壁挂式安装,施工简单,无需布线,真正做到即装即用。一、建大仁科NB型温湿度变送器参数:默认: 温度±3%RH(5%RH~95%RH,25℃),湿度±0.5℃(25℃)电路工作温湿度:-40℃~+60℃,0%RH~80%RH探头工作温度:40℃~+120℃ ,-40℃~+80℃(默认)探头工作湿度:0%RH-99%RH安装方式:壁挂式二、产品特点:1、产品采用高灵敏探头,具有信号稳定,精度高的特点;2、设备采样超低功耗微处理器,内置超大容量的锂电池,可支持连续使用3年;3、安装使用方便,外壳整体尺寸:110×85×44mm,拧上黑色保险管安装成功后,设备自动连接开始工作,安装黑色保险管见下图;4、天线内置,设备出厂之前内部安装卡,现场无需接线,采用NB-IOT无线通讯技术将数据上传至山东仁科测控云平台;5、覆盖广且深,海量的连接能力,一个基站可建成6个扇区,一个扇区可建立5万个节点的温湿度数据;6、用户无需自建服务器,设备默认连接到山东仁科测控云平台,安装成功后登录云平台即可查看现场温湿度状况,设备默认1小时定时上传/更新一次数据。三、云平台简介山东仁科测控云平台(www.0531yun.cn)部署于公网服务器,可接入机房监控解决方案中所有网络型设备。云平台用户可通过电脑网页端,手机app,微信公众号等各种方式登录,进行远程监控,可随时随地查看所有NB型温湿度变送器的位置以及实时数值。云平台具有报警功能,报警方式有短信报警、邮件报警、声光报警等,如有情况,给监管人员发告警,及时采取措施解决情况。平台上还可以查询实时数据及历史数据,进行数据统计,同时将数据的导出,下载打印等,还可以多级权限访问。山东仁科测控为NB型温湿度变送器用户更提供配套的管理系统,方便监管人员随时查看、查询、管理所有在线监测设备和数据,为城市环境网格化监测部署好每一步。
  • 川仪股份研制的1E级安全壳淹没液位变送器(JE61)顺利发运
    近日,川仪股份为国家228工程自主研制的1E级安全壳淹没液位变送器(JE61)顺利发运。注册仪表网,马上发布/获取信息   1E级安全壳淹没液位变送器用于事故后安全壳内液位的长期监测,是保障电站安全停堆及后续监测电站状态的重要设备。该设备工况复杂,需满足在高温、高辐照、地震、LOCA、水淹、严重事故等恶劣工况下的正常运行要求,此前该设备长期依赖进口。   川仪股份联合上海核工院于2018年开始立项研究,在国家科技重大专项支持下,通过持续技术攻关,顺利完成了国产化1E级安全壳淹没液位变送器的产品研发、样机制造、鉴定试验等工作。经鉴定,公司所研制的1E级安全壳淹没液位变送器满足各项指标要求,达到国际先进水平。   依托国家重大专项课题成果转换,公司迅速启动民核取证工作,通过与上海核工院、上海成套院、国核示范精诚合作、快速响应,短短半年便通过设备鉴定试验,成功取得民用核安全设备设计制造许可证。进入设备制造阶段以来,在公司党委书记、董事长吴朋,党委副书记、总经理吴正国精心安排下,川仪流量仪表、四联测控、川仪速达等所属单位按照“坚守核安全底线、严控产品质量、科学策划、严格要求、高效执行”的指导思想全力投入到1E级安全壳淹没液位表的生产制造工作中,精益求精、一丝不苟,争分夺秒,全力以赴,按期实现1E级安全壳淹没液位变送器的顺利交货,有力保障了228工程关键节点,用实际行动践行“两个维护”。   川仪股份始终坚持以川仪所长服务国家所需,1E级安全壳淹没液位变送器(JE61)的顺利发运,实现了国产化设备首台套应用,是228工程1E级设备国产化的又一次重要突破,为核电站关键设备全面实现国产化贡献了川仪力量。
  • Indigo500 系列变送器改进了对麦芽加工过程的控制
    作为优质麦芽产品供应商之一,Viking Malt 公司研究了其位于瑞典哈尔姆斯塔德的工厂中麦芽加工过程内持续湿度监测的优点。维萨拉 Indigo520 变送器已经与该工厂的控制系统集成,在经过 3 个月的试运行后,技术经理 Tony Öblom 说:“由于能够实时访问湿度数据,麦芽加工过程得到了更严格的控制,从而提高了质量,同时还节约了能源并提高了盈利能力。”背景麦芽是制造啤酒、威士忌和许多烘焙产品的关键成分。Viking Malt 总部设在芬兰,该集团在芬兰、丹麦、瑞典和立陶宛共经营有六家麦芽厂,并在波兰设有两家麦芽厂,每年麦芽总产量达 60 多万吨。大部分制造麦芽的谷物是大麦,但也可以使用小麦和黑麦,以及大米和玉米。麦芽厂设在北欧让 Viking Malt 拥有了很多优势。例如,其承包农场生产的大麦品质优良,麦芽特性优异。此外,寒冷的冬天会消灭病虫害,作物在午夜阳光下生长迅速,这意味着它们对杀虫剂的需求不大。麦芽加工过程麦芽加工涉及发芽的开始、管理和中止。这是通过仔细和准确地控制室内湿度、温度(有时控制二氧化碳)来实现的。 啤酒的好坏可能因个人口味而异,但风味的一致性和其他特性取决于是否采用优质麦芽。Tony 说:“在 Viking Malt,我们精益求精,确保生产风味一致的优质麦芽。这是通过精心甄选和管理原料以及尽可能仔细和准确地监测和控制生产来实现的。”根据原料的特性和所生产麦芽的规格,麦芽加工过程分为三个主要阶段,总共需要 7 到 10 天的时间。这三个阶段分别是:浸泡 – 谷物经洗涤后,其含水量在浸麦槽中增加,以刺激发芽。浸泡通常涉及不同时长的干湿期组合。发芽 – 种子发芽时会产生酶。例如,淀粉酶将种子中的淀粉转化为可发酵糖,蛋白酶分解蛋白质。烘烤 – 在过程的最后一部分,将“绿色麦芽”在窑中干燥和加热,以达到所需的规格。在麦芽加工过程开始时,窑内温度为 60°C 至 65°C,湿度可能达到 100%,而最终烘烤温度可能在 80°C 至 95°C 之间,目标湿度为 4%。监测的重要性
  • 双应变-温度传感器性能研究取得进展
    近日,广东省科学院化工研究所研究员曾炜团队在国家自然科学基金项目等的资助下,在双应变-温度传感器性能研究方面取得新进展。相关研究发表于Composites Part A。张静斐为该论文第一作者,曾炜为通讯作者。   在目前的双应变-温度传感器研究中,一般是将应变/温度敏感的导电材料,如金纳米粒子、氧化石墨烯和碳纳米管等引入弹性体或水凝胶来实现的。由于弹性体的伸展性差和导电材料的不透明性限制了其在大应变和可视化设备中的应用。而离子导电水凝胶具有透明度高、柔韧性好的优点,可以实现基于三维网络离子传输的同时,利用其电导率随应变和温度的变化而实现应变-温度双重传感,为传感器的多功能化提供了广阔应用前景。   研究人员通过自由基聚合,在氯化锂和甘油的存在下,制备了具有良好应变和温度敏感性的可拉伸离子导电性水凝胶。氯化锂的强离子水化作用和水分子、甘油形成强氢键协同作用从而抑制了冰晶的生成,使水凝胶具有优异的抗冻能力,能在-30 ℃~ 80 ℃的较宽温度范围内检测温度的变化。该水凝胶在36.5~40 ℃范围内的温度灵敏度为5.51 %/℃,检测限为0.2 ℃,并具有良好的升温-降温循环稳定性。   此外,水凝胶传感器在2000%的宽应变范围内具有良好的线性,可以达到17.3的高灵敏度,并具有低至1%的检测下限。利用该方法制备的应变-温度双重刺激响应水凝胶,在人体运动监测、发热检测等可穿戴设备中具有很大的应用潜力。
  • 分布式光纤应变监测仪取得重要进展
    p style=" text-align: justify text-indent: 2em " & nbsp 由中兴通讯股份有限公司牵头的国家重点研发计划“重大科学仪器设备开发”重点专项“分布式光纤应变监测仪”项目经过近两年的努力,突破了高空间分辨率技术、超长距离测量技术和高精度布里渊信号处理等关键技术,开发出分布式光纤应变监测仪样机。近日,项目顺利通过了科技部高技术中心组织的中期检查。 /p p style=" text-align: justify text-indent: 2em " 分布式光纤传感以光纤作为传感器,其测量参数包括应变和温度等,可以实现空间上的连续测量,监测点位可达百万个,测量距离可达百公里,具有传统点式传感器不可比拟的优势,是大尺度基础设施结构健康监测和大范围地质灾害监测最有效的技术手段。目前国内高性能分布式光纤传感监测仪主要依赖国外进口,国内还不能实现厘米级超高空间分辨率和百公里超长距离产品供货。该项目通过采用差分脉冲对技术和双频激光扫描技术,所开发的可工程化应用的分布式光纤应变监测仪,具有厘米级空间分辨率和百公里测量距离,已成功应用于油气管道、高速铁路、高压输电线、大型桥梁和山体滑坡监测等领域,中国公路学会组织的科技成果鉴定认为该项目整体技术达到了国际领先水平。开展分布式光纤应变监测仪的自主化研究,对于提高我国大型基础设施、大型结构装备和地质灾害的安全监测能力,提升公共安全水平,以及减小经济损失和社会影响具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 该项目下一步将加强仪器小型化设计,提高产品的工程使用灵活性;进一步加快工程应用示范及产业化推广等工作。& nbsp /p
  • 我国实现3000℃极端环境下的超高温应变场测量
    记者9日从北京航空航天大学李宜彬教授团队获悉,该团队首次利用自主研发的紫外-数字图像(UV-DIC)系统在超高温极端环境应变场测量领域实现了3000℃环境下的成功测量。相关研究成果近日发表于国际无损检测领域的权威杂志《无损检测与评价国际》上。25℃-3000℃散斑图:(a)T=25℃;(b)T=1100℃;(c)T=1500℃;(d)T=1900℃;(e)T=2100℃;(f)T=2300℃;(g)T=2500℃;(h)T=2700℃;(i)T=2900℃;(j)T=3000℃;(k)在加热至3000℃后冷却至25℃的散斑此前,在超高温极端环境应变场测量领域一直缺乏有效测量表征手段,主要难点包括:一是超高温热辐射导致测量图像过度曝光,无法表征;二是使用中性密度、蓝光、偏振等多组滤光片,导致测量步骤繁琐,表征成像效果欠佳;三是作为变形信息载体的散斑在超高温中容易脱落,导致测量失败,无法表征。典型温度下应变场云图:(a)1100℃;(b)2100℃;(c)2500℃;(d)2700℃;(e)2900℃;(f)3000℃该文章通讯作者、北京航空航天大学、天目山实验室助理研究员董亚丽表示,研究人员利用紫外-数字图像(UV-DIC)系统,仅用单个紫外滤光片就有效抑制了3000℃热辐射,同时开发了以碳化铪粉末为散斑材料的超高温散斑制备工艺,最终在3000℃环境下成功测量了石墨热膨胀系数,并清晰记录了被测对象从室温到3000℃的高质量图像。该成果由北京航空航天大学、天目山实验室联合研发。“以上难点在紫外-数字图像相关的应变场测量方法中均被很好地解决,该测量方法能够有效、准确测量热端部件在超高温极端热力耦合条件下的热变形,对于助力我国航空航天技术发展具有积极意义。”李宜彬说。
  • 纳米压痕仪NHT³ | 焊接的应力应变研究
    焊接质量一般是通过焊缝质量好坏来做评定,而焊缝质量取决于所焊接的物体、焊接填充物以及所选用的焊接工艺及参数。为了更好地去优化和改善焊接工艺,对于焊缝及其热影响区进行力学性能表征是极其有意义的。对局部弹塑性特性的兴趣导致了一种新检测技术的发展,该技术使用球形压头对焊缝及其热影响区进行局部应力应变性能表征,加载期间使用振动的压痕允许非常局部地确定试验材料的代表性应力-应变曲线。简单的应力应变分析在Anton-Paar压痕软件中实现。该方法可适用于焊缝及其附近不同区域的局部力学性能的表征。01焊缝裂纹尖端附近的弹塑性行为研究纳米压痕仪 NHT3通过展示仪器化纳米压痕测试方法获得低合金钢焊缝中裂纹尖端附近区域和远离裂纹尖端区域的应力应变行为。焊缝出现裂纹通常是由焊接过程中焊缝快速凝固产生的热应力引起的,或由内部显微结构的发生改变所引起的,导致硬度和屈服强度增加,但抗断裂性降低。为了了解局部区域的应力应变行为,仪器化纳米压痕法是能够提供此信息的少数方法之一,局部应力应变测量的目的是帮助理解焊缝开裂的原因。图1 : 靠近或远离焊缝裂纹尖端局部区域的仪器化压痕测试使用Anton-Paar纳米压痕仪NHT3搭载半径为20 µm球型针尖对两个已经存在焊缝裂纹的样品进行测试,以获得局部的应力应变行为;与传统的静态测试方法不同的是,在这次的应用案例中将采用在加载过程增加正弦波加载方式的动态测试方法 (Sinus),选取最大载荷为500 mN,加载卸载速率为1000 mN/min,动态加载振幅为50 mN,频率为5 Hz。图2:载荷位移曲线图3:应力应变曲线图2和图3显示了动态加载测试下获得的压痕曲线,以及从两个区域的压痕曲线中获得的应力应变曲线。可以看出裂纹尖端附近区域的屈服强度远高于远离裂纹尖端的区域。屈服强度的增加通常与延展性的降低有关,这可能对焊缝的抗断裂韧性产生至关重要影响。在外部荷载作用下,靠近裂纹尖端的材料屈服强度增加,往往会出现比基材更早断裂的情况,因此在整个结构中是个力学薄弱点。焊缝中的断裂会导致整个部件失效,因此应该去调整焊接参数,使裂纹尖端附近的材料具有较低的屈服应力和较高的抗断裂性。02焊接铝合金的应力应变行为研究仪器化纳米压痕测试方法中应力应变分析的另一个经典应用是研究金属焊缝周围的弹塑性,尤其是软金属,例如铝合金。铝合金比钢对高温更敏感,因此,研究铝合金的焊接热效应尤为更重要。在本应用所提及的研究中,在加载过程中使用正弦波动态加载模式,利用球形纳米压痕针尖的特性对两种不同的铝合金焊缝附近的弹塑性行为进行局部表征。球形纳米压痕针尖用于确定靠近焊缝(区域A)且距离焊缝约2mm(区域B)的应力应变特性。图4:对比距离焊缝近的区域A和距离焊缝2mm处区域B的应力应变行为使用NHT3纳米压痕仪搭载半径20µm球型针尖作为表征手段,选取的最大载荷为300 mN、加载卸载速率为600mN/min。在加载过程中采用正弦波的动态加载模式,振幅为30 mN,频率为5 Hz。图4展示了区域A和区域B的应力应变曲线的比较。两个区域表现出相类似的弹塑性行为,屈服应力约为0.3 GPa。这表明焊接过程中加热和冷却对材料的弹塑性性能的影响可以忽略不计。然而,并非所有情况下都是如此,焊接区域的局部应力应变行为仍然是优化焊接参数的重要信息。03搅拌摩擦焊接铝合金的应力应变研究搅拌摩擦焊(FSW)通常是铝合金焊接工艺更好地选择,而传统电弧焊由于铝的高导热性而容易产生较大的热影响区。FSW中的焊接温度远低于中心接触点,因此热效应的传导不如弧焊中明显。在这种情况下,将两种不同的铝合金AA6111-T4(T4)和AA6061-T6(T6)焊接在一起,并在距离熔核中心位置的1.1 mm、2.2 mm和3.3 mm处研究硬度、弹性模量和屈服应力。以下参数用于压痕:最大载荷300 mN,加载速率600 mN/min,动态加载模式下选取振幅30 mN,频率5 Hz。图5的结果表明随着距熔核距离的增加,所表现出的应力应变行为大致一样,仅存在微小差异。在所有的三个区域的屈服应力大约为0.33 GPa(两种基材中的屈服应力大约为0.27 GPa,图中未显示)。母材的硬度为0.8 GPa(T4合金)和1.1 GPa(T6合金)。所有三个区域(距焊缝熔核1.1 mm、2.2 mm和3.3 mm)的硬度均为1.1 GPa,这证实焊缝附近的弹塑性能并没有发生显著变化。图5:距熔核不同位置的应力应变曲线Aoton-Paar自研自产的纳米压痕仪能非常好地去胜任微观局部的应力应变分析,新一代的检测手段的开发有助于焊接行业的进一步发展。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 金属所柔性应变传感器的手势识别应用研究取得进展
    基于手势识别技术的可穿戴柔性电子设备在医疗健康、机器人技术、人机交互和人工智能等领域颇具应用前景。研制性能优异的柔性应变传感器是实现高性能可穿戴设备应用的重要基础。感器的灵敏度决定可穿戴设备的感知精度,而在过载、瞬时冲击、多次循环弯曲/扭折等条件下的机械鲁棒性将影响可穿戴设备实际应用环境条件下的长期可靠服役。截至目前,采用简单方法制备兼具高灵敏度和机械鲁棒性的柔性应变传感材料颇具挑战性。如何将基础研究所获得的高性能柔性应变传感器推广应用到人机交互系统等实际应用场景中,将会为此类器件的研发提供全新思路。   近期,中国科学院金属研究所沈阳材料科学国家研究中心薄膜与微尺度材料及力学性能研究团队,在前期柔性基体金属薄膜力学行为研究的基础上,基于柔性器件传感的力学原理,提出将裂纹类传感器的传感机制引入高机械鲁棒性蛇形曲流结构中,通过对传感层进行巧妙的高/低电阻区调控实现高灵敏度传感的学术思想,研制出灵敏度与裂纹类传感器相当(GF 1000)且机械鲁棒性优异的柔性应变传感器。该传感器在过载、冲击、水下浸泡、高/低温等严苛环境条件的作用下表现出优异的循环稳定性,稳定响应周次达10000周。同时,该传感器具有响应和回复时间快(图2.柔性应变传感器的传感性能。a、高/低电阻区调控前的响应曲线;b、高/低电阻区调控后的响应曲线;c、在不同峰值应变下的循环响应曲线,极限检测应变;d、响应和回复时间。图3.柔性应变传感器的机械鲁棒性。a、循环稳定性;b、最大可承受应变;c-e:对严苛环境的耐受力。图4.可穿戴手语翻译系统。a、应用场景示意图;b、系统框架;c、手语手套;d、无线电路板;e、用户界面。图5.手语识别验证。a、6种由复合手势组成的手语;b、手语翻译系统对6种手语的识别准确率;e、手语翻译系统的各项性能汇总。
  • 丹迪发布数字图像相关DIC应变测量仪新品
    仪器简介:DIC(Digital Image Correlation)数字图像相关技术是一种非接触式测量材料全场应变、位移的光学测量技术,该技术几乎适用于任何材料且测试面积广、结果精确。Dantec DIC Q-400丹迪公司研发生产的一款测量材料表面位移与应变的标准DIC设备,该设备不与被测物体表面发生接触,通过追踪物体表面的散斑图像,实现变形过程中物体表面三维坐标、位移场和应变场的测量。该设备几乎适用于任何材料且测量范围广、测量精度高。技术参数:测量维度:二维、三维测量区域:1mm×1mm—1m×1m(该区间外也可测量,但测量精度会相应下降)测量精度:位移(1μm),应变(0.01%)主要特点:精度高、测量范围广、无接触、方便使用创新点:1、新型的光学测量仪器,无接触测量材料的位移和应变 2、测量结果准确,每个结果均含有一个置信区间 3、测量时间短,系统操作简单、标定程序简单
  • 天津大学新技术提高光纤应变传感器灵敏度
    天津大学精密仪器与光电子技术学院教授李恩邦研究发现一种新技术构成的光纤应变传感器,具有灵敏度高且对温度变化不敏感等特点。   光纤应变传感器是世界上应用广泛的传感器类型,具有许多电传感器不可比拟的优点,对于保障大型设施安全、防止恶性和灾难性事故发生具有非常重要的意义。   李恩邦的研究成果已发表在《应用物理快报》上,英国物理学会官方网站optics.org和美国《激光世界》杂志也对此进行了报道。
  • 宁波材料所在柔性应变-温度双模态传感器研究方面取得进展
    人体活动所产生的包括应变和温度等生理信号是医疗健康、运动监测的重要数据来源,利用柔性可穿戴设备实现应变和温度的感知意义重大。柔性传感器是柔性可穿戴设备的核心部件,其发展趋势是集成化和多功能化。发展柔性应变-温度双模态传感器,实现应变和温度等信号的监测以及区分,同时兼具高的分辨率仍是一个难点。   Co基磁性非晶丝具有优异的软磁性能和巨磁阻抗效应(GMI),可以实现对磁场的高灵敏探测,是发展柔性多功能传感器的理想材料之一。前期,中国科学院宁波材料技术与工程研究所研究员李润伟、刘宜伟基于磁性非晶丝设计与发展了仿生触觉传感器与自供电弹性应变传感器,并在机器人假肢的触觉感知、运动捕捉的智能服装方面实现应用(Science Robotics. 2018, 3, eaat0429;Nano Energy, 2022, 92, 106754)。在此基础上,研究人员以磁性非晶丝为敏感材料,通过设计具有管状异质结构的双模态传感器实现了单一传感器对应变和温度的灵敏监测和实时区分。   该传感器具有独立的应变和温度感知机制。一方面,结合磁弹性体的磁弹效性和Co基非晶丝的巨磁阻抗效应可以实现应变灵敏探测;另一方面,用于阻抗输出的热电偶线圈具有显著的塞贝克效应,可以同时实现温度的检测。基于独立的感应机制,温度和应变信号之间不存在相互耦合,后续通过信号读取电路可实现温度和应变信号的实时区分和输出。   该研究中双模态传感器的应变-磁转换单元中具有磁弹效应的磁弹性体提供随应变而变化的磁场,通过内置的Co基磁性非晶丝,能够灵敏感知微小变化的磁场,从而输出变化的阻抗,实现应变的感知。此外,该工作设计了具有双功能的Cu-CuNi热电偶线圈,不仅可以实现阻抗的输出,而且本身具有的塞贝克效应可以实现对温度的感知。   进一步地,通过调控应变-磁转换单元的不同区域的相对模量,即磁弹性管和非磁性弹性管的相对模量,可以控制磁场变化快慢,从而能够实现应变灵敏度的可调。该传感器可实现0.05%的应变和0.1℃的低探测极限,5.29和54.9μV/℃的较高应变和温度感知灵敏度。   此外,该研究也从模拟和实验上对该双模传感器的应变-温度信号输出的耦合和相互干扰进行了验证。研究人员分别测试了双模传感器在不同应变下的温度输出信号和不同温度下的应变输出信号,发现该传感器具有的管状异质结构能够有效避免应变对温度的干扰,且磁性非晶丝和磁粉的磁性能在低于居里温度下具有良好的温度稳定性,可以确保温度对应变感知几乎没有影响。   该研究将所设计的管状线型双模传感器与织物集成,可以同时用于人体微小应变的探测,比如呼吸和吞咽等检测,也可用于膝盖弯曲等较大应变的探测,同时能实现体温或环境温度的实时监测,在健康监测、智慧医疗以及人机交互领域具有良好的应用前景。   相关成果近期以Dual mode strain-temperature sensor with high stimuli discriminability and resolution for smart wearables为题在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金重大仪器研制项目、国家自然科学基金项目、国家自然科学基金委中德交流项目、中科院国际合作重点项目、浙江省自然科学基金等项目的支持。图1(a)双模传感器的感应机制,(b)具有管状异质结构的双模传感器传感器制备流程,(c)应变-磁转换单元中磁弹性管的微观形貌,(d-i)具有磁弹效应的磁弹性管不同磁化方向磁化具有不同的磁性能,(j-m)双模传感器外观和柔性展示图2 双模传感器的应变感知性能
  • 三思纵横上海分公司成功研发专用扩展型应力应变测试仪
    为了解决客户在试验机使用过程中不方便使用引伸计而必须粘贴应变电阻片(应变计)进行应变测试的问题,近日,三思纵横上海公司成功研发了DSCC-5000K专用扩展型应力应变测试仪。   应力应变测试仪DSCC-5000K是与试验机配套的高速静态应变数据采集仪,同步采样频率60Hz,最小应变分辨率0.1&mu m,广泛应用于拉伸、压缩或弯曲等试验,能够精确测量材料变形,绘制力-变形、变形-时间、变形-变形等曲线。   该设备既可用于液压试验机,也可用于电子试验机,并可满足多通道应变采集与试验机加载力值采集同步。   三思纵横上海分公司研制成功的应力应变测试仪已经成功地应用于多家建筑工程质检公司。   更多新品资讯,请咨询三思纵横驻各地办事处销售人员或服务热线:400-882-3499。
  • 山西大学激光光谱团队制作出基于三维竖直石墨烯应变传感器
    近日,山西大学激光光谱研究所陈旭远教授和王梅教授等人在《ACS Applied Materials & Interfaces》上发表文章《Vertical Graphene Canal Mesh for Strain Sensing with a Supereminent Resolution》,报导了一种基于三维竖直石墨烯(Vertical Graphene, VG)的超低检测限应变传感器。   微应变传感器的发展为微型机器人、智能人机交互、健康监测和医疗康复等众多领域提供了广阔的前景。高分辨率的柔性应变传感器可广泛应用于多种柔性可穿戴电子设备中,有助于提升设备探测灵敏度并保证亲肤性。目前,已有诸多活性材料在柔性传感器中展示了良好的应用效果,如碳纳米管、银纳米线、MXene等。但是具有极高分辨率的柔性应变传感器仍然是应变传感器研究中的一项挑战。   作者通过设计三维石墨烯微观和宏观结构制作了网状结构的应变传感器(VGCM),使其在0-4%的总应变范围内实现了低至0.1‰的应变精确响应,获得了极高的分辨率。同时通过实验验证及理论模拟揭示了VG在应变过程中微裂纹的演化规律和电阻变化机理。 图1 基于VGCM的应变传感器制备过程及VGCM的SEM图像   此工作以铜网为模板,利用等离子化学增强气相沉积法在铜网上生长了VG。利用化学刻蚀去除铜网后获得中空网状VGCM结构。这种网状结构使得拉伸应力集中,增强了应变过程中的电阻变化,实现了对低至0.1‰的微小应变的高分辨响应。 图2 拉伸过程中的应力分布示意图   有限元模拟展示了VGCM在拉伸过程中的应力分布。结果显示VGCM的中空管道结构使得应力集中分布在管状VGCM的顶端和底部。同时,三维石墨烯竖直结构也会导致应力在竖直结构之间形成集中。 图3 VGCM传感器传感原理图;VGCM应变中的SEM图像;VG和2D石墨烯应力分布模拟图   进一步通过实验验证了在拉伸情况下,应力集中产生裂纹且主要分布在中空管道顶端和底部。裂纹的产生加速了电阻的增加,从而提高了VGCM的灵敏度和分辨率,与模拟结果完全吻合。VGCM传感器利用了三维石墨烯的微观结构和网状的宏观结构的协同作用,使得应力集中,增大了电阻在拉伸过程中的变化,赋予了VGCM传感器卓越的分辨率和良好的应用前景。
  • 2021年全国电子显微学学术年会仪器技术及应用专场集锦(上)
    仪器信息网、中国电子显微镜学会联合报道:2021年10月15-17日,由中国电子显微镜学会主办、南方科技大学承办的“2021年全国电子显微学学术年会”在东莞市会展国际大酒店龙泉厅隆重召开!大会吸引来自高校院所、企事业单位等电子显微学领域专家学者1300余人出席。大会会场掠影继大会报告后,十个分会场同时上演。电子显微学的发展离不开相应仪器技术及应用的不断发展。十个分会场中的第一分会场“显微学理论、技术与仪器发展”、第二分会场“原位电子显微学表征”、第六分会场“扫描探针显微学(STM/AFM等)”、第七分会场“扫描电子显微学(含EBSD)”分别围绕电子显微学先关仪器技术及最新应用进展展开报告,以下为此四个会场的部分报告集锦,以飨读者。第一分会场主题:“显微学理论、技术与仪器发展”会场掠影报告人:浙江大学研究员 王江伟报告题目:体心立方金属的孪晶动力学机制孪晶是金属材料塑性变形的重要载体,在金属材料的力学性能调控中发挥着非常关键的作用。体心立方金属由于其优异的力学性能和良好的高温性能在工程中有着广泛应用。报告中,王江伟围绕载体形核动力学、载体扩展动力学、交互作用动力学、动力学普适性,介绍了金属材料的界面变形动力学相关研究进展。报告人:重庆大学教授 张大梁报告题目:大尺寸电子束敏感晶体材料的样品制备和电子显微分析由于电子束敏感材料极端的不稳定性,以常规方式观察它们的局域结构具有很大挑战。如何在无损伤的条件下以高分辨率和高信噪比在实空间中对典型的电子束敏感材料的结构直接成像是TEM和STEM技术应用的难点。张大梁在报告中介绍了电子束敏感晶体材料高分辨成像的技术难点、大尺寸晶体或期间电子显微分析的需求,以及利用冷冻FIB进行TEM制样的方法。报告人:北京大学研究员 周继寒报告题目:确定非晶物质原子三维坐标新方法金属玻璃具有强度和韧性兼具、优异的耐蚀性等优点,应用十分广泛。继寒周通过系列研究首次实验确定单元素非晶物质中类似液体的原子三维排列,以及多元素无序体系的三维短中程有序度。同时表明,原子重构成像可以对非晶物质的研究起到巨大作用。第二分会场主题:“原位电子显微学表征”会场掠影报告人:浙江大学 卜叶强报告题目:超硬材料原位实验研究卜叶强表示,X-Nano系统可以将纳米驱动、动态观察与三维重构进行有机结合,实现基于透射电镜的准四维微纳米力学表征实验,以实现对原位加载下微结构演化的三维动态表征,为后续针对脆性材料微纳米力学测试系统的开发以及变形机制的研究提供了新手段。报告人:厦门大学教授 王鸣生报告题目:锂金属的碳基纳米封装及其晶体限域生长研究王鸣生分享了团队近来在锂金属的碳基纳米封装及其晶体限域生长方面展开的相关研究工作,研究表明,锂金属的碳基纳米封装需要同时满足动力学和热力学条件;碳胶囊的双重作用深刻改变了碱金属的生长模式;并将可控沉积从化学视角到几何视角开展了研究。报告人:卡尔蔡司(上海)管理也有限公司 资深应用专家 王雪丽报告题目:蔡司FIB3.0-技术关联-高效定位分析及高通量原位加工平台原位力学试验可实时观察变形过程,应用应变曲线与微观组织直接对应,进行原位实验具有重要意义。王雪丽从跨尺度关联-精度定位ROI-高效分析、高通量原位样品制备、ZEISS LaserFIB技术特点等三方面介绍了蔡司FIB3.0最新技术进展及典型应用案例分享。第六分会场主题:“扫描探针显微学(STM/AFM等)会场掠影报告人:中国科学技术大学教授 马传许报告题目:表面合成中脱氢环化反应的空间位阻效应关于表面合成中脱氢环化反应的空间位阻效应,马传许相关研究表明,空间位阻效应显著影响脱氢环化反应。并利用空间位阻/应力效应,实现新颖功能石墨烯纳米结构的可控制备。同时,获得了非平面型孔洞石墨烯纳米带,并揭示了空间位阻/应力效应对脱氢环化的影响,以及孔洞对其电子结构的影响。报告人:中科院苏州纳米所研究员 陈琪报告题目:光电材料和器件中载流子输运性质的非接触显微表征光电器件是支撑人工智能、物联网、无线通信等前沿技术的基础。陈琪围绕光电器件相关研究,发展了介电力显微术,实现了微区的定量测量;发展了横截面开尔文探针显微术,实现了器件工况下界面能带结构的定量表征;解析了载流子输运性质与器件性能的相互关联,为材料和表面设计提供了判据。报告人:华中科技大学教授 吕京涛报告题目:单分子结中热输运的分子动力学研究基于Langevin方程的分子动力学模拟被广泛应用于研究不同种类物质的平衡和非平衡态性质。吕京涛团队从全量子的Feynman-Vernon路径积分出发,得到一个可以描述非平衡、量子环境的广义Langevin方程。并将该方程与基于密度泛函理论或经验势模型的程序相结合,考虑了单分子热导、电流作用下的分子动力学等行为。这为进一步理解非平衡环境中的单分子动力学提供了新的方案。第七分会场主题:“扫描电子显微学(含EBSD)会场掠影报告人:北京工业大学教授 隋曼龄报告题目:利用EBSD鉴别冲击加载铁的可逆相变变体结构及镁合金的高指数形变孪晶强冲击加载下金属材料的相变、熔化及破碎等动力学特性是目前冲击波物理研究重点关注的问题,由于铁具有相对成熟的物理模型,成为强冲击实验中研究最广泛的材料。隋曼龄首先介绍了利用EBSD鉴别冲击加载铁的可逆相变变体结构相关研究,通过纳秒分辨率的实时X射线衍射技术研究了单晶铁沿[001]方向加载的瞬态响应,首次获得可逆相变过程中的结构变化,并提出了相应的相变机制。接着,分享了利用EBSD鉴别镁合金的高指数形变孪晶方面的相关研究。报告人:北京大学教授 石章智报告题目:可降解医用锌合金的组织性能调控石章智在报告中提出了金属和金属间化合物双相孪生增塑的组织设计理念,发明了大应变退火成形法将晶粒尺寸从100微米以上细化至5微米以下,“双相孪生+细晶”塑化使Zn-Mn合金的室温断后伸长率显著提高至大于90%,大幅超过纯锌和大多数可降解医用锌合金。同时,根据血管和骨损伤的愈合规律,提出了形成低电势相促进功能元素早期集中释放的组织设计理念,加速和提高康复效果。报告人:牛津仪器(上海)科技有限公司 应用科学家 王汉霄报告题目:牛津仪器显微分析技术最新进展及应用王汉霄介绍了牛津仪器EBSD、EDS、WDS三种技术的最新进展及应用。EBSD方面,主要介绍了Symmetry S2探测器五大特点及相关案例,以及数据处理软件AztecHKL & AztecCrystal的最新功能介绍。EDS方面主要介绍了实时元素成像系统AZtecLive的优势。WDS方面,主要介绍了基于扫描电镜的WDS+EDS一体化解决方案——AZtecWave。大会更多续精彩内容,敬请关注报道专题【点击报道专题链接 】。
  • 百若仪器:慢应变速率应力腐蚀试验机的研发成绩斐然
    2014年,上海百若持续创新,研发再上新台阶。YYF-50系列慢应变速率应力腐蚀试验机产品的研发,填补了国内在材料应力腐蚀敏感性研究领域的空白,产品处于国内领先,可完全替代同类的进口产品。该产品已在高温高压的超临界水介质环境、高温铅铋液态介质环境、高温盐溶液介质环境、高温高压H2S介质环境、海水环境等腐蚀介质应用领域成功使用,可进行慢应变速率腐蚀拉伸、应力腐蚀、腐蚀疲劳、腐蚀裂纹扩展测量、精确裂纹预置、低周疲劳等试验。在腐蚀介质环境下进行材料的腐蚀裂纹扩展测量存在较大技术困难,传统的COD法已不能实现测量应用,DCPD方法是腐蚀介质环境下测量裂纹扩展普遍推崇的方案,上海百若耗时多年进行研发和测试,完成了腐蚀介质环境下通过DCPD法精确测量材料裂纹扩展及扩展速率计算。该技术已成功在设备上安装使用,获得了用户的高度评价和认可。不断地研发投入和全面的科学测试,上海百若在应力腐蚀试验设备的销售推广取得了骄人的成绩,在诸多领域提供了试验设备:1. 高温高压超临界水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。2. 高温铅铋溶液,慢应变速率拉伸,腐蚀疲劳。3. 高温盐溶液,慢应变速率拉伸,腐蚀疲劳。4. 高温高压H2S,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。5. 常温常压海水,慢应变速率拉伸。6. 微高温海水,慢应变速率拉伸,腐蚀疲劳,腐蚀裂纹扩展测量。7. 硫氰酸溶液,慢应变速率拉伸,氢脆敏感试验。2014年,加氧测量与控制水化学系统完成了设计和组建,并成功运行,系统得到了用户肯定和赞许。用于测试金属在高温高压水环境下腐蚀速率的静态高压釜,在运行期间水化学一直变化,水中的溶解氧逐渐降低,溶解氢浓度逐渐升高,溶解进入的金属离子使水的电导率逐渐升高。这样,静态高压釜一次实验的时间越长,测得的实验结果偏差越大。给高压釜系统添加一套水化学回路对于保证高压釜内的水质稳定非常重要。该系统能够在线监测溶解氧、电导率、pH值,并实现控制调节。上海百若是慢应变速率应力腐蚀试验机的国内唯一专业性研发公司,在诸多技术难点方面取得了成功突破,并在设备安全和长期稳定性方面做了大量的研究和测试,此类设备运行时间从1周到1、2年不等,运行时间长,设备的安全、可靠是首要考虑因素,我们在设备的各个方面设计了安全监测与保护,保障操作者、设备和试验的安全。在设备的研发过程中,我们与高校和研究院合作,得到了上海交通大学、中国科学院、中国原子能科学研究院、上海应用物理研究所、厦门大学等单位的大力支持和帮助,使得设备的研发取得突破性进展。慢应变速率应力腐蚀试验机应用范围广泛,主要研究材料在腐蚀介质环境下的腐蚀敏感特性,这些应用领域有:核电的一回路、二回路材料,热电材料,石化行业,海洋行业,汽轮机,及其它腐蚀性介质应用领域。
  • 一场应变测量的革命 --英斯特朗推出新视频引伸计AVE.2.0
    英斯特朗是全球领先的力学性能测试设备供应商,产品广泛应用于评价材料和部件机械(力学)性能。英斯特朗最新推出先进的视频引伸计AVE 2.0,这款视频引伸计可以充分满足各项严苛的测试标准要求,例如ISO527,ASTM d3039 ,ASTM D638等。这款第二代视频引伸计,也是当今市场上采用专利的,先进的视频引伸计技术中最快速,最准确的非接触式应变测量装置。AVE2.0一体化装置非常容易安装,可以适用于各种条件下的试验室环境,也适用市场上任何±10伏模拟输入的试验装置(测试表现则与各款试验机本身条件有关)。该产品设计自动降低了试验室测试中受热和照明变化产生的误差,同时AVE 2.0 也是目前市场上唯一具有实时490赫兹数据采集率并实现1微米精度的视频引伸计。AVE2.0出色性能使得用户可在各种试验环境条件下进行应变测试,与数字图像相关技术相结合(DIC)。还可以测量任何材料的模量和失效时的应变,包括塑料,金属,纺织,薄膜,复合材料,生物材料及更多。 关于英斯特朗:英斯特朗(INSTRON )是全球领先的材料和构件物性测试试验机制造商,美国五百强公司ITW集团旗下品牌,从基本的软组织到先进的高强度合金材料,其产品被广泛运用于测试各种材料,组件和结构在不同环境下的力学性能和特性。 自1946年英斯特朗成立并研制了世界上第一台闭环控制的电子万能材料试验机和第一个应变片式载荷传感器以来,英斯特朗以成为公认的力学性能测试设备世界领导者为使命,通过提供最高品质的产品,专业的技术支持和世界水平的服务,从而使用户获得拥有英斯特朗产品的最佳体验。 了解更多信息请访问英斯特朗官方网站: www.instron.cn用手机扫一扫,关注英斯特朗微信账号,获取更多英斯特朗的产品信息和测试tips
  • 【定制产品】上海百若——超纯水介质慢应变速率应力腐蚀试验机YYF
    p style=" text-align: center " /p p style=" text-align: center" img style=" width: 345px height: 500px " src=" http://img1.17img.cn/17img/images/201710/insimg/fed9f818-9b0d-4cf1-87d7-33b2037e3c09.jpg" title=" 1.jpg" height=" 500" hspace=" 0" border=" 0" vspace=" 0" width=" 345" / /p p style=" text-align: center " strong 超纯水介质慢应变速率应力腐蚀试验机YYF /strong br/ /p p   strong  1.生产厂商 /strong /p p   上海百若试验仪器有限公司 /p p   strong  2.采购单位 /strong /p p   原子能科学研究院 /p p   strong  3.主要功能 /strong /p p   阻尼器、助力器耐久性能测试 /p p   加载波形正弦运动规律,编程循环嵌套不低于3层 /p p   对阻尼器、助力器进行力——位移功量图绘制,力——位移——时间曲线图绘制 /p p   产品具有轴向疲劳加载、侧向同时加载的功能 /p p   strong  4.产品技术特点 /strong /p p   1) 采用高集成度、强大的控制、数据处理能力、高可靠性控制测量系统。 /p p   2) 采用基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统,实现力、变形、位移全数字三闭环控制,各控制环间可自动切换,并在各方式间切换时实现无冲击平滑过渡。 /p p   3) 可进行定位移、定速度、定应变、定应变速率、定负荷、定负荷速率等多闭环控制模式。 /p p   4) 高精准24Bit数据采集系统,高分辨率,可扩展至8路AD采集。 /p p   5) 试验过程中实时显示滞回环曲线。 /p p   6) 试验过程中显示负荷、位移峰值谷值变化情况。 /p p   7) 试验过程中显示动态波形加载曲线。 /p p   8) 采用DCPD(直流电位法)在腐蚀介质系统中测量裂纹长度,进一步提供金属材料在腐蚀介质中的裂纹扩展速率指标。 /p p   strong  5.产品技术参数 /strong /p p   最大试验力:50kN /p p   试验力测量范围:1%~100% /p p   加载头移动速度:10mm/s~1x10-6/s /p p   疲劳加载波形:正弦波,三角波 /p p   工作最大压力:20MPa /p p   试验釜内温度:350℃ /p p   加载头位移分辨率:0.05μm /p p   strong  6.产品应用介绍 /strong /p p   采用YYF-50客户进行金属材料在环境诱导下的腐蚀、应力腐蚀、腐蚀疲劳失效的检测及评价。在整个核电材料领域,材料服役性能的评价、表征等贯穿于核电站设计、建设和运行的整个阶段。基于材料服役性能评价,明确材料应力腐蚀、环境疲劳等失效规律,预测材料的服役性能,评价关键部件的服役安全性,制订关键材料的服役、失效的预防与缓解提供了重要的技术测试平台。采用YYF-50慢应变速率应力腐蚀试验机,客户根据服役的条件,在水化学回路系统上调节PH值,溶解氧DO,电导率等参数,并设置应变或应力控制模式,加载波形及加载频率等参数,试验机即可按规定参数进行试验加载,水化学回路循环,高压釜加热等工作,最终检测出材料在腐蚀环境下的裂纹扩展速率等参数。客户在使用这台设备期间,完成了相关材料的应力腐蚀及腐蚀疲劳的评价。 /p
  • 仪器情报,科学家首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象!
    【科学背景】随着纳米技术的迅猛发展,纳米材料在各种高性能器件中的应用引起了广泛关注。纳米尺度结构可以产生极端应变,从而实现前所未有的材料特性,例如定制的电子带隙、提高的超导温度和增强的电催化活性。通过应变工程对材料的物理化学性质进行调控已成为一个重要的研究方向。然而,尽管对均匀应变对热流影响的研究已有不少进展,非均匀应变的影响却由于界面和缺陷的共存而未得到充分研究和理解。应变工程是通过机械变形引入应力,从而调节材料的电子、光学和热学等性质的重要方法。在均匀应变条件下,材料的性质变化相对容易预测和控制。然而,实际应用中,材料通常处于非均匀应变状态,这种应变状态下的材料特性却复杂得多,尤其是在热传导方面,非均匀应变的影响尚未被系统地研究和理解。这一知识空白阻碍了高性能纳米器件的设计与优化,因为热管理是提高器件效率和寿命的关键瓶颈。为了探索非均匀应变对热传导的影响,北京大学的杨林&杜进隆&高鹏团队联合提出了一种通过弯曲单个硅纳米带(SiNRs)来引入非均匀应变的新方法,并测量了其热传导性能。硅纳米带是一种重要的半导体材料,在纳米电子学和光电子学中具有广泛的应用前景。通过在定制的微设备上弯曲单个硅纳米带,引入了精确控制的应变梯度,同时使用电子能量损失光谱(EELS)在扫描透射电子显微镜(STEM)中以亚纳米分辨率表征局部振动光谱。结果显示,应变梯度为每纳米0.112%时,硅纳米带的热导率显著降低34&thinsp ±&thinsp 5%,这与均匀应变下几乎恒定的热导率形成鲜明对比。通过直接测量局部声子模式并将其与纳米级应变梯度相关联,研究揭示了弯曲引起的晶格应变梯度显著改变了振动状态并展宽了声子光谱。这种声子光谱展宽效应增强了声子散射,显著阻碍了热传导。【科学图文】为了研究非均匀应变对硅纳米带热传导的影响,研究者在图1a展示了不同应变条件下热导率(κ)的变化。均匀应变下的硅块和硅纳米线在实验测量(实心符号)和理论模型(空心符号)下的κ变化几乎保持不变,而弯曲硅纳米带的测量数据显示随着应变增加,κ急剧下降,这种变化在应变达到6%时尤为明显。这表明非均匀应变对热传导的影响远大于均匀应变。图1b是悬浮微桥设备的示意图,展示了弯曲硅纳米带如何放置在桥的间隙上。放大的视图显示了由于非均匀应变引起的晶格变形情况。通过这种实验设计,研究者能够在不引入界面和缺陷等其他复杂因素的情况下,精确施加非均匀应变并测量其对热传导的影响。图1c是弯曲硅纳米带的高分辨率透射电子显微镜(HRTEM)图像,插图显示了沿[110]轴的选定区域电子衍射图,验证了硅纳米带的单晶结构。这保证了实验结果的可靠性和可重复性。图1d和1e展示了在最大应变0.65%(图1d)和1.23%(图1e)下,无弯曲的两个弯曲硅纳米带的扫描电子显微镜(SEM)图像。计算的应变轮廓叠加在SEM图像上,以可视化应变分布。应变分布图显示,应变主要集中在纳米带的弯曲顶点附近,这进一步证实了实验中应变梯度的存在和影响。通过这些图像和数据,研究者表明非均匀应变能够显著影响热传导特性,并揭示了应变梯度下晶格动力学的新机制。图1:Si中非均匀应变对热输运的显著抑制。在图2中,研究者首先比较了无应力的SiNRs和弯曲SiNRs的热导率(κ),以理解非均匀应变对声子传输的影响。他们观察到弯曲SiNRs的κ明显低于无应力的SiNRs,并且κ的降低随着εmax的增加而增加。具体而言,对于两个弯曲SiNRs,随着最大主应变εmax的增加,其κ的降幅也逐渐增大。在300 K下,εmax为0.65%的弯曲SiNR no. 1的κ降低了4.2%,而εmax为1.23%的弯曲SiNR no. 2的κ降低了13.1%。为了进一步增加应变梯度并增强应变对声子传输的影响,研究者还制备了带有拐点的弯曲SiNRs,并对其进行了测量。相较于无应力的带有拐点的SiNRs,拐点形态导致了更大的εmax,从而进一步降低了κ。在300 K下,εmax为4.77%的带有拐点的SiNR的κ降低了34±5%,随着温度降至50 K,其降幅进一步增加至43±6%。这些结果表明,在中等应变梯度下,非均匀应变可以显著抑制热传输,从而为纳米材料的热管理提供了新的思路和方法。图2. 弯曲Si纳米带的温度依赖性κ。图3进一步研究了应变对声子传输的影响,通过直接测量弯曲SiNRs的局部声子谱和表征应变梯度沿着应变梯度的演变。研究者利用STEM-EELS技术获得了高空间和能量分辨率的声子谱数据,这为研究非均匀应变条件下的声子传输提供了直接证据。图中展示了不同应变状态下横向声学和横向光学模式的局部振动谱,结果显示,横向声学模式在从压缩到拉伸应变时表现出蓝移,而横向光学模式则显示出红移。这一观察结果与理论计算相吻合,并且显示出非均匀应变导致的晶格畸变对声子谱的影响。此外,研究者还对带有拐点的SiNR进行了测量,并观察到类似的结果。这些实验结果揭示了非均匀应变对声子传输的影响机制,为进一步理解纳米尺度材料的热传输提供了重要线索。图3. 空间解析应变调制声子模式。声子谱展宽效应是指静态分布的晶格应变引起声子频率在给定波矢处的展宽,导致声子散射速率增强。图4a是声子色散关系的示意图,表明在均匀应变情况下存在单一的关系线,而在非均匀应变情况下,由于晶格应变梯度的存在,声子色散关系被扰动,呈现出频率分布。图4b左侧展示了Si的声子色散计算结果,不同应变状态下的声子色散关系。而右侧展示了在给定应变梯度下每个声子模式的应变梯度诱导声子散射率。这一模拟结果显示,随着应变梯度的增加,声子频率分布变宽,从而促进了声子的散射。声子谱展宽效应提高了声子频率的多样性,使得更多声子频率参与到声子-声子散射中,导致了更快的声子弛豫速率和更短的声子寿命。通过模拟计算,研究者还验证了实验结果中观察到的κ减小现象与声子谱展宽效应的关联。因此,图4提供了关于非均匀应变对热传输的基本机制的重要见解,进一步加深了对于材料中声子传输的理解。图4. 非均匀应变诱导声子谱展宽的建模。【科学结论】本文揭示了非均匀应变对热传输的重要影响,并提供了对功能器件进行应变工程设计的价值。通过深入探究应变梯度对声子传输的影响,作者拓展了对材料热传输机制的理解,为开发新型高效热管理技术提供了新思路。特别是,在探索了非均匀应变如何影响声子传输方面,作者不仅揭示了新的声子散射机制,还发现了在材料设计中利用应变工程实现功能调控的潜在机会。这项研究为设计和优化热电器件、热管理系统和热控制器件提供了新的思路和方向。通过结合实验和理论模拟,作者不仅扩展了对声子传输的认识,还为未来材料科学和器件工程领域的发展提供了重要的科学基础。原文详情:Yang, L., Yue, S., Tao, Y. et al. Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain. Nature (2024). https://doi.org/10.1038/s41586-024-07390-4
  • 北大杨林团队等人在Nature发文:首次揭示非均匀应变下声子谱扩展对导热的反常抑制现象
    纳米材料具备优异的力学特性,能够承受远超块体材料的应变,从而调节其物理/化学性能(如电子、光学、磁性、声子和催化活性)。基于力学应变工程,过去的研究优化设计了一系列前所未有的先进功能材料和器件,包括高迁移率芯片、高灵敏度光电探测器、高温超导体、和高性能太阳能电池以及电催化剂等等。尽管对基于应变调控电子输运性能和能带结构等方面进行了广泛研究,但由于单一施加应变梯度而不引入其他混淆因素(例如界面和缺陷)的困难,以及将纳米尺度热输运测量与原子尺度局域声子谱表征相结合的挑战,非均匀应变下的导热机制仍未被系统研究。这尤其令人沮丧,因为精确热管理被视为制约先进芯片和高端设备效率和寿命的关键瓶颈。针对这些挑战,北京大学工学院杨林研究员与北京大学物理学院高鹏教授、杜进隆高级工程师及西安交通大学岳圣瀛教授等人提出了实验探究非均匀应力对导热调控的新策略,他们揭示了均匀应力下不存在的,由应变梯度导致的独特声子谱扩展效应及其对导热的反常抑制现象。通过在自制的悬空微器件上弯曲单个硅纳米带(SiNRs)来诱发非均匀应变场,并利用具有亚纳米分辨率的基于扫描透射电子显微镜的电子能量损失谱(STEM-EELS)技术表征局域晶格振动谱,他们的研究结果显示,0.112%/nm应变梯度将导致热导率(κ)显著降低34±5%,这是先前文献中均匀应变下热导率调制结果的3倍以上(图1)。相关工作以“Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain”为题发表于Nature。图1. 非均匀应力对硅纳米带导热的显著抑制现象。(a)实验测得的(实心符号)和理论模拟的(空心符号)结果表明,在均匀应变下,块体硅和硅纳米线的热导率基本保持不变,而弯曲硅纳米带的测量结果随着应变的增加急剧上升(半填充)。(b)基于悬空热桥微器件的热导率测试原理示意图。(c)高分辨透射电子显微镜显示弯曲硅纳米带的单晶特性。(d)实验测得的弯曲硅纳米带相较于无应力样品的热导率降低百分比为了揭示应变对声子传输的影响,直接测量弯曲硅纳米带的局域声子谱,并表征沿应变梯度声子模式的演变现象是非常必要的。与先前文献中观察到的在异质界面或缺陷周围的EELS峰移不同,运用同时具备亚纳米级空间分辨率和毫电子伏特(meV)能量分辨率的STEM-EELS技术,该工作首次表征了完全受非均匀应变调控的声子模式,揭示了应变梯度下奇特的声子谱扩展效应(图2)。图2. 表征受应变调控的局域声子谱。(a)基于STEM-EELS的局域声子谱表征技术示意图。带有弯折的弯曲硅纳米带HAADF图像(b)和EELS测量区域的放大视图(c)。(d)在不同位置(P1至P5)沿应变梯度测得的TA和TO声子模式的EELS谱。(e)弯曲硅纳米带的HAADF图像。(f)沿电子束移方向TA和TO声子模式的振动谱图。(g)在e中标记的区域沿应变梯度测得的EELS谱线与均匀应变下每个声子支具有的特定单一线条色散关系不同,不均匀应变的存在导致了在给定波矢处的声子频率分布区间(图3)。这种奇特的声子谱扩展效应增加了声子频率的多样性,以满足声子-声子散射的能量守恒约束,因此加速了声子-声子散射率并缩短了声子寿命,引发了一种均匀应变不存在的全新声子散射机制。图3. 声子谱扩展增强声子散射率。(a)受应变梯度调制的声子色散示意图。(b)左侧,硅在不同弹性应变下的声子色散。右侧,应变梯度为0.118% /nm下声子谱扩展引发的声子散射率,τsg−1通过开发跨微米-原子尺度的实验表征技术,并结合第一性原理的理论模拟,该工作为长期以来有关非均匀应变对声子传输影响的难题提供了关键线索。因此,这项研究不仅清楚地揭示了非均匀应变对固体导热的调制机理,而且为基于应变工程的功能性器件的创新设计提供了重要思路。例如,基于应变梯度引起的晶格热导率降低,与此前已证明的载流子迁移率增强之间的协同作用,为开发高性能的热电转换器件提供一种新颖策略。此外,基于非均匀应变调制热导率可实现功能性热开关器件,用于动态控制热通量。杨林和岳圣瀛是该论文的共同第一作者,杨林、高鹏、杜进隆是共同通讯作者。合作者包括东南大学陈云飞课题组、北京大学戴兆贺课题组、北京大学宋柏课题组和美国范德堡大学Deyu Li课题组。北京大学杨林课题组主要研究方向为功能性热材料和器件,包括先进微纳结构设计制造,极端尺度导热微观机理表征与调控,超高温储热技术研发,高性能热功能器件制备。研究成果以第一作者或通讯作者发表于Nature、Nature Nanotechnology、 Science Advances、Nature Communications、Nano Letters等国际顶级期刊。杨林曾入选2021年国家高层次海外青年人才计划,获得2019Nanoscale 年度精选热门文章、2020PCCP年度 精选热门文章等奖项。
  • 仪器表征,科学家首次揭示微应变对钠分层氧化物正极材料合成的影响!
    【科学背景】随着高能量密度和长寿命电池的需求不断增加,研究人员越来越关注电池材料的微应变及其对电池性能的影响。微应变是由结构缺陷(如位错和堆垛层错)引起的,这对能源材料的机械强度和循环稳定性产生了重大影响。尤其在钠分层氧化物正极材料中,微应变被认为是导致容量衰退和结构破坏的关键因素。然而,微应变在电池材料合成过程中的起源和影响仍未完全明确,这成为了当前研究的一个挑战。为了解决这一问题,布鲁克海文国家实验室(美国能源部的实验室) Xianghui Xiao, 美国阿贡国家实验室Gui-Liang Xu & Khalil Amine教授合作进行了一系列原位和实时的多尺度表征,包括同步辐射X射线衍射和显微镜观察,来探讨过渡金属在前体颗粒中的空间分布对微应变的影响。研究发现,过渡金属的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着强烈的调控作用。这一意外发现揭示了缺陷从核心向外壳的反直观传播模式,并为优化合成策略提供了新方向。通过这些研究,科学家们提出了基于微应变筛选的合成策略,以减少晶格中的微应变和结构缺陷,从而显著提升了电池材料的结构稳定性。这些成果标志着向设计无缺陷电池材料的合成方法迈出了关键一步。【科学亮点】1. 实验首次在钠分层氧化物正极的实际合成过程中,系统地进行微应变筛选,并应用了多尺度原位同步辐射X射线衍射(SXRD)和显微镜表征技术。2. 实验通过结合原位SXRD和全场X射线显微镜的观察,揭示了过渡金属在前体颗粒中的空间分布对纳米尺度相变、局部电荷异质性和微应变积累的强烈影响。3. 实验结果:&bull 过渡金属的空间分布:发现过渡金属的空间分布在钠分层氧化物正极的合成过程中扮演了关键角色,主导了相变机制。&bull 微应变的积累:在合成过程中,微应变在颗粒内部积累,导致了缺陷的形成和增长,其传播方式呈现出反直观的外向模式。&bull 结构稳定性的改善:通过对微应变的深入分析,提出了一种更为合理的合成路线,能够显著减少晶格中的微应变和晶体缺陷,从而提升结构稳定性。【科学图文】图1: 前驱体的形貌和化学性质。图2:固态合成过程中的结构演变。图3:合成过程中的结构缺陷和化学演变。。图4:颗粒裂纹及其消除。图5:电化学性能。图6:测试分析。【科学结论】本文揭示了过渡金属在钠分层氧化物正极合成过程中对微应变的显著影响。通过原位同步辐射X射线衍射和显微镜技术的多尺度表征,研究发现,过渡金属在前体颗粒中的空间分布对纳米尺度的相变、局部电荷异质性以及微应变的积累有着关键的调控作用。这一发现颠覆了传统观念,揭示了缺陷的成核和生长在颗粒内部向外传播的反直观现象。这种对微应变的深刻理解指导了更加合理的合成策略,即通过优化合成条件来减轻微应变和晶体缺陷,从而显著提高电池材料的结构稳定性。这一研究成果不仅提供了新思路来改善电池材料的性能,还为无缺陷电池材料的设计合成奠定了重要基础,为未来高能量密度和长寿命电池的研发提供了有力支持。参考文献:Zuo, W., Gim, J., Li, T. et al. Microstrain screening towards defect-less layered transition metal oxide cathodes. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01734-x
  • 仪器表征,科学家开发了基于分子级裂纹调制策略的新型应变传感器!
    【科学背景】应变传感器是一种关键技术,用于在多种应用中实现高灵敏度的机械感知,如人形机器人的指尖控制和皮肤贴合健康监测设备。然而,现有的应变传感器普遍依赖于裂纹生成机制,这限制了它们在灵敏度、应变范围、稳定性和时间空间分辨率上的综合性能。传统裂纹导电材料在小传感面积与高性能之间存在固有的权衡,其裂纹易于扩展并难以控制,导致传感器在应对大应变和长期稳定性方面的表现有限。为解决这些挑战,天津科技大学生物基纤维材料国家重点实验室刘阳教授、国家重点实验室主任程博闻教授、南开大学Jiajie Liang课题组联合提出了一种分子级裂纹调制策略,采用逐层组装技术在MXene和银纳米线复合薄膜中引入了强、动态和可逆的硫-银(S-Ag)配位键。这种创新策略不仅在传感器中实现了极小的感测面积(仅0.25 mm² ),同时提供了超宽的工作应变范围(0.001-37%)、极高的灵敏度(在0.001%时的增益因子超过500,在35%时超过150,000)、快速的响应时间、低滞后和优异的长期稳定性。此外,基于这种高性能传感元件,研究团队成功实现了每平方厘米100个传感器的可拉伸传感器阵列,展示了高时间空间分辨率的实际应用,如多通道脉冲信号监测系统。【科学亮点】(1)本研究首次采用分子级裂纹调制策略,在MXene和银纳米线复合导电薄膜中引入强、动态和可逆的硫-银(S-Ag)配位键。这一策略通过逐层组装技术,实现了裂纹生成和传播的精确控制。(2)实验结果表明,所制备的基于裂纹的可拉伸应变传感器(S-M/A)具有多重优异的性能特征:传感面积极小(仅0.25 mm² ),但具备超宽的工作应变范围(0.001-37%),高灵敏度(在0.001%应变下的增益因子超过500,35%应变时超过150,000),快速的响应时间(约5毫秒),低滞后和长期稳定性。此外,通过S-Ag配位键的动态调控,传感薄膜能有效地能量耗散,防止裂纹间隙的扩展,从而保持了纳米级别的裂纹结构和传感性能的稳定性。(3)这一研究突破了传统裂纹调制策略的限制,克服了传感面积和性能之间的固有权衡,为高密度、高分辨率的可拉伸应变传感器阵列的实现提供了新的思路和方法。通过高效的组装工艺,作者实现了每平方厘米100个传感器的集成,展示了该传感器阵列在多通道脉冲感测系统中的实际应用,具备优异的时间空间分辨率和监测精度。【科学图文】图1:引入S-Ag配位键到S-M/A感测薄膜中。图2:S-MXene和S-M/A薄膜的表征。图3:S-M/A传感器的应变感测性能。图4:应变感测性能比较。图5:S-M/A感测薄膜的裂纹调制行为。图6:S-M/A传感器阵列在脉冲信号测量中的应用。【科学结论】本文开发了一种基于分子级裂纹调制策略的新型应变传感器,通过引入强、动态和可逆的S-Ag配位键,有效地解决了传统裂纹型传感器中传感面积与性能之间的权衡问题。此技术不仅在传感面积极小的情况下实现了超高灵敏度和广泛的应变范围,还通过动态调控裂纹形态和能量耗散机制,提高了传感器的稳定性和可靠性。通过分子级的设计和制备过程,将有机和无机材料有效地结合在一起,为高性能应变传感器的设计提供了新的思路和方法。此外,本文展示了简便且可扩展的制造工艺,为实现高密度、高分辨率的传感器阵列奠定了基础。这种基于分子级裂纹调制的策略不仅有助于推动应变传感器技术的进步,还为未来在可穿戴设备、健康监测和智能机器人等领域中需求高精度、高稳定性传感器的开发提供了新的理论和实践基础。原文详情:Liu, Y., Xu, Z., Ji, X. et al. Ag–thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 15, 5354 (2024). https://doi.org/10.1038/s41467-024-49787-9
  • 国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动
    p   近日,由哈尔滨工业大学董永康教授牵头作为项目负责人的国家重大科学仪器设备开发专项“分布式光纤应变监测仪”项目启动暨实施方案论证会顺利召开。 /p p   作为国家重大科学仪器设备开发专项之一,该项目旨在开发具有自主知识产权、高精度、高可靠性与环境适应度、核心部件国产化的分布式光纤应变监测仪,充分利用云计算与大数据系统架构与技术,实现大型基础设施、地质灾害等远程实时安全监测,实现工程化开发、应用示范并进行产业化推广。项目由我校董永康教授牵头作为项目负责人,中兴通讯股份有限公司作为产业化牵头单位,联合中铁大桥科学研究院有限公司、中交公路规划设计院有限公司、中交第一公路勘察设计研究院有限公司和中国科学院武汉岩土力学研究所共同申报。该项目对于改善我国在大型基础设施、大型结构装备、地质灾害等安全监测水平,提升公共安全水平,减小经济损失和社会影响具有重要意义。 /p p   在启动会上,项目负责人董永康教授作了项目总体情况汇报,6个项目课题负责人分别进行了课题实施方案汇报。项目专家组对项目的研究目标、研究内容及研究方案的可行性给予充分的肯定,并针对项目和各课题后续工作的具体实施、拟解决的关键科学和技术问题等提出了建设性的意见和建议。 /p p   中国工程院院士杜彦良教授主持启动会,项目组专家及委员共30余位参加本次了会议。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/c8ed9c9b-8ffd-4d71-983f-a71c9483e324.jpg" title=" LKsd-fyqtwzv2273554.jpg" style=" width: 500px height: 333px " width=" 500" vspace=" 0" hspace=" 0" height=" 333" border=" 0" / /p p style=" text-align: center " 与会专家合影 /p
  • 首日观众数量近万人!SAMPE 2021复合材料展成功举办
    7月7日-9日,SAMPE中国2021年会第十六届国际先进复合材料制品、原材料、工装及工程应用展览会在北京市中国国际展览中心(静安庄馆)成功举办。被誉为国内复材行业晴雨表的SAMPE中国年会,2021展会规模再创新高,展出面积25000平米,展商数量约300家,同期国际学术会议规模达到千人以上,展览会首日观众数量近万人。展览会注册处展览会现场盛况本届年会由SAMPE中国大陆总会 、中航复合材料有限责任公司、中国化学纤维工业协会、先进复合材料重点实验室、结构性碳纤维复合材料国家工程实验室主办,内容丰富,集行业展览、学术会议、技术培训、学生竞赛、SAMPE创新奖发布、新书首发六位一体。展览会吸引了来自航空、航天、汽车、高速列车、船舶、能源、电子、仪器仪表等领域的众多单位参展,全方位地呈现了先进复合材料产业链中的设计软件、原材料、辅助材料、生产装备、装配工装、复合材料结构、检测设备、加工手段、修理工具、回收再利用设备等产品。创新应用展示区:国家自行车队征战东京奥运会的上扬式一体把手碳纤维自行车仪器信息网作为仪器行业专业的门户网站,特别关注了本次参展的仪器设备厂商,并对部分企业进行了走访。力试科仪力试科仪是专业从事力学试验仪器设备的研发、制造、销售和服务的大型集团公司,主打产品为电子万能材料试验机、电液伺服疲劳试验机、多轴协调加载系统和各种专用试验机。本次展会,力试科仪带来了公司的新产品——带全温液压夹具的高低温环境力学性能测试系统,该系统高同轴度满足ASTM D3039规定的弯曲度小于3%,夹持压力可调,应力分布均匀,具有超大试验空间,可以满足从90°拉伸短试样到冲击后压缩、开孔压缩等转接夹具大空间的要求。天氏欧森天氏欧森,致力于静态材料试验技术的先进制造商。公司于1880年在美国费城建立,创始人为全球第一台万能材料试验机的设计者以及专利拥有者Tinius Olsen先生本人。2016年,天氏欧森来到中国上海,成立分公司,并建立超大规模的展厅及培训中心,展厅面积约900平方米,共展示10套设备,包括电子万能材料试验机、液压万能材料试验机、水泥压缩机、熔融指数仪、塑料冲击试验机及缺口制样机,以及一套双工位的全自动测试系统。三英精密三英精密,一家专业从事X射线CT检测装备研发和制造的国家高新技术企业,拥有自主核心技术,现已发展为国内X射线CT产品种类齐全的解决方案提供商。公司产品涵盖X射线三维显微镜、显微CT、工业CT、计量CT、平面CT、卧式CT、X射线在线检测设备和移动车载CT检测中心等。近日,三英精密与启迪漕河泾科技园合作共建的上海检测中心牌开业,该检测中心专注服务上海及周边地区的科研机构和企业,将大大提升三英精密在长三角地区的服务能力。MTS MTS,全球最大的力学性能测试与仿真系统供应商之一,主要产品包括动/静态材料试验系统,岩石力学测试系统,汽车性能、整车及零部件测试系统,飞机零部件及整机结构试验系统,生物材料/结构测试及模拟系统,建筑结构测试及地震模拟系统,各类载荷、位移及应变传感器,夹具及固件,环境模拟系统,液压作动缸,各类伺服控制系统,引伸计等。TA仪器TA仪器,沃特世的子公司,是热分析和流变分析仪器的重要制造商。本次展出的Discovery X3差示扫描量热仪,经过独特的设计,除去了多个测试步骤,其产生的实验数据量是标准DSC的三倍,有效地将三个仪器合并为一个此,此外,使用X3 DSC多样品池,在测量有价值的药物样品的同时进行仪器校准的内部验证也是可行的。新拓三维新拓三维,致力于先进三维光学测量技术研究、系列测量设备应用研发及技术方案提供的国家高新技术企业,研发团队的核心成员均为原西安交通大学三维光学测量研究团队成员,硕士以上学历占比超80%。公司主要产品包括三维外形轮廓检测测量、三维应变变形测量、三维动态和运动轨迹测量、科研分析仪器等。更多仪器展商掠影如下:耐驰梅特勒-托利多岛津美国物理声学林赛斯万测编辑评议:复合材料,作为新材料的一种,被列入国家首要发展战略之中,自身的多功能性使其在高精尖领域实现了广泛的应用。近年来,随着我国复合材料行业的迅猛发展,国产复合材料性能不断提升,原料和产品也在不断地推陈出新。然而,去年突如其来的一场新冠疫情,给全球各个产业带来了或多或少的冲击,复合材料行业同样未能辛免。从本届国际先进复合材料制品、原材料、工装及工程应用展览会现场的火爆程度来看,我国的复合材料行业已经率先走出疫情阴霾、全面复苏,复材原材料及产品产销两头旺。SAMPE中国2021年会复合材料展,一如往届,不仅发挥了行业引领和带动作用,为先进复合材料行业搭建了一个产、学、研、用合作交流的平台,也推进了我国先进复合材料服务于更轻、更强、更节能、更环保的绿色产业创新发展。
  • BROOKFIELD推出实用型应力/应变控制流变仪
    R/S 应力/应变控制流变仪主要有RS-CPS(锥板),RS-CC(同心圆筒),RS-SST(软固体测试流变仪) o R/S流变仪既能进行控制应力的测量,也能进行控制应率的测量 o 扭矩范围很宽:0.05 - 50 mNm.剪切速率:0.01-1000RPM o 能够测量从1到900万cPs的粘度范围 o 转子的安装非常简单、快速 R/S-CPS 锥/板流变仪 1.操作模式包括: 1. 控制剪切应率(RPM) 2. 控制剪切应力(扭矩) 3. 单机操作(不需电脑) 4. 全电脑控制 2.测试方法包括: 剪切应率回环测试; 剪切应力斜坡测试; 单点或多点粘度测量; 温度斜坡测试; 直观的QC/QA检验。 3.可以测出以下特性: 假塑性(剪切变稀)行为 触变性(时间相关性) 温度影响 屈服点 4.温度控制方式: 循环水浴(温度范围取决于所选水浴液体,从 -20 oC到 250 oC) Peltier控制器 (0到135 oC) Electronic控制器(50到250 oC) 请联系: BROOKFIELD上海办事处 上海市海宁路350号联合大厦2211室 电话:021-62576046 13381669566
  • 《应变控制式三轴仪》等两项团体标准送审稿审查会议顺 利召开
    2022年10月14日,中国仪器仪表行业协会组织专家以视频会议形式分别对由浙江土工仪器制造有限公司牵头起草的《应变控制式三轴仪》,以及由中国农业机械化科学研究院集团有限公司牵头起草的《钛合金抗熔滴点燃性能试验方法》两项团体标准送审稿进行审查。两项标准均由中国仪器仪表行业协会试验仪器分会提出,由中国仪器仪表行业协会归口管理。来自中国航空发动机研究院、中国船舶科学研究中心、北京飞机强度研究所有限公司、陆军装甲兵学院、西安航天动力技术研究所、西北工业大学、中国北方车辆研究所、内蒙古工业大学、北京金轮坤天特种机械有限公司的九位专家组成评审组,中国航空发动机研究院的吴长波研究员担任组长。中国仪器仪表行业协会马雅娟主持会议。审查专家组听取了送审标准项目起草工作组的汇报,对标准内容逐条进行审查,对送审稿及相关资料提出了宝贵的修改意见和建议。最后,专家组一致同意《应变控制式三轴仪》《钛合金抗熔滴点燃性能试验方法》通过审查,并希望起草工作组尽早修改完成,报批实施。
  • 课堂 | Leica EM TIC3X应用实例:高应变率作用下高导无氧铜(OFHC)的晶粒细化分析
    通过leica em tic3x 对样品进行离子束切割,样品ebsd mapping解析率得到明显提升,可达80%-90%以上,并且结果稳定可重复,更好地表征了晶粒的变形,以及大小角晶界的转变。实验样品高应变率作用下高导无氧铜(ofhc)实验目的通过电子背散射衍射技术(ebsd)对在高应变率、高温和大变形条件下获得的材料进行晶粒变形细化以及再结晶行为的表征,以期达到表征材料力学属性的目的。实验过程 1 原始样品的制备高速切削是一种集合高应变率、高温和大变形的一种材料变形的复杂材料変形条件,通过改变切削速度来改变上述的变形边界条件,高速切削的过程示意图如下:(图1 高速切削过程示意图)获得的切屑经过金相镶嵌和腐蚀之后的试样如图所示:(图2 经过镶嵌和腐蚀之后的切屑)从图2中可知晶粒已经严重变形,光镜已经无法分辨,而且对于晶粒到底发生了什么变化,光镜也无法做到表征的目的,因此对于材料ebsd表征十分必要。 2 实验样品的制备ebsd制样是本次实验的重中之重,本次实验较难主要体现在3个方面:一是因为经历了严重塑形变形的材料自身的晶粒内部就会存在一定的残余应力,在表征的时候有一定的难度;二是高导无氧铜是一种特别软的材料,在制样的时候非常容易带入应力,或者划伤测试面;三是经过高速切削得到的样品宽度非常细长,不是传统的块体,制样过程比较困难。目前解决方案主要有四种:机械抛光,电解抛光,振动抛光,离子抛光,这几种方法目前都有所尝试,解析率都不太高,究其原因,主要还是因为我的样品细长弯曲的原因,经过镶嵌之后,电解抛光无法满足,机械抛光很容易带入划痕,离子抛光镶嵌之后的样品效果不是十分理想,很多方法都不太适用。通过与徕卡电镜制样技术人员沟通,认为离子切割的方法能比较好的解决目前存在的问题,经过leica em tic 3x离子切割出来的样品解析率超过了80%,部分区域甚至能够达到90%以上,最重要的是这种制样方法非常稳定,实验的结果能够比较方便的被复现出来,可较好地满足我的研究需要。 3 实验观测通过ebsd测试,获得的mapping图的解析率有了较为明显的提升,更高的解析率意味着晶粒的变形,以及大小角晶界的转变也能更好的表征出来。图3 经过振动抛光之后获得的ebsd角度取向分布图图4 经过离子切割之后获得的ebsd角度取向分布图总结通过上述实验的结果可以得出结论,相比于目前主流的振动抛光、电解抛光和离子抛光,在进行一些形状比较特殊的样品的ebsd试样的制备时,离子切割方法所具备的不受样品自身形状限制,效率高,稳定性好,可重复性高等都是目前比较常用的制样方法所不具备的,因此离子切割为ebsd的制样方法做了一个十分重要的扩充!致谢:西安交通大学 机械学院 许祥关于徕卡显微系统leica microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(wetzlar, germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制