当前位置: 仪器信息网 > 行业主题 > >

测量光学仪

仪器信息网测量光学仪专题为您提供2024年最新测量光学仪价格报价、厂家品牌的相关信息, 包括测量光学仪参数、型号等,不管是国产,还是进口品牌的测量光学仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测量光学仪相关的耗材配件、试剂标物,还有测量光学仪相关的最新资讯、资料,以及测量光学仪相关的解决方案。

测量光学仪相关的资讯

  • 特惠新品推荐---LSA100RF光学滞留力测量仪(第二代视频光学接触角测量仪)
    光学滞留力测量仪LSA100RF 是德国Lauda Scientific公司推出的世界上第一台光学滞留力测量的商品机,是传统视频光学接触角测量仪的更新换代产品,属于第二代视频光学接触角测量仪。该机器不仅涵盖第一代视频光学接触角测量仪的所有测量功能,而且具有独特的滞留力测量功能,是表面分析仪器领域中的一个开拓性创新!LSA100RF光学滞留力测量仪的测量方法LSA100RF光学滞留力测量仪在常规接触角测量仪上引入了离心力旋转台和视频同步触发技术。在快速旋转状态下置于材料表面上的液滴,在离心力的驱动下产生侧向滑动的趋势,迫使液滴形状发生变化。当离心驱动力达到最大滞留力数值的时候,液滴沿材料表面发生横向水平滑动。在这一动态过程中,仪器利用视频同步触发技术能够准确的抓拍到液滴形状和位置变化的一组照片并记录相对应的滞留力数据,通过软件自动处理得到滞留力数据以及前进接触角和后退接触角的变化曲线和最大值。滞留力能够直接反映液体和固体之间界面上的相互作用力。LSA100RF光学滞留力测量仪利用滞留力和动态接触角同时测量功能,可以进一步分析滑动过程中滞留力和液滴形状变化等因素之间的相互关系。LSA100RF光学滞留力测量仪的推出为材料润湿性的研究提供了一种有力的工具。LSA100RF在动态、多功能测量方面展示出了巨大的潜力,它能够同时使用几何参数和物理参数表征液体和固体材料之间界面上的相互作用,必将在特殊功能材料、液体的传送和过滤过程、表面的自清洁和易清洗等众多领域发挥出关键作用。LSA100RF光学滞留力测量仪的技术参数:新冠病毒疫情期间,LSA100RF 将特价销售,并确保3周的到货期! 感兴趣的客户请速与我们联系,我们开通了网上和微信购买业务,您的购买将更简单方便! 等待您的联系!东方德菲联系电话: 400-860-5168转0629
  • 光学计量仪器:解读精密测量的利器
    光学计量仪器作为现代科学和工业领域中不可或缺的工具,通过利用光学原理进行精确测量,在各个领域发挥着重要作用。本文将介绍光学计量仪器的定义、原理以及其在科学研究和工业应用中的重要性。  第一部分:光学计量仪器的定义和分类  定义:光学计量仪器是基于光学原理设计和制造的精密测量设备,用于测量长度、角度、形状等物理量。  分类:光学计量仪器可以根据其功能和应用领域进行分类,包括测微计、激光干涉仪、投影仪、扫描电子显微镜等。每种仪器都有其特定的测量原理和适用范围。  第二部分:光学计量仪器的原理和工作方式  光学原理:光学计量仪器利用光的传播和反射、折射等特性进行测量。例如,激光干涉仪利用激光光束的干涉现象测量长度和形状,投影仪通过光学系统投影图像进行测量等。  工作方式:光学计量仪器通常利用光源、探测器、光学透镜和其他相关组件构成测量系统。通过精确的光学路径设计和信号处理,可以实现高精度的测量结果。  第三部分:光学计量仪器在科学研究中的应用  物理学研究:光学计量仪器在物理学领域中广泛应用,例如用于测量材料的光学性质、表面形貌和精细结构等,为理论研究提供重要数据。  生物医学研究:在生物医学研究中,光学计量仪器可用于测量细胞、组织和生物标本的大小、形状和表面特征,为疾病诊断和治疗提供依据。  材料科学研究:光学计量仪器在材料科学领域中用于测量材料的机械性能、光学性能和电子性能,为新材料的开发和应用提供支持。  第四部分:光学计量仪器在工业应用中的重要性  制造业:光学计量仪器在制造业中广泛应用,例如测量零部件的尺寸和形状,确保产品的精度和质量。  航空航天:光学计量仪器可用于航空航天领域中对飞行器、航天器以及相关部件进行精确测量,确保飞行安全和性能。  汽车工业:在汽车制造中,光学计量仪器可用于测量汽车外观、内饰和关键零部件的尺寸和形状,确保产品符合设计要求。  光学计量仪器作为精密测量的利器,在科学研究和工业应用中发挥着不可或缺的作用。通过利用光学原理和精确的测量系统,这些仪器能够提供高精度、可靠的测量结果,满足各行各业对于精密测量的需求。  随着科技的不断进步,光学计量仪器也在不断创新和发展。新的技术和方法被引入,以提高测量精度、扩大测量范围和增加测量功能。同时,仪器的便携性和自动化程度也得到了提升,使得使用更加方便和高效。  然而,光学计量仪器的应用并不仅限于科学研究和工业领域。在日常生活中,我们也可以发现它们的身影。例如,眼镜店使用计量仪器来准确测量眼镜度数;珠宝商使用显微镜和投影仪来评估珠宝的品质和工艺。  总之,光学计量仪器在现代社会中扮演着重要的角色,推动着科学技术的发展和产业的进步。通过持续的创新和应用,光学计量仪器将继续为我们提供精密测量的利器,助力于各个领域的科研、生产和品质控制,推动着社会的发展和进步。
  • 海洋光学推出新型光学测量系统
    海洋光学(Ocean Optics)的新型光学测量系统是对LED、各种光源及其它辐射源分析的理想之选   上海2010年4月16日电 /美通社亚洲/ -- 海洋光学(Ocean Optics)现供应一种新的光学测量系统,可用于LED、灯、平板显示器、其它辐射源及太阳辐射的光谱辐射分析。新型的Jaz-ULM-200尺寸小巧,拥有强大的微处理器和低功耗显示面板。它使用方便,用途广泛,可以替代标准光学计量仪和辐射计量仪。   Jaz由一系列迭加式组件构成,适用于各类用途。Jaz-ULM-200组件包含有CCD光谱仪模块、带显示面板的微处理器模块,能满足各种辐射测量。   不同于传统的测光仪表,JAZ的用户可以脱离计算机获取、处理及存储完整的光谱数据。仅需按动一个按钮三次,存储在SD卡上的系统辐照测量软件就会从选定的光源上收集完整的光谱辐照信息。随后对这类数据进行后处理,给出选择的强度参数,包括 W/cm2、流明、勒克斯、光合有效辐射(PAR)或其它的光照强度参数。系统的三键设计简化了操作,即使操作人员不是光谱专家,也可以进行快速、精准的测量。   除Jaz-ULM-200的光谱仪和微处理器以外,它还包含以太网模块,使用户可以通过因特网与JAZ相连。这种网络功能可以帮助用户实现远程测量,比如远程测量太阳辐照度,或者建立一个多点测量的网络。以太网模块还带有SD存储卡接口,可以把数据存储到SD卡中。此外,JAZ还可以配置一个可充电的锂离子电池模块(包含SD存储卡接口),使JAZ成为一个便携式设备。通过一个特殊的安装固定夹具,可以将Jaz水平放置,方便徒手操作。   JAZ附加的系统组件包括一个直接连接在设备上的余弦校正器,用于收集180°视野以内的辐射 一个带肩带的包装箱和一个有内衬的工具盒,用于放置所有相关的设备。软件包括Jaz系统软件和JAZ-A-IRRAD(这是一种储存在SD卡上的辐照测量应用程序。)   关于海洋光学:   总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团 ( http://www.halma.cn )。 创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司,2008/09财年营业额超过 4.5亿英镑。豪迈旗下子公司的产品主要用于保护人们的生命安全和改善生活质量。通过持续不断的创新,这些产品在国际市场上始终处于领先地位。这些产品使我们的客户更安全、更富竞争力和盈利能力。豪迈的子公司正在多个领域为中国的经济做出贡献,主要包括制造、能源、水及废物处理、环境、建筑、交通运输及健康行业等。豪迈目前在上海和北京设有代表处,并且已在中国开设多个工厂和生产基地。
  • 中国科大实现了一种基于谐波辅助的光学相位放大测量
    中国科学技术大学郭光灿院士团队实现了一种基于谐波辅助的光学相位放大测量技术。该团队史保森教授、周志远副教授等人提出了一种基于谐波辅助实现光学相位放大的基本原理,并且利用级联三波混频过程初步实现了干涉仪中相对相位的4倍放大。相关研究成果以“Harmonics-assisted optical phase amplifier”为题于2022年10月27日在线发表在著名期刊《光科学与应用》上[Light: Sci. & Appl. 11, 312 (2022)]。   干涉是一种基本的光学现象,在近代物理的发展过程中发挥着举足轻重轻重的作用。无论是“以太”的验证、量子力学的构建以及引力波的探测都离不开干涉原理和技术。相位是波动光学和量子光学中一个非常重要的参数,干涉仪中光程差变化与相对相位变化一一对应。在光学精密测量中,几乎所有物理量(如位置、角度、电磁场等)的测量都可以转化为对干涉仪中相对位相变化(或者光程差变化)的测量,因此如何精确测量干涉仪的相位变化是光学科学工作者孜孜以求的目标。一个朴素的想法是通过干涉仪中相对相位放大来提升相位测量分辨率。在量子光学中,通过在干涉仪中注入多光子NOON态(粒子数与路径纠缠态)可以实现相对相位的N倍放大,然而多光子NOON态非常难制备(目前最大的N在10左右),并且随着光子数的增加测量累积时间指数上升,无法实时测量。因此,寻找新的光学相位放大原理是一个非常重要的科学问题。   史保森教授、周志远副教授研究组长期从事基于非线性效应的光学干涉现象研究。 在2014年,研究组在轨道角动量叠加态的非线性倍频研究中发现不仅轨道角动量拓扑荷加倍,而且输入轨道角动量叠加态的相对相位也会加倍[Opt. Express 22, 20298(2014)]。受此工作的启发,针对以下问题开展研究:在非线性过程中是否可以实现基于其它自由度干涉的相位加倍?这种加倍过程是否可以进行级联?研究结果对这两个问题的回答是肯定的。以三波混频中的倍频为例,在微观过程中,湮灭两个基频光子会产生一个倍频光子,基频光子所携带的相位信息被相干地传递到倍频光子中,因而导致了相位的加倍放大。将该过程进行级联和循环,原则上可以实现任意整数倍的相位放大。   基于上述原理,实验上将1560nm的脉冲激光输入一个偏振干涉仪,两个偏振模式的相位通过一个压电陶瓷控制,其输出端经过了两次偏振无关的倍频过程:第一次1560nm到780nm偏振无关的倍频通过在Sagnac干涉仪中放置一块PPKTP晶体实现,第二次780nm到390nm偏振无关倍频则通过两块正交的BBO晶体实现。通过在压电陶瓷上加载相同的驱动电压信号,我们观测到780nm和390nm光的干涉周期分别为1560nm光干涉的2倍和4倍,验证了我们提出的相位放大原理的可行性(如图1所示)。为了证明该放大原理不依赖于观测光的波长,团队设计了倍频与差频的级联过程(如图2所示),实验观测到在相同的激光波长下干涉曲线同样具有加倍的现象,这就为后续通过循环过程实现更高倍数的相位放大奠定基础。图1.级联四倍放大实验原理图。(a)相位放大实验装置,(b)相位放大实验结果,a-c分别对应基频光、二次谐波和四次谐波的干涉测量结果。图2.频率无关的相位放大实验原理图。(a)频率无关的相位放大实验装置,(b)实验结果,红色曲线为干涉仪直接 出射的基频光干涉结果,蓝色曲线为经过相位放大但光学频率没有改变的干涉结果。   该工作揭示了一种新型的光学相位放大机理并且在实验上得到了初步验证。下一步可利用强度更高的激光以及利用级联和循环结构实现更高放大倍数的演示,与此同时还将探索基于该放大原理在光学精密测量中的相关应用。该工作的共同第一作者是博士生李武振和已毕业的杨琛博士,共同通信作者是周志远副教授和史保森教授。   这项工作得到国家基金委、科技部以及中国科学技术大学的支持。
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 小芯片提高光学仪器测量精度
    罗切斯特大学研究人员共同开发的1平方毫米的集成光子芯片将使干涉仪精度更高。图片来源:罗切斯特大学/ J. Adam Fenster从镜子上的微小缺陷,到大气中污染物的扩散,再到宇宙深处的引力波,通过合并两个或多个光源,干涉仪产生的干涉图样可以提供一切事物的详细信息。“想要进行非常精确的测量,光学干涉仪必不可少,因为光可以成为非常精确的‘尺子’。”美国罗切斯特大学光学助理教授Jaime Cardenas说。现在,Cardenas的实验室发明了一种方法,使这种光学机器更加灵敏。罗切斯特大学博士生宋美廷(音译)首次在1平方毫米的集成光子芯片上验证了一种实验方法,可以在不增加无关且不必要的输入或“噪声”的情况下放大干涉信号。近日发表在《自然—通讯》的这一突破,基于该校物理学教授Andrew Jordan和实验室学生开发的波导弱值放大理论。Jordan和团队研究弱值放大已有十多年。他们以一种新颖的方式将模态分析应用于具有弱值放大功能的自由空间干涉仪上,弥补了自由空间与波导弱值放大之间的差距,并由此证明了在光子芯片上集成弱值放大的理论可行性。弱值放大是基于光的量子力学,基本上只涉及包含所需信息的特定光子导向探测器。Cardenas说,这个概念曾被演示过,但“总是要在实验室里放置一张桌子、一堆镜子和激光系统,这些物件排列起来非常耗时和辛苦”。“我们将所有这些物质提炼出来,放入光子芯片中。通过把干涉仪装在芯片上,你可以把它放在火箭、直升机,或者手机上。放在哪里它都不会偏移。”Cardenas说。与传统的干涉仪不同,新装置没有使用一组倾斜的镜子来弯曲光线并产生干涉图样,而是使用了一个设计好的波导来传播光场的波。Cardenas说,这是该研究的新颖之处。在传统干涉仪中,只要简单地提高激光功率,就可以提高信噪比,从而产生更有意义的输入。但Cardenas说,这实际上是有限制的,因为传统的干涉仪探测器只能处理有限的激光功率,在达到饱和前,信号噪声比并不能提高。新装置通过在探测器上以更少的光达到相同的干涉仪信号,消除了这一限制,这为通过继续增加激光功率从而增加信噪比留下了空间。“如果以传统干涉仪相同的功率到达新弱值,新设备总是会有更好的信噪比。”Cardenas说,“这项工作真的很酷,有很多非常棒的物理和工程应用在后台进行。”他表示,下一步将把该设备用于相干通信和使用压缩或纠缠光子的量子应用,使量子陀螺仪等设备成为可能。相关论文信息:https://doi.org/10.1038/s41467-021-26522-2
  • 东方德菲演示实验室又添新成员——德国Lauda视频光学接触角测量仪
    近日,东方德菲公司演示实验室又添一位新成员——德国Lauda视频光学接触角测量仪,我公司演示实验室可以直接为感兴趣的客户提供仪器演示、免费样品测试等服务。欢迎对Lauda视频光学接触角测量仪感兴趣的客户惠临参观。 德国Lauda视频光学接触角测量仪是一款功能全面、性能卓越的测量仪器。它不仅可以准确可靠地完成接触角、表面自由能和界面张力测量等常见的测量任务,而且在高速动态、多功能测量方面显示出其明显的优势,可以完成从极短界面寿命起的动态表界面张力测量、视频Washburn法粉末/多孔材料的动态接触角测量和全自动临界胶束浓度测量等任务。Lauda视频光学接触角测量仪广泛应用于界面化学、材料科学等专业实验室,是科研工作者的有力工具。 Lauda视频光学接触角测量仪的主要测量功能:* 测量静态接触角 - 侧视测量静态接触角 - 俯视测量静态接触角 - 侧视+俯视双视测量静态接触角 - 侧视测量弯曲基线静态接触角 - 俯视测量弯曲基线静态接触角 - 侧视测量单一纤维静态接触角* 测量动态接触角 - 侧视针入法测量动态接触角 - 侧视斜板法测量动态接触角 - 侧视斜板法测量滚动角及滚动速度 - 侧视斜板法测量滑动角及滑动速度 - 俯视针入法测量动态接触角 - 滞留天平法测量动态接触角 - 视频washburn法测量粉末/多孔材料的动态接触角* 测量液体的表面/界面张力- 悬滴法测量液体的静态/动态表界面张力- 滴体积法测量动态表面张力- 液桥法测量表面/界面张力* 滞留天平法测量液固界面滞留力* 全自动测量临界胶束浓度(CMC)* 测量液体的界面粘弹属性和弛豫分析* 分析液体表面张力及其组成* 在线测量表面/界面张力* 计算固体的表面自由能及其组成* 计算及分析粘附功* 记录吸收材料的吸收过程 Lauda视频光学接触角测量仪的主要特点:- USB3.0高速高分辨率相机, 分辨率高达1920x1200 pixel,速度高达 3300 images/s- X轴可移动视频系统- X/Y/Z三轴可精确定位样品台- X/Y/Z三轴可精确定位注射平台- 可同时使用两套注射单元- 测量高黏度液体的直接注射单元- 非接触式电动注射单元- 360°全自动倾斜台- 全自动临界胶束浓度(CMC)测量附件- 视频washburn法粉末/多孔材料接触角测量附件- 滴体积法表界面张力测量附件- 滞留力测量附件- 温度控制单元- 俯视或双视测量系统- 振荡滴界面扩张流变测量系统 Lauda视频光学接触角测量仪的主要技术参数:- 接触角测量范围:0~180°;精度:±0.1°;分辨率:0.01°- 表面/界面张力测量范围:1×10-2~ 2×103mN/m;分辨率:0.01 mN/m- 视频图像系统: 镜头:6.5倍变焦镜头 光学曲度17.5 x 11.0 mm(WxH)- 样品台 调节方式:X/Y/Z三轴精细调节;移动行程:100/100/35mm 尺寸:100x100 mm 载重:不低于12Kg- 视频调焦台调节方式:X轴方向精细调节 行程60mm- 加液单元调节台:双加液单元承载机构调节方式:X/Y/Z三轴精细调节;移动行程:85/60/40mm- 自动加液单元悬滴体积智能控制:反馈响应时间 光源:单色高均匀LED冷光源,亮度由软件和手动控制- 电源:50/60Hz 110/240V 120W- 仪器尺寸(基座)及重量:600×160×460 mm(LxWxH) 18Kg
  • LAUDA光学接触角测量仪入驻安徽工程大学实验室
    近日,LAUDA Scientific OSA60 光学接触角测量仪入驻安徽工程大学生物与化学工程学院唐海教授课题组。唐海教授主要从事亲水膜的研究,亲水膜因其耐污染等性能,成为当前分离膜研究的热点之一。OSA60光学接触角测量仪能够准确测量亲水膜的接触角并计算表面自由能,为亲水膜的研究增添了一大助力。 OSA60光学接触角测量仪是德国Lauda Scientific品牌中功能较全,性价比较高的仪器,它可以准确可靠测量接触角、表面自由能、和表界面张力等常见的测量,其主要测量性能如下: 测量静态接触角 测量动态接触角 测量液体的表面/界面张力 分析液体表面张力及其组成 在线测量表面/界面张力 计算固体的表面自由能及其组成 计算及分析粘附功 记录吸收材料的吸收过程 OSA60光学接触角测量仪结构简单,占用空间小,性价比高,适用于高校和科研院所中与材料和界面化学相关的实验室,以及石油、化工、日化、电子等工业企业的质量控制部门和政府部门所属的官方质检单位。
  • 东方德菲光学三维刀具测量仪成功入驻哈尔滨东安利锋刀具有限公司
    2014年3月,中国非标刀具的专业制造商,哈尔滨东安利锋刀具有限公司引进了我公司北京东方德菲仪器有限公司独家代理的奥地利Alicona公司研发生产的光学三维刀具测量仪。我司技术人员和东安利锋的技术人员就如何利用光学三维刀具测量仪优化生产工艺进行了深入的交流。 Alicona公司生产的光学三维刀具测量仪解决了困扰刀片制造企业多年的刃口测量和粗糙度测量难题。刃口的钝化和刀面的粗糙度对刀片的切削性能会产生显著的影响。刀具生产技术越来越关注微观的几何参数。然而多年以来市场上都没有能够准确快捷地测量刃口钝化的仪器设备。 Alicona公司生产的光学三维刀具测量仪利用独特的Focus-Varition三维成像技术可以准确的测量出刀片刃口的钝化半径、刃口切削角度、刃口和刀面的粗糙度、刀片的槽型等几何参数,为刀片制造企业提供了质量控制,质量检验以及刀片研发设计的理想工具。北京东方德菲仪器公司更是秉承多年的服务理念,愿为刀具制造企业提供一流的售前售后服务。
  • 东方德菲推出新品---LSA100DARF光学粘滞力测量仪
    LSA100DARF 光学粘滞力测量仪由德国LAUDA Scientific公司研发生产,LSA100DARF不仅具备一般光学接触角测量仪的常规功能, 而且能够直接测量液体和固体材料之间在界面上的相互作用力,是表面分析仪器领域中的一个开拓性创新!LSA100DARF 光学粘滞力测量仪的测量方法:|| 粘附力测量液滴在超疏材料表面上被拉伸过程中产生的垂直方向的粘附力是一个评价材料表面润湿性质的重要指标。 在高精度自动升降台的操控下,材料表面和液滴先相互挤压使得液固两相充分接触,然后缓慢拉伸直到液滴 和材料表面完全分离。软件通过液滴的形变量可以精确的计算出材料表面作用于液滴的垂直方向的粘附力。液体表面张力:72.8 mN/m 液滴体积 v:5 μl 最da粘附力:45.9 μN|| 滞留力测量光学粘滞力测量仪配置速度可控的离心转台时,仪器可以自动对液滴进行离心操控。置于材料表面上的液滴在旋转状态下产生侧向滑动的趋势,当离心驱动力达到最da滞留力数值的时候,液滴沿材料表面发生横向水 平滑动。在这一动态过程中,仪器利用视频同步触发技术通过软件计算能够准确得到材料表面作用于液滴的水平方向的滞留力。技术参数:1.软件计算方法: Laplace-Young (垂直粘附力) Truedrop method(水平滞留力)2.垂直粘附力测量: 样品台升降方式:自动可编程 样品台移动速度:0.04---500 mm/min 位置精度:0.05μm 测量分辨率:0.01μN3.水平滞留力测量 离心样品台控制方式: 自动可编程 zui大离心力(加速度): 40 g 转速范围: 0---750 rpm 控制精度: 2 rpm 旋转加速度: 1---100 rpm/s 测量分辨率: 0.01μN
  • 红点新桂再创佳绩 Biolin光学接触角测量仪获2019新品奖
    文章来源:仪器信息网2020年5月20日,由仪器信息网主办,“科学仪器新品”评审委员会、“新品首发”栏目承办的科学仪器“新品奖”在线发布盛典盛大召开,首次云端揭晓了2019年度科学仪器“新品奖”获奖名单,22台仪器获此殊荣。大昌华嘉科学仪器部代理的Biolin光学接触角测量仪(水滴角测量仪)ThetaFlex荣获大奖。中航工业失效分析中心/北京航空材料研究院副主任刘昌奎公布了获奖结果。Biolin光学接触角测量仪(水滴角测量仪)ThetaFlex是2020年国际红点产品设计大奖最佳设计奖得主之一。仪器全自动化程度高,测量速度快,重复性好。具有独特的3D形貌模块,可以测量粗糙度对润湿性的影响。Biolin光学接触角测量仪(水滴角测量仪)ThetaFlex“科学仪器新品”评审委员会创新点评:Theta Flex软件具有独特的自动液体纯度检测功能,防止使用错误液体或不纯净液体影响实验结果,该功能很具有竞争力。可以记录液滴图像并且自动分析液滴的形状,对固液界面的研究非常有有意。虽然接触角测量仪是个小众产品,但该仪器在性能等各方面有很大的优越性,针对某些特定的应用领域有较大的促进作用。
  • 海洋光学推出SteadiQ---极限环境下高精度测量用光谱仪
    海洋光学 (www.oceanoptics.com)推出SteadiQ温控装置来扩大微型光纤光谱仪的现场应用; SteadiQ 控温装置可以有效稳定测试环境温度(-20℃至50℃),消除热漂移,非常便于苛刻恶劣环境下应用。便携、坚固耐用的特点可为现场测量诸如太阳辐射,火山观测,温室监控,工业应用(如:食品冷冻冷藏)提供高精度、置信度高的测量结果。 (图片标题: 海洋光学SteadiQ控温装置). SteadiQ应用光谱范围覆盖紫外-可见-近红外(200-2500nm),可直接与海洋光学的光纤光谱仪USB2000+, USB4000, HR2000+, HR4000, Maya2000, Maya2000 Pro, QE65000, 及 NIRQuest 等型号直接衔接。其操作不受外界高温或极寒的条件限制,通过插口及USB接口可以方便的与光谱仪进行衔接与通讯。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于达尼丁,佛罗里达的海洋光学是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球范围内共售出了超过120,000套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。海洋光学是致力于安全检测领域的英国豪迈集团的子公司。海洋光学的产品在医学和生物研究、环境监测、科学教育、娱乐照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 3700 多名员工,约36 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。 欲了解最新豪迈中国新闻并订阅RSS,请访问豪迈中国新闻博客: http://halmapr.com/news/halmacn/ 。您也可以通过下面的链接访问公司英语新闻博客:http://halmapr.com/news/oceanoptics/ 。 如果需要更多的信息请联系: 孙玲博士,总经理 海洋光学亚洲分公司 中国上海长宁区古北路 666 弄嘉麒大厦 601 邮编:200336 电话:(86) 21 6295 6600 传真:(86) 21 6295 6708 电子邮箱: Distributorsupportasia@oceanoptics.com 网址:www.oceanopticschina.cn / www.oceanoptics.com 中文媒体联络: 刘兵斌 (Bryan Liu) 中国区市场经理 英国豪迈国际有限公司上海代表处 中国上海市长宁区仙霞路 137 号 盛高国际大厦 1801 室 邮编:200051 电话:(21) 5206 8686-111 ,传真:(21) 5206 8191 电子信箱:bryan.liu@halma.cn 网址:www.halma.cn
  • 爱色丽支持光学可变防伪油墨标准制定及油墨色彩测量仪器
    防伪油墨作为一种防伪产品的基材,已经广泛应用于国家有价证券、证件证书、普通印刷品和商品包装等领域,其应用范围非常广泛。为了进一步规范防伪油墨的生产、使用及检测,保障国门安全、社会金融安全和产品监督管理的稳定性,爱色丽全力支持将于2023年12月实施的【光学可变防伪油墨】国家标准。这一标准的实施对于保障生产厂商、使用厂商和消费大众的合法权益,维护国家的安全和稳定,具有重要意义。爱色丽的参与和支持,旨在提升产品质量的稳定性和可控性,使得防伪油墨在多领域的应用更加规范和安全。一、测量参数光学可变防伪油墨通过光学原理,使印样随观察角度不同而呈现不同颜色。这一特定材料制作的油墨需要通过以下几个参数来进行测量和评估:外观色:使用单角度色差仪测量颜色差异。同角最大反射波长:标准和样品在波峰位置的匹配度。同角色差:标准和样品分别在30°和90°观察角度的颜色差异值。异角色差:同一试样在30°和90°观察角度的颜色差异值。二、防伪油墨标准制定具体方案参数:外观色试验步骤:1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,分别取标样1份,试样3份。3. 按GB/T19437-2004中4.1的规定进行仪器校准,检测标样色值,包括亮度L、绿色到红色的分量a、蓝色到黄色的分量b,作为颜色标准。在试样中选取避免透印干扰的测量点进行测量,得到ΔE,测量3次取平均值。测量设备:eXact系列色差仪。eXact系列色差仪是印刷和包装应用中用于测量色彩数据的行业标杆。其作为45:0便携式分光测色仪具有简单的用户界面和直观的触摸屏显示,因此是繁忙印刷车间的理想印刷机工具。通过无线操作以及不受限制的校准、规格和数据捕获,操作人员可以在车间内的任意地方使用eXact来测量和存储数据,无需电源。由于存储位于设备上,因此可以快速访问作业预设置和色彩库。参数:技术指标和耐性指标指标要求:- 技术指标:达到油墨的基本要求。- 耐性指标:符合各种耐受测试性能。测量参数:光谱和DE*。试验步骤(以耐性试验为例):1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,抽取4份样品,其中1份作为标样,3份作为试样。3. 将试样和GB/T730-2008规定的1级蓝色羊毛标样用黑色板纸衬白色书写纸各遮盖一半,放入日晒仪中,根据所使用的日晒仪要求确定环境温度和环境相对湿度,进行暴晒。当1级蓝色羊毛标样的变化程度相当于GB/T250-2008中“评定变色用灰色样卡”的3级时停止暴晒,取出试样放入暗处30分钟后,使用多角度分光光度计,测量试样30°、90°观察角度下的色值L、a、b,与标样30°、90°观察角度下的色值进行对比,记录试样ΔE1、ΔE2及异角色差,计算3份试样平均值,记录试验结果。测量设备:MAT系列多角度色差仪。爱色丽MA-T系列多角度色差仪包含6、12个测量角度,而且该色差仪价格实惠,是一款适用于特殊效果涂料的汽车测色仪,兼具彩色成像和多角度测量,体现完整色彩、光亮和粗糙特性。EFX QC是爱色丽MA-T系列汽车测色仪中附带的一个软件包,基于云计算的软件简化了各个分布式供应链交流容差和测量的过程。新的可视化工具支持实时性能监控,并为故障排除提供可行性建议,从而减少浪费和返工。通过严格的检测和标准化流程,光学可变防伪油墨将更好地服务于各类防伪需求。爱色丽将继续在这一领域发挥重要作用,为维护国家和社会的安全与稳定贡献力量。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 光学波长测量精度实现千赫兹量级
    从获悉,中国科学技术大学该校郭光灿院士团队董春华教授及合作者邹长铃等提出一种普适的微腔色散调控机制,实现了光频梳中心频率和重复频率的实时独立调控,并应用于光学波长的精密测量,将波长的测量精度提升到千赫兹(kHz)。相关研究成果日前发表在《自然通讯》上。基于光学微腔的孤子微梳在精密光谱学、光钟等领域引起了极大研究兴趣。但由于环境和激光噪声以及微腔中额外非线性效应的影响,孤子微梳的稳定性受到了很大限制,这成为微光梳在实际应用中的一个主要障碍。之前的工作中,科学家们通过控制材料的折射率或者微腔的几何尺寸以实现实时反馈,从而稳定并调控光频梳,这种方法会引起微腔内所有共振模式同时近乎均匀的变化,缺乏独立调控梳齿频率和重复频率的能力,这大大限制了微光梳在精密光谱、微波光子、光学测距等实际场景中的应用。针对这一难题,研究团队提出了一种新的物理机制实现了对于光频梳中心频率和重复频率的独立实时调控。通过引入两种不同的微腔色散调控手段,该团队能够对微腔不同阶次的色散进行独立控制,从而实现光频梳不同梳齿频率的全部控制。这种色散调控机制对于目前广泛研究的氮化硅、铌酸锂等不同的集成光子平台都是普适的。研究团队利用泵浦激光和辅助激光分别独立控制微腔不同阶次的空间模式实现了泵浦模式频率的自适应稳定和频梳重复频率的独立调控。基于该光频梳,研究团队演示了对于任意梳齿频率的快速、可编程的调控,并将其应用于波长的精密测量中,展示了具有千赫兹量级测量精度和多波长同时测量能力的波长计。相比于之前的研究成果,研究团队实现的测量精度达到了三个量级的提高。该研究成果所展示的可重构的孤子微梳为实现低成本、芯片集成的光学频率标准奠定了基础,将在精密测量、光钟、光谱学及通信等领域得到应用。
  • 复享光学-R1在手性超表面非对称光学传输效率测量中的应用
    【概述】光学手性超构表面是由亚波长尺度单元所组成的平面或准平面光子器件。非对称传输是手性超表面的一大光学特性,该特性可应用于集成光路中的光学二极管,与电二极管类似,光学二极管要求器件具有单向性。目前,单层手性超材料中,非对称传输率在理论上被限制在 25% 以内,并伴随很高的吸收损耗,这成为该材料作为光学二极管的应用阻碍。而通过多层三维结构去实现非对称传输,虽然能将传输率突破 25%,但是其加工工艺更加复杂、困难,尤其是亚微米尺度以下的多层结构精准对准目前还很难实现。图1,单层手性超表面2022年,南开大学泰达应用物理学院齐继伟副教授在 Optical Express 上发表了一篇题为《Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces》的文章。作者制作了一种单层手性超表面,创新地以圆偏振光斜入射反射的形式提升了非对称传输率,获得了与三维结构相当的非对称传输率。 【样品 & 测试】作者采用电子束光刻技术与金属镀膜技术在石英基底上制备了横向周期 1000nm,纵向周期 650nm 的单层 U型分裂环,该分裂环厚度 100nm,环形宽度 200nm,环形半径 350nm。为观测不同角度倾斜入射的反射情况,作者使用了复享光学的角分辨光谱仪R1,借助设备的自动旋转模块,灵活调整入射角与接收角,实现多角度反射光谱测量。同时,得益于角分辨光谱仪中的通用光学元件插口,作者使用线性偏振片与四分之一波片形成左旋与右旋圆偏振光,轻松获得合适的实验条件。图2,测试示意图作者通过模拟和测量左旋圆偏振光与右旋圆偏振光倾斜入射时超表面的反射光谱,并对比了正向入射与反向入射在 30°~45° 之间的测量结果,如图3 所示。研究发现,在 1120nm 处,右旋圆偏光正向入射与左旋圆偏振光反向入射的反射光谱均呈现出较宽的反射峰;在 1650nm 和 1075nm 处,右旋圆偏光反向入射与左旋圆偏振光正向入射的反射光谱分别显示出相对较窄反射峰。这一结果与 COSMOL 的模拟结果一致。通过理论分析结合实测光谱,作者发现 1120nm 处的反射峰源于四极局域表面等离子体共振模式,而 1650nm 和 1075nm 处的反射峰则源于表面晶格模式。这些发现为深入理解手性超表面的光学特性提供了重要线索。图3,U型分裂环超表面30°~45°反射光谱:(a,b)COSMOL模拟结果;(c,d)角分辨光谱仪测量结果进一步研究中,作者分别对比左旋圆偏振光与右旋圆偏振光正反向反射效率差异,如图4 所示。值得注意的是,反射效率差异在 1000~1600nm 波段最高可达 40%,突破了二维非对称传输理论效率 25% 的限制。图4,圆偏振光非对称反射效率测量结果【总结】作者制备了一种基于单层手性超表面,旨在实现巨大的非对称反射,并将圆偏振光斜入射反射作为关键步骤。复享光学的角分辨光谱仪R1 具备高度适应性,能够轻松适应不同的实验条件,包括变化角度、偏振、相位延迟等参数。这一设备对研究以调控光束特性为主要功能的超表面至关重要。图5,文章对复享光学 R1 的标注【参考文献】 ✽ Fu, Xianhui, et al.Asymmetric reflection based on asymmetric coupling in single-layer extrinsic chiral metasurfaces. Optics Express (2022).
  • 百欧林发布新款光学接触角测量仪AttensionTheta Flex
    日前,瑞典百欧林全球同步上市了一款新型光学接触角测量仪Theta Flex!Theta Flex支持客户在一个仪器上进行所有光学接触角相关的测量,软件中已经包含所有的测量模式。 得益于模块化设计,所有应用均可通过一台仪器完成,仪器可根据您的需求进行定制。该产品除了具有一流的用户界面、优越的分析精度、实时分析、完全自动化、为每个需求提供灵活性、便捷的数据处理和导出、优化工业使用等突出优点!另外Theta Flex可以搭配3D形貌模块和高压腔使用。Theta Flex可以与独特的3D形貌模块相结合,通过在单次测量中同时测量出样品的接触角和表面粗糙度,将润湿性和粘附性分析提升到一个全新的水平。高压腔设计是为了增强石油采收率的润湿性研究而设计的。优化的集成式活塞腔室和样品端口确保了最佳可用性和通用性。大昌华嘉(DKSH)作为百欧林接触角测量仪/表面张力仪在国内的总代理,负责其中国地区产品、技术的推广销售和服务。如果您想深入了解更多关于接触角测量仪的相关应用,我们将会非常高兴地为您提供更多的相关文献和应用实例。
  • Montana光学恒温器实力解决低温MOKE测量难题,持续提供低温磁学测量新思路
    全球知名的Montana光学恒温器又有新搭档啦!著名MOKE生产商英国Durham公司推出的官方产品说明手册中推出了低温MOKE的佳方案,NanoMOKE与MI光学恒温器的Magnet-optic系统搭配可以为用户实现低温MOKE测量。搭配Attocube的高精度位移器与旋转台,可以实现多种MOKE的定点测量研究。图1 a NanoMOKE与MI恒温器整体系统;b、c 局部细节图 长期以来怎么将室温下相当成熟的MOKE测量在低温下实现一直是困扰磁学研究者的问题。问题主要有以下几个方面:1、传统湿式恒温器对液氦的消耗导致实验成本高昂;2、传统制冷机恒温器震动较大使得测量的信噪比较差,无法进行或微区测量;3、传统恒温器温度控制的稳定性不好,很难实现特定温度下的测量;4、传统低温恒温器操作复杂,使得测量的过程异常繁琐。MI推出的超精细无液氦恒温器解决了以上问题。图2 a 横向样品托;b 纵向样品托;c 不同方向带电样品托 先,MI恒温器使用智能变频制冷机系统,完全摆脱了液氦,对氦气的消耗也非常小,大大降低了低温试验成本;其次,MI的恒温器震动峰-峰值小于5nm,这一震动水平已经达到了室温光学实验的水平;再次MI恒温器温度的稳定性优于10mk,这使得对特定温度下的测量异常稳定;后MI恒温器操作非常简便,完全智能化的控制系统能够让您的控制随心所欲。系统的样品更换非常方便,系统可以联网控制,真正实现远程遥控。这样以来低温MOKE的可行性和精度都得到了大的提高,真正的实现了低温下微米量的高精度磁性、磁畴测量。此外NanoMOKE针对Montana样品腔可以提供向、横向、纵向等多种解决方案。 除了与MOKE搭配之外,MI恒温器针对磁光系统推出了多种样品台,使样品在可以平行和垂直于磁场方向(如图2所示)。带电的样品托可以帮助用户实现变场、变温、光电的测量,大的拓宽了恒温器的功能。图3 a Cryostation-GMW系统整体图;b 样品腔局部图;c 样品腔截面图 近期,MI与GMW公司联合推出了多种灵活的外部磁体解决方案,使得用户更容易实现各种特殊的实验测量,磁场强度也有所提升,此外更有多种永磁体等多种方案可以选择。MI的灵活性打破了很多传统低温实验的瓶颈,使得低温实验像室温实验一样方便。除了磁学测量以外,MI恒温器在低温拉曼上也取得了巨大的成功,用户可以很方便地用已有的高性能光谱仪直接在MI恒温器上来实现低温拉曼的测量。在新兴的量子信息领域MI恒温器更是大显身手,目前国内在量子信息领域较为出色的科研单位都已成为MI恒温器的用户。特别是中国科学技术大学和清华大学,分别拥有多个型号的多台MI恒温器,已成为国内用户前两位。目前MI恒温器在国内的数量已超过60台,应用领域涵盖量子信息、NV色心、拉曼、晶体光学等多个方向,且连续、稳定地工作在各大实验室。MI恒温器已成为不可多得的多功能、高精度、超稳定、全干式恒温器。 相关产品链接:美国Montana无液氦超低振动低温光学恒温器:http://www.instrument.com.cn/netshow/SH100980/C122418.htmAttocube低温纳米位移台:http://www.instrument.com.cn/netshow/SH100980/C80795.htm
  • LSA100光学接触角测量仪取得中国计量院校准证书
    北京东方德菲仪器有限公司代理的德国LAUDA Scientific品牌的LSA100光学接触角测量仪顺利通过中国计量科学研究院(NIM)检测,取得校准证书,证书编号:CDjc2021-11489。 中国计量科学研究院(NIM)是国家高级别的计量科学研究中心和国家ji法定计量技术机构,质量管理体系符合ISO/IEC17025标准,标准结果不确定度的评估和表述均符合JJF1059系列标准的要求。 经过申请、现场检测、认可批准等层层把关,LSA100光学接触角测量仪顺利通过中国计量科学研究院(NIM)检测,取得校准证书,这标志着LSA100完全满足材料润湿性分析中接触角值的测量需求。我们能够为客户提供更加规范、专业、优质的服务,为实验室科学研究和质量控制等领域提供更高质量的保障。
  • 【新品发布】Biolin Theta系列光学接触角测量仪全新上市
    Theta Flow光学接触角测量仪Theta Flow是一款高级接触角测量仪,适用于高要求的表面研究和质量控制。用户友好,兼具高水平的自动化和准确度,通过配置的高端摄像头、图像增强和传感器,大幅提高测试精度,Theta Flow给大家带来全新的接触角测量体验。与Theta Flow同属Biolin Attension系列的Theta Flex接触角测量仪在2020年“红点产品设计大奖”中凭借其突破性的设计赢得了年度“红点设计奖”(Red Dot: Best of the Best),红点设计奖讲究创新设计,是红点产品设计大奖的优异奖项。完整的测量功能• 静态接触角• 动态接触角• 滚动角• 表面自由能• 表面张力• 界面张力• 批处理接触角• 粗糙度修正接触角• 界面流变(粘弹性)• 高压和高温测量• 单纤维接触角自动化水平达到新高相机全自动对焦,确保图像始终保持清晰;自动表面定位,可将样品移动到不同的测量位置;并使用业界领先的OneAttension软件自动生成结果。这些特点使光学接触角测量仪的自动化达到了一个新的水平,在简化测试的同时提高了实验精度。 准确性和用户独立性(无人为因素干扰)Theta Flow配备的相机分辨率高达500万像素,采用DropletPlus技术实现图像增强,传感器可跟踪周围环境(温度、湿度)以获得良好的可追溯性,这些功能使Theta Flow可提供高度准确的结果,而可靠的数据也成为独立于用户测量的关键组成部分。 触摸屏易于使用Biolin Theta Flow率先配备的内嵌式触摸显示屏改善了用户体验,使测量准备工作处理起来超级顺畅。从吸液到更换样品的所有步骤都可以在几秒钟内轻松完成。 Theta Flow可选附件:3D 形貌模块:可自动测量样品粗糙度和接触角,并得到粗糙度修正接触角,研究粗糙度对润湿性的影响。高压腔:可在400 bar压力和200 ℃温度下进行测试。专为提高采收率和超临界流体方面的应用而设计。振荡液滴模块:可以自动测量界面膨胀粘弹性,进行界面流变研究,适用于气-液界面和液-液界面。整机倾斜框架:用于自动测量动态接触角(前进角、后退角)和滚动角。自动皮升滴液器:用于非常小面积样品的接触角测量和喷墨应用,可自动分配皮升级液滴。温控单元:控制环境温度,用于接触角和表界面张力测试,多种温控单元可选。
  • 东方德菲设立OCA50视频光学接触角测量仪演示实验室
    我司北京东方德菲仪器有限公司近日在我司北京办公室开设了OCA50全自动视频光学接触角测量仪演示实验室,可以直接为感兴趣的客户提供仪器演示、免费样品测试等服务。欢迎对OCA50全自动视频光学接触角测量仪感兴趣的客户惠临参观。请与北京东方德菲仪器有限公司联系地址:北京市海淀区紫竹院路69号中国兵器大厦1010室电话:010-68920275/76/77传真:010-68729983邮箱:info@edcc.com.cn
  • 客户见证---LSA200光学接触角测量仪入驻华为实验室
    近期,我公司工程师来到华为技术有限公司实验室为用户安装调试了一台德国LAUDA Scientific品牌LSA200型光学接触角测量仪。LSA200光学接触角测量仪为该实验室研究解决相关材料表面润湿性问题提供了重要手段。在和华为实验室的研发工程师们一起工作的日子里,我们看到了在巨大的困难面前,这些年轻人依然保持着旺盛的斗志,创新的勇气;他们为此努力工作,付出辛勤的劳动;在企业求生存谋发展的过程中他们不断地实现着自身的价值。 大国竞争科技为先。我们感觉到我们和华为已经不再单纯是供应商和客户之间的商业关系,我们会尽力为他们提供技术支持,在中华民族复兴的道路上我们是同志,是战友!
  • 用于纳米级表面形貌测量的光学显微测头
    用于纳米级表面形貌测量的光学显微测头李强,任冬梅,兰一兵,李华丰,万宇(航空工业北京长城计量测试技术研究所 计量与校准技术重点实验室,北京 100095)  摘 要:为了满足纳米级表面形貌样板的高精度非接触测量需求,研制了一种高分辨力光学显微测头。以激光全息单元为光源和信号拾取器件,利用差动光斑尺寸变化探测原理,建立了微位移测量系统,结合光学显微成像系统,形成了高分辨力光学显微测头。将该测头应用于纳米三维测量机,对台阶高度样板和一维线间隔样板进行了测量实验。结果表明:该光学显微测头结合纳米三维测量机可实现纳米级表面形貌样板的可溯源测量,具有扫描速度快、测量分辨力高、结构紧凑和非接触测量等优点,对解决纳米级表面形貌测量难题具有重要实用价值。  关键词:纳米测量;激光全息单元;位移;光学显微测头;纳米级表面形貌0 引言  随着超精密加工技术的发展和各种微纳结构的广泛应用,纳米三坐标测量机等精密测量仪器受到了重点关注。国内外一些研究机构研究开发了纳米测量机,并开展微纳结构测量[1-4]。作为一个高精度开放型测量平台,纳米测量机可以兼容各种不同原理的接触式测头和非接触式测头[5-6]。测头作为纳米测量机的核心部件之一,在实现微纳结构几何参数的高精度测量中发挥着重要作用。原子力显微镜等高分辨力测头的出现,使得纳米测量机能够实现复杂微纳结构的高精度测量[7-8],但由于其测量速度较慢,对测量环境要求很高,不适用于大范围快速测量。而光学测头从原理上可以提高扫描测量速度,同时作为一种非接触式测头,还可以避免损伤样品表面,因此,在微纳米表面形貌测量中有其独特优势。在光学测头研制中,激光聚焦法受到国内外研究者的青睐,德国SIOS公司生产的纳米测量机就包含一种基于光学像散原理的激光聚焦式光学测头,国内也有一些大学和研究机构开展了此方面的研究[9-11]。这些测头主要基于像散和差动光斑尺寸变化检测原理进行离焦检测[12-13]。在CD和DVD播放器系统中常用的激光全息单元已应用于微位移测量[14-15],其在纳米测量机光学测头的研制中也具有较好的实用价值。针对纳米级表面形貌的测量需求,本文研制了一种基于激光全息单元的高分辨力光学显微测头,应用于自主研制的纳米三维测量机,可实现被测样品的快速瞄准和测量。1 激光全息单元的工作原理  激光全息单元是由半导体激光器(LD)、全息光学元件(HOE)、光电探测器(PD)和信号处理电路集成的一个元件,最早应用于CD和DVD播放器系统中,用来读取光盘信息并实时检测光盘的焦点误差,其工作原理如图1所示。LD发出激光束,在出射光窗口处有一个透明塑料部件,其内表面为直线条纹光栅,外表面为曲线条纹全息光栅,两组光栅相互交叉,外表面光栅用于产生焦点误差信号。LD发出的激光束在光盘表面反射回来后,经全息光栅产生的±1级衍射光,分别回到两组光电探测器P1~P5和P2~P10上。当光盘上下移动时,左右两组光电探测器上光斑面积变化相反,根据这种现象产生焦点误差信号。这种测量方式称为差动光斑尺寸变化探测,焦点误差信号可以表示为  根据焦点误差信号,即可判断光盘离焦量。图1 激光全息单元  根据上述原理,本文设计了高分辨力光学显微测头的激光全息测量系统。2 光学显微测头设计与实现  光学显微测头由激光全息测量系统和光学显微成像系统两部分组成,前者用于实现被测样品微小位移的测量,后者用于对测量过程进行监测,以实现被测样品表面结构的非接触瞄准与测量。  2.1 激光全息测量系统设计  光学显微测头的光学系统如图2所示,其中,激光全息测量系统由激光全息单元、透镜1、分光镜1和显微物镜组成。测量时,由激光全息单元中的半导体激光器发出的光束经过透镜1变为平行光束,该光束被分光镜1反射后,通过显微物镜汇聚在被测件表面。从被测件表面反射回来的光束反向通过显微物镜,一小部分光透过分光镜1用于观察,大部分光被分光镜1反射,通过透镜1,汇聚到激光全息单元上,被全息单元内部集成的光电探测器接收。这样,就将被测样品表面瞄准点的位置信息转换为电信号。在光学显微测头设计中选用的激光全息单元为松下HUL7001,激光波长为790 nm。图2 光学显微测头光学系统示意图  当被测样品表面位于光学显微测头的聚焦面时,反射光沿原路返回激光全息单元,全息单元内两组光电探测器接收到的光斑尺寸相等,焦点误差信号为零。当样品表面偏离显微物镜聚焦面时,由样品表面反射回来的光束传播路径会发生变化,进入激光全息单元的反射光在两组光电探测器上的分布随之发生变化,引起激光全息单元焦点误差信号的变化。当被测样品在显微物镜焦点以内时,焦点误差信号小于零,而当被测样品在显微物镜焦点以外时,焦点误差信号大于零。因此,利用在聚焦面附近激光全息单元输出电压与样品位移量的单调对应关系,通过测量激光全息单元的输出电压,即可求得样品的位移量。  2.2 显微物镜参数的选择  在激光全息测量系统中,显微物镜是一个重要的光学元件,其光学参数直接关系着光学显微测头的分辨力。首先,显微物镜的焦距直接影响测头纵向分辨力,在激光全息单元、透镜1和显微物镜之间的位置关系保持不变的情况下,对于同样的样品位移量,显微物镜的焦距越小,样品上被测点经过显微物镜和透镜1所成像的位移越大,所引起激光全息单元中光电探测器的输出信号变化量也越大,即测量系统纵向分辨力越高。另外,显微物镜的数值孔径对测头的分辨力也有影响,在光波长一定的情况下,显微物镜的数值孔径越大,其景深越小,测头纵向分辨力越高。同时,显微物镜数值孔径越大,激光束会聚的光斑越小,系统横向分辨力也越高。综合考虑测头分辨力和工作距离等因素,在光学显微测头设计中选用大恒光电GCO-2133长工作距物镜,其放大倍数为40,数值孔径为0.6,工作距离为3.33 mm。  2.3 定焦显微测头的实现  除激光全息测量系统外,光学显微测头还包括一个光学显微成像系统,该系统由光源、显微物镜、透镜2、透镜3、分光镜1、分光镜2和CCD相机组成。光源将被测样品表面均匀照明,被测样品通过显微物镜、分光镜1、透镜2和分光镜2,成像在CCD相机接收面上。为了避免光源发热对测量系统的影响,采用光纤传输光束将照明光引入显微成像系统。通过CCD相机不仅可以观察到被测样品表面的形貌,而且也可以观察到来自激光全息单元的光束在样品表面的聚焦情况。  根据图2所示原理,通过光学元件选购、机械加工和信号放大电路设计,制作了光学显微测头,如图3所示。从结构上看,该测头具有体积小、集成度高的优点。将该测头安装在纳米测量机上,编制相应的测量软件,可用于被测样品的快速瞄准和高分辨力非接触测量。图3 光学显微测头结构3 测量实验与结果分析  为了检验光学显微测头的功能,将该测头安装在纳米三维测量机上,使显微物镜的光轴沿测量机的Z轴方向,对其输出信号的电压与被测样品的离焦量之间的关系进行了标定,并用其对台阶高度样板和一维线间隔样板进行了测量[16]。所用纳米三维测量机在25 mm×25 mm×5 mm的测量范围内,空间分辨力可达0.1 nm。实验在(20±0.5)℃的控温实验室环境下进行。  3.1 测头输出电压与位移关系的建立  为了获得光学显微测头的输出电压与被测表面位移(离焦量)的关系,将被测样板放置在纳米三维测量机的工作台上,用精密位移台带动被测样板沿测量光轴方向移动,通过纳米测量机采集位移数据,同时记录测头输出电压信号。图4所示为被测样板在测头聚焦面附近由远及近朝测头方向移动时测头输出电压与样品位移的关系。图4 测头电压与位移的关系  由图4可以看出,光学显微测头的输出电压与被测样品位移的关系呈S形曲线,与第1节中所述的通过差动光斑尺寸变化测量离焦量的原理相吻合。当被测样板远离光学显微测头的聚焦面时,电压信号近似常数。当被测样板接近测头的聚焦面时,电压开始增大,到达最大值后逐渐减小;当样板经过测头聚焦面时,电压经过初始电压值,可认为是测量的零点;当样品继续移动离开聚焦面时,电压继续减小,到达最小值时,电压又逐渐增大,回到稳定值。在电压的峰谷值之间,曲线上有一段线性较好的区域,在测量中选择这段区域作为测头的工作区,对这段曲线进行拟合,可以得到测头电压与样板位移的关系。在图4中所示的3 μm工作区内,电压与位移的关系为  式中:U为激光全息单元输出电压;∆d为偏离聚焦面的距离。  3.2 台阶高度测量试验  在对光学显微测头的电压-位移关系进行标定后,用安装光学显微测头的纳米三维测量机对台阶高度样板进行了测量。  在测量过程中,将一块硅基SHS-1 μm台阶高度样板放置在纳米三维测量机的工作台上,首先调整样板位置,通过CCD图像观察样板,使被测台阶的边缘垂直于工作台的X轴移动方向,样板表面位于光学显微测头的聚焦面,此时测量光束汇聚在被测样板表面,如图5所示。然后,用工作台带动样板沿X方向移动,使测量光束扫过样板上的台阶,同时记录光学显微测头的输出信号。最后,对测量数据进行处理,计算台阶高度。图5 被测样板表面图像  台阶高度样板的测量结果如图6所示,根据检定规程[17]对测量结果进行处理,得到被测样板的台阶高度为1.005 μm。与此样板的校准结果1.012 μm相比,测量结果符合性较好,其微小偏差反映了由测量时温度变化、干涉仪非线性和样板不均匀等因素引入的测量误差。图6 台阶样板测量结果  3.3 一维线间隔测量试验  在测量一维线间隔样板的过程中,将一块硅基LPS-2 μm一维线间隔样板放置在纳米测量机的工作台上,使测量线沿X轴方向,样板表面位于光学显微测头的聚焦面。然后,用工作台带动样板沿X方向移动,使测量光束扫过线间隔样板上的刻线,同时记录纳米测量机的位移测量结果和光学显微测头的输出信号。最后,对测量数据进行处理,测量结果如图7所示。  根据检定规程[17]对一维线间隔测量结果进行处理,得到被测样板的刻线间距为2.004 μm,与此样板的校准结果2.002 μm相比,一致性较好。  3.4 分析与讨论  由光学显微测头输出电压与被测表面位移关系标定实验的结果可以看出:利用在测头聚焦面附近测头输出电压与样品位移量的单调对应关系,通过测量测头的输出电压变化,即可求得样品的位移量。在图4所示曲线中,取电压-位移曲线上测头聚焦面附近的3 μm位移范围作为工作区,对应的电压变化范围约为0.628 V。根据对电压测量分辨力和噪声影响的分析,在有效量程内测头的分辨力可以达到纳米量级。  台阶高度样板和一维线间隔样板测量实验的结果表明:光学显微测头可以应用于纳米三维测量机,实现微纳米表面形貌样板的快速定位和微小位移测量。通过用纳米测量机的激光干涉仪对光学显微测头的位移进行校准,可将测头的位移测量结果溯源到稳频激光的波长。实验过程也证明:光学显微测头具有扫描速度快、测量分辨力高和抗干扰能力强等优点,适用于纳米表面形貌的非接触测量。4 结论  本文介绍了一种用于纳米级表面形貌测量的高分辨力光学显微测头。在测头设计中,采用激光全息单元作为位移测量系统的主要元件,根据差动光斑尺寸变化原理实现微位移测量,结合光学显微系统,形成了结构紧凑、集测量和观察功能于一体的高分辨力光学显微测头。将该测头安装在纳米三维测量机上,对台阶高度样板和一维线间隔样板进行了测量实验,结果表明:该光学显微测头可实现预期的测量功能,位移测量分辨力可达到纳米量级。下一步将通过多种微纳米样板测量实验,进一步考察和完善测头的结构和性能,使其更好地适合纳米三维测量机,应用于微纳结构几何参数的非接触测量。作者简介李强,(1976-),男,高级工程 师,主要从事纳米测量技术研究,在微纳米表面形貌参数测量与校准、微纳尺度材料力学特征参数测量与校准、复杂微结构测量与评价等领域具有丰富经验。
  • 红点新桂再创佳绩 Biolin光学接触角测量仪获2019优秀新品奖
    p style=" text-align: justify text-indent: 2em " 2020年5月20日,由仪器信息网主办,“科学仪器优秀新品”评审委员会、“新品首发”栏目承办的科学仪器“优秀新品奖”在线发布盛典盛大召开,首次云端揭晓了 a href=" https://www.instrument.com.cn/zt/XP2019" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 2019年度科学仪器“优秀新品奖”获奖名单 /span /a ,22台仪器获此殊荣。大昌华嘉科学仪器部独家代理的Biolin光学接触角测量仪(水滴角测量仪)ThetaFlex荣获大奖。中航工业失效分析中心/北京航空材料研究院副主任刘昌奎公布了获奖结果。 /p script src=" https://p.bokecc.com/player?vid=FB080171B504F7B59C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-align: center text-indent: 0em " strong 获奖仪器专家点评及厂商代表感言 /strong /p p style=" text-align: justify text-indent: 2em " Biolin光学接触角测量仪(水滴角测量仪)ThetaFlex是2020年国际红点产品设计大奖最佳设计奖得主之一。仪器全自动化程度高,测量速度快,重复性好。具有独特的3D形貌模块,可以测量粗糙度对润湿性的影响。 /p p style=" text-align:center" img style=" max-width: 100% max-height: 100% width: 300px height: 200px " src=" https://img1.17img.cn/17img/images/202005/uepic/88d183b3-a80a-4bda-9ba0-e5115ea403bd.jpg" title=" 微信图片_20200512163131.png" alt=" 微信图片_20200512163131.png" width=" 300" height=" 200" border=" 0" vspace=" 0" / /p p style=" text-align: center " a href=" https://www.instrument.com.cn/netshow/C253967.htm" target=" _self" style=" text-decoration: underline " strong Biolin光学接触角测量仪(水滴角测量仪)ThetaFlex /strong strong /strong /a /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 176, 240) " strong “科学仪器优秀新品”评审委员会创新点评 /strong /span :Theta Flex软件具有独特的自动液体纯度检测功能,防止使用错误液体或不纯净液体影响实验结果,该功能很具有竞争力。可以记录液滴图像并且自动分析液滴的形状,对固液界面的研究非常有有意。虽然接触角测量仪是个小众产品,但该仪器在性能等各方面有很大的优越性,针对某些特定的应用领域有较大的促进作用。 /p
  • 403万!蓝田县人民医院计划采购光学生物测量仪等医疗设备
    一、项目基本情况项目编号:SCZC2022-ZB-1988-001项目名称:蓝田县人民医院2022年光学生物测量仪等医疗设备采购项目(二次)采购方式:公开招标预算金额:4,030,500.00元采购需求:合同包1(2022年光学生物测量仪等医疗设备采购项目):合同包预算金额:4,030,500.00元合同包最高限价:4,030,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1医用光学仪器光学生物测量仪等医疗设备1(项)详见采购文件4,030,500.00-本合同包不接受联合体投标合同履行期限:90天二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:合同包1(2022年光学生物测量仪等医疗设备采购项目)落实政府采购政策需满足的资格要求如下:本项目为非专门面向中小企业的项目3.本项目的特定资格要求:合同包1(2022年光学生物测量仪等医疗设备采购项目)特定资格要求如下:3.1供应商在递交投标文件截止时间前被“信用中国”网站(www.creditchina.gov.cn)和中国政府采购网(www.ccgp.gov.cn)上被列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单的,不得参加投标;3.2供应商应授权合法的人员参加投标,其中法定代表人直接参加,须出具法人身份证,并与营业执照上信息一致。法定代表人授权代表参加,须出具法定代表人授权书及授权代表身份证;3.3供应商不得存在下列情形之一:(1)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加本次采购活动;(2)为本项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动;3.4(1)投标人为代理商的应出具医疗器械经营许可证或医疗器械经营备案凭证,投标人为制造厂家应出具医疗器械生产许可证;(2)投标产品属于医疗器械管理的提供医疗器械注册证;(2)若所投产品为进口产品,投标人需提供进口产品厂家或国内总代理针对本项目投标的授权书。三、获取招标文件时间: 2022年12月26日 至 2023年01月03日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间)途径:全国公共资源交易平台(陕西省西安市)网站【首页电子交易平台陕西政府采购交易系统企业端】方式:在线获取售价: 0元四、提交投标文件截止时间、开标时间和地点时间: 2023年01月17日 09时30分00秒 (北京时间)提交投标文件地点:全国公共资源交易平台(陕西省西安市)网站【首页电子交易平台陕西政府采购交易系统企业端】开标地点:西安市公共资源交易中心开标室312五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜 1、落实政府采购政策:1.1 《关于进一步加大政府采购支持中小企业力度的通知》(财库〔2022〕19号)、《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)、《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)。1.2 财政部、国家发展改革委《关于印发〈节能产品政府采购实施意见〉的通知》(财库〔2004〕185号)、财政部、国家环保总局联合印发《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号)、国务院办公厅《关于建立政府强制采购节能产品制度的通知》(国办发〔2007〕51号)、财政部、国家发改委、生态环境部、市场监督总局联合印发《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库〔2019〕9号)、《关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)、《关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)。1.3 《财政部 农业农村部国家乡村振兴局关于运用政府采购政策支持乡村产业振兴的通知》(财库〔2021〕19 号)、《财政部农业农村部国家乡村振兴局 中华全国供销合作总社关于印发的通知》(财库〔2021〕20 号)。1.4 《陕西省财政厅关于加快推进我省中小企业政府采购信用融资工作的通知》(陕财办采〔2020〕15 号)、陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23 号)。若享受以上政策优惠的企业,提供相应声明函或品目清单范围内产品的有效认证证书。2.开标形式:本项目将采用“不见面开标”形式。操作说明详见平台〖首页〉服务指南〉下载专区〗中的《西安公共资源交易不见面开标大厅投标人操作手册》。3.招标文件获取方式:全国公共资源交易平台(陕西省西安市)网站〖首页〉电子交易平台〉陕西政府采购交易系统〉企业端〗免费下载本项目电子招标文件(*.SXSZF)4.政府采购信息发布媒体:陕西省政府采购网、全国公共资源交易平台(陕西省西安市)5.其他本项目为电子化政府采购项目,投标人初次使用电子交易平台时,请先阅读【全国公共资源交易平台(陕西省西安市)】(http://sxggzyjy.xa.gov.cn)网站〖首页〉服务指南〉下载专区〗中的《西安市市级单位电子化政府采购项目投标指南》,并按要求完成诚信入库登记、CA认证及企业信息绑定.办理CA认证:电子交易平台现已接入陕西CA、深圳CA、西部CA、北京CA四家数字证书公司,各投标人在交易过程中登录系统、加密/解密投标文件、文件签章等均可使用上述四家CA公司签发的数字证书。办理须知及所需资料详见:http://www.sxggzyjy.cn/fwzn/004003/20220701/6972fe02-f996-4928-951e-545dab02e53c.html。请投标人务必及时下载招标文件并做好备份,逾期下载通道将关闭,未及时下载招标文件将会影响投标文件编制及后续投标活动。制作电子投标文件(*.SXSTF)需要使用专用制作工具进行编制,编制完成后使用CA锁对电子投标文件进行签章、加密递交电子投标文件。软件下载及操作说明详见西安市公共资源交易平台〖首页〉服务指南〉下载专区〗中的《政府采购项目投标文件制作软件及操作手册》。提交电子投标文件:在提交投标文件截止时间前及时提交加密后电子投标文件,逾期提交的,系统将会拒收。因投标人自身设施故障或自身原因导致无法完成签到、解密或投标的,由投标人自行承担后果。提交投标文件截止时间前,投标人应随时留意【陕西省政府采购网〗、【全国公区资源交易平台(陕西省西安市)〗上可能发布的变更公告。本项目采用“不见面开标”形式,投标人可登录全国公共资源交易平台(陕西省西安市)网站〖首页〉不见面开标〗系统,在线参加开标过程。操作手册详见〖首页〉服务指南〉下载专区〗中的《西安公共资源交易不见面开标大厅投标人操作手册》。按照陕西省财政厅《关于政府采购投标人注册登记有关事项的通知》中的要求,投标人应通过陕西省政府采购网(http://www.ccgp-shaanxi.gov.cn/)注册登记,加入陕西省政府采购供应商库。(7)投标人于招标文件发售时间内登录全国公共资源交易平台(陕西省西安市)系统(http://sxggzyjy.xa.gov.cn/),选择本项目点击“我要投标”,参与投标活动。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:蓝田县人民医院地址:蓝田县蓝水路与滋水路交汇处东南角联系方式:029-827202092.采购代理机构信息名称:陕西省采购招标有限责任公司地址:西安市高新二路2号山西证券大厦8层招标三部联系方式:029-852575053.项目联系方式项目联系人:王伟、王莉电话:029-85257505陕西省采购招标有限责任公司2022年12月26日
  • 海洋光学2660万美元收购ILT,将深化光测量技术领域
    近日,海洋光学(Ocean Insight)完成了对美国International Light Technologies, Inc. (ILT)公司的收购。海洋光学与ILT携手,将双方产品的优势与技术互补,研发更加符合市场需求的产品,提供更加全面的解决方案,满足客户的需求。在截至2021年10月的财年中,ILT未经审计的收入为990万美元,息税前利润为270万美元。ILT的对价为2660万美元(约1950万英镑),由英国豪迈(Halma)以现金和无债务的方式支付。(海洋光学隶属于英国豪迈环境与分析事业部)英国豪迈集团CEO Andrew Williams表示:“ILT关注光的产生和测量,与海洋光学利用光的测量来扩大科学发现、减少浪费和提高生活质量的愿景高度一致。ILT的产品和服务将与海洋光学现有的产品和技术形成互补,促使其能够更好地服务于客户,满足客户更广泛的需求。”海洋光学全球总裁Michael Edwards博士表示:“通过与ILT的结合,为我们的光学测量技术赋能,以满足日益多样化的应用和行业的需求,促进光学测量产品的创新,帮助客户应对紧迫挑战,提供让世界更安全、更清洁、更健康的方案。”在美国,ILT的光源和光测量系统组合将扩大海洋光学作为光测量和探测系统的国际领导者的地位,并增强海洋光学应用光谱知识解决不同市场、行业和部门的测量挑战的能力。“ILT正在为一些全球大型企业开发高度定制的光产生和光测量解决方案,并在这一方面处于领先地位。” Michael Edwards博士评论道,“通过此次合并,我们正在提高我们的能力,以满足日益多样化的应用和行业的需求,进一步扩大光学传感产品创新。” 关于海洋光学海洋光学(Ocean Insight)隶属于英国豪迈环境与分析事业部。海洋光学是微型光纤光谱仪的发明者,是光学解决方案的供应商,可提供从深紫外、可见光到近红外的光谱测量方案,用于吸光度、反射率、透射率、荧光和拉曼光谱的测量。体型小巧,便于科研和集成开发,同时还提供以应用为基础的光学传感、颜色测量等工业在线检测方案。海洋光学拥有庞大的产品线,包括光谱仪、光学传感器、光纤和光源等等。海洋光学的产品在医学和生物研究、环境监测、科学教育、工业应用、娱乐照明及显示等领域应用广泛。关于ILTILT总部位于美国马萨诸塞州皮博迪,是一家技术光源和光测量系统开发商,其产品和解决方案广泛用于生物医学、环境、农业、食品和饮料以及工业应用等领域。ILT开发的产品和提供的解决方案,满足了市场与客户的广泛需求,且解决了世界关于光源测试方面各种各样的难题。ILT结合专业的照明和测光技术,为不同领域的不同需求提供者出色的产品与服务。
  • 西安市飞行器光学成像与测量技术重点实验室揭牌
    2023年7月7日,西安市飞行器光学成像与测量技术重点实验室(简称“重点实验室”)揭牌仪式暨首届学委会会议在中国科学院西安光机所举行。西安市科技局成果转化与校地合作处处长解中,西安光机所党委书记、副所长孙传东,重点实验室主任曹剑中、学委会主任周军以及学委会委员,西安光机所相关科技管理人员约30人参加会议。会议由重点实验室执行主任陈卫宁和学委会主任周军分阶段主持。   孙传东在致辞中表示,飞行器光学成像与测量学科为我国火箭、空间站及飞船等领域的光学测量做出过巨大贡献,西安光机所在空天光电成像载荷领域已经成为主力军。他感谢受邀承担学术委员的各位专家,恳请学委会大力指导与帮助,使实验室起好步、建设好。他表示西安光机所作为依托单位一定按照市科技局要求,做好该重点实验室建设的各项保障工作,充分发挥重点实验室对于研究所学科建设、人才培养和成果产出的重要支撑作用。   解中宣读了重点实验室认定通知,她对西安光机所在飞行器测量等领域取得的成就给予了高度评价,她表示将持续支持西安光机所,鼓励各类科研成果转化为实际生产力,也希望研究所未来产出更多的科研成果,为地方经济发展和国家重大科技项目提供更有力的服务。   随后,解中、孙传东、周军、曹剑中共同为重点实验室揭牌,孙传东为学委会委员颁授聘书。周军代表学委会致辞,他表示学术委员会将群策群力,把握重点实验室发展规划,为重大学术活动提供学术指导和咨询建议,为推动我国空天飞行器光学成像与测量技术的发展进步积极贡献力量。   揭牌仪式结束后,陈卫宁对重点实验室申报过程及目前研究现状和发展规划作汇报。各位学术委员会委员围绕重点实验室发展规划开展了热烈的讨论。他们结合就重点实验室的方向定位、基金规划、人才推进、领域合作等问题展开深入研讨,并给出三点重要建议:一是进一步细化研究领域和方向定位;二是利用重点实验室平台加强创新研究,解决新难题;三是对重点实验室成员提出要有更明确的任务规划和预期研究成果产出。首届学委会会议将进一步推动重点实验室健康发展,提升我国在飞行器光电成像载荷领域的科研能力和技术水平,为推动科技进步、服务国家战略做出进一步的贡献。   最后,曹剑中表达了对市科技局支持重点实验室认定、对学委会委员长期以来的关心指导和实验室各位同仁的辛勤付出表示感谢,对给予支持的研究所领导和职能部门表示感谢。他表示,作为国家创新体系的重要组成部分,重点实验室在新的起点将以更高的标准、更好的质量推动科学研究工作,实现科技创新成果最大化,报效国家、服务地方。   西安市飞行器光学成像与测量技术重点实验室的成立,标示着西安光机所在飞行器光学成像与测量技术领域将开启新篇章。当日下午,由重点实验室和中国科学院青促会西安光机所小组共同承办的学术论坛获得圆满举行,内容涉及空间观测、航天器智能视觉、航空遥感测量等领域面临的技术需求和挑战,为飞行器光学成像与测量领域最新需求和研究进展搭建了良好的交流平台。揭牌仪式。
  • 贵州省光学测量工程技术研究中心正式挂牌
    7月1日,由贵阳新天光电科技有限公司承担的“贵州省光学测量工程技术研究中心”建设项目顺利通过了省科技厅、省发改委、省财政厅联合组织的专家验收,并正式挂牌。   贵州省光学测量工程技术研究中心主要针对精密光学测量仪器领域共性关键、前沿性技术难题开展创新研究,以期实现测量仪器高精度、智能化和数字化,为全省整体提升全省装备制造业水平提供先进加工辅具支撑。   项目建设期内,中心先后完成了“高精度测长机开发生产”、“全自动视频测量显微镜”、“JT35(¢1500mm)大型投影仪”等三个新产品研发,负责起草和参与编制国家标准各1项,参与起草行业标准10项,承担了国家项目3项,省级项目3项,申报专利17件(其中3件发明专利,1件已授权)。为机床、航天航空、工具、模具等行业提供解决方案200余项,中心实现直接经济收入1560万元,支撑企业实现销售收入7000余万元,取得了明显的创新绩效。在创新基础环境建设方面,中心依托贵阳新天光电科技有限公司建设了测量技术、光学和软件测试等3个实验室和产业化工程室、新天北工大研发中心、光栅传感器等6个研究室,成立相关专门的技术发展部和技术委员会,形成了固定人员和流动人员相结合的创新团队(其中专职研发人员50人、合作研究人员20多人)。建立了按贡献分配的人事制度和薪酬激励机制等规章制度。与贵州大学、北京工业大学、复旦大学、西安交通大学、天津大学、贵州省机电装备工程中心、成都工业研究所、珠海荣信科技有限公司等单位建立了紧密的产学研合作关系。   验收会上,省科技厅组织省内外专家围绕光学测量产业发展和新天光电科技有限公司的发展进行了研讨,初步确定了高精度光栅设计制造,在线检测系统,高精度多用途检测仪作为今后的重点产业发展方向和技术攻关方向,要求企业尽快根据研讨意见,结合企业发展需求,确定攻关目标和技术路线,整合科研团队抓紧申报科技重大项目并推进实施。科技厅将继续做好协调服务工作。
  • 贵州省光学测量工程技术研究中心正式挂牌
    7月1日,由贵阳新天光电科技有限公司承担的“贵州省光学测量工程技术研究中心”建设项目顺利通过了贵州省科技厅、贵州省发改委、贵州省财政厅联合组织的专家验收,并正式挂牌。   贵州省光学测量工程技术研究中心主要针对精密光学测量仪器领域共性关键、前沿性技术难题开展创新研究,以期实现测量仪器高精度、智能化和数字化,为整体提升贵州省装备制造业水平提供先进加工辅具支撑。   项目建设期内,中心先后完成了“高精度测长机开发生产”、“全自动视频测量显微镜”、“JT35(¢1500mm)大型投影仪”等三个新产品研发,负责起草和参与编制国家标准各1项,参与起草行业标准10项,承担了国家项目3项,省级项目3项,申报专利17件(其中3件发明专利,1件已授权)。为机床、航天航空、工具、模具等行业提供解决方案200余项,中心实现直接经济收入1560万元,支撑企业实现销售收入7000余万元,取得了明显的创新绩效。在创新基础环境建设方面,中心依托贵阳新天光电科技有限公司建设了测量技术、光学和软件测试等3个实验室和产业化工程室、新天北工大研发中心、光栅传感器等6个研究室,成立相关专门的技术发展部和技术委员会,形成了固定人员和流动人员相结合的创新团队(其中专职研发人员50人、合作研究人员20多人)。建立了按贡献分配的人事制度和薪酬激励机制等规章制度。与贵州大学、北京工业大学、复旦大学、西安交通大学、天津大学、贵州省机电装备工程中心、成都工业研究所、珠海荣信科技有限公司等单位建立了紧密的产学研合作关系。   验收会上,贵州省科技厅组织省内外专家围绕光学测量产业发展和新天光电科技有限公司的发展进行了研讨,初步确定了高精度光栅设计制造,在线检测系统,高精度多用途检测仪作为今后的重点产业发展方向和技术攻关方向,要求企业尽快根据研讨意见,结合企业发展需求,确定攻关目标和技术路线,整合科研团队抓紧申报科技重大项目并推进实施。科技厅将继续做好协调服务工作。
  • 华测检测(CTI)采购蓝菲光学光谱测量系统
    国内领先的第三方测试机构华测检测技术股份有限公司(CTI)于近期购买了一套蓝菲光学(Labsphere)的CSLMS 2米和50厘米直径积分球光谱测量系统用于LED灯具和模组的检测。   蓝菲光学(Labsphere)的CSLMS(大型光源光通量检测系统)系统具有极高的精度和稳定性,受到美国能源之星(Energy Star)的认可并符合最新CIE测量标准。在美国能源部认可的7个授权进行能源之星检测的实验室中,有5个实验室采用Labsphere的积分球检测设备。   华测检测将使用Labsphere的CSLMS系统对LED灯具和模组进行发光效率、光通量、局部流明强度、流明维持、颜色维持、显色指数、品色坐标、波长、相关色温等参数的检测。通过使用Labsphere的设备,华测检测的检测能力将更受国际认可,并且对于其通过能源之星检测的审核有很大帮助。   华测检测技术股份有限公司是中国第三方测试、检验与验证服务的开拓者和领先者,为众多行业和产品提供一站式的全面质量解决方案。华测检测的实验室负责人张经理表示,蓝菲光学的产品在国际上得到了广泛认可,值得信任。   关于豪迈 (HALMA) 以及蓝菲光学 (Labsphere):   蓝菲光学 (Labsphere) 有限公司 ( http://www.labsphere.com) 是世界光测试、测量以及光学涂层领域的领军企业。公司产品包括 LED、激光器及传统光源光测量系统 成像设备校准用的均匀光源 光谱学附属设备 高漫反射材料及背光显示屏覆层、计算机X线成像以及系统校准。公司的专家在诸多领域取得了多项专利技术,比如晶片和紫外线传输中的 LED 测试方法。蓝菲光学 (Labsphere) 的工程人员也常常协助客户,开发定制光采集管和导光管。蓝菲光学 (Labsphere) 是英国豪迈集团(HALMA p.l.c. - http://www.halma.cn)的子公司。创立于1894年的豪迈是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有 4000 多名员工,近40 家子公司。豪迈目前在上海、北京、广州和成都设有代表处,并且已在中国开设多个工厂和生产基地。
  • 德国政府资助研发新型高敏感快速光学测量技术
    现代日常生活已离不开技术复杂的产品,高技术产品的生产工艺也在不断改变,关注产品质量之外也致力于采用高效、的生产方式,通过改善程序循环来尽可能避免产品污染或是毒性负载。尤其在产品销量大的工业领域,制造方式的修正对经济与环境有显著影响。 优化生产工艺的基本条件是拥有合适的、尽可能普遍适用的高水准传感测量仪器,而目前市场上提供的设备多数不适用,或速度太慢,或对必要的检测限度不够敏感。 为解决这个现实问题,德国联邦教研部近日斥资40,4万欧元,支持联合研发项目&ldquo 基于中红外激光源的光学直列流体分析仪(OIFA)&rdquo 。该项目于今年6月正式启动,为期三年,目标是研发新型高敏感快速光学测量仪器,成品将是模块化的、坚固的光学传感器现场设备,可以普遍用于测量各种不同的流体&mdash &mdash 气体或液体,可测量出最少量的毒素污染。应用这项技术,原先复杂的样本制备与提取、用于运行实验室分析仪器的基础设施等均可放弃。 新测量技术的设计全靠新红外激光器,这种不过大头针针头般大小的激光器在中红外波段发光,非常适宜测量多种在这个范围内吸收光的物质,既便是十亿分率范围内(parts-per-billion)的浓度也可检测出来,通过测量装置上的信号变化,显示出尽管含量极低却对工业程序、对环境与人体具有很大影响的物质。 极其出色的敏感度及快速是这项技术的独到之处。结合针对工业用户与未来潜在用户方面的必要知识,新的光学传感器可为填补市场空缺作出贡献。为评估其适用性,该项目在进程中将先生产出样机,试验应用的领域是测量高压、高温下可燃气体中的一氧化碳,之后还将投入实际生产场地经受检验。 以上信息有HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱等设备。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制