当前位置: 仪器信息网 > 行业主题 > >

测试焊锡器

仪器信息网测试焊锡器专题为您提供2024年最新测试焊锡器价格报价、厂家品牌的相关信息, 包括测试焊锡器参数、型号等,不管是国产,还是进口品牌的测试焊锡器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测试焊锡器相关的耗材配件、试剂标物,还有测试焊锡器相关的最新资讯、资料,以及测试焊锡器相关的解决方案。

测试焊锡器相关的资讯

  • 岛津EPMA微量元素分析在无铅焊锡材料中的应用
    EPMA无铅焊锡材料 随着微型电子电器的发展以及根据国家信息产业部《电子信息产品生产污染防治管理办法》的规定,无铅焊锡(lead-free solder)已逐渐成为电子电器行业中的主流焊料。相较普通焊锡,无铅焊锡具有以下三大优势: 1. 溶化后出渣量比普通焊锡少,且具有优良的抗氧化性能;2. 溶化后粘度低,流动性好,可焊性高,适用于波峰焊接工艺;3. 由于氧化夹杂极少,可以更大限度地减少拉尖、桥联现象,焊接质量可靠,焊点光亮饱满。 无铅焊锡中杂质元素含量及分布的控制决定了焊料的质量及最终的上锡效果,因此工厂需要借助电子探针(EPMA)的元素含量和图像分析功能对无铅焊锡中的杂质含量和微观分布进行检测。图1. 岛津场发射电子探针EPMA-8050G 岛津EPMA-8050G型电子探针(图1)搭载高质量场发射电子光学系统,结合岛津特有的52.5°高X射线取出角和全聚焦晶体,可以实现: 1 优越的空间分辨率EPMA-8050G可达到的更高级别的二次电子图像分辨率3nm(加速电压30kV)。 (加速电压10kV时20nm@10nA/50nm@100nA/150nm@1μA) 2 大束流更高灵敏度分析可实现其他仪器所不能达到的大束流(加速电压30kV时可达3μA)。在超微量元素的检测灵敏度上实现了质的飞跃,将元素面分析时超微量元素成分分布的可视化成为现实。 岛津研发部门使用EPMA-8050G仪器在低加速电压(7kV)条件下对电子元件和印刷电路板连接处的焊料层进行了背散射(BSE)和元素面分布分析,图2 展示了微米尺度(刻度尺5μm)上杂质元素以点状Ag颗粒沉积为主,少量Cu颗粒沉积,确定了杂质元素的种类。 图2. 焊料层背散射和元素面分布图像分析(刻度尺5μm) 扩大放大倍数(刻度尺500nm)对富集Ag颗粒区域进行背散射和元素面分布分析,图3展示清晰区分Ag颗粒所需的横向空间分辨率大致为100nm甚至更小。 图3. 焊料层背散射和元素面分布图像分析(刻度尺500nm) 使用高加速电压(25kV)条件对相同视域进行分析,图4 展示Ag颗粒在高加速电压条件下具有更广的分布范围(C、D点区域均有Ag颗粒分布),结合岛津的电子传播路径显示程序(Electron penetration display program)分析,图5 展示高加速电压条件下X射线出射深度更大,根据以上信息可模拟推断出Ag杂质颗粒在焊料层纵向上的分布(图6)。 图4. 不同加速电压(7kV和25kV)条件下背散射和Ag元素分布图像 图5. 不同加速电压条件下电子束作用范围(红色)和X射线出射深度(绿色) 图6. 推断的Ag颗粒在焊料层内的纵向分布 更多电子探针仪器信息和相关应用敬请关注岛津科技资讯通推文内容。 本文内容非商业广告,仅供专业人士参考。
  • 当新鲜空气成为奢侈品?——浅谈GC-MS在呼吸气检测中的应用
    近日,一则“新德里空气污染严重,民众花30元吸氧15分钟”的新闻引起公众关注。看似略显荒谬,却也发人深省。据报道,印度新德里空气重度污染,多地PM2.5数值超过999,“爆表”程度相当于当地四千万人每人每天吸33.2根香烟,对呼吸道的损伤可见一斑。 近几年,雾霾话题总能常居“热搜”,一方面是环境问题严峻,另一方面,大家开始越来越重视自身健康。谈癌色变的今天,人们愈发意识到自己的健康与一呼一吸息息相关,开始大量购买防霾口罩,空气净化器、新风系统也成为家装必备。关注每口吸入空气的你又可知道:每一下呼出气也可以作为疾病初筛和诊断的依据?实施慢性呼吸系统疾病防治行动此前国务院印发《国务院关于实施健康中国行动的意见》明确指出:针对心脑血管疾病、癌症、慢性呼吸系统疾病、糖尿病四类慢性病需要加强防控。针对呼吸系统疾病提出实施慢性呼吸系统疾病防治行动,引导重点人群早期发现疾病,控制危险因素,预防疾病发生发展。对于呼吸系统的疾病,如何快速发现、及早治疗,也成为了相关研究需要突破的方向。 - 新型无创检测方法 -如今科学家们带给了我们一种新型的检测方法,只需要简单的呼吸就能够进行疾病初筛并提供诊断的依据。这就是今天我们要介绍的呼吸气检测,一种无创伤的、简便快捷的诊断方式,可作为诊断呼吸系统疾病(如:哮喘)的方法。对人体肺泡气中痕量的VOCs等小分子代谢物进行的代谢组学研究,目前已在肺癌、胃癌、结肠癌、乳腺癌、糖尿病等重大疾病的早期筛查和研究中有所应用,国外也有了相关应用的报道。英国癌症研究院(Cancer Research UK)和英国生物技术公司(Owlstone Medical)就“从癌症患者的呼吸中寻找潜在的生物标记物”开始了临床试验。呼出气中VOCs极低的浓度,对实验设备(前处理富集和质谱分析)的灵敏度提出了极大的考验。 具体方法首先,Owlstone Medical与呼吸组学领域专家合作开发的一种完全非侵入性的呼吸检测仪ReCIVA Breath Sampler(下图),通过软件控制采样泵开关时间,结合Breath Biopsy Cartridge(呼吸气吸附管),从而对测试者的呼出气组分进行有效富集。Owlstone Medical的呼吸气采样器ReCIVA Breath Sampler 收集完成后,研究人员通过MarkesTD100-xr热脱附仪对呼吸气VOCs解析进样,采用Thermo Scientific™ GC-Orbitrap/MS(高分辨静电场轨道阱气质联用仪)进行分析。通过Thermo Scientific™ TraceFinder4.1对数据自动进行解卷积和谱库检索处理,并结合高分辨过滤分值(HRF Score)与保留指数(RI)进一步确证质谱定性结果。赛默飞高分辨静电场轨道阱气质联用仪与热脱附仪联机图TraceFinder4.1的高分辨数据解卷积和谱库检索界面 呼吸气检测中,重要的生物标记物往往因为浓度低、质谱响应信号弱,而被复杂的呼吸气基质干扰所淹没。Orbitrap作为质谱检测器,以其高分辨率、高灵敏度著称,同时宽线性动态范围使得待测化合物即使处于极高或极低浓度时,也不会因为质量精度和离子比率的改变而导致定性错误。有了全流程的分析仪器,该实验基于吸烟相关的生物标记物数据库对不同吸烟状况人群(非吸烟者、吸烟者、戒烟者)的呼吸气进行了研究,发现二甲基呋喃、甲苯、乙苯等化合物在呼吸气中的含量与吸烟行为有极高的相关性。Orbitrap高分辨静电场轨道阱气质联用与呼吸气采样器、热脱附仪联用的一整套呼吸气分析系统,在极低浓度呼吸气生物标记物分析中展示出极大的优势。虽然呼吸活检仍处于临床试验阶段,但未来可期,呼吸癌症测试一旦成为现实,研究将影响数百万人的生活,通过早期癌症筛查,有望拯救数十万人的生命并节省超过15亿美元的相关医疗费用。一呼一吸之间,有我们对健康生活的追求,也会有我们对此的科学守护。 参考文献:BREATH BIOPSY: Combining Thermal Desorption-Gas Chromatography with High Resolution Mass Spectrometry for Improved Sensitivity and Selectivity in Untargeted Breath Analysis, Jasper Boschmans, Cristian Cojocariu, Paul Silcock, Billy Boyle, Alexander Makarov, Max Allsworth 色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 传承与发展 专注于定制化专用型近红外——访伟创英图公司总经理姚建垣和总工程师韩熹
    p   近年来我国近红外光谱分析技术无论在研究还是应用方面都取得了长足进展,已广泛应用于农业、饲料、粮油、烟草、制药、食品、石油化工等行业,在提升行业生产技术水平和增加经济效益等方面发挥了显著的效果。据统计,目前中国保有的近红外光谱仪器有3000多台,每年的销售额大致在2亿多人民币,年增长率10-15%。并且,大家普遍认为,中国目前还只有小部分企业单位购买了近红外光谱仪器,未来的市场增长空间还非常大。 /p p   近红外光谱仪器市场绝大部分被进口品牌所占据。不过,国内许多优秀的近红外光谱分析仪器厂家也在不断地涌现出来,研制开发了许多近红外光谱仪器新产品,其技术水平和创新程度均达到了一个新的高度。这其中就包括,2015年成立的北京伟创英图科技有限公司。 /p p   仪器信息网编辑近日拜访了伟创英图,并采访了公司总经理姚建垣和总工程师韩熹。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/05cb34ea-a3e2-4995-bcb1-c13c658cc0c5.jpg" title=" DSC05939_meitu_1.jpg" alt=" DSC05939_meitu_1.jpg" / /p p style=" text-align: center " 伟创英图总经理姚建垣和总工程师韩熹 /p p    strong 让仪器去适应样品,让用户有更多的选择 /strong /p p   姚建垣谈起创立伟创英图的两个目的:一是传承巨匠情怀,把近红外仪器研制和应用的火种保留、传播下去 二是认真做好产业化工作,以敬畏的心态踏踏实实做一个工匠。“在公司创立初期我就想好,要认真的做好几个产品。” /p p   虽说伟创英图成立才3年的时间,其实,其近红外光谱技术应用团队主要成员均来自于成立于1997年的英贤仪器,至今已经走过20余年的路程,所以,在伟创英图的发展过程中时时闪现着优良思想和技术的传承。姚建垣是英贤仪器的创始人,他也经常自称自己是国产近红外的“老兵”。而韩熹2004年大学毕业实习论文就是在英贤仪器完成的,毕业后即成为了姚建垣带领的近红外光谱仪器研制团队的一员。韩熹常说自己将青春奉献给了近红外事业,并将一直奉献下去。 /p p   伟创英图如今拥有10余名员工,其中6个人是研发人员,而所有骨干人员都是公司的股东。姚建垣说到,我们是一家小企业,“小”有小的好处,每个人的分工都很明确,公司的考核制度尽量简化,这也让大家把精力都放在了提高效率和效益上。而姚建垣觉得自己最大的成功之处即是培养了这些年轻人的事业心,尤其是对近红外事业、对科学仪器事业的执着之心。 /p p   大部分的近红外光谱仪器公司一直在走的路线是,通用型仪器结合不同测量附件、个性化的解决方案,以期适合不同行业领域的应用,是典型的让样品去适应仪器,用户没有太多的选择余地。而伟创英图并没有延续这样的技术路线,姚建垣说到,我们不会与大品牌公司的通用型仪器去竞争,而是将公司业务定位为“定制化专用型近红外光谱研制与产业化服务”。 /p p   对此,韩熹解释到,通过20多年坚持不懈的专注力, 我们实现了将原本复杂的近红外光谱仪器细分为可组合复用的功能模块,以“货架”方式为用户展现,根据用户的具体样品和应用场景、乃至预算等特性进行灵活组合,为用户定制化专属近红外光谱仪器以及配套软件。“我们是让仪器去适应样品,用户有了更多的选择。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/061b50c1-afcd-4c3e-92d3-4eb707ab551f.jpg" title=" 伟创英图的定制化流程.jpg" alt=" 伟创英图的定制化流程.jpg" / /p p style=" text-align: center " 伟创英图的定制化流程 /p p   目前,伟创英图已经形成了台式、便携、手持、在线、专用等多种形式的产品序列,经过三年多的实践,已经取得了很好的市场效果。“我们以定制化客户为主,少量的为直接用户。” 姚建垣说到,“主要的应用领域为大农业和大化工,还有部分国防应用”。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/cb6e1e59-dc29-4846-b868-d2ea0993a442.jpg" title=" 近期交付的纤维制品主体成分高效识别与分拣装置.jpg" alt=" 近期交付的纤维制品主体成分高效识别与分拣装置.jpg" / /p p style=" text-align: center " 近期交付的纤维制品主体成分高效识别与分拣装置 /p p   strong  解决近红外光谱技术本身“痛点”:台间差和模型 /strong /p p   从上世纪70年代末,从粮食和饲料领域的应用开始,中国近红外光谱技术研究和应用已走过近40年的历程。在近40年里,近红外光谱技术解决了传统分析技术的“痛点”,如分析时间长、样品测量一般需预处理等。而如今,已经到了解决近红外光谱技术本身“痛点”的时候了。姚建垣如是认为,并指出,近红外光谱技术本身的痛点主要集中在“应用”层面上,如何让应用落地,让近红外成为一门“用得上、会用、用得起”的技术,是我们现在应该考虑的主要问题。 /p p   近红外应用上的痛点之一为仪器台间差和模型。对于批量化的小型近红外仪器,韩熹他们采用了一个方法较好的解决了台间差的问题。即,对出厂筛选合格的产品按照光学特性进行分类,将台间差异性趋于一致的仪器归为一族,根据用户用量特点进行精准营销。“整个过程并没有增加硬件成本,却在一定程度上达到了降低仪器台间差的目的。”韩熹说到。 /p p   限制近红外光谱技术应用推广的另外一个痛点,也是很多人谈之色变的难点,那就是“模型”了。如何将“阳春白雪”的化学计量学变得简单易用,是伟创英图一直在努力的事情。2017年,韩熹将并行模型计算与优化技术融入ChemoStudio化学计量学软件,使其模型建立与优化效率大幅提高,运算耗时减少达到50%以上,同时增加智能学习功能,一方面丰富模型优化任务数量,另一方面剔除冗余模型优化任务,筛选后的有效模型优化任务数控制在十万级。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/051bbdf7-3411-49f3-a245-a493c32ea732.jpg" title=" Corn数据模型十五万次优化过程.jpg" alt=" Corn数据模型十五万次优化过程.jpg" / /p p style=" text-align: center " Corn数据模型十五万次优化过程 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/f658c371-8b46-4abd-b5f2-9bce3c7c230e.jpg" title=" Corn数据模型优化效果.jpg" alt=" Corn数据模型优化效果.jpg" / /p p style=" text-align: center " Corn数据模型优化效果 /p p   由点及面的近红外光谱成像技术是近年来的研究热点,在这方面伟创英图也做了些工作。常见的高光谱成像,价格贵、测试速度慢,并不适合现场快速检测。而通常的企业用户在实际应用中并不需要太多的波长,伟创英图会根据用户需求进行波长筛选,如只选用2-3个波长,再通过图像学算法进行校正获得最终的图像。该方法不失近红外的特色,成本又相对较低。韩熹指出,这种多光谱成像分析技术适用于,观测果品的成熟度、病害在不同时期的变化情况,肉制品的脂肪、油酸分布情况等,在物流行业可以发挥很好的作用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/822e229b-5cbf-4274-a49b-5981c0873516.jpg" title=" 猕猴桃贮藏期间内部病变发展近红外图像.jpg" alt=" 猕猴桃贮藏期间内部病变发展近红外图像.jpg" / /p p style=" text-align: center " 猕猴桃贮藏期间内部病变发展近红外图像 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/1f8d9c7f-7239-4916-8a38-171b62b7789c.jpg" title=" 猕猴桃贮藏期间成熟度变化近红外图像.jpg" alt=" 猕猴桃贮藏期间成熟度变化近红外图像.jpg" / /p p style=" text-align: center " 猕猴桃贮藏期间成熟度变化近红外图像 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201811/uepic/39166760-5b1c-4a16-b8df-c6e573f9d328.jpg" title=" 牛肉在多波长组合下的近红外图像.jpg" alt=" 牛肉在多波长组合下的近红外图像.jpg" / /p p style=" text-align: center " 牛肉在多波长组合下的近红外图像 /p p style=" text-align: right "   采访编辑:刘丰秋 /p p    strong 后记 /strong /p p   姚建垣于1997年辞职创业,成立北京英贤仪器有限公司。2007年北京英贤仪器有限公司被聚光科技(杭州)股份有限公司收购,2012年合同期满姚建垣从聚光科技公司离职。2015年4月姚建垣与其他合伙人再次进行创业,成立北京伟创英图科技有限公司。 /p p   姚建垣从1983年起就从事科学仪器研制,到目前为止已有30多年,专业从事近红外光谱技术产业化工作也有20多年,这其中经历了国企公司、民营企业、股份化公司,最终回归合伙人公司的路程,经历了改革开放前后科学仪器发展的全过程,目睹和参与了科学仪器发展的喜怒哀乐,起起伏伏,对各种体制下的科学仪器公司发展思路深有体会。 /p p   这次采访的最后,姚建垣分享了他多年创业一些体会。“静心做好小公司,专注特色发展,控制发展规模,有所为有所不为,不盲目追求做大 控制有形资产发展,做大无形资产,把企业价值做大 把特色产品做精,把产品品牌做大,把核心竞争力做大 把人员做精,把考核做简、把激励做对,是最大的竞争力 把管理做简,把流程做简,把效率做高,把效益做大 把产品做简,把成本做低,把应用做精,把市场做细,就是做大。” /p p br/ /p
  • 【我与近红外的故事】韩熹:十数载不变初心 耐寂寞终有所报
    p   我叫韩熹,2004年至今活跃在近红外光谱分析领域的实践者,自诩为近红外光谱分析技术“杂”家,追随近红外之光十数载,虽青春不再,然不变初心,奉行“良心做人,诚信做事”之道,从事近红外光谱分析事业已经第13个年头,目前行业现状是“做应用研究的多,做产品研制的少”,我算是少数派中的一员,立足于变幻莫测的仪器市场,坚持近红外光谱分析仪研制,着实不易。 /p p    strong 启程-英贤仪器 /strong /p p   2004年,我毕业于首都师范大学应用化学系,实习期进入北京英贤仪器有限公司,随后成为姚建垣先生带领的近红外光谱分析仪器研制团队的一员。 /p p   从那时起,我便与近红外光谱分析事业结缘。在陆婉珍院士、袁洪福教授、褚小立博士等专家学者的领路下,团队突破了多项近红外光谱分析仪研制技术壁垒,先后推出多款国产近红外光谱分析仪,并且首次拥有自主知识产权的化学计量学软件,选择石油化工分析应用领域为突破口,迅速占领市场,打破了进口仪器常年在市场、价格上的双垄断,让国人用得上、用得起近红外光谱分析仪,推开了近红外光谱分析仪国产化、商品化的大门。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/816cf55c-ad34-454e-8748-ed1142465f1c.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center " 英贤仪器创始人-姚建垣先生 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/fd76c38e-01fc-4055-98bd-86491939676e.jpg" title=" 2_副本.jpg" / /p p style=" text-align: center " 陆婉珍院士对英贤仪器坚持国产近红外光谱分析仪研制给予大力支持 /p p    strong 融合-聚光科技 /strong /p p   2007年,英贤仪器并入聚光科技(杭州)股份有限公司,成立近红外光谱分析事业部,起承转合,我们重新规划产品定位方向,分别建立以CM-2000化学计量学分析软件为代表的软件阵营以及SupNIR近红外光谱分析仪系列产品为代表的硬件阵营。 /p p   凭借多年化学计量学软件研发积累的经验,以及对国内、外化学计量学软件的深度剖析研究,公司决定将我借调至杭州总部,组建联合研发团队,着手设计与开发全新的化学计量学分析软件。历时一年,我们不辱使命,推出了CM-2000化学计量学分析软件,在整个界面设计与功能模块实现方面,打磨软件设计固有的思维棱角,以实际应用人员的思维为导向,使得整个建立模型、优化模型以及模型预测环节更符合应用人员操作习惯。随后2010年,我们将原本独立的测量软件与化学计量学软件进行整合,与数据库作为数据存储载体,研发了RIMP近红外光谱测量分析软件。 /p p   在近红外光谱分析仪研制方面,我们推出了SupNIR通用型近红外光谱分析仪系列产品,包括:便携型、实验室型和在线型近红外光谱分析仪,国产化、产业化高精度、高稳定性近红外光谱分析仪是产品设计理念,市场推广方面制定多套行业解决方案,事实证明,我们做到了,而且做得很好,使得聚光科技迅速抢占国内近红外光谱分析仪市场,成为国产近红外光谱分析仪龙头企业。 /p p    strong 定制-伟创英图 /strong /p p   2012年,随着我在聚光科技服务满五年,此时的聚光科技在近红外光谱分析事业上已经步入正轨,软、硬件产品进入产业化阶段,重点从之前的研发转为产业化、应用化阶段。此时的我,开始思考转型之路,经过一年的筹备,我们成立了北京伟创英图科技有限公司,邀请已经退休赋闲的姚建垣先生担当公司顾问,当他看到我们这些曾经的孩子已然成家,但对近红外光谱分析事业的热情不减,他决定不计薪酬,为我们掌舵护航。 /p p   公司理念是为用户提供定制化、专用型近红外光谱分析仪的研制与产业化服务。这是一招险棋,因为不同用户的产品需求,虽然会有共用部分,但也存在差异化特色需求,这对公司实力提出更高的要求。常规企业采取提供通用型仪器配合不同测量附件,以期适合不同行业领域的应用。至于用户群体,则没有太多的选择余地,既用户只有“使”的权利而没有“改”的便利,一旦提出“改”的想法,往往会被企业以“钱”和“量”拦在门外。例如:某些仪器配备的测样探头是将光源直接集成在探头内部,从而节省成本,但也使得光源直接照射被测物,导致的“热灼伤”问题会使得一些果品检测用户苦不堪言。此外,仪器添置与运维问题也是影响近红外光谱技术推广的重要因素,用户既要为通用型仪器一些冗余的功能支付费用,甚至有可能因为价格因素选择放弃,还要考虑仪器后期运维带来的隐形二次费用问题。 /p p   伟创英图具备小、快、灵的企业特点,将原本复杂的近红外光谱分析仪拆分成可组合复用的核心模块,以“货架”方式为用户展现。结合用户测样的实际特点以及费用因素,为用户定制化专属近红外光谱分析仪以及配套软件。为了让用户能有更多的选择,从创办公司至今,每每看到新品近红外光谱分析相关模块,我们都会先行采购,进行剖析研究,了解其产品特点与差异化核心价值,从软、硬两个方面形成统一的接口,并为用户推荐,让用户具有更多的选择权、自主权,成为国产近红外光谱分析仪研制事业中一道亮丽的风景线。 /p p   截至目前,我们支持集成的光谱仪厂商包括:上海复享、博源光电、无锡微奥、台湾杨光绿能,日本滨松、德州仪器、海洋光学、JDSU、Si-Ware、INSION等,还在不断扩大 同时支持多种传感技术混合应用,以期丰富定制仪器的感知能力,包括:成像、控温、控流、机器人、GPS地理信息、无线传输等。 /p p   2017年,我将并行模型计算与优化技术融入ChemoStudio化学计量学软件,使其模型建立与优化效率大幅提高,运算耗时减少达到50%以上,同时增加智能学习功能,一方面丰富模型优化任务数量,另一方面剔除冗余模型优化任务,筛选后的有效模型优化任务数控制在十万级。本人认为提高单次运算速度的意义在于当涉及海量模型优化(云计算)时,可以带来可观的效率加成,大幅降低运算成本,提高运算效率。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/c0167c9a-ae67-424d-b45b-d3db444e2b81.jpg" title=" 3_副本.png" / /p p style=" text-align: center " ChemoStudio模型优化功能 /p p   我提出“近红外感知、人工智能认知、人类社会交互”的近红外个人观,近红外光谱分析技术也在向多元化方向发展,近红外光谱分析终端凭借其无损、快速的特点极其适合作为物联网中产生数据的节点端,海量近红外光谱数据即将到来,人工智能将会让近红外光谱分析、应用能力得到爆发。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/bd3663a3-303a-408b-83ff-cf1ba0364168.jpg" title=" 4.jpg" / /p p style=" text-align: center " “近红外感知、人工智能认知、人类社会交互”的近红外个人观 /p p    strong 心路-不变初心 /strong /p p   作为业界“新瓶装老酒”的伟创英图,现在由一帮热血青年在为近红外光谱分析事业奋斗,我们拥有十数载的仪器研制、量产化经验,我们曾经摔倒无数,但我们继续前行,我们知道壁垒只会阻碍发展,分享的越多,得到的越多。 /p p   姚建垣先生曾经跟我谈过他的创业艰辛,也分享过他的应变之策。对于制造企业,研制与销售近红外光谱分析仪是不会一夜暴富,更不要有投机心理,踏踏实实做产品。对于技术应用、研究学者,要能“耐得寂寞,顶得压力”。 /p p   我深知,企业责任往往会被忽视,会被企业牟利生存的口号所掩盖,但做一个有责任、有良心的企业,更应是国人所追求、努力的方向,我坚信建立品牌价值,首先要建立品牌信任。我虽学历尚浅,怎奈痴迷近红外光谱分析技术,十多年只做一事,愿为国产近红外光谱分析仪研制继续奉献青春。 /p p   “New NIR,New China”,让我们重新认识近红外,让世界重新认识我们。 /p p    strong 个人简介: /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/661a8257-053c-4556-bea6-dd164cf38322.jpg" title=" 微信图片_20170613141142_副本.jpg" / /p p   个人简介:韩熹,2004年至今活跃在近红外光谱分析领域的实践者,自诩为近红外光谱分析技术“杂”家,以解决问题为优先导向,提供定制化近红外光谱分析解决方案。十二年间历经多项国家项目磨炼,科学技术进步奖一等奖获得者,以不变初心应万变应用,提出“近红外感知、人工智能认知、人类社会交互”的近红外个人观。2017年,在其研发的ChemoStudio化学计量学软件实现并行模型优化技术,运算耗时减少达到50%以上。 /p p    strong 人生格言: /strong 耐得寂寞,顶得压力 /p
  • 年产100万套电子测试仪器,工艺流程是怎样的?
    科学仪器,作为科学技术实现创新的重要基础,被称作科学家的“眼睛”,更是被比作“高端制造业皇冠上的明珠”。人类就是在不断改进的科学仪器中,发现其他人不能发现的领域,从而逐渐发展出现代科技文明。如今,仪器不仅广泛应用于研究领域,更是大量应用在生产线上。此外,仪器的生产制造也离不开其它的仪器设备。对此,仪器信息网通过公开文件了解到某年产100万套电子测试仪器生产项目的情况。项目主要为电子测试仪、电子量仪器、通信配件、网络配件、电话配件等生产, 年产电子测试仪器 100 万套、通信设备配件 3000 万件。项目主要设备如下:电子测试仪器及通讯系统配件生产工艺流程及产污环节如下:工艺说明:原料先进注塑机拌料、注塑成型后冷却塔冷却再转到自动化车间和外购的电路板进行自动组装,部份产品进行波峰焊接,根据客户需求,有部份印字的转到印字车间印字。完成以后统一转到测试车间测试,合格后流入组装车间组装,最后检验出货。 (1)注塑机的工作原理是借助螺杆(或柱塞)的推力,将已塑化好的熔融状态 (即粘流态)的塑料注射入闭合好的模腔内,经固化定型后取得制品的工艺过程。注射成型是一个循环的过程,每一周期主要包括:定量加料——熔融塑化——施压注射 ——充模冷却——启模取件。取出塑件后又再闭模,进行下一个循环;(2)本项目注塑材料为:ABS、PC、PP、AS,热分解温度大于200℃。本项目注塑机设置的工艺温度在180℃左右,因此不会造成原料的热分解,基本不会挥发出有毒气体。(3)本项目注塑机自带拌料功能,原料拌料过程中会产生少量的粉尘。(4)注塑机采用冷却水冷却,冷却水在设备中循环使用不外排。注塑过程中产生的不合格产品和塑料边角料(以注塑废料计),统一收集后外卖。(5)自动化:利用自动化设备、端子机、贴标机、模块装配、组装机、内芯机等设备)进行一系列的自动化工序的过程。(6)焊接:本项目是采用波峰焊锡机,波峰焊原理是让插件板的焊接面直接与高温液态锡接触达到焊接目的,其高温液态锡保持一个斜面,并由特殊装置使液态锡形成一道道类似波浪的现象,所以叫“波峰焊”。(7)粘结印字:根据客户需求,部分需印字的转到印字车间印字,印字过程需使用502胶水粘结固定造型,然后将印字合格的半成品进行测试(不合格的添加防白水消除后重印)。(8)测试:本项目使用导通测试机、影像测量仪、测试仪设备进行测试。(9)组装:将测试完成的半成品与金针、卡到、五金件等组装,最后用纸箱、 尼龙袋包装。(10)检验出货:人工检验后出货(不合格产品维修)。(11)网版使用后用洗网水清洗后重复使用。
  • 近红外光谱三个问题的思考——伟创英图总工韩熹写在全国第六届近红外光谱学术会议圆满闭幕之后
    p   span style=" font-family: 楷体, 楷体_GB2312, SimKai "  全国第六届近红外光谱学术会议日前在武汉圆满闭幕,与会代表、参展厂商和论文水平等都达到了历史新高,可以说是我国近红外光谱技术发展史上影响深远的一届盛会。北京伟创英图科技有限公司总工程师韩熹也积极参加了此次会议,期间,他认真听取了各位专家和同行的报告、会下也进行了多方交流。会议报告精彩纷呈,让他受益匪浅 而且,即使会议结束仍然思绪万千,连夜写下此篇感想。 /span /p p style=" text-align: center " span style=" font-family: 楷体, 楷体_GB2312, SimKai " img src=" http://img1.17img.cn/17img/images/201604/insimg/0c046401-c4ce-4aaf-a832-07379962b3e5.jpg" title=" 韩熹近照1.jpg" / /span /p p style=" text-align: center " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 北京伟创英图科技有限公司总工程师韩熹 /span /strong /p p    strong 思考近红外光谱的三个问题 /strong /p p   在本次会议上,杨辉华博士提出“在研究学者之间、在仪器制造企业之间,应该更加透明化、更加开放化的进行交流,闭关自守,不利于技术发展”,本人深表同意。因为,在多个报告中都有涉及研究院校通过采购一些光谱仪模块、测样附件模块,自行组建实验平台开展研究,从中我看出了一些的问题。我赞赏这种探索精神,但由于院校派团队往往偏重理论研究、算法研究以及应用研究,对于硬件的了解深度不够,使得研究过程、研究结果存在诸多变数。 /p p   本次会议的交流环节中,我选择性的提出三个问题,这三个问题本身是我原定大会口头报告中会涉及到的(临会前,进行了一项手术,术后连续输了11天液,才最终得到大夫同意出差来武汉)。我得到的答复基本在预料当中,都不够“完美”。究其原因,是对于仪器硬件的理解层面不够深,问题不在他们,是因为没有仪器制造企业与他们紧密合作。我说的“仪器制造企业”,不是指进口仪器的国内办事处或者代理商,因为他们的角色也仅仅是被培训者。我说的“紧密合作”,不是“商业合作”,是当剥离利益关系之后,从技术层面解析仪器,而不是简单的培训说明。 /p p   以下,我以伟创英图仪器产品为实体,从仪器制造企业角度,阐述一些我的思考与解决方案,希望对企业、学者有所帮助。 /p p    span style=" color: rgb(255, 0, 0) " strong 问题一:离散波长型近红外光谱分析仪的研制思考 /strong /span /p p   作为互联网型企业投身近红外光谱分析仪的研制与商业化,广州讯动给我的触动最大,从情感上,我非常支持他们。离散波长型近红外光谱分析仪,通常可以分为滤光片型和激光型。研制思路:选择特定领域样品,通过波长筛选算法获得特征波长(潘涛老师报告内容,我个人很想了解具体算法实现),选择对应的滤光片或者激光器,获得特征波长下的单色光,实现分光目的。 /p p   该技术路线要求筛选出的特征波长数量不宜过多,波长不宜过大,因为非制冷型InGaAs探测器在成本和结构复杂度方面优势明显。我认为需要思考的技术问题:当筛选后的特征波长数量较少时(12以下),每一个特征波长都充当着“关键先生”的角色,受到整机成本控制要求,内置的激光器需要具备低成本、小型化特点,在波长准确性与重复性上存在短板,问题即来自元器件固有问题,也包括实际使用环境因素(温度、湿度等)的影响,存在X轴方向的左右飘忽不定,“关键先生”有可能是“不靠谱先生”。此外,降低仪器成本的目的是可以大批量推广应用,但是台间差异性问题也随之而来。不同批次采购的激光器,相同标称波长下的激光器可能存在差异,即准确性达标的前提下,分属左偏移和右偏移两类。当然,我们可以在仪器出厂前进行仪器标准化标定,来降低台间差异性。但是,实际用户环境因素与标定环境不一致,导致激光器自身的变化(X轴和Y轴两个方向),该变化甚至有可能是非线性变化。 /p p   从实际应用角度考虑,其实也无需过分紧张,毕竟此类仪器目的在于满足实际快检需求,而不是与大型实验室仪器比拼性能指标。因此,我认为通过在仪器内部集成标准物质,以及挖掘多台仪器在不同环境下(模拟用户现场)的标准物质谱图的函数关系,有助于仪器的批量推广。此外,有报告提出“仪器台间差异性问题不大”,我要指出的是,这个结论的得出是有前提的。此类仪器价格往往超过30万,内部结构复杂,光学模块需要严格生产工艺下确保一致性,并且内置各种校准定标模块。可谓应了一句老话:只要有钱,很多问题就不叫问题。 /p p    strong span style=" color: rgb(255, 0, 0) " 问题二:谱图、模型入网的可靠性确认工作的思考 /span /strong /p p   本次会议,多个报告提出谱图、模型的网络化管理,但是我认为,现阶段对于谱图、模型在入网前的可靠性确认工作还很薄弱。 /p p   企业管理者通过制定严格的操作流程,以及仪器自检功能,来提高谱图测量可靠性。但是,例如,近些年重大安全事故仍然不断出现,可见并非是没有严格的制度,而是没有严格的执行。因此,通过在仪器功能上进行合理设计,有助于降低人为误差(惰性或者疏忽造成的)。通过对市面主流近红外光谱分析仪的调研,本人发现,很多企业用户往往依赖于仪器自身的自检功能,认为仪器自检通过,就可安心测样。殊不知,仪器自检也有很多门道在其中,也有行业潜规则,通过输入高级密码或者更改配置参数,就可以调整仪器自检评判结果指标阈值,甚至忽略部分仪器自检项目,达到表观上的仪器自检合格。企业用户在仪器自检合格后,就会开展连续样品测量。在这期间,往往仪器只会对重大硬件故障进行报警,而不会针对仪器性能变化做出反馈。此时此刻,本人认为,用户测量是“失去保护”的。 /p p   伟创英图在这方面做出的努力可以分为两方面:透明化仪器自检项目的流程与指标计算公式,为用户提供与内置校准模块同材质的外置校准模块,用户可自行开展实验,论证仪器自检结果的真实性。此外,仪器软件自检运行过程中,会显示自检流程所涉及的全部谱图与评判结果,而非简单的显示合格与否。 /p p   动态校准技术的引入,仪器内置标准滤光片,用户在进行每一次样品测量时,都会自动进行标准滤光片测量,由于近红外光谱测量本身具有快速性,因此多出的动态校准流程,不会为用户增加过多时间负担。由于每次样品测量,在谱图数据结构中,都会保存标准滤光片谱图,利用该谱图可实现对当次样品谱图的实时校准,包括X轴与Y轴。此外,在谱图、模型入网时,系统通过匹配性对比每张谱图数据结构中的标准滤光片谱图与参照谱图,评判当前谱图测量时仪器是否处于正常状态,从而达到谱图可靠性确认的目的。 /p p   strong span style=" color: rgb(255, 0, 0) "  问题三:高速运行模式下的近红外谱图测量稳健性思考 /span /strong /p p   近两年,本人有幸参与了两套果品分选在线近红外光谱分析系统的研制,在去年的BCEIA展会上展示了一套果品在线模拟装置,在2016年还将有一套果品分选系统上线。从上述项目实施过程中,本人提出“高速运行模式下的近红外谱图测量稳健性研究”的课题研究方向,希望能有专业的研究院校团队可以介入,将该项研究得更加透彻,该项研究会对未来在线近红外光谱测量技术的发展具有促进作用。在这里,我仍旧保持一种开放的形态,与大家分享伟创英图的果品分选系统的设计思想。首先,关于定位问题,我们放弃传统“同步齿轮+接近开关”这种定位方式,其原因包括:适用局限性(只适合固定在传送带上的托盘,不适合独立游走型托盘),定位托盘不具有标识性(只能表示有无托盘,不能识别具体托盘编号)。我们目前采用的NFC近场通讯技术(之前采用RFID技术),我们为每一个托盘(无论是固定在流水线上还是独立游走型的托盘)内置一个NFC芯片(选用抗金属类型)。利用该芯片的存储区,为每一个托盘进行唯一标识,并且负责存储检测分析、评价分级结果。其次,我们支持多端测量技术,即在线上可以先后部署不同类型的分析单元,例如:称重单元(果品称重,由于每个托盘都有独立的NFC芯片,在其存储区会记录每一个托盘独有的自重信息,提高果品称重准确性)、近红外光谱分析单元(评判果品品质,糖度、酸度、硬度等)、成像分析单元(评判果品有无疤痕、是否对称美观等)。 /p p   具体分选流程如下:在分析单元前、后各部署一套NFC识别模块(读、写),当果品到达分析单元时,前置NFC识别模块高速响应读取到托盘NFC芯片信息,表示托盘已然就位,通知分析单元开始测量分析,测量分析结果会在果品到达后置NFC识别模块时,写入对应的NFC芯片存储区。由于NFC芯片存储区空间有限,实际写入可以是分级等级或者测量结果编号,后期通过测量编号可以进行检索查询。当果品通过全部分析单元,到达分选通道时,分选通道会通过读取NFC芯片存储区内容,来判断当前果品是否允许进入当前通道,从而实现分选目的。 /p p   上述流程是2016年公司新上线的果品分选系统的核心设计思想,在这之前,我开发的分选软件部署在主控电脑,软件需要照顾各个环节。现如今,我将原先的集中处理改为分散处理,甚至部分节点不与主控电脑关联,采用独立的Arduino模块实现控制。针对近红外光谱测量这部分,我选择具有高速测量功能的USB4000光谱仪(海洋光学),该光谱仪可实现最低10微秒/次的高速测量(USB2000+最低测量速度是3800微秒/次),我即不采取单平均次数测量,也不采取多平均次数测量,而是单平均次数下的多次测量。该方式的优点在于,我可以对得到的多次测量谱图进行人为算法干预,筛选得到能够真正表征果品信息的谱图,再计算平均谱图,提高谱图测量稳健性。从实验数据来看,不同果型(苹果)最终有效谱图数量存在些许差异,有效谱图数量在6-8张不等(每秒测量5颗状态下)。由于单平均次数下的多次测量,意味着需要进行多次谱图数据传输,目前是利用OminiDriver中提供的高速扫描方法来实现。我最终希望的解决方案是将我的筛选方法可以嵌入到光谱仪底层程序上,而这一想法的实现,就需要借助国产近红外光谱仪厂商(复享光学)的支持。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/c5e8274b-d3c3-475f-8ae2-f5a9ab849cc8.jpg" title=" 多用途智能近红外光谱分选系统.jpg" / /p p style=" text-align: center " strong 多用途智能近红外光谱分选系统 /strong /p p   上边谈到的三点思考与我的想法,其实很多地方都需要国产近红外光谱分析仪制造企业的支持才可实现,但很可惜,目前此类企业实在太少。每年近红外相关文章很多,但是仪器研制类别的很少。全国研究院校知名近红外学者很多,但是从事仪器制造方面的很少。当无力改变现状时,我们就更应该开放与包容。 /p p   我再次表明我们的一个态度,就是愿意为研究院所无偿提供实验平台建设、样机制造、商品转化等方面的建议,也愿意分享我们使用过的一些进口近红外光谱仪的心得体会,目前我们掌握的近红外光谱仪模块包括:JDSU、TI NIRscan、Insion、USB2000+、USB4000、Maya、STS、无锡微奥MEMS-FTNIR等。 /p p    strong 十数载不变初心、耐寂寞终有所报 /strong /p p   说起来,韩熹进入近红外光谱领域已经有十多年了,回想自己十数载近红外光谱分析仪研制与应用之路,不禁感叹到,十数载不变初心、耐寂寞终有所报 青春虽已不再,但不变初心。2004年,韩熹毕业于首都师范大学应用化学系,随后加入北京英贤仪器有限责任公司。从那时起,韩熹便与近红外光谱分析结缘。 /p p   英贤仪器实现了近红外光谱分析仪的国产化、量产化,打破了当时进口近红外光谱分析仪的市场、价格的双垄断,让国人第一次近距离的接触到近红外光谱分析技术。当时陆婉珍院士、袁洪福教授、褚小立博士给予英贤仪器大量的技术指导意见。在日前召开的全国第六届近红外光谱学术会议上,姚建垣先生(英贤仪器公司总经理)向陆婉珍奖励基金捐赠十万元,姚总说要懂得“报恩”。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/4cc288b5-faed-4395-81d1-690ef6e8ec71.jpg" style=" float:none " title=" 陆婉珍院士给予英贤仪器大量技术指导.jpg" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201603/insimg/563b8b3a-a48b-40b0-b45d-ea3178925b06.jpg" style=" float:none " title=" 袁洪福教授、褚小立博士给予英贤仪器大量的技术指导意见.jpg" / /p p style=" text-align: center " strong 陆婉珍院士、袁洪福教授等对国产近红外光谱分析仪研制企业给予大力支持 /strong /p p   2007年,英贤仪器并入聚光科技(杭州)股份有限公司,成立近红外光谱分析事业部,开始着手研制全系列近红外光谱分析仪产品,包括:便携型、通用型和在线型近红外光谱分析仪以及CM-2000化学计量学软件。当时公司的目标,就是研制出可产业化的高精度、高稳定性近红外光谱分析仪。“事实证明,我们做到了,而且做得很好。直到如今,聚光科技的近红外光谱分析仪仍旧是国产近红外光谱分析仪的领军代表,且没有之一。”韩熹说到。 br/ /p p   2012年,在聚光科技服务满五年后,韩熹离开了聚光科技,但是,他并没有离开近红外光谱事业。经过历时一年多的筹备,韩熹等人于2014年4月成立北京伟创英图科技有限公司,沿着定制化、专用型近红外光谱分析仪的研制与产业化继续前行。此时,姚建垣先生已经退休,当他看到这些曾经的“孩子”已然成家,但对近红外光谱分析事业的热情不减,他决定不计报酬,继续陪他们走一程。 /p p   姚建垣先生曾经对韩熙谈过他的创业艰辛,也分享过他的应变之策。对于制造企业,研制与销售近红外光谱分析仪不会一夜暴富,不要有投机心理,踏踏实实做产品。对于技术应用、研究学者,要能“耐得寂寞,顶得压力”。 /p p   作为业界“新瓶装老酒”的伟创英图,拥有十数载的仪器研制、量产化经验,非常愿意为研究院所无偿提供实验平台建设、样机制造、商品转化等方面的建议。韩熹说,“我们曾经走过的错路、弯路,不希望你们重蹈覆辙,我们的经验与技巧希望能加速你们研究成果的商品转化。” br/ /p p br/ /p
  • 涉及880台仪器设备,德州仪器扩能项目详情曝光
    近日,德州仪器半导体制造(成都)有限公司凸点加工及封装测试生产扩能项目(二期)竣工验收。该二期工程建设内容包括:在集成电路制造厂(FABB)新增凸点加工产能18.7975万片/年(全为常规凸点产品),在封装测试厂(AT)新增封装测试产能 10 亿只/年(均为常规QFN产品)。二期工程建设完成后,扩能项目新增凸点加工产能33.3975万片/年(全部为常规凸点33.3975万片/年),新增封装测试产能 21.48 亿只/年(其中常规QFN 15.48 亿只/年,WCSP 6 亿只/年)。仪器信息网通过公开文件查阅到该项目的相关仪器设备配置清单和工艺流程。FABB 集成电路制造厂主要生产设备清单.封装测试厂(AT)主要生产设备清单生产工艺:1、凸点加工晶圆凸点是在封装之前完成的制造工艺,属于先进的封装技术。该工艺通过在晶圆级器件上制造凸点状或球状结合物以实现接合,从而取代传统的打线接合技术。凸点加工制程即从晶圆加工完成基体电路后,利用涂胶、黄光、电镀及蚀刻制程等制作技术通过在芯片表面制作铜锡凸点,提供了芯片之间、芯片和基板之间的“点连接”,由于避免了传统 Wire Bonding 向四周辐射的金属“线连接”,减小了芯片面积,此外凸块阵列在芯片表面,引脚密度可以做得很高,便于满足芯片性能提升的需求,并具有较佳抗电迁移和导热能力以及高密度、低阻抗,低寄生电容、低电感,低能耗,低信噪比、低成本等优点。 扩能项目凸点包括普通凸点和 HotRod 凸点两种,其主要区别在于凸点制作所采用的焊锡淀积技术不同,普通凸点采用植锡球工艺,工艺流程如下图所示,Hot Rod 凸点采用电镀锡银工艺,工艺流程如下图所示。扩能项目凸点包括 RDL(Redistribution Layer)、BOP-on-COA(Bump on Pad – Copper on Anything)、BOP(Bump on Pad)、BOAC (Bond Over Active Circuit)、 BOAC PI (Bond Over Active Circuit with Polyimide)、Pb-free HotRod,上述各类凸点结构如下图所示,主要区别为层次结构和凸点类型不同。扩能项目各类凸点结构示意普通凸点加工主要工艺流程及产污环节注:普通凸点产品中的 BOAC 不含灰化、回流焊与助焊剂去除工艺Hot Rod 凸点加工主要工艺流程及产污环节凸点加工的主要工艺流程简述如下:(1)晶圆检测分类(wafer sorting):对来料晶圆进行检测,主要是检测晶圆有无宏观缺陷并分类。(2)晶圆清洗(incoming clean):由于半导体生产要求非常严格。扩能项目清洗工艺分为两种工艺,第一种仅使用高纯水,另一种使用 IPA 清洗,清洗后再用纯水进行清洗。IPA 会进入废溶剂作为危废收集,清洗废水进入中和废水系统进行处理。(3)烘干(Dehydration bake):将清洗后的晶圆烘干。该工序产生的烘干废气通过一般废气排气系统排放。 (4)光刻(Photo)扩能项目采用光刻机来实现电镀掩膜和PI(聚酰亚胺)层制作,包括涂胶、曝光,EBR和显影。涂胶是在晶圆表面通过晶圆的高速旋转均匀涂上光刻胶(扩能项目为光阻液和聚酰亚胺(PI))的过程;曝光是使用曝光设备,并透过光掩膜版对涂胶的晶圆进行光照,使部分光刻胶得到光照,另外部分光刻胶得不到光照,从而改变光刻胶性质;显影之前,需要使用EBR对边缘光阻进行去除。显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上形成了沟槽。通过曝光显影后再进行烘干,晶圆表面可形成绝缘掩膜层。扩能项目该制程使用了各类光阻液、聚酰亚胺、EBR、显影液及纯水,完成制程的废液统一收集,作为危废外运处置。显影液中由于含有四甲基氢氧化铵,将产生少量的碱性废气,由于其浓度很低,扩能项目将其通入酸性废气处理系统进行处理;显影液及显影液清洗水排入中和废水处理系统。光刻工艺示意图(5)溅射(SPUTTER)溅射属于物理气相沉积(PVD)的一种常见方法,即金属沉积,就是在晶圆上沉积金属。UBM(凸点底层金属)是连接焊接凸点与芯片最终金属层的界面。UBM 应在芯片焊盘与焊锡之间提供一个低的连接电阻。为了形成良好的 UBM,一般采用溅射的方法按顺序淀积上需要的金属层。扩能项目采用 Ti:W 合金-Cu 的顺序进行溅射。溅射示意图(6)电镀(Plate)凸点电镀根据需求,可单纯镀铜,也可镀铜、镍、钯或镀铜、锡银,镀层厚度也有差异,可为铜膜或铜柱。扩能项目普通凸点电镀工艺包括镀铜膜、镀镍和镀钯。扩能项目 HotRod 凸点电镀工艺包括电镀底层铜(plateCOA,Copper on Anything)、电镀铜柱(plate Cu POST)、电镀锡银。基本的电镀槽包括阳极、阴极、电源和电镀液。晶圆作为阴极,UBM的一部分作为电镀衬底。在电镀的过程中,铜、锡银溶解在电镀液中并分离成阳离子。加上电压后,带正电的 Cu2+、Sn2+、Ag+迁移到阴极(晶圆),并在其表面发生电化学反应而淀积出来。电镀工艺原理示意图如下:电镀工艺示意图扩能项目采用的铜、镍阳极为颗粒状,会全部消耗,不产生废阳极;扩能项目使用的镀钯、锡银阳极是镀铂钛篮,呈网状支架作为电镀阳极,不消耗也不更换,镀银采用烷基磺酸盐无氰镀银工艺。 阳极金属如下图所示:电镀阳极实物图b.电镀操作过程进机台→将每片晶圆上到杯状夹具上→用超纯水预湿→镀铜→清洗→镀锡银(或镀镍→清洗→镀钯)→清洗→甩干→出机台。c.电镀清洗扩能项目电镀清洗采用单槽快速喷洗,清洗水直接排入废水处理系统,不重复利用,清洗废水排入 FABB 一楼电镀废水处理系统进行处理,保证处理设施出口一类重金属排放达标。清洗过程中产生有机废气排入有机废气处理系统统一处理。d.电镀槽液更换项目对电镀槽中电镀液离子浓度定期检测,适时添加化学药剂,保证电镀液可用。使用一段时间后,因电镀液中悬浮物浓度升高,需对电镀液进行更换。扩能项目依托 FABB 一层现有的2个2m³的电镀废液收集槽将电镀废液全部收集暂存,委托有资质的危废处理公司外运处置。电镀废液约半年排放一次,年排放量约为 3.5m³,因此收集槽的容积可满足废液收集需求。(7)去光阻(Resist stripping)电镀完成后,利用光阻去除剂去除电镀掩膜光阻,依次使用 NMP 与 IPA 进行湿式清洗,最后用纯水进行清洗,清洗后进行干燥。干燥通过自燃烘干或者 IPA吹干。(8)蚀刻(ETCH) 将凸点间的 UBM 刻蚀掉。扩能项目采用湿法腐蚀。湿法腐蚀是通过化学反应的方法对基材腐蚀的过程,对不同的去除物质使用不同的材料。扩能项目采用过氧化氢作为 Ti-W 合金的腐蚀材料,普通凸点采用硫酸腐蚀铜,含锡银凸点采用磷酸腐蚀铜,产生的含磷的酸性废水排入 CUB5c 氢氟废水处理系统进行处理,不含磷的酸性废水排入中和系统进行处理。蚀刻完成后,使用气体吹扫晶圆表面进行去杂质。(9)灰化(Ash)剥离光掩膜的过程可以使用干燥的、环保的等离子工艺(‘灰化’),即用氧 等离子体轰击光掩膜并与之反应生产二氧化碳、水等物质使其得以剥离。该过程 产生一般热排气,排入一般排气。(10)凸点制作晶圆凸点工艺最主要的 3 种焊锡淀积技术是电镀、焊锡膏印刷以及采用预成 型的焊锡球进行粘球。RDL、BOP、BOAC 等凸点采用粘球工艺(Ball place),粘 球的一般操作过程为,首先在晶圆表面涂抹一层助焊剂,然后将预先成型的焊锡 球沾在助焊剂上,接着进行检查,确保每个晶粒都沾有焊锡球。Hot Rod 等凸点 焊锡淀积技术采用电镀锡银工艺。回流(reflow),该过程将焊料熔化回流,使凸点符合后续封装焊接要求。最 后,再使用纯水对助焊剂进行清洗去除(Flux wash)。助焊剂清洗废水排入中 和废水系统进行处理。(11)自动检测(AVI) 对凸点加工完的晶圆进行自动检测,确认是否有缺陷。至此,晶圆上的凸点 制作完成。 (12)晶圆针测(Probe)在凸点完成后,晶圆上就形成了一个个的小格,即晶粒。针测(Probe)是对每个晶粒检测其导电性,只进行通电检测操作,没有任何化学过程。不合格晶粒信息将被电子系统记录,在接下来的封装和测试流程中将不被封装。扩能项目晶圆针测工序全部在 OS5 进行。(13)包装(Packing):利用塑料盒、塑料袋等对完成凸点的晶圆进行简单包装,然后进入AT厂房进行封装(后工序)。2、封装测试QFN 封装测试QFN 封装即倒装式四周扁平无引脚封装(QFN,Quad Flat No lead Package),扩能项目 QFN 封装包括传统 QFN 封装和 FCOL QFN 封装(Flip Chip on Lead frame QFN Package,框架上倒装芯片封装)。传统 QFN 封装和 FCOL QFN 封装的结构如图所示。传统 QFN 封装和 FCOL QFN 封装结构对比覆晶框架QFN在工艺流程上相较传统QFN主要区别在芯片与载板框架的连接方式,传统 QFN 通过金属导线键合,覆晶框架 QFN 通过芯片倒装凸点键合,相比传统工艺新增助焊剂丝网印刷、覆晶结合、助焊剂清洗、等离子清洗等工艺,以下对 QFN 封装的工艺及产污进行表述。贴片:在自动贴膜机上在晶圆的正面贴一层保护膜(胶带),研磨过程中保 护晶圆的电路表面。该工序可能产生废胶带。(1)背面减薄:研磨机台上,通过高速旋转的研磨轮(转速约为 2500 转每 秒)对晶圆背面进行机械研磨,将晶圆减薄到规定厚度。研磨过程中需要用超纯 水冲洗研磨硅屑和冷却研磨轮。清洗废水经回收系统回收利用后,浓水排入废水 处理站进行絮凝沉淀+中和处理。(2)去膜:研磨完成后,去除晶圆正面的胶带。该工序可能产生废胶带。 (3)晶圆清洗:利用超纯水对晶圆表面进行冲洗,去除晶圆表面的尘埃颗 粒等杂质。清洗废水经回收系统回收利用后,浓水排入废水处理站进行絮凝沉淀+中和处理。(4)背面贴膜:使用背面贴膜设备在晶圆背面贴一层 BSC 膜,使晶圆背面被胶带保护、支撑。该工序可能产生废胶带。(5)烘干:使用背面涂层烘烤设备将膜层烘干。(6)贴膜:使用晶圆贴片机在晶圆的背面再贴一层膜。该工序可能产生废胶带。(7)划片:在专门的划片机上,通过高速旋转的金刚石刀片(转速约在 50000 转每秒)或激光将晶圆切割成符合规定尺寸的晶粒(die)。刀片的金刚石颗粒 大小只有几个微米。切割过程中利用超纯水进行刀片冷却和硅屑冲洗。激光划片属非接触加工,无应力,因此切边平直整齐,无损坏;不会损伤晶圆结构,电性 参数优于机械切割方式,用超纯水进行硅屑冲洗。(8)UV 照射:使用 UV 照射机进行 UV 照射使粘结剂失去黏性达到去膜的目的。(9)点银浆:将银浆点到框架上以备粘合用;(10)粘片:将芯片置入框架点银浆处;(11)银浆固化:在氮气保护环境下烘干固化,将芯片牢固的粘结在框架上;(12)引线键合:使用金线或铜线将芯片电路 Pad 与框架引脚 Lead 通过焊接的方法连接起来,实现电路导通,焊接采用超声波焊接,无焊接烟尘产生,主要产污为废引线。(13)助焊剂丝网印刷:在密闭机台内用丝网将助焊剂印刷到引线金属框架上,无排气。丝网采用 IPA 清洗,清洗有有两种情况,一种是用设备自动清洗,IPA 会喷到丝网上,然后用棉布擦拭,擦拭布吸收 IPA 及丝网上的脏物后就当作 危废处理,没有废液,设备是密闭的,不连接排气;另外一种是人工擦拭,会在 化学品通风橱内操作,也是用棉布擦拭,没有废液产生,通风橱连的一般排气。(14)覆晶结合:将晶圆 IC 反扣在引线金属框架上,让锡银铜柱对准丝网印刷的助焊剂。(15)回流焊:将覆晶结合后的芯片放在氮气保护的回焊炉内按一定的温度曲线通过该炉,使用回流焊的方式实现晶圆 IC 与引线金属框架的焊接,该过程使用的助焊剂无挥发性物质,后续使用专用清洗剂进行清洗。(16)助焊剂清洗:使用助焊剂清洗剂洗掉回流焊残留的助焊剂并用水冲洗干净。设备自带清洗废气冷凝装置,冷凝液进入废水处理系统,不凝气接入现有一般排气系统。(17)等离子清洗:使用等离子清洗剂激发氧氩等离子体实现更高级别的彻 底清洗,将残留的微量氧化层清洗干净,清洗废气接入现有一般排气。 (18)塑封固化:使用环氧树脂对 IC 进行外壳封装。(19)去毛刺:去除塑封外壳毛刺并进一步烘烤固化成型将塑封固化好的芯片置入有机盐溶液中去除塑封外壳毛刺及溢出料,产生去毛刺废水。(20)激光打标:用激光将产品的 Lot No 刻录在产品表面(为了追踪产品的履历)。就是在产品的表面印上去不掉的、字迹清楚的字母和标识,包括制造商 的信息、国家、器件代码,生产日期等,主要是为了产品识别并跟踪,该工序将 产生打印粉尘和硅粉。(21)切带:切开胶带使单个晶粒分离。(22)自动检测:使用 2/3D 自动检测设备进行检测。均为物理测试。检查 产品的电气及速度特性,包括基本测试,如电气特性可靠性测试、直流电、交流 电运行测试、目视检查,以及运行速度测试等。(23)IC 分类:使用晶粒分类设备对封装好的晶圆进行分类。(24)终检:使用最终检测设备进行终检。(25)包装:使用真空包装设备对封装好的芯片进行包装并入库。该工序可能产生废包材。传统 QFN 工艺流程及产污环节FCOL QFN 工艺流程及产污环节2、WCSP 封装WCSP 封装(Wafer Chip Scale Packaging,晶圆级封装),即在晶圆片未进 行切割划片前对芯片进行封装,之后再进行切片分割,完成后的封装大小和芯片尺寸相同。此外,WCSP 封装无需载板框架,可直接焊接在 PCB 印制线路板上使用。凸点和针测完成后,晶圆即进入封装测试厂 AT 厂房进行 WCSP 封装及测试,主要工艺流程如下:(1)贴片:在自动贴膜机上在晶圆的正面贴一层保护膜(胶带),研磨过 程中保护晶圆的电路表面。该工序可能产生废胶带。(2)背面减薄:研磨机台上,通过高速旋转的研磨轮(转速约为 2500 转每 秒)对晶圆背面进行机械研磨,将晶圆减薄到规定厚度。研磨过程中需要用超纯 水冲洗研磨硅屑和冷却研磨轮。清洗废水经回收系统回收利用后,浓水排入废水 处理站进行絮凝沉淀+中和处理。(3)去膜:研磨完成后,去除晶圆正面的胶带。该工序可能产生废胶带。(4)晶圆清洗:利用超纯水对晶圆表面进行冲洗,去除晶圆表面的尘埃颗 粒等杂质。清洗废水经回收系统回收利用后,浓水排入废水处理站进行絮凝沉淀 +中和处理。(5)背面贴膜:使用背面贴膜设备在晶圆背面贴一层 BSC 膜,使晶圆背面 被胶带保护、支撑。该工序可能产生废胶带。(6)烘干:使用背面涂层烘烤设备将膜层烘干。(7)贴膜:使用晶圆贴片机在晶圆的背面再贴一层膜。该工序可能产生废胶带。(8)激光打标:用激光将产品的 Lot No 刻录在产品表面(为了追踪产品的 履历)。就是在产品的表面印上去不掉的、字迹清楚的字母和标识,包括制造商的信息、国家、器件代码,生产日期等,主要是为了产品识别并跟踪,该工序将产生打印粉尘和硅粉。(9)划片:在专门的划片机上,通过高速旋转的金刚石刀片(转速约在 50000 转每秒)将晶圆切割成符合规定尺寸的晶粒。刀片的金刚石颗粒大小只有几个微米。切割过程中利用超纯水进行刀片冷却和硅屑冲洗。(10)激光切片:首先进行晶圆黏片,即在晶圆背面贴上水溶性保护膜然后进行切割。激光切割属非接触加工,无应力,因此切边平直整齐,无损坏;不会损伤晶圆结构,电性参数优于机械切割方式;激光可以切割任意形状,如六角形晶粒,突破了钻石刀只能以直线式加工的限制,使晶圆设计更为灵活方便。切割过程中使用超纯水进行硅屑冲洗。 (11)UV 照射:使用 UV 照射机进行 UV 照射去膜。(12)自动检测:使用 2/3D 自动检测设备进行检测。均为物理测试。检查 产品的电气及速度特性,包括基本测试,如电气特性可靠性测试、直流电、交流 电运行测试、目视检查,以及运行速度测试等。(13)IC 分类:使用晶粒分类设备对封装好的晶圆进行分类。(14)终检:使用最终检测设备进行终检。(15)包装:使用真空包装设备对封装好的芯片进行包装并入库。该工序可能产生废包材。WCSP 工艺流程及产污环节
  • 稀奇?万米地下的岩屑,也要做核磁!
    3月5日,深地塔科1井已经钻至10006米,来到中国钻井史上前所未有的深度极限。在“摸不着,看不见”的万米之下,科研人员要如何精准识别岩层的信息呢?答案就藏在位于万米深层的岩屑里。地下岩屑是沟通地面与万米地下的载体,可以为整个钻探过程提供丰富的地质信息和工程信息。这也将是我国首次获取万米深层的岩石资料,其珍贵程度不亚于“月壤”。而岩屑要从深层回到地面,相当于要走10公里的路,四舍五入相当于跑了四分之一个全马了。岩屑在这一路上有哪些奇遇?科研人员又是如何揭秘其蕴藏的信息?在钻进过程中,钻头依靠锋利的金刚石“牙齿”旋转切削,整块岩石被切割成毫米大小的颗粒,散落在井筒当中。井筒内不断循环着钻井液,依靠自身的粘弹性将井底的岩屑颗粒返排至地面。岩屑在井筒中的行程将近花费200分钟,相当于我们平时休闲散步的速度。钻井液循环系统的振动筛正在滤筛钻井液中的大颗粒物质工作人员用筛网得到一定范围大小的岩屑井场百格盒中的岩屑井底160℃的钻井液从地层循环至地面,泛起阵阵白烟。通过钻井液循环系统中的振动筛可以将大颗粒物质与液体进行分离,清洗、晾晒之后便可得到井中的固体物质。这些固体物质往往还包括井壁的掉块以及坍塌物,而新鲜岩屑往往个体碎小、棱角明显,工作人员通过筛网进行简易的筛分后,根据不同的深度放置在百格盒不同的格子中。在深地塔科1井,为了取全取准万米井的地质资料,工作人员每米都要及时准确地捞取地下岩石样品,特别是进入9800米以后,更是每50厘米捞取一次岩石样品,通过地质分析为工程决策提供有力依据。深地塔科1井的岩屑薄片王孝明正在显微镜下观察薄片标本显微镜下的岩屑在地质学界,素有一片岩石看穿一座山的说法。在岩屑充分晾干后,工作人员会将岩屑制成薄片,通过显微镜观察,便可以判定岩屑的矿物组成和结构特征,解读万米深层演化的地质信息以及油气生成运移的蛛丝马迹。在制备薄片的过程中,首先需要选出1~2毫米的岩屑,借助研磨机,在载玻片上“手搓”出0.03毫米的透光薄片,对于人的眼力、手力和耐力是一个极大考验。如果达不到这个标准,就无法通过光学特征的差异来识别出不同的矿物种类,从而对地质情况造成误判。要如何确保把岩样磨到0.03毫米?塔里木油田实验检测研究院地质实验中心的王孝明每天要打磨十几片岩屑薄片,据他介绍,首先要把岩屑打磨到微微透光,大概是头发丝的厚度,这个过程需要靠手感一点点感知厚度变化,最后结合显微镜一点点抛光矫正,直到达到标准厚度。截至目前,王孝明和同事们已经磨制出500多片岩屑薄片,获取的地层信息也为下一步钻井工具的选择提供了重要参考。在以前,要实现上述的分析测试,必须得将岩屑运回后方的实验室,仅车程以及各项入库程序就得花费2到3天。而在这里,仅仅需要6个小时,就可以快速解开岩屑的奥秘。移动式岩心核磁共振测井仪器岩石也能做核磁?在深地塔科1井井场的东南角,停放着一辆红白相间的货车,这是由中国石油自主研发的车载岩石物理实验室,里面搭载着移动式岩心核磁共振测井仪器。晾晒好的岩屑可以在这里同步进行高精度的一维与二维核磁测量与资料快速处理解释,可以在几分钟内快速获取地层孔隙度、含油气饱和度、渗透率等岩石物性参数。这也是中国石油首次在塔里木盆地开展现场岩屑核磁分析。“在深地塔科1井钻至9800米以后,出来一个样我们分析一个样。通过岩石物性参数的变化,可以为现场钻进风险预警以及钻进参数调整提供及时反馈。”勘探开发研究院测井技术研究所的金明介绍。工作人员对岩屑进行装袋打包万米岩屑的旅程远没有结束。在经过现场一系列的分析测试后,工作人员将岩屑装袋打包,运送回塔里木油田岩心库,作为珍贵的地质资料永久留存,也将记录下中国石油人探索深地的脚步。
  • 目前测定石油产品中硫含量的主要仪器及测试方法有哪些?---X荧光硫元素分析仪,紫外荧光测硫仪等。
    简介得利特(北京)科技有限公司专注油品分析仪器领域的开发研制销售,致力于为国内企业提供高性能的自动化油品分析仪器。公司推出系列精品润滑油分析检测仪器、燃料油分析检测仪器、润滑脂分析检测仪器等。测定硫含量仪器列举及对应的测试方法!测定石油产品中硫含量的主要仪器:深色石油产品硫含量测定仪,轻质石油产品硫含量测定仪,微库仑硫氯分析仪,硫测定仪(紫外荧光测硫仪),石油产品硫含量测定仪,馏分燃料硫醇硫测定仪,X荧光硫元素分析仪对应测试方法:管式炉法,库仑硫,紫外荧光法,燃灯法,自动电位滴定法,X荧光法。DELITE相关仪器1A1320深色石油产品硫含量测定仪依据GB/T387《石油产品硫含量测定法》(管式炉法)、ASTM D1551设计制造的,适用于测定润滑油、重质石油产品、原油、石油焦、石蜡和含硫添加剂等石油产品中的硫含量。仪器特点:1、由水平型的管式电炉系统、数显温度控制系统、电动机驱动控制系统、空气净化流量调节系统等组成2、伺服电动机的运行由单片机自动控制,并有手动快进、快退、测定、停止的功能3、两支平行安装的带有磨口直管的石英管,同时对两个试样进行试验,一次可并行做两个结果4、单片机程序控制,具有造型小巧,设计合理,使用方便技术参数:电源电压:交流220V±10% 50Hz±10%电炉加热功率:1600W控制温度:900~950℃电炉行程:130mm流量计:60~600 ml/min空气流量计 试验时流量:500ml/min行程时间:25~65 min,可任意选择热电偶:分度号K环境温度: 5℃ ~ 40℃ 相对湿度:≤85%2A1330轻质石油产品硫含量测定仪是依据SH/T 0253设计制造的,应用微库仑分析技术,采用氧化法将样品通过裂解炉氧化为可滴定离子,在滴定池中滴定,根据电解滴定过程中所消耗的电量,依据法拉第定律,计算出样品中硫的含量,适用于沸点40~310℃的轻质石油产品。硫含量范围为0.5~1000ppm的试样,大于1000ppm的试样应稀释后测定。本仪器也可测氯的含量。仪器特点:1、人机直接对话,操作便捷。2、计算机控制整个分析、数据处理等过程,显示全过程工作状态,根据需要可将参数、结果存盘或打印。3、采用**元器件,减少了仪器噪声,提高了检测速度。4、具有性能稳定可靠,操作简便,分析精度高,重复性好等特点。技术参数:偏压范围:0 ~ 500mv测量范围:0.1~10000 ng/μl控温范围:室温~1000℃控温精度:±1℃测量精度:    样品浓度(ng/μl) 0.2 RSD(%)35   样品浓度(ng/μl) 1.0 RSD(%)10   样品浓度(ng/μl) 100 RSD(%)5   样品浓度(ng/μl)1000 RSD(%)2气源要求:普氮和普氧工作电源:AC220V±10% 50Hz功  率:3.5KW外形尺寸:主机:410×350×75(mm)     温控:530×420×360(mm)     搅拌器:290×270×360(mm) 进样器:350×130×140(mm)3A2070S 硫测定仪 (紫外荧光测硫仪)A2070S 硫测定仪是根据紫外荧光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准:SH/T 0689、ASTM D5453、GB/T11060.8仪器特点:1、系统采用紫外荧光法测定总硫含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。技术参数:样品种类液体、固体和气体测定方法紫外荧光法样品进样量固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围0.1-5000mg/L测量精度荧光测硫仪进样量(μL)RSD(%)0.2202551010501051001035000103控温范围室温~1300℃控温精度±1℃气源要求高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源AC220V±10% 50Hz功 率1500 W外形尺寸主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量主机:20kg 温控:40kg技术参数:1、输入电压:220V±10% 50Hz2、消耗功率:每个吸气泵6W3、环境温度:室温25℃左右
  • 盘点|半导体常用失效分析检测仪器
    失效分析是芯片测试重要环节,无论对于量产样品还是设计环节亦或是客退品,失效分析可以帮助降低成本,缩短周期。常见的半导体失效都有哪些呢?下面为大家整理一下:显微镜分析OM无损检测金相显微镜OM:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。金相显微镜可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用,实现样品外观、形貌检测 、制备样片的金相显微分析和各种缺陷的查找等功能。体视显微镜OM无损检测体视显微镜,亦称实体显微镜或解剖镜。是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。视场直径大,但观察物要求放大倍率在200倍以下。体视显微镜可用于电子精密部件装配检修,纺织业的品质控制、文物 、邮票的辅助鉴别及各种物质表面观察等领域,实现样品外观、形貌检测 、制备样片的观察分析、封装开帽后的检查分析和晶体管点焊检查等功能。X-Ray无损检测X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。X-Ray可用于产品研发,样品试制,失效分析,过程监控和大批量产品观测等,实现观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板,观测器件内部芯片大小、数量、叠die、绑线情况,芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷等功能。C-SAM(超声波扫描显微镜)无损检测超声扫描显微镜是一种利用超声波为传播媒介的无损检测设备。在工作中采用反射或者透射等扫描方式来检查材料内部的晶格结构,杂质颗粒、夹杂物、沉淀物、内部裂纹、分层缺陷、空洞、气泡、空隙等。I/V Curve量测可用于验证及量测半导体电子组件的电性、参数及特性。比如电压-电流。集成电路失效分析流程中,I/V Curve的量测往往是非破坏分析的第二步(外观检查排在第一步),可见Curve量测的重要性。I/V Curve量测常用于封装测试厂,SMT领域等,实现Open/Short Test、 I/V Curve Analysis、Idd Measuring和Powered Leakage(漏电)Test功能。SEM扫描电镜/EDX能量弥散X光仪(材料结构分析/缺陷观察,元素组成常规微区分析,精确测量元器件尺寸)扫描电镜(SEM)SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可直接利用样品表面材料的物质性能进行微观成像。EDX是借助于分析试样发出的元素特征X射线波长和强度实现的,根据不同元素特征X射线波长的不同来测定试样所含的元素。通过对比不同元素谱线的强度可以测定试样中元素的含量。通常EDX结合电子显微镜(SEM)使用,可以对样品进行微区成分分析。在军工,航天,半导体,先进材料等领域中,SEM/EDX(形貌观测、成分分析)扫描电镜(SEM)可实现材料表面形貌分析,微区形貌观察,材料形状、大小、表面、断面、粒径分布分析,薄膜样品表面形貌观察、薄膜粗糙度及膜厚分析,纳米尺寸量测及标示和微区成分定性及定量分析等功能EMMI微光显微镜微光显微镜(Emission Microscope, EMMI)是常用漏电流路径分析手段。对于故障分析而言,微光显微镜(Emission Microscope, EMMI)是一种相当有用且效率极高的分析工具。主要侦测IC内部所放出光子。在IC元件中,EHP(Electron Hole Pairs)Recombination会放出光子(Photon)。如在P-N结加偏压,此时N阱的电子很容易扩散到P阱,而P的空穴也容易扩散至N,然后与P端的空穴(或N端的电子)做EHP Recombination。在故障点定位、寻找近红外波段发光点等方面,微光显微镜可分析P-N接面漏电;P-N接面崩溃;饱和区晶体管的热电子;氧化层漏电流产生的光子激发;Latch up、Gate Oxide Defect、Junction Leakage、Hot Carriers Effect、ESD等问题Probe Station 探针台测试探针台主要应用于半导体行业、光电行业。针对集成电路以及封装的测试。 广泛应用于复杂、高速器件的精密电气测量的研发,旨在确保质量及可靠性,并缩减研发时间和器件制造工艺的成本,可用于Wafer,IC测试,IC设计等领域。FIB(Focused Ion beam)线路修改FIB(聚焦离子束,Focused Ion beam)是将液态金属离子源产生的离子束经过离子枪加速,聚焦后照射于样品表面产生二次电子信号取得电子像,此功能与SEM(扫描电子显微镜)相似,或用强电流离子束对表面原子进行剥离,以完成微、纳米级表面形貌加工。在工业和理论材料研究,半导体,数据存储,自然资源等领域,FIB可以实现芯片电路修改和布局验证、Cross-Section截面分析、Probing Pad、 定点切割、切线连线,切点观测,TEM制样,精密厚度测量等功能。失效分析前还有一些必要的样品处理过程。取die用酸法去掉塑封体,漏出die decap(开封,开帽)利用芯片开封机实现芯片开封验证SAM,XRAY的结果。Decap即开封,也称开盖,开帽,指给完整封装的IC做局部腐蚀,使得IC可以暴露出来,同时保持芯片功能的完整无损,保持 die,bond pads,bond wires乃至lead-frame不受损伤,为下一步芯片失效分析实验做准备,方便观察或做其他测试(如FIB,EMMI), Decap后功能正常。化学开封Acid DecapAcid Decap,又叫化学开封,是用化学的方法,即浓硫酸及发烟硝酸将塑封料去除的设备。通过用酸腐蚀芯片表面覆盖的塑料能够暴露出任何一种塑料IC封装内的芯片。去除塑料的过程又快又安全,并且产生干净无腐蚀的芯片表面。研磨RIERIE是干蚀刻的一种,这种蚀刻的原理是,当在平板电极之间施加10~100MHZ的高频电压(RF,radio frequency)时会产生数百微米厚的离子层(ion sheath),在其中放入试样,离子高速撞击试样而完成化学反应蚀刻,此即为RIE(Reactive Ion Etching)。 自动研磨机自动研磨机适用于高精微(光镜,SEM,TEM,AFM,ETC)样品的半自动准备加工研磨抛光,模块化制备研磨,平行抛光,精确角抛光,定址抛光或几种方式结合抛光,主要应用于半导体元器件失效分析,IC反向等领域,实现断面精细研磨及抛光、芯片工艺分析、失效点的查找等功能。 其可以预置程序定位切割不同尺寸的各种材料,可以高速自动切割材料,提高样品生产量。其微处理系统可以根据材料的材质、厚度等调整步进电动机的切割距离、力度、样品输入比率和自动进刀比率等。去金球 De-gold bump,去层,染色等,有些也需要相应的仪器机台,SEM可以查看die表面,SAM以及X-Ray观察封装内部情况以及分层失效。除了常用手段之外还有其他一些失效分析手段,原子力显微镜AFM ,二次离子质谱 SIMS,飞行时间质谱TOF - SIMS ,透射电镜TEM , 场发射电镜,场发射扫描俄歇探针, X 光电子能谱XPS ,L-I-V测试系统,能量损失 X 光微区分析系统等很多手段,不过这些项目不是很常用。芯片失效分析步骤:1、非破坏性分析:主要是超声波扫描显微镜(C-SAM)--看有没delamination,xray--看内部结构,等等;2、电测:主要工具,万用表,示波器,sony tek370a3、破坏性分析:机械decap,化学 decap芯片开封机4、半导体器件芯片失效分析 芯片內部分析,孔洞气泡失效分析(原作者:北软失效分析赵工)
  • 众瑞科普 | 口罩密合性测试如何保护医护人员的安全?
    前言《医疗机构内新型冠状病毒感染预防与控制技术指南(第三版)》对医务人员个人防护用品的使用提出了一些新的要求,其中包括“从事发热门诊、定点医院隔离病区工作的人员要做医用防护口罩适合性测试和密合性测试,合格者方可上岗;每次进入发热门诊、定点医院隔离病区工作前,要做医用防护口罩密合性测试”。那么,什么是适合性测试?为什么要做适合性测试?如何来做?医用防护口罩的适合性或密合性在GB19083—2010 《医用防护口罩技术》中进行了明确规定,指的是口罩周边于具体使用者面部的密合程度。标准给出的测试方法为:以凝结核粒子计数器作为传感器,在人员佩戴口罩并做出规定动作时,通过对环境中与口罩内的粒子数进行对比来计算获得适合因数。青岛众瑞的ZR-1221型口罩密合度测试仪为进行适合性/密合性检测的专用仪器,各项参数符合标准需求!防护口罩(包括医用防护口罩)属于密合型面罩,其防护效果既依赖于过滤材料的过滤效率,也依赖于和佩戴者人脸达到密合的程度。由于人们脸型各不相同,对佩戴和使用方法的掌握也有差异,而且使用过程还要进行各种活动,因此不同人使用同一款防护口罩,或者同一个人用不同方法使用同一款口罩,实际的泄漏量都是不同的。也就是说,防护口罩与佩戴者之间的适合性具有因人而异的特点。国家标准GB/T 18664-2002《呼吸防护用品的选择、使用与维护》中介绍了适合性检验(fit test)的方法,也就是新版指南中所说的适合性测试。标准给出的测试方法为:以凝结核粒子计数器作为传感器,在人员佩戴口罩并做出规定动作时,通过对环境中与口罩内的粒子数进行对比来计算获得适合因数。以青岛众瑞的ZR-1221型口罩密合度测试仪作为适合性/密合性检测的专用仪器进行测试举例:测试过程密合度测试需要在佩戴口罩的情况下进行。通过在呼吸区域打孔并连接专用探头来检测口罩内的颗粒物浓度,在进行不同动作时记录口罩内粒子浓度与环境粒子浓度来计算密合度的量化指标“适合因数”。受试者需要做以下六个规定动作,每个动作1min:(1)正常呼吸——站立姿势,正常呼吸速度,不说话。(2)深呼吸——站立姿势,慢慢深呼吸,注意不要呼气过度。(3)左右转头--—站立姿势,缓缓向-侧转头到极限位置后再转向另一侧,在每个极限位置都应有吸气。(4)上下活动头部——缓缓低头,再缓缓抬头,在抬头的极限位置应有吸气动作。(5)说话——大声缓慢说话。让受试者从100倒数或读一段文章。(6)正常呼吸——同(1)。深圳市第三人民医院已经使用ZR-1220开展口罩密合性检测众瑞一直将“用心做好仪器”作为一种信念和承诺。我们坚信,在先进技术的帮助下,我们一定能战胜疫情,迎来春暖花开!
  • 精工电子纳米科技X射线荧光分析仪全新上市
    精工电子纳米科技有限公司开发生产可在短时间内对微小区域中微量有害金属进行高灵敏度测量的能量色散型X射线荧光分析仪[SEA6000VX]于近期全新上市。 能量色散型X射线荧光分析仪 SEA6000VX   X射线荧光分析仪,因其便捷的操作性和分析的快速性,在对应RoHS指令等环境管制中被大量导入到零件及产品的入库出货检查中。除了RoHS指令以外,随着ELV指令、玩具规范以及RPF*1等等的无铅化、无卤化标准的建立,可以预见对于测量环境管制物质的需求将会日益增加。但是,为了进一步提高测量的效率,并对应复杂的测量需求,现有机型已经很难对应线路板等复合部件中无法拆解的特定微小区域的测量,以及线路板整体有害物质的管理等的需求,因此开发了这款能够满足这些需要的最新机型。   [SEA6000VX]大幅提升了灵敏度,实现了对微小区域的高速测量。由于配备了本公司自行研发设计的无需液氮高计数率检测器Vortex及全新设计的X射线源,更是得到了比以往机型高出10倍以上的灵敏度。对于原先在5mm~10mm左右比较大的分析范围内进行的微量有害物质测量,现在即使在0.5mm~1.2mm左右的微小区域内也能以相同或者更短的时间进行测量。   通过提高测量微小区域的灵敏度以及搭载高速电动平台,实现高速二维扫描。例如,对100mm x 100mm的实装线路板的高速扫描中,仅需2分钟左右就能检测出其中亚毫米大小的共晶焊锡。如果增加扫描的次数,大约花30分钟左右的时间就可以检测出RoHS指令中的规定值为1,000ppm级的铅含量,从而可以判断整个实装线路板中是否符合无铅制程的规范。   此外,[SEA6000VX]还配备了决定测量位置观测的高清晰度宽视野光学系统,以及高精度的X-Y平台,进一步提高了操作的便利性及测量的稳定性。   精工电子纳米科技有限公司针对有害物质测量所开发生产的X射线荧光分析仪中,既有的下方照射方式的SEA1000A、SEA1200VX等,加上此次全新上市的上方照射型「SEA6000VX」,可广泛对应不同的测量对象。   【SEA6000VX的主要特点】   1. 高速扫描测量   通过结合了大幅提高的微小区域X射线荧光分析灵敏度和高速电动平台,能够快速获得二维扫描图像。特别是强化了对线路板中铅的扫描,配备了铅扫描专用滤波器。让1,000ppm以下无铅焊锡中的铅扫描变成简单可行。   2. 宽视野高清晰度光学系统   可获得250mm x 200mm的20μm以下高清晰度的光学影像。从该光学影像可以直接精确指定测量位置,让操作性得到飞跃般的改善。此外,该光学影像可以和通过高速扫描获得的扫描图像进行重叠,可在大范围内进行高精度分析。   3. 微小区域中微量金属的高速测量   实现了高密度微小X射线束以及配备的高计数率检测器,加上充分考虑到X射线荧光检测效率的设计,实现了高灵敏度化。微小区域中微量金属或薄膜都可在短时间内测量。即使是1mm x 1mm左右的微小区域也可以以100秒左右的速度测量其中的有害物质。   4. 无需液氮的高计数率检测器   作为标准配置本公司独有的无需液氮的高计数率检测器,省去了繁琐的液氮补给程序。仅需数分钟的开机时间,同时电子冷却的规格具备了优异的可信性。运用的技术可以减少在液氮制造、搬运时产生的二氧化碳,以及提高测量速度后节省下的电力等,是一款考虑到环保问题的先进仪器。   5. 微小区域的镀层厚度测量   可在十秒左右的时间完成对0.2mm x 0.2mm面积中Au/Ni/Cu(金/镍/铜)等薄膜多镀层的镀层厚度测量。此外,也可对无铅焊锡镀层或化学镍镀层中含有的微量铅进行分析。   【上市日期】   2008年6月17日   【后注】   *1 RPF   Refuse Paper & Plastic Fuel的简称。以难以再次回收利用的旧纸、废弃塑料等作为主要原料的固体燃料。
  • 小满喜气满满---澳信喜获奖杯 ACCRECETH东精精密特约代理商成长奖银奖
    2020年05月20日庚子年农历四月二十八迎来二十四节气中的第八个节气——小满。 小满喜气满满---澳信喜获奖杯 ACCRECETH东精精密特约代理商成长奖银奖,感谢新老客户的支持与厚爱!愿你心满意得,赢得美好三平两满!小满不满,麦粒渐满;小满不满,干断田坎;小满小满,生活美满。《月令七十二候集解》有载:“四月中,小满者,物致于此小得盈满。”不满,则空留遗憾;过满,则招致损失。花未全开月未圆,人生最好是小满。澳信喜获奖杯 ACCRECETH东精精密特约代理商成长奖银奖今天让我们一起走入ACCRECETH东精精密圆度仪 科普小常识关于圆度仪的简单介绍  圆度仪是一种运用回转轴法测量工件圆度的工具。圆度仪分为传感器回转式和工作台回转式两种型式。测量时,被测件与精密轴系同心装置,精密轴系带着电感式长度传感器或工作台作精确的圆周运动。今天圆度仪生产厂家给大家说一说圆度仪的知识与原理。  圆度仪是一种测量零件回转表面(轴、孔或球面)不圆度的精密仪器。一般有两种类型:小型台式,把工件装在回转的作业台上,测量头装在固定的立柱上;大型落地式,把工件装在固定的作业台上,测量头安装在回转的主轴上。测量时,测量头与工件表面接触,仪器的回转部分(作业台或主轴)旋转一周。因回转部分的支承轴承精度极高,故回转时测量头对被测表面将发生一高精度的圆轨迹。被测表面的不圆度使测量头发生偏移,转变为电(或气)信号,再经扩大,可主动记载在圆形记载纸上,直接读出各部分的不圆度,供鉴定精度与工艺分析之用。广泛用于精密轴承、机床及仪器制造工业中。圆度仪由仪器的传感器、放大器、滤波器、输出设备组成。若仪器配有计算机,则计算机也包括在此系统内。  圆度仪选用半径测量法,作业旋转式。该圆度仪旋转轴系选用高精度气浮主轴作为测量基准;该圆度仪电器部分由高级计算机及精密圆光栅传感器、精密电感位移传感器组成,圆光栅传感器、精密电感位移传感器计量视点、径向位移量,保证测量工件的角位移、径向值的精确度;圆度仪测量软件选用依据中文版WinXP操作系统渠道的圆度测量软件,完成数据收集、处理及测量数据管理等作业。圆度仪的正确操作规程,你都用对了吗?  圆度仪的操作使用,该工具的作用相信大家都知道,正确的使用工具很重要,我们现在遇到许多仪器出现故障,主要的原因还是因为操作不当造成的,所以正确使用也是保障仪器性能的重要做法,我们常说到要保养某某机器,但其实只要正确使用,就不用过多的去保养。其他的产品也一样的道理,对于圆度仪来说,你知道如何正确使用吗?  (1)圆度仪采用AC220V 50HZ电源,检查电源正确,并保持主机良好接地;  (2)打开电源,启动计算机进入操作系统;打开圆度仪主机电源开关,启动工作台旋转,并预热15分钟;  (3)将被测件安放在工作台中心,调整立柱及横臂手轮,使传感器的测针接触工件;  (4)用手拨动工作台逆时针旋转,首先选择±100um档,用敲拨棒调整工件,使计算机上显示的模拟表头的指针摆幅最小;然后逐步提高放大倍率,反复此调整过程,提高对心精度。直到在±25um档时,表头的指针摆幅最小即可;  (5)打开主轴电机开关,主轴旋转,当主轴旋转3周后,单击[开始测量]按钮开始测量;测量完成后,计算机将自动对测量结果进行分析并显示测量结果;这时,即可以对测量结果进行存储及打印输出;  (6)仪器停止工作不用后,应关闭计算机及主机电源;取下工作台上的卡盘和被测件,同时,使传感器处于自由状态,不可使其承受外部力量;  (7)使用本仪器前请首先了解使用说明书;被测件应认真清洁和等温;主轴严禁顺时针旋转;禁止冲击传感器。  (8)定期给主轴加油,并保持仪器立柱、横臂、工作台等裸露部分清洁,并涂少许机油以防氧化生锈。
  • SOCOREX 437手动移液管控制器新款来袭~
    SOCOREX 手动移液管控制器升级款它来了!SOCOREX手动移液管控制器坚固且易于使用,它提供了符合人体工程学的形状和轻量级的体重。同时在吸气和分配的时候提供了平稳的控制。使用玻璃或者塑料的移液管可以进行100ml体积的分液。437手动移液管控制器的优势:* 大容量的吸气球* 柔软的手柄按钮* 吹出系统设计,可以实现结尾一滴的吹出* PTFE保护膜过滤器* 可替换的不同颜色的移液管接口,便于识别437手动移液管控制器的特点:1、可挤压的吸气球挤压大容量硅胶球即可吸气。如果在操作过程中需要再次挤压吸气球,可以直接挤压,不影响正在进行的移液操作。2、准确控制为了便于操作者左右手使用的不同的习惯,更简单的控制吸气和分配的速度,437手动移液管控制器采用了拇指控制按钮。3、液体吹出挤压吸气球即可实现残留液体的排出。4、保护滤器通用的疏水膜过滤器,保护了仪器和样品。5、可选颜色的移液管接口不同颜色的接头可以区别不同的样品,甚至不同实验室。有白色、绿色和蓝色可供选择新款437手动移液管控制器产品升级,价格不变,您心动了吗~,欢迎留言咨询!
  • 西门子研发呼气分析仪
    记者近日从西门子公司获悉,西门子正在研究一种能利用呼出气体样本对肺结核或肺癌进行早期诊断的方法。该方法能够对患者呼出的气体样本进行分子结构分析。   世界卫生组织的数据显示,仅在2011年,全球范围内就有870万人新患肺结核,而当年死于该疾病的人数高达140万。这种疾病的初始症状类似重感冒,如果不能尽早确诊,还会传染周围人群。   因此,找到一种能帮助医生及早、有效地确诊该疾病的方法至关重要。   据了解,西门子的研究人员决定采用四极质谱仪来识别个体分子,并确定其在呼吸气体样本中的浓度。   西门子方面表示,目前针对肺结核和肺癌患者的测试非常成功,但这一诊断方法还需要进行进一步测试,以确定测试是否会受到患者年龄、性别和饮食习惯等因素的影响。此外,研究人员还希望了解这种诊断方法是否对吸烟者有效。
  • 国缆检测拟募投4大项目,列出超2亿元仪器购置清单
    2022年1月25日,上海国缆检测股份有限公司(简称“国缆检测”)首发申请获创业板上市委员会通过。据招股书显示,国缆检测拟公开发行人民币普通股不超过1,500.00万股,占发行后总股本的比例不低于25%;拟总募资约3亿元,用于超高压大容量试验及安全评估能力建设、高端装备用线缆检测能力建设、设立广东全资子公司、数字化检测能力建设4个项目,并列出了超2亿元的仪器设备购置清单。投资项目情况如下(单位:万元):序号项目名称预计总投资预计投入募资建设周期1超高压大容量试验及安全评估能力建设项目12,02012,0202年2高端装备用线缆检测能力建设项目9,9109,9102年3设立广东全资子公司项目4,0154,0152年4数字化检测能力建设项目4,4704,4703年合计30,41530,415-国缆检测表示,本次募集资金投资项目均围绕主营业务进行,契合公司经营发展战略,是对公司现有主营业务的发展巩固,与公司现有业务模式、核心技术高度关联。募投项目投产后,将进一步拓宽公司检测服务内容,提高研发能力和管理效率,满足检测服务创新需求,增强公司可持续发展能力和综合竞争力。1、超高压大容量试验及安全评估能力建设项目国缆检测针对超高压远距离输电的直流电缆、超高压海上风电电缆及电力设备大容量电缆系统其类似产品的检测、工程模拟试验及安全运行评估进行能力建设。该项目建设超高压大容量实验室,重点针对±800kV及以下的直流电缆、500kV交流海上和陆上用电缆系统的检测及评估能力,可实现全套的型式试验、预鉴定试验、现场试验以及一些工程模拟试验,尤其是针对海底电缆深水区透水试验、张力弯曲等关键项目的检测能力的优化升级。国缆检测为该项目的实施主体,项目建设期为2年,计划总投资12,020万元,其中:建筑工程费160万元,安装工程费381.44万元,设备购置费9,536万元,工程建设其它费用417.56万元,预备费525万元,铺底流动资金1,000万元。国缆检测预计,项目建成达产后可新增销售收入4,500万元/年,净利润1,513万元/年,全部投资回收期7.14年,内部收益率14.19%(税后)。该项目拟新购仪器设备40台/套,购置费为9,456万元。设备投资明细如下:序号设备名称台数单价/万元总价/万元一、高压大厅1高压直流发生器42501,000235kV电缆振荡波测试系统170703TDR定位系统180804高压直流电缆全尺寸空间电荷测量系统11501505高压直流电缆温度控制系统21202406高压直流电缆泄漏电流测量装置145457见证试验用监控仪59458接触电阻率测试仪(阻水带电阻)210209高电压试验高速成像仪1707010高压大厅串联谐振试验系统220040011手持式电动压钳23.006.0012大容量突发试验系统16,0006,00013金具大电流试验系统自动化432.513014交流电阻测试系统110010015直流大电流源212024016现场竣工试验系统1600600小计31-9,196二、露天试验场1复合缆测试工装130302大力值冲击试验机120203特高压导线用振动台(2台)220404消振试验线路工装330.00905大型高压电缆弯曲试验机130306海底电缆张力弯曲试验机15050小计9260总计40-9,4562、高端装备用线缆检测能力建设项目国缆检测针对航天航空、工业互联网、新能源等领域的高端装备用线缆特定要求,提升实验室检测能力。该项目将搭建高端装备用特种电缆检测技术服务平台,建设先进航空线缆检测实验室、通信线缆检测实验室及新能源线缆检测实验室等高端装备用电缆专项实验室,跟踪国际、国内电缆技术发展,加强新产品、新应用的测试技术研究,为电缆行业技术创新和重大工程国产化应用提供准确、真实的数据和服务。国缆检测为该项目的实施主体,项目建设期为2年,计划总投资9,910万元,其中:建筑工程费450万元,安装工程费293.64万元,设备购置费7,341万元,工程建设其它费用401.07万元,预备费424.29万元,铺底流动资金1,000万元。国缆检测预计,项目建成达产后可新增销售收入4,300万元/年,净利润1,368.34万元/年,全部投资回收期6.35年,内部收益率17.19%(税后)。该项目拟新购仪器设备358台/套,购置费为6,961万元。设备投资明细如下:序号设备名称台数单价/万元总价/万元一、航空航天线缆检测实验室1防尘IP试验箱110102循环盐雾箱130303结合温湿度变化的振动台(X/Y/Z三方 向)12002004振动/冲击装置14.54.55无线温湿度测试仪13.23.26连接器性能测试系统15005007高低温冲击箱230608300 °C高温烘箱2582009500 °C高温烘箱202040010微欧计(进口)1252511左右弯曲耐久性试验装置15512扭曲耐久性试验装置15513微细线直径及镀层厚度测试15514材料微观形貌和结构分析1150150小计58-1,597.7二、通信线缆检测实验室1不平衡衰减测试仪19.59.52滚筒跌落试验箱1663电磁半波暗室140040045G线缆测试配套系统1200205台式精密多模光源12.52.56便携式精密单模光源1227台式精密单模光源2248便携式精密光功率计32694通道单模功率计431210单模光纤插回损仪1441150多模光纤插回损仪14.54.51262.5多模光纤插回损仪14.54.513光缆振动舞动机1202014光缆机械性能成套设备(拉压卷)1808015电弧设备1505016加压浸水装置16617耐电痕实验系统1303018高压冲击试验装置的检定系统25010019高压电磁屏蔽室屏蔽效能的测量系统13030小计26-971三、新能源线缆实验室1热循环回路自动测控系统16304802零序大电流发生器8054003高压极端低温环境系统13003004振动试验线路拉力控制系统11201205大电流直流电阻测试仪228566红外温度成像仪140407紫外放电成像仪150508无纸记录仪4531359高速无纸记录仪542010卡尔费休水分测量仪15511绝缘电阻测试仪531512大截面分割导体夹具15513微孔杂质智能测试系统1505014库伦法镀层测厚仪13315导线扭力矩测试仪1101016磁粉无损检测探伤仪1202017绞线扭转试验15518绞线轴向冲击试验110010019绞线模拟雨林气候载流试验11120精密恒温油槽13321进口绝缘电阻测试仪15522电能质量测试仪2204023电缆制样装备4156024电缆安全性能分级及评估测试系统180080025标准电阻20.61.226锥形量热仪120020027风力发电用高端电缆耐扭设备35015028交联样品切片机251029200度烘箱12230削片机15531热老化试验箱3026032天平51.57.533测厚仪50.31.534汽车线刮磨机1303035负载试验柜1151536虹吸试验设备15537汽车线单根试验设备1303038投影仪251039自动绝缘结构测试仪110010040高压试验台2102041高精度微欧计1303042微欧计15543绝缘电阻仪24844绝缘电阻仪ZC90G11145恒温水槽441646大截面电阻测试仪夹具1202047卤酸试验设备13348碳黑试验设备13349ph电导率仪10.50.550FTT烟密度试验箱110010051透光率试验仪18852UL燃烧试验仪1101053高低温湿热试验箱3185454氙灯试验箱1202055净水器23656臭氧试验箱1101057氧弹试验箱251058曲挠试验机291859升温法软化击穿仪1202060盐水针孔试验仪10.60.661焊锡试验仪12262耐溶剂试验仪11163击穿电压仪1202064试验数据采集终端120020065半导电电阻率测试系统2102066大型电缆导线收放系统120020067工程用线束及电缆三相载流量测试系统及工装1303068温度、电磁场软件系统113613669工程服务用通勤车23570小计274-4,392.3总计358-6,9613、设立广东全资子公司项目国缆检测拟在广东设立全资子公司,用于专项实验室、接待、办公、样品仓库等能力建设,以解决公司现有南方市场需要长途运输,检测时间周期长,运输费用高的状况,以满足未来发展的需要。项目建成后,国缆检测将扩大南方地区线缆检测的市场占有率,针对广东省及周边线缆产业基地展开就地化的高水平服务,同时围绕粤港澳大湾区的大规模汽车电子、电子电器产业拓展新的检测业务,并利用广东东莞的地缘优势,探索拓展国际检测认证市场。该项目建设期为2年,计划总投资4,015万元,其中:建筑工程费502.5万元,仪器设备购置费1,691.3万元,安装工程费42.7万元,工程建设其他费825.5万元,预备费153万元,流动资金800万元。国缆检测预计,项目建成达产后可新增销售收入2,500万元/年,净利润564.8万元/年,全部投资回收期6.74年,内部收益率16.19%(税后)。该项目拟新购仪器设备167台/套,拟新购仪器设备价格1,544.1万元。设备投资明细如下:序号设备名称台数预估单价/万元总价/万元一、布电线试验室1电子天平2242绝缘电阻测试仪2243拉力试验机2501004微欧计132325台式投影仪1556测厚仪40.150.67数字多用表10.370.378紫外吸收式臭氧分析器15.55.59电子万能试验机1303010数显千分尺40.020.0811钢直尺40.010.0212焊锡试验仪11.51.513耐刮磨试验机11.51.514电缆曲挠试验机18815耐磨试验机10.80.816低温试验箱291817低温冲击机10.580.5818静态曲挠试验装置10.50.519低温卷绕机10.650.6520低温拉伸试验装置13.43.421老化试验箱101010022电缆结构测试系统110010023纺纤编织层耐热试验装置11124三轮曲挠试验机15525电线弯曲试验机11.81.826电缆荷重断芯试验机10.470.4727橡皮电缆扭绞试验机15528热稳定性试验仪10.670.6729交流耐压试验系统1101030电梯电缆曲挠试验装置15531臭氧老化试验箱1121232高压试验台10.450.4533高温压力试验装置20.5134热冲击试验装置20.5135玻璃恒温水浴20.5136热延伸试验装置20.10.237氧弹空气弹老化试验仪14.64.638单根垂直燃烧试验装置1151539伸率尺60.010.0340哑铃刀20.20.441冲片机10.20.2小计73-481.32二、低压力缆试验室1SevenMulti多功能测试仪110102电子天平1223电导率仪10.40.44PHS-3F酸度计10.20.25国际橡胶硬度计10.80.86精密恒温油浴10.650.657数显小头外径千分尺40.20.88千分尺40.050.29钢直尺40.010.02106305型碳黑测定仪15511烟密度测量系统1202012热老化试验箱12213高压试验台15514恒温水浴11.121.1215CDY冲击电压发生器1404016电线电缆结构参数全自动测量系统1330小计25-118.19三、阻燃耐火电缆试验室1电子天平1222管式炉测试仪(TFT)110103ULTRMAT23气体分析仪130304NOX分析仪125255850IC离子色谱仪11001006环保设备1160160小计6-327四、通信电缆试验室1测厚仪20.150.32数字万用表10.370.373钢直尺20.010.014电子天平1225千分尺20.050.16高频网络分析仪11001007低频网络分析仪144.644.68游标卡尺20.040.08950kN电子万能试验机1303010直流电阻测试仪11.41.411高低温试验箱111.511.512电容耦合测试仪13.63.613对称数据电缆测试系统174.574.514LCR测试仪14.54.515磁阻法测厚仪10.350.3516伸长率试验仪11.41.417电缆弯曲试验机11.31.318耐磨试验机10.80.819扭转试验机11.51.520渗水试验装置10.20.221转移阻抗测量装置13434小计25-312.51五、电器附件1钢卷尺20.010.012钢直尺40.010.023电子秒表20.010.024交变湿热箱110105架盘天平10.050.056千分尺20.050.17电子数显卡尺20.040.088电源负载柜1449电源负载柜1410电源负载柜14411恒定湿热箱18812ul老化试验箱281613高精密高压电容电桥18814ul燃烧试验机16615材料烟密度箱110010016线芯折断试验机11.21.217极低温冲击试验机10.50.518刮磨试验机11.51.519弯曲试验机16620机械强度试验装置10.50.521磨耗测试仪11.21.222耐刮磨试验机1202023UL氙灯试验系统1404024氙灯气候试验箱1202025绝缘线芯印刷标志耐久性试验装置11.21.2小计33-252.38六、线束连接器试验室1电磁兼容测试系统128282台式万用表10.50.53多功能温升试验装置121214盐雾腐蚀试验箱11.61.65精密电阻测试仪11.61.6小计5-52.7合计167-1,544.14、数字化检测能力建设项目国缆检测将对部分检测试验的原有的设备、电力线路进行升级改造,配齐配全必要的数字化检测设备,围绕电线电缆检验检测建成一个先进的、高效的数字化线缆检测实验室。此外,通过建造一座智能化立体仓库,承担检测产品的储存与流通任务,实现产品入库、存放、保管、发放、核查等精细化、流程化的技术性管理,要做到实物取放与单据相符、单据录入及时、有效管理零散物料、追溯物料批次信息等。该项目建设期为3年,计划总投资4,470万元,其中:建筑工程费912万元,设备购置费2,958万元,安装工程费118.32万元,其他费用312.25万元,预备费169.43万元。该项目拟新购仪器设备128台/套,购置费为2,958.00万元。设备投资明细如下:序号设备名称及型号规格数量单价/万元小计/万元一、数字化实验室1机械手及夹具30309002门禁电脑80.32.43车载电脑100.554RFID电子标签系统(射频识别设 备)10111104.1RFID标签(库位、工装容器、栈 板等)20000.00124.2PDA手持机/扫描枪/作业平板120.67.24.3固定式门禁(读写器、天线、线缆、 红外感应器等)11.81.852吨背负式AGV小车10222206AGV无线充电位6167电脑50.428普通条码打印机50.84小计84-1,249.4二、智能化立体仓库1门禁电脑40.31.22车载电脑60.533电脑20.40.84普通条码打印机20.81.65便携式条形码打印机40.526RFID电子标签系统111117货架(重型钢架)14104107.1货位2500 个0.082007.2天地轨600米0.06367.3电缆600米0.04247.4钢制托盘(货箱)25000.061508AGV激光导航调度及控制系统1181892吨叉车式AGV小车63521010AGV无线充电位31311堆叠码垛系统28016012巷道堆垛机57035013输送机系统1787814仓储智能化软件系统112012015自动控制系统118018016无线网络1202017电子监控系统2204018信息安全系统18080小计44-1,688.6合计1282,958关于国缆检测国缆检测创建于2004年,总部位于上海市,是国内领先的电线电缆与光纤光缆及其组器件的独立第三方检验检测服务机构之一,主营业务为电线电缆及光纤光缆的检测、检验服务,涵盖相应的检验检测、设备计量、能力验证等,还包括相关的专业培训、检查监造、标准制定、工厂审查、应用评估等专业技术服务。国缆检测的控股股东是上海电缆所,2019年1月,上海市国资委下发《关于申能(集团)有限公司与上海电缆研究所有限公司联合重组的通知》,上海电缆所股权以划转的方式注入申能集团,上海电缆所成为申能集团控股子公司。申能集团直接持有国缆检测5%的股权,并通过上海电缆所间接控制国缆检测85%的股权,合计控制国缆检测90%的股权,是国缆检测的间接控股股东。上海市国有资产监督管理委员会持有申能集团100%股权,是公司的实际控制人。上海市国资委是根据上海市政府授权代表国家履行国有资产出资人职责的市政府直属特设机构。
  • 重症早期预警——呼出气用SIFT-MS 实时快速检测
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱第十四讲:脂肪酸气相色谱分析的故事第十五讲:吹口气,知健康——GC-MS检测呼气疾病标记物   呼吸气检测相比其他通常医疗检测的最大优点是无损伤和安全性,由于它在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法对一些病人成为每天控制重要指标的必要测试项目(就像检测血糖和尿液一样)。呼吸气检测有多种方法,表 1列出分析呼出气体的一些方法。表 1 用于分析呼出气体的一些方法  上次我们介绍了GC-MS分析人呼出气体中预示疾病的生物标记物。这里我们介绍用SIFT-MS快速实时分析呼出气体中预示疾病的生物标记物的方法。1. 用选择性离子流动管质谱(SIFT-MS)快速、实时、准确地分析呼吸气体中的疾病标记物  早期的质谱是采用低压电子电离源,用以测定分子量、元素组成以及探究物质的化学结构,后者是利用分子电离后的碎片组成来实现的。近年电离方法的发展是针对直接分析液体或固体样品而设计的,包括快原子轰击(FAB),基质辅助激光吸附/电离(MALDI),和电喷雾电离(ESI)方法。后面2个方法特别适合于分子量大的化合物的鉴定,ESI与液相色谱(HPLC)的结合更为有效。在气体样品电离的方法方面也得到重要的发展,包括化学电离(软电离)的各种变体,多使用正离子电离,以减少初始电离分子碎片的量,大气压电离是化学电离的一个特殊的方法。也开发出用于气体分析在漂移管中从H3O+离子进行质子转移的化学电离方法,叫做质子转移反应质谱(PTR-MS)。  使用电子电离质谱进行大气和呼吸气中微量组分的实时鉴定和定量分析,是一个具有挑战性的任务。因为在离子源中会浸入过多的气体如氮、氧和水蒸气,要解决这些问题,使用多种过滤膜,这些过滤膜只让极性的被测气体进入离子源,而排出大量的空气。但是这些过滤膜仍会阻挡其他一些痕迹量气体(尤其是烃类),所以要针对每种痕迹量气体小心校正过滤膜的穿透性,才能达到准确地定量结果。要不然为了避免不同化合物同时进行电离就只得使用GC-MS进行分析。  如果是能够直接、实时地分析大气中的痕迹量杂质,即解决环境科学,特别是呼吸气体中特殊气体的分析,开发扩大医疗诊断的领域,那就好了。尽管GC-MS可以分析空气和呼气中的10-12(ppb)和10-9(ppt)的痕迹量组分,但是需要收集大容量的样品到冷冻或吸附阱里。  显然,这就不是实时监测了。而且GC不适合监测像氨和甲醛一类小分子量物质。  David Smith等于1976年开发了选择性离子流动管质谱(SIFT-MS),它是一种可以进行定量分析的质谱方法,它开拓了使用选择性前体正离子进行化学电离的方法,此正离子可在一定的短暂反应时间里与空气或呼吸气体中痕迹量气体进行反应。这一技术是把快速流动管技术、化学电离和定量质谱分析很好的结合在一起,用以对一些空气和呼吸气体中痕迹量物质进行精确的定量分析,检测量可低达10-9浓度级别,分析时间只用几秒钟。  SIFT 的构思和发展始于1976年,是研究离子和中性物质反应的标准方法,开始时用于气相离子和中性物质反应的动力学数据,各国进行了大量的实验,积累了大量数据,奠定了离子和中性物质反应的基本概念。2.SIFT-MS 的原理和装置  SIFT-MS 的工作原理如图 1 所示:图 1 SIFT-MS 的工作原理示意图  在离子源中用微波放电或射频离子源来产生正离子,离子进入一个上游管中,其中有一个四极杆滤质器,用以过滤掉无用离子,留下首选的母离子,通常选择H3O+,NO+和O2+为母离子,母离子通过一个文丘里管(一般管径为1–2 mm)进入到反应流动管中,这里样品气用载气氦以一定速进入流动管,载气压力通常为100 Pa,在这里母离子与样品气反应,反应产物离子进入一个下游管,管长一般为30–100 cm,管末端的文丘里管(一般管径为0.3mm)进入到另一个四极杆滤质器对它们进行质量过滤。用电子倍增器检测,对选择出来的目标反应产物离子进行离子计数,进行定量分析。3.SIFT 中的反应速率常数  样品+载气注射到不锈钢流动管(内径通常为4-8 cm,内径以dt表示),用罗茨泵抽动,使管中总流速在40–80 m/s,以vg表示,它可以用载气流速,压力pg,温度Tg (K) 和dt进行精确计算,即:(1)  被加热的离子很快沿着流动管进行扩散,离子沿着流动管的平均速率为Vi这一速率决定着离子与反应气的反应时间 t,Vi要大于Vg,要进行精确测量,理论证明二者的关系为:(2)  反应气进样口进入流动管,其流速为Φ R。简单地处理,t是反应长度l(进样口到下游进样孔之间的距离)和Vi之比,但是l需要包括一个小的“末端校正”ε ,典型情况下ε 为2cm,这是考虑到反应气和载气的一定的混合距离。  为了确定反应的速率系数,需要知道载气中反应气分子的数密度值[A ],可以从载气和反应气的流速得到(3)  kb 是玻尔兹曼常数。  下面用一个例子解释如何确定速率常数的,我们选择H3O+为起始离子与丙酮作用,此反应用于呼吸气的分析,这是一个很简单的反应,H3O+的质子进入丙酮分子中:  在流动管中H3O+的原始数密度随时间而降低,Ni可以用下面的动力学公式描述:   式(5)中右面第1项表示原始离子(母离子)扩散到流动管壁的损失,以扩散系数 Di和Λ 来表征,Λ 表示扩散距离,与流动管的直径有关。第2项表示原始离子由于反应的损失,k 是反应(4)质子转移的速率系数,A是反应物(丙酮)的数密度。实际上原始离子H3O+和产物离子(CH3COCH3?H+)的计数率都可以用下游的质谱系统在丙酮蒸汽几个不同的流速下进行测定得到,在丙酮存在下H3O+的计数率I与没有丙酮时的的计数率I0相关,把公式(5)积分可得到:  k 的绝对值可从logI对[A]作图得到。  速率系数k是分析测定必须有的数据,见后面的叙述。4 .SIFT-MS 分析法  从公式(5)和(6)知道,如果反应的前体离子和反应物A的速率系数知道,当分子A流入载气里是,前体离子的计数率就开始降低,这样就可以测定[A],但是如果一个反应混合物气体同时进入载气里,那么前体离子计数率的降低是所有可反应气体造成的,就不能达到分析混合物的目的。但是,如果每一个反应气体和前体离子反应生成不同的产物离子。那么反应产物的信号就既可以定性又可以定量,所以SIFT-MS分析集中于用下游质谱仪测定前体和反应气体产物离子的计数率,所以它提供一个实时定量分析复杂混合物中的痕迹量气体,比如环境气体和呼吸气体。5 .呼吸气体分析实例  Turner等人采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,每周8:45 到 13:00(午餐前)志愿者取样,对乙醇和乙醛即可用SIFT-MS进行测定,使用H3O+为前体离子,测得乙醇平均浓度为196 ppb。乙醛的平均浓度为24 ppb。测得正常人呼出气中乙醇浓度在0到1663ppb之间,平均值为450ppb,乙醛浓度在0到104ppb之间,平均值为41ppb。环境中乙醇的背景浓度为50ppb左右,但是几乎没有检测到环境中的乙醛。但是在测定前2 h要是吃了甜饮料/食品乙醇的浓度会增加。(Rapid Commun Mass Spectrom,2006,20(1):6l-68 王海东等,现代科学仪器,2013,(4):40-45)(1) 具体方法概述  SIFT-MS有两种不同的运行模式,一种是全扫描模式,即在一定m/z范围内得到通常的质谱图,用于鉴定前体、产物离子和他们相应的计数率,在线计算机立刻计算这些痕迹量气体在呼吸气中的分压,为此要有可鉴定的产物离子,而且它们还要包括在分析所需要的动力学数据库中,动力学数据库包括速率系数和前体离子/痕迹量气体化合物反应的产物离子。对各种类型的化合物(醇类、醛类、酮类、烃类等)和三种前体离子经过SIFT的详细研究,构建了数据库。  另一种是多离子检测模式,在这一模式下,下游分析用质谱仪用很快的切换方式对前体离子和反应产物离子的选择性m/z值进行处理,定量分析水蒸气和痕迹量目标化合物。这一模式可以更为精确地定量分析痕迹量目标化合物。  图 2是使用多离子检测模式,使用H3O+为前体离子的SIFT-MS进行测定,获得乙醇和甲醇浓度在三次呼出气体随时间变化的曲线。本研究是用这一模式测定肺泡空气中的乙醇和乙醛浓度,在测定呼吸气体的间隙同时测定周围空气中的乙醇和乙醛浓度,看它是否影响对呼吸气体中目标化合物的测定。图 2 SIFT-MS 定量分析呼吸气中乙醇和甲醇的浓度随时间的变化图  SIFT-MS 定量分析呼吸气中乙醇,浓度随时间的变化是使用前体离子、前体离子水化物和乙醇特征产物离子及水化物(C2H5OH2+,m/z 47)信号比进行计算,还要知道反应时间和样品及载气的流速。  乙醇可以很快地与所有三种前体离子(H3O+,NO+, O2+)反应,与H3O+是直接进行反应,得到m/z 47的质子化乙醇,如下面的反应式: (7)  此反应(7)是放热反应,决定于碰撞速率。  当含有水汽的呼吸气进入载气时,产物离子很快形成水合离子,含有一个水分子和两个水分子的质子化乙醇其m/z为65(C2H5OH2+?H2O)和83(C2H5OH2+?(H2O)2),他们必须要计算到乙醇的测定当中。乙醛的离子化也类似于乙醇,它们是CH3CHOH2+ m/z 45, CH3CHOH2+?H2O m/z 63,和CH3CHOH2+?(H2O)2 m/z 81,分析时要计算进去(2) 检测30个志愿者呼气结果  采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,表2是在6个月期间测试30个志愿者呼气中乙醇含量的数据。对每一个志愿者每天测定他们的呼出气的乙醇浓度,是3次连续呼吸气的平均值,如图2中的数据,总数为478个平均值,测定了1434次呼气。每个志愿者呼气中的乙醇浓度平均值是为期半年积累的数据。连同测定的标准偏差(SD)数据见表2.按志愿者的年龄从上到下排列,也列出他(她)们的性别和身体质量指数(BMI)。个体之间乙醇浓度的散布很宽,所有志愿者的乙醇浓度在0 到 1663 ppb之间,平均值为196 ppb,SD 为 244 ppb,中间值为112 ppb。表 2 6个月期间测试30个志愿者呼气中乙醇含量的数据  *BMI =身体质量指数(Body Mass Index)(体重除以身高的平方)表 3 6个月期间测试30个志愿者呼气中乙醛含量的数据  30个志愿者呼气中乙醇浓度的散布见图3(a),是所有478次肺泡呼吸气中乙醇的浓度,这一分布接近于对数正态分布,符合预期的呼吸代谢的水平。图 3 30个志愿者6个月内呼吸气中乙醇和乙醛浓度测定的分布图  棒图纵坐标为样品数,a和 d 是针对所有样品,b和 e是志愿者在测试前2 h没有食用含糖食品或饮料的数据,c 和f是志愿者在测试前2 h吃了含糖食品或饮料的数据  根据这一文章作者们的研究指出吃了含糖食品或饮料会增加呼吸气中乙醇的浓度,这是由于蔗糖通过口腔菌群或肠道菌群的作用产生乙醇。他们研究这一现象,是否会显著影响呼吸气中乙醇浓度的测定,所以分别研究了在测定前两小时吃和没吃甜品志愿者的呼吸气中的乙醇浓度。图 3 中的(b)是志愿者在测试2h 前没有吃甜品的292呼吸气样品得到的结果,图 3 中的(c)是志愿者在测试2h 前没有吃甜品的186呼吸气样品得到的结果,考察呼气中乙醇浓度的增加是否实施由于蔗糖通过口腔菌群或肠道菌群的作用所产生乙醇。  以前的研究已经阐述过,环境空气中乙醇背景浓度对呼吸气中乙醇浓度的测定的影响,本研究说明背景乙醇浓度很容易检测出来(环境中的乙醛背景浓度测不出来)。小结 我这里引述的研究是2005年的工作,已经过去10年了,跟进的工作不多,可见还没有被人们认识,也涉及到仪器的昂贵,虽然已经有商品仪器,但是没有普及。看来进一步发展这一方法还需要医学和化学工作者结合,以及仪器的普及。
  • 众瑞仪器发布ZR-1211型 口罩呼吸阻力检测仪新品
    ZR-1211型 口罩呼吸阻力检测仪产品简介ZR-1211型 口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力。同时兼容多个流量点,适用于口罩生产厂、国家劳动防护用品检验机构对口罩产品进行相关的检测和检验。符合标准GB 2626-2019 呼吸防护用品 自吸过滤式防颗粒物呼吸器技术特点7寸高清晰触摸显示屏;电子流量计,流量控制精度高; 自动恒流控制,兼容多个流量点;可设置呼气、吸气两种检测模式,自动判定样品是否合格;大容量数据存储,实时保存检测数据; 可通过U盘导出或热敏打印机打印历史数据;样品合格判定压力值、样品编号等参数可设置;故障检测自动保护。创新点:1.ZR-1211型 口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力,自动恒流控制,兼容多个流量点。 2.符合标准 GB 2626-2019 呼吸防护用品 自吸过滤式防颗粒物呼吸器。 3.可设置呼气、吸气两种检测模式,自动判定样品是否合格。 4.样品合格判定压力值、样品编号等参数可设置。 ZR-1211型 口罩呼吸阻力检测仪
  • 众瑞仪器发布ZR-1210型 口罩呼吸阻力检测仪新品
    详细介绍产品简介 ZR-1210型口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力。适用于口罩生产厂家、国家劳动防护用品检验机构对口罩产品进行相关的检测和检验。符合标准GB2626-2006 呼吸防护用品——自吸过滤式防颗粒物呼吸器技术特点高清晰LCD液晶显示屏;电子流量计,流量控制精度高;自动恒流控制,自动样品合格判定;可设置呼气检测和吸气检测两种模式;大容量数据存储,实时保存检测数据;可通过U盘导出或热敏打印机打印历史数据;合格判定压力差、样品编号等参数可设置;故障检测自动保护。创新点:1、ZR-1210型口罩呼吸阻力检测仪用于测定口罩在规定条件下的吸气和呼气阻力; 2、电子流量计,流量控制精度高; 3、自动恒流控制,自动样品合格判定; 4、可设置呼气检测和吸气检测两种模式。 ZR-1210型 口罩呼吸阻力检测仪
  • UP势力“电子新材料”成为NEPCON上海展独特风景线
    虽不属于高能耗产业,但我国迅猛发展的电子信息制造业,依然在环保和节能指标上与发达国家相去甚远。怎样早日摆脱&ldquo 穹顶之下&rdquo 的能耗压力,调整产业结构,促进电子制造从材料到制作工艺全面升级,将于2015年4月21日-23日在上海世博展览馆隆重开幕的第二十五届中国国际电子生产设备暨微电子工业展(NEPCON China 2015),首次推出全新电子新材料论坛,对我国电子材料行业现状及发展前景开始全面解读。   高端行业峰会,专业解读电子新材料发展之道   据了解,本次论坛是NEPCON China 2015的精选活动之一,也是关注电子材料行业发展专业人士的一次高端聚会。SMTA 、SPCA、中国电子材料行业协会电子锡焊料材料分会、ITRI-IPC中国焊料技术理事会等业界知名协会都对本次论坛举办提供了有力的专业支撑。届时,将有来自终端用户群体的研发与设计、项目主管、技术支持、采购/市场/销售等材料行业的权威专家,以及行业媒体等共约150人参加论坛,涵盖了消费电子及家电、电子制造、通信、汽车电子、控制/安全/测试服务等诸多领域。除了集中展示半导体材料、元器件材料,平面显示材料、印刷电路板材料、电池材料、电子锡焊料材料、胶黏剂等新产品和新技术外,与会人士还会就电子材料升级转型等热门话题直面交流分享经验。   放眼当前,伴随公众审美和环保意识的不断提高,电子产品正朝着绿色无害、小型节能的方向发展,渗透在电子产品制造工艺中的电子材料,也必须顺应历史潮流,更加注重自身的高效安全、灵活、和环境友好特性,这样才能适应市场多元化需求。可以预计的是,在未来几年推崇产业升级换代的电子产业中,电子新材料必将化身高新技术产业发展的先导,成为电子制造工业领域最具活力和发展潜力的UP新势力。   品牌引领潮流,电子新材料展品缤纷登场   即使只是一次行业峰会,但本次电子新材料论坛在沟通了上下游产业链、助力企业多元发展上的作用不容置疑。在NEPCON China 2015展会上,以AIM、ALPHA、Henkel、ITW、Zestron、化研为代表知名公司,均与论坛同步推出多款与绿色环保主题相关的焊锡材料、清洗设备,新材料闪亮登场,说明环保节能理念已经深入人心。   一直致力于为半导体封装、印刷电路板组装提供优质材料和高级焊接解决方案的汉高(Henkel)公司(展位号:B-1G35),在本次展会推出了全新耐温变锡膏- LOCTITE GC 10。该锡膏适合常温下超长时间保存,且制作工艺比传统焊锡膏有了显著升级。相对于普通材料的平均1至4小时暴露时间,汉高LOCTITE GC 10无卤素、无铅、恒温型配方,最长可暴露24小时。稳定一致的印刷转移效率,宽大的回流窗口,让LOCTITE GC 10具有更高的活性,能够大大提高生产线上焊接系统的稳定性。   知名焊材公司华加美(展位号:A-1G74)本次带来了M8完全新一代的免洗锡膏,基于无铅T4及更细锡粉开发设计,工艺更精致、使用更持久,适用工艺窗口更广泛。它可为超微粒子和umBGA装置提供稳定的印刷性,为最具挑战性的电子应用减少DPMO。更为关键的是,M8免洗锡膏制作时加入了清洁化学剂,保证残留物被轻而易举一扫而空,为产品设计打上了深深的环保印记。   首次进入国内市场的ALPHA公司(展位号:A-1D55),携旗下多款竞品入驻NEPCON,焊膏、焊料合金、助焊剂、卷带式低温SnBiAg预成型焊锡,各种型材应有尽有,为电子制造提供最全面的焊接工艺方案。其中ALPHA® SnCX Plus&trade 07是一种无铅无银的助焊合金,专为简单至标准复杂的双面组装而设,其中包含的锡、铜以及各种独有添加品,让焊接过程更简单,效果更明显。   专注于研发、生产和销售电子清洗剂的依工特种材料有限公司(ITW,展位号:A-1D50),旗下包罗各种CBA工艺中清洗助焊剂,钢网板清洗剂,用于PCB保护的三防漆,各类ESD清洗或防护剂、锡编带、助焊笔、涂层笔等便利产品,一展打尽全部电子清洗材料,是工业电子、电路板组装等制造商的最佳选择。   引领全球的ZESTRON(展位号:B-1C35)水基清洗产品凭借独创的MPC微相清洗技术开发,能够高效去除电子元器件表面的助焊剂残留,保证卓越的清洗效果并提供良好的材料兼容性。ZESTRON 水基清洗产品可过滤循环使用,因此拥有超出寻常的清洗寿命,减少成本。该产品安全环保,累计帮助全球2000多家知名客户提升了工艺表现。   对精密电路板和半导体电子元件的清洗,一直以来是清洗剂行业的难题。化研科技株式会社(展位号:B-1J01)采用了超微净清洗系统,一键清洗所有精密电子元件。它不仅实现无污染清洗,同时推进了循环再生利用,是环保性能极高的精密清洗系统。   通过业界人士合作交流来探讨行业话题,这在NEPCON历史上不是唯一,但本次论坛却首次把关注焦点投向了电子新材料领域。作为电子制造业的重要参与者,电子材料的环保指数和安全系数,直接决定着整个行业的走向,更为紧迫的是从生产工艺和材料应用等关键环节上采用更为先进的技术,这样才能打造中国电子产品的高品质印象。   来源:NEPCON   2015 NEPCON China观众预登记途径:   · 发送短信&ldquo CNH+姓名+公司名&rdquo 至106900297333即可登记参观NEPCON China 2015并收到展会资讯   · 参观热线:国内观众&mdash 4006505611或86-10-5763 1818 国际观众&mdash 86-21-2231-7011   · 关注官方微博:NEPCONChina电子展 官方微信服务号:NEPCON_CHINA   · NEPCON China 2015详情请访问:www.nepconchina.com   · NEPCON South China 2015详情请访问:www.nepconsouthchina.com   关于励展博览集团大中华区&mdash &mdash 中国领先的展览会主办机构   励展博览集团大中华区是世界领先的展览及会议活动主办机构&mdash &mdash 励展博览集团的下属公司。励展博览集团在世界各地拥有3,700名员工,在43个国家举办500多个展会项目,其展览及会议组合为跨美洲、欧洲、中东、亚太和非洲地区43个行业部门提供服务。2014年,励展博览集团举办的展会吸引了来自世界各地的700余万名参与者,为客户达成了数十亿美元的业务交易。励展博览集团是励德爱思唯尔集团的成员之一,后者是全球领先的专业信息解决方案提供商,亦是一家FTSE-100上市公司。   励展博览集团大中华区历经30多年的快速发展,如今已成为中国领先的展览会主办机构,在华拥有八家出色的成员公司:励展博览集团中国公司、国药励展展览有限责任公司、励展华博展览(深圳)有限公司、北京励展华群展览有限公司、上海励欣展览有限公司、北京励展光合展览有限公司、励展华百展览(北京)有限公司和河南励展宏达展览有限公司。   目前,励展博览集团大中华区在中国拥有500多名员工,服务于国内11个专业领域:电子制造与装配 机床、金属加工与工业材料 包装 生命科学与医药、保健、美容与化妆品,休闲运动 礼品与家居 汽车后市场 生活方式 博彩 出版 地产与旅游 海洋、能源,石油与天然气。   2014年,励展博览集团大中华区主办的50余场展会吸引了100万余名观众以及近4万余名参会代表出席 在我们的展会上,共有3万多家供应商参与展示,其展位面积总计超过160万平方米。
  • IEC 62321系列国际标准转GB/T 39560国家标准正式发布
    为配合《电器电子产品有害物质使用管理办法》及合格评定制度的实施,全国电工电子产品与系统的环境标准化技术委员会有害物质检测方法分技术委员会(SAC/TC297/SC3)于2018年启动了IEC 62321系列标准转化国家标准的制定工作,2020年正式完成,近期正式发布。新的国家标准GB/T 39560系列标准(IEC标准转国标)将替代GB/T 26125成为我国《电器电子产品有害物质使用管理办法》新的支撑标准。该系列标准共包含9个小标准(如下图),其中已发布5个,其余4个报批中,预计将在今年内发布。 关于技术方面:新版国标等同采用了IEC最新国际标准,需要特别注意的是Cr(VI)的测定。该标准变化最大,修订了对结果阴/阳性判定基准。采用新老标准测试时,会出现判定结果不一致的情况。 岛津企业管理(中国)有限公司从2018年开始,就参于了IEC62321系列标准转化国家标准的工作,并且推出了《岛津应对中国RoHS2.0综合解决方案》,包括了Py-GCMS及符合《电子电气产品中限用物质筛选应用通则 X射线荧光光谱法》(GB/T33352-2016)标准要求的EDX法规专用机,配备了高灵敏度SDD检测器及5种内置工作曲线,制作了的Cl、Sb、Sn等元素分析套件。软件和内置曲线方面,为了更好的应对管控的测试要求,减少分析误差带来的影响,内置工作曲线应该包含但不限于:聚合物(PVC/PP/PE/ABS等)、金属类(铁合金、铜合金、铝合金、焊锡等)的工作曲线,再配合“材质判定”的功能,可以在很短的时间内高效完成限制使用物质的筛选分析,满足增加的工作量的同时又不至于增加分析成本。 即将于2021年10月发售EDX-7200新机型,除了配备一直常用的RoHS分析套件外,更前瞻性含有Cl、Sb、Sn、P等四种拟增加到欧盟RoHS法规筛选元素的分析套件,有效的应对RoHS法规的变化,满足欧盟未来可能增加的有害物质要求。 岛津应对中国RoHS2.0综合解决方案下载
  • XRF-7型便携能量X射线荧光分析仪
    XRF-7型便携能量X射线荧光分析仪是专业的RoHS/WEEE指令筛选仪器。该仪器提供一种快速、可靠、无损样品的筛检手段,对于塑料外壳、印刷电路板(PCB)、电缆、含镀层的紧固件等都 可以用这一件轻便 设备进行多元素无损检测。轻扣扳机,对样品中的镉、铅、汞、铬总量 、溴总量 及其它构成元素进行 定量 分析,快速判定检测结果。使您在更 短的时间内处理 更多的样品,避免因繁琐的常规分析而费时费力。XRF7开拓了新的RoHS指令QA/QC分析程序,是您最理想的筛选工具。 XRF-7 同时也遵循WEEE 指令,适用于制造业、废料 回收等筛检工作。 XRF-7型便携能量X射线荧光分析仪的主要特点为:  RoHS/WEEE指令快速筛选;  无需样品前处理、进行非破坏性分析;  短时间快速分析;  现场直接分析测定;  多种定量分析方法;  创新的薄样技术与厚样技术相结合,在样品进行前处理后,RoHS典型元素检出限可达mg/kg级;  完善的保护功能:安全锁、感应光闸辐射防护设计,安全可靠;  种类齐全的标准样品相配套(PP、ABS、PE、铝合金等);  彩色触摸屏菜单操作;  无限量数据存储。 仪器的创新点为: 薄样技术与厚样技术两种X荧光能谱应用技术的结合,使得该仪器既能对大量样品作快速的初步筛检试验,也可以对经过前处理后的样品作较慢的实验室级别细致检测。相当于同时拥有了便携和中档台式两台X荧光能谱分析仪。 应用:  电子元器件、连接件、线路板  各种焊锡材料中的Pb、Cd、Ag等  金属部件、合金框架等  聚合物中Br、Pb、Hg、Cd等
  • 专家约稿|碳化硅功率器件封装与可靠性测试
    1. 研究背景及意义碳化硅(SiC)是一种宽带隙(WBG)的半导体材料,目前已经显示出有能力满足前述领域中不断发展的电力电子的更高性能要求。在过去,硅(Si)一直是最广泛使用的功率开关器件的半导体材料。然而,随着硅基功率器件已经接近其物理极限,进一步提高其性能正成为一个巨大的挑战。我们很难将它的阻断电压和工作温度分别限制在6.5kV和175℃,而且相对于碳化硅器件它的开关速度相对较慢。另一方面,由SiC制成的器件在过去几十年中已经从不成熟的实验室原型发展成为可行的商业产品,并且由于其高击穿电压、高工作电场、高工作温度、高开关频率和低损耗等优势被认为是Si基功率器件的替代品。除了这些性能上的改进,基于SiC器件的电力电子器件有望通过最大限度地减少冷却要求和无源元件要求来实现系统的体积缩小,有助于降低整个系统成本。SiC的这些优点与未来能源转换应用中的电力电子器件的要求和方向非常一致。尽管与硅基器件相比SiC器件的成本较高,但SiC器件能够带来的潜在系统优势足以抵消增加的器件成本。目前SiC器件和模块制造商的市场调查显示SiC器件的优势在最近的商业产品中很明显,例如SiC MOSFETs的导通电阻比Si IGBT的导通电阻小四倍,并且在每三年内呈现出-30%的下降趋势。与硅同类产品相比,SiC器件的开关能量小10-20倍,最大开关频率估计高20倍。由于这些优点,预计到2022年,SiC功率器件的总市场将增长到10亿美元,复合年增长率(CAGR)为28%,预计最大的创收应用是在混合动力和电动汽车、光伏逆变器和工业电机驱动中。然而,从器件的角度来看,挑战和问题仍然存在。随着SiC芯片有效面积的减少,短路耐久时间也趋于减少。这表明在稳定性、可靠性和芯片尺寸之间存在着冲突。而且SiC器件的现场可靠性并没有在各种应用领域得到证明,这些问题直接导致SiC器件在电力电子市场中的应用大打折扣。另一方面,生产高质量、低缺陷和较大的SiC晶圆是SiC器件制造的技术障碍。这种制造上的困难使得SiC MOSFET的每年平均销售价格比Si同类产品高4-5倍。尽管SiC材料的缺陷已经在很大程度上被克服,但制造工艺还需要改进,以使SiC器件的成本更加合理。最近几年大多数SiC器件制造大厂已经开始使用6英寸晶圆进行生产。硅代工公司X-fab已经升级了其制造资源去适应6英寸SiC晶圆,从而为诸如Monolith这类无晶圆厂的公司提供服务。这些积极的操作将导致SiC器件的整体成本降低。图1.1 SiC器件及其封装的发展图1.1展示了SiC功率器件及其封装的发展里程碑。第一个推向市场的SiC器件是英飞凌公司在2001年生产的肖特基二极管。此后,其他公司如Cree和Rohm继续发布各种额定值的SiC二极管。2008年,SemiSouth公司生产了第一个SiC结点栅场效应晶体管(JFET),在那个时间段左右,各公司开始将SiC肖特基二极管裸模集成到基于Si IGBT的功率模块中,生产混合SiC功率模块。从2010年到2011年,Rohm和Cree推出了第一个具有1200V额定值的分立封装的SiC MOSFET。随着SiC功率晶体管的商业化,Vincotech和Microsemi等公司在2011年开始使用SiC JFET和SiC二极管生产全SiC模块。2013年,Cree推出了使用SiC MOSFET和SiC二极管的全SiC模块。此后,其他器件供应商,包括三菱、赛米控、富士和英飞凌,自己也发布了全SiC模块。在大多数情况下,SiC器件最初是作为分立元件推出的,而将这些器件实现为模块封装是在最初发布的几年后开发的。这是因为到目前为止分立封装的制造过程比功率模块封装要简单得多。另一个原因也有可能是因为发布的模块已经通过了广泛的标准JEDEC可靠性测试资格认证,这代表器件可以通过2000万次循环而不发生故障,因此具有严格的功率循环功能。而且分离元件在设计系统时具有灵活性,成本较低,而模块的优势在于性能较高,一旦有了产品就容易集成。虽然SiC半导体技术一直在快速向前发展,但功率模块的封装技术似乎是在依赖过去的惯例,这是一个成熟的标准。然而,它并没有达到充分挖掘新器件的潜力的速度。SiC器件的封装大多是基于陶瓷基底上的线接合方法,这是形成多芯片模块(MCM)互连的标准方法,因为它易于使用且成本相对较低。然而,这种标准的封装方法由于其封装本身的局限性,已经被指出是向更高性能系统发展的技术障碍。首先,封装的电寄生效应太高,以至于在SiC器件的快速开关过程中会产生不必要的损失和噪音。第二,封装的热阻太高,而热容量太低,这限制了封装在稳态和瞬态的散热性能。第三,构成封装的材料和元件通常与高温操作(200℃)不兼容,在升高的操作温度下,热机械可靠性恶化。最后,对于即将到来的高压SiC器件,承受高电场的能力是不够的。这些挑战的细节将在第二节进一步阐述。总之,不是器件本身,而是功率模块的封装是主要的限制因素之一,它阻碍了封装充分发挥SiC元件的优势。因此,应尽最大努力了解未来SiC封装所需的特征,并相应地开发新型封装技术去解决其局限性。随着社会的发展,环保问题与能源问题愈发严重,为了提高电能的转化效率,人们对于用于电力变换和电力控制的功率器件需求强烈[1, 2]。碳化硅(SiC)材料作为第三代半导体材料,具有禁带宽度大,击穿场强高、电子饱和速度大、热导率高等优点[3]。与传统的Si器件相比,SiC器件的开关能耗要低十多倍[4],开关频率最高提高20倍[5, 6]。SiC功率器件可以有效实现电力电子系统的高效率、小型化和轻量化。但是由于SiC器件工作频率高,而且结电容较小,栅极电荷低,这就导致器件开关时,电压和电流变化很大,寄生电感就极易产生电压过冲和振荡现象,造成器件电压应力、损耗的增加和电磁干扰问题[7, 8]。还要考虑极端条件下的可靠性问题。为了解决这些问题,除了器件本身加以改进,在封装工艺上也需要满足不同工况的特性要求。起先,电力电子中的SiC器件是作为分立器件生产的,这意味着封装也是分立的。然而SiC器件中电压或电流的限制,通常工作在低功耗水平。当需求功率达到100 kW或更高时,设备往往无法满足功率容量要求[9]。因此,需要在设备中连接和封装多个SiC芯片以解决这些问题,并称为功率模块封装[10, 11]。到目前为止,功率半导体的封装工艺中,铝(Al)引线键合封装方案一直是最优的封装结构[12]。传统封装方案的功率模块采用陶瓷覆铜板,陶瓷覆铜板(Direct Bonding Copper,DBC)是一种具有两层铜的陶瓷基板,其中一层图案化以形成电路[13]。功率半导体器件底部一般直接使用焊料连接到DBC上,顶部则使用铝引线键合。底板(Baseplate)的主要功能是为DBC提供支撑以及提供传导散热的功能,并与外部散热器连接。传统封装提供电气互连(通过Al引线与DBC上部的Cu电路键合)、电绝缘(使用DBC陶瓷基板)、器件保护(通过封装材料)和热管理(通过底部)。这种典型的封装结构用于目前制造的绝大多数电源模块[14]。传统的封装方法已经通过了严格的功率循环测试(2000万次无故障循环),并通过了JEDEC标准认证[15]。传统的封装工艺可以使用现有的设备进行,不需要额外开发投资设备。传统的功率模块封装由七个基本元素组成,即功率半导体芯片、绝缘基板、底板、粘合材料、功率互连、封装剂和塑料外壳,如图1.2所示。模块中的这些元素由不同的材料组成,从绝缘体、导体、半导体到有机物和无机物。由于这些不同的材料牢固地结合在一起,为每个元素选择适当的材料以形成一个坚固的封装是至关重要的。在本节中,将讨论七个基本元素中每个元素的作用和流行的选择以及它们的组装过程。图1.2标准功率模块结构的横截面功率半导体是功率模块中的重要元素,通过执行电气开/关开关将功率从源头转换到负载。标准功率模块中最常用的器件类型是MOSFETs、IGBTs、二极管和晶闸管。绝缘衬底在半导体元件和终端之间提供电气传导,与其他金属部件(如底板和散热器)进行电气隔离,并对元件产生的热量进行散热。直接键合铜(DBC)基材在传统的电源模块中被用作绝缘基材,因为它们具有优良的性能,不仅能满足电气和热的要求,而且还具有机械可靠性。在各种候选材料中,夹在两层铜之间的陶瓷层的流行材料是Al2O3,AlN,Si2N4和BeO。接合材料的主要功能是通过连接每个部件,在半导体、导体导线、端子、基材和电源模块的底板之间提供机械、热和电的联系。由于其与电子组装环境的兼容性,SnPb和SnAgCu作为焊料合金是最常用的芯片和基片连接材料。在选择用于功率模块的焊料合金时,需要注意的重要特征是:与使用温度有关的熔化温度,与功率芯片的金属化、绝缘衬底和底板的兼容性,高机械强度,低弹性模量,高抗蠕变性和高抗疲劳性,高导热性,匹配的热膨胀系数(CTE),成本和环境影响。底板的主要作用是为绝缘基板提供机械支持。它还从绝缘基板上吸收热量并将其传递给冷却系统。高导热性和低CTE(与绝缘基板相匹配)是对底板的重要特性要求。广泛使用的底板材料是Cu,AlSiC,CuMoCu和CuW。导线键合的主要作用是在模块的功率半导体、导体线路和输入/输出终端之间进行电气连接。器件的顶面连接最常用的材料是铝线。对于额定功率较高的功率模块,重铝线键合或带状键合用于连接功率器件的顶面和陶瓷基板的金属化,这样可以降低电阻和增强热能力。封装剂的主要目的是保护半导体设备和电线组装的组件免受恶劣环境条件的影响,如潮湿、化学品和气体。此外,封装剂不仅在电线和元件之间提供电绝缘,以抵御电压水平的提高,而且还可以作为一种热传播媒介。在电源模块中作为封装剂使用的材料有硅凝胶、硅胶、聚腊烯、丙烯酸、聚氨酯和环氧树脂。塑料外壳(包括盖子)可以保护模块免受机械冲击和环境影响。因为即使电源芯片和电线被嵌入到封装材料中,它们仍然可能因处理不当而被打破或损坏。同时外壳还能机械地支撑端子,并在端子之间提供隔离距离。热固性烯烃(DAP)、热固性环氧树脂和含有玻璃填料的热塑性聚酯(PBT)是塑料外壳的最佳选择。传统电源模块的制造过程开始于使用回流炉在准备好的DBC基片上焊接电源芯片。然后,许多这些附有模具的DBC基板也使用回流焊工艺焊接到一个底板上。在同一块底板上,用胶水或螺丝钉把装有端子的塑料外壳连接起来。然后,正如前面所讨论的那样,通过使用铝线进行电线连接,实现电源芯片的顶部、DBC的金属化和端子之间的连接。最后,用分配器将封装材料沉积在元件的顶部,并在高温下固化。前面所描述的结构、材料和一系列工艺被认为是功率模块封装技术的标准,在目前的实践中仍被广泛使用。尽管对新型封装方法的需求一直在持续,但技术变革或采用是渐进的。这种对新技术的缓慢接受可以用以下原因来解释。首先,人们对与新技术的制造有关的可靠性和可重复性与新制造工艺的结合表示担忧,这需要时间来解决。因此,考虑到及时的市场供应,模块制造商选择继续使用成熟的、广为人知的传统功率模块封装技术。第二个原因是传统电源模块的成本效益。由于传统电源模块的制造基础设施与其他电子器件封装环境兼容,因此不需要与开发新材料和设备有关的额外成本,这就大大降低了工艺成本。尽管有这些理由坚持使用标准的封装方法,但随着半导体趋势从硅基器件向碳化硅基器件的转变,它正显示出局限性并面临着根本性的挑战。使用SiC器件的最重要的优势之一是能够在高开关频率下工作。在功率转换器中推动更高的频率背后的主要机制是最大限度地减少整个系统的尺寸,并通过更高的开关频率带来的显著的无源尺寸减少来提高功率密度。然而,由于与高开关频率相关的损耗,大功率电子设备中基于硅的器件的开关频率通常被限制在几千赫兹。图1.3中给出的一个例子显示,随着频率的增加,使用Si-IGBT的功率转换器的效率下降,在20kHz时已经下降到73%。另一方面,在相同的频率下,SiC MOSFET的效率保持高达92%。从这个例子中可以看出,硅基器件在高频运行中显示出局限性,而SiC元件能够在更高频率下运行时处理高能量水平。尽管SiC器件在开关性能上优于Si器件对应产品,但如果要充分利用其快速开关的优势,还需要考虑到一些特殊的因素。快速开关的瞬态效应会导致器件和封装内部的电磁寄生效应,这正成为SiC功率模块作为高性能开关应用的最大障碍。图1.3 Si和SiC转换器在全额定功率和不同开关频率下的效率图1.4给出了一个半桥功率模块的电路原理图,该模块由高低两侧的开关和二极管对组成,如图1.4所示,其中有一组最关键的寄生电感,即主开关回路杂散电感(Lswitch)、栅极回路电感(Lgate)和公共源电感(Lsource)。主开关回路杂散电感同时存在于外部电源电路和内部封装互连中,而外部杂散电感对开关性能的影响可以通过去耦电容来消除。主开关回路杂散电感(Lswitch)是由直流+总线、续流二极管、MOSFET(或IGBT)和直流总线终端之间的等效串联电感构成的。它负责电压过冲,在关断期间由于电流下降而对器件造成严重的压力,负反馈干扰充电和向栅极源放电的电流而造成较慢的di/dt的开关损失,杂散电感和半导体器件的输出电容的共振而造成开关波形的振荡增加,从而导致EMI发射增加。栅极环路电感(Lgate)由栅极电流路径形成,即从驱动板到器件的栅极接触垫,以及器件的源极到驱动板的连接。它通过造成栅极-源极电压积累的延迟而降低了可实现的最大开关频率。它还与器件的栅极-源极电容发生共振,导致栅极信号的震荡。结果就是当我们并联多个功率芯片模块时,如果每个栅极环路的寄生电感不相同或者对称,那么在开关瞬间将产生电流失衡。共源电感(Lsource)来自主开关回路和栅极回路电感之间的耦合。当打开和关闭功率器件时,di/dt和这个电感上的电压在栅极电路中作为额外的(通常是相反的)电压源,导致di/dt的斜率下降,扭曲了栅极信号,并限制了开关速度。此外,共源电感可能会导致错误的触发事件,这可能会通过在错误的时间打开器件而损坏器件。这些寄生电感的影响在快速开关SiC器件中变得更加严重。在SiC器件的开关瞬态过程中会产生非常高的漏极电流斜率di/dt,而前面讨论的寄生电感的电压尖峰和下降也明显大于Si器件的。寄生电感的这些不良影响导致了开关能量损失的增加和可达到的最大开关频率的降低。开关瞬态的问题不仅来自于电流斜率di/dt,也来自于电压斜率dv/dt。这个dv/dt导致位移电流通过封装的寄生电容,也就是芯片和冷却系统之间的电容。图1.5显示了半桥模块和散热器之间存在的寄生电容的简化图。这种不需要的电流会导致对变频器供电的电机的可靠性产生不利影响。例如,汽车应用中由放电加工(EDM)引起的电机轴承缺陷会产生很大的噪声电流。在传统的硅基器件中,由于dv/dt较低,约为3 kV/µs,因此流经寄生电容的电流通常忽略不记。然而,SiC器件的dv/dt比Si器件的dv/dt高一个数量级,最高可达50 kV/µs,使通过封装电容的电流不再可以忽略。对Si和SiC器件产生的电磁干扰(EMI)的比较研究表明,由于SiC器件的快速开关速度,传导和辐射的EMI随着SiC器件的使用而增加。除了通过封装进入冷却系统的电流外,电容寄也会减缓电压瞬变,在开关期间产生过电流尖峰,并通过与寄生电感形成谐振电路而增加EMI发射,这是我们不希望看到的。未来的功率模块封装应考虑到SiC封装中的寄生和高频瞬变所带来的所有复杂问题和挑战。解决这些问题的主要封装级需要做到以下几点。第一,主开关回路的电感需要通过新的互连技术来最小化,以取代冗长的线束,并通过优化布局设计,使功率器件接近。第二,由于制造上的不兼容性和安全问题,栅极驱动电路通常被组装在与功率模块分开的基板上。应通过将栅极驱动电路与功率模块尽可能地接近使栅极环路电感最小化。另外,在平行芯片的情况下,布局应该是对称的,以避免电流不平衡。第三,需要通过将栅极环路电流与主开关环路电流分开来避免共源电感带来的问题。这可以通过提供一个额外的引脚来实现,例如开尔文源连接。第四,应通过减少输出端和接地散热器的电容耦合来减轻寄生电容中流动的电流,比如避免交流电位的金属痕迹的几何重叠。图1.4半桥模块的电路原理图。三个主要的寄生电感表示为Lswitch、Lgate和Lsource。图1.5半桥模块的电路原理图。封装和散热器之间有寄生电容。尽管目前的功率器件具有优良的功率转换效率,但在运行的功率模块中,这些器件产生的热量是不可避免的。功率器件的开关和传导损失在器件周围以及从芯片到冷却剂的整个热路径上产生高度集中的热通量密度。这种热通量导致功率器件的性能下降,以及器件和封装的热诱导可靠性问题。在这个从Si基器件向SiC基器件过渡的时期,功率模块封装面临着前所未有的散热挑战。图1.6根据额定电压和热阻计算出所需的总芯片面积在相同的电压和电流等级下,SiC器件的尺寸可以比Si器件小得多,这为更紧凑的功率模块设计提供了机会。根据芯片的热阻表达式,芯片尺寸的缩小,例如芯片边缘的长度,会导致热阻的二次方增加。这意味着SiC功率器件的模块化封装需要特别注意散热和冷却。图1.6展示了计算出所需的总芯片面积减少,这与芯片到冷却剂的热阻减少有关。换句话说,随着芯片面积的减少,SiC器件所需的热阻需要提高。然而,即使结合最先进的冷却策略,如直接冷却的冷板与针状翅片结构,假设应用一个70kVA的逆变器,基于DBC和线束的标准功率模块封装的单位面积热阻值通常在0.3至0.4 Kcm2/W之间。为了满足研究中预测的未来功率模块的性能和成本目标,该值需要低于0.2 Kcm2/W,这只能通过创新方法实现,比如双面冷却法。同时,小的芯片面积也使其难以放置足够数量的线束,这不仅限制了电流处理能力,也限制了热电容。以前对标准功率模块封装的热改进大多集中在稳态热阻上,这可能不能很好地代表开关功率模块的瞬态热行为。由于预计SiC器件具有快速功率脉冲的极其集中的热通量密度,因此不仅需要降低热阻,还需要改善热容量,以尽量减少这些快速脉冲导致的峰值温度上升。在未来的功率模块封装中,应解决因采用SiC器件而产生的热挑战。以下是未来SiC封装在散热方面应考虑的一些要求。第一,为了降低热阻,需要减少或消除热路中的一些封装层;第二,散热也需要从芯片的顶部完成以使模块的热阻达到极低水平,这可能需要改变互连方法,比如采用更大面积的接头;第三,封装层接口处的先进材料将有助于降低封装的热阻。例如,用于芯片连接和热扩散器的材料可以分别用更高的导热性接头和碳基复合材料代替。第四,喷射撞击、喷雾和微通道等先进的冷却方法可以用来提高散热能力。SiC器件有可能被用于预期温度范围极广的航空航天应用中。例如用于月球或火星任务的电子器件需要分别在-180℃至125℃和-120℃至85℃的广泛环境温度循环中生存。由于这些空间探索中的大多数电子器件都是基于类似地球的环境进行封装的,因此它们被保存在暖箱中,以保持它们在极低温度下的运行。由于SiC器件正在评估这些条件,因此需要开发与这些恶劣环境兼容的封装技术,而无需使用暖箱。与低温有关的最大挑战之一是热循环引起的大的CTE失配对芯片连接界面造成的巨大压力。另外,在室温下具有柔性和顺应性的材料,如硅凝胶,在-180℃时可能变得僵硬,在封装内产生巨大的应力水平。因此,SiC封装在航空应用中的未来方向首先是开发和评估与芯片的CTE密切匹配的基材,以尽量减少应力。其次,另一个方向应该是开发在极低温度下保持可塑性的芯片连接材料。在最近的研究活动中,在-180℃-125℃的极端温度范围内,对分别作为基材和芯片附件的SiN和Indium焊料的性能进行了评估和表征。为进一步推动我国能源战略的实施,提高我国在新能源领域技术、装备的国际竞争力,实现高可靠性碳化硅 MOSFET 器件中试生产技术研究,研制出满足移动储能变流器应用的多芯片并联大功率MOSFET 器件。本研究将通过寄生参数提取、建模、仿真及测试方式研究 DBC 布局、多栅极电阻等方式对芯片寄生电感与均流特性的影响,进一步提高我国碳化硅器件封装及测试能力。2. SiC MOSFET功率模块设计技术2.1 模块设计技术介绍在MOSFET模块设计中引入软件仿真环节,利用三维电磁仿真软件、三维温度场仿真软件、三维应力场仿真软件、寄生参数提取软件和变流系统仿真软件,对MOSFET模块设计中关注的电磁场分布、热分布、应力分布、均流特性、开关特性、引线寄生参数对模块电特性影响等问题进行仿真,减小研发周期、降低设计研发成本,保证设计的产品具备优良性能。在仿真基础上,结合项目团队多年从事电力电子器件设计所积累的经验,解决高压大功率MOSFET模块设计中存在的多片MOSFET芯片和FRD芯片的匹配与均流、DBC版图的设计与芯片排布设计、电极结构设计、MOSFET模块结构设计等一系列难题,最终完成模块产品的设计。高压大功率MOSFET模块设计流程如下:图2.1高压大功率MOSFET模块设计流程在MOSFET模块设计中,需要综合考虑很多问题,例如:散热问题、均流问题、场耦合问题、MOSFET模块结构优化设计问题等等。MOSFET芯片体积小,热流密度可以达到100W/cm2~250W/cm2。同时,基于硅基的MOSFET芯片最高工作温度为175℃左右。据统计,由于高温导致的失效占电力电子芯片所有失效类型的50%以上。随电力电子器件设备集成度和环境集成度的逐渐增加,MOSFET模块的最高温升限值急剧下降。因此,MOSFET模块的三维温度场仿真技术是高效率高功率密度MOSFET模块设计开发的首要问题。模块散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。另外,芯片的排布对热分布影响也很大。下图4.2是采用有限元软件对模块内部的温度场进行分析的结果:图2.2 MOSFET模块散热分布分析在完成结构设计和材料选取后,采用ANSYS软件的热分析模块ICEPAK,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布,根据温度场分布再对MOSFET内部结构和材料进行调整,直至达到设计要求范围内的最优。2.2 材料数据库对一个完整的焊接式MOSFET模块而言,从上往下为一个 8层结构:绝缘盖板、密封胶、键合、半导体芯片层、焊接层 1、DBC、焊接层 2、金属底板。MOSFET模块所涉及的主要材料可分为以下几种类型:导体、绝缘体、半导体、有机物和无机物。MOSFET模块的电、热、机械等性能与材料本身的电导率、热导率、热膨胀系数、介电常数、机械强度等密切相关。材料的选型非常重要,为此有必要建立起常用的材料库。2.3 芯片的仿真模型库所涉及的MOSFET芯片有多种规格,包括:1700V 75A/100A/125A;2500V/50A;3300V/50A/62.5A;600V/100A;1200V/100A;4500V/42A;6500V/32A。为便于合理地进行芯片选型(确定芯片规格及其数量),精确分析多芯片并联时的均流性能,首先为上述芯片建立等效电路模型。在此基础上,针对实际电力电子系统中的滤波器、电缆和电机负载模型,搭建一个系统及的仿真平台,从而对整个系统的电气性能进行分析预估。2.4 MOSFET模块的热管理MOSFET模块是一个含不同材料的密集封装的多层结构,其热流密度达到100W/cm2--250W/cm2,模块能长期安全可靠运行的首要因素是良好的散热能力。散热能力与众多因素有关:MOSFET模块所用材料的物理和化学性质、MOSFET芯片的布局、贴片的质量、焊接的工艺水平等。如果贴片质量差,有效散热面积小,芯片与DBC之间的热阻大,在模块运行时易造成模块局部过热而损坏。芯片可靠散热的另一重要因素是键合的长度和位置。假设散热底板的温度分布均匀,而每个MOSFET芯片对底板的热阻有差异,导致在相同工况时,每个MOSFET芯片的结温不同。下图是采用有限元软件对模块内部的温度场进行分析的结果。图2.3MOSFET模块热分布在模块完成封装后,采用FLOTHERM软件的热分析模块,建立包括铜基板、DBC、MOSFET芯片、二极管芯片以及包括铝质键合引线在内的相对完整的数值模拟模型。模拟实际工作条件,施加相应的载荷,得到MOSFET的温度场分布的数值解,为MOSFET温度场分布的测试提供一定的依据。2.5. 芯片布局与杂散参数提取根据MOSFET模块不同的电压和电流等级,MOSFET模块所使用芯片的规格不同,芯片之间的连接方式也不同。因此,详细的布局设计放在项目实施阶段去完成。对中低压MOSFET模块和高压MOSFET模块,布局阶段考虑的因素会有所不同,具体体现在DBC与散热底板之间的绝缘、DBC上铜线迹之间的绝缘以及键合之间的绝缘等。2.6 芯片互联的杂散参数提取MOSFET芯片并联应用时的电流分配不均衡主要有两种:静态电流不均衡和动态电流不均衡。静态电流不均衡主要由器件的饱和压降VCE(sat)不一致所引起;而动态电流不均衡则是由于器件的开关时间不同步引起的。此外,栅极驱动、电路的布局以及并联模块的温度等因素也会影响开关时刻的动态均流。回路寄生电感特别是射极引线电感的不同将会使器件开关时刻不同步;驱动电路输出阻抗的不一致将引起充放电时间不同;驱动电路的回路引线电感可能引起寄生振荡;以及温度不平衡会影响到并联器件动态均流。2.7 模块设计专家知识库通过不同规格MOSFET模块的设计-生产-测试-改进设计等一系列过程,可以获得丰富的设计经验,并对其进行归纳总结,提出任意一种电压电流等级的MOSFET模块的设计思路,形成具有自主知识产权的高压大功率MOSFET模块的系统化设计知识库。3. SiCMOSFET封装工艺3.1 封装常见工艺MOSFET模块封装工艺主要包括焊接工艺、键合工艺、外壳安装工艺、灌封工艺及测试等。3.1.1 焊接工艺焊接工艺在特定的环境下,使用焊料,通过加热和加压,使芯片与DBC基板、DBC基板与底板、DBC基板与电极达到结合的方法。目前国际上采用的是真空焊接技术,保证了芯片焊接的低空洞率。焊接要求焊接面沾润好,空洞率小,焊层均匀,焊接牢固。通常情况下.影响焊接质量的最主要因素是焊接“空洞”,产生焊接空洞的原因,一是焊接过程中,铅锡焊膏中助焊剂因升温蒸发或铅锡焊片熔化过程中包裹的气泡所造成的焊接空洞,真空环境可使空洞内部和焊接面外部形成高压差,压差能够克服焊料粘度,释放空洞。二是焊接面的不良加湿所造成的焊接空洞,一般情况下是由于被焊接面有轻微的氧化造成的,这包括了由于材料保管的不当造成的部件氧化和焊接过程中高温造成的氧化,即使真空技术也不能完全消除其影响。在焊接过程中适量的加人氨气或富含氢气的助焊气体可有效地去除氧化层,使被焊接面有良好的浸润性.加湿良好。“真空+气体保护”焊接工艺就是基于上述原理研究出来的,经过多年的研究改进,已成为高功率,大电流,多芯片的功率模块封装的最佳焊接工艺。虽然干式焊接工艺的焊接质量较高,但其对工艺条件的要求也较高,例如工艺设备条件,工艺环境的洁净程度,工艺气体的纯度.芯片,DBC基片等焊接表面的应无沾污和氧化情况.焊接过程中的压力大小及均匀性等。要根据实际需要和现场条件来选择合适的焊接工艺。3.1.2 键合工艺引线键合是当前最重要的微电子封装技术之一,目前90%以上的芯片均采用这种技术进行封装。超声键合原理是在超声能控制下,将芯片金属镀层和焊线表面的原子激活,同时产生塑性变形,芯片的金属镀层与焊线表面达到原子间的引力范围而形成焊接点,使得焊线与芯片金属镀层表面紧密接触。按照原理的不同,引线键合可以分为热压键合、超声键合和热压超声键合3种方式。根据键合点形状,又可分为球形键合和楔形键合。在功率器件及模块中,最常见的功率互连方法是引线键合法,大功率MOSFET模块采用了超声引线键合法对MOSFET芯片及FRD芯片进行互连。由于需要承载大电流,故采用楔形劈刀将粗铝线键合到芯片表面或DBC铜层表面,这种方法也称超声楔键合。外壳安装工艺:功率模块的封装外壳是根据其所用的不同材料和品种结构形式来研发的,常用散热性好的金属封装外壳、塑料封装外壳,按最终产品的电性能、热性能、应用场合、成本,设计选定其总体布局、封装形式、结构尺寸、材料及生产工艺。功率模块内部结构设计、布局与布线、热设计、分布电感量的控制、装配模具、可靠性试验工程、质量保证体系等的彼此和谐发展,促进封装技术更好地满足功率半导体器件的模块化和系统集成化的需求。外壳安装是通过特定的工艺过程完成外壳、顶盖与底板结构的固定连接,形成密闭空间。作用是提供模块机械支撑,保护模块内部组件,防止灌封材料外溢,保证绝缘能力。外壳、顶盖要求机械强度和绝缘强度高,耐高温,不易变形,防潮湿、防腐蚀等。3.1.3 灌封工艺灌封工艺用特定的灌封材料填充模块,将模块内组件与外部环境进行隔离保护。其作用是避免模块内部组件直接暴露于环境中,提高组件间的绝缘,提升抗冲击、振动能力。灌封材料要求化学特性稳定,无腐蚀,具有绝缘和散热能力,膨胀系数和收缩率小,粘度低,流动性好,灌封时容易达到模块内的各个缝隙,可将模块内部元件严密地封装起来,固化后能吸收震动和抗冲击。3.1.4 模块测试MOSFET模块测试包括过程测试及产品测试。其中过程测试通过平面度测试仪、推拉力测试仪、硬度测试仪、X射线测试仪、超声波扫描测试仪等,对产品的入厂和过程质量进行控制。产品测试通过平面度测试仪、动静态测试仪、绝缘/局部放电测试仪、高温阻断试验、栅极偏置试验、高低温循环试验、湿热试验,栅极电荷试验等进行例行和型式试验,确保模块的高可靠性。3.2 封装要求本项目的SiC MOSFET功率模块封装材料要求如下:(1)焊料选用需要可靠性要求和热阻要求。(2)外壳采用PBT材料,端子裸露部分表面镀镍或镀金。(3)内引线采用超声压接或铝丝键合(具体视装配图设计而定),功率芯片采用铝线键合。(4)灌封料满足可靠性要求,Tg150℃,能满足高低温存贮和温度循环等试验要求。(5)底板采用铜材料。(6)陶瓷覆铜板采用Si3N4材质。(7)镀层要求:需保证温度循环、盐雾、高压蒸煮等试验后满足外观要求。3.3 封装流程本模块采用既有模块进行封装,不对DBC结构进行调整。模块封装工艺流程如下图3.1所示。图3.1模块封装工艺流程(1)芯片CP测试:对芯片进行ICES、BVCES、IGES、VGETH等静态参数进行测试,将失效的芯片筛选出来,避免因芯片原因造成的封装浪费。(2)划片&划片清洗:将整片晶圆按芯片大小分割成单一的芯片,划片后可从晶圆上将芯片取下进行封装;划片后对金属颗粒进行清洗,保证芯片表面无污染,便于后续工艺操作。(3)丝网印刷:将焊接用的焊锡膏按照设计的图形涂敷在DBC基板上,使用丝网印刷机完成,通过工装钢网控制锡膏涂敷的图形。锡膏图形设计要充分考虑焊层厚度、焊接面积、焊接效果,经过验证后最终确定合适的图形。(4)芯片焊接:该步骤主要是完成芯片与 DBC 基板的焊接,采用相应的焊接工装,实现芯片、焊料和 DBC 基板的装配。使用真空焊接炉,采用真空焊接工艺,严格控制焊接炉的炉温、焊接气体环境、焊接时间、升降温速度等工艺技术参数,专用焊接工装完成焊接工艺,实现芯片、DBC 基板的无空洞焊接,要求芯片的焊接空洞率和焊接倾角在工艺标准内,芯片周围无焊球或堆焊,焊接质量稳定,一致性好。(5)助焊剂清洗:通过超声波清洗去除掉助焊剂。焊锡膏中一般加入助焊剂成分,在焊接过程中挥发并残留在焊层周围,因助焊剂表现为酸性,长期使用对焊层具有腐蚀性,影响焊接可靠性,因此需要将其清洗干净,保证产品焊接汉城自动气相清洗机采用全自动浸入式喷淋和汽相清洗相结合的方式进行子单元键合前清洗,去除芯片、DBC 表面的尘埃粒子、金属粒子、油渍、氧化物等有害杂质和污染物,保证子单元表面清洁。(6) X-RAY检测:芯片的焊接质量作为产品工艺控制的主要环节,直接影响着芯片的散热能力、功率损耗的大小以及键合的合格率。因此,使用 X-RAY 检测机对芯片焊接质量进行检查,通过调整产生 X 射线的电压值和电流值,对不同的焊接产品进行检查。要求 X 光检查后的芯片焊接空洞率工艺要求范围内。(7)芯片键合:通过键合铝线工艺,完成 DBC 和芯片的电气连接。使用铝线键合机完成芯片与 DBC 基板对应敷铜层之间的连接,从而实现芯片之间的并联和反并联。要求该工序结合芯片的厚度参数和表面金属层参数,通过调整键合压力,键合功率,键合时间等参数,并根据产品的绝缘要求和通流大小,设置合适的键合线弧高和间距,打线数量满足通流要求,保证子单元的键合质量。要求键合工艺参数设定合理、铝线键合质量牢固,键合弧度满足绝缘要求、键合点无脱落,满足键合铝线推拉力测试标准。(8)模块焊接:该工序实现子单元与电极、底板的二次焊接。首先进行子单元与电极、底板的焊接装配,使用真空焊接炉实现焊接,焊接过程中要求要求精确控制焊接设备的温度、真空度、气体浓度。焊接完成后要求子单元 DBC 基板和芯片无损伤、无焊料堆焊、电极焊脚之间无连焊虚焊、键合线无脱落或断裂等现象。(9)超声波检测:该工序通过超声波设备对模块 DBC 基板与底板之间的焊接质量进行检查,模块扫描后要求芯片、DBC 无损伤,焊接空洞率低于 5%。(10)外壳安装:使用涂胶设备进行模块外壳的涂胶,保证模块安装后的密封性,完成模块外壳的安装和紧固。安装后要求外壳安装方向正确,外壳与底板粘连处在灌封时不会出现硅凝胶渗漏现象。(11)端子键合&端子超声焊接:该工序通过键合铝线工艺,实现子单元与电极端子的电气连接,形成模块整体的电气拓扑结构;可以通过超声波焊接实现子单元与电极端子的连接,超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。超声波焊接具有高机械强度,较低的热应力、焊接质量高等优点,使得焊接具有更好的可靠性,在功率模块产品中应用越来越广泛。(12)硅凝胶灌封&固化:使用自动注胶机进行硅凝胶的灌封,实现模块的绝缘耐压能力。胶体填充到指定位置,完成硅凝胶的固化。要求胶体固化充分,胶体配比准确,胶体内不含气泡、无分层或断裂纹。4. 极端条件下的可靠性测试4.1 单脉冲雪崩能量试验目的:考察的是器件在使用过程中被关断时承受负载电感能量的能力。试验原理:器件在使用时经常连接的负载是感性的,或者电路中不可避免的也会存在寄生电感。当器件关断时,电路中电流会突然下降,变化的电流会在感性负载上产生一个应变电压,这部分电压会叠加电源电压一起加载在器件上,使器件在瞬间承受一个陡增的电压,这个过程伴随着电流的下降。图4.1 a)的雪崩能量测试电路就是测试这种工况的,被测器件上的电流电压变化情况如图4.1 b)。图4.1 a)雪崩能量测试电路图;b)雪崩能量被测器件的电流电压特性示意图这个过程中,电感上储存的能量瞬时全部转移到器件上,可知电流刚开始下降时,电感储存的能量为1/2*ID2*L,所以器件承受的雪崩能量也就是电感包含的所有能量,为1/2*ID2*L。试验目标:在正向电流ID = 20A下,器件单脉冲雪崩能量EAS1J试验步骤:将器件放入测试台,给器件施加导通电流为20A。设置测试台电感参数使其不断增加,直至器件的单脉冲雪崩能量超过1J。通过/失效标准:可靠性试验完成后,按照下表所列的顺序测试(有些测试会对后续测试有影响),符合下表要求的可认为通过。测试项目通过条件IGSS USLIDSS or IDSX USLVGS(off) or VGS(th)LSL USLVDS(on) USLrDS(on) USL (仅针对MOSFET)USL: upper specification limit, 最高上限值LSL: lower specification limit, 最低下限值4.2 抗短路能力试验目的:把样品暴露在空气干燥的恒温环境中,突然使器件通过大电流,观测元器件在大电流大电压下于给定时间长度内承受大电流的能力。试验原理:当器件工作于实际高压电路中时,电路会出现误导通现象,导致在短时间内有高于额定电流数倍的电流通过器件,器件承受这种大电流的能力称为器件的抗短路能力。为了保护整个系统不受误导通情况的损坏,系统中会设置保护电路,在出现短路情况时迅速切断电路。但是保护电路的反应需要一定的时长,需要器件能够在该段时间内不发生损坏,因此器件的抗短路能力对整个系统的可靠性尤为重要。器件的抗短路能力测试有三种方式,分别对应的是器件在不同的初始条件下因为电路突发短路(比如负载失效)而接受大电流大电压时的反应。抗短路测试方式一,也称为“硬短路”,是指IGBT从关断状态(栅压为负)直接开启进入到抗短路测试中;抗短路测试方式二,是指器件在已经导通有正常电流通过的状态下(此时栅压为正,漏源电压为正但较低),进入到抗短路测试中;抗短路测试方式三是指器件处于栅电压已经开启但漏源电压为负(与器件反并联的二极管处于续流状态,所以此时器件的漏源电压由于续流二极管的钳位在-0.7eV左右,,栅压为正),进入到抗短路测试中。可知,器件的抗短路测试都是对应于器件因为电路的突发短路而要承受电路中的大电流和大电压,只是因为器件的初始状态不同而会有不同的反应。抗短路测试方法一电路如图4.2,将器件直接加载在电源两端,器件初始状态为关断,此时器件承受耐压。当给器件栅电极施加一个脉冲,器件开启,从耐压状态直接开始承受一个大电流及大电压,考量器件的“硬”耐短路能力。图4.2 抗短路测试方法一的测试电路图抗短路测试方法二及三的测试电路图如图4.2,图中L_load为实际电路中的负载电感,L_par为电路寄生电感,L_sc为开关S1配套的寄生电感。当进行第二种抗短路方法测试时,将L_load下端连接到上母线(Vdc正极),这样就使L_sc支路与L_load支路并联。初态时,S1断开,DUT开通,电流从L_load和DUT器件上通过,开始测试时,S1闭合,L_load瞬时被短路,电流沿着L_sc和DUT路线中流动,此时电流通路中仅包含L_sc和L_par杂散电感,因此会有大电流会通过DUT,考察DUT在导通状态时承受大电流的能力。当进行第三种抗短路方法测试时,维持图4.2结构不变,先开通IGBT2并保持DUT关断,此时电流从Vdc+沿着IGBT2、L_load、Vdc-回路流通,接着关断IGBT2,那么D1会自动给L_load续流,在此状态下开启DUT栅压,DUT器件处于栅压开启,但漏源电压被截止状态,然后再闭合S1,大电流会通过L_sc支路涌向DUT。在此电路中IGBT2支路的存在主要是给D1提供续流的电流。图4.3 抗短路测试方法二和方法三的测试电路图1) 抗短路测试方法一:图4.2中Vdc及C1大电容提供持续稳定的大电压,给测试器件DUT栅极施加一定时间长度的脉冲,在被试器件被开启的时间内,器件开通期间处于短路状态,且承受了较高的耐压。器件在不损坏的情况下能够承受的最长开启时间定义为器件的短路时长(Tsc),Tsc越大,抗短路能力越强。在整个短路时长器件,器件所承受的能量,为器件的短路能量(Esc)。器件的抗短路测试考察了器件瞬时同时承受高压、高电流的能力,也是一种器件的复合应力测试方式。图4.2测试电路中的Vdc=600V,C1、C2、C3根据器件的抗短路性能能力决定,C1的要求是维持Vdc的稳定,C1的要求是测试过程中释放给被测器件的电能不能使C1两端的电压下降过大(5%之内可接受)。C2,C3主要用于给器件提供高频、中频电流,不要求储存能量过大。对C2、C3的要求是能够降低被测器件开通关断时造成的漏源电压振幅即可。图4.4 抗短路能力测试方法一的测试结果波形图4.4给出了某款SiC平面MOSFET在290K下,逐渐增大栅极脉冲宽度(PW)的抗短路能力测试结果。首先需要注意的是在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。从图中可以看出,Id峰值出现在1 μs和2 μs之间,随着开通时间的增加,Id呈现出先增加后减小的时间变化趋势。Id的上升阶段,是因为器件开启时有大电流经过器件,在高压的共同作用下,器件温度迅速上升,因为此时MOSFET的沟道电阻是一个负温度系数,所以MOSFET沟道电阻减小,Id则上升,在该过程中电流上升的速度由漏极电压、寄生电感以及栅漏电容的充电速度所决定;随着大电流的持续作用,器件整体温度进一步上升,器件此时的导通电阻变成正温度系数,器件的整体电阻将随温度增加逐渐增大,这时器件Id将逐渐减小。所以,整个抗短路能力测试期间,Id先增加后下降。此外,测试发现,当脉冲宽度增加到一定程度,Id在关断下降沿出现拖尾,即器件关断后漏极电流仍需要一定的时间才能恢复到0A。在研究中发现当Id拖尾到达约12A左右之后,进一步增大脉冲宽度,器件将损坏,并伴随器件封装爆裂。所以针对这款器件的抗短路测试,定义Tsc为器件关断时漏极电流下降沿拖尾到达10A时的脉冲时间长度。Tsc越长,代表器件的抗短路能力越强。测试发现,低温有助于器件抗短路能力的提升,原因是因为,低的初始温度意味着需要更多的时间才能使器件达到Id峰值。仿真发现,器件抗短路测试失效模式主要有两种:1、器件承受高压大电流的过程中,局部高温引起漏电流增加,触发了器件内部寄生BJT闩锁效应,栅极失去对沟道电流的控制能力,器件内部电流局部集中发生热失效,此时的表现主要是器件的Id电流突然上升,器件失效;2、器件温度缓慢上升时,导致器件内部材料性能恶化,比如栅极电极或者SiO2/Si界面处性能失效,主要表现为器件测试过程中Vgs陡降,此时,器件的Vds若未发生进一步损坏仍能承受耐压,只是器件Vgs耐压能力丧失。上述两种失效模式都是由于温度上升引起,所以要提升器件的抗短路能力就是要控制器件内部温度上升。仿真发现导通时最高温区域主要集中于高电流密度区域(沟道部分)及高电场区域(栅氧底部漂移区)。因此,要提升器件的抗短路能力,要着重从器件的沟道及栅氧下方漂移区的优化入手,降低电场峰值及电流密度,此外改善栅氧的质量将起到决定性的作用。2) 抗短路测试方法二:图4.5 抗短路能力测试方法二的测试结果波形如图4.5,抗短路测试方法二的测试过程中DUT器件会经历三个阶段:(1)漏源电压Vds低,Id电流上升:当负载被短路时,大电流涌向DUT器件,此时电路中仅包含L_sc和L_par杂散电感,DUT漏源电压较低,Vdc电压主要分布在杂散电感上,所以Id电流以di/dt=Vdc/(L_sc+L_par)的斜率开始上升。随着Id增加,因为DUT器件的漏源之间的寄生电容Cgd,会带动栅压上升,此时更加促进Id电流的增加,形成一个正循环,Id急剧上升。(2)Id上升变缓然后开始降低,漏源电压Vds上升:Id上升过程中,Vds漏源电压开始增加,导致Vdc分压到杂散电感上的电压降低,导致电流上升率di/dt减小,Id上升变缓,当越过Id峰值后,Id开始下降,-di/dt使杂散电感产生一个感应电压叠加在Vds上导致Vds出现一个峰值。Vds峰值在Id峰值之后。(3)Id、Vds下降并恢复:Id,Vds均下降恢复到抗短路测试一的高压高电流应力状态。综上所述,抗短路测试方法一的条件比方法一的更为严厉和苛刻。3) 抗短路测试方法三:图4.6 抗短路能力测试方法二的测试结果波形如图4.6,抗短路测试方法三的波形与方法二的波形几乎一致,仅仅是在Vds电压上升初期有一个小的电压峰(如图4.6中红圈),这是与器件发生抗短路时的初始状态相关的。因为方法三中器件初始状态出于栅压开启,Vds为反偏的状态,所以器件内部载流子是耗尽的。此时若器件Vds转为正向开通则必然发生一个载流子充入的过程,引发一个小小的电压峰,这个电压峰值是远小于后面的短路电压峰值的。除此以外,器件的后续状态与抗短路测试方法二的一致。一般来说,在电机驱动应用中,开关管的占空比一般比续流二极管高,所以是二极管续流结束后才会开启开关管的栅压,这种情况下,只需要考虑仅开关管开通时的抗短路模式,则第二种抗短路模式的可能性更大。然而,当一辆机车从山上开车下来,电动机被用作发电机,能量从车送到电网。续流二极管的占空比比开关管会更高一点,这种操作模式下,如果负载在二极管续流且开关管栅压开启时发生短路,则会进行抗短路测试模式三的情况。改进抗短路失效模式二及三的方法,是通过给开关器件增加一个栅极前钳位电路,在Id上升通过Cgd带动栅极电位上升时,钳位电路钳住栅极电压,就不会使器件的Id上升陷入正反馈而避免电流的进一步上升。试验目标:常温下,令Vdc=600V,通过控制Vgs控制SiC MOSFET的开通时间,从2μs开通时间开始以1μs为间隔不断增加器件的开通时间,直至器件损坏,测试过程中保留测试曲线。需要注意的是,在测试过程中,每测量一个脉冲宽度的短路波形,需要间隔足够长的时间,以消除前一次短路测试带来的器件温度上升对后一次测试的器件初始温度的影响,保证每次测试初始温度的准确。试验步骤:搭建抗短路能力测试电路。将器件安装与测试电路中,保持栅压为0。通过驱动电路设置器件的开通时间,给器件一个t0=2μs时间的栅源脉冲电压,使器件开通t0时间,观察器件上的电流电压曲线,判断器件是否能够承受2μs的短路开通并不损坏;如未损坏,等待足够长时间以确保器件降温至常温状态,设置驱动电路使器件栅源电压单脉冲时间增加1us,再次开通,观察器件是否能够承受3μs的短路开通并不损坏。循环反复直至器件发生损坏。试验标准:器件被打坏前最后一次脉冲时间长度即为器件的短路时长Tsc。整个短路时长期间,器件所承受的能量为器件的短路能量Esc。4.3 浪涌试验目的:把样品暴露在空气干燥的恒温环境中,对器件施加半正弦正向高电流脉冲,使器件在瞬间发生损坏,观测元器件在高电流密度下的耐受能力。试验原理:下面以SiC二极管为例,给出了器件承受浪涌电流测试时的器件内部机理。器件在浪涌应力下的瞬态功率由流过器件的电流和器件两端的电压降的乘积所决定,电流和压降越高,器件功率耗散就越高。已知浪涌应力对器件施加的电流信号是固定的,因此导通压降越小的器件瞬态功率越低,器件承受浪涌的能力越强。当器件处于浪涌电流应力下,电压降主要由器件内部寄生的串联电阻承担,因此我们可以通过降低器件在施加浪涌电流瞬间的导通电阻,减小器件功率、提升抗浪涌能力。a)给出了4H-SiC二极管实际浪涌电流测试的曲线,图4.7 a)曲线中显示器件的导通电压随着浪涌电流的上升和下降呈现出“回滞”的现象。图4.7 a)二极管浪涌电流的实测曲线; b)浪涌时温度仿真曲线浪涌过程中,器件的瞬态 I-V 曲线在回扫过程中出现了电压回滞,且浪涌电流越高,器件在电流下降和上升过程中的压降差越大,该电压回滞越明显。当浪涌电流增加到某一临界值时,I-V 曲线在最高压降处出现了一个尖峰,曲线斜率突变,器件发生了失效和损坏。器件失效后,瞬态 I-V 曲线在最高电流处出现突然增加的毛刺现象,电压回滞也减小。引起SiC JBS二极管瞬态 I-V 曲线回滞的原因是,在施加浪涌电流的过程中,SiC JBS 二极管的瞬态功率增加,但散热能力有限,所以浪涌过程中器件结温增加,SiC JBS 二极管压降也发生了变化,产生了回滞现象。在每次对器件施加浪涌电流过程中,随着电流的增加,器件的肖特基界面的结温会增加,当电流降低接近于0时结温才逐渐回落。在浪涌电流导通的过程中,结温是在积累的。由于电流上升和下降过程中的结温的差异,导致了器件在电流下降过程的导通电阻高于电流在上升过程中导通电阻。这使得电流下降过程 I-V 曲线压降更大,从而产生了在瞬态 I-V 特性曲线电压回滞现象。浪涌电流越高,器件的肖特基界面处的结温越高,因此导通电阻就越大,而回滞现象也就越明显。为了分析器件在 40 A 以上浪涌电流下的瞬态 I-V 特性变化剧烈的原因,使用仿真软件模拟了肖特基界面处温度随电流大小的变化曲线,如图4.7 b)所示,在 40 A 以上浪涌电流下,结温随浪涌电流变化非常剧烈。器件在 40 A 浪涌电流下,最高结温只有 358 K。但是当浪涌电流增加到60 A 时,最高结温已达1119 K,这个温度足以对器件破坏表面的肖特基金属,引起器件失效。图4.7 b)中还可以得出,浪涌电流越高,结温升高的变化程度就越大,56 A 和 60 A 浪涌电流仅相差 4 A,最高结温就相差 543 K,最高结温的升高速度远比浪涌电流的增加速度快。结温的快速升高导致了器件的导通电阻迅速增大,正向压降快速增加。因此,电流上升和下降过程中,器件的导通压降会更快速地升高和下降,使曲线斜率发生了突变。器件结温随着浪涌电流的增大而急剧增大,是因为它们之间围绕着器件导通电阻形成了正反馈。在浪涌过程中,随着浪涌电流的升高,二极管的功率增加,产生的焦耳热增加,导致了结温上升;另一方面,结温上升,导致器件的导通电阻增大,压降进一步升高。导通电压升高,导致功率进一步增加,使得结温进一步升高。因此器件的结温和电压形成了正反馈,致使结温和压降的增加速度远比浪涌电流的增加速度快。当浪涌电流增加到某一临界值时,触发这个正反馈,器件就会发生失效和损坏。长时间的重复浪涌电流会在外延层中引起堆垛层错生长,浪涌电流导致的自热效应会引起顶层金属熔融,使得电极和芯片之间短路,还会导致导通压降退化和峰值电流退化,并破坏器件的反向阻断能力。金属Al失效是大多数情况下浪涌失效的主要原因,应该使用鲁棒性更高的材料替代金属Al,以改善SiC器件的高温特性。目前MOS器件中,都没有给出浪涌电流的指标。而二极管、晶闸管器件中有这项指标。如果需要了解本项目研发的MOSFET器件的浪涌能力,也可以搭建电路实现。但是存在的问题是,MOS器件的导通压降跟它被施加的栅压是相关的,栅压越大,导通电阻越低,耐浪涌能力越强。如何确定浪涌测试时应该给MOSFET施加的栅压,是一个需要仔细探讨的问题。试验目标:我们已知浪涌耐受能力与器件的导通压降有关,但目前无法得到明确的定量关系。考虑到目标器件也没有这类指标的参考,建议测试时,在给定栅压下(必须确保器件能导通),对器件从低到高依次施加脉冲宽度为10ms或8.3ms半正弦电流波,直到器件发生损坏。试验步骤:器件安装在测试台上后,器件栅极在给定栅压下保持开启状态。通过测试台将导通电流设置成10ms或8.3ms半正弦电流波,施加在器件漏源极间。逐次增加正弦波的上限值,直至器件被打坏。试验标准:器件被打坏前的最后一次通过的浪涌值即为本器件在特定栅压下的浪涌指标值。以上内容给出了本项目研发器件在复合应力及极端条件下的可靠性测试方法,通过这些方法都是来自于以往国际工程经验和鉴定意见,可以对被测器件的可靠性有一个恰当的评估。但是,上述方法都是对测试条件和测试原理的阐述,如何通过测试结果来评估器件的使用寿命,并搭建可靠性测试条件与可靠性寿命之间的桥梁,就得通过可靠性寿命评估模型来实现。
  • 三项高效液相色谱分析方法行标获批发布
    p   近日,工信部批准发布《电力机车用屏蔽电泵》等154项行业标准(见附件1),涉及机械、化工、石化、冶金、轻工等8个行业。整理本次发布的标准发现,此次涉及仪器分析方法标准较少,共计4项,其中3项为高效液相色谱法、另外一项为电感耦合等离子体原子发射光谱法。4项获批标准部分信息如下: /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" align=" center" tbody tr class=" firstRow" td width=" 14%" p style=" text-align:center " 标准编号 /p /td td width=" 18%" p style=" text-align:center " 标准名称 /p /td td width=" 49%" p style=" text-align:center " 标准主要内容 /p /td td width=" 17%" p style=" text-align:center " 实施日期 /p /td /tr tr td width=" 14%" p style=" text-align:center " QB/T 5219-2018 /p /td td width=" 18%" p style=" text-align:center " 牙膏中薁磺酸钠含量的测定& nbsp 高效液相色谱法 /p /td td width=" 49%" p 本标准规定了牙膏中薁磺酸钠含量测定方法的测定原理、试剂和材料、仪器与设备、分析步骤、结果计算、检出限、回收率和允许差。 br/ & nbsp & nbsp & nbsp 本标准适用于牙膏中添加薁磺酸钠的含量的测定。 br/ & nbsp & nbsp & nbsp 本标准薁磺酸钠检出浓度为0.15mg/L,定量浓度为0.5mg/L;当取样量为0.5g时,本方法的检出限为30mg/kg,定量限为100mg/kg。 /p /td td width=" 17%" p style=" text-align:center " 2018-07-01 /p /td /tr tr td width=" 14%" p style=" text-align:center " QB/T 5220-2018 /p /td td width=" 18%" p style=" text-align:center " 口腔护理用品中精氨酸含量的测定方法& nbsp 高效液相色谱法 /p /td td width=" 49%" p 本标准规定了高效液相色谱法测定牙膏中精氨酸的方法要点、试剂与标准物质、仪器、分析步骤、结果计算、回收率、标准偏差和允许差。 br/ & nbsp & nbsp & nbsp 本标准适用于牙膏、漱口水、牙粉和精氨酸碳酸氢盐原料中精氨酸含量的测定。 br/ & nbsp & nbsp & nbsp 本标准精氨酸的方法检出浓度为0.5mg/L,定量浓度为2mg/L;若取样品0.2g,检出限为250mg/kg,定量限为1000mg/kg。 /p /td td width=" 17%" p style=" text-align:center " 2018-07-01 /p /td /tr tr td width=" 14%" p style=" text-align:center " QB/T 5221-2018 /p /td td width=" 18%" p style=" text-align:center " 牙膏中胡椒碱含量的测定方法& nbsp 高效液相色谱法 /p /td td width=" 49%" p 本标准规定了检测牙膏中胡椒碱含量方法的方法原理、试验方法、精密度、准确度和检出限。 br/ & nbsp & nbsp & nbsp 本标准适用于添加功效原料成分胡椒碱的牙膏产品测定。 br/ & nbsp & nbsp & nbsp 本标准胡椒碱检出限为74ng/mL。 /p /td td width=" 17%" p style=" text-align:center " 2018-07-01 /p /td /tr tr td width=" 14%" p style=" text-align:center " SJ/T 11698-2018 /p /td td width=" 18%" p style=" text-align:center " 无铅焊锡化学分析方法 电感耦合等离子体原子发射光谱法 /p /td td width=" 49%" p 本标准规定了无铅焊锡中铜、铁、银、镉、金、砷、锌、铝、铋、镍、铟、锑、铅、钴、磷、硫、锗、镓、铈19种元素含量的测定方法。 br/ & nbsp & nbsp & nbsp 本标准适用于无铅焊锡中铜、铁、银、镉、金、砷、锌、铝、铋、镍、铟、锑、铅、钴、磷、硫、锗、镓、铈19种元素含量的测定。 /p /td td width=" 17%" p style=" text-align:center " 2018-04-01 /p /td /tr /tbody /table p   除154项行业标准之外,工信部同时批准了7项有色金属行业标准样品。具体见附件2。 /p p   附件1: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201803/ueattachment/15d22e94-e0ed-4170-9ea8-50f7d4106f3a.doc" 154项行业标准编号、名称、主要内容等一览表.doc /a /p p   附件2: img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a href=" http://img1.17img.cn/17img/files/201803/ueattachment/84642644-5e5e-4737-95bf-5d1483affbaf.doc" 7项有色金属行业标准样品目录及成分含量表.doc /a /p p br/ /p
  • 4500万!中国科学院工程热物理研究所高能射线测试系统采购项目
    一、项目基本情况项目编号:GXTC-C-23630731项目名称:中国科学院工程热物理研究所高能射线测试系统采购项目预算金额:4500.000000 万元(人民币)最高限价(如有):4500.000000 万元(人民币)采购需求:高能射线测试系统 1套,具备对吸气式发动机从静态到试车、从地面到模拟高空等宽域工作状态下的检测能力,实现发动机静态三维结构尺寸测量、稳态静子机匣形变测量、稳态叶顶径向间隙测量、稳态空气系统内部间隙测量等功能。交货时间为合同签订后16个月内货到现场,到货后12个月内完成安装调试。交货地点为中国科学院工程热物理研究所青岛基地(山东省青岛市黄岛区开城路以北、海西二路以西)。本项目不接受进口产品投标。投标人必须对招标货物内所有货物进行投标,不允许只投标其中的一部分,否则作为无效标处理。合同履行期限:合同签订后至项目完成。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月20日 至 2023年11月27日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:北京市海淀区四季青常青路和泓四季六号楼国信招标会议室方式:现场或线上购买招标文件。 如采用线上购买招标文件,流程为:投标人通过电脑网页登录http://user.gxzb.com.cn/ztb/unit/login/login.jsp,进行供应商简单注册,(注册不成功不影响电汇标书款及报名,但请投标人尽快联系我公司协助登记),按招标代理机构提供的银行账号汇款,汇款单上应注明汇款用途、所购招标文件编号,然后将汇款单复印件连同下述购买文件登记表以及授权委托书和被授权人身份证发至我公司(邮箱:GXZB4ftbzy02@163.com),并致电项目联系人领取招标文件。招标文件售后不退,只有购买了招标文件的投标人才有资格参与投标。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院工程热物理研究所     地址:北京市北四环西路11号        联系方式:柳老师 010-82543026      2.采购代理机构信息名 称:国信招标集团股份有限公司            地 址:北京市海淀区四季青常青路和泓四季六号楼国信招标            联系方式:徐中制18311012352、徐常城18100329961            3.项目联系方式项目联系人:徐中制电 话:  18311012352
  • 岛津推出AIM-9000红外显微镜应用数据集册
    傅立叶变换红外光谱仪与红外显微镜联用,组成红外显微系统,在红外主机常规功能之外,实现了红外的微区分析和微量分析。对于一些微小的样品,主机无法检测的,使用红外显微镜可以得到一个很好的结果,可以应用在电子、汽车、制药、化工、公安刑侦等行业。可以对电子电器行业中电路板上附着的异物、汽车行业中燃料电池电解膜的缺陷、药片上的异物、纸张上的异物、刑侦公安行业中的微小纤维及油漆等进行高精度的测试分析。 为了应对用户对异物分析和快速定性鉴别分析的需求,岛津特别开发了EDX-FTIR综合分析软件EDXIR-Analysis。该软件可直接读取岛津能量色散型X射线荧光光谱仪(EDX)和傅里叶变换红外光谱仪(FTIR)的原始数据,充分利用了两个不同原理机种得到的信息进行自动定性分析,大大提高了数据分析效率和分析结果的可靠性。通过联用技术可以方便的检测异物样品是无机还是有机物质,原材料相同还是有差异,对产品质量保障,异物定性分析起到了更好地鉴别作用,在电子行业、原材料检测、食品异物分析等行业起到了有很好的指导作用。 岛津公司积极应对市场需求,满足客户要求,编写了《岛津AIM-9000红外显微镜应用数据集册》供相关检测单位和分析测试人员参考。 数据集册内容如下:1. 红外显微镜法在电子产品异物分析中的应用2 .红外显微镜法对印刷电路板进行缺陷分析3. 红外显微镜在焊锡电路板助剂残留分析中的应用4. 红外显微镜光谱法分析车辆碰撞现场微量油漆物证5. 岛津红外显微镜打印字迹鉴别中的应用6. 岛津红外显微镜定性分析医药包材的多层膜7. 岛津红外显微镜可视观察的同时对多层薄膜进行分析8. 岛津AIM-9000和EDX-8000对食品工序中异物进行分析9. 岛津能量色散型X射线荧光光谱仪和红外显微镜测试人工晶体上异物10. 岛津红外显微镜和能量色散型X射线荧光光谱仪测试水管异物11. 岛津红外显微镜和能量色散型X射线荧光光谱仪分析树脂原材料12. 红外显微镜ATR法对锂离子电池用隔离膜进行定性分析13. 岛津红外显微镜检测磨砂洗面奶中的微小塑料颗粒14. 岛津红外显微镜检测食盐中的微小塑料颗粒15. 红外显微镜Mapping功能研究物质组分分布的均匀性16. 岛津红外显微镜法测定玻璃板上聚酰亚胺薄膜的环化率关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 第二届“动态计量测试技术及应用”学术交流会(第二轮)
    各有关单位:动态计量测试技术是衡量一个国家科技水平和工业发展程度重要标志之一。我国经过几十年的发展,动态计量技术已经初见成效。但由于工程动态测量的复杂性,现有计量技术在理论框架、计量特性表征、工程测量应用等方面表现出其局限性,其未来发展方向是一个值得研究探讨的问题。为追踪行业前沿,探讨动态计量测试技术及应用的发展趋势和热点问题,推进动态计量测试技术发展,促进行业内技术交流,共享技术进步最新成果,由中国航空学会、中国计量测试学会、中国振动工程学会指导,“计量与校准技术”国家级重点实验室、“动态测试与校准技术”航空科技重点实验室、中国航空学会计量技术分会联合主办的“第二届动态计量测试技术及应用学术交流会”定于2024年9月24日—27日在苏州召开。本届大会将通过大会特邀报告、分会场专题报告等活动,为我国动态计量测试技术的发展提供交流与合作平台,凝聚相关方向的研究力量,促进多学科的交叉与融合,推动动态计量测试技术得到广泛应用。我们诚挚邀请全国相关领域科研院所、高校和机构的专家、学者及技术人员莅临本次大会。会议时间地点会议时间:2024年9月24日-27日(9月24日报到)会议地点:苏州王府金科大酒店(苏州新区滨河路1969号)会议组织机构指导单位:中国航空学会中国计量测试学会中国振动工程学会主办单位:“计量与校准技术”国家级重点实验室“动态测试与校准技术”航空科技重点实验室中国航空学会计量技术分会承办单位:中国航空工业集团公司北京长城计量测试技术研究所协办单位:中国计量协会智能传感器专业委员会《计测技术》杂志社会议特邀专家及报告主题中国工程院院士报告题目:待定吴希明 中国航空研究院 副院长 研究员报告题目:空地融合,协同发展--低空经济下航空测量监控发展的认识和设想蔡小斌 中国航空工业集团 科技委副秘书长 研究员报告题目:航空发动机试验测试关键技术张力 航空工业计量所 研究员报告题目:力学量动态计量体系关键技术及应用张方 南京航天航天大学 教授报告题目:动载荷识别技术的动态标定及其关键技术王斌团 航空工业一飞院 研究员报告题目:飞机试验测试相关徐立军 北京航空航天大学 院长 教授报告题目:基于激光诱导荧光及吸收光谱融合的瞬态燃烧场定量测量装置孔德仁 南京理工大学 教授报告题目:待定龙桂鲁 清华大学 教授报告题目:用量子说悄悄话韩桂来 中国科学院力学研究所 研究员报告题目:高超声速飞行器复杂干扰区气动加热动态测量技术谭秋林 中北大学 副院长 教授报告题目:耐高温MEMS传感器技术研究进展郑龙席 西北工业大学 教授报告题目:吸气式脉冲爆震发动机非稳态参数测试技术衷洪杰 航空工业气动院 研究员报告题目:动态压敏涂层测试校准技术及应用黄相华 航天科工三院 研究员报告题目:具身智能驱动下的武器装备动态测试计量挑战刘桂祥 核动力院二所 研究员报告题目:核反应堆一回路系统振动控制技术及应用杨亦春 航空工业计量所 研究员报告题目:跨波长随机声阵列测量技术及其应用发展张大治 航空工业计量所 研究员报告题目:面向工程的激光测振技术研究进展参观交流会议将组织与会代表前往苏州高新区深入优秀企业参观交流。会议费用9月13日前汇款的人员 2000 元/人;9月13日后汇款的人员 2500 元/人;会议现场可提供银行卡、微信等缴费方式。会议期间食宿统一安排,住宿费用自理。具体汇款信息如下:户 名:中国航空工业集团公司北京长城计量测试技术研究所开户行:工行海淀西区支行账 号:020000 450900 3500979备 注:“动态计量会议”企业宣传为方便参会代表更深入地了解企业最新技术产品信息,主办方确定,本次会议的企业宣传费用标准做如下分类,企业可根据需要进行选择。宣传套餐费用标准类别费用(元)服务内容备注A档80000协办单位+公司参观+会场展位+播放宣传片 + 专题报告(9月26日分论坛)+ 资料发放此档仅限于苏州本地公司。B档30000会场展位 + 专题报告(9月26日分论坛)+ 资料发放C档20000专题报告(9月26日分论坛) + 资料发放D档20000会场展位 + 资料发放E档10000会场资料发放报名方式1.请填写本通知所附第二届“动态计量测试技术及应用”学术交流会回执,并在9月20日之前将回执(Word版)发送至会议联系人电子邮箱。2.线上报名。拟参会人员请扫描下方二维码进行报名。会议联系人张云霞 15201680897zhangyunxia@cimm.com.cn 张馨元 18518169533zhangxy633@avic.com 李金玲 18801025132lijl113@avic.com“计量与校准技术”国家级重点实验室“动态测试与校准技术”航空科技重点实验室中国航空学会计量技术分会中国航空工业集团公司北京长城计量测试技术研究所中国计量协会智能传感器专业委员会 《计测技术》编辑部 2024年8月27日
  • 华洋公司“专注”原吸市场细分领域
    “100家国产仪器厂商”专题:访北京朝阳华洋分析仪器有限公司   为推动中国国产仪器的发展,了解中国国产仪器厂商的实际情况,促进自主创新,向广大用户介绍一批有特点的优秀国产仪器生产厂商,仪器信息网自2009年1月1日开始,启动“百家国产仪器厂商访问计划”。日前,仪器信息网工作人员走访参观国内知名的原子吸收光谱(AAS)制造商——北京朝阳华洋分析仪器有限公司(以下简称“华洋公司”),华洋公司李海明总经理热情接待了仪器信息网到访人员。   “华洋公司AAS系列具有性能稳定等优点,价格仅为国外同类产品的1/4” 北京华洋公司参加BCEIA展会   李海明总经理介绍到:“经过近二十年的不断发展,华洋公司已经发展成为国产最强的原子吸收光谱仪生产厂商之一。现在公司有近70名员工,其中,研发队伍里有从业经验高达30余年并享受国家津贴的高级工程师。近年以来,我们公司年产值逐年递增,发展很快。主要研发生产原子吸收光谱、火焰光度计、流动注射分析仪、能量色散X荧光分析仪和单道扫描ICP发射光谱仪等相关产品群。这几年,北京华洋公司的产品在仪器的性能、功能方面有了很大的提高。” 华洋公司AA2630原子吸收光谱   华洋公司AAS系列光谱仪能够检测70多种微量金属元素,检测精度达到ppb级;尤其,石墨炉的先进设计减少了化学干扰和记忆效应,石墨炉电源采用微机控温,保证了分析准确度。   李海明总经理强调:“相比国际同类产品,华洋公司AAS系列具有性能稳定、功能齐全、操作方便等优点,且价格仅为国外同类产品的1/4。”目前,已被广泛应用于冶金地质、机械制造、环境保护、生物工程、石油化工、医药卫生、农林食品等领域的生产和科研中。 仪器调试车间   据了解,华洋公司已通过ISO9001质量体系,部分产品已取得了CE认证。公司销售模式以直销为主,代理为辅。现在华洋公司在深圳、杭州、南京、长沙、济南、郑州等地设有办事处。另外,公司对所售出的华洋产品实行一年保修,终身维护。   “国内AAS市场增长率在8%左右,仍有一定发展空间”   李海明总经理表示:“AAS是一款比较经典的仪器,其技术与市场均比较‘稳定’。据数据统计,国际AAS市场已基本饱和,国内AAS市场增长率在8%左右,市场容量大致在1800台/年,其中进口AAS占其中的15%-20%。”   “目前,只有部分政府部门或者资金雄厚的企业购买进口AAS以外,多数国内企业考虑到成本问题以及售后服务的便捷性,还是倾向于购买国产仪器。现在,国家也出台多项政策支持国产仪器,招标书里面的部分仪器也指定为国产仪器。”   “实际上,国内外原子吸收光谱在仪器性能、功能水平相差并不大。进口仪器除了本身价格昂贵外,其售后服务收费也比较高。虽然,国内仪器在自动化、工艺、外观方面还有待改进,但是,其在仪器价格和售后服务方面的优势比较明显,完全能够满足用户的需求。”   针对于ICP(等离子体发射光谱)有可能取代AAS的观点,李海明总经理谈到:“因为两者的用户群不一样,所以即使AAS市场缩小,与ICP的关系也不大,我个人认为,这主要是和我国出口经济的导向有关,如塑料、矿石的出口产业链发生了变化,企业者的投资热情降低,市场规模也就会相应地萎缩。”   “不过,目前ICP价格相对较高,在企业里面的普及程度较低,AAS的市场还是有一定发展空间的。”   华洋公司关注市场细分领域积极拓宽产品线   李海明总经理谈到:“AAS生产型公司若要发展,就必须得在一些特定行业占据绝对优势。目前,我们的发展策略:关注部分重点行业,研究其标准方法,探讨其采购模式,深入开发其相关市场。比如,现在我们比较关注焊锡、线路板、水处理等市场细分的行业,从北京开始,延伸至全国,公司正在系统地进行分区域研究工作,收效不错。”   “在AAS系列之外,我们公司还代理了XRF和ICP等几款不错的产品。目前,我们也在关注社会热点,积极地拓宽产品线,加紧研发新仪器。希望新品发布时,仪器信息网能够给予我们更大的关注。”   附录:北京朝阳华洋分析仪器有限公司   http://www.hyai.com/   http://ainstruments.instrument.com.cn
  • 浅析工业园区企业异味源
    工业园区异味源分布广泛,量大面广,本文重点针对工业企业异味源特点,研讨异味源识别和异味问题诊断的基本思路。工业企业异味源主要有装卸储存环节、车间生产环节、锅炉燃烧环节、循环水冷却环节和废水集输、储存、处理处置环节等六大类环节。(1)装卸储存环节工业企业在原辅料及产品的装卸过程中,装料罐内液位的上升,压力上升,罐中挥发的异味气体将会被挤出到罐外,从而产生异味现象。装罐后,随着环境温度的上升,罐内压力也会上升,罐内高浓度的废气同样会被挤出到罐外,导致罐区周边出现异味现象。此类废气一般称之为大小呼吸气。在此过程中,需要重点排查装卸台装卸系统密封效果、气相平衡管路、呼吸气收集情况及呼吸气治理情况。(2)车间生产环节车间是异味的主要来源,车间在正常生产过程中,混合、搅拌、反应、蒸馏、烘干、结晶等环节,会产生大量的有组织废气,该类废气往往异味较重;在压滤、粉碎、离心等环节,会产生一定量的无组织废气,该类废气异味同样较重,且废气四处逸散,对企业影响较大;除此之外,车间中的泵、压缩机、搅拌器、阀、泄压设备、采样连接系统、开口阀或开口管线、法兰、连接件等9大类设备,长期使用过程中,如管理不到位,会出现老化现象,导致接口泄漏,产生一定量无组织和异味废气。针对该场所,首先需要建立动静密封点基础台账,开展LDAR检测工作,识别出泄漏点位,推动企业整改修复;其次排查企业生产无组织废气收集情况,及时发现未收集或收集不合理的情况,督促企业合规收集,变无组织为有组织;最后排查有组织废气是否存在偷排漏排情况,是否存在未治理直接排放现象以及治理工艺是否合理。(3)锅炉燃烧环节企业锅炉一般使用天然气、煤、生物质、燃料油等作为燃料,其中煤、生物质、燃料油在燃烧过程中,将会产生二氧化硫、氮氧化物、以及少量未完全燃烧的有机物,这些组分均拥有刺激性气味。针对该环节,重点排查燃料是否能够完全充分燃烧,收集后的燃烧烟气是否进行治理,治理工艺是否合理等。(4)循环水冷却环节循环水冷却系统在生产过程中,由于设备老化,换热器破裂,导致工艺物料泄漏至冷却水中,最终进入到循环水冷却系统,在循环水池及循环冷却塔大量逸散。针对该环节,需要重点排查循环水池内循环水中是否含有原辅料,如发现循环水中存在原辅料杂质,需要企业立刻开展循环水冷却系统修复工作。(5)废水集输、储存、处理处置环节企业废水集输、存储、处理处置一般分为密闭式和敞开式。敞开式处置方式往往会导致大量异味气体从敞口处逸散,造成异味污染现象。敞开式废水处置主要包含:地漏、沟渠收集;敞开式暂存池;敞开式污水处理池等。针对该环节,需要重点排查敞开式处置环节,要求企业变敞开式为密闭式,收集无组织逸散废气,集中处置,解决废水逸散异味问题。(6)其他环节企业在开停机阶段、检修阶段、生产异常阶段,均有可能短时间内排放大量的异味废气。针对该情况,需要重点排查企业相应的操作规程,查看企业是否有效考虑应急异味处置方法。除了要了解工业企业异味源在上述六个环节的异味气体排放或逸散的原理,在实际调研排查过程中,还需要深入了解企业生产工况以便在恰当时机开展检测和监测。准确定位工业企业异味源是真正扼住工业企业的异味源头地前提,需要服务单位先扎实有效地做好异味源排查工作,以便从本质上逐步消除工业企业异味源对周边环境的不利影响。
  • 10吨欧美电子垃圾入渝 一台显示器含铅1公斤
    海关查获走私电子垃圾   2009年5月,龙某与徐某在香港认识后,双方预谋从香港进口欧美国家的电子垃圾,利用内地低价劳动力,组装电子产品销售。经多次共谋,同年8月7日,两人以进口光驱为名,将10吨电子废物夹藏在集装箱里,从香港走私到内地。后该批货物被重庆海关查获。经有关部门检验认定,该批散装的废旧电子元件均属我国禁止进口的固体废物。   电子垃圾量大危害大   据龙某和徐某交待,这批电子垃圾是他们从欧洲和美国买来的,想偷运到国内后卖掉。   承办检察官介绍,根据国际条约《巴塞尔公约》,我国已将电子垃圾列入禁止进口的固体废物。电子垃圾不仅量大而且危害严重。特别是电视、电脑、手机、音响等产品,有大量有毒有害物质。   检方调查发现,这批电子垃圾中的显像管、阴极射线管、印刷电路板上的焊锡和塑料外壳等,都含有大量的有毒有害物质,一台电脑显示器中仅铅含量平均就达1公斤多。   据承办检察官介绍,回收加工再销售的电子产品质量不稳定,存在严重安全隐患。不能正确处理电子垃圾,大量有害物质就会渗入地下,造成地下水严重污染。如果进行焚烧,会释放大量有毒气体,造成空气污染,这些都会对生态和环境造成不可估量的破坏。   如何处理还未决定   记者了解到,这批电子垃圾烧也不好烧,很多电子元件也无法使用自然降解的方法进行处理。昨天,检方称,如何处理这批电子垃圾现在还未决定。   记者在网上查询发现,现在对于电子垃圾的处理,主要还是通过分解再利用的方式进行。但是对于如何处理走私而来的电子垃圾,各地尚无明确的办法。   电子垃圾   主要使用电流、电磁场工作的设备都叫电子设备 废弃不用的电子设备都属于电子废弃物。电子废弃物主要包括电冰箱、空调、洗衣机、电视机等家用电器和计算机等通讯电子产品的淘汰品。电子废弃物俗称“电子垃圾”。   对环境危害比较大的废旧电子产品包括电脑、电视机显像管内的铅,电脑元件中含有的砷、汞和其他有害物质等。   走私废物罪   是指逃避海关监管,将境外固体废物、液态废物、气态废物运输进境的行为,可处五年以下有期徒刑,情节特严重的,处五年以上有期徒刑,并处罚金。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制