当前位置: 仪器信息网 > 行业主题 > >

油田控制仪

仪器信息网油田控制仪专题为您提供2024年最新油田控制仪价格报价、厂家品牌的相关信息, 包括油田控制仪参数、型号等,不管是国产,还是进口品牌的油田控制仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合油田控制仪相关的耗材配件、试剂标物,还有油田控制仪相关的最新资讯、资料,以及油田控制仪相关的解决方案。

油田控制仪相关的论坛

  • 【分享】油田污水处理技术浅析

    油田污水主要包括原油脱出水(又名油田采出水)、钻井污水及站内其它类型的含油污水。油田污水的处理依据油田生产、环境等因素可以有多种方式。当油田需要注水时,油田污水经处理后回注地层,此时要对水中的悬浮物、油等多项指标进行严格控制,防止其对地层产生伤害。石油生产单位大部分集中在干旱地区,水资源严重缺乏,如何将采油过程中产生的污水变废为宝,具有十分重要的现实意义。1 油田污水处理技术现状  油田的水处理工艺,其流程一般为“隔油——过滤”和“隔油——浮选(或旋流除油)——过滤”,即通常称为的“老三套”,其工艺主要是除去废水中的油和悬浮物。在很长一段时间内,此工艺流程被广泛地应用于各油田的采出水处理中,而且效果良好,处理后的水质一般都能达到回注水的要求。  1.1技术分类  根据对油田污水处理程度和水质要求的不同,通常将污水处理技术分为一级处理、二级处理和三级处理。一般来说一级处理属于预处理,二级处理能除去90%左右可降解有机物荷90%~95%的固体悬浮物。然而对于重金属毒物和生物难以降解有机物高碳化合物以及在生化处理过程中出现氮、磷难以完全除去,尚需进行三级处理。各级处理技术主要包括重力分离、粗粒化、浮选法、过滤、膜分离以及生物法等十几种方法。  一、二级处理主要是利用过虑、沉降、浮选方法把污水中的悬浮物除去。去除废水中的矿物质和大部分固体悬浮物、油类等。主要方法包括重力分离、离心分离、过滤、粗粒化、中和、生物处理等方法。这些技术在国内外都比较成熟。  1.2油田污水处理的一般工艺  油田污水成分比较复杂,油分含量及油在水中存在形式也不相同,且多数情况下常与其他废水相混合,因此单一方法处理往往效果不佳。同时,因各种力法都有其局限性,在实际应用中通常是两三种方法联合使用,使出水水质达到排放标准。另外,各油田的生产方式、环境要求以及处理水的用途的不同,使油田污水处理工艺差别较大。在这些工艺流程中,常见的一级处理有重力分离、浮选及离心分离.主要除去浮油及油湿固体;二级处理有过滤、粗粒化、化学处理等,主要是破乳和去除分散油;深度处理有超滤、活性炭吸附、生化处理等,主要是去除溶解油。  1.3膜生物反应器工艺  膜生物反应器(MBR)是一种由膜分离单元与生物处理单元相结台的新型水处理技术,以膜组件取代二沉池在生物反应器中保持高活性污泥浓度减少污水处理设施占地,并通过保持低污泥负荷减少污泥量。与传统的生化水处理技术相比,MBR具有以下主要特点:处理效率高、出水水质好;设备紧凑、占地面积小;易实现自动控制、运行管理简单。自20世纪80年代以来,该技术愈来愈受到重视,成为研究的热点之一。目前膜生物反应器己应用于美国、德国、法国和埃及等十多个国家,规模从6m3/d至13000m3/d不等。  在我国,膜生物反应器作为污水再生回用的一项高新技术,其开发与研究也正越来越深入。虽然目前膜生物反应器在我国的实际应用还较少,然而,在水资源日益紧缺的情况下,随着膜技术的发展、新型膜材料的开发以及膜材料成本的逐渐下降,膜生物反应器将会有较好的应用前景。2 污水处理技术分析  目前,石化行业的碱渣废水处理方法主要有直接处理法、化学处理法和生物氧化法。  直接处理法有出售、稀释、深井注入和焚烧处理等方法,其中以焚烧法为主,直接处理法容易出现污染转移(大气)或转嫁(其他地方),故受到一定限制。  化学处理法通常采用湿式空气氧化技术(WAO),即在150~200℃,1.5~10MPa的条件下,利用氧气直接氧化去除碱渣中的硫化物,达到碱渣预处理的目的。碱渣的处理效果受制于氧化反应体系的温度与压力,污染物去除效率越高,相应体系所需的温度与压力也就越高,WAO法高昂的设备投资额度和运行费用使其应用受到限制。  焚烧和湿式催化氧化都是投资、运行费用非常高的处理技术。相比之下,采用生化技术进行处理,其投资、运行费用都只有湿式催化、焚烧法的几分之一或者几十分之一,运行管理简单,处理效果稳定。  生物氧化法是采用首先将碱渣进行适度的稀释(10~20倍),控制硫化物在1000~3000mg。L-1,并中和后,利用特殊的生物反应器,使硫细菌在生物反应器中形成生物氧化床,通过生物的作用利用空气中氧气氧化硫化物和酚,从而达到碱渣预处理的目的。生物氧化方式相比具有较好的技术经济价值,而内循环固定生物氧化床技术即IRBAF处理工艺是针对石油炼制和石油化工产品精制过程中产生的废碱渣(汽油、柴油、液态烃等碱渣)开发,大幅度减轻污水处理场的进水负荷,能够有效地氧化处理催化汽油废碱液、液态烃废碱液等高浓度废水,保证了现有污水处理系统的正常运转和达标排放。3 IRBAF处理工艺简介  内循环固定生物氧化床技术(Enternal Recurrence Fixed Biological Bed缩写IRBAF)是在常温、常压的条件下,利用专属微生物特殊的工艺环境,形成一个高活性生物酶催化氧化床,促使水体中污染物氧化。当BAF反应池经过一定时间的运行,其填料中将产生大量的生物质,当新增生物量床,过多时,会影响水在填料内部的运行,降低处理效率,此时需通过反冲洗将生物床中的过剩生物质脱出。BAF的反冲洗可通过反冲洗自控系统或半自控系统来完成。反冲洗周期视进水COD负荷确定,COD负荷越高,反冲洗周期越短,反之,BAF的反冲洗周期越长。反冲洗采用新型脉冲气水联合反冲洗技术,反冲洗风采用炼油厂的非净化风,反冲洗水采用二级内循环BAF的净化出水,冲出的高浓度泥水混合液自流进入泥水分离池,经沉淀分离后,上层清液循环处理。本工艺产泥量较少,可滞留于泥水分离池,不定期排入净化水车间现有的污泥处理系统。  IRBAF工艺的特点:(1)高品质填料:生物床采用粘土陶粒,具有较大的比表面积和总孔容积,抗机械磨损强度高,表面粗燥,化学稳定性强。(2)隔离式曝气技术:采用独有的隔离式曝气技术,给反应器充氧的同时,将污水沿曝气管道提升,再经过反应器生物床,形成循环,避免了传统曝气方式对滤料的冲刷,同时由于反应器水体呈内循环状态,每小时可以循环10~20次,增加了滤料内水流速度,增强了污水与生物体之间介质的交换,提高了反应器的处理效能,具有完全混合式反应器的特点,提高了反应器耐有毒物质的能力和抗冲击能力,隔离式的曝气技术改变了传统曝气方式容积利用率低,易形成水流短路的现象,提高了反应器的容积效率和处理效率。(3)独特的气水联合反冲洗方式:IRBAF的反冲洗技术是一种对传统反洗技术的改进,提高了滤料层扰动的强度,提高系统应力中的附加切应力,提高颗粒间的碰撞机会,从而提高系统的反冲洗效果,避免滤料的粘结堵塞,保持反应器的活性,达到稳定处理的目的。(4)自动化程度高:反冲洗是保障系统正常运行的关键,对出水水质、运行周期、运行状况的影响很大,设计系统的整个反冲洗过程由程序控制,自动按次序控制管道上的阀门,减少人力,方便操作。  对于一直困扰着炼油化工行业污水处理场的碱渣高浓度污水,经过隔油、气浮等物化处理后,再进入内循环固定生物氧化床IRBAF工艺进行生化预处理,能够有效稳定去除大部分COD,减轻后续普通生化处理工艺的处理负荷,提高整个污水处理场的抗冲击能力,出水水质稳定,操作简便、工程造价和运行费用低,必将在炼油石化行业的碱渣高浓度污水处理的领域中得到较广泛的应用。

  • ZDA-OW01防爆型水中油自动监测仪成功在南方某油田投入使用

    ZDA-OW01防爆型水中油自动监测仪成功在南方某油田投入使用

    水是石油的天然伴生物。目前我国大部分油田采用注水开发方式,随着油田的不断开发,油井采出液不断增加,造成油田污水越来越多,给油田污水的排放和处理带来很大的困难。为有效利用采出污水,对污水进行处理回注是经济实用的办法,但要确保油田的高效注采开发,对油田注入水水质有一定的要求,所以油田含油污水监测是石油生产的一项重要保障技术,对油田用水具有重要意义。2015年11月初陕西正大环保科技生产的防爆型水中油在线监测设备在南方某油田成功安装,填补客户在这一领域的监测空白,为保证污水处理站内各种设施的正常运行,确保水质全面达标,整个污水管网、注水管网维护工作量的减少,水井作业工作量的减少,水驱储量的增加提供高效安全的数据保障。此次安装的地点:位于某油田采油厂采油大队联合站内,主要对油田采出水进行监测,具体来说首批安装两个位置为:安装位置1:工艺流程中喂水泵后,注水泵前。(主要功能:监测数据可以指导水处理过程工艺)[align=center][img=,338,518]http://ng1.17img.cn/bbsfiles/images/2015/12/201512121006_577632_2892436_3.jpg[/img][/align][align=center][img=,491,288]http://ng1.17img.cn/bbsfiles/images/2015/12/201512121006_577633_2892436_3.jpg[/img][/align]安装位置2:沉降池后,水处理设备前。(主要功能:含油废水处理前和处理后监测数据对比。)[align=center][img=,368,566]http://ng1.17img.cn/bbsfiles/images/2015/12/201512121007_577634_2892436_3.jpg[/img][/align][align=center][img=,469,289]http://ng1.17img.cn/bbsfiles/images/2015/12/201512121007_577635_2892436_3.jpg[/img][/align][align=left]此次正大环保防爆水中油在线监测设备在南方油田的成功安装只是对油田回注水进行监测,之后还将在采出水监测,生产过程污水监测以及其他系统来水中监测中发挥更大的作用,为油田安全生产,工艺控制水平的提高保驾护航。[/align]

  • 【原创】油田粘度计校正方式和仪器

    【原创】油田粘度计校正方式和仪器

    很多油田实验室或泥浆实验室都使用六速旋转粘度计来测量流体的粘度,或者使用高温高压流变仪来测量流体在高温高压下的流变性。当使用时间长,我们并不知道仪器是否准确了,这时候我们需要校正。 为什么需要校正?原因有,1.腐蚀性气体腐蚀轴承,使得轴承发涩,测试不灵敏,有阻力。2.弹簧线形不好。3.其他机械部件磨损4转速影响。但是具体原因我们并不清楚。这时候我们需要校正。校正转速一般用转速表即可,我推荐一款如下的WT-2234A+智能数显光电测速仪。使用方法简便。 [img=721,557]http://ng1.17img.cn/bbsfiles/images/2010/08/201008170917_236975_1793981_3.jpg[/img]我们在转速合格的情况下进行校正粘度是否准确。这样我们就需要使用粘度计校正用的硅油了。油田用的粘度计校正用的硅油有两种一种就是在特定温度下的粘度已知,对于温度的控制要求严格。其实这种并不太适合我们,因为很少有六速粘度计配有加热套,如果您需要使用这种粘度计标准油,我推荐一款加热套,这款加热套是北京探矿工程研究所研制的[b][color=red][size=3][font='Times New Roman']WT- Heater6[/font][/size][/color][color=red][size=3][font=宋体]六速粘度计智能温控仪,如下:[/font][/size][/color][/b][img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008170923_236976_1793981_3.jpg[/img]加热温度0-90度,采用水作为中间传递介质,温度传递均匀,控温准确。以上提到的标准油,国家标准物质中心有卖。另一款就是我们所说的牛顿流体,在任何温度下都成线形的硅油,据我所知,现在经常使用的是Fann和OFI公司出品标准油。有20cp、50cp、100cp 200cp 500cp ……,他的特点是不同的温度点都给出了粘度的标准值。温度精确到0.1度。使用时只需要一根温度计即可。粘度计标准油的外形如下。[img]http://ng1.17img.cn/bbsfiles/images/2010/08/201008170929_236977_1793981_3.jpg[/img]以后的事情就不用我说了。

  • 【分享】湖北8个重点县市血吸虫疫情已经得到有效控制

    [center]湖北8个重点县市血吸虫疫情已经得到有效控制[/center] 湖北省卫生厅近日组织血防办与疾病预防控制中心专家组,对全省8个重点县市血吸虫病综合治理情况进行了调查。调查结果显示,湖北8个重点县市血吸虫疫情得到有效控制,达到了国家要求标准。 2004年,湖北省委、省政府提出了“综合治理、整体推进”方案,将血吸虫防治工作与新农村建设有机结合,推动了该省新农村建设,疫区面貌也发生了翻天覆地的变化,基本实现了生活沼气化、环境生态化、行走路硬化、照明电气化、粪便处理无害化。 潜江市是全国109个重疫区县(市)之一。全市21个区镇处(场)及境内的江汉油田、广华监狱等6个单位共299个村流行血吸虫病,流行村人口达到62万,占全市总人口的60%还多。2004年,潜江全面启动以控制传染源为主的综合防治策略。截至2008年,潜江全市历史累计灭光钉螺面积达41万亩,血吸虫病人减少23.1万人。全市299个血吸虫病流行村的人畜感染率均控制在5%以下,已经连续8年未发生一起突发疫情。 社会各界的参与,让晚血病人看到了希望。今年才满40岁的肖月贵是潜江市龙湾镇竺场村人。多年来,肖月贵一直依靠国家的资助治病、生活。有了救助基金后,她每月可以按时领到生活补贴50元。和肖月贵一样,现在该市在血防医院治疗后的晚血病人,都可以得到一年的跟踪巩固性治疗救助;晚血病人在住院治疗期间发放一个月的营养补助,每人90元;一年内数次住院的病人,每次都可以享受到90元的补助;对出院后晚血病人发放一年的营养补助,每人每月50元。到目前,全市已经发放救助资金30多万元,惠及255名晚血病人。 据湖北省疾病预防控制中心副所长龚新国介绍,对于晚期血吸血病人的救治,国家拨款每人为5000元,但对于重症及全并并发症的病人来说,5000元的费用根本不够,但目前阳新县、赤壁市、潜江市和汉川市等地的血防办,均成立了“血防基金”,在社会上募捐一些善款,贴补经费的不足,基本上让晚期血吸虫病人得到免费的治疗。信息来源:中国新闻网

  • 石化行业油田采出水监测方法选择及所遇问题剖析

    目前,国内在防爆区域实现对水中油的自动监测,大多采用的是进口监测设备,或把进口监测设备安装在正压式防爆分析小屋中,实现对生产过程中水中油的自动监测,设备及工程造价50万至120万不等。如此高昂的成本,使得中石油在众多采油厂无法推广应用。同时,从现场使用情况来看,国外的监测设备无法适应国内的水质环境,存在严重的“水土不服",已安装的监测设备不仅维护成本高、故障率高,而且一旦设备监测装置受到污染就会造成监测装置瘫痪,非专业技术人员无法维护,也无法大面积推进自动监测工作,导致油田生产过程中水中油含量监测工作费时费力,而且监管部门还无法得到真实的数据。 ZDA-OW01型水中油自动监测装置,该装置专为自动监测水中的原油类含量、温度、悬浮物(机杂)而设计,传感器是利用油类物质中多环芳香烃的荧光效应来进行检测的,采用特定波长的高性能UV LED激发水样油类物质中的多环芳香烃,多环芳香烃会相应的发出荧光,分析仪中的高灵敏度光电传感器会捕捉微弱的荧光信号从而转化为油类浓度数值,设备具备无线通讯功能,再将监测值传输到油田数字中心,在监控中心可以实时查看生产过程中的水质含油情况及机杂状况。 系统在研究中重点解决了三个方面的问题:1、是监测方法要简单、易维护、易安装;2、监测设备的清洗及对对突变的恶劣水质要有较强的适应性;3、现场取样、监测、清洗中的防爆问题。一、监测方法及传感器选择: 在传感器选择中我们选择了国家环境监测总站认可的监测方法:紫外荧光法。当光线以一个特定的波长射出(激发态)透过某些化学物质时,这些物质会再反射出一种波长更长的荧光(发射态)。而高精密的光电倍增器可以检测到这种荧光,水中油自动监测装置即利用化学物质这种特性而设计。紫外荧光法作为最快速且具有良好选择性的方法,它可以检测到非常低浓度的水中油,是一种可靠性强、维护量低、测量稳定的监测方法。选择这种传感器不仅适用于油田水中油的监测,也可用于工业生产中低浓度含油废水、炼油厂、化工厂含油水的自动监测。大大提高了装置的使用范围及精度。 悬浮固体物感测器则使用高感度红外线(IR)光学系统(使用波长范围是860mm)穿透悬浮粒子并感测散射(900折射)回来光线强度,以测定水中的粒子浓度。该方法也是国家环境监测总站认可的标准方法,测量精度高,可应用范围广,维护量小。二、监测设备的清洗及对恶劣水质的适应性问题 含油水的自动监测面临最大的问题是,水质成分复杂,监测环境恶劣。要实现完全自动连续、稳定、准确的自动监测,并尽量少的人工干预,做到无人值守。系统的自动清洗成为项目成功的瓶颈。 项目组人员通过大量调研,听取专家意见,最终研制了一种简单易行,设计巧妙的自动清洗装置,射流与清洁涮两种方式结合的自动清洗装置(专利号:ZL 201320645567.5)。该装置配合适用原油的专用清洗剂,再结合自动清洁涮,保证了监测探头在恶劣的监测环境下的自清洁。同时,装置结构设计考虑到极端恶劣的水质对监测设备可能带来的污染,检测部件必须是可以通过简单的方法拆除,并在做简单的人工处理后即可恢复出厂检测状态,继续正常使用。课题组通过巧妙的结构设计,有效的解决了这一问题。保证设备可以委托非专业人员进行维护,并恢复出厂状态。大大提高了现场适应性,减少了维护量及使用成本,得到了油田现场管理人员及领导的一致认可。三、现场取样、监测、清洗中的防爆问题 含油废水在管道输送过程中会产生大量的气体及油气混合物质,安全防爆尤为为重要。因此,在装置设计中必须考虑防爆的问题,考虑油气排放的问题,避免油气集聚带来“闪爆"安全防患。但监测设备由于其特殊的工作原理,有时很难满足防爆要求,而之前采用的分析小屋式防爆,成本高,施工难度大,占地大,无法进行现场安装,也无法大量推广使用。此次,项目组对监测装置在结构与防爆设计得到了中石油安全部门专家的指点,采取了监测部分、控制部分、射流清洗装置、电器部分分离设计,隔离防爆,采样管路也使用防爆控制阀,所有电器采用低压供电,满足防爆要求。同时,项目组对油气问题做了专门设计,确保测量池中油气可以及时排空扩散,保证了测量的准确性及安全性。

  • 高精度可编程真空压力控制器(压强控制器和温度控制器)

    高精度可编程真空压力控制器(压强控制器和温度控制器)

    [align=center][img=,599,441]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200929562418_9505_3384_3.png!w599x441.jpg[/img][/align][size=18px][color=#990000]一、简介[/color][/size] 真空压力控制器是指以气体管道或容器中的真空度(压力或压强)作为被控制量的反馈控制仪器,其整个控制回路是闭环的,控制回路由真空度传感器、真空压力控制器和电动调节阀组成。 依阳公司的VPC2021系列控制器是一种强大的多功能高度智能化的真空压力测量和过程控制仪器,采用了24位数据采集和人工智能PID控制技术,可与各种型号的真空压力传感器(真空计)、流量计、温度传感器、电动调节阀门和加热器等连接,可实现高精度真空压力(压强)、流量和温度等参量的定点和程序控制,是一种替代国外高端产品的高性能和高性价比控制器。[size=18px][color=#990000]二、主要技术指标[/color][/size] (1)测量精度:±0.05%FS(24位A/D)。 (2)输入信号:32种信号输入类型(电压、电流、热电偶、热电阻),可连接众多真空压力传感器。 (3)控制输出:4种控制输出类型(模拟信号、固态继电器、继电器、可控硅),可连接众多电动调节阀。 (4)控制算法:PID控制和自整定(可存储和调用20组PID参数)。 (5)控制方式:定点和程序控制,最大可支持9条控制曲线,每条可设定24段程序曲线。 (6)控制周期:50ms。 (7)通讯方式:RS 485和以太网通讯。 (8)供电电源:交流(86-260V)或直流24V。 (9)外形尺寸: 96×96×136.5mm (开孔尺寸92×92mm)。[size=18px][color=#990000]三、特点和优势[/color][/size] (1)高精度24位数据采集,使得此系列控制器具有高精度的控制能力。 (2)具有各种不同类型信号的输入功能,可覆盖多种测量传感器,既可连接真空计用来控制真空压力和压强,也可用来控制其它变量,如连接流量计用来控制流量、连接温度传感器用来进行温度控制等。 (3)可连接和控制几乎所有的电动调节阀和数字控制阀门,也可连接控制各种加热装置,结合传感器由此组成可靠的闭环控制系统。 (4)控制器体积小巧和使用灵活,即可独立做为面板型控制器使用,也可集成在测试系统整机中使用。 (5)采用了标准的MODBUS通讯协议,便于控制器与上位机通讯和进行二次开发。 (6)具有2路输出功能,可实现真空压力的两种控制模式,一种是可变气流量(上游控制)压强控制模式,另一种是可变通导(下游控制)流量调节模式。[align=center][color=#990000][img=,300,253]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932222782_1134_3384_3.png!w300x253.jpg[/img][/color][/align][align=center][color=#990000]上游控制压强模式[/color][/align][align=center][color=#990000][img=,300,252]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932370447_2503_3384_3.png!w300x252.jpg[/img][/color][/align][align=center][color=#990000]下游控制压强模式[/color][/align][align=center][color=#990000][img=,300,249]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932454481_7140_3384_3.png!w300x249.jpg[/img][/color][/align][align=center][color=#990000]上游和下游同时控制的双向模式[/color][/align][size=18px][color=#990000]四、外形和开孔尺寸[/color][/size][align=center][img=,690,317]https://ng1.17img.cn/bbsfiles/images/2021/06/202106200932536698_9309_3384_3.png!w690x317.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 海洋局认定康菲任务未完成 责令蓬莱油田停产

    中新网9月2日电 (能源频道 王槊)9月2日下午,国家海洋局发布公告,称由于康菲公司“两个彻底”没有完成,因此责令蓬莱19-3全油田停注、停钻、停产作业。康菲进展缓慢,未按期完成清理堵漏工作消息中称,8月31日,康菲石油中国有限公司向国家海洋局提交了完成“两个彻底”工作情况的总结报告,国家海洋局充分利用日常监测数据并经过现场核查和专家审查,认定康菲公司“两个彻底”没有完成。依据蓬莱19-3油田溢油事故联合调查组对事故原因、性质和责任所做出的结论,国家海洋局决定采取进一步监管措施,加强对溢油事故处置监督管理。国家海洋局认为,康菲公司在落实“两个彻底”方面初期进度缓慢。截至8月31日,B平台9月2日下午,国家海洋局发布公告,称由于康菲公司“两个彻底”没有完成,因此责令蓬莱19-3全油田停注、停钻、停产作业。附近海域集油罩内液体累计回收总量约305立方米,累计污油量约28升。C平台累计清理海底油基泥浆406.5立方米。但是执法人员经卫星、飞机、船舶、现场远程视频和溢油雷达、水下机器人等现场监视监测核查表明,C平台海床残留油污未彻底清理,附近仍有油花持续溢出,并有油带存在,B平台附近溢油采取集油罩回收的方式,也不是根本措施。因此,对溢油源的彻底封堵没有完成。9月2日,联合调查组一致审议通过了上述对康菲公司“两个彻底”总结报告的审查意见。溢油原因:作业者回注增压作业不正确公告中称,蓬莱19-3油田溢油事故联合调查组在调查分析后初步认为,造成此次溢油的原因从油田地质方面来说,由于作业者回注增压作业不正确,注采比失调,破坏了地层和断层的稳定性,形成窜流通道,因此发生海底溢油。公告称,B平台没有执行总体开发方案规定的分层注水开发要求,B23井长期笼统注水,无法发现和控制与采油井不连通的注水层产生的超压,造成与之接触的断层失稳,发生沿断层的向上窜流,这是B平台附近海域溢油事故的直接原因。此外,B23井注水出现异常,理应立即停注排查,却未果断停注,造成溢油量增加。C平台未进行安全性论证,擅自将注入层上提至接近油层底部,造成C20井钻井过程中接近该层位时遇到高压发生井涌。同时,违反经核准的环境影响报告书要求,C20井表层套管过浅,发生井涌时表层套管下部地层承压过高,造成原油及钻井泥浆混合物侧漏到海底泥砂层,导致C平台附近海底溢油。联合调查组对以上原因分析后认定,由于康菲公司没有尽到合理审慎作业者的责任,蓬莱19-3油田溢油事故属于责任事故。责令蓬莱19-3全油田停产公告称,通过对蓬莱19-3油田溢油事故的全面调查可以认定,康菲公司在蓬莱19-3油田长期油气生产开发中,破坏了该采区断层的稳定性,且截止目前对溢油源的彻底封堵没有完成,如维持现有开发方式可能产生新的地层破坏和新的溢油风险。鉴于这种情况,为防范新的危害,保护渤海海洋生态环境,促进该油田生产实现健康可持续发展,根据《海洋环境保护法》和《防治海洋工程建设项目污染损害海洋环境管理条例》等法规有关规定,国家海洋局责令康菲公司执行以下决定: 一、责令蓬莱19-3全油田停止回注、停止钻井、停止油气生产作业。二、责令康菲公司必须采取有力有效的措施,继续排查溢油风险点、封堵溢油源,并及时清除溢油事故油污。三、重新编制蓬莱19-3油田开发海洋环境影响报告书,经核准后逐步恢复生产作业。四、在实施“三停”期间,康菲公司为开展溢油处置的一切作业应在确保安全、确保不再产生新的污染损害的前提下进行。为保证安全、保护油藏和减轻地层压力而必须实施的泄压作业或为封堵溢油源实施的钻井作业,应抓紧制定可行有效的方案并经合作方中国海洋石油总公司认可,主动接受中国海洋石油总公司的严格监管,确认作业确有必要并保证不再发生新的溢油和其他环境风险。同时将泄压作业等有关处置的方案向社会及时公布,接受公众的监督。五、有关事故处置工作进展的信息,应当在第一时间向国家海洋行政主管部门报告,同时及时向社会公布,接受公众监督。 此外,作业者必须重新修订蓬莱19-3油田总体开发方案,报有关部门批准后方可解除“三停”。海洋局将代表国家进行生态索赔与此同时,针对蓬莱19-3油田溢油事故造成的海洋生态环境损害,根据《海洋环境保护法》关于海洋生态索赔的规定,国家海洋局将代表国家对康菲公司提出生态索赔。目前,相关工作正在进行中。http://www.qq.com/favicon.ico

  • 气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    气相色谱仪流量控制原理与维护 —— 手工流量控制系统和电子流量控制系统

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]手工流量控制系统和电子流量控制系统[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体]稳定可靠、精确度良好的气体流量(压力)控制对于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析结果的准确性和可靠性而言至关重要。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]工作时需要稳定可靠、精确度良好的气体流量(压力)控制,包括载气、检测器气体和其他辅助气体流量控制,以获得良好的保留时间和峰面积的重现性。[/font][font=宋体]目前实验室常见的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量系统,分为手工流量控制和电子流量控制两种形式,在实际使用场合下各有其优劣。电子流量控制因其高精度、高重复性、易用性、可编程等特性,在现代的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]气体控制系统中的使用日益广泛。[/font][align=center][font=宋体]手工流量(压力)控制系统优势和缺点[/font][/align][font=宋体]手工流量控制系统一般由恒压阀、恒流阀、针型阀、背压阀、压力表、流量计和阻尼器等部件组成。需要通过色谱工作者手工操作,调节各种阀针旋钮,读取压力表数值和使用流量计辅助工作,以实现系统气体流量的控制。[/font][font=宋体]手工流量控制系统的优势:制造成本较低,工作可靠性较好,对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]实验室环境要求不高、维护和维修成本较低、系统抗污染能力较强,可以在无电源状态下工作。[/font][font=宋体]手工流量控制系统使用的各种阀,机械结构较为坚固,色谱工作者只需要保证气源清洁干净,阀本身不容易损坏。装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量部分的常见故障往往与气源不良有关,例如气源中含有水、固体颗粒物或油污等。[/font][font=宋体]实验室空[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]量较差、灰尘严重或者存在一定腐蚀性气体时,对于手工流量控制系统的影响不大。[/font][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口连接的针型阀或者背压阀,可能有样品流过内部,如果维护不足,可能会造成污染。采用手工流量控制方式的仪器,针型阀或背压阀的清洗维护方法较为简单,如果需要更换,维修成本也比较低。[/font][font=宋体][font=宋体]某些意外情况下例如实验室意外断电时,装备有手工流量控制系统的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]载气并不会停止工作,可以保护色谱柱和检测器,例如[/font][font=Times New Roman]ECD[/font][font=宋体]、[/font][font=Times New Roman]TCD[/font][font=宋体]、强极性色谱柱。但是需要注意[/font][font=Times New Roman]FID[/font][font=宋体]、[/font][font=Times New Roman]FPD[/font][font=宋体]火焰的问题,如果意外断电情况下,检测器容易发生积水问题,会造成检测器内部发生锈蚀或者损坏喷嘴等后果。[/font][/font][font=宋体]手工流量控制系统的缺陷:[/font][font=宋体][font=宋体]一、[/font] [font=宋体]重现性差,调控精度低[/font][/font][font=宋体] [font=宋体]手工流量控制系统使用的机械部件控制精度较低,并且由于螺杆调节存在间隙、机械磨损、弹性元件疲劳等问题,该系统难以获得良好的重复性,面临复杂样品或复杂分析系统,手工流量控制系统往往难以应对。机械阀调节联合压力表指示的调控方式也难以实现较高的调节精度。[/font][/font][font=宋体][font=宋体]例如精密多阀多柱分析系统、反吹系统、中心切割分析系统、[/font][font=Times New Roman]PONA[/font][font=宋体]分析等,这些系统要求保留时间的重复性较高,往往要求[/font][font=Times New Roman]0.01min[/font][font=宋体]范围的偏差,这些情况下手工流量控制器难以达到要求。[/font][/font][font=宋体][font=Times New Roman]1.1 [/font][font=宋体]螺纹间隙造成调节问题。[/font][/font][font=宋体][font=宋体]机械阀一般采用螺杆的方式实现阀调节,但是由于螺纹存在间隙将会造成调节问题,如图[/font][font=Times New Roman]1[/font][font=宋体]所示,螺杆顺时针旋转和逆时针旋转到相同角度时,螺杆在左右方向上移动距离存在一定程度的偏差。[/font][/font][font=宋体]色谱工作者旋转阀旋钮时需要注意操作手法,尽量减弱此现象造成的调节偏差。以带有刻度盘的稳流阀为例,建议规定阀旋钮的操作方向,例如逆时针。如果当前刻度低于设定值,可以直接逆时针旋转至设定刻度;如果当前刻度高于设定值,需要顺时针旋转至旋钮刻度低于设定值,然后再逆时针旋转旋钮。[/font][align=center][img=,424,165]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434357590_9342_1604036_3.jpg!w690x269.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]螺杆转动存在间隙问题[/font][/font][/align][font=宋体][font=Times New Roman]1.2 [/font][font=宋体]机械部件磨损[/font][/font][font=宋体]阀部件由于机械运动,总是不可避免的存在磨损问题,造成调节偏差。[/font][font=宋体][font=Times New Roman]1.3 [/font][font=宋体]弹性元件的机械变形或疲劳[/font][/font][font=宋体]压力表和机械阀中存在弹簧管或弹性膜之类的弹性元件,长期受压使用后会发生机械变形,造成弹性变化,最终造成偏差。[/font][align=center][img=,268,190]https://ng1.17img.cn/bbsfiles/images/2022/11/202211161434421573_5012_1604036_3.jpg!w615x435.jpg[/img][font='Times New Roman'] [/font][/align][font=宋体]一般情况下,仪器停机之后,需要将机械阀调节至关机状态,有些气路中安装有泄压阀以保护压力表和调节阀。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]配套的气源钢瓶,分析结束关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统之后,建议将所有压力表泄压为零,并关闭减压阀。[/font][font=宋体]二、 [/font][font=宋体]调节不方便、调节速度慢。[/font][font=宋体]流量或压力的修改,靠色谱工作者手工操作完成,最终的精度和稳定性与操作习惯相关。如果某台[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]需要开展多个分析项目,需要修改不同分析条件时,流量的调节比较费时费力。[/font][font=宋体]机械阀旋钮的调节位置一般不能与输出压力或流量直接相关,某些机械阀设计有刻度盘,但是不能彻底解决问题,调节螺杆注意手法。[/font][font=宋体]恒流阀的调节惯性较大,调节速度较慢。[/font][font=宋体]三、体积笨重[/font][font=宋体]各种阀一般不能单独工作,稳压阀和背压阀一般需要压力表协助工作,稳流阀、针型阀一般需要流量计辅助工作,才可以保证调节的准确性。调节和显示部件较多,手工流量控制系统体积较大,系统较笨重。[/font][font=宋体]三、 [/font][font=宋体]无法编程工作[/font][font=宋体]手工流量控制系统难以实现程序升压(程序升流)或程序降压(程序降流)功能。[/font][font=宋体] [/font][align=center][font=宋体]电子流量控制系统的优势的缺陷[/font][/align][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]电子流量控制系统一般由比例电磁阀,电子压力传感器、电子流量传感器,控制线路和阻尼器等部件组成,基于传感器和计算机技术,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]中央处理器([/font][font=Times New Roman]CPU[/font][font=宋体])的程序控制下协同工作,实现高精度的流量(压力)控制,现代[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]装备有高精度电子流量控制器是总体发展趋势。[/font][/font][font=宋体]电子流量控制系统的优势:可以编程控制,调节方便快速,精度和重现性好。[/font][font=宋体][font=Times New Roman]1 [/font][font=宋体]重现性好[/font][/font][font=宋体][font=宋体]随着现代电子技术和计算机技术的发展,采用电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以达到较高的保留时间和峰面积重复性性能,高端的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]保留时间重复性指标一般[/font][font=Times New Roman]RSD[/font][font=宋体]小于[/font][font=Times New Roman]0.01%[/font][font=宋体],峰面积相对标准偏差一般小于[/font][font=Times New Roman]1%[/font][font=宋体],并且可以长期稳定运行。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统重新开关机,无需校准和调节也可以达到开关机之前的稳定状态。[/font][/font][font=宋体][font=Times New Roman]2 [/font][font=宋体]调节精度高[/font][/font][font=宋体][font=宋体]以进样口为例,现代的高端[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]可以实现[/font][font=Times New Roman]0.01kPa[/font][font=宋体]的压力或[/font][font=Times New Roman]0.01ml/min[/font][font=宋体]的流量控制精度。[/font][/font][font=宋体][font=Times New Roman]3 [/font][font=宋体]调节方便、速度快[/font][/font][font=宋体]色谱工作者可以简单的在色谱数据工作站输入目标流量和压力,电子流量控制器可以在数秒的时间范围内完成调节。[/font][font=宋体][font=Times New Roman]4 [/font][font=宋体]体积小,重量轻[/font][/font][font=宋体][font=宋体]电子流量控制器([/font][font=Times New Roman]EPC[/font][font=宋体]、[/font][font=Times New Roman]AFC[/font][font=宋体]或者[/font][font=Times New Roman]EFC[/font][font=宋体])是现代机械、电子计算机技术的结晶,所有的流量控制部件可以集成在在几十[/font][font=Times New Roman]cm[/font][font=宋体]见方,重量不超过[/font][font=Times New Roman]1kg[/font][font=宋体]的模块中。[/font][/font][font=宋体][font=Times New Roman]5 [/font][font=宋体]可以编程[/font][/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以方便的实现程序升压(程序升流)、程序降压(程序降流)或者定时开关等复杂气流控制功能。[/font][font=宋体]电子流量控制器的缺陷:制造成本高,实验室环境要求高,维护和维修成本高,必须在有电源的状态下工作,需要经常校准。[/font][font=宋体]装备有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]对气源要求较高。一旦发生气源不良问题,例如气源含水、固体颗粒物或油污,会造成电子流量控制器输出流量发生错误,甚至造成流量控制器损坏。实验室湿度较大,存在较多灰尘、有机蒸汽或者腐蚀性气体都可能会对电子流量控制器造成不良影响。[/font][font=宋体]安装于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]分流出口的电子流量控制器对[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的维护有更高的要求,如果样品沸点较高并且浓度较大,分流出口捕集阱需要加强维护,否则可能造成电子流量控制器的污染或者损坏。该类型的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]总体维护和维修的成本较高。[/font][font=宋体]由于电子元器件的特性,某些压力或流量传感器会发生电气性能变化,造成输出流量或压力的不正确,需要经常进行校准。[/font][align=center][font=宋体]小结[/font][/align][font=宋体]综述手工流量控制系统和电子流量控制系统的优势和缺陷。[/font]

  • 质量控制的含义及意义?

    质量控制是质量管理的一部分,致力于满足质量要求。目的在于监视过程并取得准确可靠的数据和结果。质量控制包括质量控制程序和质量控制计划。质量控制的意义、程序及人员分工是什么?

  • 岛津多道荧光光谱仪控样的控制范围

    岛津多道荧光光谱仪控样的控制范围是怎么来的呀?定值可以从化学法得到,控制范围软件说明书没有提到呀!控样的校正系数应该是分析控样后自动得到的吧?高手指点下吧?

  • 实验室温度控制问答的翻译

    我觉得慢慢读英文的过程也是慢慢理解这些问题的过程,再说让我改成中文难免会有些歪曲一部分理论。不过既然大家都要求,我也就花点时间翻译一下,直接翻译了,有些语句不顺或者拗口的地方请大家提出来我再做详细解释。先翻译了前一部分,我一有时间就会在这个帖上继续翻译的。整个的内容也在这个版的实验室温度控制常见问题那个帖中,大家也可以看看那个帖。有疑问的再提,我们再讨论:)1.什么是工作温度范围工作温度范围是指在没有外界制冷的情况下温度控制器自己所能达到的温度范围。这个温度限一般为20度的外界温度.2.什么是运行温度范围运行温度范围是被控制电信号限制的温度范围。举例来说,加热控制器的工作温度范围可以通过各种方式在操作温度范围中缩小。3.什么是温度稳定性温度稳定性就是在温度浴槽一个精确测量点上多次测量温度的差值。4.什么是温度均匀性?温度均匀性就是在温度浴槽中多个测量点上温度的差值。这对温度的校准特别重要。对JULABO温度循环器而言温度均匀性和稳定性只有微小的不同。其中黏度浴槽和温度专用校准槽提供了最好的温度均匀性。5.JULABO在显示方面有什么特点和优势?JULABO的显示屏在远距离和各个角度都能非常清晰的进行数据显示。多行LED显示屏不仅显示实际和设定温度,而且能显示最高和最低报警温度以及安全断电温度。另外,多行LED显示屏还可以显示电子控制水泵的泵压奇数以及振荡水浴的震荡频率。6.JULABO高端产品以高亮度VFD温度显示为其显示特色这种显示技术目的是为了提高显示亮度,清晰度和对比度和更简便的操作支持。它可以同时显示出浴槽内实际温度,设定温度和外循环实际温度,而且还可以显示出用户选择的泵压级别。7.JULABO什么型号的仪器可以提供交互式操作支持?JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器可以提供LED/LCD多重显示面板。除了显示实际和设定温度外,还可显示众多的系统参数。例如循环控制方式(外循环或者内循环)。加热和制冷功率以及外循环设定温度等。8.PID和ICC温度控制技术有什么不同?JULABO PID1 PID2 PID3控制技术有固定的XP TV TN参数。有时为了提高外循环控制的温度稳定性,这些参数在PID2 和PID3控制技术下可以手动更改。ICC是世界上最先进和绝对唯一的温度控制技术,它可以根据温度控制的具体需要自动更改和优化XP TV TN 参数,以获得最好的温度稳定性在上面提到过的高JULABO的 'HighTech' 系列, 快速动态温度系统 'Presto' and高温控制系统 'Forte HT'以及 LC6 程序控制器中运用了这个先进的技术。9.TCF(特色温度控制技术)提供了什么优势?内外差极限:当仪器进行外部温度控制时,这个功能允许客户任意设定浴槽温度和外循环温度的最大差值。这样做可以保护温度控制设备,也可以保护整个反应釜中的玻璃设备,防止冷热变化引起的破裂。Dynamics:这个功能允许客户在内部温度控制时进行aperiodic和normal PID behavior中转换Aperiodic:从实际温度达到设定温度的精确度特别高,但可能因为要避免温度的过冲而花费较长的时间。normal PID behavior:能在很快的时间中到达设定温度,但可能因升温速度快而在达到设定温度时有一定的温度过冲。极限设定:在进行外部温度控制时可以设定控制浴槽内的最高和最低极限温度,控制器在工作过程中是不允许超过这个设定极限的。Co-speed factor:和Aperiodic一样,它也可以控制达到设定温度时的温度过冲现象,唯一的不同在于它的设定是在仪器进行外部温度控制时进行的。10.JULABO水泵的主要功能在Economy‘ and ‘TopTech‘ 系列中,水泵是无机械磨损和热磨损的设计,它主要是用来为浴槽内循环和一些小型的封闭体系的水循环提供动力。在MC, ME and ‘Presto‘中,水泵的泵压级别可以调节在HighTech‘系列中,所有的泵都有加压和抽吸两种模式,它可以达到设定的压力,抽吸力和流速来完成对外循环或者封闭体系的水循环。在外接各种反映釜时,它可以被调节到合适的压力,从而避免由于意外压力对反映釜体系造成的损伤

  • 采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    采用串级PID控制法实现注塑工艺高压压力精密控制的解决方案

    [color=#990000]摘要:针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文介绍了相应的解决方案,解决方案的核心技术是采用串级PID控制方法。方案一是基于现有精度较差的高压电气比例阀,通过外置高精度的压力传感器和压力调节器来提高压力控制稳定性;方案二是采用高精度的低压电气比例阀驱动背压阀来实现高压压力精密控制;方案三是在方案二基础上增加外置高精度的压力传感器和压力调节器来进一步提高压力控制稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~[/color][/align][size=18px][color=#990000][b]一、背景介绍[/b][/color][/size]作为一种先进的注塑成型方法,气体压力控制技术被逐步应用于塑料制品的成型,以解决常规注塑产品存在的尺寸精度差、表面凹痕及翘曲变形等缺陷,从而提高产品质量。在以往注塑成型工艺的气体压力控制中,普遍采用高压电气比例阀,但存在压力恒定控制稳定性较差的问题。最近有客户针对细管注塑成型提出了高精度气体压力控制要求,具体如下:(1)气体压力控制范围:1~3MPa。(2)控制方式:在任意设定压力点处进行长时间恒压控制。(3)长期压力稳定性:优于±1%。针对高压电气比例阀压力控制精度较差的问题,特别是为了满足客户在超长管件注塑过程中提出的±1%压力控制稳定性要求,本文将详细介绍相应的解决方案。[size=18px][color=#990000][b]二、高压压力精密控制解决方案[/b][/color][/size][size=18px][color=#990000]2.1 外置压力传感器和调节器的串级控制法[/color][/size]目前注塑工艺中所采用的高压电气比例阀为SMC ITVX2030,压力控制范围为0.01~3MPa,能够满足指标要求,但控制精度较差,为±3%FC。为了提高压力控制精度,方案之一是采用串级控制法,即通过外置高精度的压力传感器和压力控制器构成主控回路,由高压比例阀构成辅助回路。由此,通过这种两个串级PID控制回路,充分利用串级控制法具有高精度的特点,来实现高压压力的高精度稳定控制。此方案的结构布局如图1所示。[align=center][img=外置压力传感器和调节器的串级控制法示意图,500,308]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282250456396_1585_3221506_3.png!w690x426.jpg[/img][/align][align=center]图1 外置压力传感器和调节器的串级控制法示意图[/align][size=18px][color=#990000]2.2 低压电气比例阀驱动高压背压阀[/color][/size]高压压力控制常用的另外一种控制方式是压力放大技术,即采用工作压力较低但精度较高的电气比例阀作为先导阀,驱动一个可工作在高压条件下的背压阀(或气动减压阀),其整体结构如图2所示。[align=center][img=低压电气比例阀驱动高压背压阀示意图,550,202]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282248571168_9189_3221506_3.png!w690x254.jpg[/img][/align][align=center]图2 低压电气比例阀驱动高压背压阀示意图[/align]这里的背压阀相当于一个线性压力放大器,其放大倍数则是实际工艺压力除以比例阀工作压力。由此,可通过调节电气比例阀的驱动压力来控制背压阀的压力输出。如图2所示,这种背压阀高压压力控制方法是一种典型的开环控制,尽管背压阀是对比例阀的输出压力进行线性放大,但其线性度一般较差,这主要是受电气比例阀和背压阀的自身线性度影响。因此,为了实现高精度的压力控制,还需对此方案进行改进以形成闭环控制回路。[size=18px][color=#990000]2.3 高压背压阀串级控制法[/color][/size]为了解决上述比例阀作为先导阀驱动背压阀进行高压压力控制过程中存在的线性度和控制精度较差的问题,可以引入串级控制法,即在图2所示的控制系统中接入一个较高精度的压力传感器和PID控制器,如图3所示,由此对高压管件的压力控制形成一个闭环控制。[align=center][img=高压背压阀串级控制系统结构示意图,600,306]https://ng1.17img.cn/bbsfiles/images/2022/09/202209282249303319_6557_3221506_3.png!w690x353.jpg[/img][/align][align=center]图3 高压背压阀串级控制系统结构示意图[/align]在图3所示的串级控制法高压压力控制装置中,安装了一个外接压力传感器用于直接监测背压阀的输出压力,压力传感器检测到的压力信号传输给外置的PID控制器,外置PID控制器根据设定值或设定程序采用PID算法进行计算后将控制信号传送给电气比例阀,比例阀根据此控制信号再经其内部PID控制器来调节先导压力输出,从而使得背压阀的输出压力快速接近压力设定值并始终保持一致。[size=18px][color=#990000][b]三、总结[/b][/color][/size]从上述的高压压力控制方案中可以看出,所采用的串级控制是一个双控制回路,具有两个独立的PID控制回路。串级控制法(也称级联控制法)是一种有效提升控制精度的传统方法,但在具体实施过程中,需要满足的条件是:主控回路的压力传感器和PID控制器(这里是外置压力传感器和PID控制器)精度一般要比辅助回路的传感器(这里是电气比例阀内置的压力传感器和PID控制器)要高。因此,为了实现±1%以上精度的高压压力控制,我们推荐的配套方案是采用0.1%精度的外置压力传感器和超高精度PID控制器(技术指标为24位ADC、16位DAC和双浮点运算的0.01%最小输出百分比)。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 油田回注水监测参数如何选择

    油田回注水监测参数如何选择

    [b]回注水产生原因:[/b]油田投入开发后,随着开采时间的增长,油层本身能量将不断地被消耗,致使油层压力不断地下降,地下原油大量脱气,粘度增加,油井产量大大减少,甚至会停喷停产,造成地下残留大量死油采不出来。为了弥补原油采出后所造成的地下亏空,保持或提高油层压力,实现油田高产稳产,并获得较高的采收率,必须对油田进行注水。注水采油是国内外油气田普遍采用以提高采收率的主要措施。对油田进行注水,可弥补原油采出后所造成的地下亏空,保持或提高油层压力。随着开采时间的不断延长,采出油的含水量也越来越大60%-80%,有时甚至高达90%,采出水是回注水的主要水源。[b]采出水水质特点:总体特点:[/b]含油量高、矿物化严重、难以降解的复杂有机物、大量悬浮物、细菌污染指油层采出水。一般偏碱性,硬度较低,含铁少,矿化度高。含油污水必须经过水质处理后才能回注地下油层或外排。由于这部分水随着油田注水开发时间增长,采出水量不断增多,已成为油田注水的主要水源。[b]油田生产对注水水质的要求:[/b][align=center]表1 推荐水质主要控制指标(SY/T5329—1994)[/align] [table][tr][td=2,1] [align=center]注入层平均空气渗透率,μm[sup]2[/sup][/align] [/td][td=3,1] [align=center]0.6[/align] [/td][/tr][tr][td=2,1] [align=center]标准分级[/align] [/td][td] [align=center]A1[/align] [/td][td] [align=center]A2[/align] [/td][td] [align=center]A3[/align] [/td][td] [align=center]B1[/align] [/td][td] [align=center]B2[/align] [/td][td] [align=center]B3[/align] [/td][td] [align=center]C1[/align] [/td][td] [align=center]C2[/align] [/td][td] [align=center]C3[/align] [/td][/tr][tr][td=1,8] [align=center]控制指标[/align] [/td][td] [align=center]悬浮固体量,mg/L[/align] [/td][td] [align=center]0.1 K≤0.1[/align] [/td][/tr][tr][td] [align=center]总铁 mg/L[/align] [/td][td] [align=center]0. 6 K≤5.0[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]污染水[/align] [align=center]K≤10.0[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]-[/align] [/td][/tr][tr][td=1,3] [align=center]悬浮固体[/align] [align=center]直径mg/L[/align] [/td][td] [align=center]K≤0.1[/align] [align=center]K≤2.0 p≥80%[/align] [/td][td] [align=center]K≤0.2[/align] [align=center]K≤2.0 p≥80%[/align] [/td][td] [align=center] [/align] [/td][td=1,3] [align=center]≤5.0[/align] [align=center]p≥70%[/align] [/td][td=1,3] [align=center]≤5.0[/align] [align=center]p≥70%[/align] [/td][td=1,3] [align=center]-[/align] [/td][/tr][tr][td] [align=center]K=0.1~0.6[/align] [align=center]K≤3.0 p≥80%[/align] [/td][td] [align=center]K0.2[/align] [align=center]K≤2.0 p≥90%[/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td] [align=center]K0.6 K≤2.0 [/align] [align=center]p≥80%[/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][tr][td=1,2] [align=center]溶解氧[/align] [align=center]mg/L[/align] [/td][td] [align=center]总矿化度5000mg/L[/align] [align=center]≤0.05[/align] [/td][td] [align=center]密闭流程≤0.05[/align] [/td][td] [align=center]总矿化度1000mg/L ≤0.05[/align] [/td][td] [align=center]含油污水≤0.5[/align] [/td][td=1,2] [align=center]≤0.05[/align] [/td][td=1,2] [align=center]≤0.05[/align] [/td][/tr][tr][td] [align=center]总矿化度5000mg/L[/align] [align=center]≤0.05[/align] [/td][td] [align=center]开式流程≤0. 5[/align] [/td][td] [align=center]总矿化度1000mg/ ≤0.05[/align] [/td][td] [align=center]其他水≤0.05[/align] [/td][/tr][tr][td] [align=center]硫化物mg/L[/align] [/td][td] [align=center]≤10[/align] [/td][td] [align=center]≤14[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]≤50[/align] [/td][td] [align=center]≤50[/align] [/td][td] [align=center]≤5[/align] [/td][/tr][tr][td] [align=center]游离二氧化碳mg/L[/align] [/td][td] [align=center]≤10[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]-[/align] [/td][td] [align=center]≤30[/align] [/td][/tr][tr][td=1,3] [align=center]细菌总数[/align] [align=center]个/mL[/align] [/td][td] [align=center]K0.2 0.6 K0.6,20[/align] [/td][/tr][tr][td] [align=center]K=0.1~0.6 K≥15[/align] [/td][/tr][tr][td] [align=center]K0.6 K10[/align] [/td][/tr][/table][color=red][/color]

  • 电子流量控制装置的控制模式

    在上一节的内容中,我们介绍了[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]使用的电子流量控制装置的组成和简单原理。对于仪器的气路控制系统而言,使用机械阀进行流量/压力控制的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器,其使用的控制阀的类型主要是稳流阀、稳压阀、背压阀和针型阀等;对于电子流量控制装置而言,并没有与上述几种机械阀一一对应的结构,可以近似的说是利用同一套部件组成的装置采用不同的控制方式/算法而分别实现各种机械阀的功能。我们将电子流量控制装置分别实现各种机械阀的功能的过程称之为电子流量控制装置的不同的控制模式。本节中将介绍电子流量控制装置常见的控制模式。本篇为《从气源到检测器》专题的第23篇,为《电子流量控制与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]》系列的第2篇。1 概述电子流量控制装置一般包括气路部件、比例阀、压力传感器/流量传感器和辅助部件以及控制电路。以单气路通道的结构为例,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7b/91/97b91fc3c4cba5c6c10c77f71cfa877e.png[/img]2 电子流量控制装置常见的控制模式电子流量控制装置常见的控制模式主要包括三种,即流量模式、压力模式和背压模式,可以简单地对应稳流阀、稳压阀和背压阀。2.1 流量模式流量模式可以简单地认为是采用 流量传感器-控制电路-比例阀 来进行流量调节和控制的模式。通过比较仪器流量设定值和流量传感器的测定值来调节比例阀开度的大小,从而使实际流量达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/58/ad/c58ad91f72c9b9274cba998de8ed6d95.png[/img]流量模式的控制类似于稳流阀(请注意是类似但不等同),可以保证出口的流量在出口之后阻力发生变化情况下保持稳定。填充柱进样口的载气控制一般使用流量控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用流量控制模式,简单的示意图如下(没有安装压力传感器):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/56/ff/956ffb3ec7784d65bf857e77728c56a4.png[/img]当然,流量模式并不只是恒定流量模式;也可以实现程序流量模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/66/92a66118e06b902e02e9b1b54718f1d8.png[/img]通过仪器设置,可以设定仪器的初始流量,最终流量和变化速率等。2.2 压力模式压力模式可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/2a/8d/02a8d7b2816440648820a2f35fb572d5.png[/img]压力模式的控制类似于稳压阀(请注意是类似但不等同),可以保证出口的压力在出口之后阻力发生变化情况下保持稳定。[color=#ff4c00]需要特别说明的是[/color],使用压力控制模式,如果要保证出口处压力控制稳定,出口之后应当安装有气阻或者起到气阻作用的色谱柱等以形成压降填充柱进样口的载气控制也可以使用压力控制模式;另外,一些厂家检测器的氢气、空气和尾吹气也是用压力控制模式,简单的示意图如下(没有安装流量传感器,请注意图中气阻的位置和作用):[img]https://img.antpedia.com/instrument-library/attachments/wxpic/ac/74/cac743d48184d1389f5d0d850ea93fd9.png[/img]同样,压力模式并不只是恒定压力模式;也可以实现程序压力模式,见下图:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d4/60/bd460ab2ae094167ec51a6e9900b1f4f.png[/img]通过仪器设置,可以设定仪器的初始压力,最终压力和变化速率等。2.3 背压模式背压模式和压力模式类似,可以简单地认为是采用 压力传感器-控制电路-比例阀 来进行压力调节和控制的模式。通过比较仪器压力设定值和压力传感器的测定值来调节比例阀开度的大小,从而使实际压力达到设定值。区别在于背压模式比例阀在压力传感器之后,压力模式比例阀在压力传感器之前。[img]https://img.antpedia.com/instrument-library/attachments/wxpic/d3/7f/6d37f6454b1185a463e42057d8e04ed7.png[/img]背压模式的控制类似于背压阀(请注意是类似但不等同),可以保证比例阀前的压力在入口压力发生变化情况下保持稳定。背压模式可以用于毛细柱进样口柱前压的调节、阀进样时样品源的稳压控制等。可以参考下图的应用:[img]https://img.antpedia.com/instrument-library/attachments/wxpic/7a/33/37a336a54df9a1c56eb8ce2a3f9ab4fd.png[/img]上图所示,描述了六通阀在进样时候使用电子流量装置的背压模式,保证样品源压力波动时,气体采样阀可以在稳定压力下进样,从而提高了样品量的重现性。以上是本节的全部内容,对于电子流量控制装置常见的三种控制模式——流量模式、压力模式和背压模式而言,多数情况下只使用其中的一种模式,如填充柱进样口的流量和压力控制,检测器的燃气(氢气)、助燃气(空气)和尾吹气(氮气)的流量和控制。对于毛细柱进样口的流量和压力控制则较为复杂一些,是多种模式结合在一起。我们将在后续的文章中进行介绍,敬请关注

  • 气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    气相色谱仪流量控制原理与维护 —— 压力控制模式与流量控制模式

    [align=center][font='Times New Roman'][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]流量控制原理与维护[/font] [font=Times New Roman]—— [/font][/font][font=宋体]压力控制模式与流量控制模式[/font][/align][align=center][font='Times New Roman'] [/font][/align][align=center][font='Times New Roman'][font=宋体]概述[/font][/font][/align][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统的载气和辅助气体所采用的流量控制方式主要分为压力控制和流量控制模式(线速度控制模式可以认为是一种特殊的流量控制模式,线速度本质上与色谱柱流量相同),在色谱分析系统的具体应用场合中各自有其优势,下文对两种控制方式的特点予以说明。[/font][align=center][font=宋体]简介[/font][/align][align=center][font=宋体]恒压力控制模式[/font][/align][font=宋体][font=宋体]压力控制模式或称之为恒压控制模式,即在整个分析过程中保持供气压力不变,常用于进样口载气控制,如图[/font][font=Times New Roman]1[/font][font=宋体]所示。[/font][/font][align=center][img=,286,187]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740208012_3978_1604036_3.jpg!w690x450.jpg[/img][font='Times New Roman'] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]1 [/font][font=宋体]恒压控制方式的进样口结构[/font][/font][/align][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒压阀或者电子压力传感器用以实现恒压力控制模式,进样口系统采用开环方式进行控制,系统惯性较小。[/font][font=宋体]当色谱工作者进行液体进样时,由于样品受热发生瞬间气化,样品体积迅速增加,可能会影响进样口压力(流量)的稳定;采用气体进样(包括阀进样、热解析进样、顶空进样等进样器)时,由于进样过程中载气流路发生较短时间的阻断,也可能会影响进样口压力(流量)的稳定。可能会干扰色谱图基线,造成色谱分析重复性问题或者产生定量问题。[/font][font=宋体]进样口采用恒压模式控制时,由于进样导致的压力(流量)扰动发生之后,再次恢复原始状态所需的平衡时间较短,并且压力(流量)扰动的程度也比较弱。但是如果进样口发生轻微漏气,由于系统开环控制的原因,进样口不能自动识别轻微漏气问题。此时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]系统的分流比将变化,色谱分析灵敏度降低,长期工作下,由于空气的渗入色谱柱可能发生损坏。[/font][font=宋体]即使采用电子流量控制器(可以自动识别程度较严重的进样口漏气),在一定的泄漏程度范围之内,也同样存在此问题。[/font][align=center][font=宋体]进样阀导致气路的瞬间阻断[/font][/align][align=center][font='Times New Roman'] [/font][/align][font=宋体][font=宋体]气体进样经常采用六通阀进行,六通阀有带有三个刻槽转子和带有气路通孔的定子组成,以平面型六通阀为例,其结构如图[/font][font=Times New Roman]2[/font][font=宋体]所示,[/font][/font][align=center][img=,195,127]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740300223_2270_1604036_3.jpg!w690x450.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2 [/font][font=宋体]六通阀结构[/font][/font][/align][font=宋体][font=宋体]六通阀一般工作于[/font][font=Times New Roman]Load[/font][font=宋体]和[/font][font=Times New Roman]inject[/font][font=宋体]两个状态其工作位置,如图[/font][font=Times New Roman]3[/font][font=宋体]所示。在两个位置下,载气都可以畅通的流过阀系统。[/font][/font][align=center][img=,296,112]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740396160_8660_1604036_3.jpg!w690x260.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]3 [/font][font=宋体]六通阀的工作状态[/font][/font][/align][font=宋体][font=宋体]六通阀的转子旋转[/font][font=Times New Roman]60[/font][font=宋体]°,完成位置的转换(一般情况下即完成进样),但是需要注意转子旋转需要一定的时间,在转子旋转过程中的某些时间范围内,气路发生阻断现象,如图[/font][font=Times New Roman]4[/font][font=宋体]所示。例如转子旋转[/font][font=Times New Roman]30[/font][font=宋体]°时,载气在进样阀之前积累,气路压力升高,当转子旋转到[/font][font=Times New Roman]60[/font][font=宋体]°之后,较高的压力通过阀通道进入进样口,造成压力扰动。[/font][/font][align=center][img=,189,101]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740464564_753_1604036_3.jpg!w690x369.jpg[/img][font=宋体] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]4 [/font][font=宋体]气路阻断状态[/font][/font][/align][align=center][font=宋体]恒流量控制模式[/font][/align][font=宋体][font=宋体]通常情况下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统使用恒流阀阀或者电子压力传感器用以实现恒流量控制模式,进样口系统采用闭环方式进行控制,系统惯性较大,进样口流量结构如图[/font][font=Times New Roman]5[/font][font=宋体]所示。[/font][/font][align=center][img=,417,236]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091740530012_9952_1604036_3.jpg!w690x390.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]5 [/font][font=宋体]恒流方式的进样口结构图[/font][/font][/align][font=宋体]采用恒流量方式控制的进样口(填充柱进样口较为常见),流量控制惯性相对较大,流量调节速度较慢。如果进样口发生微漏问题时,某些情况下(例如采用填充柱的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统)会导致进样口压力的变化,从而影响色谱峰的保留时间,使得色谱工作者可以及时发现故障并进行处理。[/font][font=宋体][font=宋体]某些型号的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]也支持进样口的恒线速度控制方式,该方式可以认为是特殊的流量控制方式[/font][font=宋体]——本质上讲线速度和柱流量是相同的概念。但是恒线速度方式,不可以通过机械阀实现,只可以通过电子流量控制器的压力程序来实现。[/font][/font][font=宋体]线速度可以认为是色谱柱平均流速的表示方法,采用线速度控制方式更加容易使分析条件符合范德蒙特方式曲线,容易实现稳定和高效的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析,获得较短的分析时间和较高的理论塔板数。使用较宽温度范围程序升温的分析条件时,建议选择恒线速度方式控制进样口流量。[/font][font=宋体]安装有电子流量控制器的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url],可以通过计算和调节进样口压力程序的方法,实现进样口的恒压力、恒流量或恒线速度控制。[/font][align=center][font=宋体]阀系统控制恒压与恒流的区别[/font][/align][font=宋体][font=宋体]某些复杂的分析场合下,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]会安装有较多进样和切换阀,用来实现进样和色谱柱的选择调控。阀系统的重要特点是色谱系统阻尼的时变和瞬变[/font][font=宋体]——在色谱分析过程中,色谱系统的阻尼(一般来自色谱柱)会发生随时间的缓慢变化和切换时间点上的阻尼瞬间变化。安装有阀的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]系统,经常会观察到“不稳定”的基线,例如在某个确定的时间点上,会发生确定的基线跳跃、尖刺、负峰等信号。[/font][/font][font=宋体][font=宋体]色谱系统在恒压工作模式下,系统流量在阀切换之后恢复速度较快。但是需要做阻尼匹配,如图[/font][font=Times New Roman]6[/font][font=宋体]所示。例如某系统中使用图[/font][font=Times New Roman]6[/font][font=宋体]所示的色谱柱选择阀,阀发生切换动作是,色谱柱[/font][font=Times New Roman]C[/font][font=宋体]或者阻尼[/font][font=Times New Roman]R[/font][font=宋体]将会被连接入色谱分析系统,色谱系统的阻尼将发生瞬间的变化。如果色谱柱[/font][font=Times New Roman]C[/font][font=宋体]和[/font][font=Times New Roman]R[/font][font=宋体]的阻尼差异较大,那么系统出口的流速变化也会较大,那么最终会导致基线水平的变化,最终影响色谱定量,严重情况下会导致[/font][font=Times New Roman]FID[/font][font=宋体]检测器熄灭。[/font][/font][font=宋体]阻尼匹配一般使用阻尼柱或阻尼管(细内径管路)或者针型阀,需要实验确认良好的阻尼匹配,最终获得状态良好的基线,同时系统流量恢复的时间也更短。[/font][font=宋体][font=宋体]色谱系统在恒流工作模式下,系统流量在阀切换之后恢复速度较慢,基线扰动的幅度较大,扰动的时间长度较长,但是可以省略阻尼,即图[/font][font=Times New Roman]6[/font][font=宋体]中的阻尼柱可以用空管路代替,降低色谱系统成本。[/font][/font][align=center][img=,350,175]https://ng1.17img.cn/bbsfiles/images/2022/11/202211091741006422_7415_1604036_3.jpg!w690x345.jpg[/img][font=宋体] [/font][/align][align=center][font='Times New Roman'][font=宋体]图[/font][/font][font=宋体][font=Times New Roman]6[/font][/font][font='Times New Roman'] [/font][font=宋体]阻尼匹配[/font][/align][font='Times New Roman'] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简单说明色谱系统的进样口和阀系统使用恒压力和恒流量控制模式的特性。[/font]

  • 油田用管子材质

    有熟悉油田用管子的吗?外径89X7和外径73X6是什么材质的?好像是40Cr的,我有点这样的料,谁能用上,便宜卖了。

  • 有没有精确控制负压的压力控制器

    现有一台设备,目前使用斜管压力计监控压力变化并手动调节控制旋钮使压力稳定在196Pa±2Pa,整个实验过程持续一小时,占用一个人力,欲改成自动压力控制,不知有没有合适改造方案或压力控制系统推荐?最好是国产的,进口的也行,就是预算不多。请各位专家们不吝赐教,谢谢

  • 气相色谱仪常用的控制器件——方向控制阀

    气相色谱仪常用的控制器件——方向控制阀

    [align=center][font=宋体][font=宋体][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]常用控制器件[/font][font=宋体]——方向控制阀[/font][/font][/align][align=center][font=宋体]概述[/font][/align][font=宋体]电磁阀分为单向阀、安全阀、方向控制阀、速度调节阀等种类,常用的方向控制阀有两位三通阀、两位四通阀、三位四通阀、两位五通阀等。方向控制阀又称换向阀,一般与气缸(油缸)等部件协同工作,实现对物体的旋转运动、直线运动和抓取等动作的控制。下文以气体两位五通阀为例,说明方向控制阀的工作原理。[/font][align=center][font=宋体]两位五通电磁阀的结构原理[/font][/align][font=宋体][font=宋体]图[/font][font=Calibri]1[/font][font=宋体]为两位五通阀的示意图,阀带有五个气体端口,[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]R[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]、[/font][font=Calibri]A[/font][font=宋体]和[/font][font=Calibri]B[/font][font=宋体]。其中[/font][font=Calibri]P[/font][font=宋体]为系统的气体入口,[/font][font=Calibri]R[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]为泄压端口,[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]端口一般连接执行部件的气缸。[/font][/font][align=center][img=,238,136]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122201497478_4227_1604036_3.jpg!w690x394.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]1 [/font][font=宋体]两位五通阀示意图[/font][/font][/align][font=宋体][font=宋体]两位五通阀的结构原理如图[/font][font=Calibri]2[/font][font=宋体]所示,其由带有[/font][font=Calibri]3[/font][font=宋体]组环形密封的铁芯、供电线圈、复位弹簧和五个气体输入输出端口组成,其中端口[/font][font=Calibri]P[/font][font=宋体]为气体入口。当线圈未通电时,铁芯在弹簧的作用下向右移动,端口[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]A[/font][font=宋体]连通,可以向受控部件提供压力,端口[/font][font=Calibri]B[/font][font=宋体]、[/font][font=Calibri]S[/font][font=宋体]连通,用以排放受控部件的压力。当线圈通电后,铁芯在磁力的作用下向左移动,使端口[/font][font=Calibri]P[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]连通,端口[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]R[/font][font=宋体]连通。[/font][/font][align=center][img=,260,194]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122202291356_1349_1604036_3.jpg!w642x478.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]2 [/font][font=宋体]两位五通阀的结构原理[/font][/font][/align][align=center][font=宋体]两位五通阀与气缸的连用[/font][/align][font=宋体][font=宋体]两位五通阀一般与受控部件的气动执行器(气缸)连接,通过控制阀的线圈通电和断电,来控制气缸的机械运转,最终实现受控部件的直线或者旋转运动线运动的控制,其结构原理如图[/font][font=Calibri]3[/font][font=宋体]所示。[/font][/font][align=center][img=,422,204]https://ng1.17img.cn/bbsfiles/images/2023/07/202307122202388603_1512_1604036_3.jpg!w690x334.jpg[/img][font=Calibri] [/font][/align][align=center][font=宋体][font=宋体]图[/font][font=Calibri]3 [/font][font=宋体]两位五通阀和气缸的联合控制[/font][/font][/align][font=宋体][font=宋体]两位五通阀的端口[/font][font=Calibri]A[/font][font=宋体]、[/font][font=Calibri]B[/font][font=宋体]通过管路连接至气缸的两个入口,气缸内活塞随其两端的压力差变化而发生移动。当两位五通电磁阀未通电时,具有一定压力的气体由[/font][font=Calibri]P[/font][font=宋体]端口、[/font][font=Calibri]A[/font][font=宋体]端口进入气缸左侧,气缸右侧气体由端口[/font][font=Calibri]B[/font][font=宋体]、端口[/font][font=Calibri]S[/font][font=宋体]逸出,活塞左侧压力大于右侧,活塞将向右移动。当两位五通阀的线圈通电,活塞则向左移动。[/font][/font][align=center][font=宋体]两位五通阀在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]及外设中的应用[/font][/align][font=宋体][font=宋体]复杂[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析系统一般装备有多根色谱柱,通过各种阀的动作实现色谱柱在分析过程中的流路切换,实现单根色谱柱不能完成的分离分析工作。常见的切换阀带有两位五通阀[/font][font=Calibri]-[/font][font=宋体]旋转运动型气缸结构,驱动阀芯的迅速旋转。[/font][/font][font=宋体][font=宋体]某些型号的吹扫捕集自动进样器抓取进样瓶动作、热解析进样针的升降动作、热解析进样器加热器等动作也通过两位五通阀[/font][font=Calibri]-[/font][font=宋体]直线运动型结构来实现。[/font][/font][font=宋体]这些装置采用气动结构,驱动力量较大、速度快、动作可靠、维修方便。使用中需要注意气源的清洁、气源压力适度(过高压力会造成密封问题,过低压力会造成驱动速度降低)。[/font][font=宋体] [/font][align=center][font=宋体]小结[/font][/align][font=宋体]简介两位五通阀和气动执行器的结构原理与使用特点。[/font][align=center][font=宋体] [/font][/align][font=Calibri] [/font][font=Calibri] [/font][font=Calibri] [/font]

  • 统计过程控制在测量结果质量控制中的应用

    根据ISO/IEC17025:2017《检测和校准实验室能力的通用要求》、JJF1069-2016《法定计量检定机构考核规范》和JJF1033-2017《计量标准考核规范》的要求,实验室除了按管理体系的要求进行内部审核和过程控制外,还必须运用统计过程控制的方法对测量结果的质量进行控制,即用技术手段及时发现测量结果的变异或失控。 作为测量的结果——数据,它与其他产品的质量一样具有变异性。影响变异的因素有人、机、料、法、环、测、抽、样等因素。但这种变异同样符合随机现象的统计规律。因此,可以使用统计过程控制方法对测量结果的数据进行控制。但是由于实际被测物的变动性不易掌握,为了区分由检测本身带来的变异,就必须有一种性能稳定、可靠的样品或其他物品作为核查标准,通过对核查标准长期重复的测量来监控测量过程的稳定性。 可根据休哈特控制图原理,通过作控制图来对检测质量进行控制,及时发现质量的变异,及时寻找原因采取纠正措施,使质量得到控制。

  • 质量控制计划的五大控制要求!

    第一,实验室应制订质量控制计划,对内部质量控制活动的实施内容、方式、责任人作出明确的规定 同时,对内部质量控制活动,计划中还应给出结果评价依据 质量控制计划应尽可能有代表性地覆盖实验室的检测项目、检测对象和检测人员。第二,质量控制计划经最高级别质量负责人批准后,该计划方可由技术管理员组织有关人员实施。 第三,质量控制计划中选择的质量控制方法,应与实验室所从事的检测项目类型和业务量相适应。质量控制方法通常包括以下几种:①使用有证标准物质或次级标准物质进行内部质量控制;②参加实验室间比对实验或水平测试或能力验证;③使用相同或不同的方法重复测试;④对保留样品进行留样再测;⑤同一样品不同测试项目结果的相关性分析。第四,质量管理员应组织对质量控制的结果进行评审,必要时应使用统计技术,还要将评审结果上报管理评审。比如对检测工作的有效性或检测结果的准确性持有怀疑时应找出潜在的不符合项的原因,并按照《预防措施管理程序》要求采取预防措施,最终上报管理评审。第五,实验室应当在所从事的各大类别的物理、化学、微生物等检验领域每年至少参加一次实验室间比对或能力验证。

  • 质量控制结果质量控制有什么区别

    向各位专家咨询,现在准则4.5.19质量控制,和老准则5.7结果质量控制有什么实质区别,老准则中对质量控制提出5种方法,新准则中只提到能力验证和比对,但最后提了一句“应有适当的方法”,有人认为只能用能力验证和比对的方法,其他方法不行,各位认为有道理吗? 个人认为4.5.19和原5.7没有实质区别,只不过现在表述更合理一些,原表述有结果二字,好像限制了范围,但实质应该是一样。控制方法应不限于能力验证和比对。对一些机构来说,能力验证机会几乎没有。不知理解是否正确?

  • 【讨论】sys控制器,remote和local控制

    是不是sys控制就是用工作站来控制仪器,remote是系统控制的一种具体形式,而local控制时仪器自身的控制即仪器前置面板的控制?不知这样说对不对?

  • 【资料】熊猫快报--新疆油田新建16座污水处理站创效5亿

    发布时间:2008年8月19日 在新疆油田采油一厂红浅区污水处理站,一位员工向人们展示经过处理的一杯污水,杯里的水如同矿泉水一样的清澈透明。该厂安全环保处负责人介绍说,7年间,新疆油田新建了16座工业污水处理装置,累计创造经济效益5亿元以上。 新疆油田是西北地区第一座产油上千万吨的大油田,采油过程中所产生的污水,是油田最大的污染源。10多年前,油田采出水基本不达标,到2000年采出水达标率仅为27%。 为实现石油生产与环境保护和谐发展,1997年该油田组织技术力量,对采出水处理进行大规模技术攻关,决心彻底解决这一油田环保的“顽症”。经过科研人员的不懈努力,2001年“油田采出水离子调整旋流反应污泥吸附法”处理技术研究成功,并很快推广到油田生产中。该项自主创新技术达到国内先进水平,获得国家四项专利,不仅工艺流程简单,运行稳定,还经济实用、适用范围广。 利用这一关键技术,新疆油田公司在各采油作业区,先后建成或改建16座工业污水处理站。到2007年,油田采出水达标率上升到97%,污水处理率由1997年的64.7%提高到100%。同时,外排水由2000年的1500万立方米,下降到2007年600万立方米,一多半的采出水被回注到地下后重新利用。 如今,在油田作业区周围,昔日的污水池已经消逝,经过处理的污水正流向戈壁荒滩,使之变成一片片绿洲。新疆油田每年将600万立方米的再生水,用于浇灌原玛湖古河道,现在这里已经变成了百余平方公里的芦苇区。置身于这片绿色海洋般的芦苇荡中,一派鸟鸣雁飞,芦花绽放的美丽景象。 ——信息来源:新疆日报

  • 质量控制是否可以用标准物质来控制?

    在做内部质量控制时很多是可以用标准物质来控制的,比如做耐氯水色牢度的质量控制我们可以用AATCC 162控制织物来判定,如果做日晒色牢度质量控制时我们可以用蓝色羊毛布来控制。大家有用标准物质来做控制的吗?

  • 实验室一般质量控制方式有哪些?质量控制的实施程序及有效性评审!

    [align=left][color=#0000ff][b]1、质量控制方式及计划制定、实施[/b][/color][/align][align=left][b]主要质量控制方式[/b][/align][align=left]1)外部质量控制:实验室之间的比对、能力验证、测量审核。[/align][align=left]2)内部质量控制:[/align][align=left]a)使用不同分析方法(技术)或同一型号的不同仪器对同一样品进行对比检测。[/align][align=left]b)由两个以上人员对保留样品进行对比检测。[/align][align=left]c)由同一操作人员对保留样品进行对比检测。[/align][align=left]d)在日常分析检测过程中使用的标准溶液的配置。[/align][align=left]e)用标液对仪器测试过程中进行质控。 [/align][align=left][b]质量控制计划制定和实施[/b][/align][align=left]1)实验室应在每年年底建立次年的质量控制计划,以确保并证明检测过程受控以及检测结果的准确性和可靠性,质量控制计划包括能力验证、测量审核和实验室内部比对(如:人员比对、方法比对、留样再测),计划中还应包括判定准则和出现可疑情况时应采取的措施,且覆盖申请认可或已获得认可的所有检测技术和方法。[/align][align=left]2)技术负责人指定资深人员负责编写质量控制计划,技术负责人对计划进行审核并负责组织监督质量控制计划的实施。[/align][align=left]3)技术负责人对质控资料进行统计、分析,组织对上述活动的可行性和有效性评审。[/align][align=left]4)质量监督员监督检测人员完成上级下达的样品考核任务和比对、能力验证试验,督促实施内部质量控制要求,审核比对和能力验证试验的结果。[/align][align=left]5)检测人员:完成质控活动中应承担的检测工作,认真填写检测原始记录。 [/align][align=left][color=#0000ff][b]2、质量控制方式及实施程序[/b][/color][/align][align=left][b]实验室间的比对、能力验证、测量审核[/b][/align][align=left]1)实验室认可机构组织的能力验证活动,或下达的各检测实验室间比对检测任务。对此类任务应积极参加。[/align][align=left]2)实验室间比对的执行[/align][align=left]实验室自行组织的与外部实验室之间的比对试验,由技术负责人根据本实验室的能力和外部实验室做同样参数的检测项目比对,尽可能选择相同的检测方法进行。[/align][align=left]3)项目的选择[/align][align=left]要保证3年内参与的能力验证覆盖实验室所有认可项目。[/align][align=left]实验室自行组织的比对和能力验证试验,项目由资深工程师制定并报技术主管审批,主要包括以下几方面内容:[/align][align=left]—客户投诉项目;[/align][align=left]—新开展的检测项目;[/align][align=left]—无法溯源的仪器设备检测的项目;[/align][align=left]—使用非标准检测方法的项目;[/align][align=left]—其它技术水平要求较高或有必要的检测项目。[/align][align=left]4)试验的组织[/align][align=left]明确比对和能力验证试验的任务后,联系参与比对和能力验证试验的外部实验室,安排比对和能力验证试验的时间,以及核算所需实验经费。[/align][align=left]比对和能力验证试验实施计划内容主要包括:[/align][align=left]—比对和能力验证试验的项目选择:一般优先选择通过计量认证或实验室认可的实验室参与实验室间比对和能力验证;[/align][align=left]—比对和能力验证试验的时间安排。 [/align][align=left][b]实验室间的比对、能力验证、测量审核实施程序[/b][/align][align=left]1)在计量认证/实验室认可机构或主管机构组织的比对和能力验证试验中,技术部领取样品后,将其分发给各检测人员检测。[/align][align=left]2)实验室自行组织的比对试验中,由工程师根据计划要求准备数份同样的样品,一份作为检测任务下达给本实验室分析,其它分送给参加比对和能力验证试验的外部实验室委托检测。[/align][align=left]3)比对和能力验证试验任务下达后,由技术负责人负责组织实施,每次至少安排两名检测人员参加。[/align][align=left]4)参加比对和能力验证试验的检测人员在接到检测任务后,应以严谨的科学态度开展检测工作,包括检测环境的确认,仪器设备及有关消耗品的准备,检测过程的控制和检测结果的记录等。[/align][align=left]5)检测人员完成比对和能力验证试验任务后,以书面报告形式出具结果,交技术负责人汇总评价。 [/align][align=left][b]实验室内部质量控制方式[/b][/align][align=left]开发新方法前的质量控制:在开发新方法时,需要用不含目标物质的样品和标准样品去验证经样品准备和前处理后,不会引入目标物质。 [/align][align=left][b]实验室内部比对[/b][/align][align=left]1)在筹备开展新的测试项目时,实验室组织有可能参加此项目的检测人员开展人员间比对和测试方法间比对。人员比对和方法比对的评审需先进行F检验,t检验,两种检验都合格后,方可认为合格。当结果超出要求,出现不满意时,由技术负责人组织各检测人员查找原因,予以改进。[/align][align=left]2)当某个测试项目参加人员有变动时,或作为新参加工作人员的岗前培训,实验室应及时安排人员间比对实验,根据比对结果做出评审。[/align][align=left]3)当对测试结果的准确性或可靠性有怀疑时,实验室要及时安排并充分利用现有条件进行仪器间比对和不同方法间的比对。[/align][align=left]4)检测过程中应包括空白分析、重复检测、加标测试和控制样品的分析。 [/align][align=left][b]日常检测过程中的质量监督控制[/b][/align][align=left]质量监督员不定期对测试方法进行质量控制,方法包括样品的加标回收,用RM标准进行测试控制,保留样品的重现性测试。一般回收率必须在80%-120%。若超出此范围,需要查找原因,进行整改。针对质量监控的数据,需建立控制图,以便于观察其变化趋势,并根据实际情况每两个月制作质量控制图。 [/align][align=left][b]非常规项目质量控制监督[/b][/align][align=left]应加强内部质量控制措施,必要时进行全面的分析系统,包括使用标准物质或已知被分析物浓度的控制样品,然后进行样品或加标样品重复分析,确保检测结果的可靠性和准确性。[b][/b][color=#0000ff][b][/b][/color][/align][align=left][color=#0000ff][b]3、质量控制管理的有效性评审[/b][/color][/align][color=#333333]实验室质量控制管理的有效性每年评审一次,确认其原理和理论是否正确、完整,有无缺陷,操作上是否可行,方法上能否有所改进和补充,组织过程是否完善,并用于下一年度质控工作的改进。[/color]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制