当前位置: 仪器信息网 > 行业主题 > >

源火火焰器

仪器信息网源火火焰器专题为您提供2024年最新源火火焰器价格报价、厂家品牌的相关信息, 包括源火火焰器参数、型号等,不管是国产,还是进口品牌的源火火焰器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合源火火焰器相关的耗材配件、试剂标物,还有源火火焰器相关的最新资讯、资料,以及源火火焰器相关的解决方案。

源火火焰器相关的论坛

  • 谈谈火焰模式下双保险防回火装置

    谈谈火焰模式下双保险防回火装置

    在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的火焰分析中,为了防止产生“回火”现象引起的安全问题,一般均安装有防回火的安全装置。这种装置一般有:压力传感式和火焰传感式两种。为了安全起见,一般的仪器最少也要安装其中一种。如果能将两种安全装置均安装在仪器上,则起到双保险的效果。下面结合这种双保险装置的示意图,谈谈其工作过程:[img=,625,511]https://ng1.17img.cn/bbsfiles/images/2021/04/202104270726000612_4504_1602290_3.png!w625x511.jpg[/img]根据上面示意图的防回火装置的工作过程如下:(1)在该装置中设置有两种防回火装置;左边的是压力传感器式,右侧是火焰监测器式。(2)当点火开始瞬间,乙炔气电磁阀被强制打开,乙炔开始供气;只要乙炔压力满足设计要求,该压力立即被压力传感器检测到并控制电磁阀继续维持导通供气。(3)当火焰点燃瞬间,其火焰发出的紫外线被火焰监测器(UV管)立即监测到,继而控制乙炔电磁阀继续维持导通供气。(4)当发生乙炔气压力不足时,立即会被压力传感器检测到,于是这个低气压的信息立刻反馈给乙炔电磁阀,并令其关闭而停止供气。(5)当火焰因燃气或助燃气突然中断而发生熄灭或者回火时,火焰监测器监测不到火焰发出的紫外线,从而将这一信息反馈给乙炔电磁阀令其立刻关闭停止供气。(6)从上面介绍的控制过程可以直观地看到,无论是乙炔气压力不足还是助燃气突然中断,均可以通过双保险的防回火装置得以阻断回火现象发生。(7)但是尽管是双保险,但是并不是一劳永逸的。例如:如果压力传感器触点接触不良,就会对燃气压力的变化反应不灵敏,从而延误关闭电磁阀;同理,如果火焰检测器的受光窗因潮湿结雾等原因,则火焰的紫外线的传输因受阻使信号减弱,也可造成火焰监测器反应不灵敏,延误了其防护作用。只有双保险装置处于良好状态时,才能发挥出有效的作用。

  • 火焰原子吸收测样品时异常熄火

    求教各位:我今天用火焰原子吸收测样品中镉含量时仪器异常熄火,奇怪的是,进标准和水时一切正常,放到样品中后,火焰变大,颜色是刺眼的黄色,然后熄灭并冒起一缕白雾,熄火后也能点着,但一进样品又熄灭。样品是用硝酸和高氯酸湿法处理的,请各位帮忙分析下原因。

  • 【分享】锅炉离子式火焰检测器故障排除方法

    电离式火焰监测器主要用于燃气工业燃烧器、锅炉的火焰监测。检测性能可靠,可以排除积炭、布线分布电容的影响,只对火焰敏感,对高温无反应,具有强抗干扰性能。锅炉离子式火焰检测器故障排除方法:1.燃烧器火焰正常,并且检测中心电极能接触到火焰,而监测器判断无火。  A. 关断电源,测量检测端对地的绝缘电阻,如果电阻小于20 MΩ,则是检测电极高温陶瓷绝缘管积炭严重或检测线绝 缘破坏所致,如陶瓷管积炭严重,清理积炭即可,如检测线绝缘不良,需更换检测线。  B. 如果检测线对地电阻大于20 MΩ,可能由于导线吸潮使分布电容增大,请测量检测线对地电容,在电容不大于           0.1μF的情况下,请重新调节模块中央的匹配电位器。如果电容大于0.1μF,最好考虑缩短模块与探头的距离。  2.燃烧器灭火,而监测器显示有火。是由于模块中间的阻抗匹配电位器超调所致,请重新调试。

  • 火焰原吸点不燃火的原因

    公司[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]是普析的TAS-990AFG,今天准备用火焰测Ca,却发现点不燃火。点击点火后,燃烧器会出现火苗(并迅速熄灭)伴随黑烟,求助论坛大神指教一下。

  • 【原创】求助!!! 日立Z5000火焰测量时出现熄火现象,求解~~

    [em0812]最近在做火焰测定时,老是出现熄火现象,点火后3秒内就熄火,一般都是上午点火熄火,下午较上午好一点有过两天还没熄火的经历,今天下雨,一整天都点不燃!以为是空气湿度过大造成的。自己动手拆过火焰燃烧器,经检查燃烧器里面没有水雾,仪器提示检查供气是否正常,经检查乙炔气体正常,空气至过滤阀都是好的,检查仪器抽吸量发现也正常,现在很迷惘,不晓得问题出在哪里~~求各位高手指点迷津啊!!!

  • 【原创大赛】光谱笔记一 火焰原吸的安全问题-回火是怎样产生的

    【原创大赛】光谱笔记一 火焰原吸的安全问题-回火是怎样产生的

    目前,火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱仪[/color][/url]采用的燃烧器,以常见的单缝(长100mm,宽0.5-0.8mm左右)乙炔-空气燃烧器为主。空气与乙炔气在雾化室预混完成,然后通过燃烧器缝隙并燃烧。跟笑气-乙炔比起来,空气-乙炔气算是相对安全一些,但对仪器操作和维护不当,仍存有潜在的危险。部分具体表现便是所谓的“回火”甚至爆炸,本人就曾经在维护一台[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]时碰到过回火现象。在此对常见的火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]回火现象进行简单分析。1燃烧速度和行程速度 1.1行程速度:是指火焰气体(燃气与助燃气的预混物)从燃烧器缝隙流出,单位时间内所走的距离。因此行程速度指的是气体流速,而非气体流量,单位通常为cm/S。因此可以看出,行程速度与气体流量和燃烧器缝隙形状及面积大小有关。值得注意的是,行程速度的数值并非不变的。气体流量的调整、燃烧器缝隙形状的改变(被杂质堵了,或者清洗时候用硬物而非硬纸片挫伤缝隙)、气体管路堵了或漏了,都会引起行程速度的改变。 1.2 燃烧速度:是指火焰点燃后,单位内气体燃烧传播的距离。燃烧速度跟燃烧气体的种类和组成比例有关。[img=,674,252]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081043_01_1853475_3.png[/img][align=center]图1 各种火焰气体(组合)的燃烧速度,可以看到笑气-乙炔>空气-乙炔>空气-丙烷[/align] 1.3 燃烧速度与行程速度之间的关系 当燃烧速度远小于行程速度时,无法点燃火焰,火焰会被过快的气流吹灭 当燃烧速度≤行程速度时,火焰能够稳定燃烧 当燃烧速度>行程速度时,从燃烧器缝隙喷出的燃烧气体速度比不上火焰的速度,火焰倒着往雾化室里烧,这就形成了回火,甚至可能引发爆炸 注:氧化亚氮-乙炔燃烧头使用独特的燃烧头(缝隙长度比空气-乙炔燃烧头短,一般为5cm)。因为氧化亚氮-乙炔的燃烧速度快,必须保证其行程速度比空气-乙炔更 快。流量不变的情况下,燃烧头缝隙越短,行程速度越快。这样可以不发生回火 2 引发回火的具体原因:既然当燃烧速度>行程速度时,会引起回火。那么一般引起就是因为[b]燃烧速度过快,或者行程速度过慢。[/b][color=#ff0000] 2.1 燃烧速度过快:[/color]燃烧速度跟燃烧气体组成有关 2.1.1有燃烧速度一般的比如空气-丙烷(液化天然气)火焰,在家做饭和用过火焰分光光度计的人都知道,这是一种比较安全的火焰,不容易产生回火。 2.1.2有燃烧速度中等的比如空气-乙炔火焰,这个时候就需要注意安全了,因为燃烧速度比较快。 2.1.3还有燃烧速度很快的比如笑气-乙炔火焰,燃烧速度很快以至于需要用空气-乙炔火焰过度才不会发生回火。 2.1.4燃烧速度最快的乙炔-氧气火焰,则不能用我们常用的预混型雾化室,因为火焰会在点燃的一瞬间窜回雾化室。 [img=,690,398]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081047_01_1853475_3.png[/img][align=center]图2 打个生活上的比方,手上有只卷烟点着了,不会很快烧回到手上因为燃烧速度慢。但如果是点着一根鞭炮上的引信,那可能就零点几秒就烧回到手上了[/align] 2.2 [color=#ff0000]行程速度过慢:[/color]因为从气体流量计过来的总流量是恒定的,因此任何一处的漏气,都会造成通过燃烧头气体流量减少,从而造成燃烧头缝隙处的燃烧气体行程速度 过慢。一个燃烧头和燃烧室,带接口或缝隙的地方主要有:1、燃气和助燃气接口 2、废液管(水封)3、燃烧头缝隙 4、雾化器与雾化室连接的o型圈处,这些都是有 可能的地方, [img=,480,262]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081048_01_1853475_3.png[/img][align=center]图3 雾化室和燃烧头有可能接触大气的地方:助燃气、废液、燃烧头缝隙[/align] 2.2.1本人亲历过的一次回火。原因是管路老化,与雾化室接口处龟裂,供气不足,造成燃烧器缝隙出口的行程速度赶不上燃烧速度,于是形成回火。 2.2.2水封失效,部分燃烧气体从废液管漏出,造成燃烧器缝隙处燃烧气体行程速度过慢。(注:当还没点火时水封就失效,那也就无法点着火了) 2.2.3燃烧头缝隙的面积被人为扩大了(比如被硬物挫伤),因为行程速度与缝隙的面积成反比,这也可能造成行程速度过慢。一般说这种情况比较少见,现在的燃烧头 很多都是一体式的,而且厂家基本会提供清洁用的硬纸片,工程师也会交代用酸浸泡且不要用硬物损坏燃烧头缝隙) 2.2.4 O型密封圈坏了,此处会造成气体分流,也会引起缝隙处行程过慢。本人经历的那次回火,将密封圈也一并烧坏了。如果在后来更换管路的同时,却没有更换密封 圈,下次开机时仍然会产生回火 2.2.5开气或者关气的时候顺序不对。例如关气的时候先关空气,那么总流量必然减少,缝隙处的行程速度大大下降,火焰就容易烧回来了。[img=,643,394]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081049_01_1853475_3.png[/img] [align=center]图4 左边即为国产[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]常见的浮子流量计 [/align][img=,401,432]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081049_02_1853475_3.png[/img][align=center]图5 瓦里安[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的电子流量计,和安捷伦液相用的比例阀一样,流量通过电磁阀开合来进行控制[/align]2.3 比较特殊的原因:燃烧头缝隙被杂质堵塞,燃烧头温度过高或带火星的杂质掉进雾化室会引燃里面的燃烧气。本人没有见过和听过此类案例,因为燃烧头一般定期用纸片或浸泡清洗,而且燃烧头堵了火焰会比较容易观察到异常。但网上有谈过此类异常。3 应对回火的措施,以瓦里安(安捷伦)的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]为例[img=,602,231]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081049_03_1853475_3.png[/img][align=center]图6 瓦里安[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]的安全措施[/align] 3.1 水封(液封盒):大家可能第一个想到的就是水封了,防止燃烧气体走废液管漏出而引起回火。 3.1.1水封也分两种。一种是没有专门的液封盒,仅在废液管存放一些水,然后在有水的地方打个环形结,目前可能就一些比较老型号的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]才用这种方式。 3.1.2 带液封盒和液位感应器的:一旦水封失效,液位感应器会关闭,同时会关闭关联的燃烧气体电磁阀,自然也就烧不起来了。[img=,585,467]http://ng1.17img.cn/bbsfiles/images/2017/09/201709081051_01_1853475_3.png[/img] [align=center]图7 带液封盒的雾化室构造图[/align] 3.2火焰监测器:这个大家应该也都在仪器上看到过,火焰消失后自动切断燃烧气体电磁阀 3.3 泄压塞:即便回火到了雾化室,能及时爆开,以免更大的爆炸发生 3.4 其他:乙炔钢瓶止回阀、正确的开关气体阀门顺序、电子流量计等

  • 【求助】火焰总是熄火,气压、水封、空压机没有问题,请各位帮忙!!急~~~

    在使用火焰时,开机后一切正常,点燃火焰后开始测量,当测定标准系列时,将进样管从纯水中取出插入标准溶液中一切正常,但当从标准溶液中取出重新放回纯水中时火焰就会熄灭。。。。重新点燃后又正常,但是再测定下一个标准系列时又会出现相同问题,试了不同的元素都出现同样的情况。请各位帮忙找找原因。空压机压力0.25MPa;乙炔气总压力大于1,分压0.06;水封一切正常;紧急灭火阀并没有关闭。谢谢各位了,帮帮忙啊!!!

  • 谈谈火焰监测器

    谈谈火焰监测器

    在原子吸收火焰分析方式中,大家比较关心的一个隐患就是火焰“回火”故障。当因某种原因造成助燃气流量突然中断供给或者减弱时,原本燃烧正常的火焰就会突然缩回到燃烧室(雾化室),产生很可怕的爆破声,甚至有可能将燃烧头或者雾化器炸开。这绝不是危言耸听,而是我亲身经历过的场景,那是在70年代在使用PE340型原吸火焰测试时,燃烧器发生回火爆炸,造成喷雾器前盖从燃烧室脱离,并从两个操作仪器的女孩子的面颊之间飞出,前些酿成人身伤害。为了杜绝这种“回火”隐患,目前许多仪器厂家均在仪器上设计有一种防回火的装置,这个装置的名称就是“火焰监测器”。这种装置的工作示意图见图-1所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_01_1602290_3.jpg图-1 火焰检测器工作示意图从图-1可以看出,这个装置的其实就是一个闭环的光→电控制电路。其工作原理如下:当燃烧头的火焰被点燃后就会产生一定波长的辐射光,而这个辐射光就会被火焰传感器(亦称为检测器)立刻检测到;通过识别控制器的鉴别放大作用,去控制通往燃烧头的乙炔气供给的电磁阀,使电磁阀保持导通供气。如果火焰突然熄灭或者缩回到燃烧室里时,火焰检测器就会检测不到火焰辐射信号于是识别控制器就会立刻控制乙炔电磁阀关闭,从而阻断了燃气的继续供给,保障了仪器和操作者的人身安全。这种防回火装置看起来并不复杂,但是最主要的一个技术指标就是要反应迅速;为此对于火焰传感器的灵敏度的要求的就比较高。在有些仪器上,这个传感器使用的是硅光电池。但是硅光电池的反应速度有时跟不上火焰熄灭的监测速度,也就是电路上所说的“滞后”现象。于是目前比较先进的仪器均使用了更为反应灵敏的紫外监测器,也称之为UV监测管。这种检测器见图-2 所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_02_1602290_3.jpg图-2 UV监测管目前配套的紫外火焰监测器已经有市售的产品售出了,网上可以卖到;例如浜松(HAMAMATSU)公司生产的C3704火焰监测器套件就是例子。这种套件外形见图-3所示:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_03_1602290_3.jpg图-3 火焰UV监测器外观http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_04_1602290_3.jpg图-4 火焰UV监测器电路板日立系列原子吸收仪器里面均都安装了这款火焰检测器配套装置。下面就是这款火焰监测器安装在仪器里面的实际位置图例:http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_05_1602290_3.jpg图-5 日立180-80型原吸的火焰传感器的位置http://ng1.17img.cn/bbsfiles/images/2016/12/201612112021_06_1602290_3.jpg图-6 日立Z-2000型原吸的火焰传感器的位置后 记:据统计,仪器安装上了这款防回火的监测器后,从未发生过回火现象。可见火焰监测器在仪器里的“防患于未然”的作用是多麽重要啊!

  • 火焰原子吸收出现回火现象

    求助各位老师: 我用的是国产的原吸,前几天将燃烧头拆开清洗后,火焰出现偏小的情况,过了一会就烧到了雾化筒的前端。为了试验雾化效果,在不点火,只开助燃气的情况下进蒸馏水,发现燃烧头处的雾气一开始正常,半分钟后从燃烧头的两侧溢出并且雾气在燃烧头上凝结成水滴,不再喷雾,但雾化器取下后观察并无异常,请问各位老师,回火是否是燃烧头拆开后再重新组装出现误差或者是雾化筒O型圈处有乙炔气泄漏造成的呢?

  • 【求助】求助:厡吸火焰问题!

    最近一直在用厡吸火焰做铜的实验,用的是瓦里安的机子,最近发现铜的吸光度值下降了,是因为最近的一次做实验发现废液排出量明显减少,就用仪器带的钢丝通了一下进样针,废液排的正常了,可是发现和以前的吸光度值明显下降了。而且灯的信号值也下降了,和工程师联系了一下,他猜测可能是雾化器的问题,所以要求清洗一下。不知道是否会有其它的原因引起的呢!会不会是灯有问题了?或者其它方面的。我刚接触厡吸,希望高手多多指导一下,非常感谢!!

  • 【原创大赛】认识一下火焰监测器

    【原创大赛】认识一下火焰监测器

    在[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]火焰分析方式中,大家比较关心的一个隐患就是火焰“回火”故障。 当因某种原因造成助燃气(空气)流量突然中断供给或者减弱时,原本燃烧正常的火焰就会突然缩回到燃烧室(雾化室),产生很可怕的爆破声,甚至有可能将燃烧头或者雾化器炸开。这绝不是危言耸听,而是我亲身经历过的场景,那是70年代在使用PE340型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]做火焰测试时,燃烧器突然发生回火爆炸(当时该仪器没有防回火装置),造成将喷雾器前盖从燃烧室炸开,并从两个操作仪器的女孩子的头部中间飞过,险些酿成人身伤害。 为了杜绝这种“回火”隐患,目前许多仪器厂家均在仪器上设计有一种防回火的装置,这个装置的名称就是“火焰监测器”。这种装置的工作示意图见图-1所示:[img=,492,390]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051322243255_2206_1602290_3.jpg!w492x390.jpg[/img] 图-1 火焰检测器工作示意图 从图-1可以看出,这个装置的其实就是一个闭环的光/电控制电路。其工作原理如下:当燃烧头的火焰被点燃后就会产生一定波长的辐射光,而这个辐射光就会被火焰传感器(亦称为检测器)立刻检测到;通过识别控制器的鉴别放大作用,去控制通往燃烧头的乙炔气供给的电磁阀,使电磁阀保持导通供气。如果火焰突然熄灭或者缩回到燃烧室里时,火焰检测器就会检测不到火焰辐射信号,于是识别控制器就会立刻控制乙炔电磁阀关闭,从而阻断了燃气的继续供给,保障了仪器和操作者的人身安全。 这种防回火装置看起来并不复杂,但是最主要的一个技术指标就是反应速度;为此对于火焰传感器的灵敏度的要求的就比较高。在有些老旧或简易的仪器上,这个传感器使用的是硅光电池,见图-2所示:[img=,258,210]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051325140275_3931_1602290_3.jpg!w258x210.jpg[/img] 图-2 硅光电池 硅光电池的优点是价格低廉,但是其缺点是反应速度有时跟不上火焰熄灭的速度,也就是电路上所说的“滞后”现象。于是目前比较先进的仪器均使用了反应更为灵敏的紫外传感器,也称之为UV监测管。这种监测管的外观见图-3 所示:[img=,690,516]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051326118775_83_1602290_3.jpg!w690x516.jpg[/img] 图-3 R2868型UV监测管 目前结合这种监测管的紫外火焰监测器套件已经有市售的产品售出了,例如浜松(HAMAMATSU)公司生产的C3704火焰监测器套件就是例子。这种套件外形见图-4所示:[img=,690,516]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051327035949_6343_1602290_3.jpg!w690x516.jpg[/img] 图-4 C3704型火焰UV监测器外观 类似这种火焰检测器的最大特点就是检测灵敏度高、反应速度快,究其原因就是因为该设备有着完整的放大体系;UV管的工作原理类似光电倍增管,因为放大倍数高,自然灵敏度也就随之提高了。该监测器的电路见图-5所示:[img=,690,457]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051327496115_3570_1602290_3.jpg!w690x457.jpg[/img] 图- 5 C3704火焰监测器电路图 目前日立系列[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]仪器里面均安装了这款火焰检测器配套装置。图-6就是这款火焰监测器安装在仪器里面的实际图例:[img=,690,520]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051328464989_1061_1602290_3.jpg!w690x520.jpg[/img] 图-6日立Z-2000型[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原吸[/color][/url]的火焰传感器的安装位置 使用类似监测器的仪器有时会遇到燃烧头点火成功后却保持不住,火焰很快就熄灭了,尤其是在潮湿的南方地区或潮湿的季节经常发生。为此,下面做一个原因的分析和解决的方法介绍:(1)[b]原 因:[/b]空气中的水分附着在UV管的光窗上了,造成了火焰中的紫外光信号强度受阻,致使UV管无法正常工作,产生没有看到火焰被点燃的“假象”从而关闭了乙炔控制阀,火焰自然就维持不住了。[b]解决办法[/b]:①取出UV管用乙醇清洁受光窗。但是对于用户而言,这种措施有些难度。②用吹头发用的风筒对着UV管的检测孔吹干(见图-7所示)。但是要注意吹风机的温度要设在低档,并且边吹边晃动,时间不能过长。这种措施只是权宜之计,关键是要彻底解决室内潮湿环境问题,例如加装除湿机。[img=,690,517]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051329512019_5029_1602290_3.jpg!w690x517.jpg[/img] 图-7 用吹风机烘干UV管 (2)[b]原 因:[/b]空气中的湿气尤其是沿海地区含盐分的湿气附着在火焰监测器的控制电路板上的高压发生器单元,使之电路板的绝缘电阻下降,造成供给UV管的正高压电压跌落,从而使UV管不能正常导通,总是呈现出报警状态。高压发生器的电路图和实体图见图-8所示:[img=,690,325]http://ng1.17img.cn/bbsfiles/images/2018/07/201807051330494681_1991_1602290_3.jpg!w690x325.jpg[/img] 图-8 高压发生器电路图以及实体图[b]解决办法:[/b]取下电路板,用无水乙醇棉签擦拭电路板高压发生器部位(图-8 电路板红框中的)后,再用吹风机吹干。[b]后 记:[/b]经过我多年的维修经验,该火焰监测器质量很可靠,电路上几乎没有出现过故障。只是仪器在使用了十年以后有的UV监测管的灵敏度可能故有所下降,但是该监测管在网上可以购买到,价格在100元左右。

  • 【求助】求助:厡吸火焰问题!

    最近一直在用厡吸火焰做铜的实验,用的是瓦里安的机子,最近发现铜的吸光度值下降了,是因为最近的一次做实验发现废液排出量明显减少,就用仪器带的钢丝通了一下进样针,废液排的正常了,可是发现和以前的吸光度值明显下降了。而且灯的信号值也下降了,和工程师联系了一下,他猜测可能是雾化器的问题,所以要求清洗一下。不知道是否会有其它的原因引起的呢!会不会是灯有问题了?或者其它方面的。我刚接触厡吸,希望高手多多指导一下,非常感谢!!

  • 普析火焰原子吸收为什么老是熄火?

    各位大神,普析火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],正常点火2000的,然后现在好像就是会熄火,上不去了,不知道啥原因,我这个下调1500可能不熄火,但是温度就低了,火焰颜色和形态是不是有点不正常?[img]https://ng1.17img.cn/bbsfiles/images/2023/12/202312251404196172_1352_3570477_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2023/12/202312251404198118_7748_3570477_3.png[/img]

  • 紫外线传感器在火焰检测中的应用

    紫外线传感器在火焰检测中的应用

    紫外线火焰探测器是紫外火焰探测器的俗称。紫外火焰探测器是通过探测物质燃烧所产生的紫外线来探测火灾的,除了紫外火焰探测器之外,市场上还有红外火焰探测器,也就是术语是线型光束感烟火灾探测器。紫外火焰探测器适用于火灾发生时易发生明火的场所,对发生火灾时有强烈的火焰辐射或无阴燃阶段的场所均可采用紫外火焰探测器。火焰探测紫外线传感器需要传感器本身耐高温且灵敏度高。[img=,510,250]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261012570717_3051_3332482_3.jpg!w510x250.jpg[/img]紫外管有两种工作状态,一种是炉膛、加热器的熄火保护,管子一直处在放电状态;一种是对火情的报警,管子工作在非放电状态。紫外管着重于气体、液体燃料火焰的探测,如天然气、煤气、石油液化气、汽油、柴油、酒精等类物质,其火焰能见度低、点燃快,有爆炸危险,在燃烧时必须有熄火保护,在火情预报时没有引燃阶段,采用紫外探测比其他形状的探测有明显的优点;能在毫秒级时间内快速反映;可以避免可见光及炉壁红外辐射的干扰,在我国城市逐渐燃料气体化的过程中,锅炉和加热器的程序点火控制中应用越来越广泛。由于紫外辐射是以光速传递的,紫外管又能在毫秒级快速反映,因此它可以用于易燃易爆场所,是人和设备得到保护。监测系统的基本功能是监测燃情并对火焰中断做出反映。显然,进行连续监测是不经济的。但是,必须防止认为的操作失误而造成严重事故。如果火焰熄灭而未被发现,燃料就可能继续流出和积集。如未予注意而重新点火,则可能引起积集的燃料和空气的混合物发生爆炸,造成人或设备的巨大损失。所以虽然对火焰的监测要求远教监测火焰的熄灭与否为多,但仍然需要监测系统以保证安全。对监测的反应时间要求严格,一般在火焰熄灭2-4秒内予以发现并切断燃料供应。现代火焰检测技术需要有较好特性的传感器,其中一些得到不断的完善,使用双金属元件、灯泡、毛细管系统及电热偶用热的变化来判明燃烧情况,这些方法只能在出现冷态时才能做出反应;用光敏元件检测燃烧中的可见光,因周围区域被加热到可见光的程度,使检测反映时间滞后,并且对一些包括照明在内的意外光亮也敏感;红外线检测器虽然可以避免一些意外的可见光干扰,但加热的炉衬会辐射红外线而使反应滞后;在火焰中设置两个电极,利用火焰的导电性来检测,这种装置不能区别火焰导通的电流和由于燃烧引起的积炭和污垢所导通的电流。在紫外区燃烧产物是晦暗的,应该使检测对准火焰的前三分之一。紫外线辐射是燃烧的产物,因此在燃烧的界面上强度最大,在非预混火焰,界面为表面,对预混燃烧的火焰,界面在起端的三分之一处。按比例预混的燃气火焰有很高的紫外辐射;雾化烧油、喷嘴混合烧气、煤粉火焰则表现为中等强度的紫外辐射。电弧富于紫外辐射,所以使用紫外线传感器应当十分注意防止电火花点火器或它的反射造成的误检。紫外线传感器的所有看窗及透镜都应采用石英玻璃等可透过紫外线的材料制成。火焰检测电极由于温度的限制,一般只限于较小的烧气火焰。烧油会在电极上结一层厚的绝缘膜使它与火焰间产生电绝缘。常使电极对引燃火嘴检测,并用紫外线传感器扫描主火嘴的联合检测。检试电极应放置在引燃火嘴和主火嘴的界面上,而不应当放在引燃火嘴的上方或者与它平行,这个位置不能超过额定温度,并且不得与地点接触。在冶金炉内重油燃烧火焰监视中应当注意,燃烧室内温度高于500℃时,会发生燃料和空气混合物的自燃引爆,当燃烧室的容积相当小时,爆炸的危险增加数倍。在目前已知的大多数火焰自动监视方法中,对重油喷嘴和煤气-重油联合烧嘴最适用的方法是无接触法,它使用的紫外传感器工作,很明显多数波长在0.21~0.23微米范围内,在上述范围内火焰的辐射是足够强的,而炉子砌体的辐射最大波长在红外线范围,对传感器完全不起作用。由于此种优越性,避免了火焰熄灭时发出的错误信号。紫外线传感器使用的安全期(寿命),由它的工作条件决定,环境温度低于50℃时,连续使用寿命超过10000小时,希望它装在朝向火焰的工作管冷端,需要时还可以强制供给冷却空气。紫外线传感器的正常工作寿命与工作线路有直接的关系,它的典型线路有高耗和低耗之分,高耗线路由于电流大可以直接带动继电器,具有线路简单、维修方便等优点;但由于今年来集成电路的飞速发展,从设计上采用低耗电路越来越多。低耗电路不但耗电少,而且能有效地避免因放电电流大,消电离时间不够长而引起自激现象。阻容并联的负载使管子放电面积加大而时间缩短,呈脉冲状态。紫外线传感器工作在直流状态必须有足够的熄灭时间(2ms以上),这是因为紫外光敏管的放电不会自行熄灭,而且放电管本身放电熄灭后很多游离的亚稳态原子,使第二次放电容易得多,只有足够长的时间这些亚稳态原子才能显著减少。高速调温燃烧器作为工业窖炉上的新型节能烧嘴正在推广使用,在使用中必须有自动点火和火焰监视。在燃烧中经常有一些杂志向四周喷射,容易将紫外线传感器前面的透紫玻璃遮住,使用中必须注意加强玻璃的吹扫,经过特殊设计的压缩空气防尘罩不仅可以冷却探头,而且可以有效防止粉尘在视窗上的聚焦。紫外火焰探测器是用紫外光触发的,普通的扩散火焰,能产生足够强度易鉴别的紫外辐射光,设计探测器时必须注意光谱范围应在290nm的太阳辐射光以外。现有紫外线传感器是很有效的,它能排除太阳辐射光,还能有效地感应火焰发出的285nm以下的辐射光。其它元件如碳化硅光敏二极管的灵敏度很高,但对非火灾的紫外光分辨能力差。紫外线传感器是为保护特殊场所而发展和应用的,这些地方的危险区距探测器近,而且探测器对火焰的选择性可以被精确到只感应火焰产生的特定波长的紫外辐射光。紫外火焰探测器已成功地应用于抑爆系统,并在低压室水灭火系统中作释放装置用。紫外管在火情报警上也可以配合感烟、感红外、感温探头使用,互相弥补不足,增加预报的可能性,如现代化计算机房、电力系统、石油化工系统等要求高的场所。高灵敏度的紫外管可以检测距7~10米的打火机火焰,故也可作为禁烟场所的警铃使用。在自动控制中紫外探头和紫外光源组成控制系统,避免外界杂散光的干扰,探测器信号经过处理后启动后级控制系统。例如,由于它只响应260nm以下的紫外辐射,能在放映中把电影片的断头,裂纹及时检查出来防止扩大损害。紫外管目前研制中主要是提高灵敏度、可靠性、一致性,降低成本,国外正在进行不同种类的燃烧发出紫外线的最强峰值探测的分类研究。紫外管的缺点是工作电压高,不能区分电弧紫外干扰,使用受到一定的局限。以Cs-Te为光电阴极的真空光电管工作电压低(6V、15V),光谱范围是185~350nm,适合紫外辐射量的检测,其输出电压是连续而且微弱,不合适作开关使用。[b]接下来就由工采网小编给大家推荐三款适用于火焰探测领域的紫外线传感器型号:[img=,394,291]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261013161416_4804_3332482_3.jpg!w394x291.jpg[/img]紫外光电二极管 - SG01D-5LENS(带聚光镜,虚拟面积可以达到11mm2)宽频UVA+UVB+UVC, PTB报道的芯片高稳定性, 用于火焰检测辐射敏感面积 A = 11.0 mm2TO5密封金属外壳和聚光镜, 1绝缘引脚和1接地引脚10μW/cm2峰值辐射约产生350 nA电流[img=,298,298]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261013316112_7896_3332482_3.jpg!w298x298.jpg[/img]紫外光电探测器 - TOCON_ABC1/TOCON-C1(可以监测到pw级紫外线,带放大电路),基于碳化硅的宽频紫外光电探测器放于TO5 外壳中,带有集中器镜头盖0~5 V电压输出峰值波长是280 nm在峰值处最大辐射(饱和极限)是18 nW/cm2 ,最小辐射(分辨极限) 是1,8 pW/cm2[img=,391,354]https://ng1.17img.cn/bbsfiles/images/2018/11/201811261013457946_9176_3332482_3.jpg!w391x354.jpg[/img]紫外光电二极管 EOPD-265-0-0.5-CC/EOPD-265-0-0.3-CC,紫外光电二极管EOPD-265-0-0.5-CC在紫外区(205 nm-355nm)内低成本SiC光电二极管具有高的光谱灵敏度,其封装在TO-52外壳内,配有紫外线玻璃窗口片,通过RoHS和WEE认证。[/b]

  • 火焰法熄火后再点火质控对不上

    岛津6880做火焰法有时候做样时,标准曲线做好了,质控也对上了,做一些样品后,有事要离开会,熄火后事情做完了回来再点火做质控就对不上了。前面教我的师父说熄火没影响的,不知道哪里出问题了,每次重做标准曲线的话太麻烦了。麻烦大神帮我分析洗,谢谢!----------你好,已转到 AAS 版。下次发帖记得到对应的技术版面,新手版面的浏览量小 ,可能耽误您的问题。

  • 正确开启仪器关闭仪器、熄灭火焰的顺序

    如何正确开启仪器?我们是先开空气压缩机及火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]主仪器,然后才开电脑的。那灭火的顺序呢?先点仪器上控制熄火的钮,再关乙炔瓶的阀,再点一次火,为了燃尽管路中的乙炔,再旋松减压器的分压阀,这是先关电脑,再关空气压缩机及火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]主仪器,这样对吗?

  • 氢火焰离子化检测器(FID)(收集)

    [b]氢火焰离子化检测器[/b] 1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10[sup]-12[/sup]~10[sup]-8[/sup]A)经过高阻(10[sup]6[/sup]~10[sup]11[/sup]Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10[sup]-14[/sup]~10[sup]-13[/sup]A),线性范围宽(10[sup]6[/sup]~10[sup]7[/sup]),死体积小(≤1µ L),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴 喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出。

  • 【求助】火焰原子吸收灭火时,听到尖锐的爆鸣声

    我们使用的是热电S2[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url],火焰可以正常使用,可是在灭火的时候听到尖锐的爆鸣声,声音很大,类似于鞭炮,甚至那个膜也会震破.请各位帮忙分析一下原因.[em61]

  • 火焰原子吸收原子化器

    将试样中的被测元素转化为基态原子的过程称为原子化过程,能完成这个转化的装置称原子化器,目前,使用较普遍的原子化器有两类,一类是火焰原子化器,由石墨炉作原子化器的[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析法称为石墨炉[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]法(GFAAS)。 待测元素的原子化是整个[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分析中最困难和最关键的环节,原子化效率的高低直接影响到测定的灵敏度,原子化效率的稳定性则直接决定了测定的精密度,原子化过程是一个复杂的过程,在后面的章节中作详细介绍。 火焰原子化器实际上就是一个喷雾燃烧器,作为一个性能良好的原子化装置要求其调节方便,单位时间内吸入的试液尽可能多地产生微细雾粒,并能雾珠尽可能地到达火焰进行原子化等到特点。同时,还要燃烧稳定,火焰发射的噪声要小。按照火焰的燃气和助燃气的混合方式和进样方式不同,火焰原子化器又可分为全消耗型原子化器和预混合型原子化器,前者产生的火焰称紊流火焰,后者为层流火焰。 1﹑全消耗型原子化器 这种原子化器结构如下图所示,由于助燃气的高速流过原子化器,在原子化器的出口形成一负压区,使得试液由吸液毛细管抽入火焰中,试液的雾化过程直接在燃烧器口进行,试液被全部喷入火焰,在火焰高温下完成干燥、分解、原子化的全过程。 全消耗原子化器的原了化效率很低,高速运动的雾珠直径较大,大多数雾珠在火焰中还未达到原子化时就飞出火焰,使火焰中基态原子数目减少。此外,由于火焰要将大量溶剂蒸发,火焰温度因而下降,也使原子化效率降低,使用全消耗原子化器,喷雾和燃烧条件不能分别控制,火焰浮喷雾的干扰很大,大颗粒粒子在火焰中产生严重的散射干扰,火焰燃烧不稳定,噪声大,所以,现在的仪器已不使用这种原子化器。 全消耗原子化器的重要优点是使用安全,由于其燃气与助燃气是在燃烧器的外部混合燃烧,所以在工作中允许二种气体以任何比例混合,而不会发生危险。

  • 【分享】氢火焰离子化检测器

    氢火焰离子化检测器氢火焰离子化检测器简介  简称氢焰检测器,又称火焰离子化检测器 (FID: flame ionization detector)   (1) 典型的质量型检测器;   (2) 对有机化合物具有很高的灵敏度;   (3) 无机气体、水、四氯化碳等含氢少或不含氢的物质灵敏度低或不响应;   (4) 氢焰检测器具有结构简单、稳定性好、灵敏度高、响应迅速等特点;   (5) 比热导检测器的灵敏度高出近3个数量级,检测下限可达10-12g·g-1。   1958年Mewillan和Harley等分别研制成功氢火焰离子化检侧器(FID),它是典型的破坏性、质量型检测器,是以氢气和空气燃烧生成的火焰为能源,当有机化合物进入以氢气和氧气燃烧的火焰,在高温下产生化学电离,电离产生比基流高几个数量级的离子,在高压电场的定向作用下,形成离子流,微弱的离子流(10-12~10-8A)经过高阻(106~1011Ω)放大,成为与进入火焰的有机化合物量成正比的电信号,因此可以根据信号的大小对有机物进行定量分析。 氢火焰检测器由于结构简单、性能优异、稳定可靠、操作方便,所以经过40多年的发展,今天的FID结构仍无实质性的变化。其主要特点是对几乎所有挥发性的有机化合物均有响应,对所有径类化合物(碳数≥3)的相对响应值几乎相等,对含杂原子的烃类有机物中的同系物(碳数≥3)的相对响应值也几乎相等。这给化合物的定量带来很大的方便,而且具有灵敏度高(10-13~10-10g/s),基流小(10-14~10-13A),线性范围宽(106~107),死体积小(≤1µL),响应快(1ms),可以和毛细管柱直接联用,对气体流速、压力和很度变化不敏感等优点,所以成为应用最广泛的气相色谱检测器。其主要缺点是需要三种气源及其流速控制系统,尤其是对防爆有严格的要求。氢火焰离子化检测器的结构 氢火焰离子化检测器(FID)由电离室和放大电路组成,分别如图2-9(a),(b)所示。 FID的电离室由金属圆筒作外罩,底座中心有喷嘴;喷嘴附近有环状金属圈(极化极,又称发射极),上端有一个金属圆简(收集极)。两者间加90~300V的直流电压,形成电离电场加速电离的离子。收集极捕集的离子硫经放大器的高组产生信号、放大后物送至数据采集系统;燃烧气、辅助气和色谱柱由底座引入;燃烧气及水蒸气由外罩上方小孔逸出

  • 火焰不稳,是不是气路进水了?

    最近新用原子吸收,出现了火焰不稳当,就是中间有红色的火团往上冲,还有显示空气压力的那个小球乱串,还有显示压力的那个柱子里面有水珠,这个是什么原因造成的,大家知道吗?是不是空气那个气路里面进水了。

  • 【原创大赛】火焰光度检测器不出峰的案例一则

    【原创大赛】火焰光度检测器不出峰的案例一则

    [align=center]火焰光度检测器不出峰的案例一则[/align][align=center]概述:检测器点火线圈破损,造成GC系统点火成功判定错误[/align]仪器概况: 有一台SHMADZU的GC-2010 ,带有FPD-2010检测器,使用时间10年以上,用户报修FPD不出峰。 该仪器的FPD检测器主要用于分析有机磷农残,进样测试14中有机磷农残混标标样,不分流进样方式,标品各组分浓度约0.1ppm。获得的谱图中无目标峰,亦无溶剂信号,只得到一条平坦的基线。 用户自行维护过自动进样器,进样口。更换过色谱柱和检测器,均无改善。现场检查和确认: 进样口检查,更换新的惰性不分流衬管。 色谱柱检查,重新切割色谱柱和老化色谱柱。 现场检查仪器,测量氢气空气流速均正常。在检测器出口用玻璃片测试,也可以观察到水雾,那么证实FPD的火焰也是存在的。 处理氢气和空气源的净化管测试无效;用其他氢气和空气发生器代换测试,也无效。(注:SHIMAZU的FPD对氢气和空气源的清洁程度要求比较高,如果使用氢气或者空气发生器,那么发生器的维护就比较重要。经常见到氢气或者空气发生器不良,造成气源污染而导致FPD灵敏度低或者不出峰)。 拆解FPD,检查检测器内部,未见明显异常(注:FPD常见的问题与光路有关,光路透过率低也会造成灵敏度下降)。 以上检查全部做完之后,发现情况毫无改善。 于是开始怀疑硬件部分。将光电倍增管、检测器电路板、检测器的电子流量控制模块依次代换后,试验结果依旧。维修便陷入了困境。 又重复检查了一下GC-FPD的点火过程,发现了异常的现象——FPD点火之后基线的跃变电压比正常仪器的较小,只有几万个微伏,那么问题还是在点火上。 只好把检测器再次拆解开来,一一检查各个部件。发现FPD点火线圈的陶瓷骨架部分有一点破损,但是线圈经测量并没有烧断,铂丝的形状也没有异常的变化,并且执行点火动作的时候,仪器基线有正向的跃变,GC系统也认为点火成功。那么点火线圈没有“坏掉”。[align=center][img=,154,139]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012238387969_9334_1604036_3.png!w154x139.jpg[/img][/align] 这件维修大费周章,最终还是换掉了这个小小的略有破损的点火线圈。GC-FPD点火之后的基线跃变电压变成了几十万微伏。这是再次进样测试,标样出峰OK了。[align=center][img=,690,890]http://ng1.17img.cn/bbsfiles/images/2018/07/201807012239080269_2586_1604036_3.jpg!w690x890.jpg[/img] [/align] 后来推想,这个外壳破损的点火线圈,应该是造成了FPD的漏气,从而导致火焰位置的不正常。火焰并没有产生在FPD检测器喷嘴的上方(可能火焰产生在了检测器的出口),致使后端的光电倍增管不能检测到正常的有机磷光信号,从而产生了不出峰的现象。小结:当发现某个部件有异常,不管理论上是否与故障有关,不管是否真正的“坏掉”,可以实验一下,代换掉这个部件。

  • 【资料】-火焰光度检测器(FPD)

    [b]火焰光度检测器[/b][i]节选自《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测方法》(第二版)作者:吴烈钧[/i]第一节 引言 火焰光度检测器(flame photometric detector,FPD)是利用富氢火焰使含硫,磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光。此光强度与被侧组分量成正比。所以它是以物质与光的相互关系为机理的检侧方法,属光度法。因它是分子激发后发射光,故它是光度法中的分子发射检测器。 1966年Brody和Chancy首次提出[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]FPD,称通用型FPD。它有易灭火等缺点。以后在气体的流路形式方面又作了改进。这些均属单火焰FPD(single flame photometric detector,简称SFPD)。为了克服SFPD的缺点,出现了双火焰光度检侧器(dual-flame photometric detector;简称DFPD)。近年又出现了脉冲火焰光度检侧器(pulsed-flame photometric detector;PFPD),使灵敏度和选择性均较SFPD, DFPD有很大提高,还扩大了检侧元素的范圈。 FPD是一种高灵敏度和高选择性的检测器,其主要特征是对硫为非线性响应,它是六个最常用的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]检测器之一、主要用于含硫、磷化合物,特别是硫化物的痕量检测。近年也用于有机金属化合物或其他杂原子化合物的痕量检测。[img]http://ng1.17img.cn/bbsfiles/images/2006/11/200611082030_31777_1613333_3.gif[/img]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制