当前位置: 仪器信息网 > 行业主题 > >

超声位定仪

仪器信息网超声位定仪专题为您提供2024年最新超声位定仪价格报价、厂家品牌的相关信息, 包括超声位定仪参数、型号等,不管是国产,还是进口品牌的超声位定仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超声位定仪相关的耗材配件、试剂标物,还有超声位定仪相关的最新资讯、资料,以及超声位定仪相关的解决方案。

超声位定仪相关的资讯

  • 鼎泰生化科技携新一代消解仪、超声清洗机产品亮相BCEIA 2017
    2017年10月10日,鼎泰(湖北)生化科技设备制造有限公司(以下简称鼎泰公司)携新一代DTI系列全自动石墨消解仪、DTA系列静音型超声清洗机等产品精彩亮相BCEIA 2017盛会。鼎泰公司产品经理简要介绍了本次展出的两款重点产品以及公司未来3年发展规划。DTI系列全自动石墨消解仪  DTI系列全自动石墨消解仪是鼎泰最新一代全自动石墨消解仪,鼎泰公司产品经理重点强调了它的三大优势。  首先它外观小巧,为实验室节省空间。在市场上同样位数,同样功能以及同样处理能力的同类产品比较,该款仪器具备最小体积。  其次该款产品全身防腐设计,大大延长使用寿命。仪器内外经过特氟龙(聚四氟乙烯)处理,在高温下,即使是浓酸腐蚀,也能承受,耐腐蚀能力非常强。  再者该产品售后返修率少,因为产品质量过硬,产品稳定性强,返修率少,所以基本不会涉及售后维修等问题,这对于提升实验室工作效率益处很大。  DTI系列智能操控、性能稳定,它将电热消解、自动通风系统、自动试剂选择添加系统、非接触式机械振荡、液位传感定容、机械臂托举、PC、智能控制等部件集成,一站式完成样品消解的自动加酸、加热消解、样品混匀、赶酸、托举冷却、定容等实验操作,是无机样品前处理实验人员的得力助手,轻松高效的实现实验方案。  小编也仔细扒了一下详细资料,小小产品涵盖了很多技术亮点:  1、聚四氟乙烯全密闭封装,无传动皮带外露,长久抵抗酸雾腐蚀  2、双臂支撑结构,保持超声波传感器水平高度长久稳定,准确定容  3、双加热温控,两个石墨体独立加热,独立控制  4、可选蠕动泵和注射泵互补、协同加液,发挥两种泵的加液优势  5、通过触屏电脑、台式机、笔记本无线操控  6、声音提醒功能,实验进度提示,试剂空声音报警  7、断点闪存,突发断电时,实验断点闪存,接断点继续消解  8、离线运行,脱离控制器,继续消解DTA系列超声波清洗机——全自动注、排水程序控制 可随机变换超声功率频率 加速实验效率 DTA系列超声波清洗机是鼎泰公司新一代超声波清洗机,该仪器可满足全自动注排水,并且可随机变化频率和功率,这在市场同类产品中是一大优势,可大大加速实验效率,提高实验结果。通过仪器前面彩色触摸屏进行程序设定操作,进行全自动注排水设置,还可以类似液相梯度那样,设置在不同时间使用不同的超声功率、不同的超声频率来工作,这尤其对化工合成、化工工艺研究实验室带来更大便利,是科研研发实验室得力工具。也是国内外同类产品中,处于前沿技术的产品。  DT系列超声波清洗机不仅优化了工业级超声波阵子以提高超声稳定性,采用304不锈钢材质以提升清洗机的耐用性,而且在产品的外形和结构设计方面更是进行了全新定位,流线型ABS材质机身耐腐蚀、清洁方便,通过密合式紧密设计以降低超声时产生的噪音,实验人员使用过程中感受不到噪声的存在,更安心的投入工作。  该超声波清洗机可广泛用于精密清洗、固体溶解、颗粒分散、细胞裂解以及样品制备前处理如液体脱气、混合、均质等。  除了BCEIA现场展出的上述两款重点产品外,鼎泰公司先后在市场推出了多项前处理产品如恒温加热板、磁力搅拌器、柱温箱、真空抽滤泵等。  立足前处理领域 扩充产品线   谈及未来3年发展,鼎泰产品经理向小编透露,鼎泰将持续立足前处理领域,将现有产品做稳定,做扎实前提下,扩充更多新品类,目前更多新品现已进入研发阶段。相信鼎泰公司产品未来将具备更广泛的市场空间。
  • 我国将制定游乐设施磁粉/超声/射线无损检国标
    仪器信息网讯 我国将制定用于游乐设施无损检测的磁粉检测、渗透检测、超声检测、射线检测法国家标准,在2013年7月18日国家标准委下达的《2013年第一批国家标准制修订计划的通知》中显示了这一信息。   游乐设施是八大类特种设备之一,其种类繁多,结构各异。为确保游乐设施的安全运行,国家颁布了一系列法规和标准对游乐设施的设计、制造、安装、运行、检验和修理等各环节进行了严格规定。各种无损检测技术,如目视、射线、超声、磁粉、渗透、涡流、漏磁和磁记忆检测等在游乐设施的制造、安装和检验过程中得到了使用,对质量控制起到十分关键的作用。   此次国家标准制修订计划中,提出了制定磁粉检测、渗透检测、超声检测、射线检测在游乐设施无损检测中的应用,标准起草单位为中国特种设备检测研究院,完成时间为2014年。 《2013年第一批国家标准制修订计划的通知》中有关游乐设施无损检测的标准制定 计划编号 项目名称 标准性质 制修订 代替标准号 采用国际标准 完成时间 主管部门 归口单位 起草单位 20130273-T-469 游乐设施无损检测 第3部分:磁粉检测 推荐 制定     2014 国家标准化管理委员会 全国索道与游乐设施标准化技术委员会 中国特种设备检测研究院 20130274-T-469 游乐设施无损检测 第4部分:渗透检测 推荐 制定     2014 国家标准化管理委员会 全国索道与游乐设施标准化技术委员会 中国特种设备检测研究院 20130275-T-469 游乐设施无损检测 第5部分:超声检测 推荐制定     2014 国家标准化管理委员会 全国索道与游乐设施标准化技术委员会 中国特种设备检测研究院 20130276-T-469 游乐设施无损检测 第6部分:射线检测 推荐 制定     2014 国家标准化管理委员会 全国索道与游乐设施标准化技术委员会 中国特种设备检测研究院
  • 预计产值超100亿元!盛美临港项目厂房今正式封顶
    1月6日上午,盛美半导体设备研发与制造中心封顶仪式在上海临港新片区举行。市经济信息化委一级巡视员傅新华、临港集团副总裁翁恺宁、上海科创投集团副总经理项亦男、盛美半导体董事长王晖等出席仪式并共同见证。傅新华向盛美表示祝贺,并向寒冬中奋战在一线的工程建设者表示感谢。他指出,长期以来市委市政府保持战略定力,布局培育集成电路装备产业发展,盛美半导体深耕上海持续成长,已经成为国内集成电路清洗和电镀设备龙头企业,并且正在向平台型综合性半导体装备集团转型和发展。他表示,市经济信息化委将一如既往地做好企业服务和政策扶持工作,支持包括盛美在内的集成电路企业发展壮大,随着一批重大项目陆续建成投产,相信上海将向集成电路世界级产业集群目标加快迈进。盛美半导体是国内集成电路龙头企业,在清洗设备、电镀设备等领域达到国内领先、国际先进。盛美力争跻身全球半导体装备企业第一梯队,在东方芯港建设的盛美半导体设备研发与制造中心项目,建筑面积13.8万平方米,规划产能超过年产600台,预计达产后产值超100亿元。市经济信息化委电子信息产业处相关负责同志参加活动。
  • 微型激光测振仪在超声领域的应用
    微型激光测振仪在超声领域的应用最近几年,超声技术在各个领域的应用越来越多,比如利用超声波原理进行医学治疗的设备也在临床实践中被广泛应用。医学超声设备主要是基于高频振动波(超声波)传入人体组织,并在局部产生热效应、机械效应和空化效应,引起目标组织的改变,从而达到治疗的目的。昊量光电全新推出的微型激光测振仪是一种非接触式的振动测量仪器,能够精确测试医学超声设备的超声振动特性和模态,在产品的研发、质检和性能优化过程中起到了至关重要的作用。激光测振仪在医学超声领域的应用具有如下优势:1、激光聚焦光斑小、空间分辨率高,能够快速定位并测量超声手术刀、洁牙器等小尺寸超声器件;2、采用非接触式的测量方法,高效便捷,可以快速检测产线上的超声设备性能,确保产品一致性,甚至可以检测超声设备在工作状态下的超声波输出特性,更加真实地反映设备的实际使用性能;3、超声检测带宽大,最高可检测5MHz左右的高频超声,同时能满足20pm以下的微弱振动分辨率要求,检测精度极高;4、集成式光学自研芯片,无需额外控制器,体积小巧使得安装测试变得更加便捷,提高测量精准性!一、 超声换能器测振超声换能器是一种将电磁能转化为机械能(声能)的装置,通常由压电陶瓷或其它磁致伸缩材料制成,常见的超声波清洗器、超声雾化器、B超探头等都是超声换能器的应用实例。针对超声领域应用需求,昊量光电全新推出了一套完整的台架式超声振动测量仪。作为这款测量仪核心部件的激光传感器,利用了集成光学技术将原有复杂光学元器件集成于微小芯片中,结合具有自主知识产权的调频连续波(FMCW)相干光检测原理,以小型集成化的设计模式,实现了传统复杂大型设备的测量能力。测试:20kHz 频率功率换能器,工作距离:375px振动图谱:在换能器在各个位置的测量结果。当换能器频率在 Mhz 附近时,幅度测量对测量精度的要求大大提高。结果显示,昊量测振传感器能很好的分辨振幅的实时波形,得到 nm 级的测量精度。二、 超声手术刀超声手术刀是一种通过激发20 kHz~60 kHz 超声振动的金属探头(刀头),对生物组织进行切割、消融、止血、破碎或去除的外科手术仪器。超声手术刀的工作性能一般与刀头的超声输出功率、频率直接相关,因此对刀头的超声特性探测至关重要。超声手术刀的刀头尺寸一般为5-10 mm,这种小尺寸结构很难采用接触式传感器测量其超声特性,而激光测振仪则可以轻松将激光聚焦到刀头位置,精确测量超声振幅与频率。三、 超声洁牙器 超声洁牙器主要工作原理是:将高频振荡信号作用于超声换能器,利用逆压电效应(或磁致伸缩效应)产生超声振动并传递至工作尖,工作尖受到激励产生共振,利用工作尖的超声波共振可以将牙齿表面的菌斑、结石或牙周表面的细菌等清除。依据我国医药行业标准(YY 0460-2009)和国际电工委员会标准(IEC 61205:1993),超声洁牙器工作尖的超声输出特性是重要的检测指标。常规超声洁牙器工作尖振动频率主要设计范围在18 kHz~60 kHz,其中以42 kHz工作频率最为常见。同时工作尖尺寸往往较小(<1mm),无法采用传统的接触式振动传感器进行检测。因此,对于超声洁牙器振动性能的检测,通常采用激光测振仪完成,其非接触式的检测方式便于开展产线上产品的逐个检测,是产品良率和一致性的有力保障。某品牌的洁牙器尖端测振四、 超声焊接 超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。焊头将接收到的振动能量传到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料化。超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。五.技术参数介绍昊量光电全新推出的微型超声测振仪光学元件集成化可以实现更加复杂的设计和更多的功能。集成光学芯片可以在一个单一的光学基底上包含数十到数百个光学元件,包括激光器、调制器、光电探测器和滤波器等。相对于传统基于分立器件的多普勒测振仪,MV-H以其低功耗、高性能、小型化的优势,为客户带来了低成本、便于集成的解决方案,也为激光振动传感器的广泛应用奠定了基础。1.产品参数指标2.软件功能完善3.丰富的配件可选上海昊量光电作为这款微型超声测振传感器在中国大陆地区蕞大的代理商,为您提供专业的选型以及技术服务。 更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 宁波材料所李润伟团队在超稳定可拉伸电极方面取得重要进展
    在智能可穿戴电子领域,稳定耐用的柔性可拉伸导体仍然是一个巨大的挑战。尤其是在人体表皮生理信号的收集过程中,稳定的可拉伸电极可以实现长时间精准的信号收集。目前无论是表面结构设计型、导电材料复合型还是本真可拉伸型电极,均难以实现在动态变形下稳定的电性能。所以,制备具有高稳定电性能的电极仍然是一个极大的挑战。近日,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队在李润伟研究员的带领下,受到人工渔网启发,模仿“水膜-鱼网”结构设计了具有柔性自适应导电界面的超稳定可拉伸电极,提出利用静电纺丝法构建液态金属聚氨酯(TPU)二维“仿水膜-鱼网”结构薄膜,实现了极低初始方阻(52mΩ sq-1),解决了弹性电极中导电率和拉伸率不可兼容、循环变形下电性能不稳定的问题,应变下通过网孔束缚液态金属对外扩展和液态金属在网孔内自适应流动,实现低电阻高稳定可拉伸电极,该电极的动态自适应导电网络使其具备极强的动态循环稳定性,经过33万次100%拉伸应变循环,电阻仅变化5%,同时电极面对冷热、酸碱、浸水等服役环境变化,依旧表现出稳定的电性能。该电极可应用于全天候人体表皮生理信号监测、智能人机交互界面及人体热疗等方面,有望助力基于万物互联的可穿戴健康监护系统及电子皮肤人机交互界面的持续发展。该工作以题为“Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction”的论文发表在InfoMat上(DOI:10.1002/inf2.12302),并被选为封面文章(如图1)。图1 液态金属基超稳定可拉伸电极及应用InfoMat封面该团队通过TPU静电纺丝与液态金属微纳颗粒静电喷涂的原位复合,以及随后进行的机械激活,制备出了仿“水膜-渔网”的可拉伸电极。该电极的超稳定电性能,主要得益于其仿“水膜-渔网”结构,也可称之为液态金属动态自适应网络,由于液态金属薄膜与聚氨酯纺丝网的交互作用,在小应变下(<100%的应变),SEM原位观察到液态金属可以实现自适应流动,卸去局部应力,保持导电薄膜连续;在大应变下(300%-500%的应变),尽管液态金属薄膜会破裂,但聚氨酯纺丝网会阻碍其断裂,并使其包裹在纤维丝上,保持整体导电网络的稳定性(图2a)。作者还透彻分析了液态金属微米纳米球如何通过尺寸效应和微观捆绑结构实现与纳米纤维丝网络的复合。图2 超稳定电极机理及应用同时,通过局部激活和激光切割,可以将聚氨酯液态金属复合材料制备成多层多功能人机交互系统。上层电容传感阵列连接在集成电路和蓝牙模块上,能够实现无线信号传输,在拉伸和弯曲状态下均可以对计算机输入无线指令,可应用在智能可穿戴游戏控制等方面。下层蛇形加热器展现出良好的电热稳定性,可以实现45℃-90℃稳定加热,并展现出优异的加热循环性能,可用于人体加热治疗。局部激活的电路对机械破坏展现出很好的抵抗性,该电极可以实现即时导电通路重建,使电极在破坏、拉伸状态下依然能够正常工作(图2b)。该电极展在100%应变拉伸循环试验中,在第一次拉伸电阻发生了轻微升高,后续的33万次循环中,其电阻仅上升了5%,该特性要远远优于其他已报道的可拉伸电极(图2c)。该电极可以实现人体表皮全天候心电信号检测。首先,通过体外细胞实验证明该电极具有良好的生物相容性和极低毒性,可以用在人体表皮进行心电监测,其展现出与商用凝胶电极类似的阻抗性能。其次,该工作根据人的活动场景,为电极设计了静态、运动、水冲三个工作场景,超稳定电极展现出优异的心电信号收集能力,信噪比达到0.43,尤其是在水冲环境中,该电极依然能够收集到稳定、清晰的心电信号,可用于全天候心电诊断(图3)。图3 超稳定电极的生物相容性探究及其在全天候心电监测方面的应用综上所述,该工作设计并实现了超耐用可拉伸电极,基于液态金属和聚氨酯纺丝网络构成的自适应导电网络,实现了在机械变形、长时间氧化、循环浸没、加热、酸碱浸泡等各种环境刺激下的稳定电性能,尤其实现了33万次拉伸循环下极小的电阻变化。该电极可以应用在全天候心电监测、智能人机交互系统等方面,在长时间体表电子皮肤、体内生物相容性器件等方面展现出很大的潜力。该工作由曹晋玮、梁飞、李华阳等在李润伟研究员与宁波诺丁汉大学朱光教授的共同指导下完成,并得到国家自然科学基金(51525103、51701231、51931011),宁波市3315人才计划,宁波科技创新2025项目(2018B10057),浙江省自然基金(LR19F010001),浙江省杰出青年科学基金(2016YFA0202703)中国科学院王宽诚教育基金(GJTD-2020-11)的支持。
  • 上海新拓CW-2000超声-微波协同萃取/反应仪”获BCEIA金奖
    2007年第十二届北京分析测试学术报告会及展览会在北京圆满落幕。此次,由上海新拓微波公司多项自主研发、设计的分析测试仪器获得了与会者的极大关注。其中,CW-2000超声-微波协同萃取/反应仪更是得到了评委们的广泛认可,荣获2007年BCEIA展览会仪器金奖。CW-2000超声-微波协同萃取/反应仪正是凭借其独特新颖先进的技术组合、良好的用户评价和广阔的应用前景成为了今年BCEIA会上在众多微波仪器中唯一获得这一殊荣的仪器。 上海新拓微波公司总经理张和清在此衷心感谢广大用户对公司产品的厚爱和支持,公司承诺将继续坚持创新,不断进取,为我国分析仪器的发展作出自己的贡献。 screen.width-300)this.width=screen.width-300" border=0 screen.width-300)this.width=screen.width-300" border=0 在分析化学研究中样品的前处理过程(萃取/消解、分离和富集)是决定分析检测速度和质量的关键。通常样品的预处理过程所花费的工时约是后继仪器分析操作用时的十数倍或数十倍。因此,新技术和新仪器,一直是理化检验与分析界研究领域之一。在诸多样品预处理方法中,超声波和微波萃取技术的发展较为迅速,应用也较广泛。在美国环保局(USEPA)一些标准方法中(http://www.epa.gov),超声波和微波技术已被列为样品预处理的重要手段。 为填补我国样品预处理萃取仪器的空白,中山大学化学学院邹世春博士等人在多年大量样品预处理方法研究工作的基础上,将超声波和微波有机地结合起来,充分利用超声波的空化作用以及微波的高能作用,率先提出了在低温常压条件下进行微波-超声波协同作用进行样品前处理的新构想,并与我公司技术人员一起,联合研制出了CW-2000型微波-超声波协同萃取仪。 该仪器中直接固定于超声波换能器(50W)上的样品容器,巧妙地置于功率可调,温度可控的微波超声波辐射腔内,通过一系列电子自控技术,实现了直接超声波萃取、开放式微波萃取和微波-超声波二者协同萃取等各种不同的萃取、消解或合成方法。 本仪器的研发得到了广东省自然科学基金的资助,可广泛应用于环保、农业、食品、卫生防疫、地质、医学、化学化工、商检以及教育科研等领域中,是无机分析、有机分析和生物分析等样品前处理极为有效的手段之一,特别适合比重小,体积大的样品前处理(如:橡胶、塑料、中药、农产品和土壤等)。此外,该新型仪器还可作为一种新型反应器,用于高校和科研单位在化学反应、有机合成、样品消解、样品萃取和合成等方面展开许多有意义的研究工作。 仪器主要性能特点: ● 采用新型专利技术,该仪器具有超声波、微波以及微波-超声波协同萃取三种功能,可根据样品性质和分析要求,任意选择一种工作方式,真正做到一机多用; ● 低温常压环境,可减小对样品中目标物,尤其是对有机物结构的破坏; ● 根据容器体积,样品量可高达100 g或以上,尤其适用于比重小、体积大的样品处理(如中草药、橡塑等样品); ● 微波功率和辐照时间、目标溶液温度连续可调,超声振动、微波加热方式和程度可任意根据工作方式、时间和温度任意组合和设定; ● 采用直接超声波振荡方式(不需要超声波液体传递介质),萃取效率高、能耗低、噪声低;嵌入式无线设计,使样品容器置入、取出更为方便; ● 毋须加工或购置特殊材料的样品容器,并可根据用户要求制作不同容量容器,使用成本低; ● 采用控制磁控管阳极电流的方式(专利技术)获得准确稳定的连续微波输出功率(非脉冲方式),尤其适于低功率微波输出控制; ● 触摸式参数设置和显示,液晶视频监视样品处理全过程,实现真正的人机对话; ● 液晶显示器,人机对话,操作更为方便。 ● 非接触式红外测温;电视显示反应状;控温范围:室温-120℃ 精度±1℃;三种控制模式:时控制微波功率/温控微波功率/恒定微波功率。 ● 根据用户目的和要求,新仪器可广泛用于高等院校、科研院所及各生产部门等进行样品消解、萃取、无机或有机反应、合成等。 欢 迎 浏 览 我 们 的 网 站:www.sh-xintuo.com.
  • 国产超声“鼻祖”汕头超声冲刺创业板
    30年前,汕头市超声仪器研究所股份有限公司(以下简称“汕头超声”)自主研制出国内第一代量产的“中华B超”,开启了我国超声诊断设备国产化的道路。如今,汕头超声也走到自身发展的历史节点,冲刺创业板IPO上市。招股书显示,医用超声设备(包括彩超、黑白超)占汕头超声总营收比例约60%。2020年~2021年,受这一主要产品销售收入下降影响,汕头超声的收入规模连续两年出现同比下滑。过往,低端市场一直是汕头超声的重心所在。近年来,公司进一步开拓中高端彩超、乳腺超声等产品的市场销售,其意识到,“专科超声设备领域市场空间广阔,是各医疗设备厂商的研发重点。”专科超声设备领域,全容积乳腺超声成像系统(以下简称“全容积乳腺机”)是汕头超声近年在二级和二级以上医院的推广重点,但受该种产品的检查收费标准制定进度较慢影响,公司推广有所迟缓。2月15日,汕头超声方面在接受《中国经营报》记者采访时表示,新产品开发者在市场开拓中要承担更多责任,通过较长时间改变应用者的固有认知或使用习惯。尤其是全新的医学影像设备,其市场开拓很大程度上依赖核心医院的示范和推广。2022年,公司已和64家一级经销商就公立二、三级医院业务签订了专项框架协议,明确销售目标。传统业务量价“双杀”招股书显示,汕头超声前身为汕头超声仪器研究所,于1982年设立,该所为国内唯一一家长期专注于超声设备及无损检测设备开发的独立研究机构。1983年,公司自主研制出国内第一台超声成像诊断仪,三年后,引进日本日立医疗公司黑白超技术及生产线。直至1995年,国内的医用超声设备仍以黑白超为主,且进口品牌与合资品牌占据市场主导地位,以汕头超声、无锡海鹰电子医疗系统有限公司为代表的国产厂商在夹缝中生存。1997年,汕头超声收购美国ATL公司彩超技术及生产线,率先生产彩超,并在2003年成功研制全数字B超,开始全面替代进口产品。2008年,公司研制出实时三维(4D)容积探头,填补国内空白。近年来,汕头超声业务规模不断扩大,产品线持续横向、纵向拓宽。截至目前,公司主要从事医疗影像设备、工业无损检测设备的研发、生产和销售,主要产品为医疗影像设备和工业无损检测设备,全数字彩超是公司目前主要收入来源。招股书显示,2021年,公司医用超声设备国内市场销量排名前三。2019年~2021年及2022年上半年,汕头超声的医用超声设备业务收入分别为2.36亿元、2.06亿元、1.75亿元和8155.32万元,占总营收比例分别为72.33%、65.06%、62.53%、61.77%。受上述业务影响,汕头超声的业绩呈现下降趋势。2020年和2021年,公司营业收入分别同比减少4.27%、11.73%,净利润分别同比减少20.41%、4.1%。汕头超声披露称,医用超声销售收入在2020年下滑主要是因为销量减少,在2021年下滑的主要原因是销售价格下降。招股书显示,2019年~2021年,公司医用超声设备销量分别为4472套、4108套、3997套,对应单价分别为5.28万元/套、5万元/套、4.37万元/套。其中,对应时期内,彩超销量分别为2521套、2252套、1877套;黑白超销售分别为1951套、1856套、2120套。值得注意的是,2021年,黑白超销量较2020年增加,彩超销量同比减少,但黑白超的销售单价仅约为彩超的15%,产品销售结构的变化导致该年度公司医用超声产品整体售价下降。汕头超声在招股书中指出,公司黑白超收入占比超过10%,尽管从临床应用及产品性价比的角度,黑白超在未来一定时期内依旧具有一定的市场,但从长远的角度看,黑白超逐步被彩超替代,公司在未来也将采用彩超代替黑白超,可能存在黑白超收入逐渐下降引致的收入下滑风险。除了产品本身的市场容量存在不确定因素,汕头超声方面对记者表示,“疫情影响下的市场变化也与公司此前坚持的经营战略产生了暂时性差异。”在医用超声销售战略方向上,公司之前主要的目标客户为基于“分级诊疗”政策大力拓展的私立和基层医疗机构,2021年,以公立二、三级医院扩容为主导的医疗新基建展开,与公司过往一贯的主要目标客户群体(私立医疗机构、公立乡镇级医疗机构等)在结构上有所差异,因此在短期内公司对销售策略的调整存在一定滞后。“长期来看,推动国家分级诊疗政策的落地实施,基层医疗的建设势在必行。因此,公司在基层医疗方面的传统销售优势不会由于暂时性的政策调整而丧失。公司有望能够抓住行业发展机遇,通过自身的自主研发和差异化竞争优势,实现未来业绩的提升。”汕头超声方面表示。发力专科超声设备改变发生在2022年上半年。随着销售策略重点的调整,汕头超声在坚持基层医疗传统销售优势的同时,持续开拓多重市场,一方面取得了军队集采招标项目, 同时进一步开拓了中高端彩超、乳腺超声以及超声成像引导的微创手术解决方案的市场销售。根据申报会计师出具的《审阅报告》,2022年,汕头超声收入约3.36亿元,较2021年增长18.34%,扣除非经常性损益后归属于母公司股东的净利润约1.22亿元,同比增长71.8%。汕头超声方面对记者透露,2022年,公司中高端彩超、全容积乳腺机、手术机器人配套超声产品等的销售收入较2021年分别增长约13%、70%和220%。近年来,汕头超声在开发通用型彩超设备的同时,也致力于专科超声设备的研发生产。当前,医学影像诊断设备朝着功能化、便携化、专科专用化、多模态融合等方向发展。专科超声设备市场涉及妇产、肝脏、心脏等领域,部分国产头部厂家已相继推出了系列产品。迈瑞医疗(300760.SZ)曾在2022年对外披露称,将加大对下一代专业妇产超声、专业心脏超声等其他临床应用领域的超声研发投入。目前,汕头超声已开发出我国首套智能乳腺全容积超声系统IBUS系列产品(即全容积乳腺机),应用于妇产科的日常诊疗。此外,公司目前在研的有光声成像乳腺诊断系统、多模态乳腺诊断系统以及肝脏超声诊断系统、颅脑应用探头及配套主机产品等专科超声设备。只不过,完成新产品的研发并非一劳永逸。对于全容积乳腺机的检查收费标准,目前仅有上海、重庆、江苏等地完成制定,全国大部分省市尚无相关标准,这对汕头超声的产品市场推广带来一定困难。汕头超声表示,随着我国对“两癌”(乳腺癌和宫颈癌)筛查覆盖率的提升及专科化、自动化的超声诊断设备的需求增加,未来该等专科诊断收费体系将逐步建立,专科超声领域的需求将不断增加。根据Signify Research统计数据,2019年国内超声乳腺机市场规模为930万美元,预计到2024年将达到2810万美元,年复合增长率为24.7%。记者注意到,此次IPO,汕头超声拟募资约3.11亿元,投入医用成像产品研发及产业化建设项目(以下简称“医用成像产品项目”)、工业无损检测系统研发项目、便携式DR系统(全数字化X射线摄影系统)研发、产业化及市场建设项目以及创新基地建设项目。其中,医用成像产品项目拟投资约1.29亿元。招股书显示,医用成像产品项目将建设高性能彩超、多模态乳腺诊断系统、超声肝脏诊断系统、超声甲状腺诊断系统和光声成像乳腺诊断系统等5个系列产品,为公司开发并产业化拟于未来3年~5年后进入市场销售的新产品。其中,上述拟建设的5个系列产品的研发投入为1.06亿元。汕头超声表示,医用成像产品项目将优化公司生产布局、提高产品生产效率等,丰富产品结构,为公司培育新的利润增长点,满足公司快速发展的需要。2019年~2021年及2022年上半年,汕头超声研发费用分别为4760.75万元、4128.01万元、3855.92万元及1842.38万元,占营业收入比例分别为14.16%、12.83%、13.57%及13.83%。
  • 基于16 × 4阵元的CMUT面阵,实现高效率、高质量三维超声反射成像
    与传统工艺制作的压电块体型超声换能器相比,电容式微机械超声换能器(CMUT)具有阻抗匹配特性良好、带宽大、体积小等优势,在医学超声成像和无损检测方面得到了广泛应用。三维超声反射成像通常需要利用CMUT线阵的机械移动实现对被测物的多维度扫描,但这一方法往往难以实现较小距离的移动,并且存在一定的误差。利用CMUT面阵对被测物进行扫描可以同时获取多维度的超声反射信号,从而减少测试工作量,并且能够准确获取被测物的三维信息。然而,目前国内关于利用CMUT面阵进行非接触式三维超声反射成像的研究鲜有报道。据麦姆斯咨询报道,为了解决上述挑战,来自中北大学的研究人员提出了利用基于16 × 4阵元的CMUT面阵进行B模式及二次谐波三维成像测试的方法,以得到伪影水平更低、重建偏差更小的超声反射图像。相关研究成果以“基于16 × 4阵元CMUT面阵的三维超声反射成像”为题发表在《微纳电子技术》期刊上。CMUT面阵的制备及工作原理研究人员分别利用绝缘体上硅(SOI)和二氧化硅(SiO₂)晶圆制备了CMUT振动薄膜和真空腔,并且在真空环境中通过晶圆键合形成CMUT面阵。图1 CMUT剖面图及阵元图图2 基于16 × 4阵元的CMUT面阵实物图CMUT的工作原理是通过在上、下电极之间施加直流偏压,从而产生感应静电力将顶部薄膜拉向底部电极。当CMUT处于发射模式时,将交流电压信号叠加在直流偏压上会激励薄膜振动,实现电能和机械能的转换,产生超声信号;当CMUT处于接收模式时,在上、下电极之间施加直流偏压,在超声波的作用下,薄膜会产生振动,从而使得电容值发生改变,通过检测这一变化即可实现超声信号的接收。图3 CMUT工作原理仿真及实验平台搭建该研究利用基于Matlab的k-Wave光声仿真工具箱对基于16 × 4阵元的CMUT面阵进行超声反射成像仿真。整个仿真区域介质为硅油,被测物为一块长和宽均为3 cm、厚1 cm的铝块,铝块与CMUT的距离为3 cm,CMUT阵元间的距离为1 mm。此外,采用单个阵元发射、所有阵元接收,即一发多收的扫描方式对铝块进行扫描。图4 基于16 × 4阵元的CMUT面阵及被测铝块仿真模型随后,研究人员在仿真的基础上搭建了基于16 × 4阵元的CMUT面阵的超声反射成像测试系统。采用面阵上第二条线阵的单个阵元发射、所有阵元接收的方式进行实验测试。实验使用信号发生器和功率放大器驱动CMUT面阵发射超声波,并且利用示波器观察超声反射信号波形。图5 基于16 × 4阵元的CMUT面阵超声反射成像测试系统示意图及超声反射成像实测图仿真及实验结果研究人员采用B模式及二次谐波两种成像算法分别对被测铝块的超声反射信号进行处理,以获取其三维图像及对应的二维切面。结果显示,基于16 × 4阵元的CMUT面阵的反射成像系统能够确定铝块的位置。此外,基于B模式成像算法和二次谐波成像算法所获取的成像结果中,铝块与CMUT面阵的距离重建偏差分别为3.63%及1.47%。图6 被测铝块二维反射成像结果图7 被测铝块三维反射成像结果综上所述,该研究搭建了基于16 × 4阵元的CMUT面阵的三维超声反射成像系统,以获得误差小、信噪比高的超声反射图像。采用单个阵元发射、所有阵元接收的收发方式对铝块进行了相关测试与仿真,利用B模式及二次谐波成像算法对超声回波信号进行处理,获取了被测物的二维切面及三维图像。仿真和实验结果均可以较清晰地确定铝块的位置,与实际情况相符。为了对比两种算法的成像效果,研究人员计算了铝块与CMUT面阵的距离重建偏差。计算结果显示,B模式及二次谐波成像算法的仿真距离重建偏差分别为0.63%和0.4%,实验重建偏差分别为3.63%和1.47%,二次谐波图像的距离重建偏差均小于B模式图像的距离重建偏差。总之,该研究证明了所提出的基于16 × 4阵元的CMUT面阵的三维超声反射系统可实现对被测物的三维成像。论文信息:DOI:10.13250/j.cnki.wndz.2023.03.010
  • 钙钛矿量子点超晶格中的稳定蓝光腔增强超荧光研究取得进展
    近期,中国科学院上海光学精密机械研究所红外光学材料研究中心董红星研究员和张龙研究员团队在溴氯掺杂量子点自组装超晶格结构中实现稳定蓝光腔增强超荧光,并解析了量子点超晶格结构通过降低电声耦合进而抑制光致相偏析的机制。相关研究成果以“Stable and ultrafast blue cavity-enhanced superflourescence in mixed halide perovskites”为题发表于Advanced Science。   高质量蓝光光源受限于低的量子效率,相比于红、绿光源仍处于落后的阶段。而钙钛矿量子点体系中的腔增强超荧光是由量子耦合效应和腔光场放大的双重调制产生的超快相干光爆发,可为实现高质量蓝光相干光源提供新思路,解决传统蓝光光源效率低下的局限性。卤素掺杂是在钙钛矿量子点体系中实现蓝光发射最直接的策略。然而,由于光致卤化物相偏析引起的光谱不稳定以及量子点与光腔之间的低耦合效率,使得在这种掺杂卤化物的量子点系统中实现稳定的蓝光腔增强超荧光具有挑战性。   针对上述问题,研究人员通过可控自组装制备得到形貌规则、长程有序、密集排列的CsPbBr2Cl量子点超晶格微腔。在量子点超晶格中,激子离域效应可以有效地减少激子声子耦合,从而缓解光致卤化物相偏析。同时,量子点自组装超晶格微腔具有高的堆积密度、光滑表面和规则几何结构,既可以作为增益介质,也可以作为高光反馈的回音壁腔,可提高量子点与光腔之间的耦合效率。因此,这两个核心问题将在量子点自组装超晶格结构中得到解决。基于这样的卤素掺杂量子点超晶格,研究人员最终实现了具有优异光学性能的稳定蓝光腔增强超荧光。   该工作得到国家自然科学基金,上海市青年拔尖人才计划等项目的支持。图1(a)量子点超晶格通过减弱激子-声子耦合来缓解光致相偏析的示意图;(b)CsPbBr2Cl量子点自组装超晶格微腔在激光泵浦在产生腔增强超荧光(CESF)的示意图;(c)77K下超晶格中随功率变化的蓝光腔增强超荧光发射图,左上角为1.8Pth激发功率下的蓝光腔增强超荧光的条纹相机图像。
  • 全力打造国内首台超声谐振谱仪——访三亚声演技术顾问汤立国
    2024年7月9日,由中国材料研究学会主办、欧洲材料研究学会联合主办、广东工业大学协办的中国材料大会2024暨第二届世界材料大会在广州白云国际会议中心盛大开幕。本届大会是在加快推进高水平科技自立自强大背景下举办的新材料领域跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平高、涉及领域广、前沿动态新的品牌大会。借此盛会,仪器信息网采访了三亚声演科技有限公司(以下简称“三亚声演”) 技术顾问/厦门大学 教授汤立国。采访中,汤老师详细介绍了公司的主要产品——超声谐振谱仪的功能、应用领域及相较于同类产品的优势,并分享了超声谐振谱技术未来的发展趋势,及基于此技术公司的发展规划等。仪器信息网:本次是贵公司第几次参加中国材料大会?参会感受如何?汤立国:这是我们公司第一次参加中国材料大会仪器展。通过这次大会确实可以了解到行业里面的很多需求,对今后仪器的推广有非常大的作用。仪器信息网:本次贵公司带来了哪些解决方案或新品?主要针对哪些市场?解决了用户的哪些痛点?汤立国:这次带来的主要产品是超声谐振谱仪,目前是国内首款超声谐振谱仪。我们公司是全球第三家能提供超声谐振谱仪的公司,其中一家是美国的洛斯阿拉莫斯国家实验室,另外一家是日本的KK公司。我们公司生产的这款产品与这两家公司相比,产品的软件功能更为全面。这款仪器的主要功能:一是可以定征压电材料所有弹性常数和压电常数,而且在定征过程中只需要单块样品,也是目前全球唯一一款可以对压电晶体所有弹性常数和压电常数进行表征的超声谐振谱仪。除了对压电晶体的材料常数进行表征,这套系统还可以对合金、陶瓷以及其他人工晶体的所有弹性常数进行表征。与传统的材料参数表方法相比,这套系统一方面它只需要单块样品,另外对于各向异性强烈的材料,定征的效率和精度更高,并且可以对压电材料、弹性材料的材料常数随温度的变化特性进行定征。仪器信息网:贵司相关产品的主要热点应用领域有哪些?采取了哪些产品研发计划或市场计划?汤立国:在压电行业和合金行业,在进行材料常数定征时,如定征压电晶体的所有弹性常数和压电常数时,传统方法是采用超声脉冲回波法、电谐振法定征,需要多块尺寸差异显著的样品,由于需要采用多块样品,会导致定征的结果易出现不自洽。我们公司的超声谐振谱仪的优点就在于只需要单块样品就可以实现所有弹性常数和压电常数的表征,因此定征结果更加可靠,而且定征过程更加便捷。除了用于压电材料的定征,在合金行业(如高熵合金)或在功能陶瓷行业,对所有的弹性常数进行表征时,同样这款仪器只需要单块样品,就可以对所有的弹性常数进行高精度的定征。因此这款设备可以为国内压电行业、合金行业或功能陶瓷行业,从材料的制备到应用,都可以起到一个促进作用。仪器信息网:谈谈相关技术或产品未来的发展趋势?未来贵司将有哪些新产品和新技术发展计划?汤立国:超声谐振谱技术,虽然在几十年前就存在了,但是该技术在发展过程中,随着材料行业的发展,就出现了两个比较大的需求:一个是要在高温环境下,对材料参数进行表征,尤其是一些高温的压电晶体,甚至需要在1000℃的高温条件下,对所有的弹性常数、压电常数进行表征;另外还有在极端的环境下,如在航空航天中需要合金或压电材料在低温的情况下,对所有的材料参数进行表征。总之,在高温、低温这两种环境下,对功能材料的材料参数进行表征,是超声谐振谱仪发展的趋势。为了适应这个趋势的发展,目前我们公司开发了一款利用高温的超声换能器,这台设备结合高温超声换能器及高低温箱,可以对晶体或者合金在200℃的高温环境下所有的参数进行表征。目前我们公司还正在跟一些高低温箱的厂家进行深度合作,今年年底的目标是这套系统在500℃甚至更高的温度下实现材料参数的表征。明年打算开发一个低温系统,就是把这套仪器设备和低温的环境相结合,实现压电晶体、功能陶瓷等在-180℃甚至更低的环境下材料参数的表征。仪器信息网:贵司在过去一年中,业绩表现如何?接下来有哪些战略规划或市场规划?汤立国:目前这套系统是刚刚开发完成,还没有进行商业化的推广。下一步的主要任务是在国内的相关行业中,进行这款仪器设备的推广。因为目前这款仪器是国内首款的超声谐振谱仪,相信通过对这套仪器的推广,可以促进国内压电行业、合金行业、功能陶瓷行业的材料表征,为相关的科研人员提供一种全新的国产的表征仪器。
  • 支持国产!安徽省大规模更新质谱、超分辨显微成像、核酸提取仪等仪器设备
    近日,《安徽省推进卫生健康领域设备设施迭代升级工作方案》正式印发。明确各单位更新仪器品类,并强调“国产化率全面提升”:  鼓励国家区域医疗中心、省级区域医疗中心等一批省内拔尖医院对标国际国内一流水平,适度超前配置一批高端放疗设备、超高场强磁共振成像系统、手术机器人、高分辨质谱仪、超高分辨率显微成像及分析系统等融合型、交叉型重大医疗和科研设备,提升医院疑难危重症诊疗、关键医学技术攻关能力。  围绕提升传染病病原体检测能力。以提升新发突发传染病和不明原因疾病“早发现”为重点,支持医疗机构、疾病预防控制机构等按照相应标准规范,更新配备生物安全柜、高压蒸汽灭菌器、核酸提取仪、荧光定量PCR等设备,迭代更新实时监测、冷链等设备,加强实验室仪器设备升级和生物安全防护能力建设,提升传染病病原体等检验检测能力。推动医疗机构病原微生物实验室监测能力建设,提高传染病患者病原学诊断率。  立足血液供应保障和血液安全实际需要,支持血站设备配置提升,更新配备核酸检测设备、酶免分析仪、血型分析仪、生化分析仪等血液检测及血液采集运输、制备、储存等设备,提升血液管理信息化水平,提高血液供应保障能力和安全水平。  详情如下:安徽省推进卫生健康领域设备设施迭代升级工作方案  根据《国务院关于印发推动大规模设备更新和消费品以旧换新行动方案的通知》(国发〔2024〕7号)和《安徽省人民政府关于印发安徽省推动大规模设备更新和消费品以旧换新实施方案的通知》(皖政秘〔2024〕95号)精神,为加快推进卫生健康领域设备设施更新改造,制定如下方案。  一、工作目标  实施先进医疗设备示范应用、县域医疗设备达标提质、城市医疗设备更新升级和数字化转型、公共安全保障设备能力提升四大行动,鼓励具备条件的医疗机构加快医学影像、放射治疗、远程诊疗、手术机器人、智能养老康复辅具等医疗装备更新改造,全面提升医疗卫生机构设施设备配置水平,拓展医疗健康数字化应用场景,推动卫生健康事业高质量发展。  到2027年,全省各级医疗卫生机构医疗装备和信息化设备完成迭代升级,适度超前配置装备,数字化、智能化、国产化率全面提升,超使用年限占比、故障率、维修率显著降低,装备技术服务能力显著增强。  二、重点任务  (一)实施先进医疗设备示范应用行动。  1.加快高端医疗设备创新应用。结合研究型医院建设和首台(套)装备示范推广机制,以临床服务、科技创新、应用转化能力强的高水平医院(含中医院)为主体,推动技术水平先进、应用前景广阔、实现重大技术突破的先进医疗设备及核心部件示范应用,加快形成"示范应用-反馈改进-水平提升-辐射推广”的医疗设备创新迭代体系,示范带动医疗设备创新链、服务链、产业链优化升级。  2.鼓励拔尖医院重大医疗设备配置升级。聚焦肿瘤、心脑血管病、代谢性疾病等严重危害人民群众健康的重大疾病,鼓励国家区域医疗中心、省级区域医疗中心等一批省内拔尖医院对标国际国内一流水平,适度超前配置一批高端放疗设备、超高场强磁共振成像系统、手术机器人、高分辨质谱仪、超高分辨率显微成像及分析系统等融合型、交叉型重大医疗和科研设备,提升医院疑难危重症诊疗、关键医学技术攻关能力。  (二)实施县域医疗设备达标提质行动。  3.支持县级医院医疗设备提质。综合县域服务人口以及承担功能定位,加快县级医院64排及以上CT、1.5T及以上MRI、DSA、手术高清腔镜系统等医疗装备补缺和更新,提升县域医学检验、心电诊断、医学影像等设备配置水平。支持县级医院科学合理配置除仪、呼吸机、血液透析、便携式彩超、转运监护仪、新生儿监护、床旁血气分析仪等设备,支持配备中医电、磁、热等特色诊疗设备,提升肿瘤、心脑血管疾病等重大疾病诊疗能力,加强急诊、重症、中医、老年医学、康复、安宁疗护等专科能力建设,支撑县级医院更好发挥县域龙头作用。  4.推进乡村医疗卫生机构设备标准化。以中心乡镇卫生院为重点加强规范化建设,立足当地人口和医疗服务需求实际,支持对照相关标准健全设备配置,推动中心乡镇卫生院达到县域医疗卫生次中心水平,支撑县域医共体诊疗服务能力提升,提高县域群众就医可及性和便利性。支持服务人口多、基本医疗服务能力强的乡镇卫生院根据医疗服务实际需求,在充分论证的基础上合理配置CT、DR、彩超、全自动生化分析仪等设备。按照填平补齐、对标达标的原则,支持乡镇卫生院配置呼吸机、肺功能仪等满足基本医疗服务需求的通用和专用设备,加快提升常见病、多发病诊疗以及预防保健、康复护理、健康管理、医养结合、中医药健康服务能力,提高设施设备适老化水平。加强乡村医疗卫生人员配备与培训,提升设备运行维护能力,坚决杜绝闲置浪费。  5.加强县乡村医疗服务协同联动。推进紧密型县域医共体建设,提升医学检验、医学影像、心电诊断、病理诊断、消毒供应等资源共享中心设备配置水平,统筹县域肿瘤防治、慢病管理等临床服务相关设备配置,提高资源配置和使用效率。推动基层医疗卫生机构设备数字化替代,支持模拟设备加快向数字化设备转型升级,支持配置临床诊疗实用型、小型化、集成化、可移动医疗设备,探索配备装配DR、快速检验等设备的智能化巡回医疗车等。支持共享中药房设备配备,提高智慧化中医药服务能力。提高人工智能辅助诊断技术在县域医共体内应用能力,促进远程医疗延伸到乡村,推动基层检查、上级诊断、结果互认,助力实现“一般病在市县解决,日常疾病在基层解决”目标。  (三)实施城市医疗设备更新升级和数字化转型行动。  6.支持省域医学高地设备更新扩容和数字化转型。围绕实现大病不出省目标,支持国家区域医疗中心、省级高水平医院、中医特色重点医院等,以医学影像、放射治疗、远程诊疗、手术机器人等设备为重点,配置磁共振成像系统(MR)、X射线计算机断层扫描系统(CT)、数字减影血管造影检查(DSA)等医学影像设备,医用直线加速器、手术机器人等治疗设备,体外膜肺氧合机(ECMO)、呼吸机、远程监护等生命支持设备。推动数据驱动型信息化建设模式,推进医疗设备智能化改造升级,升级计算、存储、安全等基础设备,提高医疗数据资源的高效汇集、安全使用、合规分析能力。加强远程医疗和信息化设备配置,加快有线网、5G网、物联网、无线网等网络设备更新换代,支撑提升疑难危重症及罕见病诊治能力,让群众在省域内享有更加公平可及、系统连续、高质量的健康服务。  7.加快城市医院老旧设备淘汰更新。以人口净流入量大、公共服务缺口大的城市为重点,加快淘汰落后低效、故障率和维修成本过高的医疗设备,更新换代高性能磁共振、彩超、胃肠镜等需求大的诊疗设备,缩短患者排队等候时间。推进紧密型城市医疗集团等医联体建设,更新换代精准化、便捷化、智能化、远程化医疗设备和信息化设施,提高医疗资源配置使用效率。鼓励城市二级医院转型,更新换代康复护理、监护、中医诊疗等智能医疗设备。推广应用远程诊断、远程治疗、远程教学系统,发展应用脉诊、康复等智能中医诊疗设备,提高医疗服务效率和质量。支持社区卫生服务中心设备更新升级。协同病房改造提升行动,配备补齐监护仪、即时即地检验(POCT)等床旁设备及康复训练设备。  (四)实施公共安全保障设备能力提升行动。  8.提升突发事件卫生应急响应和紧急医学援能力。统筹考虑突发事件公共安全风险和区域应急资源规划布局,支持国家紧急救援基地、国家紧急医学救援队、国家突发急性传染病防控队伍等更新抢救、监护、检测、治疗、手术等必要设备,强化应急通讯指挥、专业处置、后勤保障等设备保障,提升突发事件紧急医学救援综合能力。发挥中医药在新发突发传染病等重大公共卫生事件中的独特作用,加强国家中医疫病防治基地等设备配备。推进“平急两用”应急保障医院建设,支持合肥市合理配置和更新医疗应急设施设备,增强城市公共安全韧性。提升院前急救和创伤救治设备水平,地方应按标准配置更新地市、县域院前急救车辆和车载设备,更新换代超过或接近使用年限的急救车辆,积极推动配备AED、车载CT等设备配置。  9.提升传染病病原体检测能力。以提升新发突发传染病和不明原因疾病“早发现”为重点,支持医疗机构、疾病预防控制机构等按照相应标准规范,更新配备生物安全柜、高压蒸汽灭菌器、核酸提取仪、荧光定量PCR等设备,迭代更新实时监测、冷链等设备,加强实验室仪器设备升级和生物安全防护能力建设,提升传染病病原体等检验检测能力。推动医疗机构病原微生物实验室监测能力建设,提高传染病患者病原学诊断率。  10.提升血液供应保障能力。立足血液供应保障和血液安全实际需要,支持血站设备配置提升,更新配备核酸检测设备、酶免分析仪、血型分析仪、生化分析仪等血液检测及血液采集运输、制备、储存等设备,提升血液管理信息化水平,提高血液供应保障能力和安全水平。  11.提升其他专业公共卫生服务能力。支持妇幼保健机构、危重孕产妇和新生儿救治中心、产前筛查诊断机构、新生儿听力障碍筛查诊治机构,参考相关标准等要求加强重点设备配备与更新,着力强化妇产科、儿科、乳腺外科、妇幼保健等专科能力建设,全面提升妇幼健康服务能力。支持职业病防治院所等相关机构,加强职业病防治、危害监测及事故事件应急处置所需设备的配置。  三、保障措施  (一)落实主体责任。各地、各级医疗卫生机构要立足本地、本单位实际开展科学分析研判,摸清底数、梯次推进抓紧做好需求摸底和项目储备前期工作,统筹医疗设备与卫生人力等要素资源合理布局配置,实事求是、科学合理申报投资计划,有序组织项目实施,坚决杜绝闲置浪费。进一步健全政策措施,引导商家适度让利,形成更新换代规模效应。  (二)加强政策支持。相关部门加大对设备更新政策支持,积极开通设备更新项目绿色通道,优化配置许可、招标采购、资产处置等流程。加强对医疗卫生机构和医疗装备生产企业的政策指导,形成协同推进先进医疗设备示范应用与研发创新的政策合力。大型医用设备按照相关管理办法配置使用。统筹医疗设备配置与人才队伍建设,更好发挥国家区域医疗中心等高水平医院高质量发展示范作用,推进紧密型县域医共体建设,在人事薪酬、绩效考核等方面给予倾斜支持。  (三)强化标准引领。各地、各级医疗卫生机构要严格执行相关技术规范,优先淘汰性能无法达到临床诊疗需求,医疗技术落后或已经淘汰、维修成本过高及依照国家有关规定需要报废处置的其他情形医疗设备,并根据国家相关医疗卫生机构设备配置标准、服务能力标准等,制订完善有关标准规范和指南指引,指导机构科学合理实施设备更新。  (四)严格项目管理。各地、各级医疗卫生机构要严格按照资金、资产管理有关法律法规要求,规范资金使用和资产管理工作,确保资金资产安全完整,地方要加强资金全过程、全链条、全方位监管,保障中央资金专款专用,杜绝挤占、挪用和截留现象发生。  (五)做好宣传引导。各地要及时发布推动医疗卫生领域设备更新政策信息,加强政策宣传解读和舆论引导,总结挖掘典型案例和创新经验,做好经验宣传推广和交流互鉴,调动医疗卫生机构和医疗装备生产企业的积极性,营造良好的社会氛围。
  • 动车组空心轴超声探伤仪器研制
    成果名称动车组空心轴超声探伤仪器单位名称北京新联铁科技股份有限公司联系人王迎宽联系邮箱wangyingkuan@shenzhou-gaotie.com成果成熟度□正在研发 □已有样机 □通过小试 □通过中试 √ 可以量产合作方式□技术转让 □技术入股 □合作开发 √ 其他 自主研发成果简介: 1.关键技术 动车组空心车轴超声探伤仪器,主要由超声检测系统、数据处理和显示子系统、定位子系统、电气控制系统及机械整体构架等组成,其关键技术主要有以下几点。 (1)高速多通道嵌入式超声控制器及超声换能器 图1前置电子处理单元 前置电子处理单元是动车组空心车轴超声波探伤设备的核心部件,该单元由硬件检测电路、嵌入式CPU、A/D转换器、具备半导体散热的防护壳体及检测软件组成。其主要功能是发射脉冲激励晶片产生超声波、接收超声波信号同时对信号进行处理和数字转换,识别探头移动的三维距离,并把超声波数字信号、探头位置等检测与控制信息通过网络上传给控制计算机。采用多处理器技术、大容量缓存技术,可实时进行数据的压缩,数据传输速度快。该单元性能先进、结构紧凑、搞干扰能力强,达到国际先进水平。 图2不同型号的超声波换能器 完成了超声换能器的自主研制,其性能达到国外进口水平,部分参数优于国外探头,目前国内超声换能器完全能够取代进口产品。同时,为了解决检测空心车轴内表面缺陷的要求及30孔车轴须检测的纵向缺陷及内表面缺陷的要求,研制了专用的爬波探头和组合探头。 (2)超声耦合技术 本项目对超声耦合剂使用时的环境温度与耦合性能的关系作了大量研究,成功解决了因我国地域辽阔南北温差大带来的超声耦合问题。创新的耦合剂回收,既使得探头与空心车轴内表面的耦合压力稳定,又回收盈余的耦合剂,节省了检测成本。 新型动车组空心车轴超声波探伤设备采用动态耦合技术,在保证耦合效果的同时,极大的减小了耦合液的使用量,降低作业成本。动态耦合技术包含耦合液供给部分、耦合液回收部分、耦合液存放装置、密闭耦合部分。经过实际验证动态耦合技术耦合效果良好,满足动车组空心车轴超声波探伤需要,周向耦合能够控制在3dB以内。 (3)探伤软件 我公司经过两年时间的自主研发,完成了用于控制和监控动车组空心车轴超声波检测的软件系统,该软件基于.net开发,具有直观的图形控制界面,操作符合MW习惯,由多种不同的程序和动态链接库组成,可以在任何一台PC进行全功能操作。 探伤人员可以根据探伤过程中的A型显示方式的波形特征,对车轴上存在的缺陷的类型进行定性分析。A型显示是一种实时的显示方式,设备在扫查过程中无法满足探伤人员分析的需要,为此我们专门设计了探伤扫描图像的离线A显示,将探伤扫查过程的数据存储到上位机中,在探伤扫查完成之后,可以通过调用存储的数据实现A型显示的再现,满足探伤人员分析的需要,同时数据可以永久的存储在数据存储介质中,随时供探伤人员调取、分析。 图3 探伤软件的开发 (4)高速旋转探杆系统 图4 60mm—65mm探杆系统 第一、独创的密封式旋转油腔技术,使耦合油存储在密闭的空间内,保证了极佳的耦合效果,并且能够很好的保护探头,有效解决了原有探杆系统耦合不良的问题。 第二、在探杆旋转油腔内创新设计了耦合油回收系统,使该探杆具备供油和吸油双油路系统,耦合压力稳定,确保耦合油液一直停留在旋转密封油腔内,探杆的其他部分与油液分离。解决了原来整体探杆浸泡在油液中,导致部分电子部件因漏油失灵的故障。 第三、创新设计了探杆进给运动导向滑轮,保证探杆和空心轴内孔的同心度,使探伤过程运行平稳,确保探头在周向运动过程中耦合的稳定性。 第四、更加高效的完成空心车轴缺陷的扫查工作。探杆前端旋转部分采用全新的探头布局技术,具有平衡性好、回转定心准确等优点。独创的密封式旋转油腔技术,使耦合油存储在密闭的空间内,保证了极佳的耦合效果,并且能够很好的保护探头,解决了国外其它厂家探杆系统普遍存在的耦合问题。探杆采用耦合油回收技术,设置有供油和吸油双系统,耦合压力恒定,密封性好,可保证探杆不进油。 (5)集成化的控制系统 控制系统是集数字I/O、模拟I/O、电机及其位置控制于一体的控制单元,具有体积小、高抗震性、安装方便等优点,可满足移动设备的特殊要求。 新型动车组空心车轴超声波探伤设备的设计、研发是一个系统的工程,其包括机械、电气、软件、超声波各方面知识。针对设备的研制,项目组设计了专用的实验平台并根据各测试项目的不同,制定了全面、有效的评价方案。实验平台涵盖机械、电气、软件、超声波等各方面的实验内容,评价技术科学有效能够客观的反映出各子系统的真实状态。 目前投入使用的平台有行走机构跑合实验平台、连续检测实验平台、探杆综合性能测试平台、油路系统实验平台等 (6)连挂传动系统 新型设计的助力平衡机构,结构科学、操作简单、大大的降低了操作人员的劳动强度,一个操作人员即可完成探伤扫查作业。快速锁紧装置可以迅速的将进给连挂系统连接到被检测的空心车轴上。与车体采用一体化设计,重量轻、效率高,方便使用人员操作。能兼容不同规格的探杆系统,满足不同车型探伤作业需求。 该机构由探杆的推进及旋转系统、链条传动系统、机械平衡臂和连挂装置组成。该设计能够保证耦合油液回到车体油箱,一体化结构使探杆系统由车体机械平衡臂支撑,悬挂后车轴轴端所受的悬挂重力非常小,能有效避免轴端压盖及轴端螺纹的损坏。采用快速锁紧装置,能将设备连接盘与适配器快速连挂、锁紧,人工连挂非常轻便,有效减轻了劳动强度,提高作业效率。 该机构可兼容30~110毫米直径探杆系统,可分别检测不同内孔直径的动车组空心车轴。通过更换不同的探杆系统放置筒并借助定位机构方便的进行切换,很好的解决了设备的兼容性问题。 图5快速锁紧装置 图6进给装置及助力平衡机构 2.技术先进性 该成果为为国内首创,与国外同类设备相比,在兼容性、探伤扫查时间、探伤精度、适用范围等方面均有显著优势,为国际领先水平,关键参数对比情况见下表。本项目是唯一通过铁路总公司(原铁道部)技术评审的成果。我公司通过本成果的实施,获得了中国铁路总公司2项技术标准立项,为《动车组空心车轴超声波探伤设备 第1部分:自动式》、《动车组空心车轴超声波探伤设备 第2部分:便携式》,目前报批稿已完成,预计2016年发布。 3.技术创新点 (1)兼容性创新 本成果针对CRH系列各型动车组从Ф30mm到Ф110mm的空心车轴探伤需求,研发了多种探头阵列系统和多种车轴适配器,可以兼容不同孔径,满足不同型号的动车组的使用需求,填补了国内空白。 (2)高分辨力探头 采用压电复合材料晶片,具有高灵敏度、高分辨力、高机电耦合系数和高介电常数的特点,有效提高了外围电路阻抗匹配率,具有较高的能量转换效率,主要技术指标达到国际先进水平。 (3)高精度探头组合 采用多个不同声束方向、位置排布的探头,可对动车组的整根车轴进行无盲区扫查并发现车轴外表面的横向、纵向及材质缺陷,检测缺陷类型和精度达到国际先进水平。 (4)高集成度精密探杆 自主设计制造了全世界第一根Ф30mm八通道探杆,满足国产新造CRH380系列空心车轴检测要求,在长客和青岛庞巴迪使用良好,填补了国际空白。 (5)数据管理与远程诊断 开发了动车组空心车轴探伤管理信息数据平台,可从探伤设备收发数据并存储到数据中心,实现探伤数据统一管理与远程诊断,提高了动车组空心车轴探伤的智能化水平。 4.性能指标 (1)适应环境温度:0℃~+45℃; (2)系统检测灵敏度:1mm深度周向缺陷可检出,体积缺陷Ф2mm平底孔当量可检出; (3)单轴扫查时间:4分钟; (4)超声波通道数量:8通道; (5)探头频率:4MHz; (6)可测轴孔径:可检测Ф30mm、Ф39mm、Ф40mm、Ф60mm、Ф65mm、Ф80mm、Ф110mm空心车轴; (7)最大检测长度:2705mm; (8)探伤扫查探头转动速率:20~150rpm可调; (9)检测螺距:1~10mm可调; (10)最大功率:1.49kw。 5.应用研发 本成果已经形成了批量生产工艺,具备了产业化条件,目前销量已达150余台/套,在全国北京、上海、广州、济南等18个铁路局进行推广应用,占据了动车组空心车轴检修领域90%的市场份额,客户反映良好。 随着项目产业化的实施,我公司开发了动车组空心车轴探伤管理信息数据平台,可以适用于全国各铁路局、动车检修基地、动车所对动车组空心车轴探伤数据进行统一管理,为铁路局各级人员提供决策数据支持、检修预警、台帐管理、作业监控、作业质量评价等功能。 我公司还在本成果的技术基础上,研发适用于机车、地铁等其他轨道交通车辆的车轴超声探伤设备,拟将产品推广到轨道交通的更多领域。应用前景: 1.成果主要用途 本成果针对我国动车组运行密度大、里程长、环境复杂多样,车轴型式多样、速度等级不一、运用质量及检测要求高等特点,研发了兼容各型动车组空心车轴超声波探伤关键技术,能够满足目前所有车型空心车轴的裂纹和材质缺陷检测的需求,兼顾CRH系列各型动车组空心车轴的检测应用,形成了我国轨道列车空心车轴无损探伤体系,解决了我国动车组空心车轴无在役运行缺陷检测的重大问题。 2.适用领域 本成果属于轨道交通领域,适用于动车组空心车轴的出厂检验及在役检修,主要应用在动车检修基地、动车运用所、主机厂等单位。 3.市场预测 本成果是轨道交通行业的配套产业,近几年,我国轨道交通行业投资规模巨大,一大批动车检修基地、动车运用所的建设及改造工程正在进行。未来我国铁路行业仍将保持高速发展态势,预计在“十三五”期间,我国还将新建27个动车运用所,2个动车检修基地,2个和谐型大功率检修基地。伴随城际铁路的发展也将有一批检修所建设。 铁路行业的快速发展,路网规模的进一步扩大,将推动18个路局对车辆段、机务段的更新改造,检修设备的投入是车辆段、机务段的更新改造的重点,这就推动了本行业的快速发展,预计2016—2020年,铁路机车车辆检修设备市场规模约177亿元。 按照铁道部运输局制定的运装管验[2011]175号文件中关于公布《动车运用所关键设备技术条件》的《空心车轴超声波探伤设备技术条件》的要求,以及TG/CL 127-2013《铁路动车组运用维修规程》,动车运用检修必须进行空心轴超声探伤。截止2014年底,中国CRH系列动车组拥有量1411组、13696辆,未来3-5年CRH系列动车组将很快达到2000组、约20000辆,对项目产品的需求量会更多。我国有52个动车运用所,对空心轴探伤机的需求量很高,按照每个运用所配套10台项目产品,项目产品需求量约为520台/套。知识产权及项目获奖情况: 1.知识产权 本成果申请国内发明专利4项,授权2项;获得实用新型专利授权22项,外观设计专利授权1项,取得软件著作权2项。已取得知识产权情况如下: 1 一种空心车轴探伤机的远程监控系统 发明专利 201110243207.8 授权 2 采用活动轨段的轨道车辆车轮探伤系统和方法 发明专利 201310030813.0 授权 3 空心轴探伤探杆 实用新型 201020167088.3 授权 4 超声波探伤用适配器 实用新型 201020296334.5 授权 5 便携式空心车轴超声波探伤仪 实用新型 201120317637.5 授权 6 空心轴超声波探伤用对比试样轴 实用新型 201120317632.2 授权 7 空心轴探伤探杆耦合剂工作状态观察装置 实用新型 201120300835.0 授权 8 空心车轴超声波探伤机探杆防撞保护装置 实用新型 201120300843.5 授权 9 一种防止空心车轴探伤探杆进油的密封结构 实用新型 201120270160.X 授权 10 一种空心车轴超声波探伤校验体 实用新型 201120269956.3 授权 11 确保探伤机进给机构与空心车轴同心连接的连接装置 实用新型 201120269978.X 授权 12 空心轴内部缺陷距离深度补偿定量检测试块 实用新型 201220118848.0 授权 13 一种用于动车空心轴超声波探伤机适配连接装置 实用新型 201320705173.4 授权 14 一种探伤机进给链条 实用新型201320705314.2 授权 15 一种能够改善探头耦合性能的探头支架装置 实用新型 201520173657.8 授权 16 旋转油腔式探杆 实用新型 201520173382.8 授权 17 格莱圈安装工具 实用新型 201520173696.8 授权 18 一种探伤机行走传动装置和探伤机行走装置 实用新型 201520367334.2 授权 19 用于空心车轴超声波探伤的适配器 实用新型 201520431630.4 授权 20 空心车轴探伤装置 实用新型 201520602798.7 授权 21 探杆的密封联接装置 实用新型 201520586904.7 授权 22 空心轴探伤机线缆收集装置 实用新型 201520532309.5 授权 23 动车组空心车轴超声波探伤探头 实用新型 201520589322.4 授权 24 移动式动车组空心车轴超声波探伤车 外观设计 201130285883.2 授权 25 XHAT-M系列空心轴探伤信息化接口软件 软著 2010SR054488 授权 26 SUN-1型动车组空心车轴超声波探伤机检测软件[简称:SUN]V1.1.3 软著 2014SR088883 授权 2.所获奖励及科技计划 本成果所获荣誉奖励情况详见下表。 1 首都科技条件平台仪器开发培育项目 新型动车组空心轴超声探伤仪器的产业化培育 2 北京市科学技术二等奖 兼容各型动车组空心车轴超声波探伤关键技术研究及应用 3 上海铁路局科学技术进步一等奖 动车组空心车轴超声波探伤专用探头国产化 4 国家火炬计划产业化示范项目 兼容各型动车组车轴超声波探伤机产业化项目 5 国家重点新产品 空心车轴超声波探伤机
  • 一文掌握超声无损检测技术及行业市场现状
    关于超声无损检测技术1929年,前苏联科学家索科夫率先提出利用超声波穿透物体去探测内部缺陷和结构,建立了早期的超声波成像系统。20世纪60年代,超声检测技术已经成为有效而可靠的无损检测手段,并在工业探伤领域得到广泛应用。进入20世纪90年代,超声无损检测仪器的数字化和电子计算机技术的快速发展催生了超声检测新技术的开发,超声衍射声时技术(TOFD)和相控阵技术(PA)等科技创新方法不断涌现,使得超声检测结果可以进行数据追溯。从技术原理来看,人们能够听到声音是因为声波传到了我们的耳内,声波的频率在20HZ~20,000HZ,频率低于或超过上述范围时人们无法听到声音,频率低于20HZ的声波称为次声波,频率超过20,000HZ的声波称为超声波。声波、次声波、超声波都是机械波,有声速、频率、波长、声压、声强等参数,在界面也会发生反射、折射。机械波在材料中能以一定的速度和方向传播,遇到声阻抗不同的异质界面(如缺陷或被测物件的底面等)就会产生反射、折射和波形转换。这种现象可被用来进行超声波探伤。 传统超声检测采用脉冲法进行检测,高压发生器发出的电压施加在探头上,由于压电效应的存在探头发射出超声波脉冲,通过声耦合介质(如机油或水等)进入材料并在其中传播;遇到缺陷后,部分反射能量沿原途径返回超声探头,超声探头又将其转变为电脉冲,经仪器放大而显示在显示端的荧光屏上。根据缺陷反射波在荧光屏上的位置和幅度(与参考试块中人工缺陷的反射波幅度作比较),即可测定缺陷的位置和大致尺寸。脉冲回波探伤法通常用于锻件、焊缝等的检测。可发现工件内部较小的裂纹、夹渣、缩孔、未焊透等缺欠。被检测物要求形状较简单,并有一定的表面光洁度。为了成批地快速检查管材、棒材、钢板等型材,可采用配备有机械传送、自动报警、标记和分选装置的超声探伤系统。近年来,超声无损检测仪器的数字化和电子计算机技术的快速发展催生了超声检测新技术的开发,超声相控阵技术(PAUT)逐渐成为无损检测行业主要技术发展趋势,应用范围得到了不断推广,传统的常规脉冲回波超声技术正逐渐被超声相控阵技术和全聚焦技术等替代。超声相控阵技术是借鉴相控阵雷达技术的原理发展起来,起先应用于医学领域,最初系统的复杂性、固体中波动传播的复杂性及成本费用高等原因使其在工业无损检测中的应用受限,随着电子技术和计算机技术的发展,超声相控阵技术逐渐用于工业无损检测,尤其是在核工业与航空航天领域取得了很多技术上的突破,并越来越广泛地应用于锅炉、压力容器、轨道交通、航空航天的无损检测。常规的超声检测通常采用一个压电晶片来产生超声波,一个压电晶片只产生一个固定的声束,其声束传播是预先设定的,在固定材料中不能变更;超声相控阵技术则采用了多个压电晶片,这种晶片排列称为阵列,阵列中的每一个晶片称为阵元,阵列晶片组辐射的总能量形成超声束。通过控制阵列中各阵元的激励(或接受)脉冲的时间延迟,改变由各阵元发射(或接受)声波到达(或来自)物体内某点时的相位关系,实现聚焦点和声束方面的变化,达到检测的目的。关于超声无损检测市场根据市场咨询机构Markets and Markets研究报告显示,2018年全球无损检测市场(NDT)容量约为83亿美元,预计到2024年全球市场规模将达到126亿美元,其中超声检测将占据最大比例的市场份额。2016年超声检测(UT)市场容量为24.4亿美元,预计2022年超声检测市场规模增长至39.3亿美元,2016年至2022年的年复合增长率为8.3%。(数据来源:Markets and Markets)当前美国是超声无损检测市场消费额最高的国家,2015年约占全球无损检测仪器市场的35.6%;其次是欧洲,占据了整个市场容量的26.5%左右。近年来,由于亚太地区基础设施的快速发展和制造业自动化水平的持续提升,中国、印度、日本和韩国等国家已经成为全球无损检测市场的主要增长区域,约占整个市场容量的24.2%。(数据来源:Markets and Markets)随着我国传统产业的转型升级,新兴行业保持高速发展,新材料、新结构和新工业不断涌现,对无损检测行业提供持续发展机遇。与此同时,虽然国内企业总体水平和综合实力有了很大程度的提高,在无损检测基础理论、技术开发、仪器设计和研制及产品应用等方面都已在世界占有重要一席。但在一些高端无损检测仪器制造方面,与欧美等发达国家仍存在一定差距,如在全聚焦相控阵超声检测的应用领域方面,仍然大量采用进口的国际品牌。根据中国海关统计相关数据,2017 年至 2020 年我国进口的无损检测设备(不包含探头和配件)情况如下:从上表可以看出,受超声波探伤检测仪进口额逐年快速上升的影响,我国无损检测设备近年来进口额呈持续上升趋势,其中超声波探伤检测仪进口额占无损检测设备的比例总体逐年上升,2017年至2020年的占比分别为43.68%、45.28%、50.66%和 46.98%。具体从超声无损检测仪来看,根据中国海关统计相关数据,2017年至2020年,我国超声波探伤检测仪(海关编码:90318031, 不包含探头和配件)进口金额分别达48,928.02万元、68,534.43万元、83,382.45万元和 69,819.16万元,进口额总体逐年快速上升,国产进口替代市场空间广阔。关于超声无损检测仪器企业总体而言,目前专门从事超声无损检测仪器研发、生产和销售的公司相对较少,国外主要以奥林巴斯、美国贝克休斯、英国声纳、美国捷特、法国M2M等为主,国内则包括汕超研究所、超声电子、中科创新、多浦乐等。奥林巴斯(Olympus Corporation)成立于1919年,是一家全球性的世界精密光学技术企业,业务领域包括映像领域、医疗领域和生命科学领域等。目前已在日本东京证券交易所、德国慕尼黑证券交易所、柏林证券交易所和美国OTC市场等多地上市,股票代码均为OOPT。奥林巴斯旗下的无损检测子公司(Olympus NDT)可为用户提供品类齐全的超声/涡流探伤设备系列产品,具体包括探伤仪、手持测厚仪、探头、棒材和管材检测系统、NDT系统的仪器设备和工业扫查器。据奥林巴斯2019年4月至2020年3月财年报告,其无损检测设备全球市场占有率为30-40%,竞争对手为贝克休斯。贝克休斯(Baker Hughes)成立于1982年,为全球石油开发和加工工业提供产品和服务的大型企业。贝克休斯系纽约证券交易所上市公司,股票代码为BKR。2016年,通用电气(GE)将其下属油气业务部分(含检测技术公司GE Inspection Technologies)与贝克休斯合并,成为全球第二大油服企业。贝克休斯为无损检测全球领导者,提供优质的无损检测解决方案和服务,其产品包括超声检测设备、涡流检测设备、射线照相系统和高清远程视觉检测等。 英国声纳(Sonatest)成立于1958年,在超声产品无损检测设备及附件的制造和生产都处于全球领先地位,具体产品包含超声波探伤仪、测厚仪、相控阵探伤仪和探头等,主要适用于高衰减材料检测、焊缝、腐蚀检测、大锻件、大铸件、高衰减和非金属材料探伤。英国声纳的下游客户包括波音公司、空中客车、壳牌石油、E.ON电网和网络铁路等国际知名企业。美国捷特(Zetec)始于1968年,是美国罗珀科技公司旗下的子公司,是全球无损检测解决方案的领军企业之一,在加拿大魁北克市设有全球工程和制造中心,并在美国西雅图设有公司总部。美国捷特无损检测产品可以分为超声检测和涡流检测两大系列,具体包括超声检测仪器/软件/检测探头和楔块和涡流检测设备/软件/探头等产品种类,下游客户覆盖电力行业、石油和天然气行业、航空航天、汽车制造、军工、铁路以及重工业和制造业。法国M2M为国际知名数字超声相控阵与涡流设备设计与制造商,由法国原子能委员会(CEA)于2003年设立,总部位于法国巴黎,2008年被Eddyfi Technologies收购。Eddyfi Technologies为世界知名NDT检测科技公司,致力于为航空航天、能源、采矿、发电和运输行业等提供检测设备、软件、传感器等多 元化服务。汕超研究所成立于1982年,位于广东省汕头市。汕超研究所主营业务为医用超声显像诊断系统、医用X射线影像系统、无损检测设备等的研发、生产和销售,是国内医用超声诊断设备领域的知名企业。超声电子成立于1997年,是以电子元器件及超声电子仪器为主要产品的高新技术企业,主要从事印制线路板、液晶显示器及触摸屏、超薄及特种覆铜板、超声电子仪器的研制、生产和销售。超声电子为A股上市公司,股票代码000823,2020年营业收入51.69亿元,其中超声电子仪器的销售额为6,413.85万元。超声电子创建的“汕头”牌系列产品,能够提供丰富多样的医用超声诊断系统和无损检测设备。中科创新成立于2003年,位于湖北武汉市,公司产品主要包括便携式超声波探伤仪和多通道自动化检测设备,并可以为特殊市场用户提供量身定制的个性化服务,一直致力于为钢铁、机械装备制造、特种设备、石油化工、轨道交通、航空航天、船舶制造、电力能源等行业提供超声波无损检测应用解决方案和技术服务。多浦乐成立于2008年,聚焦无损检测设备的研发、生产和销售,致力于为客户提供超声无损检测专业解决方案及检测仪器产品,属国家认定的高新技术企业之一。多浦乐是国内首家推出高性能超声相控阵检测设备的企业,Phascan超声相控阵检测仪于2014年被评为国家重点新产品,并于2017年成为首台中国特检院举办相控阵超声培训所使用的国产检测设备,亦为首台经过中国特检院测试认证的超声相控阵检测设备。多浦乐2020营业收入1.28亿元。
  • 中国电科超声扫描显微镜填补国内空白
    近日,中国半导体行业协会、中国电子材料行业协会、中国电子专用设备工业协会、中国电子报共同评选出“第四届(2009年度)中国半导体创新产品和技术”36个项目。中国电子科技集团公司第45研究所研发的SSJ-100超声扫描显微镜荣获此奖项。   SSJ-100超声扫描显微镜是一种离线的检测分析设备,在失效分析、工艺过程开发、关键生产工序的监控及小批量产品检测方面有很大的优势,填补了国内空白,并且在各类超声图像的构建与分析、超声发射接收装置、聚焦承片装置等多方面拥有相关专利及自主知识产权的核心技术。该产品可用于各类半导体器件封装如QFN、BGA、FlipChip、CSP、MCM等内部损伤及不连续性等各种缺陷的无损检测及可视化分析,并可用于MEMS的内部无损检测、制造工艺分析以及陶瓷、玻璃、金属、塑料等各种材料的特征、特性分析。相对于X射线的无损检测,超声扫描显微镜可以完整反映器件内部粘接层、填充层、结合层等各方面的内部缺陷,作为无损检测的新一代技术,它拥有不可替代的优势。它以良好的技术支持切实为用户解决问题,在与国外同类产品的竞标中获得了用户的认可,受到了众多用户的好评。该产品不但在技术上成为用户产品生产的可靠保障,而且真正降低了国内用户的生产成本。
  • 汕头超声屯房46套,李德来巧控“国产B超鼻祖”
    有着“国产B超鼻祖”之称的汕头超声,也在冲刺创业板上市。汕头超声是一家拥有悠久历史的公司,它的前身可以追溯到汕头超声电子仪器厂原厂办研究所,经过改制和股权腾挪,最终以汕头市国资委、员工持股平台和基金投资公司三方持股的股权结构发起了上市冲刺。上世纪八十年代,汕头超声自主研制出国内第一代量产的“中华B超”,从此开启了我国超声诊断设备国产化的道路。资料显示,这是一家主要从事医学影像设备、工业无损检测设备的研发、生产和销售的国家级重点高新技术企业。改制而来的汕头超声,最大的特点就是股权占比过半的员工持股平台超声资管,其中包括实控人李德来及公司的一众员工。然而专家型管理团队也有弊端,计划生产、经营理念保守,使得汕头超声的存货周转率偏低。不仅如此,报告期内汕头超声的核心产品量价齐跌、产能利用率下滑,其主营业务收入也跟着往下跌。自去年六月份首次递交招股说明书,汕头超声的上市之路已经走了近九个月的时间。 日前,其发布首次公开发行股票并在创业板上市的审核中心意见落实函的回复,离上市又进了一步,不过业绩表现仍旧让外界担心。依赖单一产品,营收净利下滑业绩方面,汕头超声关键的营收和净利润指标,曾连续两年下滑。2019年-2021年及2022上半年,汕头超声营业收入分别约为3.36亿元、3.22亿元、2.84亿元和1.33亿元,净利润分别为1亿元、8006.17万元、7592.08万元和4078.72万元。汕头超声表示,2020年和2021年营业收入、净利润规模呈现下滑趋势,主要受疫情因素影响,以及在后疫情时代销售策略调整存在滞后所致。除此之外,汕头超声并未提及其他原因,不过从其业绩分布和子公司情况来看,或许还有其他的因素使得收入和净利润下跌。其中一个客观原因是,汕头超声目前产品结构较为单一,主要收入和利润依赖超声产品。报告期内,超声设备收入占主营业务收入的比例分别为94.77%、87.45%、88.58%和88.65%。在这期间,超声设备收入的绝对值降低,由于业务集中,直接拉低了整体收入。2019年-2021年,超声设备的收入分别约为3.1亿元、2.76亿元、2.48亿元。另一方面,汕头超声旗下的子公司经营红灯亮起,8家子公司中有2家亏损,此外还有3家未开展业务。截至2022年6月30日,广州上超和超声国际两家子公司分别净亏损83.1万元和210.44万元,其中超声国际2021年已经亏损309.16万元。未开展业务的公司有3家,分别是北京汕和、深圳汕超、长成置业,三家公司成立的时间都不算短,分别于1995年、2015年和2013年成立。报告期内,而长成置业则因为总部大楼建设项目终止,迄今未开展业务。不过由于长成置业对珠港新城总部经济园区地块进行了勘察、设计等前期投入,后续项目停滞,2020和2021年度,非流动性资产处置损益-504.47万元、-77.41万元。北京汕和因则其名下拥有房产,所以暂未办理注销手续。据披露,汕头超声名下共有房产(包括车位)46套,其中28套为住宅,其他为办公、车库和工业厂房等。46套房产大部分位于汕头和广州,上海、郑州分别有2套,成都、西安、朝阳、深圳、香港各一套。目前,汕头超声将其拥有的部分房产用于对外出租,投资性房地产主要有3套,包括广州天河区两套住宅,上海凯旋门大厦一处商办及车位。核心产品量价齐跌,产能利用率下降超声设备贡献了超八成的收入,其中医用超声设备和工业超声设备占了大头。值得一提的是,与2019年相比,2020年与2021年两个板块的销售单价和数量在波动中下降。报告期内,医用超声设备的销售数量分别为4472套、4108套、3997套、1719套;单价分别为5.28万元/套、5万元/套、4.37万元/套、4.47万元/套。与此同时,工业超声设备的销售数量分别为2441套、2523套、2608套、1321套;单价分别为1.72万/套、1.75万/套、1.58万/套、1.55万/套。相比之下,工业超声设备的销售数量处在稳定上升阶段,而医用销售数量持续减少;不过在销售单价方面,2022年上半年医用超声设备价格有了回暖迹象,但工业超声设备较上一年末每套又减少了300元。为了适应销量变化,汕头超声下调产量,而这就直接影响到产能利用率。以医用超声主机为例,报告期内的产能利用率分别为90.63%、65.46%、58.41%、78.74%。即便如此,汕头超声的存货周转率依旧低于上市公司平均水平,剔除土地开发成本,报告期内存货周转率分别为0.78、0.83、0.72和0.33。公告显示,由于汕头超声生产模式主要为计划生产,公司为便于销售的快速反应,计划备货较多。同时,由于历史经营时间较久,经营理念较为谨慎,在生产计划的制定、存货的精细化管理上尚存在改进的空间,因此存货金额较大。分红超过净利润,实控人套现8600万从汕头超声电子仪器厂原厂办研究所,到改为独立单位,汕头超声的发展历程是一笔浓厚的历史笔墨。汕头超声的前身超声研究所原为汕头超声电子仪器厂原厂办研究所,而汕头超声电子仪器厂的前身为创建于1957年的地方国营企业汕头无线电厂。1978年10月,相关部门决定将研究所改为独立单位。随后到1982年11月,公司获得营业执照,企业名称为“汕头超声仪器研究所”,注册资金166万元。国有企业改制及国有产权转让来得很快。2004年,决定将超声研究所净资产的30%转让给企业内部职工,并改为职工股;提取不超过30%的部分作为技术管理股,占总股权21.98%;同时在净资产中提取9.41%作为激励股;剩余的40.39%股权为国有股。2005年2月,汕头市财政局和超声研究所内部职工代表李德来订立《产权转让合同》,随着一系列的股权确立,员工持股平台超声资管浮出水面。截至2008年,超声资管持股59.62%,汕头市国资委持股40.38%。2020年,再度引入基金投资机构德福基金,形成了超声资管、汕头市国资委和德福基金三足鼎立的股权结构,它们分别持股60.38%、36.63%、2.99%。其中,超声资管为员工持股平台,包括李德来在内,共有202位员工持股。截至目前,汕头超声的控股股东是超声资管,而实际控制人是李德来。李德来直接持有超声资管30.04%股份,又通过超研合伙、超康合伙、超安合伙和超臻合伙间接持有超声资管股份,其最终受益汕头超声25.04%股份。值得注意的是,过去三年汕头超声曾进行较大数额的分红。2019年-2021年及2022上半年,汕头超声现金分红金额分别为1.43亿元、1.06亿元、5922.65万元、3532万元,合计现金分红金额达3.43亿元,在这期间其净利润总和为2.97亿元,低于分红总额。据此推算,李德来近三年累计套现约8600万元,员工持股平台套现2.07亿元。文/乐居财经邓鑫妮
  • 360万!清华大学激光共聚焦显微镜和超声扫描显微镜采购项目
    项目编号:清设招第2022123号项目名称:清华大学激光共聚焦显微镜预算金额:160.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01激光共聚焦显微镜1套是设备用途介绍 :高精度表面分析,用于微观形貌、微观结构的表征;厚胶光刻显影工艺、刻蚀释放工艺、厚金属剥离工艺等3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像。简要技术指标 :1)具备8英寸及以下基片上3D形貌观测分析、断层扫描成像分析等,非接触式、无损、快速成像和测量功能;2)3D观测方式:共焦光路系统,光源:反射激光和反射LED光源,激光共聚焦模式、彩色成像模式、彩色光学DIC成像,具备光学测量及成像模块,3D观测方式具有白光;明场、暗场及共聚焦;单色共聚焦或多色真彩共聚焦观察方式;3)成像图像X/Y平面分辨率≤0.12µm、Z轴显示分辨率精度≤0.006μm;4)5x,10x,20x,50x,100x均为激光专用复消色差物镜。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。项目编号:清设招第2022125号项目名称:清华大学超声扫描显微镜预算金额:200.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01超声扫描显微镜1套是设备用途介绍 :利用材料内部组织因密度不同而对超声波声阻抗、超声波吸收与反射程度产生差异的特点,实现对材料内部缺陷的定性分析,在半导体封装及材料等行业中具有广泛的应用。对器件内部的结构、夹杂物、裂纹、分层、空洞等进行检测,是提供高分辨率无损检测的重要手段。简要技术指标 :1)最大扫描速率≥610mm/s;2)扫描精度:可设置最小扫描步进≤5μm,最大扫描步进≥500μm。合同履行期限:交货时间:合同签订后180日内本项目( 不接受 )联合体投标。
  • 超声电子2022年营收66.73亿,其中仪器业务占2.67%
    近日,广东汕头超声电子股份有限公司(简称:超声电子)发布2022年度报告。报告显示,超声电子2022年实现营收66.73亿元,较去年同期下降0.87%;归属上市公司股东的净利润为4.17亿元,较去年同期增长10.94%;基本每股收益为0.7762元,较去年同期增长10.93%。其中,2022年超声电子仪器业务营收1.78亿元,较去年同期增长11.36%,约占总营收的2.67%。超声电子主要从事印制线路板、液晶显示器及触摸屏、超薄及特种覆铜板、超声电子仪器的研制、生产和销售。其中,超声电子仪器产品主要有相控阵超声成像系统检测仪、常规超声波探伤仪及超声波系列探头,涡流、电磁超声测厚仪器、电动双轨探伤仪、自动探伤系统,广泛应用于石化设备、运输管道、轨道设施、航空航天设备、电力设施等领域的无损伤检测、定位、评估和诊断。
  • 当超声“碰到”神经元,脑科学有了新工具——记国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器”
    项目组科研人员与同行专家交流合影。 研究团队供图中国科学院深圳先进技术研究院(以下简称深圳先进院)实验室里,一台高精尖仪器一排排控制灯交替闪烁。一万多个探头发出超声波形成的操控声场,如同“上帝之手”穿过实验动物的颅骨,直抵大脑深处,精准“触碰”一些神经元,产生仅仅几微米的细微形变,被磁共振仪敏锐捕捉到。“亮了!亮了!”深圳先进院研究员郑海荣看到,磁共振图像上黑漆漆的实验动物大脑中间出现白色的小亮点,犹如在脑科学的未知宇宙中点亮一颗新的星球。2019年初,郑海荣团队迎来里程碑式的一天,这也是他们在国家自然科学基金国家重大科研仪器研制项目支持下开发“基于超声辐射力的深部脑刺激与神经调控仪器”的第4年。如今项目顺利结题,这台原创的高端科研仪器已进入产业化阶段。“科研需要一股不服输的韧劲!”回首研发历程,郑海荣向《中国科学报》表示,“6年来,一步步攻克科学难题、一个个突破工程难关,离不开整个团队攀登科学高峰的坚定信念和持久韧劲。”解脑科学“刚需”之急近年来,帕金森病、阿尔茨海默氏症、抑郁症、癫痫等脑疾病得到越来越多的关注,患者数量剧增,脑疾病带来的经济负担和社会负担越发严重,已成为我国人口老龄化面临的重要社会问题之一。然而,从科学上看,脑疾病发病机制仍不清晰,其诊治仍然是重大医学难题。“国际上脑科学研究者已经认识到,帕金森病、抑郁症等疾病多与深部脑区核团病变有关,对核团及其所在环路的神经调控是疾病治疗和科学研究的基本途径之一。”郑海荣表示。多年来,科学家将电、磁、光等技术与神经科学相结合,产生了脑深部电刺激、磁刺激、光遗传学等神经刺激与调控技术。但是,由于各自物理属性的不同,如何实现无创、精准对大脑深部进行有效调控仍面临严峻挑战。因此,脑科学面临的“刚需”是开发出一种适用于灵长类动物和人类、可无创到达大脑深部的刺激与调控工具。2013年前后,从事物理医学成像研究的郑海荣开始思考,有没有可能利用超声波来操控神经元活动。这个想法并不是天方夜谭。据了解,超声是一种机械波,医学上利用超声波在人体组织中的波散射来成像,就是大家熟悉的B超。早在几十年前,科学家曾观察到,超声波能够通过“声辐射力”让声场中的微小颗粒产生移动。不过,从来没有人尝试过专门设计一台这样的仪器,用超声波辐射力实现对大脑中神经元的“隔空探物”。基于此前对超声辐射力的研究,郑海荣团队下决心对“基于超声辐射力的深部脑刺激与神经调控仪器”进行自主研发,经多轮严格论证,2015年获得国家自然科学基金国家重大科研仪器研制项目支持。啃原创仪器“硬骨头”“虽然我们之前做过体量小一些的成像仪器,但这个项目从科学验证到工程实践面临的挑战非常大,刚开始心里也不太有底。”郑海荣坦承。一开始,他们就做好了啃“硬骨头”的打算。这台仪器共有4个关键部件,包括超声面阵辐射力产生与发射部件、超声电子指向与时间反演控制部件、磁共振导航超声刺激定位部件和多模态刺激反应监测部件。其中,超声面阵辐射力产生与发射部件中包含16384个阵元的面阵列超声辐射力发生器。“我们做的是原创仪器,不仅仪器国际上没有,连其器件和部件在国际市场上也买不到现成的,只能利用基础材料、元器件和芯片,在深圳自主设计、自主加工、自主调试和验证。”郑海荣介绍。更大的困难还在科学和工程上。他们遇到的第一道难题便是如何让超声波安全“穿过”颅骨。在体外实验阶段,研究人员已经实现了用面阵列超声换能器发射的声辐射力“点亮”神经元。为模拟动物体内环境,仪器部件被置于水中,如果跨过颅骨能“击出”水花则代表超声辐射力发挥作用。“外边(超声)打得挺激烈,(颅骨)里边却没丝毫动静、一点水花都没有,超声波几乎完全被颅骨散射和吸收了。”在前期屡败屡战的实验中,大家互相鼓励坚持下去。郑海荣说:“就像在挖一条隧道,没挖通之前总是黑暗笼罩,谁也不知道已经挖了多少,但只要确定大概的方向,坚持下去,终究会看到光明。”为打通这条“隧道”,他们回到科学理论中,引入非均匀多层介质中的“时间反演”理论,对每一个声信号通道的时空传播特征进行模拟、计算、调控与调试,实现各通道间纳秒级高精度控制,最终成功让上万个超声通道协同工作,“齐心协力”安全地穿过颅骨,精准聚焦在预定靶点,而且不引起脑组织损伤。一个通俗的解释是,就像北京2022年冬奥会开幕式《雪花》节目中,从节目结束时每位小演员的站位开始,通过“倒放”的方式确认每位小演员的出发时间、地点和行走路径。第二道难题是如何用核磁共振成像灵敏地检测到超声辐射力给神经元带来的4~5微米的精细变化。这事关刺激的精准,但超声本身“看不到”颅内自己的轨迹。为此,在项目支持下,他们坚持不懈开展攻关,发挥磁/声兼容的优势,创造性地研制了“快速磁共振射频激发与梯度编码成像技术、磁共振声辐射力成像技术”,用于监测超声辐射力刺激引起的微形变,有效地提高磁共振成像的时空分辨率和灵敏度,实现磁共振对于声波轨迹和靶点的敏感捕捉和可视化。2019年初,项目进行到第4年,研究团队终于解决这个问题,在“隧道”中迎来一束光明。合作才能融通高端科研仪器的研制不仅需要开创前沿科学理论,也要挑战诸多工程技术极限,只有团队相互协作、密切配合,才能实现共同的目标。该项目汇集了来自多家科研机构、不同学科背景的多个团队,70多位研究人员在统一的目标下开展分工合作。据郑海荣介绍,由他带领的深圳先进院团队主要承担超声辐射力高密度面阵辐射力发生器、万通道电子控制系统及实时磁共振刺激定位成像部件等仪器主体部分研制。强梯度声场设计工作主要由中国科学院声学研究所团队承担,刺激效果对标与标定工作由清华大学团队承担,神经生物学基础机制工作由浙江大学等团队承担,刺激的应用效果工作由首都医科大学、苏州大学团队承担。几年实践下来,多学科交叉团队形成了一套行之有效的工作机制和组织模式。“我们整个大仪器团队划分为12个小组,每周召开一次小组会,每月召开一次大组会,会议纪要有厚厚的几大本。”郑海荣介绍。研究成员表示,这样的机制形成了不同学科背景研究人员之间相互交流和学习、围绕同一目标共同攻关的良好氛围,为高效解决问题奠定了基础。如今,这台由中国科学家独创的高端仪器已经成为脑科学研究领域的“抢手货”。团队核心成员之一、深圳先进院研究员牛丽丽告诉《中国科学报》,目前已经有超过40家国内外科研机构使用了超声刺激仪器,主要应用在有癫痫、帕金森病、抑郁症、成瘾等疾病的小动物和非人灵长类大动物实验中,其有效性和安全性得到了验证。面向未来,让更多科学家用上这种仪器、助力人类脑疾病诊疗,是团队成员共同的期待。
  • 2024年首届全国超声大会通知(第一轮)
    各相关单位和专家:中国声学学会生物医学超声工程分会、中国声学学会检测声学分会、中国声学学会物理声学分会、中国声学学会微声学分会、中国声学学会功率超声分会定于2024年11月1-4日在陕西省西安市西安曲江国际会议中心联合举办“2024年首届全国超声大会”,会议依托陕西省超声学重点实验室主办,由陕西师范大学物理学与信息技术学院承办。会议将围绕超声学及超声工程相关的基础理论、应用开发、前沿技术、工业及临床应用等研究热点,为在本领域从事科学研究、应用开发及临床应用研究的高校、科研院所、企事业单位和临床医学人员提供充分交流的平台,促进国内超声研究事业的高质量发展。一、征文范围生物医学超声及临床医学应用(01)诊断和治疗超声、超声生物效应、超声医学成像、超声造影剂微泡、医用光声成像、超分辨率超声成像、超声靶向治疗与药物输送、组织的超声波特性分析、超声弹性成像、医用超声换能器、医学超声的临床应用、功能超声成像、临床超声医学。检测超声、光声检测和固体声学(02)检测声学理论与方法;超声导波、非线性超声学、声发射技术、超声成像方法与技术;超声信号检测与处理;超声换能器与测试方法;超声在线检测系统等。固体中的声波与声波导理论;复杂固体介质中的声场计算;深部钻测声学理论、方法、技术及应用,包括声波测井理论与方法、声波测井换能器及有关仪器装备技术。物理声学(03)声学超构材料、声子晶体、拓扑声学、非厄米声学、非线性声学、复杂介质和结构中的计算声学、光声学、热声学、声表面波及应用等。功率超声(04)国内外功率超声领域研究动态;功率超声的新设备,新工艺,新应用;功率超声系统的设计、测试和评价方法;功率超声应用(如声化学、超声植物提取等)领域的理论和实验研究;其他功率超声领域的热点研究成果。超声传感与仪器(05)超声传感以及超声波仪器设备新系统开发;超声智能控制系统新工艺与新应用;超声信号处理新方法等。微声学(06)压电与弹性波理论,微声滤波器与信号处理器件,微声传感器,微声操控器件,新型微声器件与材料。交叉融合新兴领域(07)数字岩石和岩石声学物理学、储层声学中的机器学习和统计方法、储层声学和声波测井、新型大功率超声换能器材料与器件、超声加工前沿技术等。二、主办、承办、协办单位主办单位:中国声学学会生物医学超声工程分会中国声学学会检测声学分会中国声学学会物理声学分会中国声学学会微声学分会中国声学学会功率超声分会陕西师范大学陕西省超声学重点实验室承办单位:陕西师范大学物理学与信息技术学院陕西师范大学应用声学研究所西安声学学会陕西省声学学会协办单位:中华医学会超声医学分会中国生物医学工程学会医学超声分会中国仪器仪表学会声学仪器专委会中国研究性医院学会超声医学专委会中国科学院声学研究所北京市海洋深部钻探测量工程技术研究中心陕西省超声医学工程学会西安科技大学三、大会委员会(排名不分先后)大会主席:林书玉 教授,陕西师范大学(功率超声分会主任)大会副主席:刘晓峻 教授,南京大学(物理声学分会主任)马晋毅 研究员,中国电子科技集团公司第二十六研究所(微声学分会主任)他得安 教授,复旦大学(生物医学超声工程分会主任)王秀明 研究员,中国科学院声学研究所(检测声学分会主任)学术委员会:学术委员会主席:郑海荣 院士 中国科学院深圳先进技术研究院/南京大学李风华 研究员 中国科学院声学研究所苏众庆 教授 香港理工大学学术委员会委员:程建春 教授 南京大学程 茜 教授 同济大学陈 昕 教授 深圳大学程 营 教授 南京大学丁德胜 教授 东南大学邓明晰 教授 重庆大学郭建中 教授 陕西师范大学胡恒山 教授 哈尔滨工业大学李保文 教授 南方科技大学梁 彬 教授 南京大学梁 萍 教授 中国人民解放军总医院第五医学中心林书玉 教授 陕西师范大学廉国选 研究员 中国科学院声学研究所林伟军 研究员 中国科学院声学研究所刘晓峻 教授 南京大学刘晓宙 教授 南京大学刘正猷 教授 武汉大学罗渝昆 教授 中国人民解放军总医院第一医学中心马晋毅 研究员 中国电子科技集团公司第二十六研究所孙明健 教授 哈尔滨工业大学(威海)他得安 教授 复旦大学唐晓明 教授 中国石油大学(华东)屠 娟 教授 南京大学王小民 研究员 中国科学院声学研究所王秀明 研究员 中国科学院声学研究所王 文 研究员 中国科学院声学研究所王成会 教授 陕西师范大学项延训 教授 华东理工大学徐春广 教授 北京理工大学杨 军 研究员 中国科学院声学研究所章 东 教授 南京大学周光平 教授 深圳职业技术大学祝 捷 教授 同济大学张 涛 教授 西安科技大学周晓东 教授 西安国际医学中心医院组织委员会: 曹 辉 教授 陕西师范大学凤飞龙 教授 陕西师范大学郭建中 教授 陕西师范大学郝长春 教授 陕西师范大学李 锦 教授 陕西师范大学何 晓 研究员 中国科学院声学研究所贺西平 教授 陕西师范大学李 勇 教授 同济大学刘 洋 教授 天津大学林伟军 研究员 中国科学院声学研究所莫润阳 教授 陕西师范大学沈壮志 教授 陕西师范大学唐代华 研究员 中国电科第二十六研究所(微声学分会秘书)王成会 教授 陕西师范大学 (功率超声分会秘书)王 玥 副研究员 中国科学院声学研究所 (生物医学超声工程分会秘书)许凯亮 研究员 复旦大学张光斌 教授 陕西师范大学张 涛 教授 西安科技大学张小凤 教授 陕西师范大学周吟秋 副研究员 中国科学院声学研究所 (检测声学分会秘书)张志旺 研究员 南京大学 (物理声学分会秘书)四、会务组崔致远 副教授 陕西师范大学高 洁 副教授 陕西师范大学胡 静 副教授 陕西师范大学田 华 高级实验师 陕西师范大学田 野 副教授 陕西师范大学尹冠军 副研究员 陕西师范大学唐一璠 博士后 陕西师范大学王成会 教授 陕西师范大学武耀蓉 博士 陕西师范大学五、相关说明1. 本次会议的会议网站已经发布,诚邀各位专家学者通过会议网站投稿链接投稿参会。投稿要求:通过会议网站投稿地址(http://ncu2024.meeting666.com/)投稿,本次会议只接收稿件摘要,摘要格式见附件:投稿摘要格式.docx。投稿截止日期:2024年6月30日,录用通知发送日期:2024年8月30日。2. 如有疑问,请与会务组联系。中国声学学会生物医学超声工程分会中国声学学会检测声学分会中国声学学会物理声学分会中国声学学会微声学分会中国声学学会功率超声分会2024年5月
  • 超声电子2024上半年仪器业务收入0.88亿元,同比增长13.71%
    近日,广东汕头超声电子股份有限公司(简称:超声电子)发布2024半年报。数据显示,超声电子2024上半年实现营业收入26.89亿元,同比上升2.50%;归属上市公司股东的净利润为0.75亿元,同比上升9.48%。其中,2024上半年超声电子仪器及其他业务营收0.88亿元,占总营收的3.26%,较去年同期增长13.71%。超声电子仪器产品主要有相控阵超声成像系统检测仪、常规超声波探伤仪及超声波系列探头,涡流、电磁超声测厚仪器、电动双轨探伤仪、自动探伤系统,广泛应用于石化设备、运输管道、轨道设施、航空航天设备、电力设施等领域的无损伤检测、定位、评估和诊断。超声电子提到,2024上半年,国际环境更趋复杂严峻和不确定,国内经济结构调整持续深化,但在宏观政策持续释放、外需有所回暖等因素的带动下,我国经济延续恢复向好态势。伴随人工智能技术的加速演进和应用上的不断深化,以及汽车电动化和智能化的快速发展,产品技术创新的步伐不断加快,为印制板、显示触控及覆铜板等产品提供更广阔的市场应用前景。另外,国内外同行产能释放,市场竞争日趋激烈,产品价格下降。对此,在外部拓展方面,公司紧跟市场发展趋势,把握技术创新热点,继续深化与终端客户的合作,做好产品技术的前瞻性规划,并积极推进在AI服务器、光模块、低轨卫星、汽车电子、智能家居、工业控制等市场领域的应用,为公司未来发展提供增长动能。与此同时,在内部运营上,一方面,公司不断优化内部产能配置,有序推进智能化工厂建设,深化信息化建设、自动化生产,推动制造执行、高级计划排程、仓储管理系统的开发应用,实现精细化生产和系统化管理,提高生产效率;另一方面,强化成本控制,与供应商、客户多方位协调、沟通,控制原材料价格涨幅,推动客户认证产品,从而实现全方位降本增效。报告期内,得益于战略客户订单增量的拉动作用,销售及盈利水平均实现小幅增长。
  • DT推出新型DT-1210超声粒度和zeta电位分析仪
    生物医药行业是公认的朝阳行业,对医药开发的技术有着旺盛的需求。为了满足生物医药及其相关行业的研究需要,2017年初,美国分散技术公司即正式推出能够满足该行业少量样品研究的新型dt -1210超声粒度及zeta电位分析仪,和仅用于粒度研究的dt-110超声粒度分析仪。 dt-1210与dt-1202具有相同的性能指标,但其声学传感器的组合可以建立在最小样品体积3毫升的基础上,测量粒度和zeta电位。dt-1202甚至可以连接微型泵,通过声学传感器泵送样品。在这种情况下,样品体积为7ml。软件与dt-1202相同。美国分散科技公司(dti)专注于非均相体系表征的科学仪器业务。 dti开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、电导率、表面电荷、流变学性质、固体含量、孔隙率,包括cmp浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,乳液和微乳液、药物乳剂等,并可应用于多孔固体。 在生物与制药领域的应用包括:色谱用树脂与蛋白质相互作用及其电性能表征颗粒大小和胶束的演变细胞粒径测定蛋白质的电荷(价态)测定蛋白质吸附,蛋白质和血细胞的超声波特性没有稀释的药物乳液和微乳液表征溶解和结晶速度的动力学监测产品特性: 能分析多种分散物的混合体 可精确地判定等电点 可适用于高导电(highly conducting)体系 可排除杂质及对样品污染的干扰 可精确测量无水体系 样品的最高浓度可达50%(体积比),被测样品无 需稀释,对浓缩胶体和乳胶可进行直接测量 具有自动电位滴定功能 产品规格:1. 粒径范围:从5nm至 1000um 2. 可测量zeta电位、超声波频率、电导率、ph、温度、声衰减、声速、电声信号,动态迁移率、等电点(iep)、及弹性流变性质3. zeta电位测量范围:无限制, 低表面电荷可低至0.1mv, 高精度(±0.1mv)4. 在零表面电荷的条件下也可测量粒径5. 允许样品浓度:0.1~50%(体积百分数)6. ph 范围:0.5~13.5 7. 电导率范围:0.0001~10 s/m8. 温度范围: 50℃9. 最大粘度:20,000厘泊10. 电位滴定和体积滴定,滴定分辨率0.1μl 目前,流行的粒度测定方法是激光粒度法(小角激光散射法),但是,这种方法致命的缺点就是必须对样品进行稀释,并且样品最好不带颜色,对光的吸收不能太强。同样,测量zeta电位的动态光散射技术也要求在极稀的分散体系中进行,并且样品粒径不能大于几个微米(一旦颗粒产生定向运动——沉淀,就偏离了该方法的测量原理)。其实,基于同样的瑞利散射原理,如果用声波代替光波,就能够成功地克服上述缺陷。19世纪七八十年代,亨利、廷德尔和雷诺首次研究了与胶体相关的声学现象--声音在雾中的传播。散射理论的创始人洛德瑞利也将他的散射理论中的书命名为“声音理论”。 他把计算方式主要运用到了声音,而不是用在由光学的研究中。由于理论计算的复杂性, 声学更多的依赖于数学计算而不是其他传统的仪器分析技术。随着计算机快速时代的到来和新理论研究方法的发展,今天很多问题已经在美国dti公司有了清晰的答案。 享誉世界的dt-1200系列粒度和zeta电位分析仪, 利用超声波在含有颗粒的连续相中传播时,声与颗粒的相互作用产生的声吸收、耗散和散射所引起的损失效应来测量颗粒粒度及浓度,采用专利电声学测量技术测量胶体体系的zeta电位。对于高达50%(体积)浓度的样品,无需进行样品稀释或前处理即可直接测量。甚至对于浆糊、凝胶、水泥及用其它仪器很难测量的材料都可用dt-1200系列的zeta探头直接进行测量,粒度适用范围从5nm到1mm。 zeta电位电声探头(zeta probe)能直接在样品的原始条件下测量zeta电位,允许样品浓度高达50%(体积)。可配置zeta电位自动滴定装置,自动、快速地判断等电点,快速得到最佳分散剂和絮凝剂,对粒度和双电层因素导致的失真进行自动校正。该仪器的软件易于使用,通用性强,非常适用于科研及工厂的优化控制。 美国分散科技公司(dti)成立于1996年,专注于非均相体系表征的科学仪器业务。 dti开发的基于超声法原理的仪器主要应用于在原浓的分散体系中表征粒径分布、 zeta电位、流变学、固体含量、孔隙率,包括cmp浆料,纳米分散体,陶瓷浆料,电池浆料,水泥家族,药物乳剂等,并可应用于多孔固体。dti享有7项美国专利,在iso参与领导组织超声法粒度分布国际标准和电声法测量zeta电位国际标准的制定,并获得2013年科学仪器行业最受关注国外仪器奖。 1999年,现任仪思奇科技总经理的颗粒和多孔材料表征专家杨正红先生即访问了dti美国总部,并建立了联系,之后双方进行了广泛的合作。自2016年8月仪思奇(北京)科技发展有限公司成立,即开始负责dti在中国大陆的全部业务。 利用dt系列仪器,我们能够分析: 浓浆中粒度分布 浓浆zeta电位 膜和多孔材料的表面zeta电位 等电点 孔隙率 体积流变学 表面活性剂优化 表面活性剂配伍优化 非水相和水相电导率 微流变 表面电荷和表面电导率 德拜长度 固体含量dt系列仪器和规格指标操作过程可选附件操作者将0.1 - 150 ml样品倒入样品池,然后在简单对话框中定义样品,选择所需的实验方案(协议),启动"run" 对于zeta电位测定,样品量可少至0.1 ml.当测量完成,用户需要将样品倒出,并用水或相应清洁溶液清洗探头。对于粒度测量,用dt-110或dt-1210,样品量可少至3ml。 ? 配有1个或2个注射泵的自动滴定系统? ph / 温度测量探头? 电导率测量探头,可选水相和/或非水相? 用于非常粘稠样品的蠕动循环泵? 用于远程“在线”测量的端口? 弹性流变性能测定? 温度加热控制 ? 样品量1202/10型测定粒度 & zeta 电位dt-100/110型dt-500型仅测粒度dt-600型超声法弹性流变分析仪dt-300系列(300/310/330)zeta 电位探头dt-400型自动滴定系统样品体积范围0.1 -150 ml3 -70 ml3 -100 ml0.1-100 ml100 ml体积浓度范围 % (1)0.1-500.1-50无限制0.1-50必须能搅拌电导率 (2)无限制无限制无限制无限制无限制ph0.5-13.50.5-13.50.5-13.50.5-13.50.5-13.5温度 [℃]低于 50低于50低于50低于50低于100介质粘度[cp]可至 20,000可至20,000可至20,000可至20,000可至20,000介质微粘度 [cp] (3)可至100可至100无限制可至100可至100胶体粘度 (4)可至 20,000可至20,000可至20,000可至20,000可至20,000粒径范围 [微米] (5)0.005 to 10000.005 to 1000无限制 测量参数温度[℃]0 to 100, ±0.10 to 100, ±0.10 to 100, ±0.10 to 100, ±0.10 to 100, ±0.1ph0.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.10.5-13.5, ±0.1频率范围 [mhz]1- 1001- 1001- 1001- 10n/a超声衰减 [db/cm mhz]0 to 20, ±0.010 to 20, ±0.010 to 20, ±0.01n/an/a声速 [m/sec]500 to 3000,± 0.1500 to 3000, ±0.1500 to 3000, ±0.1n/an/a电声信号重现性±1%n/an/a±1%n/a电导率(s/m)0.0001-10, ±1% 0.0001-10, ±1%n/a0.0001-10, ±1% 0.0001-10, ±1%所计算参数平均粒径 [微米]0.005 to 10000.005 to 1000n/an/an/a单峰模型参数yesyesn/an/an/a双峰模型参数yesyesn/an/an/azeta 电位±(0.5% +0.1)n/an/a±(0.5% +0.1)n/a弹性粘度 [cp]可选n/a0.5-20000, ±3%n/an/a牛顿液体的体积粘度 [cp]可选n/a0.5-100, ±3%n/an/a液体压缩率 [104/mpa-1]可选n/a1-30, ±3%n/an/a牛顿液体试验范围 (mhz)可选n/a任何频率n/an/a测量时间 [分,min]粒度分布1- 101- 10n/an/an/a水相zeta 电位0.5n/a0.50.5n/a非水相zeta 电位0.5-5n/a0.5-50.5-5n/a流变性能n/an/a1-10n/an/a物理指标重量[kg]电控箱 20池体及探头: 30电控箱 20池体及探头: 30电控箱 20池体及探头: 30电控箱 20池体及探头: 7电控箱 20池体及探头: 5功率300 w300 w300 w300 w300 wdt系列仪器选件的适用性型号ph/温度探头电导率泵滴定升级到 dt- 1202dt- 100yesyesyesyesyesdt- 600yesyesyesyesyesdt- 300yesyesyesyesnodt- 400yesnoyesnonodt- 1202yesyesyesyesn/a(1)仪器可以测量的超声衰减谱远远超过50%(体积),但是从该数据计算psd和ζ电位的理论被限制为50%(体积)。在胶体样品密度与介质密度的对比比较接近的一些体系中,最小体积分数为1%。(2)ζ电位的概念在非常高和非常低的电导率的极端情况下变得不确定。(3)在计算粒径和ζ电位时,重要的粘度值是当粒子响应于声波而移动时粒子所经历的粘度。 在诸如凝胶或其它结构化体系的情况下,这种“微粘度”可以显著小于用常规的流变仪测量出的介质粘度,这种介质粘度比其颗粒的微粘度要大于一个数量级。(4)对于自动滴定实验,可能有必要使用外部循环泵,以使(酸/碱)试剂与相当粘稠的样品之间充分混合。 (5) 对于zeta电位测量的粒度范围,可能取决于颗粒密度与介质密度的对比度。
  • 比利时Diagenode公司推出小型台式超声破碎仪新品One
    比利时Diagenode公司推出小型台式超声破碎仪新品One比利时Diagenode 公司新品One 是一台原创性的台式超声破碎仪,主要用于二代测序前的DNA剪切片段化处理,小巧轻便,可放置在任何工作台面上,不需要很大空间面积。ONE本身自带珀尔帖制冷系统,类似于PCR仪的制冷原理,不需要额外增加配件,核心技术就是利用特殊的20ul和50ul微流体芯片直接放置于超声源上面,处理核酸样品高效快捷。 产品特点:友好的界面,紧凑的体积;整合有效的温度控制;微量核酸样品片段化的利器;样品量分为20ul和50ul两种体系,便与优化;高重复性;稳定的超声性能,获的高重复性的片段大小(200 bp - 1 kb),从而获取高质量的测序结果 无偏差性不同物种的基因组DNA的AT-GC比例是不同的,ONE依然从容不迫,一视同仁,始终如一地全覆盖,获取无偏差的DNA片段。 20 μ l microfluidic chips 50 μ l microfluidic chips 订货信息:货号 品名 数量单位 B01070001 ONE桌面式超声仪 1 unitC30150001 20 μ l microfluidic chips 10 chipsC30150002 50 μ l microfluidic chips 10 chips上海博谊生物科技有限公司是比利时Diagenode公司小型台式超声破碎仪新品One的代理商,欢迎联系我们申请试用。 发布者:上海博谊生物科技有限公司联系电话:021-51691651E-mail:18616023651@163.com
  • 超9亿!又一省公布医疗设备更新采购意向
    7月25日,国家发展改革委、财政部联合印发的《关于加力支持大规模设备更新和消费品以旧换新的若干措施》的通知,再次明确安排近1500亿元大力支持大规模设备更新,更是将新一轮医疗设备配置热潮推向顶端!8月13日,新疆生产建设兵团政府采购网发布新疆生产建设兵团卫生健康委员会2024年9月至12月政府采购意向,预算金额3.133亿元。8月14日,新疆政府采购网发布新疆维吾尔自治区县域医共体医疗设备采购项目2024年8月至10月政府采购意向,预算金额6亿元。近期,大批终端医疗机构密集启动医疗设备更新,不久前,湖北发布一批医疗设备更新项目,总投资超22.6亿元,浙江省人民医院年内更新医疗设备超4.95亿元,北京大学第一医院年内更新医疗设备超4.98亿元,北京大学人民医院年内更新超4.6亿元。安徽发布中国科大附属第一医院(安徽省立医院)医疗设备改造及信息化设施迭代升级等13个项目可行性研究报告审批前公示(总投资超26亿),其中安徽省城市头部医院高端医疗设备更新项目,更新医用直线加速器、数字减影血管造影机(DSA)、医用磁共振成像系统(MR)、CT、手术机器人等30台/套,估算总投资4.5亿元。福建发布省级高水平医院医疗设备更新项目,总投资超7.5亿,更新设备179台套;广东发改委发布广东省医疗卫生领域设备更新有关项目可行性研究报告审批前公示,拟购置医疗设备2171台套,总投资近54亿元;黑龙江批复一批医疗设备更新项目,总投资超9亿。更多阅读:超7.5亿元!福建省省级高水平医院医疗设备更新项目获批,附设备清单 1.18亿!湖北省血站119台(套)医疗设备更新购置清单公布 超28亿元!重庆市11家医院医疗设备更新项目批复盘点 7.05亿元!广西医疗设备更新需求表 “曝光”,涉及CT、生化分析仪等 超23亿!北京首批医疗设备购置项目公布,涉及CT、DR、基因序列仪等 国家卫健委发布《重点中心乡镇卫生院建设参考标准》,附医疗设备配置清单 5.59亿元!江西省国家重大传染病防治基地建设项目批复,配置医疗设备321台(套)万亿设备更新|医疗设备配置启动,多地卫健委发布通知
  • 投资超500亿,各地新晋“顶流”实验室盘点
    党的十八大以来,以习近平同志为核心的党中央高度重视国家科技创新布局,把创新作为引领发展的第一动力。《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》指出,以国家战略性需求为导向推进创新体系优化组合,加快构建以国家实验室为引领的战略科技力量。聚焦量子信息、光子与微纳电子、网络通信、人工智能、生物医药、现代能源系统等重大创新领域组建一批国家实验室,重组国家重点实验室,形成结构合理、运行高效的实验室体系。优化提升国家工程研究中心、国家技术创新中心等创新基地。  各地积极推进科技资源优化整合,纷纷加大科技创新力度,争相打造区域创新发展新引擎,抢占科技创新制高点。从各省市公布的2023年重点建设项目清单来看,各类创新实验室、重大科技基础设施、技术创新中心已如火如荼建设中,累计投资规模超524亿元。跟随仪器信息网的镜头,一起来认识这些新晋的“顶流”实验室。实验室  岳麓山实验室  总投资100亿元  依托单位:湖南农业大学  岳麓山实验室,是湖南省委、省政府部署建设的省级“四大实验室”之一,对标国家实验室,是湖南加快实现“三高四新”美好蓝图的一项标志性工程,目标是成为种业科技创新“国之重器”。在管理架构上,实验室设置了5大功能研究部、9个公共创新平台、15个品种创制中心、4个成果转化中心、10个科研试验基地、5个运行保障部门。  岳麓山实验室自2022年至2025年建设第一期工程,总投资100亿元,集聚区将在2023年6月30日之前全面封顶,年底实现交付进驻。“十四五”期间,岳麓山实验室每年将有2亿元以上的财政资金投入,用于科研攻关。力争在设计育种、优质杂交稻、优质猪品种等重要战略研究方面取得重大突破。从2023年到2025年,实验室计划每年完成50个以上农业生物新品种的选育。  云龙湖深地实验室  依托单位:中国矿业大学  总投资60亿元  深地科学与工程云龙湖实验室是徐州市深入实施创新驱动发展战略、抢抓深地领域国家科技战略、依托中国矿业大学等优势平台成立的重要科技创新平台,也是徐州市与中国矿业大学双方深化校地合作的重大成果。  云龙湖实验室预期建成多形态、全空间、多功能的国际一流实验室,集“前沿科学研究、交叉联合研究、学术交流、山体+深井地下原位试验基地、产业孵化园区”于一体,包括“1总部+3国重+2基地+1园区”,采取"总分结合、高效协同”方式运行。十四五期间,云龙湖实验室投资总规模为60亿元,其中财政资金投入10亿元,撬动企业和社会资本投入50亿元。  临港实验室  首批国家实验室  临港实验室是由中央设立的新型科研机构,实验室聚焦解决我国生物医药与脑科学领域重大科技难题,打造我国生命健康领域战略科技力量,为进一步强化原始创新,推动生物医药与脑科学领域的原创性突破,临港实验室瞄准世界科技前沿,积极探索布局原创性研究项目,重点围绕脑图谱绘制、脑机接口和类脑智能、脑科学基础研究、药物新靶标发现与确证、针对重大复杂性疾病的原创候选新药发现、药物研究的新技术和新方法发展等方向,部署一批自由探索项目。  浦江实验室  首批国家实验室  浦江实验室是国家级新型科研机构,是人工智能领域国家战略的重要科技力量。实验室开展战略性、前瞻性、基础性重大科学问题研究和关键核心技术攻关,凝聚和培养高水平人才,打造“突破型、平台型”一体化的大型综合性研究基地,目标建成国际一流的人工智能实验室,成为享誉全球的人工智能原创理论和技术的策源地。实验室总部位于上海,并在北京、粤港澳大湾区和杭州等地设立基地。  甬江实验室  总投资约146亿元  依托单位:中国科学院宁波材料所  甬江实验室是新材料浙江省实验室的简称,由浙江省政府批准设立,于2021年3月获批,5月正式揭牌。实验室重点围绕先进高分子与复合材料、高端合金、绿色化工与高端化学材料、电子信息材料与器件、新型生物医用材料、新能源材料、极端条件使役材料、制造技术与装备八大方向开展研究。实验室目前已经取得了一些研究成果,例如刘中民院士团队提出“双碳”目标下的科技与产业革命,陈江帆团队揭示腺苷受体的抗抑郁作用等。  瓯江实验室  预计5年投入68亿元  瓯江实验室是再生调控与眼脑健康浙江省实验室的简称,由浙江省政府批准建设,温州市人民政府、浙江省科技厅共同举办,于2021年5月正式揭牌成立。实验室坐落于温州环大罗山科创走廊核心区,总规划用地600亩,预计5年投入68亿元,将打造具有国际影响力的重大科技创新平台。  实验室以“组织再生和器官功能康复”为核心主线,以重大临床需求为导向、关键技术攻关和临床转化应用为落脚点,重点围绕多组织再生与重塑、眼疾病与视觉功能康复、脑疾病与认知功能康复三大方向开展研究。实验室目前已取得了一些研究成果,例如童志前团队发现对流层甲醛可动态监测中国各省脑病的分布及发病率,宋伟宏院士团队揭示CNTNAP2在孤独症的致病新机制,宋伟宏院士团队揭示USP25异常导致阿尔茨海默病认知障碍的重要机制等。  白马湖实验室  项目总投资超21亿元,计划于2026年竣工  由浙能集团牵头,联合浙江大学、西湖大学共建  白马湖实验室是一个由浙江省政府投资建设的高水平新型科研机构,聚焦绿色能源的能质转化与传递,围绕太阳能转化与催化、零碳能源转化与存储、能源低碳转化与多能耦合等方向开展研究,着力破解能源领域重大科学与技术问题,突破“卡脖子”关键核心技术,为抢占碳达峰碳中和技术制高点提供支撑。白马湖实验室将聚焦三大研究方向,即太阳能转化与催化、零碳能源转化与存储、能源低碳转化与多能耦合,并研发形成相关领域的10项以上重大技术成果和5项重大示范工程。  东海实验室  总投资约15亿元  由舟山市人民政府主办,联合浙江大学、自然资源部第二海洋研究所共同建设  实验室加强与省海港集团等合作,聚焦海洋环境感知、海洋动力系统、海洋绿色资源等方向,开展应用导向的基础研究、核心技术攻关与成果转化,提升海洋装备研发、资源开发、灾害治理能力,支撑海洋数字经济、智能装备和清洁能源产业发展。东海实验室将聚焦三大研究方向,即海洋环境感知、海洋动力系统、海洋绿色资源,并研发形成相关领域的10项以上重大技术成果和5项重大示范工程。  湘湖实验室  五年内将投入10亿元  湘湖实验室(现代农学与生物制造浙江省实验室)是由浙江省政府批准,以浙江省农业科学院为依托建设的新型研发机构,湘湖实验室的研究方向主要是农业核心种质资源生物制造与生物互作科学问题和核心技术研究。重点布局现代生物种业创新和绿色健康高效农业两大研究集群,建设“种质资源评价挖掘研究共享平台、分子设计数字育种研究共享平台、生物互作与农业生态研究共享平台、农投品与农产品质量安全研究共享平台、技术集成与成果孵化平台”等5个研究共享服务平台。基地  安徽省建科院科技创新与成果转化实验检测示范基地项目  总投资约3亿元  安徽省建科院科技创新与成果转化实验检测示范基地项目由安徽省建筑科学研究设计院投资建设,总投资额约3亿元。该项目将主要建设土木工程健康与灾害研发中心楼、零能耗示范楼等科研检测技术转化中心及国家级装配式建筑基地,专注绿色建筑、海绵城市、装配式建筑等新产品、新材料研发,为成果转化提供科研平台。项目已于2023年3月开工建设,计划2024年底竣工,投用后年增产值约1.1亿元。  汕头化学与精细化工广东省实验室项目一期——生物大分子中试基地  总投资3.06亿元  依托汕头大学高等级生物安全大型动物实验平台,在化学与精细化工省实验室建立建设生物大分子中试基地,从而完成汕头市生物医药的研发闭环。项目建设投资30575.27万元,其中工程建设费27875.95万元,工程建设其他费2699.32万元。该项目建成后,汕头市将建立起较高水平的医药研发中心,成为全市医疗卫生工作发展的重要基地。  三门峡市城乡一体化示范区中原关键金属实验室中试基地建设项目  总投资1.5亿元  依托郑州大学牵头建设,与三门峡市政府合作共建,有研科技集团、中原黄金冶炼厂、河南豫光金 集团等相关单位参与建设。实验室面向国家关键金属原料安全保障与高端材料自主供应的重大战略需求,聚焦关键金属基础与交叉科学、关键金属资源与材料战略、关键金属提取与纯化、关键金属材料与靶标、特色关键金属产品、金属循环与材料再生等6个研究方向,着力解决关键金属领域重大关键共性技术问题。主要建设特种合金材料研发中心、高温功能材料研发中心、关键金属材料化研发中心、稀散金属综合回收中心等中试平台和关键金属检测中心。  国家合成生物技术创新中心洛阳成果转化示范基地项目  总投资约5亿元  国家合成生物技术创新中心洛阳成果转化示范基地由中科院天津工业生物技术研究所与西工区、华荣生物三方共建,建成后将致力于促进合成生物重大研究成果产业化,着力打造生命健康和生物制造产业基地。总建筑面积2万平方米,主要建设实验室、技术中心、中试车间及其配套设施,研发生物医药中间体。重大科技基础设施  超高灵敏极弱磁场和惯性测量装置国家重大科技基础设施项目  总投资3.5亿元  依托单位:北京航空航天大学  该项目是国际零磁科学谷区域首个开工的房建项目,位于零磁谷街以南,浦乐实业以西,将建成国际领先的芯片化量子传感器工艺技术研究平台,重点攻克芯片化量子传感器在设计、封装、集成、测试中涉及的一系列关键核心问题,为大设施项目的多种零磁科学装备提供传感器关键工艺技术保障,将推动我国未来量子传感技术发展。  超重力离心模拟与实验装置国家重大科技基础设施  概算投资21亿元  超重力离心模拟与实验装置国家重大科技基础设施在杭州未来科技城,为浙江省首个国家重大科技基础设施项目。项目占地89亩,主要建设内容包括超重力离心机主机、超重力实验舱、超重力试验保障系统和配套设施。核心装置离心机就像是巨人用两个手臂拎着两个大吊篮飞速旋转,旋转产生的超重力场会对吊篮里的物体产生时空压缩的效应,科研人员通过这个装置可以在很短时间内模拟出山川地貌变化。研究岩土体和地球深部物质的时空演变、加速物质相分离时,超重力离心模拟与实验装置可以提供必不可少的实验手段。  合成生物研究重大科技基础设施  总投资7.2亿元  由深圳市政府投资建设,中国科学院深圳先进技术研究院为建设牵头单位,华大生命科学研究院、深圳第二人民医院参与建设。  建设全球首个合成生物研究重大科技基础设施,在合成生物设施软硬件一体化上填补国内技术空白。合成生物“大设施”将打造一个用户的“云端实验室”和运营者的“智能实验室”二位一体的合成生物研究平台,不仅对学术界开放,也对产业界开放。重点建设内容包括设计学习平台、合成测试平台、用户检测平台三大平台。其中,设计学习平台的软件工具及数据库以自主研发为主 合成测试平台的关键技术装备研制兼顾自主创新与吸收国外先进技术 用户检测平台则整合蛋白质与代谢产物分析、底盘细胞放大培养、高级成像三大检测系统,对合成产物进行多模态跨尺度的全方位测试。  脑解析与脑模拟重大科技基础设施  投资近9亿元  由中国科学院深圳先进技术研究院团队牵头建设  建设全球首个跨物种的脑解析与脑模拟重大科技基础设施。脑设施分为脑解析、脑编辑和脑模拟三个模块开展建设。其中,脑解析模块包括以动态为主的脑连接图谱解析平台,以及从实验动物到人体的多模态成像、基于超声或光感基因的脑神经调控与功能干预设施等新一代科研装备 脑编辑模块将建设跨物种模式动物、基因编辑以及动物表型分析三个子模块 脑模拟模块将建立脑神经信息平台,获取全面和必要的动物生长、生理、行为学及各种脑活动的数据,并以该数据为基础,开展脑模拟科学研究,建立成数个大脑局部功能运作机制的模型。  材料基因组大科学装置平台重大科技基础设施项目  总投资6亿元  项目位于光明区,项目单位为南方科技大学,主要建设内容包括高通量制备平台、高通量实验表征平台、高通量中子谱仪平台、高通量计算与数据库平台;项目建设将加快新材料“发现-开发生产-应用”进程,构建“基于大数据的人工智能材料开发”研究形式。创新中心  国家第三代半导体技术创新中心(湖南)   由国防科技大学、湖南大学、中南大学和中国电子科技集团公司第四十八研究所、泰科天润等单位共同创建。  国家第三代半导体技术创新中心(湖南)重点聚焦第三代半导体装备领域,发挥湖南在第三代半导体材料、器件、应用等方面的基础优势,联合产学研用各方资源,汇聚国内外一流人才,突破关键核心技术,按照重点突破、局部成套、系统集成的发展路径,将湖南打造成为国家第三代半导体技术创新高地和产业发展高地。到2025年,国创中心(湖南)拟带动湖南第三代半导体产业年产值100亿元,建立健全国产装备设计、制造、验证成套标准体系。到2030年,拟带动湖南第三代半导体产业年产值1000亿元,实现装备设计正向化、核心技术自主化、装备工艺一体化、制造过程智能化。  黄河研究中心  项目计划投资额约5.5亿元  中国环境科学研究院为主要依托单位,总建筑面积9.4万平方米,主要建设国家水利工程质量监督检测中心和水利部黄河流域水治理和水安全重点实验室、研发、实验、会议等配套设施。  江苏省沿海可再生能源技术创新中心  总投资25亿元  盐南高新区与江苏省产业技术研究院、盐城市政府合作共建  项目聚焦“风光氢储”四大方向,围绕15MW以上海上风电整机设计、全直流发电及直流并网等关键领域,推动研发设计、轻型核心部件智造、智慧运维等高端环节向中心集聚。中科院电工所大功率电力电子实验室、江苏海洋经济技术研究院、信通院泰尔数字能源创新实验室等一批标杆性研发机构建成运营,国家风电设备检测中心、金风科技国创江苏中心、华能海上风电研究院等项目加快推进。其他  中车时代电气创新实验平台建设项目  总投资9.916亿元  由株洲中车时代电气股份有限公司投资建设,项目位于石峰区田心片区,总投资9.916亿元,新建众创中心、科研实验中心和功率中心三个建筑单体,总建筑面积95023平方米。  大飞机地面动力学试验平台  总投资5.9亿元  由中国商飞和湖南兴湘集团共建共管,大飞机地面动力学试验平台是一个模拟飞机地面动力学特性的重大科技基础设施,建成后将同时具备滑轨台架系统和车载台架系统共2套试验平台,成为继美国NASA试验基地后,国际领先、国内唯一可测试各种飞机轮胎、机轮刹车系统、起落架系统在各种道面的高速动力学特性、大侧偏角动力学特性的试验平台。  浙江新农科教育教学中心建设工程  总投资3.3亿元  浙江新农科教育教学中心建设工程总建筑面积6.3万平方米,总投资3.3亿元人民币,预计建设时间为420天,将于2024年10月竣工。该工程是浙江省重点建设项目、省2023年“千项万亿”工程,也是浙江农林大学“十四五”期间组团体量最大的一个建设项目。  普莱柯P3实验室  总投资3亿元  普莱柯P3实验室主要针对高致病性禽流感、口蹄疫、非洲猪瘟类高致病性病原微生物开展实验活动,建成后将成为中部省份规模最大、功能健全的P3实验室,在动物疫苗开发方面将致力于催生一批具有重要支撑引领作用的科研成果,推动生物产业高质量发展,并将建成为国际先进水平的生物科技创新中心、生物医药产业孵化中心、生物安全培训中心和生物产业科技人才高地。  创源生物二期生产基地及微生态制剂重点实验室  总投资2.5亿元  建设单位为天津创源生物技术有限公司,总投资2.5亿元,项目作为创源生物产业版图的重要布局,落成投产后,将成为立足京津冀、辐射全国、承接全球大健康市场的产业化基地,以工业4.0智能化工厂、微生态制剂重点实验平台、特医技术平台为核心,将推动企业在生物科技领域的深耕发展,释放更大的科技势能,实现企业纵向产业链延伸及横向业务领域综合覆盖,并向产业链上下游合作伙伴进行赋能。
  • 500万!武汉理工大学招标采购光谱仪、超声探伤仪等设备
    项目概况理工科基础及专业实验室设备购置 招标项目的潜在投标人应在阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)获取招标文件,并于2024年06月28日 09点00分(北京时间)前递交投标文件。项目基本情况项目编号:WUTH2024040016(ZB0101-202406-ZCHW0706)项目名称:理工科基础及专业实验室设备购置预算金额:500.000000 万元(人民币)最高限价(如有):500.000000 万元(人民币)采购需求:本项目共分3个包。投标人可对本次采购的各包进行选择性投标,也可同时投标;但评审时将以包为单位进行独立评审,分别确定中标人,投标人可中多包。投标人若同时响应多个包,则须分别编制投标文件、分别报价。各包报价均不得超过各包预算金额(最高限价),否则按该包无效投标处理。包号名称采购内容数量预算金额(万元)备注是否为核心产品是否为进口产品包1基础物理实验室设备购置超快脉冲I-V测试模块1205.5是否电激励磁悬浮实验仪12否否LED特性实验仪11否否近距转镜杨氏模量仪12否否超声探伤及特性综合实验仪12否否临界现象观测及气液相变测定实验仪12否否物理实验教学选排课管理系统1否否静电场描绘实验仪20否否热膨胀实验仪13否否空间光调制器1否否CMOS相机1否否高性能计算平台1否否包2光电专业实验室设备购置红外稳态荧光光谱仪系统181.46是否信号与系统实验系统5否否台式计算机2否否数字示波器5否否波形发生器2否否电源2否否紧凑型激光二极管控制器4否否光纤耦合光电探测器4否否激光同轴光纤耦合系统4否否包3力学实验室设备购置材料力学多功能实验装置35213.04否否动态疲劳控制器1否否非接触式复合材料热值无损检测系统1否否恒荷载装置22否否Zwick/Roell专用DCSC部件1否否柜式空调3否否电致应变驱动测试系统1否否摩擦磨损力学试验机1否否复合材料超声探伤仪1是否合同履行期限:包1供货期:合同签订后3个月内交货;质保期:自验收合格之日起不少于1年。包2供货期:合同签订后1个月内交货;质保期:自验收合格之日起不少于1年。包3供货期:合同签订后3个月内交货;质保期:自验收合格之日起不少于1年。本项目( 不接受 )联合体投标。获取招标文件时间:2024年06月07日 至 2024年06月17日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:阳光招采电子招标投标交易平台(网址:https://www.yangguangzhaocai.com/)方式:符合资格的投标人应当在获取时间内,通过以下方式获取招标文件。 (1)拟参加本项目的投标人须在阳光招采电子交易平台免费注册(网址:https://www.yangguangzhaocai.com ---【新用户注册】,相关操作帮助详见:帮助中心--- 投标人注册操作指南); (2)注册完成后,登录电子交易平台,点击【投标人】,在【公告信息】---【采购公告】栏下载拟投标段采购文件(拟投多标段的,应按标段分别下载),500元/份(包),售后不退。联合体参与响应的,由牵头人注册及下载采购文件。未按规定获取采购文件的,其响应文件将被拒绝; (3)本项目非全流程电子标,投标人无须办理CA数字证书; (4)在电子交易平台遇到的各类操作问题(登录、注册认证、报名购标、制作及上传标书等问题),请拨打技术支持电话010-21362559(工作日:08:00~18:00;节假日:09:00~12:00,14:00~18:00); (5)企业注册信息审核进度问题咨询电话:027-87272708; (6)项目具体业务问题请向代理机构联系人咨询。售价:¥500.0 元,本公告包含的招标文件售价总和提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2024年06月28日 09点00分(北京时间)开标时间:2024年06月28日 09点00分(北京时间)地点:湖北国华项目管理咨询有限公司(武昌区中北路109号中铁1818中心10楼)1 号会议室公告期限自本公告发布之日起5个工作日。对本次招标提出询问,请按以下方式联系1. 采购人信息名 称:武汉理工大学地址:洪山区珞狮南路122号联系方式:晏老师 027-876452562. 采购代理机构信息名 称:湖北国华项目管理咨询有限公司地 址:武汉市武昌区中北路109号中铁1818中心10楼联系方式:宋黎明、王刚、汪树新、余轶菲 027-872727183. 项目联系方式项目联系人:宋黎明、王刚、汪树新、余轶菲电话:027-87272718
  • 152万!武汉理工大学梯度材料超声无损声学分析仪采购项目
    项目编号:HBHD-ZC-2022-038项目名称:武汉理工大学梯度材料超声无损声学分析仪预算金额:152.0000000 万元(人民币)最高限价(如有):152.0000000 万元(人民币)采购需求:武汉理工大学梯度材料超声无损声学分析仪的供货、安装、调试、验收及售后服务,具体技术规格、要求详见“第三章 项目采购需求”。序号货物名称数量是否接受进口产品中小企业划分标准所属行业主要功能要求1超声扫描显微镜1套接受工业★1.1 图像分辨率:1~4000um★1.2 定位精度:X/Y≤±1μm,Z≤±10μm★1.3 具有一键校准、手动扫描(A/B/C扫描模式)、批量扫描、导出报告、探头切换、强度检测、相位检测、厚度检测、断层检测等功能。2无损超声共振频谱仪(核心产品)1套接受工业★3.1 扫频范围:1kHz-3MHz★3.2 频率精度:0.01%★3.3 对于各向同性,立方,四方和正交晶体结构的材料样品,一次测量计算出所有独立的弹性常数质量标准:合格合同履行期限:合同签订后6个月内交货本项目( 不接受 )联合体投标。
  • 专家点评NBT| 陈良怡/李浩宇合作团队发明计算超分辨图像重建算法,稳定提升荧光显微镜2倍分辨率
    2014年诺贝尔化学奖授予了荧光超分辨显微技术,利用荧光分子的化学开关特性(PALM/FPALM/STORM)或者物理的直接受激辐射现象(STED),实现超越衍射极限的超分辨成像。尽管如此,活细胞中的超分辨率成像仍然存在两个主要瓶颈:(1)超分辨率的光毒性限制了观察活细胞中精细生理过程;(2)受限于荧光分子单位时间内发出的光子数,时间和空间分辨率不可兼得。受限于这个瓶颈,为了在活细胞上达到60 nm空间分辨率极限,现有超分辨率成像手段需要强照明功率(kW~MW/mm2)、特殊荧光探针和长曝光时间( 2 s)。强照明功率引起的强漂白会破坏真实荧光结构的完整性,长曝光时间在图像重构时导致运动伪影,降低有效分辨率。迄今为止,基于光学硬件或者荧光探针的改进无法进一步提升活细胞超分辨率的时空分辨率,实现毫秒尺度60 nm的时空分辨率成像。2021年11月16日,哈尔滨工业大学李浩宇教授团队与北京大学陈良怡教授团队合作在Nature Biotechnology上发表论文Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy【1】。他们另辟蹊径,发明基于新计算原理的荧光超分辨率显微成像,进一步拓展荧光显微镜的分辨率极限。通过提出“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个通用先验知识,结合之前提出的信号空时连续性先验知识【2】,他们发明了两步迭代解卷积算法,即稀疏解卷积(Sparse deconvolution)方法,突破现有荧光显微系统的光学硬件限制,首次实现通用计算荧光超分辨率成像。结合自主研发的超分辨率结构光(SIM)系统,实现目前活细胞光学成像中最高空间分辨率(60nm)下,速度最快(564Hz)、成像时间最长(1小时以上)的超分辨成像。结合商业的转盘共聚焦结构光显微镜,实现四色、三维、长时间的活细胞超分辨成像。1、应用举例:DNA折纸标准样本验证为了在已知结构样本中验证分辨率的提升,研究者设计并合成了两个荧光标记位点的DNA折纸样本,每个位点用4~5个Cy5标记。当这些分子间距为60 nm、80 nm和100 nm时,它们在TIRF-SIM下几乎无法区分,但在经过稀疏解卷积重建后(Sparse-SIM,图1)可以很好地区分它们中间的距离。整体结果可以用单分子定位显微镜ROSE【3】交叉验证,与Sparse-SIM得到的DNA折纸的荧光对间距以及不同间距荧光对在玻片上的分布一致。图1:Sparse-SIM解析不同距离DNA折纸样本。(a)在相同视场下,用配对Cy5标记不同距离(60 nm, 80 nm, 100 nm, 120 nm)的DNA折纸样品,用TIRF(左)、TIRF-SIM(中)和Sparse-SIM(右)成像。(b)在TIRF、TIRF-SIM和Sparse-SIM下,黄色(60 nm)、蓝色(80 nm)(80 nm)、绿色(100 nm)和红色(120 nm)框包围的放大区域。比例尺:(a)2 μm;(b)100 nm。2、应用举例:Sparse-SIM超快活细胞成像揭示核孔结构和胰岛素囊泡早期融合孔道在活细胞成像中,稀疏结构光显微镜(Sparse-SIM)可以解析标记不同核孔蛋白(Nup35, Nup93, Nup98,或Nup107)的环状核孔结构,而它们在传统结构光显微镜(2D-SIM)下形状大小与100 nm荧光珠类似(图2c, 2d)。由于相机像素尺寸与孔径直径类似,测量的核孔拟合直径与Sparse-SIM的分辨率相当。校正后Nup35和Nup107孔的直径分别为~66 ± 3 nm和~97 ± 5 nm,而Nup98和Nup93直径大小处于这个范围中(图2e, 2f),结果与以前用其他超分辨成像方法在固定细胞中获得的直径相符【4】。有趣的是,12分钟超分辨成像可以显示活细胞中核孔形状变化,这可能反映了核膜上的单个核孔复合物动态重新定向到焦平面或远离焦平面(图2g),这是其他超分辨方法难以观察到的。图2:Sparse-SIM解析核孔蛋白动态过程。(c)用Sparse-SIM观察活COS-7细胞中以Nup98-GFP标记的动态环状核孔的典型例子,持续时间超过10分钟。上下区域分别显示2D-SIM和Sparse-SIM下的图像。(d)比较(c)中青色框中的核孔结构快照与100 nm荧光珠在不同重建方法(2D-SIM、20次RL解卷积后、50次RL解卷积后、Sparse-SIM)下的结果。(e)由于核孔的大小与Sparse-SIM的分辨率和像素大小相当,按照Supplementary Note 9.1的协议(详情请见文章),分别推导出Nup35-GFP(红色)、Nup98-GFP(黄色)、Nup93-GFP(绿色)和Nup107-GFP(青色)标记的核孔结构的实际直径。(f)Nup35(66 ± 3 nm, n=30)、Nup98(75 ± 6 nm, n=40)、Nup93(79 ± 4 nm, n = 40)、Nup107(97 ± 5nm ,n = 40)的平均直径环。左右两幅蒙太奇分别为传统Wiener重构或稀疏解卷积后的结果。(g)在6个时间点对 (c)中的品红色方框放大并显示。比例尺:(c)500 nm;(d, g, f)100 nm。通过滚动重建,Sparse-SIM的时间分辨率可达564 Hz,识别出来INS-1细胞中VAMP2-pHluorin标记的、更小的胰岛素囊泡融合孔道(如~61 nm孔径)。它们在囊泡融合的早期出现,孔径小(平均直径~87 nm),持续时间短(9.5 ms),不能被之前传统的TIRF-SIM所识别【2】。另一方面,鉴别出来的稳定融合孔在囊泡融合的后期出现,孔径大(平均直径~116 nm),持续时间长(47 ms),是之前看到的结构【2】。值得一提的是,虽然这里发现的囊泡早期融合孔状态很难被其他的超分辨率成像手段所直接验证,但是它们的发生频率与30多年前用快速冷冻蚀刻电子显微镜所观察到的“小的融合孔发生概率远低于大的融合孔”现象相吻合【6】。3、应用举例:稀疏解卷积是提升荧光显微镜分辨率的通用方法与当下热门的深度学习超分辨率显微重建不同,信号的空时连续性、高空间分辨率导致的荧光图像相对稀疏性这两个先验知识,是荧光显微成像的通用先验知识,不依赖于样本的形态以及特定的荧光显微镜种类。因此,稀疏解卷积是通用荧光显微计算超分辨率成像算法,可被广泛应用于提升其他荧光显微模态分辨率,观察不同种类细胞器的精细结构及动态(图3)。图3 | 稀疏解卷积广泛应用于提升不同显微成像模态空间分辨率,揭示各类细胞器精细结构动态。比如稀疏解卷积增强的商业超分辨转盘共焦结构光显微镜(SD-SIM)【7】,可以实现XY方向90纳米,Z方向250 纳米的空间分辨率,清晰记录分裂期7 μm深度内的全细胞内所有线粒体外膜网络(图4)。同样,若稀疏解卷积增强与商业SD-SIM结合,可以很容易实现活细胞上的三维、四色超分辨率成像。稀疏解卷积可以与膨胀显微镜(ExM)【8】结合,解析细胞膨胀后的复杂结构;也可以与宽场、点扫描的共聚焦、受激辐射损耗显微镜(STED)【9】以及微型化双光子显微镜(FHIRM-TPM 2.0)【10】结合,实现近两倍的空间分辨率提升。因此,稀疏解卷积的提出,将帮助使用各种各样荧光显微镜的生物医学研究者更好地分辨细胞中的精细动态结构。图4 | Sparse SD-SIM解析活细胞三维线粒体外膜网络。(k)活体COS-7细胞的线粒体外膜(Tom20-mCherry标记)的三维分布,颜色表征深度。(l)SD-SIM原始数据与Sparse SD-SIM的水平(左)和垂直(右)的白色框区域放大展示。比例尺:(k)5 μm;(l)1 μm。总之,通过稀疏解卷积算法(Sparse deconvolution)来实现计算荧光超分辨率成像,与目前基于特定物理原理或者特殊荧光探针的超分辨率方法都不相同。与超快结构光超分辨显微镜结合形成的Sparse-SIM是目前活细胞光学成像中,分辨率最高(60纳米)、速度最快(564帧/秒)、成像时间最长(1小时以上)的超分辨光学显微成像手段。它也可以与现有的多数商业荧光显微镜结合,有效提升它们的空间分辨率,看到更清楚的精细结构动态。哈尔滨工业大学博士生赵唯淞、北京大学博士后赵士群、李柳菊为共同第一作者,哈尔滨工业大学仪器科学与工程学院李浩宇教授和北京大学未来技术学院陈良怡教授为论文共同通讯作者,共同作者还包括哈尔滨工业大学谭久彬院士、刘俭教授,北京大学毛珩博士,生科院成像平台单春燕博士和华南师范大学刘彦梅教授。参与合作的实验室包括武汉大学宋保亮教授、北京大学陈兴教授、中科院国家纳米科学中心丁宝全教授和生物物理所纪伟教授等。该项工作得到北京大学膜生物学重点实验室、麦戈文脑研究所、北大-清华生命科学联合中心、北京智源人工智能研究院的支持,也是多模态跨尺度国家生物医学成像设施建设过程中的重要成果。专家点评徐平勇(中科院生物物理所)自2014年诺贝尔化学奖授予了超分辨显微技术以来,超分辨成像技术取得了巨大的进步,成像的分辨率得到了进一步的提高。在固定细胞中,以MINFLUX、SIMFLUX以及ROSE等为代表的超分辨成像技术利用调制光照射单分子定位的方法实现了小于10纳米的空间分辨率。然而,在活细胞中进一步提高成像的空间分辨率仍然面临挑战。一个主要原因是活细胞成像的时空分辨率是互相关联的,为了减少活细胞里的运动伪影,需要通过提高采样频率来提高时间分辨率,但是采样频率或者时间分辨率的提高会减少记录的光子数,使得空间分辨率下降。在现有超分辨成像技术中,结构光照明成像SIM技术具有最高的时间分辨率,但是受限于成像原理本身和所采用的维纳反卷积等算法,空间分辨率进一步提高遇到了挑战。陈良怡和李浩宇团队合作发展的稀疏结构光超分辨显微成像技术(Sparse-SIM),保留了陈良怡团队前期发展的海森-SIM的高时间分辨率的优点,并进一步将SIM的空间分辨率提高到60纳米。该技术属于计算超分辨率成像方法,主要包括两步迭代解卷积求解算法。其核心是将Richardson–Lucy反卷积算法应用到SIM成像中,通过前期发展的基于信号的时空连续性的先验知识重建图像的方法减少或者消除Richardson–Lucy反卷积应用中的噪声问题;并利用提出的“荧光图像的分辨率提高等价于图像的相对稀疏性增加”这个先验知识作为约束条件,建立通用的计算框架——稀疏解卷积技术。该工作有几个方面的突破和创新:1)解决了Richardson–Lucy反卷积应用到生物成像中的噪声和先验知识问题,拓展了它在生物成像中的实际应用;2)利用稀疏结构光超分辨成像在活细胞中实现了同时高时空分辨率长时程成像;3)方法具有普适性,可以广泛用于宽场成像和其它超分辨成像技术,提高这些成像方法的分辨率。目前发展的Sparse-SIM主要是基于二维结构光 (2D-SIM) 系统,实现了活细胞中空间分辨率60nm、时间分辨率564Hz、成像时间1小时以上的超分辨成像。这是目前活细胞成像中同时具有的最高时空分辨率。其空间分辨率可与非线性SIM相媲美,但是时间分辨率更高,成像设备上的复杂程度也相对要低一些。将来Sparse-SIM技术也有望能用于三维结构光成像,尽管受限于3D-SIM成像方法本身成像的时间分辨率会有所下降。总之,Sparse-SIM技术同时具有高的时间和空间分辨率,其在活细胞成像中的应用有望带来诸多生物学中的重要发现。尤其重要的是,稀疏解卷积技术框架适用于目前多数荧光显微镜成像方法,并将这些成像的空间分辨率提升了近两倍,将大大促进这些荧光成像方法的发展和它们在生物学中的广泛应用。刘兴国(中科院广州生物医药与健康研究院)以SIM、STORM/PALM、STED为代表的的超分辨成像技术,成功突破了光学衍射极限,极大推动了亚细胞结构和细胞器互作动态等微观结构研究,获得了2014年诺贝尔化学奖。然而超分辨成像技术在时间分辨率和空间分辨率上难于获得同等提高——在超分辨成像技术中,SIM技术具有最好的时间分辨率,然而空间分辨率也是3种主流技术中最低的,缺乏对100nm以下尺度的亚细胞器结构的解析力。在充分利用SIM技术的时间分辨率的基础上,如何提高空间分辨率是一个重要的研究方向。北京大学陈良怡团队与哈尔滨工业大学李浩宇教授在Nature Biotechnology 杂志报道最新开发的Sparse deconvolution算法,并成功结合SIM技术开发出Sparse-SIM,在时空分辨率上成功将SIM技术的空间分辨率从110nm提高到60nm,同时保持毫秒级的时间分辨率。同时,陈良仪团队研究显示,本技术同样可以提高SD-SIM、STED等超分辨技术的轴向分辨率,甚至可以使普通宽场显微镜获得更好的信噪比。这一精彩的工作不但是领域的重要技术进展,而且具有广阔的应用空间。 陈良怡团队之前的工作,在硬件和软件水平挖掘SIM技术的时空分辨率,成功开发了高时空分辨率的Hessian SIM技术;本次研究再次在软件算法上取得突破,进一步推动了SIM技术在活细胞超分辨成像在时空分辨率的极限。应用Sparse-SIM技术,同时检测了核孔复合物结构、网格蛋白(clathrin)动态、溶酶体和内质网相互作用、内质网对线粒体内嵴动态的调控等重要过程,显现出Sparse-SIM强大的应用能力和应用前景。如何易于操作的提高超分辨成像技术的时空分辨率是亚细胞器结构和动态研究方面的一个重要方向,Sparse deconvolution算法或者Sparse-SIM提供了一个重要的生命科学研究工具,去探索更微观的生命科学过程。参考文献[1] Weisong Z, Shiqun Z, Liuju L, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy [J]. Nature biotechnology, 2021: DOI: https://doi.org/10.1038/s41587-021-01092-2.[2] Huang X, Fan J, Li L, et al. Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy [J]. Nature biotechnology, 2018, 36(5): 451-459.[3] Gu L, Li Y, Zhang S, et al. Molecular resolution imaging by repetitive optical selective exposure [J]. Nature Methods, 2019, 16(11): 1114-1118.[4] Szymborska A, Marco A d, Daigle N, et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging [J]. Science, 2013, 341(6146): 655-658.[6] Ornberg R L, Reese T S. Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes [J]. The Journal of Cell Biology, 1981, 90: 40 - 54.[7] Schulz O, Pieper C, Clever M, et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy [J]. PNAS, 2013, 110(52): 21000-21005.[8] Sun D-E, Fan X, Shi Y, et al. Click-ExM enables expansion microscopy for all biomolecules [J]. Nature Methods, 2021, 18: 107–113.[9] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy [J]. Optics Letters, 1994, 19(11): 780-782.[10] Zong W, Wu R, Chen S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging [J]. Nature Methods, 2021, 18(1): 46-49.
  • 巴楚县卫生健康委员会518.32万元采购微生物采样器,生物安全柜,超净工作台
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 巴楚县公共卫生能力建设项目公开招标公告 新疆维吾尔自治区-喀什地区-巴楚县 状态:公告 更新时间: 2023-09-16 招标文件: 附件1 项目概况 巴楚县公共卫生能力建设项目招标项目的潜在投标人应在政采云平台(https://login.zcygov.cn/user-login/#/login)获取招标文件,并于2023年10月08日 16:00(北京时间)前递交投标文件。 一、项目基本情况 项目编号:23GJ-(GK)087 项目名称:巴楚县公共卫生能力建设项目 采购方式:公开招标 预算金额(元):5183200 最高限价(元):2393200,2790000 采购需求: 标项一 标项名称:巴楚县公共卫生能力建设项目-疾病预防控制中心实验室设备 数量:1 预算金额(元):2393200 简要规格描述或项目基本概况介绍、用途:超净工作台、空气微生物采样器、生物安全柜等设备。 备注:无 标项二 标项名称:巴楚县公共卫生能力建设项目-妇幼保健计划生育服务中心医疗设备 数量:1 预算金额(元):2790000 简要规格描述或项目基本概况介绍、用途:四维彩超、盆底康复治疗仪、微量元素检测仪等设备。 备注:无 合同履约期限:标项 1、2,详见招标文件。 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:标项1、2:无 3.本项目的特定资格要求:【标项1、2】 供应商须提供有效的《医疗器械生产许可证》或《医疗器械经营许可证》及《中华人民共和国医疗器械注册证》。 三、获取招标文件 时间:2023年09月17日至2023年09月22日,每天上午10:00至14:00,下午16:00至20:00(北京时间,法定节假日除外) 地点:政采云平台(https://login.zcygov.cn/user-login/#/login) 方式:供应商登陆政采云平台http://www.zcygov.cn/,在线申请获取采购文件(登录政府采购云平台 → 项目采购 → 获取采购文件 → 申请,审核通过后可下载招标文件,如有操作性问题,可与政采云在线客服进行咨询,咨询电话:400-881-7190) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年10月08日 16:00(北京时间) 投标地点:政采云平台(https://login.zcygov.cn/user-login/#/login) 开标时间:2023年10月08日 16:00(北京时间) 开标地点:政采云平台(https://login.zcygov.cn/user-login/#/login) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目为电子招投标,供应商需要使用CA加密设备,凡参加本项目必须可自主通过新疆CA申领渠道“新疆政务通”申请政采云平台可使用的CA设备,如原有兵团或公共资源使用的CA,可与新疆CA联系,申请增加电子证书即可,无需重复申领。如需咨询,请联系新疆CA服务热线0991-2819290(喀什办理地点喀什东城喀什市行政审批局一楼企业服务专区数字证书窗口,联系电话15001465669)。2.本项目实行网上投标,采用电子投标文件(供应商须使用CA加密设备通过政采云电子投标客户端制作投标文件)。若供应商参与投标,自行承担投标一切费用。3.各供应商应在开标前应确保成为新疆政府采购网正式注册入库供应商,并完成CA数字证书申领。因未注册入库、未办理CA数字证书等原因造成无法投标或投标失败等后果由供应商自行承担。4.供应商将政采云电子交易客户端下载、安装完成后,可通过账号密码或CA登录客户端进行投标文件制作。在使用政采云投标客户端时,建议使用WIN7及以上操作系统。客户端请至新疆政府采购网(http://www.ccgp-xinjiang.gov.cn/)下载专区查看,如有问题可拨打政采云客户服务热线400-881-7190进行咨询。5.供应商在开标时须使用制作加密电子投标文件所使用的CA锁及电脑,电脑须提前配置好浏览器(建议使用谷歌浏览器),以便开标时解锁。6.投标保证金缴纳及确认时间:凡拟参加本次招标项目的供应商,必须在开标前将投标保证金汇入指定账户。投标保证金汇款凭证上用途栏应注明:招标项目名称+标项号+投标保证金。否则,届时其投标将被拒绝。7.供应商对不见面开评标系统的技术操作咨询,可通过https://edu.zcygov.cn/luban/xinjiang-e-biding自助查询,也可在政采云帮助中心常见问题解答和操作流程讲解视频中自助查询,网址为:https://service.zcygov.cn/#/help,“项目采购”—“操作流程-电子招投标”—“政府采购项目电子交易管理操作指南-供应商”版面获取操作指南,同时对自助查询无法解决的问题可通过钉钉群及政采云在线客服获取服务支持。供应商钉钉群号:政采云新疆网超供应商服务二十群:35547618(如已加入1-19群,无需重复加入),钉钉工具软件具有回放功能,直播培训结束后可在钉钉群中回放观看学习。 特别提示: 1、采购限额标准以上,200万元以下的货物和服务采购项目、400万元以下的工程采购项目,适宜由中小企业提供的,采购人应当专门面向中小企业采购。 2、超过200万元的货物和服务采购项目,预留该部分采购项目预算总额的30%以上专门面向中小企业采购,其中预留给小微企业的比例不低于60%。 3、超过400万元的工程采购项目中适宜由中小企业提供的,预留该部分采购项目预算总额的40%以上专门面向中小企业采购,其中预留给小微企业的比例不低于60%。 4、对于未预留份额专门面向中小企业的采购项目,以及预留份额项目中的非预留部分采购包,采购人、采购代理机构应当对符合规定的小微企业报价给予10%~20%(工程项目为3%~5%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的3%~5%作为其价格分。 5、接受大中型企业与小微企业组成联合体或者允许大中型企业向一家或者多家小微企业分包的采购项目,对于联合协议或者分包意向协议约定小微企业的合同份额占到合同总金额30%以上的,采购人、采购代理机构应当对联合体或者大中型企业的报价给予4%~6%(工程项目为1%~2%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的1%~2%作为其价格分。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:巴楚县卫生健康委员会 地 址:喀什地区巴楚县巴楚国土局东侧 联系方式:柳霞 18152980062 2.采购代理机构信息 名 称:新疆共建恒业信息咨询有限责任公司 地 址:喀什经济开发区深喀大道陕西大厦12楼1208室 联系方式:18209987338 3.项目联系方式 项目联系人:朱萍 电 话:18209987338附件信息: 巴楚县公共卫生能力建设项目-招标公告.docx18.6K × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:微生物采样器,生物安全柜,超净工作台 开标时间:2023-10-08 16:00 预算金额:518.32万元 采购单位:巴楚县卫生健康委员会 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:新疆共建恒业信息咨询有限责任公司 代理联系人:点击查看 代理联系方式:点击查看详细信息 巴楚县公共卫生能力建设项目公开招标公告 新疆维吾尔自治区-喀什地区-巴楚县 状态:公告 更新时间: 2023-09-16 招标文件: 附件1 项目概况 巴楚县公共卫生能力建设项目招标项目的潜在投标人应在政采云平台(https://login.zcygov.cn/user-login/#/login)获取招标文件,并于2023年10月08日 16:00(北京时间)前递交投标文件。一、项目基本情况 项目编号:23GJ-(GK)087 项目名称:巴楚县公共卫生能力建设项目 采购方式:公开招标 预算金额(元):5183200 最高限价(元):2393200,2790000 采购需求: 标项一 标项名称:巴楚县公共卫生能力建设项目-疾病预防控制中心实验室设备 数量:1 预算金额(元):2393200 简要规格描述或项目基本概况介绍、用途:超净工作台、空气微生物采样器、生物安全柜等设备。 备注:无 标项二 标项名称:巴楚县公共卫生能力建设项目-妇幼保健计划生育服务中心医疗设备 数量:1 预算金额(元):2790000 简要规格描述或项目基本概况介绍、用途:四维彩超、盆底康复治疗仪、微量元素检测仪等设备。 备注:无 合同履约期限:标项 1、2,详见招标文件。 本项目(否)接受联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求:标项1、2:无 3.本项目的特定资格要求:【标项1、2】 供应商须提供有效的《医疗器械生产许可证》或《医疗器械经营许可证》及《中华人民共和国医疗器械注册证》。 三、获取招标文件 时间:2023年09月17日至2023年09月22日,每天上午10:00至14:00,下午16:00至20:00(北京时间,法定节假日除外) 地点:政采云平台(https://login.zcygov.cn/user-login/#/login) 方式:供应商登陆政采云平台http://www.zcygov.cn/,在线申请获取采购文件(登录政府采购云平台 → 项目采购 → 获取采购文件 → 申请,审核通过后可下载招标文件,如有操作性问题,可与政采云在线客服进行咨询,咨询电话:400-881-7190) 售价(元):0 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2023年10月08日 16:00(北京时间) 投标地点:政采云平台(https://login.zcygov.cn/user-login/#/login) 开标时间:2023年10月08日 16:00(北京时间) 开标地点:政采云平台(https://login.zcygov.cn/user-login/#/login) 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.本项目为电子招投标,供应商需要使用CA加密设备,凡参加本项目必须可自主通过新疆CA申领渠道“新疆政务通”申请政采云平台可使用的CA设备,如原有兵团或公共资源使用的CA,可与新疆CA联系,申请增加电子证书即可,无需重复申领。如需咨询,请联系新疆CA服务热线0991-2819290(喀什办理地点喀什东城喀什市行政审批局一楼企业服务专区数字证书窗口,联系电话15001465669)。2.本项目实行网上投标,采用电子投标文件(供应商须使用CA加密设备通过政采云电子投标客户端制作投标文件)。若供应商参与投标,自行承担投标一切费用。3.各供应商应在开标前应确保成为新疆政府采购网正式注册入库供应商,并完成CA数字证书申领。因未注册入库、未办理CA数字证书等原因造成无法投标或投标失败等后果由供应商自行承担。4.供应商将政采云电子交易客户端下载、安装完成后,可通过账号密码或CA登录客户端进行投标文件制作。在使用政采云投标客户端时,建议使用WIN7及以上操作系统。客户端请至新疆政府采购网(http://www.ccgp-xinjiang.gov.cn/)下载专区查看,如有问题可拨打政采云客户服务热线400-881-7190进行咨询。5.供应商在开标时须使用制作加密电子投标文件所使用的CA锁及电脑,电脑须提前配置好浏览器(建议使用谷歌浏览器),以便开标时解锁。6.投标保证金缴纳及确认时间:凡拟参加本次招标项目的供应商,必须在开标前将投标保证金汇入指定账户。投标保证金汇款凭证上用途栏应注明:招标项目名称+标项号+投标保证金。否则,届时其投标将被拒绝。7.供应商对不见面开评标系统的技术操作咨询,可通过https://edu.zcygov.cn/luban/xinjiang-e-biding自助查询,也可在政采云帮助中心常见问题解答和操作流程讲解视频中自助查询,网址为:https://service.zcygov.cn/#/help,“项目采购”—“操作流程-电子招投标”—“政府采购项目电子交易管理操作指南-供应商”版面获取操作指南,同时对自助查询无法解决的问题可通过钉钉群及政采云在线客服获取服务支持。供应商钉钉群号:政采云新疆网超供应商服务二十群:35547618(如已加入1-19群,无需重复加入),钉钉工具软件具有回放功能,直播培训结束后可在钉钉群中回放观看学习。 特别提示: 1、采购限额标准以上,200万元以下的货物和服务采购项目、400万元以下的工程采购项目,适宜由中小企业提供的,采购人应当专门面向中小企业采购。 2、超过200万元的货物和服务采购项目,预留该部分采购项目预算总额的30%以上专门面向中小企业采购,其中预留给小微企业的比例不低于60%。 3、超过400万元的工程采购项目中适宜由中小企业提供的,预留该部分采购项目预算总额的40%以上专门面向中小企业采购,其中预留给小微企业的比例不低于60%。 4、对于未预留份额专门面向中小企业的采购项目,以及预留份额项目中的非预留部分采购包,采购人、采购代理机构应当对符合规定的小微企业报价给予10%~20%(工程项目为3%~5%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的3%~5%作为其价格分。 5、接受大中型企业与小微企业组成联合体或者允许大中型企业向一家或者多家小微企业分包的采购项目,对于联合协议或者分包意向协议约定小微企业的合同份额占到合同总金额30%以上的,采购人、采购代理机构应当对联合体或者大中型企业的报价给予4%~6%(工程项目为1%~2%)的扣除,用扣除后的价格参加评审。适用招标投标法的政府采购工程建设项目,采用综合评估法但未采用低价优先法计算价格分的,评标时应当在采用原报价进行评分的基础上增加其价格得分的1%~2%作为其价格分。 七、对本次采购提出询问,请按以下方式联系 1.采购人信息 名 称:巴楚县卫生健康委员会 地 址:喀什地区巴楚县巴楚国土局东侧 联系方式:柳霞 18152980062 2.采购代理机构信息 名 称:新疆共建恒业信息咨询有限责任公司 地 址:喀什经济开发区深喀大道陕西大厦12楼1208室 联系方式:18209987338 3.项目联系方式 项目联系人:朱萍 电 话:18209987338附件信息: 巴楚县公共卫生能力建设项目-招标公告.docx18.6K
  • 150万!广州市花都区人民医院采购彩色超声诊断仪等医学设备
    项目概况彩色超声诊断仪及移动式C型臂X射线机(二次)招标项目的潜在投标人应在广州市越秀区寺右一马路18号泰恒大厦14楼1409室获取招标文件,并于2022年01月18日 09时30分(北京时间)前递交投标文件。一、项目基本情况采购计划编号:440114-2021-07187项目编号:GZZJ-ZG-2021662项目名称:广州市花都区人民医院彩色超声诊断仪及移动式C型臂X射线机(二次)采购方式:公开招标预算金额:1,500,000.00元采购需求:合同包1(彩色超声诊断仪):合同包预算金额:1,500,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1医用超声波仪器及设备彩色超声诊断仪1(台)详见采购文件1,500,000.00-本合同包不接受联合体投标合同履行期限:设备到货及安装:合同生效后90天内;设备到货时,为该机器的最新硬件和软件版本。 项目内容数量最高限价是否允许采购进口产品彩色超声诊断仪1台人民币150万元是1. 投标人应对所有的招标内容进行投标,不允许只对部分内容进行投标。2. 简要技术要求或者采购项目的性质:详见招标文件采购项目内容。3.经政府采购管理部门同意,本项目采购本国产品或不属于国家法律法规政策明确规定限制的进口产品(进口产品指通过中国海关报关验放进入中国境内且产自关境外的产品)。4. 项目属性:货物类5. 采购品目:A032005 医用超声波仪器及设备二、申请人的资格要求: 1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:提供在中华人民共和国境内有效的执照(或证书)副本、组织机构代码证、税务登记证(国税、地税)复印件或三证合一证明文件复印件证明,投标人需提供完整的最新股东信息(若有)。分公司投标的,必须提供总公司的营业执照副本复印件及总公司针对本项目投标的授权书原件;如投标人为自然人的需提供自然人身份证明。2)有依法缴纳税收和社会保障资金的良好记录:(2.1)提供2020年或2021年任意一个月依法缴纳税收的相关证明材料,如依法免税的,应提供相应文件证明其依法免税; (2.2)提供2020年或2021年任意一个月依法缴纳社会保险的证明复印件,如依法不需要缴纳社会保障资金的,应提供相应文件证明其依法不需要缴纳社会保障资金;3)具有良好的商业信誉和健全的财务会计制度:提供体现2020年或2021年财务状况的证明文件或银行出具的资信证明或专业担保机构出具的政府采购投标担保函 。4)履行合同所必须的设备和专业技术能力:提供履行合同所必需的设备和专业技术能力的书面声明。5)参加采购活动前3年内,在经营活动中没有重大违法记录:提供参加政府采购活动前3年内在经营活动中没有重大违法记录的书面声明。 2.落实政府采购政策需满足的资格要求: 无。3.本项目的特定资格要求:合同包1(彩色超声诊断仪)特定资格要求如下:(1)投标人未被列入失信被执行人、重大税收违法案件当事人名单、政府采购、环境保护、知识产权等领域严重违法失信行为记录名单。【以采购代理机构在投标截止日当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(www.ccgp.gov.cn)查询结果为准,注:若投标人为分支机构的,同时对该分支机构所属总公司(总所)进行信用记录查询,该分支机构所属总公司(总所)存在不良信用记录的,视同投标人存在不良信用记录。】 ;(2)(2.1)提供符合法律、行政法规规定的其他条件的书面声明。 (2.2)不同的投标人之间有下列情形之一的,不接受作为参与同一采购项目竞争的投标人: (2.2.1)法定代表人或单位负责人为同一人或者存在直接控股、管理关系的投标人。 (2.2.2) 为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的投标人。 (3)所投产品具有有效的医疗器械注册或备案证明;若投标人为所投产品生产企业:所投产品为第一类医疗器械,提供食品药品监督管理部门签发的有效的《医疗器械生产备案凭证》复印件;所投产品为第二类、三类医疗器械,提供食品药品监督管理部门签发的有效的《医疗器械生产许可证》复印件(如国家另有规定,则适用其规定。);若投标人为所投产品经营企业:所投产品为第二类医疗器械,提供食品药品监督管理部门签发的有效的《医疗器械经营备案凭证》复印件;所投产品为第三类医疗器械,提供食品药品监督管理部门签发的有效的《医疗器械经营许可证》复印件(如国家另有规定,则适用其规定。);(4)本项目不接受联合体投标。 三、获取招标文件时间:2021年12月29日至2022年01月05日,每天上午09:00:00至12:00:00,下午14:30:00至17:30:00(北京时间,法定节假日除外)地点:广州市越秀区寺右一马路18号泰恒大厦14楼1409室方式:现场获取售价: 300元四、提交投标文件截止时间、开标时间和地点2022年01月18日 09时30分00秒(北京时间)地点:广州市越秀区寺右一马路18号泰恒大厦14楼1409室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜本项目开标地点:广州市越秀区寺右一马路18号泰恒大厦14楼1409室 (一)需要落实的政府采购政策:1. 《政府采购促进中小企业发展管理办法》(财库﹝2020﹞46 号)2. 《关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)3. 《关于促进残疾人就业政府采购政策的通知》(财库〔2017〕141号)4. 《关于环境标志产品政府采购实施的意见》(财库〔2006〕90号)5. 《节能产品政府采购实施意见》的通知(财库〔2004〕185号)(二)购买文件方式:1. 方式:现场购买或网购2. 现场购买投标人携带《获取项目文件登记表》加盖公司公章到代理机构所在地购买招标文件。(投标人购买招标文件前可访问我司网站:http://www.gzbidding.cn,在右侧“快速服务”栏下载填写《获取项目文件登记表》,并保证以上信息真实可靠,如因填写信息错误导致的与本项目有关的任何损失由填表者承担。)3. 网购标书注意事项:请投标人将《获取项目文件登记表》加盖公司公章的扫描件连同汇款底单一并发至电子邮件(gzzjzbyxgs@126.com)到我公司,并注明公司联系人、联系电话、电子邮箱、所投项目名称、项目编号、参投包组号。如未注明详情或款项未按时到帐导致购买招标文件不成功,后果由投标人自行承担。发送电子邮件后请联系我司(020-87385151、020-37639369、020-87371812、020-87372296)。购买招标文件账户信息:收 款 人:广州中经招标有限公司开户银行:中国工商银行五羊支行账 号:3602064719200511226 七、对本次招标提出询问,请按以下方式联系。1.釆购人信息名 称:广州市花都区人民医院地 址:广州市花都区新华街新华路48号联系方式:020-629352472.釆购代理机构信息名 称:广州中经招标有限公司地 址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:020-873851513.项目联系方式项目联系人:陈小姐电 话:020-87385151广州中经招标有限公司 2021年12月28日
  • 设备凭借力,助我上顶刊 ——超精细低温显微拉曼样机等您体验
    拉曼光谱是一种常用的材料表征技术。它可以用于测定材料化学、磁学、热学和电学等多方面的性质,并提供固体晶格结构等多种信息。随着材料科学的日益发展,越来越多的测量需要在低温或变温环境下进行,在不同温度下进行拉曼测量变得尤为重要。分析材料不同温度下拉曼光谱的特征峰和峰位移动可以得到晶格或应力的变化以及相变等多种信息。此外,低温下热噪音更小,一些信号较弱的材料在低温下也能有较好的信噪比。目前变温拉曼的主要应用方向有相变研究、二维材料特性研究、温度依赖研究、超导材料带隙研究、弱信号材料的测量等。然而高精度变温显微拉曼的测量对变温设备提出了较高的要求。对于传统的变温台或恒温器来说主要有以下几个方面的问题制约了低温拉曼的测量。先,在变温过程中由于热胀冷缩效应带来的样品位置漂移会影响测量的可靠性和重复性;其次,采用制冷机的低温恒温器震动较大会给显微测量带来噪音,而采用液氮或液氦的恒温器消耗较大且温度的稳定性能较差;此外,由于低温设备的影响导致工作距离较大,对于信号较弱需要大数值孔径、长时间信号采集的实验影响较大。针对以上问题,Montana Instruments公司在低温领域深耕多年,推出的低温光学恒温器已经更新到了三代。新的三代恒温器在多种变温光谱测量方面开发了专业的选件,可以与多种光谱仪联合使用实现宽温区的光谱测量。恒温器采用特殊的材料和结构实现了变温过程中超低的位置漂移。避震技术实现了样品的超低震动。的控温和热沉技术实现了样品温度的超稳定。快速变温选件可实现大范围快速变温和快速温度稳定。优化的内置镜头选件可以实现高达0.9NA的竖直孔径,成熟的近工作距离窗口和多种窗口材料确保了各种波段的高数值孔径测量。的设备总是在关键的时候帮助用户实现突破。利用Montana Instruments的低温光学恒温器很多科研团队在变温拉曼方面都取得了重要的学术成果。图1.不同条件制备的石墨烯变温拉曼测量结果,变温过程中清晰的观测到峰位的移动。(采用Montana Instruments 相关设备测量,图片版权归原作者)Guowen Yuan et al, Nature volume 577, pages204–208(2020)图2. NbSe2 ,TaSe2和TaS2三种材料不同厚度样品的变温拉曼测量结果(采用Montana Instruments 相关设备测量,图片版权归原作者)Dongjing Lin et al, Nature Commun 11:2406(2020)近期,Montana Instruments公司和Princeton Instruments公司联合研发的超精细低温显微拉曼系统实现了变温显微拉曼的智能测量,系统性能稳定操作简单,可在短时间内获得一系列的变温拉曼光谱,并且可对样品进行位置扫描测量。图3. Montana恒温器快速变温选件出色的快速变温性能图4. Montana恒温器的样品控制方案 图5. 超精细低温显微拉曼MicroReveal RAMAN 超精细低温显微拉曼系统 目前该样机已在QD中国北京实验室安装完毕,部分功能已经对外开放测试,欢迎大家点击此处或扫描下方二维码预约体验! 参考文献:[1]. Guowen Yuan et al, Nature volume 577, pages204–208(2020)[2]. Dongjing Lin et al, Nature Commun 11:2406(2020)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制