当前位置: 仪器信息网 > 行业主题 > >

在线光谱仪

仪器信息网在线光谱仪专题为您提供2024年最新在线光谱仪价格报价、厂家品牌的相关信息, 包括在线光谱仪参数、型号等,不管是国产,还是进口品牌的在线光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线光谱仪相关的耗材配件、试剂标物,还有在线光谱仪相关的最新资讯、资料,以及在线光谱仪相关的解决方案。

在线光谱仪相关的资讯

  • 微型光谱仪之在线光谱技术应用
    p strong   1. 工业在线光谱分析技术 /strong /p p   目前在线光谱分析已经以惊人的速度应用于多个领域的企业生产的多个环节,并已使得过程分析仪器领域发生了深刻变革。这种变革与在线光谱分析的独特优点是分不开的,比如: /p p span style=" COLOR: #548dd4" strong   在线光谱分析可以对多路多组分连续同时测量,且速度快,准确性高 /strong /span /p p span style=" COLOR: #548dd4" strong   在线光谱分析仪器易损坏和消耗品少,维护量小 /strong /span /p p span style=" COLOR: #548dd4" strong   在线光谱分析多采用光纤传输技术,适合环境恶劣的场合 /strong /span /p p span style=" COLOR: #548dd4" strong   在线光谱分析仪器结构相对简单,并适合多种样品(如液体,涂层,粉末和固体等) /strong /span /p p   这些优点对于企业原料和生产的中间环节进行快速质量控制、优化操作、稳定生产和节能降耗非常有价值。 /p p   与实验室环境不同,工业环境在要求光谱分析系统具有足够的灵敏度和探测限,同时对于性能稳定性,体积尺寸和抗干扰能力也都有严格要求。光谱仪是在线光谱分析的核心模块,它的性能好坏从根本上决定了系统性能。选择合适的光谱仪对于工业在线应用十分重要。 /p p   1992年美国海洋光学公司的Mike Morris博士发明了世界上第一台微型光纤光谱仪,他将光谱仪的大小缩小了几十倍,价格降低了十几倍。光纤光谱仪利用光纤把远离光谱仪器的样品光谱引到光谱仪器,以适应被测样品的复杂形状和位置。由光纤引入光信号还可使仪器内部与外界环境隔绝,可增强对恶劣环境(潮湿气候、强电场干扰、腐蚀性气体)的抵抗能力,保证了光谱仪的长期可靠运行,延长使用寿命。光纤光谱仪结构紧凑,组成包括入射狭缝、准直物镜、光栅、成像反射镜和阵列探测器,还包括数据采集系统和数据处理系统。光信号经入射狭缝投射到准直物镜上,将发散光变成准平行光反射到光栅上,色散后经成像反射镜将光谱呈在阵列接收器的接收面上,光信号被转换成电子信号后,经模拟数字转换,A/D放大后输出,最后由软件系统控制和采集信号,进而完成各种光谱信号测量分析。这些特点对于工业在线光谱应用是极其有利的。可以说,微型光谱仪是光谱测量技术从实验室走向工业应用的里程碑。 /p p   工业在线光谱分析系统核心为光谱仪,其配套部件一般还有采样附件,光源,控制软件和专用分析模型,它们对于系统整体性能也有重要影响。一般在线光谱分析系统构成如下图所示。 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227100735.jpg" style=" HEIGHT: 294px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/37c32cc6-4188-46d5-bfe9-fef2d6bda031.jpg" width=" 300" height=" 294" / /p p style=" TEXT-ALIGN: center" 图1 在线光谱分析系统组成 /p p   strong  2. 应用案例-工业在线反射率与颜色测量 /strong /p p   下面以一个典型案例说明在线光谱系统设计需要考虑的因素。某特种印刷用户需要快速测量薄膜材料颜色,用于产品质量控制。用户主要需求为: /p p    strong span style=" COLOR: #548dd4" 系统需满足最快180米/分钟的检测速度,且具有足够精确性。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统能够进行非接触非破坏性采样测量。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统能直接输出最终结果给上位机。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统能直接输出颜色值,并能与用户自己的上位机系统集成。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统要能反映被测样品的峰值波长、光谱等特性。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统具备自检和异常报警功能。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统要能适应工厂持续噪声,细颗粒粉尘,电磁干扰以及不稳定供电环境。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统要能7*24连续工作,且维护方便。 /span /strong /p p strong span style=" COLOR: #548dd4"   系统尺寸要能兼容于空间狭小的产线。 /span /strong /p p   这些需求涵盖了性能,尺寸和环境安全性多个方面,在工业在线光谱分析应用中具有典型性。 /p p   为满足检测速度要求,系统单次测量周期不得大于4毫秒。为此整个系统将采用流水线并行作业方式,确保测量速度和分辨率能够满足要求。如样品移动速度小于180米/分钟,则将得到更高的检测分辨率,即小于12毫米。所采用的工业定制型光谱仪的最小积分时间可达到1毫秒,可以充分满足速度要求。 /p p   为满足用户上位机数据接口要求,在线光谱分析系统应集成数据处理算法功能,且保证运算快速,结果准确。为此,在线光谱分析系统里搭载了高性能处理器,并且为了进一步提高速度,运算处理器直接与光谱仪模块集成。从而能够在CCD探测器进行下一周期积分时并行计算反射率数据。在前后两个计算周期之间,没有等待的延迟时间。在完成计算后,光谱仪将颜色数据提交给服务器,交由服务器判断是否需要触发停机信号。由于本系统的规模仅需要至多两层交换机就能连接,因此网络的延迟时间将小于1毫秒。而经过测算,进行50万次(相当于6000米长的薄膜)100个通道的组合逻辑判断在普通的计算机上每次平均耗时仅0.02毫秒,单次最大耗时为2毫秒。按此测算,完成单次测量和判断所需时间为12毫秒,即瑕疵点在经过探头3.6厘米后系统会给出报警或停机信号。瑕疵点在经过数米的减速区之后,足以被减速,并停留在质量观察板上。报警采用光谱仪与声光报警器协同工作实现。 /p p   对于颜色测量,必须有参考光谱和背景光谱,即对反射测量的校准操作。经常校准能有助于使计算的颜色结果更接近于实际结果,消除光源、环境以及其他因素对测量的影响。当进行校准操作时,需将已知颜色的标准板置于探头下方,与探头所呈角度与样品一致。此时打开光源,确保光源强度不会使光谱仪饱和,并保存参考光谱(即各波长上的强度)。然后关闭光源,此时光谱将反映暗噪声和环境光,将该光谱作为背景光谱也保存下来。在完成校准操作后,即可对样品进行颜色的测量和计算了。颜色实际上是样品在特定波长上的光谱强度与标准板在特定波长上的光谱强度的比值。为消除环境光和暗噪声的影响,需要背景光谱也参与计算。 /p p   根据上述分析结果,系统使用了对颜色测量进行特殊优化的工业定制型光谱仪。其搭载的高性能处理器和以太网接口能在测量光谱的同时直接将颜色信息提交给服务器,并由服务器根据用户预先设置的判定规则进行报警或触发停机,确保了整个系统的实时性和可靠性。 /p p   系统的探头支架可安装在用户指定滚轮位置的样品切线垂直方向上,并在滚轴上安装速度编码器,以获取当前检测样品的所在位置。反射式探头为Y型分岔光纤,其两头将连接到机柜内的光谱仪和光源上。在探头支架上还将安装可自动旋转的机电装置和标准板,供定期获取参考光谱。 /p p   系统板载处理器为定制高性能FPGA模块,实现光谱数据到LCH颜色值的计算,并将结果上传至上位机(主控机)。 /p p   系统的重要部件均安装在工业级机柜内,包括光谱仪、光源、供电电源、以太网交换机、系统服务器等。光纤和各种线缆则通过上进线或侧进线方式接入机柜。 /p p   最终的人机接口将安装在操作员使用的盘台上,该工作站主机将安装在盘台内部,并通过屏蔽双绞线与机柜内的系统服务器连接。系统服务器和操作员工作站上会分别安装系统软件的服务器端和客户端,以呈现整卷或整批薄膜产品的质量情况。 /p p   系统组成示意图如下所示。 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227101131.jpg" style=" HEIGHT: 250px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/27ed627d-b20b-4735-b0d4-39858b1574a5.jpg" width=" 400" height=" 250" / /p p style=" TEXT-ALIGN: center" strong 图2 系统组成示意图 /strong /p p   在软件模块上,系统提供的定制软件功能模块均运行于主控机的Windows系统上,主要功能模块如下图所示: /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227101230.jpg" style=" HEIGHT: 300px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/0754d649-1732-41c5-87ed-8a50be0c9ef5.jpg" width=" 300" height=" 300" / /p p style=" TEXT-ALIGN: center" strong 图3 软件功能模块 /strong /p p    strong 调度模块: /strong 为主程序核心,主要负责承担各模块之间的管理及任务调度 /p p    strong 通讯模块: /strong 主要负责与工业现场总线的通讯,解析通讯命令,并通过调度模块完成相关任务,如启动测量过程,读取测量数据等 /p p    strong 计算模块: /strong 计算光谱数据,得到LCH颜色值 /p p    strong 底层驱动: /strong 主要控制光谱仪、光源、电子快门、传动模块等硬件设备 /p p    strong 测量模块: /strong 根据测量时序、流程完成一个完整的测量流程 /p p    strong 数据库: /strong 主要用于保留系统参数、测量历史数据等信息 /p p    strong 用户界面 /strong :完成用户交互功能,主要包括系统参数配置,测量数据显示,历史数据浏览,系统功能测试等。 /p p   在故障维修与运行维护方面,光源和光谱仪都采用模块化方式安装布置,且均对通道号进行标识,方便找到故障的光源。并且配套的通过交换机及光谱仪上的状态指示灯可了解是否存在网络线缆故障。软件也能够识别光源故障。 /p p   该案例充分体现了在线光谱分析与实验室应用的巨大差异。工业环境下,在线光谱分析系统必须充分考虑应用环境的特殊性,各种影响因素都必须仔细评估。除了光谱仪,测量附件的选择在相当大程度上取决于光谱仪厂家的行业应用经验和水平,这一点在专用的在线分析系统开发方面体现的更为明显。 /p p strong   三、更多工业在线应用案例 /strong /p p strong   (1)LED芯片测试机 /strong /p p   由于制作工艺存在尚未解决的技术困难,所以对于生产过程中同一块外延片不同位置的光电特性是有细微差别的,呈现出不均匀性。在完成电极和引脚的过程中也会存在一定的瑕疵。这些缺陷会导致在LED产品的发光强度和颜色,在生产过程中如果残次芯片继续进行加工,会导致生产过程中不必要的浪费。所以LED芯片测试机是LED生产过程中不可或缺的一个环节。 /p p style=" TEXT-ALIGN: center" img title=" LED芯片检测过程.jpg" style=" HEIGHT: 252px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/19f4c15e-6033-4f19-8821-6c1b7452a872.jpg" width=" 400" height=" 252" / /p p style=" TEXT-ALIGN: center" LED芯片检测过程 /p p style=" TEXT-ALIGN: center" img title=" LED芯片测试结果.jpg" style=" HEIGHT: 323px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/46d98eb1-7886-4300-91fe-7c950a8fb913.jpg" width=" 400" height=" 323" / /p p style=" TEXT-ALIGN: center" LED芯片测试结果 /p p   微型光纤光谱仪主要将辐射光谱、发光强度、色坐标x,y和峰值波长作为测量指标。 /p p   一般检测设备只能对电气特性不合格进行筛选,微型光纤光谱仪被引入到LED芯片检测后,发光检测方面问题得到了很好地解决。由于微型光纤光谱仪测量每颗晶粒的时间是5-6ms,快于一般测试机探针机械移动时间,因此测量速度提到提高。由于微型光纤光谱仪体积小,因此不会占用机台的使用空间,不需要对原有机台的机械结构做出较大调整。同步触发功能保证了在检测过程中,能够保证每个晶粒在点亮后的相同时间进行测量。 /p p strong   (2)LED分光机 /strong /p p   LED制造流程是复杂、漫长的一个过程,想要生产出性能一致,功能完整的LED产品,LED分光机作为LED制造流程中靠后的工序,需要对封装后的器件根据光、色、电三方面参数进行筛选,然后才能将其包装为产品,最终流入市场。 /p p   LED分光机的测量指标是发射光谱、发光强度、色坐标x,y、峰值波长。 /p p   LED分光机工作流程一般包括:待分选的LED器件会在震动盘上排列进料,依次进入电测和光测的工位 进入电测工位后,LED会被通电进行电学指标测试 当被移动到光测工位时,LED芯片会被点亮,继而使用积分球和光谱仪测量其辐射光谱 通过计算光度学和色度学参数,并联合电学指标,一起进行数据分析 随后将数据转换为指令,传输到指令模块,将不同LED进行分选。基于微型光纤光谱仪的第一台LED分光机,可以完成分选5000颗/小时,使得LED检测从抽检进入到全检的时代。随着微型光纤光谱仪性能的提升以及与配套LED分光机兼容度提高,现在的LED分光机检测已经可以完成55000颗/小时,甚至更高。 /p p style=" TEXT-ALIGN: center" img title=" LED分光机.jpg" style=" HEIGHT: 338px WIDTH: 450px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/3a28ae58-6315-466f-86d5-06cd09c39ad7.jpg" width=" 450" height=" 338" / /p p style=" TEXT-ALIGN: center" LED分光机 /p p style=" TEXT-ALIGN: center" img title=" LED器件进料.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/6b21148a-276f-4227-a12a-1b2bc65ae312.jpg" width=" 250" height=" 188" / & nbsp img title=" 排列进入检测位置.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/b89bc6db-320c-4f95-b46b-83ab7df07248.jpg" width=" 250" height=" 188" / /p p style=" TEXT-ALIGN: center" LED器件进料、排列进入检测位置 /p p style=" TEXT-ALIGN: center" img title=" 检测电学和发光特性.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/8b14cb67-e6f3-42b1-a4c2-b122c600272a.jpg" width=" 250" height=" 188" / & nbsp img title=" 进行分选归类.jpg" style=" HEIGHT: 188px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/72c530e3-ff6e-46f1-9483-33f6ae9dec81.jpg" width=" 250" height=" 188" / /p p style=" TEXT-ALIGN: center" 检测电学和发光特性、进行分选归类 /p p   strong  (3)污染气体排放监测 /strong /p p   微型光纤光谱仪在污染气体排放监测指标是不同气体浓度,包括氮氧化物、二氧化硫、臭氧、丙酮和氨气等。不同气体所表现出的吸收光谱具有特异性,但也有一定相同性,大部分气体的吸收峰都位于紫外区域,所以采用在紫外区域的激发光或在紫外区域有响应的光谱仪对气体进行浓度的测试。 /p p style=" TEXT-ALIGN: center" img title=" 污染气体排放.jpg" style=" HEIGHT: 261px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/6b0a2621-b070-4789-ab04-9bb0cf9afa88.jpg" width=" 400" height=" 261" / /p p   通常使用微型光纤光谱仪对气体进行检测,会将所有检测设备放置于一辆移动检测车中,到达目标检测位时,将设备架设在相应位置。检测设备包括摄像机、激光器触发装置、激发光、光谱仪和反射镜。检测过程是通过光源发出一束激发光,照射到马路另一边的反射镜,通过反射镜反射使光谱仪能够检测到气体光谱。当一辆汽车经过检测系统时,汽车排放的尾气会和光路进行相互的作用,尾气中的物体由于浓度的不同,光谱仪可以测量光穿过气体的强度,就可以检测出汽车排放的尾气是否超标。 /p p style=" TEXT-ALIGN: center" img title=" 监测系统示意图1.jpg" style=" HEIGHT: 240px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/bddce1df-323a-45ad-a394-2c6bc379d0e3.jpg" width=" 400" height=" 240" / /p p style=" TEXT-ALIGN: center" img title=" 监测系统示意图2.jpg" style=" HEIGHT: 235px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/1bac5528-d221-4646-b16d-1321a1b27542.jpg" width=" 400" height=" 235" / /p p style=" TEXT-ALIGN: center" 监测系统示意图 /p p   这种尾气排放监测方法之所以能够得到广泛应用,首先得益于微型光纤光谱仪测量速度快,若被测汽车匀速通过检测系统,检测系统就能快速检测出吸收光谱,并且迅速处输入电脑进行分析和储存。微型光纤光谱仪的体积优势,使其能够与气体检测系统更好的集成到一起,方便检测车辆进行运输与架设。 /p p strong   (4)水果分选机 /strong /p p   吸收光谱在工业领域应用案例不仅仅局限于气体应用,微型光纤光谱仪也被应用于水果流通的分选环节,将水果的糖分和水分作为测量指标,结合其他物理探头对水果进行分选。相对于水果的大小,对于特殊人群,如糖尿病患者,其糖分对于消费者而言意义更为重要,使用近红外光谱仪可以对糖分和水分的含量进行判定。 /p p   基于微型光纤光谱仪的水果分选机一般由两部分组成,一个是发射的光源,一个是用来检测的光谱仪。一般在检测中会采用高功率的卤钨灯,提供近红外段宽光谱的能量,由于光源的高功率也就能提升了检测时穿透水果果皮的能力,在水果另一侧的光谱仪才能够获得更多更强的信号,提高信息的准确性。在水果分选过程中,水果数量巨大,微型光纤光谱仪检测的高效性正好满足了水果分选机的工作特点。 /p p style=" TEXT-ALIGN: center" img title=" 水果分选机示意图.jpg" style=" HEIGHT: 225px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/bf2f6dfa-79a1-4ca1-9671-cdc594f97c04.jpg" width=" 400" height=" 225" / /p p style=" TEXT-ALIGN: center" img title=" 水果分选机示意图2.jpg" style=" HEIGHT: 188px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/insimg/82a91140-60f2-402f-a77a-68eb2038a124.jpg" width=" 400" height=" 188" / /p p style=" TEXT-ALIGN: center" 水果分选机示意图 /p p    strong (5)节能玻璃镀膜工艺在线监控 /strong /p p   由于现在玻璃工艺技术的发展,很多高楼选择使用玻璃作为外墙的建筑材料,但与传统建筑材料相比,玻璃的隔热性能有所欠缺。如果想使室内温度维持在一个稳定值,就需要对玻璃进行处理,最常见的手段是将玻璃进行镀膜工艺,使得玻璃能够尽可能的透过可见光,而同时增强隔热性能。所以镀膜过程的质量保证,成为了玻璃隔热性能优良与否的重要因素。 /p p   将多个微型光纤光谱仪与玻璃生产线相集成,对镀膜的效果进行实时测量。微型光纤光谱仪所采集到测量指标,如镀膜玻璃的反射率,透过率,膜厚数据,反馈给镀膜机,使其在下一次镀膜过程中对镀膜工艺进行调整。在检测过程中,氘灯和卤钨灯混合光源照射到被测样品上,会反射一部分光,被光源同侧的光谱仪接收,而另一侧放置的光谱仪对透射光谱进行测量。所以整个检测系统能对反射光谱和透射光谱进行测量。由于检测的玻璃尺寸较大,所以为了对玻璃镀膜的均匀性进行全面的测量,探头采取平移方法扫描整块玻璃。由于微型光纤光谱仪的体积小巧,内部结构紧密,无移动部件,可以适应较高加速度和震动的环境,使得微型光纤光谱仪和探头可以进行在检测过程中进行往复运动。 /p p style=" TEXT-ALIGN: center" img title=" 微型光纤光谱仪检测示意图.jpg" style=" HEIGHT: 303px WIDTH: 300px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/db4108c9-dd18-411e-a72b-22c214e334a1.jpg" width=" 300" height=" 303" / /p p style=" TEXT-ALIGN: center" 微型光纤光谱仪检测示意图 /p p style=" TEXT-ALIGN: center" img title=" QQ截图20161227102542.jpg" src=" http://img1.17img.cn/17img/images/201612/noimg/4f9ed63a-2184-4b8c-b7a5-bf34940b80f5.jpg" / /p p style=" TEXT-ALIGN: center" 玻璃镀膜工艺监控系统 /p p style=" TEXT-ALIGN: center" img title=" 微型光纤光谱仪与平移台集成.jpg" style=" HEIGHT: 301px WIDTH: 400px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201612/noimg/233a6763-fd1d-4dc3-91e6-23e90370af1f.jpg" width=" 400" height=" 301" / /p p style=" TEXT-ALIGN: center" 微型光纤光谱仪与平移台集成 /p p strong   (6)印刷机的在线颜色监控 /strong /p p   颜色准确性是印刷行业重点关注的技术指标,由于不同纸张材料的吸水性差异于油墨的批次差异会导致印刷品之间存在色差,将微型光纤光谱仪与印刷实时颜色监控系统相集成就显得尤为的重要。 /p p   在印刷机上集成一个反射光谱的测量系统,对印刷品的校准色块进行反射测量,并通过相应算法将光谱数据换算为行业内能够接受的颜色指标。由于印刷中的纸张具有快速移动的特性,所以在运用中往往会采用积分球或环形的反射镜对光源进行匀化,从而减小检测样品在印刷过程中的振动与倾斜。光谱仪所得光谱数据反馈到印刷设备对颜色的品控进行调整。 /p p style=" TEXT-ALIGN: center" img title=" 印刷机颜色监控示意图.jpg" src=" http://img1.17img.cn/17img/images/201612/noimg/bf5b28d3-6d21-4722-b1a1-17761d368c5b.jpg" / /p p style=" TEXT-ALIGN: center" 印刷机颜色监控示意图 /p p   光谱仪自带可编程逻辑电路,可将复杂的逻辑关系写入微型光纤光谱仪中,可以使光谱仪直接与印刷设备油料控制器对接,产生在线的闭环系统。 /p p style=" TEXT-ALIGN: right" (内容来源:海洋光学) /p
  • 兰州石化在线光谱分析仪应用成功
    9月9日,兰州石化公司研究院研制的“在线光谱分析仪样机”在橡胶厂丁苯装置成功应用。这项技术填补了国内空白,是具有自主知识产权的创新技术。在线光谱检测技术替代了传统的人工检测技术,具有更加快速、精确、易操作的特性。   兰州石化研究院根据生产装置实际需求,结合自身在光谱技术领域的研究成果,首次将光谱技术应用于在线检测领域。由于丁苯橡胶生产装置采用人工采样分析方式,每4小时对回收的丁二烯物料进行氧含量分析,装置的操作压力是微负压,渗入空气不能及时发现,装置急需一种能连续快速在线检测丁二烯中氧含量的分析设备和手段。   在线光谱分析仪用于检测橡胶厂丁苯装置丁二烯氧含量,能够在线实时检测原料的氧含量和数据曲线。在装置现场,科研人员采用国标法和在线光谱分析仪测量结果进行准确度反复跟踪对比,两者测量结果完全吻合,在线光谱分析仪以快速、精确、易操作的特性优于人工测量。   据悉,在线光谱分析仪激光辐射的安全性通过了“国家防爆电气产品质量监督监测中心”的评估,安全性满足现场要求。在线光谱检测技术的研发成功将为化工领域生产提供可靠的安全监控手段,对于降低安全风险、提高生产装置的管控能力具有重要意义。
  • 第三届在线分析仪器发展论坛:在线质谱仪、在线近红外光谱技术发展现状
    仪器信息网讯 2010年11月1日,由中国仪器仪表学会分析仪器分会与北京雄鹰国际展览有限公司联合主办的“第三届中国在线分析仪器应用及发展国际论坛暨展览会”在北京国际会议中心隆重召开。来自中石油、中石化、中海油、煤化工、中化集团等下属企业及市政环保等用户及厂商代表400余人参加了本次论坛。仪器信息网作为特约媒体应邀参加了本次会议。   除大会报告外,会议同期举办了在线分析仪器展览会等活动,并设立A、B两个分会场对在线分析仪器技术分别进行探讨。其中,A分会场由北京化工大学袁洪福教授、浙江大学潘再生教授联合主持,多位在线分析领域的专家学者、厂商代表就“标准气体的使用”、“在线质谱的应用”、“在线经红外质谱技术及应用”等方面作了精彩的报告。 会议现场   过程/在线质谱仪的应用   过程质谱仪根据质谱定性定量的原理对工业过程进行在线监测,在多个行业有着广泛的应用前景。在本分会场上,上海舜宇恒平科学仪器有限公司、赛默飞世尔科技(中国)有限公司分别探讨了过程质谱仪的研发及应用状况。   上海舜宇恒平科学仪器有限公司黄晓晶女士以“国产过程质谱仪的应用”为题,介绍了过程质谱仪应用领域,阐述了国产过程质谱仪的发展机会与发展现状。   在报告中,黄晓晶女士通过列举应用实例,阐明过程质谱仪依据其自动化程度高,测量范围广,分析速度快,仪器稳定性、可靠性好等特点,在石化行业广泛应用,使企业节省了原料及能源,提高了生产效率,增加了经济效益。过程质谱仪在石化行业应用的领域包括:乙烯裂解炉,环氧乙烷/乙二醇,催化剂活性评价,烯烃生产以及合成氨、甲醇装置等一些反应剧烈,需要进行快速在线分析的场合。   关于国产过程质谱仪的发展状况,她表示,国外过程质谱仪“单机价格昂贵”、“售后服务成本高”、“定制服务可行性差”等方面的问题为国产过程质谱仪的发展提供了机会。   2009 年,上海舜宇恒平科学仪器有限公司整合多方技术优势,推出了SHP8400 过程气体质谱分析仪。该款仪器打破了进口过程质谱仪的市场垄断,填补了我国在该项技术的空白。此仪器一经推向市场,即受到各方面的广泛关注。该仪器采用多通旋转阀和电磁阀为进样系统,检测系统采用四极杆质量分析器和电子轰击型离子源,检测器有法拉第筒和电子倍增器两种。该仪器优异的性价比使其在石化行业的应用极具潜力。   “大力发展过程质谱仪的国产化,努力提升过程质谱仪的性价比,开拓其在石化行业的应用具有十分重要的意义”,黄晓晶女士在其报告最后指出。 上海舜宇恒平科学仪器有限公司黄晓晶女士   赛默飞世尔科技(中国)有限公司王清华先生则介绍了在线质谱仪的主要应用情况。其在报告中详细介绍了赛默飞世尔科技推出的Prima/Sentinel PRO、Prima dB、APIX dB/Quattro系列在线质谱仪的工作原理、仪器性能及应用领域。该系列仪器在化工、制药、钢铁冶炼、环境监测等领域得到广泛的应用。 赛默飞世尔科技(中国)有限公司王清华先生   在线近红外光谱分析技术   由于在线近红外光谱分析技术具有“分析精密度高”和“稳定性好”等优点,可有效地解决过程质量信息的自动化测量难题,目前已被广泛地用于石化、制药、粮食、食品等工业领域。   在会上,北京化工大学袁洪福教授为大家介绍了在线近红外光谱分析技术及其应用现状。他表示,近红外光谱分析技术是一种快速、高效的质量分析技术,在解决大批量样品品质分析,现场质量分析,和过程控制分析方面是其它分析技术难以比拟的,被誉为“分析巨人”。   他在报告中指出,我国正在处于生产结构调整时期,即从粗放的传统生产模式向精确数字化的现代生产模式转变的时期,扭转过去高耗能和高污染的状况,向节能减排,生产最优化,合理利用有限的宝贵资源,集约型循环经济方面发展。   在工业上,采用在线近红外分析技术可实时监测原料,中间产物,和产品的性质,实现产品收率和质量最优化,凭借工业的规模生产特点,产生巨大的经济效益。在农业上,未来发展是“精准农业”,而近红外分析仪可直接用于土壤和施肥等种植管理和收获等全过程的品质检测,提高农产品质量和产量,推行优质优价政策,将会产生巨大的经济效益和社会效益。 北京化工大学袁洪福教授   标准气体的应用及常见问题   作为气体行业的一个重要分支,标准气体在工业生产上发挥着独特的规范和保证质量的作用。目前,标准气体广泛应用于石油石化、环境检测、电力能源、地震监测、仪器仪表校正等诸多领域。其制备方法包括:称量法、渗透法、分压法、扩散法、静态容量法、饱和法、流量比混合法、指数稀释法、体积比混合法。   大连大特气体有限公司曲庆先生在会上除了为与会者介绍了标准气体的应用方面,还详细介绍了标准气体使用的注意事项,包括“取样阀门的选择、取样管线的选择、取样气路的气密性检查、样品气的置换、标准样品的转移、使用温度的要、进样”等方面需注意的问题。   此外,大连大特气体有限公根据多年的气体分析经验以及通过与广大客户的长期交流,总结了一些标准气体分析技术上的常见问题,并在会上与参会者进行交流探讨,包括“微量氧的分析、易吸附气体的分析、含有饱和蒸汽压较低组分的标准气体的分析、液化标准气体进样”等方面的问题。 大连大特气体有限公司曲庆先生   其他在线分析技术及规范   除上述报告外,浙江大学金钦汉教授作了“过程控制技术的新发展——微型模块化实时在线控制技术”的会议报告。金钦汉教授在报告中表示,该技术对流程工业提高反应效率、加快反应速率、减少中间环节、提高自动化程度起到非常重要的作用。 浙江大学金钦汉教授   重庆川仪分析仪器有限公司郑杰先生作了“在线分析传感器及仪表研究与发展探讨”的会议报告,对在线分析传感器及仪表的主要特性、在线分析传感器及仪表技术发展现状与趋势进行了研究分析,提出我国在线分析传感器与仪表技术发展思路建议:在国家政策引导与支持下,产学研用资源整合、优势互补,充分利用微机械与微电子、计算机、信号处理、传感、故障诊断等多学科综合技术,开展传感器与仪表相关基础研究、设计制造技术研究与应用技术研究,在研究与产业化过程中,尤其要在灵敏度、选择性、稳定性、可靠性、环境适应性方面下工夫,力求达到国际先进水平,甚至领先水平。 重庆川仪分析仪器有限公司郑杰先生   中国石化工程建设公司孙磊女士对“石油化工在线分析仪系统设计规范”进行了简要介绍,该规范包括“适用范围、规范性引用文件、术语和定义、一般规定、采用系统、常用在线分析仪表、分析小屋、在线分析仪管理系统”等八方面内容,规定了石油化工生产装置、公用工程及辅助设施中在线分析仪系统的工程设计原则和设计方法,适用于石油化工新建、扩建和改建工程的在线分析仪系统工程设计。 中国石化工程建设公司孙磊女士
  • 兰州石化成功研制油品质量在线光谱和色谱分析仪
    近日,由兰州石化公司承担的国家863重点课题《基于光谱、色谱、软测量等先进测量技术的在线分析装置》顺利通过了国家科技部组织的现场验收。   《基于光谱、色谱、软测量等先进测量技术的在线分析装置》课题包括三个子课题,课题由兰州石化公司负责,浙江大学控制系与中控软件共同承担在线光谱分析仪的研制开发 兰州石化所属自动化院承担在线色谱分析仪的研制开发 东北大学自动化仪表研究所负责钢水温度连续测量仪表的研发工作。通过课题的实施,课题组运用近红外光谱与色谱在线分析技术,成功研制出了具有滚动校正、自动诊断功能的油品质量在线光谱和色谱分析仪表。同时针对钢铁冶炼生产过程,研发出了具有精度高、可靠性高和远程监控能力的黑体空腔式钢水温度连续测量仪表。验收专家组认真评审了验收报告和相关材料,同时结合技术难点、热点及实际应用中的问题,与课题组人员进行了广泛深入的交流。最后,专家组一致同意课题通过验收,并对项目组提出了宝贵的意见和建议。
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p   曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。 br/ /p p   作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。 /p p   其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增! /p p   作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。 /p p   其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。 /p p   高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。 /p p   为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 150px height: 206px " src=" https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title=" 微信图片_20200331114509.jpg" alt=" 微信图片_20200331114509.jpg" width=" 150" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 报告人:中科院物理所 刘玉龙研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼散射原理与光谱分析应用 /strong /p p   在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title=" 微信图片_20200331114518.png" alt=" 微信图片_20200331114518.png" / /p p style=" text-align: center " strong 报告人:德国耶拿公司的拉曼产品经理王兰芬博士 /strong /p p style=" text-align: center " strong 报告题目:在线拉曼光谱在高分子化学化工中的应用 /strong /p p   王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。 /p
  • ICS 2018暨第一届光谱仪器在线展(第一轮通知)
    p   为促进国内外光谱工作者的在线采购与洽谈交流,加强合作,仪器信息网将于2018年5月29-31日举办 a href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" title=" " style=" color: rgb(227, 108, 9) text-decoration: underline " span style=" color: rgb(227, 108, 9) " 第七届光谱网络会议(ICS 2018) /span /a 暨 a href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" title=" " style=" text-decoration: underline color: rgb(112, 48, 160) " span style=" color: rgb(112, 48, 160) " 第一届“光谱仪器在线展览会” /span /a span style=" color: rgb(0, 0, 0) " (Spectroscopy Online Exhibition)。本次展会将采取网上展览会、在线研讨会(iCS)、促销活动等多种形式全面展示光谱的最新技术和产品,为光谱行业参展商及买家搭建一个高效、便捷的交流与商贸平台! /span /p p style=" text-align: center " a href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" title=" " img src=" http://img1.17img.cn/17img/images/201805/insimg/daddb0d6-a02c-45f0-8372-802c0abc1fdc.jpg" title=" 1920_625_20180420.jpg" / /a /p p span style=" color: rgb(227, 108, 9) "    span style=" color: rgb(112, 48, 160) font-size: 18px " strong 一、展区范围 /strong /span /span /p p span style=" color: rgb(227, 108, 9) "    /span a href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" title=" " style=" color: rgb(227, 108, 9) text-decoration: underline " span style=" color: rgb(227, 108, 9) " 第七届光谱网络会议(ICS 2018) /span /a 暨 a href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" title=" " style=" color: rgb(112, 48, 160) text-decoration: underline " span style=" color: rgb(112, 48, 160) " “第一届光谱仪器在线展览会” /span /a 分设四大展区:原子光谱展区、分子光谱展区、近红外光谱展区、拉曼光谱展区。可将优质的光谱仪器产品、核心部件、解决方案、资料等内容同步在线集中展示给仪器用户。 /p p style=" text-align: center " a href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" title=" " img src=" http://img1.17img.cn/17img/images/201805/insimg/4c4be299-b933-408f-b040-cfea10a5e289.jpg" title=" QQ截图20180502170718.jpg" / /a /p p    span style=" font-size: 18px color: rgb(112, 48, 160) " strong 二、展会优势 /strong /span /p p   本次展会具有以下四大优势:节约营销成本、品牌强势推广、目标用户精准、销售线索反馈。 /p p    span style=" color: rgb(0, 112, 192) " strong 1. 节约营销成本 /strong /span /p p   24小时在线展示,省去传统线下展会需要订场地、展台搭建、订酒店、人力等多项成本。能为买卖双方“缩短环节,降本增效”,买家可以在线观看、给产品留言,适合中小企业宣传推广。 /p p    span style=" color: rgb(0, 112, 192) " strong 2. 品牌强势推广 /strong /span /p p   借助仪器信息网网络光谱会议资源,庞大的用户资源,媒体资源等优势,通过仪器信息网多个入口向仪器及检测行业用户大力推广,助力厂商品牌宣传,实现展会高效多入口推广。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 目标用户精准 /strong /span /p p   本次展会分为四大展区,原子光谱展区、分子光谱展区、近红外光谱展区、拉曼光谱展区。有效区分不同类型光谱仪器用户,精准定位,同时打造与潜在客户在线交流的平台,直接对话您的理想客户。 /p p    span style=" color: rgb(0, 112, 192) " strong 4. 销售线索反馈 /strong /span /p p   用户参会之前会在线报名,展会期间可在线交流,同时可以给产品留言,均为潜在的销售线索,展览会结束后一周内统一提供参展服务报告。 /p p    span style=" color: rgb(112, 48, 160) font-size: 18px " strong 三、征集参展商 /strong /span /p p    strong span style=" color: rgb(0, 112, 192) " 1. 参与厂商范围 /span /strong /p p   仅限仪器信息网仪信通会员参加,且为光谱类产品生产商、经销商、零部件厂商。 /p p   参与厂商在展会期间需要有以下活动之一,包含但不限于:仪器打折促销、赠送礼品活动、延期质保等。 /p p   仪器信息网以下厂商可以免费参加本次线上展会:品牌合作伙伴、 第七届光谱网络会议(iCS 2018)赞助商,品类先锋 且按基础服务包执行,升级需额外收费。 /p p    span style=" color: rgb(0, 112, 192) " strong 2. 参展费用 /strong /span /p p   基础服务包:3000元 /厂商/展区;升级服务包:5000元/厂商/展区。 /p p   四个展区,每个展区厂商数量上限10家,同一家厂商不交叉参展,交叉参展按照新参展计算。 /p p    span style=" color: rgb(112, 48, 160) font-size: 18px " strong 四、参与方式 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 1. 仪器用户(免费参加) /strong /span /p p   提前注册——注册完成——按时参加展会。 /p p   报名时间:即日起——至2018年5月31日 /p p    span style=" color: rgb(0, 112, 192) " strong 2. 仪器厂商 /strong /span /p p   提前预定展位——展商资格审核——在线布置展位——按时参加展会。 /p p   报名时间:即日起——至2018年5月20日。 /p p    span style=" color: rgb(0, 112, 192) " strong 3. 报名方式 /strong /span /p p   点击报名链接: a href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" title=" " http://www.instrument.com.cn/zc/OnlineExhibition /a /p p   或扫描下方二维码: /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/19a3d740-67d7-4565-aa27-8b53201663ea.jpg" title=" 在线展宣传二维码.png" width=" 250" height=" 250" border=" 0" hspace=" 0" vspace=" 0" style=" width: 250px height: 250px " / /p p style=" text-align: center " 扫码报名 /p p    span style=" color: rgb(112, 48, 160) font-size: 18px " strong 五、联系方式 /strong /span /p p    span style=" color: rgb(0, 112, 192) " strong 1. 本次展会咨询: /strong /span /p p   联系人:张女士 /p p   联系电话:010-51654077-8066 /p p   Email:zhangwei@instrument.com.cn /p p    span style=" color: rgb(0, 112, 192) " strong 2. 商务合作咨询: /strong /span /p p   联系电话:4006-315-817 /p p   联系电话:4008-316-116 /p
  • “光谱仪在能源、电池领域中的应用”在线讲座问题集锦(6)
    锂电池以其特有的性能优势已在便携式电子设备中得到了普遍应用,其中大容量的锂电池还被用于电动汽车,预计未来将成为其主要的动力电源之一。此外,它还可用于人造卫星、航空航天和储能等方面。 11月7日,HORIBA Scientific举办了光谱应用系列在线讲座(6)——“光谱仪在能源、电池领域中的应用”,涉及辉光光谱、拉曼光谱技术。至此,“2014探索In的光谱应用”系列活动圆满结束。本次活动涵盖了如今热门的6大应用领域及7种光谱技术,为参与者提供了一个绝好的学习光谱技术机会。现将本次讲座问题整理后供大家参考。课程一:辉光光谱Q:赵老师:请问可以分析粒径在几百纳米的粉末样品吗?A:辉光放电光谱仪可直接分析的样品呈固体块状/片状,不可以分析粉末样品。当然可以将粉末样品磨碎混合铜粉压片成均匀块体分析。Q:Lucy-SH:辉光放电光谱仪和椭圆偏振光谱仪有什么区别?A:辉光放电光谱仪是有损分析技术且专注于分析镀层元素随深度的分布,可获得镀层元素、界面污染、表面处理、层间扩散、镀层均一性,定量后还可获得镀层元素含量及镀层厚度;椭圆偏振光谱仪是无损分析技术,它专注于分析镀层样品的厚度、光学常数(n,k)、粗糙度、孔隙率、界面信息、组分、结晶度、梯度变化及各向异性等。Q:中南大学-材料院-张老师:磁控溅射后的样品可以做吗?样品要平整到什么程度?A:可以。样品仅需要看上去平整即可进行分析。Q:张老师:请简要介绍一下辉光放电谱仪与SIMS比较的优缺点?A:两种技术都为表面镀层分析技术。辉光放电光谱仪分析速度快(几分钟),可测试元素周期表中所有元素,操作简单、维护方便、价格便宜。SIMS分析速度慢(几个小时),可测试所有元素、同位素,分析化合物组分及分子结构,操作复杂含有超高真空设备、维护成本高、价格昂贵。联合使用可多方位表征样品。Q:哈尔滨工业大学-能源学院-张老师:经Ar粒子轰击过的样片,比如您粒子中的0.3nm的镀膜材料,是否测量完成就被破坏了?A:辉光放电光谱仪是一种有损分析,Ar等离子体的阳离子会持续轰击样品表面,将镀层元素剥蚀,终产生一个溅射坑。课程二:拉曼光谱Q:中科院生态中心-王老师:测量液体拉曼光谱,对装样品的玻璃器皿光面毛面状况有特别讲究吗?A:测量液体样品时根据样品量的多少可以选择不同的容器,当样品量少时,放在毛细管中即可(毛细管壁薄的情况下样品信号会相应更强)。通常使用的玻璃器皿都是光面的。如果液体挥发性不强,没有腐蚀性,也可以滴在硬币表面或者玻璃表面。这时毛面的玻璃由于利于散射,可以得到更强的信号。Q:清华大学-材料系-陈老师:锂电池的充放电中提到拉曼可以检测锂离子的扩散,拉曼也可以检测离子吗?A:可以。通常情况下拉曼光谱是不用于离子检测的。但当离子和其它物质发生作用时,可以通过其它物质信号的改变来反推离子的扩散或浓度情况。例如在锂电池中,通过对石墨D峰的检测可以对锂离子扩散进行相应判断。由于拉曼光谱可以对分子所处的微环境进行表征,在一定的实验设计下,它是可以对离子、pH值、温度等信息进行表征的。关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • “光谱仪在纳米材料领域中的应用”在线讲座问题集锦(5)
    纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。 10月31日,HORIBA Scientific举办了光谱应用系列在线讲座(5)——“光谱仪在化学领域中的应用”,涉及:拉曼光谱、荧光光谱两大技术,现将问题整理后供大家参考。课程1:FLQ:苏州大学-材化部-林老师:您在讲座中提到设置激发区域与发射区域重叠至需要点上一阶,二阶瑞丽散射就能够消除倍频么?A:不需要。根据样品的具体发光信息判断,例如瑞利散射强度也可以作为定量依据;在三维荧光扫描中,通过勾选一、二级瑞利散射选项,可以有效扣除无效数据。 Q:广州工业大学-轻化-宋老师:请问目前能做SWCNT的三维荧光测试的荧光光谱仪有哪几种?A:HORIBA的Nanolog可以实现宽波长稳瞬态研究,并配置独有的NanoSizer软件,可以轻松获得碳管直径和手性指数。 Q:广州工业大学-轻化-宋老师:请问您说的与显微镜耦合,和已有的荧光显微镜有什么区别?A:荧光光谱仪与荧光显微镜耦合后,具有以下功能:1.利用氙灯宽波长范围特点,激发波长宽范围内可选,单色性强;2. 可获得单点或微区内样品的发射光谱信息;相比荧光显微只获得荧光强度,耦合后可以区分相似发光信息,提高特异性检测,获得全谱信息。 Q:杨老师:可以做显微荧光吗?A:可以。HORIBA可以提供市场上大多数品牌的荧光显微镜耦合方案,并且可实现单点或成像信息;此外,HORIBA还提供耦合显微镜实现荧光寿命成像分析。 Q:中科院生态中心-王老师:请概要阐述一下目前拉曼/荧光/磷光光谱本质上产生机理有什么不同?A:主要是激发态能级不同。拉曼属于散射信号;荧光、磷光则属于发射信号。 课程2:RamanQ:上海高研院-宏观量子-秦老师:拉曼散射波长主要受什么因素影响?强度、带宽?A:此处拉曼散射波长应该指的是拉曼谱峰的峰位。拉曼光谱是表征分子结构信息的,它的谱峰位置主要和折合分子量(即化学键两端的原子量)以及键能相关。例如,C-H(约3000波数)出现在高波数位置,而C-C(约1600波数)出现在相对低波数位置。此外,当样品受到应力作用时,谱峰的位置也会相应发生改变。谱峰强度主要和物质浓度相关,当物质具有偏振效应时,谱峰强度还和分子取向以及测试的偏振模式相关。带宽这里应该指拉曼光谱中的半高宽(FWHM),它主要与物质的有序程度相关。例如单晶硅的半高宽小于非晶硅。 Q:杨老师:如果将纳米材料加入到某些体系当中,是否还能通过拉曼光谱进行测试呢?A:可以。例如在有些研究中将碳纳米管导入特定细胞中,通过拉曼成像可以将不同的细胞区分出来。再比如在电池中掺入石墨烯等,可以通过拉曼光谱进行相应研究。 Q:苏惜不若:能简单介绍超低波数测量装置的原理吗?A:超低波数测量通过体布拉格光栅实现。通过组合与角度调节,终实现超低波数测量。 Q:苏惜不若:什么叫近场、远场,如何定义的?A:所谓近场光学,是相对于远场光学而言。传统的光学理论,如几何光学、物理光学等,通常只研究远离光源或者远离物体的光场分布,一般统称为远场光学。远场光学在原理上存在着一个远场衍射限,限制了利用远场光学原理进行显微和其它光学应用时的小分辨尺寸和小标记尺寸。而近场光学则研究距离光源或物体一个波长范围内的光场分布。在近场光学研究领域,远场衍射限被打破,分辨率限在原理上不再受到任何限制,可以无限地小,从而基于近场光学原理可以提高显微成像与其它光学应用时的光学分辨率。 Q:浩气长存:TERS的拉曼信号可以增强多少?A:TERS信号增强的量级与针尖密切相关。目前有报道将TERS用于单分子检测。 Q:中科院生态中心-王老师:HORIBA应用中心可以提供一些特殊样品测试服务吗?A:可以。具体情况请直接和我们联系,或者通过以下网址提交样品具体信息。www.horibaopticalschool.com关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • analytia China之海洋光学:两款在线光谱仪首次亮相
    p   在今年的慕尼黑生化展中,海洋光学携多款产品参展,其中两款在线光谱仪首次亮相。 /p p style=" TEXT-ALIGN: center" img title=" 图片1.jpg" style=" HEIGHT: 346px WIDTH: 450px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201610/insimg/d3c259d0-96ef-4d55-9244-50c9493e3c83.jpg" width=" 450" height=" 346" / /p p style=" TEXT-ALIGN: center" strong 定制型TDLAS系统 /strong /p p   其中,定制型TDLAS系统(Tunable Diode Laser Absorption spectroscopy,调谐激光二极管吸收光谱),可以用于多种微量气体的在线快速检测,适合生产线上快速运动的容器检漏,如环境质量监测(痕量气体O3、CO、NH3、H2S),以及污染源气体排放在线监测(SO2、CO2、 HCl、HF)等。此外,还可以用于内源性呼吸气体的监测。 /p p style=" TEXT-ALIGN: center" img title=" IMG_3402.JPG" src=" http://img1.17img.cn/17img/images/201610/insimg/59317030-01b5-4a85-8983-9cd277e6e782.jpg" / /p p style=" TEXT-ALIGN: center" strong 工业在线光谱仪 /strong /p p   另一款是专门为工业设计的在线光谱仪,可以通过以太网多台并行工作。该产品集成了网络通讯接口,并内置算法,作为海洋光学在线光谱检测系统的一部分,可以在线检测颜色、吸光度、透过率等参数,适合印刷、印染、光学玻璃品控等行业。 /p p style=" TEXT-ALIGN: center" img title=" IMG_3422.JPG" src=" http://img1.17img.cn/17img/images/201610/insimg/60a03758-d169-40b0-9618-75d1edf7ba5f.jpg" / /p p style=" TEXT-ALIGN: center" strong 海洋光学展位 /strong /p
  • 192万!北京石油化工学院计划采购在线拉曼光谱仪等设备
    一、项目基本情况项目编号:11000022210200020239-XM001项目名称:高质量应用型“人工智能”应用技术实验实训基地建设—光谱成像仪预算金额:192 万元(人民币)采购需求:序号名称数量简要技术需求1在线拉曼光谱仪A1功率:30W。2探头式在线拉曼光谱仪1探头式在线拉曼光谱仪实时在线检测溶液组分晶型。3在线拉曼光谱仪B1光纤耦合:单模光纤。4在线近红外光谱仪1带宽:≥ 110nm。合同履行期限:合同签订后120日内 。本项目不接受联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:2.1 中小企业政策■本项目不专门面向中小企业预留采购份额。□本项目专门面向 □中小 □小微企业 采购。即:提供的货物全部由符合政策要求的中小/小微企业制造、服务全部由符合政策要求的中小/小微企业承接。□本项目预留部分采购项目预算专门面向中小企业采购。对于预留份额,提供的货物由符合政策要求的中小企业制造、服务由符合政策要求的中小企业承接。预留份额通过以下措施进行:/。2.2 其它落实政府采购政策的资格要求(如有):/。3.本项目的特定资格要求:3.1 本项目是否接受分支机构参与投标:□是 ■否;3.2 本项目是否属于政府购买服务:■否 □是,公益一类事业单位、使用事业编制且由财政拨款保障的群团组织,不得作为承接主体;3.3 其他特定资格要求: / 。三、获取招标文件时间:2022-09-03 至 2022-09-09 ,每天上午09:00至12:00,下午12:00至17:00(北京时间,法定节假日除外)地点:北京市政府采购电子交易平台。方式:1.供应商持CA数字认证证书登录北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html#/home)获取电子版招标文件。2. 操作流程:(1)第一步,潜在供应商办理CA认证证书(北京一证通数字证书)详见北京市政府采购电子交易平台(http://zbcg-bjzc.zhongcy.com/bjczj-portal-site/index.html)按照查阅“用户指南” —“操作指南”—“市场主体CA办理操作流程指引”顺序办理;(2)第二步,潜在供应商在北京市政府采购电子交易平台按照“用户指南”—“工具下载”—“招标采购系统文件驱动安装包”顺序下载相关驱动;(3)第三步,潜在供应商在北京市政府采购电子交易平台按照“用户指南”—“操作指南”—“市场主体注册入库操作流程指引”顺序进行自助注册绑定;(4)第四步,潜在供应商持数字证书登录北京市政府采购电子交易平台获取招标文件电子稿。3.技术支持:涉及招标文件下载的相关技术问题,可按问题分类直接向平台技术咨询(1)CA认证证书服务热线010-58511086;(2)技术支持服务热线010-86483801。售价:¥0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点2022-09-26 09:30(北京时间)地点:北京市西城区广安门外大街248号机械大厦618会议室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目需要落实的政府采购政策:节约能源、保护环境、扶持不发达地区和少数民族地区、促进中小企业发展、支持节能减排、扶持监狱企业等。2.本项目为线上线下相结合,电子版招标文件下载后,投标人需递交纸质版投标文件。3.采购编号/包号:BJGY-2022-08221/01。4.获取招标文件时间:2022-09-03 至 2022-09-09 ,每天上午09:00至12:00,下午12:00至17:00。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京石油化工学院     地址:北京市大兴区黄村清源北路19号        联系方式:杨老师 ,010-81292071      2.采购代理机构信息名 称:北京国裕招标有限公司            地 址:北京市西城区广安门外大街248号机械大厦1401室            联系方式:李美琪、毛宇鹏,010-83509321            3.项目联系方式项目联系人:李美琪、毛宇鹏电 话:  010-83509321
  • E+H集团收购在线光谱仪制造商Blue Ocean Nova
    p   近日,Endress+Hauser(以下简称:E+H)集团宣布收购一家在线光谱仪器制造商Blue Ocean Nova,以进一步扩大其在过程分析测量领域的产品、解决方案和服务组合。Blue Ocean Nova位于德国Aalen的15名员工将被保留,运营在Endress + Hauser总部位于德国Gerlingen的液体分析能力中心。本次交易细节未被披露。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/dd1db404-6dc5-4452-94f3-f11537a7c065.jpg" title=" 53065852__original_副本.jpg" / /p p style=" text-align: center " Blue Ocean Nova过程分析产品 /p p   Blue Ocean Nova开发的过程传感器涵盖了UV-VIS、NIR和MIR的相关光谱区域,可以在线分析液体、气体、固体等样品。创新技术使光谱仪可以直接集成到测量探头中,应用于爆炸危险等区域。此外,传感器可以自动清洁,并可以轻松集成到过程控制系统中。 /p p   Blue Ocean Nova产品被用于食品饮料、石油天然气、化学和生命科学等行业,可进行浓度、湿度测量以及相关质量参数测量。本次收购增强了Endress+Hauser集团拉曼光谱仪、可调二极管激光吸收光谱仪(TDLAS)和过程光谱仪等产品的组合。 /p p   Blue Ocean Nova由Joachim Mannhardt和Stefan Beck于2015年创立,两人在工业光谱和过程分析测量领域的经历为公司带来丰富产品开发经验。Stefan Beck表示:“Endress + Hauser为我们打开了国际市场和客户的大门。” Joachim Mannhardt补充说:“我们相信,我们的技术将成为Endress + Hauser光学组合的理想补充。” /p p   收购完成后,Joachim Mannhardt和Stefan Beck将继续留在公司的管理团队中。Manfred Jagiella说:“通过这次收购,我们将继续实施加强过程分析测量组合的战略,并在未来为客户提供从实验室到过程的支持。” /p
  • 如何看待E+H收购智能在线光谱仪厂商Blue Ocean Nova?
    p   Endress+Hauser在过程分析测量领域进一步强化其产品、解决方案和服务。目前,集团已经完成对Blue Ocean Nova的收购。Blue Ocean Nova是创新型在线光谱仪制造商,其产品专用于监测质量过程参数。该公司位于德国的Aalen,当地15名员工将继续留任。 /p p   未来,Blue Ocean Nova将在Endress+Hauser位于德国Gerlingen的水分析生产中心总部的领导下运作。“就过程分析测量领域而言,Blue Ocean Nova研发的智能过程传感器能够增强我们的产品组合,有利于强化战略架构。”Endress+Hauser Conducta总经理Manfred Jagiella博士表示。作为集团执行董事会的一员,他同时还负责水分析业务。 /p p   Blue Ocean Nova研发的过程传感器涵盖了UV-VIS、NIR和MIR的相关光谱范围,用于在线分析液体、气体和固体。光谱仪采用创新的技术,可以直接安装至探头,即使在防爆危险区中也是一样。此外,传感器可以自动清洗,便捷地集成至过程控制系统中。 /p p   Blue Ocean Nova系统广泛应用于食品与饮料、油气、化工和生命科学等行业,可实现浓度和湿度测量,以及相关质量参数的测量。目前,集团产品线涵盖拉曼光谱、可调谐二极管激光吸收光谱(TDLAS)和过程光度计,通过该项技术,集团产品组合实现了进一步完善和强化。 /p p   2015年,Joachim Mannhardt和Stefan Beck创立了Blue Ocean Nova公司,他们为公司带来了丰富的工业光谱仪的产品研发经验和过程分析测量经验。“Endress+Hauser带领我们走向国际市场,迎来了全球客户。”Stefan Beck解释说。Joachim Mannhardt补充到:“我们有信心,自己的技术一定能够强化Endress+Hauser光学产品组合。” /p p   2017年10月31日,Endress+Hauser完成对Blue Ocean Nova的收购。经协商一致,双方将对收购细节严格保密。Joachim Mannhardt和Stefan Beck将继续留任公司管理层。“通过这次收购,我们朝着战略继续迈进,再次强化了过程分析测量产品组合 未来,我们有能力为客户提供从实验室到过程的全面支持。”Manfred Jagiella说。 /p
  • “光谱仪在化学领域中的应用”在线讲座问题集锦集锦(4)
    化学是在原子层次上研究物质的组成、结构、性质、及变化规律的自然科学,是重要的基础科学之一。 10月24日,HORIBA Scientific举办了光谱应用系列在线讲座(4)——“光谱仪在化学领域中的应用”,涉及:ICP光谱、拉曼光谱、荧光光谱、SPR四大技术,现将问题整理后供大家参考。 课程1:ICP光谱课程Q:戚老师:可以测出F吗?A: 目前ICP-OES不能进行F元素的定性定量检测。如果波长范围是120-800nm的话,可以测试卤素元素,诸如Cl和Br。 Q:南昌-王老师:ICP 采用什么检测器?A:ICP光谱仪有两种类型检测器,CCD与PMT。这取决于具体应用,如果样品每次都要分析20个元素以上,宜采用CCD检测器;如果对分辨率要求比较高,或需要测试卤素元素,就需要采用PMT检测器。 Q:苏州热工-宋先生:等离子高温,具体温度达到多少?A:等离子温度可以达到6000-10000K,正因为有这么高的温度,才能够激发多达70多种元素。 Q:863检测-ALLEN:合金钢里面铅如何能提高检测准确度?A:对于合金钢样品来说,如果Pb是以痕量存在的话,可以采用基体匹配才进行测试。当然如果合金钢本身基体效应不大,可以直接采用标准曲线法进行测试,所以具体还是取决于合金钢的种类。 Q:浙江大学-材料系-余老师:测试硅纳米颗粒中的Si、O、P、B等元素,用OES好还是AES?A:ICP-OES和ICP-AES是同一个意思,都是指等离子体发射光谱仪,早期称之为ICP-AES,后因为质谱仪的出现,为区别质谱仪,将AES改为OES。ICP-OES可以测试Si纳米粒子中Si、P和B。但是O元素测试不了。另外也取决于Si纳米颗粒中这几种元素的含量,目前ICP光谱仪在水溶液中测试精度是在ppb级别。 Q:计量学院-DONG:ICP对进样系统的清洗有哪些要求?A:ICP进样系统的清洗取决于仪器使用是否很频繁。对于雾化器,可以通过注射器进行清洗,对于雾化室我们采用大量高纯水来进行冲洗。 Q:计量学院-DONG:ICP-OES的浓度检测结果是直接给出的,还是要提取光谱数据进行后期数据处理?A:ICP-OES的测试结果可以由软件直接给出。例如建立方法时,你可以直接按照固体里面的单位进行设置,也可以按照溶液里面的单位设置。同时软件还可以输入称重值、定容值,终给出对应的原始固体里面的含量。 Q:863检测-ALLEN:目前ICP 2000 2 主要采用峰面积换是峰高进行定量,哪个准确度高些?A:ICP光谱仪定量分析主要是基于元素的强度和它的浓度成正比,根据比尔定量建立标准曲线,进一步进行精确定量分析。 Q:中科院生态研究中心-王老师:测试中雾化器起什么作用?A:在CIP-OES中,雾化器的作用主要是将液体样品进行汽化变为气溶胶。 Q:863检测-ALLEN:你们的ICP 可以采用峰面积定量吗?A:ICP-OES定量是根据峰相对应的强度来进行定量分析。分析模式可以采用大点法,或者高斯法。 Q:ICP-OES检测与ICP-MS检测的优缺点?A:ICP-OES和ICP-MS的区别测试的浓度范围不同。ICP-OES检测范围是ppb~%, ICP-MS的检测下限比较低,可以到ppt,ppq这么低的下限,但是浓度过高,检测器会饱和损坏。 Q:863检测-ALLEN:那一般金属材料元素分析必须集体匹配才可以检测?A:金属材料在分析测试时,根据各自的配比,所用的方法都不尽相同。对于一些高纯样品,因为所测元素时痕量范围,一般采用基体匹配较为合适。课程2:拉曼光谱课程Q:江苏大学-高老师:我们能采用拉曼光谱仪进行定量分析吗?A:拉曼可以做定量分析,对于溶液来说比较容易,因为不存在取样是否均匀的问题;对于固体样品来说,由于样品分布不均匀,显微拉曼无法准确定量,可以用透射拉曼实现 Q:江苏大学-高老师:拉曼可以对所有的样品作三维成像吗?是否能够看到内部结构?A:只要激光能穿透进样品,都可以做三维成像,具体三维成像能做多深,跟样品的消光系数和激发波长有关。在三维成像图上,可以使用透视法或切片观察截面方法看到内部结构 Q:xiaolu:成像的原理是什么?空间信息只能是有机么?A:成像是通过软件控制自动平台的位置,获取一个区域里的各个点的拉曼光谱,然后通过后续的数学处理解析光谱获得。如果要获取不同物质的分布图,可以根据光谱的相似度进行解析,相同的光谱归为一类,不相同的光谱归为另外一类;如果获取物质的峰信息分布,可以拟合光谱的峰位、峰强和峰面积即可。 Q:songwei:请问三维成像的硬件要求及测试的空间分尺度?A:只要配备XYZ自动平台即可进行三维成像;空间分辨率跟激光光斑的尺寸有关,光斑直径d=1.22λ/NA,λ是激光波长,NA为物镜的数值孔径,以532nm激发波长,100x物镜为例,光斑直径约1um,所以能达到横向1um,纵向2um的空间分辨率 Q:xiah:在分析浅表面成分时,什么样的条件比较适合?A:寻找在样品中穿透较浅的激光用于分析表面成分。一般来说,紫外激光在样品中穿透比较浅,适合于分析浅表面样品,但是不是绝对的 Q:lei:请问你们用拉曼做定量分析时是根据什么定量,如何选择特征峰?A:定量是根据特征峰的积分强度来分析的。特征峰好是单峰;如果没有单峰,可以通过峰位拟合的方法获取特征峰的积分强度;如果峰位非常复杂,难以找到特征峰,可以通过化学计量学的方法进行定量分析。 Q:jessy:可以用同一台拉曼仪器可以将结构分析和荧光的各相异性的分析结合在一起吗?A:可以。拉曼光谱仪同时是一台性能非常好的光致发光光谱仪。 Q:中科院生态研究中心-王老师:激光拉曼测试分析,如何选择合适激光器波长?A:如果做表面薄膜分析,可选择紫外激光;如果不是薄膜且样品没有荧光干扰,那尽量选择短波长的可见激光;如果样品有荧光干扰,则要选择合适的激光去避开,比如荧光出现在700nm等长波长的地方,则选择用473nm或532nm去避开,如果荧光出现在500nm等短波长的地方,则选择785nm等长波长激光去避开。课程3:荧光光谱课程Q:张老师:荧光寿命如何测定?A:荧光寿命是当某种物质被一束激光激发后,该物质的分子吸收能量后从基态跃迁到某一激发态上,再以辐射跃迁的形式发出荧光回到基态。当激发停止后,分子的荧光强度降到激发时大强度的1/e所需的时间称为荧光寿命。用脉冲激发源,通常是激光二管或LED,在发出一个脉冲光的同时,产生一个同步“start”计时信号,输入到计时电子装置(计时单元)。脉冲的光激发了样品,在一定时间后它回到基态并发出光子,发射光脉冲入射到检测器,它提供一个“stop”信号到计时电子装置,start和stop两个信号的差异输出到直方图。这个过程重复多次,直到直方图完全建立。在观察足够长的单光子计时条件后,直方图中对应时间通道的光子数和这个时间衰减的强度成比例。激发态的衰减理论上是遵从一个指数行为,但是荧光光子的发射是随机出现的,所以需要多次循环激发-发射来建立这个衰减曲线。 Q:四川大学-陈老师:样品有光漂白现象,怎么避免?A:建议采用CCD作为光谱仪检测器,配合可以级成像光谱仪,一次快速采集全谱信息,可以消除时间造成的光谱漂移,避免由长时间光辐射造成的“光漂白”。 Q:中科院生态研究中心-王老师:请简要介绍下荧光/磷光产生机理?A:荧光是物质吸收光后发生出一定波长光的现象(通常是发射出较长波长的光)。荧光的时间尺度通常是皮秒到微秒范围。发射发生在较长的时间尺度(微秒到秒级),这个尺度的发光通常被称为磷光。由于激发态分子会损失能量到环境中,发射光的波长通常在较长的波长(较低的能量)位置,磷光甚至会发生在更长的波长位置。我们可以采用Jablonski diagram能级图说明荧光和磷光的定义,荧光总是发生在从低的激发态能级回到基态的过程中,电子从较高的能级到跃迁至基态,其需要时间在纳秒尺度。由于时间尺度和环境的影响,荧光基团可以被认为是一种很好的纳米尺度的探针,同时基于荧光分子对于局域环境(粘度、PH值、介电常数、性、温度和分子间相互作用等)的其敏感,导致其被广泛应用。课程4:SPR课程Q:Xiah:如果我分析的分子比较大,是否会将相互反应的槽堵塞?A:不会。SPRi流路设计满足粗样品和粘稠样品的测试需求,如:血清、血浆和细胞等。 Q:jiang:我们想在SPR的芯片上做自己的功能化,请问你们的芯片能不能让我们自己做功能化?A:可以。HORIBA采用开放式芯片设计,完全支持您的专属开发需求。 Q:四川大学-陈老师:SPR和SPRi有什么区别?A:表面等离子体共振(SPR)是一种物理光学现象,当金属薄膜表面质量发生改变时,会引起表面折射率产生变化,通过测量这种变化,可得到分子作用动力学及浓度等信息,从而了解分子之间的相互作用。SPRi技术将等离子体共振技术、成像技术(Imaging)和微阵列芯片技术进行结合,可一次获取百种生物分子相互作用的信息,这种阵列测量方式突破了传统通道式测量的局限,特别适用于快筛及实时成像的应用要求。 关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
  • 第七届光谱网络会议暨第一届光谱仪器在线展览会开幕
    p    strong 仪器信息网讯 /strong 2018年5月29日,由仪器信息网主办的第七届光谱网络会议(iCS 2018)暨第一届“光谱仪器在线展览会”(Spectroscopy Online Exhibition)正式开幕。本届网络会议为期三天(5月29日-31日),采取在线研讨会(iCS)、网上展览会、促销活动等多种形式全面展示光谱的最新技术和产品。 /p p   iCS 2018分设4个专场:原子光谱技术与应用进展、分子光谱技术与应用进展、近红外光谱技术与应用进展及拉曼光谱技术与应用进展。大会邀请了27位业内光谱专家、以及厂商技术人员针对不同的主题做精彩报告,为业界人士搭建一个交流平台,提高光谱研究与应用水平。 /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" img title=" 00.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/1059902b-c2e4-4f0f-b6e0-191dfe5c2096.jpg" / /a /p p   iCS 2018会议首日,原子光谱技术与应用专场共安排了9位相关专家进行精彩的报告,累计报名人数超过1000人!用户互动问题达58个!以下为报告内容简要,以飨读者。 /p p style=" TEXT-ALIGN: center" span style=" COLOR: #ff0000" strong 原子光谱技术与应用进展专场 img title=" 王萌.jpg" style=" HEIGHT: 337px WIDTH: 600px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201805/insimg/9efd80f4-cd75-4434-a1b8-eedb7eb687a3.jpg" width=" 600" height=" 337" / /strong /span /p p   人的指纹具有唯一性和不变性,常常用作身份鉴定。过去的指纹分析主要集中在指纹显现和图像鉴定两个方面。近年来,指纹中化学成分分析开始受到越来越多的重视。分析指纹中化学成分,可以提供指纹所有者的信息,帮助确定指纹所有者的身份。指纹中的化学成分可以分为无机元素和有机分子两大类。随着纳米材料的广泛应用,更多种类的无机元素出现在指纹中。该课题组利用X射线荧光技术分析了指纹中的微量元素,得到了指纹元素成像图。指纹中的元素分析和成像可以帮助鉴定指纹所有者,有望成为指纹分析的新工具。 /p p style=" TEXT-ALIGN: center" img title=" 杨静.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/b958faa8-a5c8-4265-9fa0-15a6708c3842.jpg" / /p p   原子吸收光谱与原子发射光谱技术发展至今,在环境、食品、医药、农业、材料、石化等领域的金属元素检测方面有着广泛应用。近年来原子质谱技术也发展迅速,由于其检出限低,分析速度快,使得ICP-MS有了越来越多的应用。德国耶拿作为光谱仪器的先驱,一直探索原子光谱分析新领域,其高分辨率原子光谱分析仪器、固体直接进样技术、连续光源原子吸收技术及高灵敏的ICP-MS,将原先不可能分析变为可能。 /p p style=" TEXT-ALIGN: center" img title=" 高光晔.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/89fc43ad-b378-41f7-8901-be2dcafca099.jpg" / /p p   报告介绍了当前ICPOES常用固态检测器的主要类型(CCD、CID)、及其工作原理和优缺点等。 /p p style=" TEXT-ALIGN: center" img title=" 郭伟.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/9d165e13-96b6-4504-abe3-0ba2ba344d15.jpg" / /p p   发展高空间分辨LA-ICP-MS原位微区分析技术,用于精准地提取单个生物化石壳体中微量元素和同位素的浓度及其成像分布的地质信息,可以为微体化石的后期成岩程度辨别、沉积和成岩环境、古海洋古气候变化事件、重建古气候和古海洋环境等方面具有重要的指示意义。本工作分享了激光固体校准标准的制备及实现高空间分辨率微体化石元素Mapping应用等。 /p p style=" TEXT-ALIGN: center" img title=" 王哲.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/6b680bdd-b1c0-49bb-a6a2-90414e5de0e5.jpg" / /p p   激光诱导击穿光谱(LIBS)技术具有快速、遥测、多元素同时分析、便于实现在线或原位分析等优势,在煤质分析、钢铁分析、污染物检测和外太空探测等领域都有巨大的应用潜力。但到目前为止,尚未能实现精确定量化和大规模商业化,主要原因在于受测量不确定度较高导致的重复性较低和受基体效应影响导致的测量误差较大这两大关键瓶颈的制约。 /p p   本研究通过探索LIBS测量不确定性及测量误差的产生机制,在不增加系统复杂性和系统成本的条件下,发明了等离子体调制、光谱标准化、基于主导因素的偏最小二乘模型等一系列提高LIBS测量重复性和准确性的方法,实现了LIBS的精确定量化。研究成果已应用于煤质快速分析、金属分析、水泥生料品质在线测量、玉石原产地鉴定等领域,显著提高了测量重复性和准确性。 /p p style=" TEXT-ALIGN: center" img title=" 许少辉.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/d35a0fd0-3cab-4988-9e99-34eb05070f66.jpg" / /p p   高基体的样品对ICPMS是一个极具挑战性的样品类型。岛津公司在智慧、环保型ICPMS-2030系统上,开发出新型进样技术,从而使得高基体的样品分析变得更加轻松和简单。 /p p style=" TEXT-ALIGN: center" img title=" 黄晓苓.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/8118719e-6575-48b4-bcd4-8eaf2edd67e1.jpg" / /p p   重金属检测方法有:原子吸收、原子荧光、ICP等,但在检测的过程中,因为食品中有机物多、背景复杂,加之样品前处理可能会带来污染及灵敏度损失等问题。国际上使用原子吸收方法进行食品中重金属分析大多采用塞曼背景校正分析来解决这些问题。本报告主要针对高性能交直流塞曼原子吸收光谱仪在食品检测分析中的应用及优势。 /p p style=" TEXT-ALIGN: center" img title=" 欧阳昆.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/40ac0d52-1313-4f73-8c56-f8186806aa4f.jpg" / /p p style=" TEXT-ALIGN: center" img title=" 巢静波.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/9344d7cc-6c40-40ec-b4a6-99a92065c636.jpg" / /p p   报告主要介绍了环境、生物样品中元素及形态ICP-MS、HPLC-ICP-MS准确测定过程中方法确认、样品前处理及测定过程中干扰消除等关键因素。 /p p   为促进国内外光谱工作者的在线采购与洽谈交流,加强合作,与第七届光谱网络会议同期举行的iCS 2018暨第一届光谱仪器在线展也拉开了序幕。29日展会第一天,线上观展人数突破200人,共计14家仪器厂商参展。本次展会通过网上展览会、促销活动等多种形式全面展示光谱的最新技术和产品,为光谱行业参展商及买家搭建一个高效、便捷的交流与商贸平台! /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition" target=" _blank" img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/b9a844f3-e8d1-4769-b24b-b0762538be3b.jpg" / /a /p p style=" TEXT-ALIGN: left"   本次展会分设原子光谱、分子光谱、近红外光谱、拉曼光谱四大展区。将优质的光谱仪器产品、核心部件、解决方案、资料等内容同步在线集中展示给仪器用户。具有节约营销成本、品牌强势推广、目标用户精准、销售线索反馈四大优势。 /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition/Area" target=" _blank" img title=" 22.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/f5354aa8-a97e-480a-a72c-f6a47b7b9f48.jpg" / /a /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/zc/OnlineExhibition/Area" target=" _blank" strong iCS 2018暨第一届光谱仪器在线展品牌参展商 /strong /a /p p   5月30日及31日,分子光谱技术与应用进展、近红外光谱技术与应用进展及拉曼光谱技术与应用进展专场精彩继续,请继续关注仪器信息网后续报道。 /p p   报名参加iCS 2018请点击 a title=" " style=" FONT-SIZE: 20px TEXT-DECORATION: underline COLOR: #ff0000" href=" http://www.instrument.com.cn/webinar/meetings/iCS2018/" target=" _blank" span style=" FONT-SIZE: 20px COLOR: #ff0000" strong “我要参会” /strong /span /a ! /p
  • 快检、在线让光谱应用落到实处 ——第十二届光谱网络会议(iCS 2023)报告推荐
    随着技术的发展和应用需求的提升,“仪器小型化”、“从实验室到现场”、“快速检测”、“在线”等趋势一直引领着光谱仪器及技术的发展方向。同时,也正是这些技术的发展将各类光谱分析技术的应用拓展到了越来越广泛的领域,真正落到了实处。一方面,微型光谱仪具有许多大型光谱仪所不具备的优点,如重量轻、体积小、探测速度快、使用方便、可集成化、可批量制造以及成本低廉等,像普通光谱仪一样微型光谱仪有着巨大的应用市场,可以应用在实验室化学分析、临床医学检验、工业监测、航空航天遥感等领域。另一方面,随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术逐渐深入生产过程中。其中,在线光谱分析已经以惊人的速度应用于多领域企业生产的多个环节中,并已使得过程分析仪器领域发生了深刻变革,特别是近红外光谱、中红外光谱、拉曼光谱、激光诱导击穿光谱、太赫兹光谱等在相关应用中的优势凸显,市场也在不断增长。为了更深入理解,并探讨光谱快检及在线应用技术进展,2023年6月13日,由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等协办的第十二届光谱网络会议(iCS2023) 将在6月16日特别开设“光谱快检及在线应用技术进展”专题报告,内容涵盖了激光诱导击穿光谱、拉曼光谱、近红外光谱、X射线荧光光谱等多种光谱分析技术。立即报名 》》》 部分专家报告推荐:中国石化石油化工科学研究院--褚小立教授级高工《微小型光谱仪器进展及其应用》(6月16日上午开讲,点击立即预约)褚小立,近红外分会秘书长、中石化石油化工科学研究院教授级高工,一直从事以近红外光谱为主要手段的过程分析成套技术的研发和推广工作。先后主持和参与了近20项基础研究、新产品研发和应用技术推广等科研项目,取得了多项具有创新性的研究成果。在国内外期刊发表论文80余篇,其中三篇论文分别获“2008年国内最具影响百篇文章称号”、“2012年领跑者5000—中国精品科技期刊顶尖论文”和“2017年国内最具影响百篇文章称号”。申请发明专利70余项,现已有40余项获得授权。先后编写和翻译出版多本专业著作,其中包括《分子光谱与化学计量学及其应用》《近红外光谱分析技术实用手册》《现代过程分析技术新进展》等。【摘要】近些年,光谱分析技术得到了迅猛发展,该技术可直接对气体、液体和固体等各种复杂混合物进行定性和定量分析,具有分析速度快、效率高,可实现现场无损和工业在线分析等优势,在科研和工农业生产中发挥着越来越重要的作用。光谱分析仪的微小型化是一个重要的发展方向,近期出现了众多不同类型的商品化微小型光谱仪器。手持式或便携式现场快速分析是一种更经济、更高效、更灵活的方法,具有小体积、低功耗、低成本、便于二次开发等优点,在农业、食品、医药、石油化工和安全等众多领域获得了广泛的研究与应用。物联网技术在智能农业、智能工厂、智能医疗和智慧城市等众多领域的兴起,成为推动光谱传感器向着微型化方向发展的主要力量。本报告主要介绍近些年新型的商品化微小型光谱仪器(近红外、中红外、拉曼、LIBS和XRF等)及其应用进展,并对该技术的发展趋势和应用前景进行了展望。北京矿冶研究总院 史烨弘 正高级工程师《战略性矿产选冶过程在线分析技术装备开发与应用》(6月16日上午开讲,点击立即预约) 史烨弘,博士,正高级工程师,矿冶科技集团北矿检测技术股份有限公司副总经理。有色金属行业计量技术委员会委员,中国材料与试验团体标准委员会(CSTM)科学试验技术综合委员会委员,中国仪器仪表行业协会在线分析仪器分委会委员,全国光电测量标准化标准评审组成员。主持和参与了包括国家自然科学基金、国家重点研发计划专项项目等 20 余项。主要从事工业在线分析技术装备的开发与产业化应用。主持开发了具有国际领先水平的选矿工艺在线激光光谱分析仪、冶炼工艺高温熔融产物在线激光光谱品位分析仪、多光栅高分辨光谱仪、全自动高温水解仪等仪器设备,多项成果实现产业化应用,对于我国战略性矿产资源采选冶工业过程智能控制具有重要意义。荣获北京市科学技术二等奖1项,中国有色金属工业科学技术一等奖2项。授权专利17项,软件著作权6项,发表各类科技论文40余篇。【摘要】 战略性矿产选冶工业关键工艺过程在线分析检测技术和装备国内外发展现状。矿冶科技集团北矿检测技术股份有限公司在战略性矿产浮选工艺在线激光诱导击穿光谱分析系统,铜铅锌冶炼和烧结工艺高温产物在线激光光谱品位分析系统,高温烟气组分在线TDLAS分析技术和装备,以及便携式和金属合金原位快速高分辨光谱分析技术开发与应用。中国矿业大学 邹亮副教授《基于多任务深度学习的煤质近红外光谱分析方法研究》(6月16日上午开讲,点击立即预约)邹亮,博士毕业于加拿大不列颠哥伦比亚大学大学,中国矿业大学优秀青年骨干教师,主要研究方向模式识别与人工智能,主持国家自然科学基金、江苏省自然科学基金、江苏省科协青年托举人才项目等10余项,获批江苏省双创团队核心成员,在IEEE TIM、IEEETNNLS、IEEE TCSII、IEEE JSTAR、《电子与信息学报》等国内外知名期刊上发表论文50篇,被引1300余次,担任International Journal of Crowd Science副主编,Frontiers in Neuroscience编委,International Journal of Coal Science & Technology、工矿自动化青年编委,Mathematics等多个SCI期刊的客座编委,ICCBDAI2022、KDBD2020、ICCSE2018等国际会议技术委员会共同主席。【摘要】 煤质的全元素分析是衡量煤炭品质和实用价值的重要标准。传统的煤质分析方法存在操作过程繁杂、人力物力成本较高、破坏样品结构、分析对象单一等问题,难以满足国家对能源安全高效利用战略的新需求。近红外光谱技术作为一种高效、无损的检测手段,被广泛地应用于物质的定量定性分析中。课题组基于近红外光谱技术,研究基于多任务深度学习的煤质定量分析模型,以实现煤炭质量全元素的快速测量。 由于煤样光谱与指标的关系表述复杂,使得现有分析模型存在预测精度低、鲁棒性差的问题。课题组对煤质常用的4种工业指标进行相关性分析后,提出了一种基于参数硬共享的多任务注意力U型网络(Multi Task Attention Unet, MTA-Unet)。该模型主要包括权重参数共享模块和多任务输出模块,其中权重共享模块结合了Unet网络、卷积块注意力模块和多尺度特征融合策略;多任务输出模块则由4个独立的全连接层组成。此外,对不同任务之间由于训练速度不同产生的梯度量级淹没问题,模型采用梯度归一化算法进行优化。为验证MTA-Unet模型的有效性,首先,在同一测试集上对比了其与传统的定量分析算法的预测性能;然后,为探究多任务深度学习模型的有效性,对比单任务的深度学习网络与其对应的多输出网络的预测性能;最后,进行消融实验验证卷积块注意力模块、多尺度特征融合策略和梯度归一化算法的有效性。北京市农林科学院农业智能装备研究中心 黄文倩研究员《基于全透射近红外光谱技术的西瓜糖度在线检测研究》(6月16日上午开讲,点击立即预约)黄文倩,博士,国家西甜瓜产业技术体系智能化管理岗位科学家,国家农业智能装备工程技术研究中心智能检测部主任、研究员、博士生导师,主要从事农产品质量安全快速无损检测方法研究与装备开发工作,“十二五”国家科技支撑计划项目首席专家;近年来,主持国家自然基金青年/面上项目、北京市自然基金青年项目等10多项,在国内外学术期刊发表SCI/EI收录论文100余篇,授权国家发明专利33项,获省部级奖励3项;先后被评为北京市“高创计划”青年拔尖人才、北京市优秀人才青年拔尖个人、北京市科技新星,入选第二十三届茅以升北京青年科技奖。【摘要】 西瓜具有体型大,糖度分布不均匀、容易出现空心等特性。为了能全面评估西瓜的品质,黄文倩团队自主研发了新的光谱检测系统,重点优化了光路结构,提高了光谱信号的信噪比,确保在低功率照明和短积分时间条件下能够获取到稳定的光谱信号;采用精密定位技术获得西瓜多点位的全透射光谱,可对整个西瓜进行综合性分析,也可以针对特定区域进行选择性分析。中国石化石油化工科学研究院 吴梅高级工程师《XRF技术在油品快速分析中的应用》(6月16日上午开讲,点击立即预约)吴梅,石油产品及催化剂元素分析平台负责人、院专家。先后负责国家工程研究中心分析实验室、中试基地实验室的建设。工作期间制定行业标准、申请专利、专有技术多项,完成多个重大项目、“十条龙”攻关项目的研究,创建的多个分析方法在系统内广泛应用。近五年在核心期刊发表有关油品元素及组成的论文15篇。对石油化工领域的元素分析需求以及前沿技术应用现状有着较为全面的了解与研究。同时担任国际标准化组织ISO/TC28 WG/24元素分析工作组专家。全国专业计量技术委员会 委员。【摘要】 X射线荧光是石油产品杂质元素测定应用中重要的技术组成。快速、无损、直接测定的特点满足了油品快筛的迫切需求。本报告结合实际工作中石化产品性质的特点,就测试过程中存在的基质影响、制样方式、测试条件的优化以及其它影响因素进行案例讨论分析,介绍X射线荧光在石化领域中的应用进展。XRF有望成为石油化工产品中元素分析、质量监控领域中最具前景的普适性测试技术。更多详细日程如下:6月16日上午 光谱快检及在线应用技术进展 我要报名 》》》 主持人褚小立中国石化石油化工科学研究院 教授级高工08:00--08:30微小型光谱仪器进展及其应用褚小立中国石化石油化工科学研究院 教授级高工08:30--09:00战略性矿产选冶过程在线分析技术装备开发与应用史烨弘北京矿冶研究总院 教授09:00--09:30基于大数据自动解析的在线光谱技术王红球北京鉴知技术有限公司 总经理09:30--10:00基于多任务深度学习的煤质近红外光谱分析方法研究邹亮中国矿业大学 副教授10:00--10:30傅里叶变换近红外光谱技术在食品、药品快速测试中的应用周学秋赛默飞世尔科技(中国)有限公司 近红外产品经理、应用专家10:30--11:00基于全透射近红外光谱技术的西瓜糖度在线检测研究黄文倩北京市农林科学院农业智能装备研究中心 研究员11:00--11:30原位在线拉曼光谱在科研及工业生产过程的应用安志成德国耶拿分析仪器有限公司 产品经理11:30--12:00XRF技术在油品快速分析中的应用吴梅中国石化石油化工科学研究院 高级工程师由仪器信息网主办,中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等协办由仪器第十二届光谱网络会议(iCS2023) 将于6月13-16日举办。iCS2023将聚焦最新、最前沿的光谱技术及应用,特别设立了超快/瞬态光谱最新技术及应用进展、高光谱技术及应用新进展、光谱快检及在线应用技术进展等专场。同时会议也会选择光谱技术在生命科学、环境、材料等领域的应用进展进行深入探讨,为国内外光谱科研工作者及专业技术人士提供一个全新、高效的沟通交流平台,以促进业内交流,提高光谱研究及应用水平。点击立即报名 》》》 报名链接:https://www.instrument.com.cn/webinar/meetings/ics2023/
  • 在线近红外光谱技术在中药生产过程中的应用
    1.中药生产过程现状中药是我国独具特色和优势的民族产业,其在生物医药领域中具有重要的战略地位,并已逐渐发展成为我国制药经济的重要支柱之一。中药工业化生产流程融合了原料控制、生产控制、质量检测等多个步骤流程,具有工艺过程复杂、步骤繁琐、影响因素多、非线性及交互作用效应显著等技术特点。对于中药质量控制,国内的重点大多聚焦于药材和成品上,却忽略了生产过程及其中间体的质量控制;长期以来一直依靠人工抽样分析和离线检测对中间产品和最终产品的质量进行评估。这种检测方式具有耗时长、主观因素强、检测结果滞后于生产过程等缺点,难以依据实时质量波动情况来指导生产过程,进行及时调整。据了解,近年来由于质量问题,导致中间产物或最终产品的返工或报废的现象常有发生。2.近红外(NIR)在中药生产过程中的发展近年来,在线检测、过程分析技术(PAT)、质量控制体系等技术逐渐深入生产过程中,通过合理的过程设计、分析与控制,增强对工艺过程的理解,降低过程不确定性和风险,以此来保证最终产品的质量。目前常用的过程分析技术有近红外光谱在线分析技术、拉曼光谱在线分析技术、在线紫外等,其中,近红外光谱分析技术具有快速、高效、无需样品预处理等优势。由于无需样品预处理且近红外光谱可以通过光纤进行传输,近红外光谱分析技术十分适合复杂中药的原料药材质量快速分析以及体系生产过程的在线检测,包括药材产地鉴别、有效组分含量测定和制药过程的在线检测和监控。自“十三五”规划以来,泽达兴邦医药科技有限公司在中药生产领域已与众多“医药工业百强”企业合作成功实施了众多案例,如表1所示。表1 PAT在中药生产监测过程中的实施实例(泽达兴邦)客户单位实施品种说明扬子江蓝芩口服液离线、在线上药杏灵银杏酮酯离线、在线九芝堂六味地黄丸、驴胶补血颗粒在线、离线江苏康缘热毒宁、桂枝茯苓离线、在线华润三九(本溪)气滞胃痛颗粒离线、在线华润三九(枣庄)感冒灵颗粒离线、在线绿叶制药罗替戈汀离线、在线太极集团藿香正气口服液离线、在线北大维信血脂康离线、在线广东众生复方脑栓通离线、在线翔宇制药复方红衣补血口服液离线、在线… … 图1 中药生产过程近红外在线检测系统3.近红外在中药生产中的应用实例3.1华润三九感冒灵颗粒——浓缩、总混工段感冒灵颗粒功效为辛热解表,清热镇痛,其由三叉苦、野菊花、马来酸氯苯那敏、咖啡因等组成,被广泛用于因感冒引起的头疼、发热、鼻塞、流涕、咽痛等症状。野菊花中的蒙花苷等有效成分是感冒灵颗粒质量的重要检测指标,其生产过程复杂,因此保证每一个工艺环节产品质量的稳定是最终产品有效的依靠。但是目前的分析方法存在耗时、信息滞后等缺点,严重影响了产品的质量和生产成本,亟待开发一种快速、准确的检测技术。目前,近红外光谱检测技术已经逐渐从离线实验或者小规模的模拟实验向大生产过程的在线监测发展,与前者相比,近红外在线监测技术更具有实际指导意义,在保证对象中的指标可以用于建立准确的定量模型之上,还能够对生产过程的质量进行监控。泽达兴邦医药科技有限公司在国家工信部智能制造新模式应用课题的项目中,以华润三九的感冒灵颗粒、感冒清热颗粒、小儿感冒颗粒等公司重点产品,建立关键生产工艺环节生产过程快速检测和在线质量检测系统,并与SCADA系统集成,建立质量数据库。其中,包括对感冒灵颗粒、感冒清热颗粒和小儿感冒颗粒三种药物中流浸膏中有效成分和固含量、半成品中有效成分、原药材的水分和浸出物、浓缩液有效成分和浸出物等物质的快速测定和实时监测。在项目实施过程中,近红外检测系统能够有效应用于感冒灵颗粒的生产过程,实现了产品关键工艺环节中间体质量的实时动态在线监测,降低了工艺运行过程中间体质量波动性,提高了中成药生产全过程的质量控制水平。下图展示的是近红外技术与感冒灵颗粒制粒总混工序的结合应用,以其半成品为例,针对蒙花苷、对乙酰氨基酚、咖啡因、马来酸氯苯那敏含量所建立模型预测结果令人满意,其相关系数R分别为0.9757、09523、0.9705、0.9803,RMSEP分别为0.0115、0.219、0.202、0.126,均能够满足感冒灵颗粒半成品实时分析的精度要求。图2 小儿感冒颗粒浓缩固含量在线检测效果图3.2上海上药集团银杏酮酯——柱层析工段银杏酮酯为银杏叶的提取物,为棕黄色至黄棕色的粉末,其主要活性物质为黄酮醇苷及萜类内酯,临床上主要用于血瘀型的胸痹、冠心病心绞痛以及血瘀型的轻度脑动脉硬化引起的眩晕,能增加脑血流量,降低脑血管的阻力,改善脑血管的循环功能,保护脑细胞,稳定细胞膜,使脑细胞避免缺血所致的损害。还可扩张冠状动脉,增加冠状动脉的血流量,改善心脏的供血,防止心绞痛以及心肌梗死的形成。但是其原料药材来源广泛,品种繁多,同一品种药材因其生长条件、采收季节、加工方式及贮藏条件的不同而在质量上存在差异,从而使中药制剂成品存在一定的质量差异。传统的质量评价方法步骤较为繁琐,耗时较长,不利于大批量的快速质量检测。因此,选取一种快速分析、样品无损、方法简单的分析技术将能够大大减少生产过程质量检测时间与人工成本,减少产品等待放行时间。为了实现银杏酮酯生产过程的智能监测,泽达兴邦医药科技有限公司与上海上药集团合作了银杏酮酯PAT项目,在项目实施过程中建立了实现大品种银杏药材、中间体(提取液、浓缩液、醇沉液、层析液、干燥物)及成品质量指标的在线及离线快速检测方法,实现全生命周期质量快速检测与控制,解决了现有检测模式存在的结果滞后、分析时间长、效率偏低等问题。以大品种银杏酮酯层析过程为例,将层析过程与在线检测技术相结合,实现了层析过程药液质量指标的实时快速检测,可用于生产过程实时采集药液质量数据,图3展示了层析过程的在线检测安装图以及层析过程在线监测结果。结合DCS系统采集的工艺数据,为构建工艺和质量数据库提供数据来源,同时为后期中生产线进行工艺与质量信息的数据挖掘奠定技术基础。图3 层析工段在线检测安装图图4 层析工段在线监测结果图4.经济效益近红外在线检测技术的应用可以减少检化验人员的岗位设置与劳动强度,提高数据的处理量与准确性并能实时指导生产操作,在一定程度上降低了加工生产能耗,缩短了中药的生产周期,为企业带来良好的经济效益,具有非常广阔的应用前景。以上述银杏酮酯为例,醇沉、柱层析的生产过程终点判断是中药制药过程中的常见问题,传统的中药生产过程终点判断方法主观性强且无实际理论依据。通过建立银杏酮酯层析工段的MBSD定性模型追踪不同生产批次,可以得到银杏酮酯层析工段洗脱过程的实时预测图。结合工艺,可将模型分为静置工段、水洗工段、洗脱阶段、乙醇回收阶段,其中明显可以看出洗脱工段的起点与终点,说明该模型可以判断洗脱起点与终点。利用近红外光谱技术对中药生产过程进行终点判断有助于及时、准确地识别过程终点,减少了收集时间,大大降低了能源损耗,提高原料利用率,保证产品质量的均一稳定,为银杏酮酯产品质量的提升奠定了理论基础。5.展望针对中药生产领域,近红外光谱技术的应用还存在一些局限。近红外作为一种分析技术,对所建立的模型依赖性较高,生产批次间的差异以及生产时间的不同均会影响模型的可靠性,因此模型的更新以及不同近红外设备之间的模型传递仍是目前需要解决的问题之一。同时,中药制药过程涉及的化学物质种类相对较多,原料可能存在较大变异,常需要监控多个CPP或CQA,过程监测难度大,工艺控制相对复杂,不可控因素较多;而且目前中药原料的近红外检测过程往往需要对原料进行打粉处理,能否实现完全无需预处理的近红外在线检测也是值得研究的问题。连续制造作为未来药品制造的发展趋势,药品开发者和制造商们对此表现出极大的兴趣,下图为中药颗粒的连续制造概念图,设计连续配料、连续制软材、连续制粒、连续干燥、连续总混工序,通过设备和控制系统设计,使得每一单元操作之间物料/产品不间断通过。通过实时监测和控制将制软材颗粒、干燥颗粒、总混颗粒后测得的水分、对乙酰氨基酚、马来酸氯苯那敏、咖啡因构成实时联动的反馈控制系统,并结合物料的物理和化学性质,生成模拟出用于放行的数据模型,并对包装后的制剂进行实时放行检验。图5 颗粒剂的连续制造概念图与西药相比,中药的药材原产物具有质量波动较大的特点,不同批次中药质量差异在一定程度上影响了中药临床药效的稳定发挥,“均化”指导原则的提出旨在为不同批次的合格处方药味等按适当比例投料并到达预期质量目标。此外,随着数据技术和网络技术的发展,数据智能化概念与近红外节点进行联合应用是未来近红外技术发展的重要方向之一,通过近红外在线监测技术为连续制造过程中药品关键质量属性的在线实时监测提供了更多选择,支撑中药生产制造逐步向连续制造方向发展。(作者:王钧)作者简介王钧,2013年参加工作,现任苏州泽达兴邦医药科技有限公司过程分析控制部技术总负责人,苏州市姑苏紧缺人才,苏州高新区重点产业人才引进,同时担任中国仪器仪表学会近红外分会协会理事。近年来主要从事过程分析技术及其应用研究,先后参与国家工信部智能制造新模式项目5项、工业转型升级(中国制造2025)1项。先后完成多个中药上市企业的制药过程质量控制技术研究与工业应用项目,包括山东绿叶制药有限公司“罗替戈汀”生产过程质量控制技术研究、扬子江药业集团江苏龙凤堂中药有限公司国家工信部智能制造新模式应用项目子课题:“蓝芩口服液”生产过程质量控制技术及产业化应用研究、江苏康缘药业股份有限公司工信部智能制造试点示范项目“中药生产智能工厂”项目-热毒宁注射液生产全过程质量控制体系构建、重庆天圣制药集团股份有限公司国家工信部智能制造新模式应用项目子课题“银参通络等中药单品种生产过程分析技术研究及系统构建”及国家重大新药创制课题“中药新药地贞颗粒先进制造与信息化技术融合示范研究”。发表相关论文23篇,其中SCI 5篇,申请发明专利3项,团体标准1项(在线近红外)。单位简介:泽达兴邦成立于2011年,是依托浙江大学苏州工业技术研究院和浙江大学药学院的科研创新体系孵化出来的医药领域高水平科技创新企业,是国内医药制造大健康方向既有竞争力的信息化解决方案供应商和系统集成商。公司联合浙江大学主导制定了国际首个中药生产工艺语义关联的ISO国际标准并于2020年1月出版,先后荣获中国科协“智能制造十大科技进展”、中华中医药学会“科学技术奖一等奖”、荣登中国科协2020年度“科创中国”先导技术榜单等荣誉,入选工信部2019年智能制造系统解决方案供应商。公司专注于新一代信息技术与医药健康领域的创新融合,致力于中药、疫苗等制药全产业链智能制造解决方案,推动具有行业示范效应的核心技术应用,开发了一系列具有核心竞争优势的信息化技术及软件产品。已在国内近百家中药制药企业进行产业化应用,为国内中药领军企业开展中药全产业链智能制造整体解决方案设计与实施服务,核心在于PAT系统的构建。
  • 聚光科技一款在线气相色谱仪中放射源被实行豁免管理
    近期,聚光科技(杭州)股份有限公司生产的PANs-100气相色谱仪中镍-63放射源被使用豁免管理。环境保护部办公厅对PANs-100气相色谱仪中镍-63放射源被使用豁免管理进行了说明,即放射源活度为3.7E+8贝可的镍-63放射源,为Ⅴ类放射源。该类放射源活度低,且制造工艺使上述型号仪器的固有安全性较高,对环境、公众和工作人员的影响很小。详细全文如下: 聚光科技(杭州)股份有限公司:  你单位《关于PANs-100气相色谱仪中镍-63放射源的用户使用豁免管理申请》(聚光〔2015〕第002号)收悉。根据《放射性同位素与射线装置安全和防护条例》(国务院令第449号)及《放射性同位素与射线装置安全和防护管理办法》(环境保护部令第18号)的有关规定、专家审议意见和浙江省环境保护厅的意见(浙环辐〔2015〕7号),经研究,函复如下:  一、你单位销售的PANs-100型在线气相色谱仪使用一枚活度为3.7E+8贝可的镍-63放射源,为Ⅴ类放射源。鉴于该类放射源活度低,且制造工艺使上述型号仪器的固有安全性较高,对环境、公众和工作人员的影响很小。因此,我部同意对上述型号仪器中使用的镍-63放射源实行豁免管理。  二、使用上述型号仪器可以免于办理辐射安全许可证 你单位销售给最终用户也无需办理放射性同位素转让审批及备案手续。  三、使用单位的上述型号仪器中镍-63放射源不作为放射性物质进行管理。如发生个别镍-63放射源失控,也不作为辐射事故处理。  四、你单位应健全相关制度,加强对所售仪器中镍-63放射源的跟踪管理。在产品说明书和销售合同中明确告知产品中含有放射源,同时告知有关放射源的危害和防护知识及售后管理要求。负责对仪器报废后其中的废放射源进行管理,承担送贮到有资质的放射性废物收贮单位的责任。  五、你单位应制定上述型号仪器销售台账、售出仪器跟踪管理及废源处理记录,并在每年1月底前汇总上一年的有关情况上报浙江省环境保护厅。  特此函复。  环境保护部办公厅  2015年7月7日  抄送:商务部、海关总署办公厅,各省、自治区、直辖市环境保护厅(局)。
  • 中国环境监测总站发布关于公开征集光谱水质在线监测系统、总有机碳(TOC)水质自动分析仪及锑水质自动在线监测仪3类仪器检测标准研究验证测试单位和相关产品的通知
    近日,中国环境监测总站发布关于公开征集光谱水质在线监测系统、总有机碳(TOC)水质自动分析仪及锑水质自动在线监测仪3类仪器检测标准研究验证测试单位和相关产品的通知。中国环境监测总站仪器质检室(以下简称“总站质检室”)已编制完成《光谱水质在线监测系统技术要求及适用性检测作业指导书》、《总有机碳(TOC)水质自动分析仪技术要求及适用性检测作业指导书》及《锑水质自动在线监测仪技术要求及适用性检测作业指导书》3项作业指导书初稿。为科学开展此3项作业指导书的编制工作,推动相关行业标准的预研究,总站质检室拟组织开展相关仪器验证测试,现向社会公开征集符合申报条件且具备履约能力的验证单位和相关产品。 验证测试产品:1、光谱水质在线监测系统(基于宽波段光谱法原理,可实现水质多参数快速在线监测);光谱水质在线监测系统是一种以水质参量光谱提取技术为核心,综合运用传感器、自动测量、自动控制和网络通讯等技术,对水体水质进行在线实时综合评价的智能系统。该系统由水质智能监测仪和数据分析云服务平台组成,监测仪可在固定位置,定时采集数据,通过网络实时传输到云服务平台,实现24小时连续在线监测。数据分析云服务平台针对不同的水体类型和监测指标需求,智能选取水质模型,快速计算水质参数。2、总有机碳(TOC)水质自动分析仪(不限原理);总有机碳(TOC)水质自动分析仪是一种常用于环境监测喝水质检测的分析仪器。该仪器可以快速、准确地测量水体中的总有机碳含量,其原理是将样品中的有机物质加热至高温,使其中的有机物质热解并产生二氧化碳,然后采用红外线进行检测。红外线能被二氧化碳吸收,因此通过检测反射红外线的强度变化来计算出样品中的总有机碳含量。该仪器具有高灵敏度、高准确性、快速等特点,可以检测出极微量的有机物,并且操作简单方便,节省了测试时间。 3、锑水质自动在线监测仪(不限原理)。锑水质自动在线监测仪是一种用于检测水中锑含量的智能设备,对于环境保护和工业生产过程具有重要意义。该设备主要利用先进的分析检测方法,结合现代自动化技术,实现对水质的实时监测和数据分析。它可以根据不同的应用场景和检测需求,对水中的锑进行定性和定量分析,以判断水质是否符合相关标准和规定。验证测试内容:包括但不限于针对仪器准确性、稳定性、抗干扰能力、产品一致性、方法可比性等方面的性能指标测试及重点功能检查,具体以总站质检室最终提供的验证测试方案为准。详细信息见附件:附件1验证测试方案(草案).docx附件2申报材料目录.docx【盖章版】关于公开征集光谱水质在线监测系统、总有机碳(TOC)水质自动分析仪及锑水质自动在线监测仪3类仪器检测标准研究 验证测试单位和相关产品的通知.pdf
  • 赵继民研究员团队成功研制在线原位高压超快泵浦-探测光谱装置
    时间分辨泵浦-探测超快光谱由于其独特的优势(如超高的时间分辨率、费米面以上激发态的观测、相干玻色子激发等),被广泛应用于研究各种凝聚态物理(和其它科学),包括高温超导、复杂相变、多自由度耦合、相干调控、激光诱导新量子态和隐态等。高压技术通过直接改变晶格常数来调节电子能带结构和自旋特性等,提供了一种独特、干净的调控手段,也成为凝聚态物理(和其它科学领域)研究的重要手段。近年来,在上述丰富而深刻的基础科学需求的推动下,人们致力于将超快光谱和高压物理这两个领域结合起来,以研究高压条件下的超快动力学[Chin. Phys. Lett. (Express Letter) 37, 047801 (2020)]。研究挑战主要来自于实验仪器产生数据的可靠性。由于研究超快动力学的实验非常精细,压力变化也容易引起复杂的物理效应,保证仪器装置获取可靠精准的、有可比性的实验数据对于高压超快动力学这个交叉方向的开启和发展至关重要。例如,如果实验过程中将高压装置拿出光路进行加压、调压、校压之后再放回光路,可能会导致位置偏移和样品转动,将会引入人为实验误差,对于泵浦-探测这样的双光束实验的干扰尤为明显(把双光路光谱实验与高压技术相结合面临更多挑战)。从实践看,国内外目前已有的初步尝试,大多获得的是准粒子寿命信息,缺乏可靠的幅值信息,这为研究超快动力学带来了困难,例如量子材料的超导相变、CDW竞争序、拓扑相变等量子物性的标志特征之一是能隙的打开或闭合,能隙的变化直接对应于激发态超快光谱实验中的声子瓶颈效应(phonon-bottleneck effect),确认声子瓶颈效应需要幅值和寿命双方面的信息,仅有寿命信息不足以确认,于是同时获得可靠的幅值和寿命信息对于高压超快动力学这个交叉领域的开启、成型和顺利发展至关重要。这对仪器装置提出两个关键要求:(1)技术层面--研制可靠精准的在线原位(on-site in situ)高压超快泵浦-探测光谱实验装置,(2)标准层面--提出相应的标准描述,同行们在报道实验结果时最好明确是否为在线原位获得的实验数据,以保证学术交流中实验数据有可比性,从而从整体上提高数据的可靠性,减少不必要的人为误差甚至误导。近期,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室SF05组赵继民研究员及博士后吴艳玲、博士生加孜拉哈赛恩和田珍耘与北京高压科学研究中心丁阳研究员及博士生尹霞合作,成功搭建了一套室温条件下工作的“在线原位(on-site in situ)”的高压超快泵浦-探测光谱装置(图1)。该仪器装置的搭建取得了重要突破:(1)技术方面,实现了on-site in situ 技术,在整个实验过程中高压DAC不拿出光路,在光路中即可加压、调压、校压,完全避免了复位误差(repositioning fluctuation)(图2),最大程度保证了实验过程中样品不发生(控制在CCD监控微调误差范围以内的)移动或转动,避免了实验过程中不必要的人为误差,在实验数据的精准可靠性方面实现了最大化;(2)标准方面,提出了on-site in situ标准描述,如果在文章中明确DAC是否移出及放回了光路,则可在学术交流中提高实验数据的可比性(图3),避免了不必要的对比误差和解读偏差(使用机械臂将DAC移出光路并复位的装置,在最好的情况下等同于在线原位的精度,一般也有可比性)。总之,基于上述两方面仪器研发的突破,研究团队获得了室温下的可靠的幅值和寿命双方面的超快动力学信息,提供了足够丰富和全面的物性信息,为获得量子材料的高压超快动力学、进一步理解复杂相变和高压引起的激发态超快动力学特性提供了可靠的保障。图1. “在线原位(on-site in situ)”高压超快泵浦-探测光谱实验装置原理图。图2. 复位误差(re-positioning fluctuation)若干情形举例:(a)样品有台阶、位错或晶畴边界引起的晶格变化;(b)样品表面有台阶引起的高度差;(c)样品中存在不均匀的掺杂或缺陷分布;(d)样品具有平面内的超结构或复杂晶格结构;(e)样品有转动,且动力学对晶格方向很敏感。图3. 采用“在线原位(on-site in situ)”超快实验装置和“非在线原位(off-site in situ)”超快实验装置对相同实验观测到的不同超快光谱实验数据之间的对比。其中(b)图与(c)图:在off-site实验中只看到一个变化特征,经过on-site条件的实验能够观测到两个变化特征,分别对应两个不同的物理特性(包括声子瓶颈效应及相变等)。相关工作近期发表在Review of Scientific Instruments上,获得了科技部国家重点研发计划、国家自然科学基金委、中国科学院创新交叉团队、中国科学院对外合作重点项目、中国科学院先导专项、北京市自然科学基金重点项目的支持。相关工作链接:[1] Y. L. Wu, X. Yin, J. Z. L. Hasaien, Z. Y. Tian, Y. Ding, and Jimin Zhao, On-site in situ high-pressure ultrafast pump–probe spectroscopy instrument, Review of Scientific Instruments 92, 113002 (2021).https://doi.org/10.1063/5.0064071
  • 北京海菲尔格引进芬兰Timegate在线拉曼光谱仪可用于研究材料在高温条件下的相变过程
    Timegate在线拉曼光谱仪既能够在可见光环境下测试,也能够测量高温热辐射环境下(试验温度最高可达2000℃)的材料性能和反应过程,成功应对高温热辐射对拉曼光谱测试带来的辐射干扰。Timegate在线拉曼光谱仪可以将拉曼信号和荧光信号进行分离,使测量强荧光材料和高温材料的拉曼光谱成为可能,为高级数据分析提供了全新的基础,提高了测量的准确度和可靠性。荧光干扰、可见光干扰、高温热辐射干扰是传统拉曼光谱仪测试过程中经常遇到的难题,芬兰Timegate公司的在线拉曼光谱仪可有效消除荧光干扰,提高测试信噪比,获得高质量的拉曼光谱。我们通过实验发现:Timegate在线拉曼光谱仪能够很好地检测α-锂辉石向β-锂辉石的转化程度。实验温度达到1075℃后,我们每隔5min分别采集一次拉曼光谱数据,拉曼光谱图如图所示。辉石具有不同的晶型,在高温下会发生不同的相转变。锂辉石是辉石的一种,是一种单斜辉石矿物,是新能源行业常用的原材料,晶型转变发生在1000℃以上。本次实验过程中,我们将α-锂辉石样品加热至1025~1075℃,利用Timegate在线拉曼光谱仪测试了锂辉石样品在高温条件下的晶型转变过程并获得其转化率曲线。Timegate在线拉曼光谱仪可以进行连续的高温测试,可用于识别矿物的不同晶型及晶型之间的转化。伴随着锂辉石样品从α晶型到β晶型的转化,β/α强度比增加,α和β晶型强度可用于研究相应的α和β锂辉石的浓度变化。 Timegate在线拉曼光谱仪可用于高温条件下的拉曼光谱测试,能够有效地抑制荧光干扰、并不受高温热辐射影响。时间门控拉曼光谱仪是一种非破坏性的分析方法,样品无需进行预处理、仅需要少量样品就可以完成测试,为研究材料在高温条件下的性能提供了重要的测试手段。Timegate时间门控拉曼光谱仪能够有效地实现过程控制与反馈,有助于优化工艺参数,提高研发和生产效率。北京海菲尔格科技有限公司正式成为Timegate在线拉曼光谱仪中国的唯一代理,并提供优质的售后服务,欢迎来电咨询。
  • 网络研讨会精彩回顾:在线近红外光谱仪器开发和工业应用最新进展
    2021年10月17-21日,第20届国际近红外光谱学术会议(ICNIRS2021)正式召开。作为会议的同期活动,10月20日,中国仪器仪表学会近红外光谱分会和仪器信息网联手举办 “在线近红外光谱仪器开发和工业应用最新进展”主题研讨会,以促进近红外光谱在工业在线领域的应用交流,进而促进近红外光谱技术应用的深入拓展。“在线近红外光谱仪器开发和工业应用最新进展”主题研讨会主持人是中石化石油化工科学研究院教授级高工褚小立。从事以近红外光谱为主要手段的过程分析成套技术的研发和推广工作。先后主持和参与了近20项基础研究、新产品研发和应用技术推广等科研项目,取得了多项具有创新性的研究成果。主持人:中石化石油化工科学研究院 教授级高工 褚小立报告专家:石油化工科学研究院 高级工程师 陈瀑报告题目:智能化炼厂在线分析技术(看回放)陈瀑先对智能化炼厂和过程分析技术进行了简单的介绍,重点介绍了在智能化炼厂应用广泛的在线近红外技术和在线核磁技术,并将二者在提供化学/谱图信息、工业现场在线分析方式、工业应用成熟度三个角度进行了详尽的比较。最后提出了要乘着“智能炼厂建设”的春风,在线分析技术蓬勃发展的期待。报告专家:海洋光学 资深技术&应用专家 卢坤俊报告题目:在线近红外光谱仪器开发和工业应用最新进展(看回放)卢坤俊分享了如何选择近红外段光谱仪,并介绍了海洋光学的近红外段光谱仪。随后,他讲解了近红外技术在测定汽油辛烷值、化工行业领域以及烟草行业的应用,还谈到了现在的热门领域——水果分选中近红外技术的常见问题。报告专家:天津中医药大学 副研究员/博士生导师 李文龙报告题目:从过程分析技术(PAT)到中药智能制造(TCMIM)李文龙认为智能制造的本质是基于数据的决策。他从中药制造的特点和现状讲解了目前中药制造存在的诸多问题和亟需开展的研究,又结合当前中药传统生产工艺的不足提出了他认为中药制造的发展方向。报告的后半部分主要围绕过程分析技术及其在中药生产领域的应用,以及中药智能制造的相关内容。
  • 光谱技术融入在线分析平台——访蓝星智云在线分析高级工程师艾宏
    近几年,在线光谱分析技术正以惊人的速度应用于多领域企业生产的多个环节,并已使得过程分析仪器领域发生了深刻变革。但目前,光谱技术的“仪器仪表化”和“微量分析仪”,以及流程工业中在线分析仪器仍存在许多难题。蓝星智云(山东)智能科技有限公司是一家走在前沿的公司,致力于在流程工业智能制造领域,研发在线光谱分析平台。在仪器信息网光谱网络会议(iCS2021)十周年之际,编辑采访到了蓝星智云(山东)智能科技有限公司在线分析高级工程师艾宏。采访中,艾宏首先介绍了光谱仪器分析平台、软件开发等相关内容,他解释道:蓝星智云的在线分析平台专为流程工业定制研发,让用户通过组态方式,集成多种在线分析设备、分析方法和数据通讯技术。随后,他就光谱分析技术在生产应用中存在的问题,提出了仪器向仪表转化、专用微量光谱仪等设想,艾宏还对光谱分析技术在生产应用中存在的问题提供了很好的经验和建议。更多详细内容请观看以下视频。为促进中国科学仪器行业健康快速发展,进一步提升光谱技术及相关应用的专业水平,促进各相关单位的交流与合作,仪器信息网将于2021年5月25-28日举办“第十届光谱网络会议, iCS2021”。本次会议由江苏省分析测试协会、中国仪器仪表学会近红外光谱分会、中国生物物理学会太赫兹生物物理分会等协办。2021年,正值光谱网络会议的十周年。iCS 2021不仅聚焦最新、最前沿的光谱技术及应用,而且将就食品、制药、环境、生命科学、材料、文保等目前最热门的应用领域进行深入探讨,为国内外光谱科研工作者及专业技术人士提供一个全新、高效的沟通交流平台,以促进业内交流,提高光谱研究及应用水平。点击进入会场
  • 助力大气污染防治聚光科技推出气相色谱法VOCs排放在线监测仪器
    聚光科技是由归国留学人员于2002年创办的高新技术企业,专注于环境和安全监测领域,提供全面的环境监管解决方案。  2014年11月25-26日,由中国仪器仪表学会分析仪器分会、中国仪器仪表行业协会分析仪器分会联合主办的“第七届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2014)”在国家会议中心开幕,吸引了数十家业内相关产品厂商参展。作为CIOAE 2014唯一的战略合作媒体,仪器信息网在本次展会现场视频采访了多家在线分析仪器相关厂商,记录了我国在线分析仪器技术与应用的最新进展。 聚光科技专注于环境和安全监测领域,研发、生产和销售适应国内外市场需求的高端分析测量仪器,为工业过程检测、环境监测与治理、安全监测等领域提供完整 的、先进的行业解决方案。产品广泛应用于环保、冶金、石化、化工、能源、食品、农业、交通、水利、建筑、制药、酿造、航空及科学研究等众多行业,并出口到 美国、日本、英国、俄罗斯等二十多个国家和地区。 在本届“中国在线分析仪器应用及发展国际论坛暨展览会”上,聚光科技展出工业过程在线检测解决方案和环境在线监测解决方案。在环境在线监测方面,整体展出大 气环境质量(PM2.5/PM10、重金属、VOCs等)在线监测产品、烟气排放(NOx、重金属、VOCs等)在线监测产品、水环境质量(COD、氨 氮、重金属等)在线监测产品。 2013年末,国务院出台《大气污染防治行动计划》(简称“国十条”),旨在通过构建全面的环境监管、治理体系,切实改善当前严峻的环境质量状况。科学地 评估环境质量现状和环境污染治理效果,实现环境质量预警预报、环境事故应急和污染溯源,基础在于建立完备的污染监测体系。 众所周知,工业废气排放是造成严重灰霾天气频发的主要贡献源。在针对工业废气排放在线监控中,主要监测因子之一,也是从技术上比较难监测的就是 VOCs(挥发性有机物)。因此,在本届“中国在线分析仪器应用及发展国际论坛”上,受学者、用户关注度最高的就是工业废气VOCs排放在线监测技术及其 应用。在论坛上,聚光科技研究工程师就该技术及其应用与参会专家和用户进行了分享和探讨。 聚光科技研究工程师发言分享 从聚光科技我们了解到,目前针对VOCs的分析方法有三种:光学方法、质谱技术和气相色谱法,相比之下,气相色谱法是一种定性的、多组分、高精度的VOCs 分析方法。天津市在近期出台了我国第一套针对工业企业VOCs排放控制标准,标准中明确规定本地VOCs监测方法参考气相色谱法。 聚光科技在环保业务上的落点并不仅仅局限于针对某排污企业或某地方的环境在线监测设备,紧随国家对环境保护的政策和公众对环境现状的诉求,聚光将在不断完善 环境监测仪器的基础上,利用大数据和云计算,构建环保智慧服务平台,实现区域环境质量监测预警应急一体化,为污染治理评估、环境监管调控及公众诉求提供技 术和应用支撑。聚光科技王龙对采访者说到。 仪器信息网采访聚光科技王龙
  • 我国工业在线近红外光谱技术发展的关键问题分析
    p   过程分析技术(PAT)是通过对原材料和处于加工中材料的关键质量品质和性能特征进行及时测量,来设计、分析和控制生产加工过程的一项技术。PAT有助于实时掌握各种物料的状态、含量、性质,深刻理解工业过程各个工序的工作实况和本质,更有利于生产过程的实际控制。因此,PAT对于减少生产时间、提高产品质量、提高自动化程度等具有重要作用。在线监测是PAT的重要内容,近红外光谱(NIR)是目前工业PAT中最重要的在线监测技术之一。 /p p   近红外光谱分析技术操作简单、使用方便、测量快速,而且能提供丰富的分子信息,是非常理想的在线监测技术。同时近红外光谱仪器种类多、测量附件全、性价比高等优点也是选择NIR技术实现在线监测的重要理由,因此近几十年来近红外光谱技术在PAT中的应用越来越广泛和普及,代表性的应用领域包括制药、石油化工、基础有机化工、食品生产和加工、酿酒等。 /p p   整体上看,我国近红外光谱技术的发展和应用,包括仪器研发、算法研究、应用开发等,较欧美及日本等西方国家相比并不落后。虽然某些方面还差强人意,但也有一些研究取得了令人惊喜的成果,也成功地拓展了一些我国特有的应用领域。但与此形成鲜明对比的是,在在线NIR领域我们却明显落后于西方国家,我国在线NIR技术的应用远未到达其应有的程度和水平,尤其是在工业生产领域,与中国目前引领世界经济发展的地位非常不相称。本文将着眼于工业领域,探讨在线NIR技术发展的重点或难点,分析制约我国在线NIR发展的关键问题,以期为中国在线NIR的快速发展奉献微薄之力。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 200px height: 291px " src=" https://img1.17img.cn/17img/images/201908/uepic/dd48837a-0182-4b6c-81c6-d3a216daed30.jpg" title=" 微信图片_20190823095234.jpg" alt=" 微信图片_20190823095234.jpg" width=" 200" height=" 291" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 华东理工大学 杜一平教授& nbsp /strong /p p strong   span style=" color: rgb(255, 0, 0) "  1、重视开发工业在线专用近红外光谱仪器及其配套设备 /span /strong /p p   在线NIR技术的硬件主要包括近红外光谱仪器和配套的测样装置。虽然工业过程的光谱测量一般具有抗震、耐温、防腐、防爆等要求,但经适当的设计和安装,常用的近红外光谱仪器,包括傅里叶变换、光栅扫描、声光可调滤光器型,以及多种分光原理的小型光纤近红外光谱仪器都可以用于工业在线监测中。大型高性能光谱仪在在线NIR中的应用是比较成熟的,在石油化工、制药、烟草等领域已经有了一些比较成功的应用。值得关注的是,近年来小型光纤光谱仪器的发展为在线NIR展现出美好的前景。除了仪器小巧、价格低廉这些必然的优点以外,光纤光谱仪还具有安装容易、灵活,使用方便等优势。虽然在性能上不如大型光谱仪,但对于某些对分辨率和准确度要求并不是很高的应用对象,小型光纤光谱仪更具有吸引力。整体上看,各类近红外光谱仪器为在线NIR提供了非常广阔而灵活的选择空间,NIR仪器并不是在线NIR技术推广的难点。但毕竟工业在线监测具有特殊的要求,针对这些要求开发专用的在线NIR仪器还是非常必要的。 /p p   在线NIR可用于很多生产工序,如反应、蒸馏、混合、分离、烘干、溶解、结晶等,不同生产工艺对在线监测的要求也是五花八门,而且监测点的环境一般也远较实验室恶劣,比如温度、湿度、腐蚀性、振动等条件都会对光谱仪造成影响。因此,在线NIR监测对检测探头和监测条件有很多具体的要求。通常使用光纤将监测点与光谱仪连接起来,这样可以避免很多环境因素的影响和限制。监测点一般采用光纤探头或流通池实现光谱的采集。对于光纤探头,入射光和返回光路设计在一个探头内,使用时只要将探头插入被监测的物料内即可,因此使用方便、灵活。透射光纤探头用于对液体样品的测量,漫反射光纤探头用来测定固体样品。流通池适用于液体样品的在线测量,将流通池固定在监测点的管路上,连接于流通池上的入射光和返回光通过两路光纤进行光传输,并与光谱仪相连。实际生产过程往往很复杂,对在线监测会产生很多的制约,常见的要求包括检测探头必须耐温、耐压、耐腐蚀、耐磨等,还要考虑解决可能存在的探头堵塞、产生气泡等问题。鉴于工业在线NIR对光纤探头或流通池的特殊要求,比较合理的解决方案是根据具体工业过程的特点,开发系列检测探头用于不同需求的应用。这样做有利于检测探头的标准化、规范化,对于提高在线NIR技术的开发效率,推广在线NIR具有重要意义。 /p p span style=" color: rgb(255, 0, 0) " strong   2、提高应用技术人员近红外光谱分析模型的开发能力 /strong /span /p p   对于从事近红外光谱技术应用的技术人员来说,建模是难点问题之一,因为它需要化学计量学知识作为支撑。 /p p   建立高质量的模型(不妨称为最优模型)确实是一件不容易的事情,但是如果简化建模过程,建立一个比较优的合理的模型就不一定很难了。所建模型是最优还是比较优,一般体现在预测误差是最小还是比较小,而在近红外光谱分析的实践中,不同模型的预测误差常常相差不大(在合理建模的前提之下),或者用户对模型预测能力要求不高,这种情况下,完全可以用比较简单的建模过程和方法建立比较优的模型。另外,在线分析关注的是监测指标值的变化趋势,因此相对于监测结果的绝对准确度,其更注重结果的稳定性。如果采用上述的策略,建模就不太难了。 /p p   本课题组在与企业合作开发近红外光谱模型时,所采取的方法就是:我们为用户开发实用的近红外光谱模型的同时,对用户的技术骨干进行建模培训,使其除了掌握模型使用和简单维护的技能以外,还要具备基本的建模能力。如果有必要,我们还提供简易的建模软件。该软件能够使不甚专业(基本的化学计量学知识还是需要掌握的)的使用者,能够用简单的若干个套路“半自动化地”完成建立模型的任务。这样做不但有利于用户更好地理解和使用模型,还可以自主开发新的模型(虽然不一定是最优的,但能保证是较优的),同时也为社会培养了更多的“化学计量学人”。这种做法效果很显著,我们为某化工厂研发了一套在线近红外光谱监测装置,并建立了模型。后来该企业自主开发了第二套监测装置,而且在我们的帮助下,实现了一台在线NIR仪器顺序监测六个监测点的在线监测。再后来他们又独立开发了第三套监测系统,独立完成了建模工作。 /p p   梁逸曾教授曾经多次指出:只要掌握好的学习方法,化学计量学并不难学。我体会到,要普及技术人员建立近红外光谱分析模型的能力,培训是必需的环节,而培训的手段和方法可能更是至关重要的。仪器信息网和近红外光谱分会每年都举办近红外光谱技术和化学计量学的培训活动,这对于普及近红外,推动近红外的发展意义重大。 /p p   另外,本人认为:智能建模,或自动建模是解决建模难这一瓶颈问题的有效途径,这种建模方法的研发是非常有意义,且有重要需求的研究课题,理应引起化学计量学研究者,或NIR模型开发人员的重点关注。 /p p span style=" color: rgb(255, 0, 0) " strong   3、做好产、学、研、用、政环节切实推动我国工业在线近红外光谱技术的应用和普及 /strong /span /p p   在国产分析仪器的发展过程中,人们逐渐将“产、学、研”的传统提法,又添加了“用”和“政”两个内容。“用”是指用户,意为仪器的研发离不开用户的参与或用户的要求,这层含义用在近红外光谱领域(包括在线近红外)更是贴切。下面我想重点谈谈“政”的作用。 /p p   “政”即政府,更广义地理解就是“领导”。在很多场合,南开大学邵学广教授都提到:发展我国近红外光谱技术,我们不但要培训科技人员,还要培训领导。这句话很深刻地道出了“政”的重要性。 /p p   首先,政府重视是发展我国近红外光谱技术的重要条件,这是毋庸置疑的。 /p p   第二,发展我国在线近红外光谱技术另外一个重要因素就是用户企业领导的重视。在推广在线NIR时,企业领导经常担心的问题是这些技术能否影响其正常的生产,或者说,企业已经具备了正常的生产,有没有必要担一定的风险上在线NIR技术。从商业角度看,领导的担心是有道理的,但这却影响了在线NIR技术的普及和推广,实际上也影响了企业未来的竞争力(安于现状能够保证企业今天的现状,但不一定能满足未来发展的要求)。这种问题最好的解决方案就是“培训领导”,改变其对近红外光谱技术的保守看法。另一个思路就是,在线NIR技术在单一企业应用成功后,在同行业中进行推广,使其具有示范作用。即,“一点红带到一片红”。 /p p   第三,发挥“政”的作用还体现在发展标准方法上。在国民经济生产中,标准方法扮演着重要的角色。在生产企业,原材料检测、生产中间产物检测和质量控制,以及最终产品的质量检测,往往都依赖标准分析方法。可惜的是,在标准方法中很少看到近红外光谱的影子。推广在线NIR技术时,非标准方法往往也是企业拒绝该技术的原因。解决这种问题的根本策略就是积极推动近红外光谱技术进入标准方法的进程。在很多近红外人的不懈努力下,近年来这方面工作取得了很大成就,发展了很多使用近红外光谱的国家标准和行业或地方标准,但其覆盖面还远远不足,在在线NIR领域更是如此。另外,进一步推动将NIR技术引入企业标准也是不容忽视的工作。在推广在线NIR技术时,要充分考虑企业在标准化方面的需求,使近红外光谱技术完全满足要求。我们课题组在为一家中药生产企业开发近红外光谱分析技术时,应企业要求,在软件中增加了账户管理系统、历史操作日志的记录与查看、用户权限分级管理系统等模块,就是为了要达到GMP的要求。 /p p span style=" color: rgb(255, 0, 0) " strong   4、提高在线NIR从业人员的综合技术能力 /strong /span /p p   与实验室NIR技术完全不同,在线NIR技术是一种集机械、光学、电子、自控,以及应用领域的多学科体系。在为用户开发在线NIR技术时必然会遇到与用户现有生产过程分析技术(PAT)和过程控制技术(PCT)的融合问题。为了更好地服务于生产企业,从事NIR开发的技术人员,或者技术团队必须要拓展自己的专业知识,完美的、专业的技术服务才容易为客户接受。 /p p br/ /p p   在经济飞速发展的中国,在线近红外光谱技术具有重大的需求,但其发展却受到了很多因素的限制和制约,导致推广和普及在线近红外光谱技术出现了很多问题。解决这些问题的重担责无旁贷地落在我国近红外人的肩上。在中国近红外光谱分会这杆大旗下,团结着各行各业、各种专业背景的技术人员,让我们怀着开放的胸怀,通力合作、取长补短、积极进取,为推动我国工业在线近红外光谱分析技术的发展做出我们应该做的努力。 /p p style=" text-align: right " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " (杜一平 华东理工大学上海市功能性材料化学重点实验室,化学与分子工程学院,上海,200237 /span /strong ) /p
  • 海洋光学摘得创新大奖桂冠-工业在线光谱分析系统
    Halma Innovation Awards是由英国豪迈集团(微信号HALMAChina)为鼓励集团旗下子公司做出创新项目而创办的每两年一次的大型评奖晚宴。美国当地时间2017年4月24日来自集团旗下的全球各子公司高层齐聚圣地亚哥参与今年的创新大奖评选及交流晚宴。今年,来自微型光纤光谱仪的发明者以及领导品牌,海洋光学亚洲公司(Ocean Optics Asia)携手拥有40多年光纤研发以及生产经验的飞博盖德公司(Fiberguide),带来合作创新的“工业在线光谱检测系统”摘得本次大会的最高奖项——“豪迈全球创新大奖”桂冠。海洋光学亚洲公司研发部经理杨非(左二)与飞博盖德中国区总经理田小龙(右二)登台领奖 与实验室环境不同,工业环境在要求光谱分析系统具有足够的灵敏度和探测限,同时对于性能稳定性,体积尺寸和抗干扰能力也都有严格要求。 1992年美国海洋光学公司的Mike Morris博士发明了世界上第一台微型光纤光谱仪,他将光谱仪的大小缩小了几十倍,价格降低了十几倍。光纤光谱仪利用光纤把远离光谱仪器的样品光谱引到光谱仪器,以适应被测样品的复杂形状和位置。由光纤引入光信号还可使仪器内部与外界环境隔绝,可增强对恶劣环境(潮湿气候、强电场干扰、腐蚀性气体)的抵抗能力,保证了光谱仪的长期可靠运行,延长使用寿命。这些特点对于工业在线光谱应用是极其有利的。可以说,微型光谱仪是光谱测量技术从实验室走向工业应用的里程碑。面对复杂的工业在线光谱分析的要求,标准的光谱仪和附件是远远无法满足需求的。往往会需要根据工况定制采样附件,光源,传输控制系统,控制软件和专用分析模型,它们对于系统整体性能也有重要影响。一般在线光谱分析系统构成如下图所示。在线光谱分析系统组成 海洋光学专业的销售、应用、市场以及研发团队在有限的项目开发时间内,通过充分的沟通与调研,分别对上述系统中的机械、通讯、算法、软件以及光路等各个领域进行研究开发,打造出一套全球领先的工业在线光谱检测系统,该系统可进行在线颜色、透反射测量,适用于印刷印染,光电子,食品等行业的在线品控。 点击了解在线光谱技术应用详细介绍 英国豪迈(HALMA)是主营安全、医疗、环保产业的跨国投资集团,集团的业务涉及保护全世界人们的生命和改善生活质量。在全球有近50家子公司,遍布23个国家,主要的运营机构位于欧洲、美国和亚洲。集团旗下的子公司都具备很强的现金增值能力,能持续地产生世界水平的投资回报率。全球有超过5400名雇员正在为英国豪迈和旗下的近50家子公司工作,遍及23个国家
  • 赛默飞完成对MarqMetrix 的收购 拓展在线拉曼光谱业务
    当地时间6月21日,赛默飞世尔科技公司(Thermo Fisher Scientific Inc.)宣布完成对MarqMetrix的收购。交易条款未披露。   MarqMetrix是一家私人控股的基于拉曼的在线测量光谱解决方案开发商,总部位于华盛顿州西雅图。MarqMetrix提供创新和适合的在线过程分析技术(PAT),为客户提供简化的方法,在整个生产过程中进行精确和准确的测量,应用范围广泛,包括生物制药和药品,石油和天然气,以及化学品和聚合物。MarqMetrix在美国拥有约30名员工。据了解,此次收购完成后,MarqMetrix将成为赛默飞世尔分析仪器部门的一部分。   赛默飞化学分析部总裁Miguel Faustino表示:“收购MarqMetrix对赛默飞世尔来说是一个很好的战略选择,它为赛默飞的产品组合增加了高度互补的基于拉曼的在线过程分析技术。MarqMetrix将为赛默飞世尔的分析解决方案组合增加扩展更多的差异化功能,以满足客户对影响质量的关键制造工艺参数进行实时测量和过程控制的要求。我们期待着欢迎MarqMetrix团队加入赛默飞世尔。”   此前,赛默飞已于今年1月宣布完成完成对专业诊断领域的企业 The Binding Site Group(“The Binding Site ”)的收购,交易额达2 亿英镑。此次对MarqMetrix 的收购是赛默飞今年完成的第二次收购交易。
  • 中国首次完成高海拔地区光谱类油中溶解气体在线监测装置特性试验
    记者从国网青海电科院获悉,该院于8日成功完成“光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验”,该试验是中国首次在海拔2000米以上地区进行的该类在线监测装置的特性试验,试验结果可有效解决在高海拔环境下,光谱类油中溶解气体在线监测装置可靠性差和现场运维难题。图为试验人员开展光谱类油中溶解气体在线监测装置的测量误差及稳定性环境影响特性试验。何炳勋 摄据悉,通过在线监测装置实时监测大型充油电气设备绝缘油中溶解气体含量,反馈主设备运行状态、实现故障主动预警,是当前强化变压器(高抗)状态管控、对设备开展早期故障检测和诊断最有效的手段之一。光谱类油在线装置因其无需分离单元、监测周期短等特点,正广泛运用于750千伏及特高压变电站。据悉,由于该类装置研发和出厂应用主要集中在中国东部地区,在高海拔地区存在油气分离度、气体检测准确度不足等应用瓶颈,导致在装置入网过程中,质量管控标准难以统一。“我们搭建测试平台验证激光与红外热辐射光源的环境适应性,提出数据校正方法,可提高高海拔地区油在线装置的入网质量管控质量,突破高海拔环境下装置可靠性差、缺乏科学评价标准的难题。”国网青海电科院设备状态评价中心周尚虎介绍说。未来,国网青海电科院将开展系列研究,形成高海拔环境因素对光谱类在线装置的影响规律及数据抑制校正方法,并将研究结果应用至光声光谱在线装置的入网及现场运维,解决现场运维技术瓶颈,保障电网设备安全稳定运行。
  • 在线近红外光谱技术在乳品加工过程中的质量控制应用
    NIR光谱的多功能性和效率使其特别适用于各种乳制品应用的在线分析,包括黄油、奶酪、奶酪牛奶标准化、液态奶、酸奶、马苏里拉奶酪、乳清蛋白分离物 (WPI)、乳清蛋白浓缩物 (WPC) 和牛奶蛋白浓缩物(MPC)。MOCON的在线乳品分析仪ProSpect系列使用近红外 (NIR) 光谱仪来测量光能,它对在生产过程中流经工艺系统的乳品成分进行传输和反射。近红外在线分析,实时监控自动化控制整个乳品生产过程高质量的在线NIR光谱仪和内置软件告别了离线采样造成的延迟和浪费,对乳制品工厂的生产来说,实时的在线分析有助于产品的质量保证,确保食品符合安全标准。在线取样大约每5-30秒将实时数据发送到工厂PLC,自动控制系统以此进行连续的配方调整,数据可在触摸屏显示器上轻松查看。实验级的分析结果实时的输出,有助于帮助乳制品生产商始终如一地保持产品质量,最终赢得消费者信赖。专为恶劣的生产环境条件而设计无缝集成,可兼容任何系统ProSpect系列可与您现有的PLC/控制平台配合使用,并无缝集成到任何生产现场的过程系统中。紧凑的设计可以根据您的空间和生产要求安装。外壳和流通池均采用不锈钢结构,能够承受潮湿、振动和极端温度。流通池完全可以在线清洗(CIP),空调、防水、防震、卫生的不锈钢外壳符合NEMA 4X标准。预置校准数据,快速本地化校准使用NIR光谱分析成分浓度,首先需要使用样品成分参数进行校准仪器。ProSpect系列凭借30多年设计和构建过程系统的经验技术,可提供灰分、酪蛋白、脂肪、乳糖、水分、蛋白质、盐、总固体 (TS) 和黄油固体非脂肪 (SnF) 的校准数据,针对特定的工艺系统和产品快速本地化校准。 PROSPECT的优势 在线实时成分分析完全集成,完整的系统实验室级结果兼容任何工艺系统流通池完全可在线清洗(CIP)IP 66工业级MOCON在线乳品分析仪ProSpect系列根据产品需求提供2种配置,可选择单个或两个在线应用同时对乳品成分进行过程分析和质量控制。它对乳制品的蛋白质、水分、脂肪、固体和其他有机成分的浓度提供合适的自动化生产方案,是乳制品加工过程中质量控制的理想选择。
  • 在线近红外+人工智能实现废旧纺织品自动识别分拣——寻找光谱仪器“创新的力量”系列约稿
    《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》把创新放在了具体任务的第一位,全文160余次提到了“创新”关键词。2022年第十三届全国人民代表大会第五次会议上,国务院总理李克强所作的政府工作报告中,亦明确指出要坚持创新驱动发展。对科学仪器产业而言,“创新”更是至关重要。近年来,我国对科学仪器的创新和研发高度重视,先后设立了“科学仪器基础研究专项”、“国家重大科研仪器设备研制专项”和“国家重大科学仪器设备开发专项”等科研计划等。2021年11月,北京“十四五”规划也指出要支持开展关键仪器设备研发,支持挖掘一批服务于重大科技基础设施的定制化科学仪器和设备,重点突破研发新一代光谱等关键技术。不断高攀的前沿研究是创新,差异化的产品发展也是创新。为了展现光谱仪器的创新成果,分享光谱仪器研发和应用中的创新思维,共同促进光谱仪器产业化的创新发展,仪器信息网特别策划《寻找光谱仪器创新的力量》活动。本期,我们特别邀请了北京服装学院/塔里木大学龚龑教授,给大家分享创新成果,并探讨创新的方法和思维。北京服装学院/新疆大学龚龑教授仪器信息网:您认为目前近红外光谱仪器技术及应用有哪些创新的研究方向? 龚龑:近红外光谱仪器技术的创新主要体现在以下几个方面:(1)近红外光谱数据库的建立及更新。校准模型的预测性能直接决定了近红外光谱定量和定性分析的能力,而校准模型往往需要针对不同的样本类型单独建立,需要花费大量的人力物力。比如,已有一个地区的苹果水分含量分析的近红外光谱校准模型,这个模型适用于同一地区的苹果,却不适用于不同地区苹果的水分预测。解决这个问题的方法是扩充苹果近红外光谱数据库。如果能获得全世界苹果的近红外光谱和水分属性,那么所建立的校准模型的涵盖性就会非常强,适用于任何地区的苹果水分分析。(2)近红外光谱仪的创新。校准模型的预测能力充分依赖输入的近红外光谱数据,而光谱数据通常不一致。要获得一致的光谱数据,需要测量光谱的光谱仪长期保持性能的稳定。然而,在实际的应用中,光谱仪器件会随时间老化,测量人员的操作也会对光谱数据的一致性产生影响,这些因素都会使得已建立的校准模型失效。同时,光谱仪之间测量的偏差也会导致对同一被测物定量定性分析的失败。(3)提高检测精确度。在近红外的波段区域,含氢化合物的吸收系数较小,所以尽管使用高效的化学计量学软件建立分析模型,其最终定量分析的预测结果也始终无法达到真实值。检测限较高,通常达到0.1%左右。为了克服检测限高的问题,可采用样本预处理方法(比如固相微萃取等富集方法)提高精检度,但如此操作会使近红外光谱分析技术失去其优点和特色,反而不是最佳的分析方法。仪器信息网:近红外光谱与拉曼光谱相比,在废旧纺织品分拣中有哪些优势?龚龑:近红外光谱技术是目前世界上发展非常迅速的分析技术,它具有无损、快速,应用广泛等优点,在化工、农业、环境、医药等领域发展极为广泛。与化学计量学软件、光谱仪和应用模型结合,拓展了近红外光谱仪的应用领域。近红外光谱仪目前在过程分析技术中发挥着极其重要的作用,发展飞快。近红外光谱分析技术在几十年的发展中,不断扩大其涉足领域以及应用的实效性,除应用于农业和食品分析外,还涉及生物、高分子、制药、石油化工、纺织、纤维等学科,只要是对有机物检测分析的行业基本上均可使用近红外分析技术。在我国,近红外光谱分析研究始于20世纪80年代初,现已逐步涉及谷物等农产品分析、饲料分析、石油化工、药物分析、疫情疫病诊断等方面,并伴随出现在专著出版、仪器制造和软件开发中。随着软硬件的更新换代,NIR还有望应用于其他更多方面。拉曼光谱具有无损、快速、制样简单、可微区分析、操作简便等优点,因此,拉曼可以对实验过程进行实时监测。拉曼光谱在鉴别时,为了提升鉴别准确率,样品需要进行预处理。拉曼光谱对环境要求不高,而且非接触式稳定性高,但是在纺织领域还有待探索,在以后的废旧纺织品鉴别研究中都可以进行研究。图1 训练过程中损失值,训练精度和测试精度变化图图2 不同成分比例废旧聚酯/粘胶混纺织物近红外光谱仪器信息网:贵课题组有哪些创新的成果?最突出的创新体现在哪里?龚龑:我们课题组为突破废旧纺织品资源再生循环发展利用的瓶颈,与新疆乌鲁木齐海关、深圳海关、新疆大学、北京服装学院等单位合作,采用近红外光谱仪设计了一套废旧纺织品自动识别分拣设备(如图3所示)。该设备实现废旧纺织品从输送、检测、分拣、回收利用等生产过程中的自动化、智能化。全面提升纺织行业废旧纺织品检测、分拣的自动化水平,降低废旧纺织品带来的环境影响,以及资源的浪费,缓解劳动力紧张的局面,为推动纺织业健康可持续发展具有重要意义。图3 废旧纺织品分拣设备该设备是基于近红外光谱来识别纺织品中的纤维种类和含量。在研发过程中我们克服了算法自主编写以及工控机对接的难题,最终开发一种废旧纺织品自动识别分拣系统。该系统利用自行开发的在线近红外光谱分析装置,建立了一个在线近红外(NIR)光谱库,包括聚酯、棉花、羊毛等十几种常见纺织品。我们将人工智能技术引入到废旧纺织品的识别和分拣中,利用卷积神经网络(CNN)废旧纺织品的在线近红外定性识别模型,有效提高废旧纺织品中不同纤维成分的检测准确性水平和速度,从而提升产业化加工效率。图4 废旧纺织品检测试验仪器信息网:人工智能与废旧纺织品分拣有什么联系?龚龑:人工智能分拣设备主要通过云端大数据、人工智能算法、融合传感器(分为触觉、视觉传感系统,目前普遍应用的为视觉传感系统)、机器臂/喷气设备等软硬件配合开展工作。具体构成及运作原理如下:(1)云端大数据:采集各种各样纺织样品的图片,包含废纺织品、旧纺织品、混纺织物等各种状态下图片,形成云端数据库。(2)人工智能算法:设备中内置的人工智能算法通过云端海量图像数据对机器人进行训练。前期海量数据的采集保证了无论废旧纺织品是何种状态、是否被遮挡,机器人都可以识别。(3)融合传感器:利用计算机视觉扫描快速移动的物体,通过CCD视觉、激光视觉、近红外视觉等识别传感系统相耦合,综合判断目标物的外部特征(颜色、形状、结构等)与内部特征(材质),实现废旧纺织品精准定位与细分判别。然后将识别结果传输给协作机器,控制机器臂/喷气设备运动。(4)机器臂/喷气设备:机器臂/喷气设备从传送带上准确地抓取要回收的纺织品,投放到相对应的分类收集箱中。人工智能软件识别与机器臂/喷气设备相结合,类似于人脑的神经网络系统和人的双手相结合,具备了识别和执行的能力。(5)数据回传:分拣完成后,设备将相关的数据再返回云端,与部署在各地的智能分拣设备实现数据共享和远程智能提升。例如,部署在某纺织分拣中心的智能设备可以向部署在全国各地不同智能设备,不同设备还可以互相继承废弃物识别的经验。该数据还能用于帮助项目运营方了解设备状况及并进行产量、工作量、效益等运营维度的统计。仪器信息网:您对未来光谱仪的创新发展有什么样的展望?有哪些值得期待的技术或者应用?龚龑:从微电子机械系统(MEMS)制造工艺、大数据、深度学习算法、云计算平台、物联网等技术的发展可以看到其对近红外光谱分析技术的推动力量,从工农业生产、服务业和人们日常生活等方面的发展可以看到其对近红外光谱分析技术的需求、牵引力量。在这两种力量的作用下,未来一段时期内,近红外光谱技术将会得到加速发展,以近红外光谱为核心的商业产品将在不同业务领域进一步提供深化和细化的服务,近红外光谱有望成为与时代发展特征(如大数据、云计算和物联网等)最相关的一项分析技术。尽管近红外光谱分析技术的应用前景广阔,但仍有一些技术壁垒和难题需要攻克。例如,目前光谱数据库或模型的仪器供应商依赖(Vendorlock-in)问题,即各厂商的仪器之间存在的台间差异,使其普适性的应用迁移变得困难,需要从仪器标准化、算法和软件等多方面协同努力方能得以解决。再例如,无论是传统的机器学习算法还是深度学习算法,都是在有监督学习的框架下建立定性或定量分析模型。所谓有监督学习就是每个训练集样本是带有标签的,即每个样本的光谱对应着一组参考值(真实的浓度值或类别)。随着近红外光谱技术的广泛应用,将产生大量无标签的光谱资源,这些光谱没有对应的参考值,因此,如何充分利用大量无标签的样本信息进行半监督或无监督分析模型的构建,有可能是未来很值得研究的新方向。仪器信息网:基于光谱仪的发展现状,您在产学研的道路上开展了哪些工作?龚龑:近年来,我负责并结项了一些相关课题,包括2019年的“用于食源性致病菌快检的增强拉曼散射微流控系统关键技术与应用研究”和2020年新疆兵团科技攻关计划项目“棉纺筒纱智能分拣包装关键技术装备研发与示范应用的研究”等,同时还有一些横向课题“运用拉曼光谱技术针对纺织行业气体污染与有毒物质进行快速检测的方法应用”、“城市废旧纺织品成分快速鉴别、分拣与再利用技术”等等,都是运用光谱技术进行了应用与创新。我培养的研究生也在光谱领域进行了探索,在《The International Journal of Life Cycle Assessment》、《上海纺织科技》、《毛纺科技》等发表相关论文,在第六届、第七届中国国际“互联网+”大学生创新创业大赛中荣获一银一铜。我觉得在产学研的道路上我们还要继续前进,现阶段的学生培养模式还需继续探索,在探索的过程中,找到适合当前产学研的一种新模式。团队介绍:北服检测215实验室成立于2008年,在龚龑教授的带领下,团队主要致力于纺织服装标准的制定以及光谱分析技术。制定纺织服装标准可以加强人们的环保意识,使企业也越来越重视环保纺织品的研发、生产和加工。随着光谱学的不断发展,不同的光谱分析方法也相继建立,并出现相应的光谱分析仪器。光谱分析方法在定性、定量、结构分析方面有着优越的表现,并已广泛应用于生命科学、医学、食品、化工、医药、环境、纺织、空间探索等领域。团队近两年联合南京中拓科技有限公司在研发废旧纺织品分拣设备,运用近红外光谱进行定性分析,研发分类算法以及装备设计及制造,实现废旧纺织品从输送、检测、分拣等生产过程中的自动化、智能化,全面提升纺织行业废旧纺织品检测、分拣的自动化水平,达到废旧纺织品的再利用,降低资源对环境影响及资源浪费的目标。
  • 近红外光谱技术应用:S Zorb装置物料多性质在线分析
    近日,由石科院和南京富岛信息工程有限公司承建的国内首套S Zorb装置在线分析系统在中国石化济南分公司验收合格,正式投入运行。该系统通过近红外光谱分析技术快速检测S Zorb装置的原料和产品,可为实现RTO智能优化操作提供在线、及时、准确的实时物料性质数据,极大提升了生产企业的物料感知能力。国内首套S Zorb装置在线分析系统的成功投产为强化生产过程的实施分析和生产稳定优化发挥了巨大作用,得到了济南分公司的高度认可。未来石科院将开发更多先进智能化技术,助力炼化企业转型升级。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制