当前位置: 仪器信息网 > 行业主题 > >

酶底物

仪器信息网酶底物专题为您提供2024年最新酶底物价格报价、厂家品牌的相关信息, 包括酶底物参数、型号等,不管是国产,还是进口品牌的酶底物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酶底物相关的耗材配件、试剂标物,还有酶底物相关的最新资讯、资料,以及酶底物相关的解决方案。

酶底物相关的资讯

  • UC伯克利分校研究人员证明将 RiPP 生物合成酶重定向到蛋白质和骨架修饰的底物
    大家好,本周分享一篇发表在ACS central science上的文章,题目是Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates,通讯作者是来自UC伯克利分校的Matthew B. Francis教授和Alanna Schepartz教授。核糖体合成和翻译后修饰多肽 (RiPP,Ribosomally synthesized and post-translationally modified peptides) 是肽衍生的天然产物,具有强效的抗菌、抗病毒和抗癌特性。RIPP 生物合成始于核糖体合成的多肽,其 N 端先导序列 (~20–110 aa) 会招募一种或多种能够对相邻 C 端底物序列进行多种翻译后修饰 (PTM) 的内源酶。环化脱水酶和脱氢酶是其中研究得非常充分的 RiPP 酶。这些酶共同催化分子内环化和随后的芳构化反应,在多肽链中安装恶唑啉/恶唑和噻唑啉/噻唑杂环。Naismith 及其同事设计了一个环化脱水酶家族,先导肽与脱水酶催化剂的 N 端而不是与底物多肽的N端相融合。这些酶,尤其是LynD Fusion (LynD-F)和 MicD Fusion (MicD-F),以不依赖先导肽的方式发挥作用,以促进含有 C 末端上Ala-Tyr-Asp (AYD) 识别序列的多肽环化脱水。此外, Schmidt 和同事证明了两种脱氢酶 ArtGox 和 ThcOx 也接受无先导肽底物。总而言之,与基于嵌合先导肽或先导肽交换的方法不同,这些酶代表了一种完全无先导的途径得到安装噻唑和恶唑键的多肽。在本文中,作者报告了使用 MicD-F和 ArtGox共同作用来处理含有多种翻译相容的氨基苯甲酸衍生物和 β-氨基酸的多肽底物,得到含恶唑啉/恶唑和噻唑啉/噻唑杂环的骨架。作者在测试中发现,MicD-F 和 ArtGox 在 +1 位点(环化反应位点前一个残基)和-1位点(环化反应位点后一个残基)均接受具有不同结构的底物,且-1 位点对非α-氨基酸单体的耐受性低于 +1 位点。作者进一步实验证明,RiPP 生物合成酶可以重定向到完整的折叠蛋白。他们发现MicD-F 和 ArtGox 可以在蛋白质loop和linker安装杂环骨架,而不会破坏天然的三级折叠。即使插入的 CAYD 序列在mCherry(一种大的 β-桶蛋白)的C 末端,或是嵌入在二聚体 α-螺旋束蛋白 Rop中的loop区,仍然可以得到折叠完好的球蛋白产物,其中含有构象受限的、完全非天然的杂环骨架。作者认为他们的研究代表了第一个在环化位点旁边含有多种非α-氨基酸单体的多肽中进行无前导azol(in)e生物合成的例子,以及第一个含有翻译后安装的杂环的折叠蛋白。作者还通过计算揭示了这些杂环限制构象空间的程度;它们还在合成中消除了肽键——这两种特征都可以提高稳定性或增加接头序列的功能,这在新兴的生物治疗药物中很常见。作者认为这项工作提出了一种扩展蛋白质组的化学多样性的一般策略。本文作者:Cyao责任编辑:LDY原文链接:https://pubs.acs.org/doi/full/10.1021/acscentsci.1c01577文章引用:DOI:10.1021/acscentsci.1c01577
  • 关于成立《菌落总数、总大肠菌群、粪大肠菌群、大肠埃 希氏菌酶底物法水质自动分析仪》团体标准起草工作组的通知
    p style=" text-align: justify text-indent: 2em " 12月24日,中国仪器仪表行业协会官网发布关于成立《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》团体标准起草工作组的通知。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e78d99c1-dbec-4bcb-8492-91f5fba8d214.jpg" title=" 企业微信截图_20201225104600.jpg" alt=" 企业微信截图_20201225104600.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/18138437-6b45-4d90-87a8-ec28a2cba009.jpg" title=" 通知.jpg" alt=" 通知.jpg" / /p p style=" text-align: justify text-indent: 2em " 各有关单位: /p p style=" text-align: justify text-indent: 2em " 根据《关于& lt 菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪& gt 团体标准项目建议书的批复》(中仪协[2019] 017号),《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》项目已经列入中国仪器仪表行业协会的团体标准制定计划。该团体标准由中国仪器仪表行业协会归口管理,青岛佳明测控科技股份有限公司牵头起草。主要参与单位有吉林市光大分析技术有限责任公司等。现征集参与标准起草单位并成立标准起草工作组,请有关单位指派熟悉相关标准内容的技术人员参加,报名表(见附件)签字盖章后于2020年12月30日前扫描电子版发送至中国仪器仪表行业协会。 !--菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪-- /p p style=" text-align: justify text-indent: 2em " 联系人:马雅娟 /p p style=" text-align: justify text-indent: 2em " 电话:13611013933 /p p style=" text-align: justify text-indent: 2em " 地址:北京市西城区百万庄大街16号1号楼6层 /p p style=" text-align: justify text-indent: 2em " 电子邮箱:mayj@cima.org.cn /p p style=" text-align: justify text-indent: 2em " 附件: /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202012/attachment/ce9bdb3e-7cf9-4497-a3c3-3a4140fe9054.doc" title=" 《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》起草工作组报名表.doc.doc" 《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》起草工作组报名表.doc.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202012/attachment/d365221d-896f-4078-b98f-c6d531851c2a.pdf" title=" 关于成立团体标准起草工作组的通知.pdf.pdf" 关于成立团体标准起草工作组的通知.pdf.pdf /a /p
  • 底物噬菌体展示应用相关载体设计的两个关键
    噬菌体展示应用相关载体设计的关键:1 相互结合位点的选择在蛋白酶底物噬菌体展示中,一个关键的组分是亲和性结构域,它使我们可以将底物序列和非底物序列区分开。这其中包括蛋白—蛋白相互作用、蛋白—肽段相互作用以及多组氨酸与镍螯合基质的结合。整合这几种不同的系统的要素在于,展示系统是基于高亲和性相互作用而设计的。通常,相互结合的两个物质之间的解离常数(Kd)应该至少在一个较低的nmol/L的数量级上,这样在实验中复合物的解离速度就可以比蛋白酶解的速度慢得多。例如,我们以往在这个领域中的工作中,利用的是一个hGH的高亲和性变异体,此变异体与其受体的Kd值约13pmol/L。然而,对于蛋白酶底物噬菌体展示库,挑选在适当的缓冲液条件下(例如低pH或高pH)能够被破坏的这种相互作用,将有助于选择性地富集非底物序列(被捕获而结合于固体支持物上)和最佳的底物序列(被蛋白酶解而释放)。另外一个必须考虑的是靶蛋白酶(或者其他的一些噬菌粒形成中可能碰到的蛋白酶)必须不会酶切亲和性结构域。由于这个原因,亲和性结构域一般都是一个稳定的球蛋白或者一个短的肽段。2 底物卡匣(cassette)的设计和构建底物噬菌体展示要成功,一个关键在于切割仅仅发生在亲和性(捕获)结构域和噬菌粒之间。幸运的是,丝状噬菌体对蛋白酶解有极强的抗性:在所有已知的蛋白酶中,只有枯草杆菌蛋白酶能够引起噬菌体外膜蛋白的显著降解。为使底物序列更易与蛋白酶作用,在附近的连接序列中引入一定部分柔韧性(segmental flexibility)的设计要谨慎。例如,底物序列GPGG(X)。GGPG位于亲和性结构域和pⅢ基因之间,柔韧的甘氨酸—脯氨酸接头分布于随机序列的两端。在我们的实验中,已经证实截短形式的pⅢ蛋白是有效的,但另外也有报道使用全长pⅢ蛋白也能取得成功。在多价底物噬菌体展示中,一个全长pⅢ蛋白对于感染是必需的。一些其他的重要因素也主导着文库卡匣的设计,包括随机化的密码子、密码子的选择以及文库的大小,这些在第2章中有详细的描述。在许多情况下,我们不可能穷尽含有8个或8个以上的残基的整个底物序列所有可能的排列。然而,在文库仅展示了一部分可得到的序列的情况下,我们也有可能得到关于底物特异性的相关信息。例如,要构建一个包含5个密码子的随机文库,可以先列举其中2个密码子的序列,以此作为参照序列;从中得到的信息可用于第二次的文库构建,即将此两个密码子固定,再列举另外3个密码子和(或)其他的扩展的底物序列。作为替代,可以通过整合已知的特异性决定因素并查明那些现在还较不清楚的因素,从头设计一个更集中的文库。
  • 梅特勒托利多应邀参加第五届中国高校材料院长论坛
    2012年中国高校材料院长论坛暨东莞国家863新材料成果孵化园区项目推介活动在东莞塘厦举行,来自国内新材料界的顶尖专家学者就&ldquo 十二五&rdquo 规划中新材料研究动向、人才培养、产业发展等问题进行了讨论。此次是第五届中国高校材料院长论坛,中国工程院院士左铁镛、黄伯云、周可崧,中国科学院院士王曦、徐惠彬、黄维、李亚栋,科技部发展计划司副司长刘玉兰,广东省科技厅副厅长叶景图,东莞市委常委、军分区政委刘卫芳,东莞市副市长唐庆涛以及30多所国内知名高校校长、100多名材料学院院长、新材料界企业家等参加了活动。 梅特勒托利多受邀参加了此次论坛,并带来了全面的实验室检测解决方案,热分析仪、电子天平、快速水分测定仪、电位滴定仪和酸度计等实验室产品基本覆盖到全球所有的研发、科研、药物发现及质量控制实验室,尤其在高校、检测实验室、制药和化工等行业领域应用广泛。 在材料领域中,梅特勒托利多热分析仪广泛应用于各大实验室,其中TGA/DSC1同步热分析仪就是一款为各大高校所青睐的产品:TGA/DSC1是一种测量样品在加热、冷却或恒温过程中重量变化的技术。它主要被用来表征材料的组成信息。应用领域包括塑料、弹性体、热固性树脂、矿物质混合物、陶瓷以及化学工业与制药行业。TGA/DSC1主要特点有: - 高分辨率 &ndash 对整个测量范围的超微克分辨率 - 高效自动化 &ndash 非常可靠的自动进样器能处理大理样品 - 广泛的测量范围 &ndash 大小样品量均可测量 - 温度范围广 &ndash 分析样品的温度从环境温度到 1600 ° C - 梅特勒托利多超微量天平 &ndash 依赖领先的天平技术 - DSC 热流测量 - 同步测定热效应 - 密封单元 &ndash 确保有一个完全定义的测量环境 - 联用技术 &ndash 使用 MS 和 FTIR 分析逸出气体 - 模块化概念 &ndash 量身定制的解决方案满足当前和以后的需要
  • ASD丨ASD Fieldspec 3地物光谱仪在矿井水中煤浓度探测方面的应用
    随着我国经济的发展和能源结构的调整,煤炭仍然是我国主要的能源来源之一。但是,煤炭生产和消费过程中所产生的污染问题也越来越受到关注。其中,煤矿污水排放问题是其中之一。图片来源于网络,如有侵权请联系删除煤矿污水中含有大量的有害物质,会对环境、生态和人体健康造成严重的影响。因此,治理煤矿污水排放问题是一个备受关注的议题。今天给大家推荐的文章,是关于研究人员在矿井水质的检测的中,建立光谱反演模型,以助力高光谱技术在水污染监测中的应用。该方法的出现对于解决煤矿废水治理问题具有重要的意义。矿井水中的煤炭污染主要来自煤矸石的富集和浸出、洗煤废水、煤矿渗水灾害等,主要表现为水中煤浓度过高,这种矿井水用于农田灌溉时会使土壤累积形成“黑土”,从而导致土壤硬化,进而导致植被退化、作物枯萎、产量下降等。矿井水渗入地下水或下水道直接进入河流,一方面,其导致水资源浪费和河流污染,另一方面,因为矿井水中有很多煤粉,岩粉和细菌,长期排放也会严重影响当地居民的饮用水健康。在土壤中,煤源碳不同于植物源有机碳,其元素组成缺乏植物和土壤微生物所需的氮、磷、钾等矿质营养物质,它稳定性较强,不仅使生物体的分解和利用变得极其困难,而且还干扰土壤有机碳的识别。并且矿井水中的煤浓度是矿井排水的主要指标,煤浓度的准确测定对矿井水的净化和二次利用具有重要意义。图片来源于网络,如有侵权请联系删除然而目前,凝结沉淀+过滤工艺被广泛用于去除矿井水中的煤,其在处理过程中加入大量活性剂、絮凝剂等化学物质,由于对化学试剂的数量并没有严格的控因此,如果不能准确测量矿井水中的煤浓度,在处理过程中仍会形成二次污染。随着高光谱技术的快速发展,其低成本、高效的优点使其成为水污染监测的重要手段,对叶绿素、重金属离子和水中可溶性有机物等光学活性物质浓度的遥感反演研究相对成熟,对这些指标参数建立了许多反演模型,但在矿井水质参数的反演过程中,水中煤浓度的反演模型尚未得到研究。基于此,在本研究中,为了实现矿井水中煤浓度的准确测量,来自河南理工大学测绘与土地信息工程学院的一组研究团队,首先制备了不同煤浓度的样品(0mg/L-1000mg/L),并利用ASD Fieldspec 3便携式地物光谱仪测量不同煤浓度矿水的可见-近红外光谱数据,再使用CARS算法(竞争自适应重加权采样)提取敏感波段,最后利用卷积神经网络方法(CNN)建立矿水煤浓度光谱反演模型(CKCNN模型),并采用k倍交叉验证对模型进行优化,以预测矿井水中的煤浓度,控制化学试剂的量,减少二次污染的影响,实现煤浓度的反演。并同时使用均方根误差(RMSE)、平均绝对误差(MAE)和相关系数(R)等评估指标评价模型。样品煤浓度【结果】不同煤浓度水平下的光谱曲线由CARS选择的敏感波段反演模型精度评价六种模型的反演结果【结论】本研究以焦煤集团中马煤矿的煤样为研究对象,利用便携式地物光谱仪ASD FieldSpec3测量了不同煤浓度的矿井水样可见-近红外的光谱数据,研究了矿井水中煤浓度的光谱特性,基于CKCNN煤浓度估算模型(模型反演精度为R2=0.9994,RMSE=6.1401,RPD=41.9692),反演矿井水中煤浓度,得出以下结论:● 水样的光谱反射率集中在可见光波段,而在近红外波段几乎为0;光谱反射率随煤浓度的增加而减小;在500~550nm和760nm左右分别形成了一个反射峰和一个吸收谷,并随着煤浓度的增加而逐渐减弱。● 与SPA+BF、CARS+BF、SPA+CNN、All Band +CNN、CARS+CNN五种建模方法相比,CKCNN浓度估计模型的反演效果最好,反演误差为0.17mg/L,反演结果符合GB11901-1989中实验室测量的要求;基于高光谱数据的CKCNN模型可作为预测矿井水中煤浓度的方法。总之,研究结果表明,在可见光-近红外波段的高光谱遥感可以快速探测到矿井水中的煤浓度,CKCNN模型为测定矿井水中的煤浓度提供了一种新的方法,在推进矿井水中煤浓度对可见-近红外光谱的影响研究方面具有重要意义。
  • 和泰用户巡访记 | 第五季• 第五站:江西、福建
    和泰仪器-技术服务部,以“用心坚持专业,致力服务用户”为理念,“客户满意”为首要目标,积极推动2019年度终端用户巡访工作的开展。第五季• 第五站:江西时间:9/16-9/20江西的巡访服务还处于起步阶段,在有了前几季的巡访经验后,我们把巡访内容和模式复制到江西地区,发现效果不错,而且相比之前我们能走更少的弯路,并能创造更好的效果。江西服务中心的每一位同事都与我们一样,热情高涨的服务每一位用户。耐心为客户讲解在本次巡访工作中,我们主要回访了化工研究所、九环检测、中医院大学、粮油监测中心、九江学院、浔阳环保局、南大一院、林业科学院等多家科研院所、检测中心和工业企业单位。维修现场在巡访过程中,我们依然发现了此前其他地区发现的问题:水源不稳定、对水质认知不够、缺乏保养意识等。在这种使用环境下会导致耗材消耗过快,内部元器件易损等故障。我们帮用户解决问题并培训相关知识后,得到了用户的一致好评。第五季• 第五站:福建时间:9/23-9/27即使在没有厂家工程师开展巡访工作的时候,福建的同事在当地已经铺开了回访工作,其力度丝毫不亚于年度的厂家巡访工作。但依然有些棘手的问题需要我们共同去解决,比如我们常见的离线检测水质问题(相关文章请公众号内搜索“离线检测”)。现场维护此次巡访,有两家用户对和泰纯水机的电阻率和PH产生了质疑,在福建同事多次“讲道理”无果后,我们只能通过“摆事实”的方法来证明我们的“纯净”。检测水质我们在巡访过程中不仅仅是在证明我们的产品和服务质量,更多的是在了解用户的使用环境和习惯,我们相信,每一家做实业的公司,无时无刻都需要去了解终端的使用信息,收集终端的使用反馈,我们从中吸取经验转化为我们的养分,让我们能更加茁壮成长。公司始终把用户的利益放在首位,定期的巡访工作,帮助了我们了解用户的需求,听取用户建议,用户的意见反馈,目标就是做到让客户真正地满意,省心。“用心坚持专业,致力服务用户”,为了您的满意,我们从未停下前进的脚步!!下一站:广东、湖南!
  • 最新公示!第五届“国产好仪器”第五批入选名单
    仪器信息网讯 第五届“国产好仪器”自启动以来,受到行业广泛关注。目前评选正在如火如荼的进行中,并已确定四批入选名单。本届“国产好仪器”本着“用户说好才是真的好”的原则,仪器信息网针对参选产品在用户群体中的使用情况展开调研,以“好用、够用”为核心,针对需求满足度、质量满意 度、仪器性价比、服务满意度、推荐意愿度等多个维度广泛征集用户使用意见,在仪器相关用户调研基数达到要求的情况下,进行权重评分。同时,现根据所收集的线上、线下调研结果,在调研基数达到要求的情况下,进行权重评分,并结合调研进行,对入选第五届“国产好仪器”名录进行分批公示。由于陆续有厂商申报,因此特补录一批“国产好仪器”名录。经前期多方面调研,现对评选出的第五批 “国产好仪器”名录进行公示,公示期至2024年2月6日。具体名单如下: 第五届“国产好仪器”第五批入选仪器名单(排名不分先后)序号企业名称品牌型号产品名称1济南盛泰电子科技有限公司济南盛泰ST109C食药二氧化硫测定仪2中生(苏州)医疗科技有限公司中生医疗SinoCyte流式细胞仪3上海元析仪器有限公司上海元析X-8触屏紫外可见分光光度计4上海力辰仪器科技有限公司力辰MSA系列磁力搅拌器5安徽皖仪科技股份有限公司皖仪 LC3200系列高效液相色谱仪6上海赫冠仪器有限公司凯氮KaiDanHGK-55全自动凯氏定氮仪7衡昇质谱(北京)仪器有限公司衡昇质谱iQuad 2300系列电感耦合等离子体质谱8青岛永合创信电子科技有限公司永合创信CTLW-220全自动器皿清洗机 本届“国产好仪器”评选活动由仪器信息网主办,联合多家食品领域头部用户单位,共同寻找满足行业应用需求的“国产好仪器”,后续我们还将陆续公示第五届“国产好仪器”入选名单,同时,本届“国产好仪器”还将收录由支持单位验证评价合格的仪器名单,共同助力食品行业用户号从海量信息中找到“对”的产品!本次入围名单将在仪器信息网进行为期10天的公示。所有入围产品的详细资料均可在“国产好仪器”专题进行查阅,如果您发现入围仪器与实际评选情况不符,请您于2024年2月6日前向仪器信息网国产好仪器项目组举报和反映情况,一经核实,项目组将取消其入围资格。最终获奖的仪器将在“ACCSI2024中国科学仪器发展年会”上揭晓并颁发证书,评审结果将在多家专业媒体上公布。 “国产好仪器”活动介绍、专家观点、活动报道等内容详见链接:https://www.instrument.com.cn/activity/goodcn/Gchyq2023/NewIndex(点击链接可直达)仪器信息网国产好仪器项目组联系方式:电话:010-51654077-8269 张老师传真:010-82051730电子邮箱:zhangyy@instrument.com.cn
  • 第五届岛津石化、煤化气相色谱分析技术论坛成功举办
    随着石化、煤化产业的高速发展,项目开发中间过程控制以及成品品质保证多个环节都对气相色谱技术提出了更高的要求,气相色谱相关应用技术水平已成为实验室能力的重要标志。近年来,岛津公司助力越来越多的化工大项目和高端催化科研领域,积累和研发了很多业界领先的色谱解决方案。为了与业内的专家老师共同分享、交流气相色谱应用最新成果和经验,使色谱技术能够发挥出更大的作用,岛津公司于2018年11月30日在江苏连云港举行了第五届岛津石化、煤化气相色谱分析技术论坛。会议现场聚集了来自石化、煤化行业的100多位专家、用户,共同探讨并分享气相色谱分析技术在石化、煤化行业中的应用。此次会议规模相比往届攀上了新高,会议获得了专家、用户的良好反馈。岛津公司分析仪器事业部部长吴彤彬先为论坛致开幕词,并对与会来宾表示了热烈欢迎。他谈到,由于国家能源的战略和布局的重新调整,我国能源和化工正在步入新型快速发展新通道。而岛津历来重视能源和化工行业发展,致力于新产品、新应用方案的创新和研发,希望通过这次会议,持续倾听不同客户声音,不断的研发和创新产品、解决方案。期待能够和专家、用户建立更为深入、持久的合作关系。岛津公司分析仪器事业部部长吴彤彬致开幕词在开幕词后,会议进入专家发表环节。会议邀请中石化石科院李长秀教授、江苏斯尔邦石化有限公司质检中心苏建萍主任、中科院大连化学物理研究所李杲教授、中科合成油技术有限公司李莹部长共四位专家学者带来了精彩的报告。岛津公司分析测试仪器市场部能源与化工应用吴建涛经理、产品专员李言先生、顾晖先生、网络化专员陈家鼎先生也给大家分享了最新的气相色谱及网络化应用方案。岛津分析测试仪器市场部能源和化工组吴建涛经理报告岛津分析测试仪器市场部能源和化工组吴建涛经理报告题目为《岛津气相色谱技术在化工领域的应用》。吴建涛经理以其丰富的行业工作经验,结合岛津近年来在化工行业的成功大项目情况,对化工行业的整体现状和发展方向进行了梳理,以宏观的视角对行业进行了分析。报告中详细讲解了岛津气相色谱技术在“石油化工”、“现代煤化工”、“泛化工”、“新能源、新材料”等四大领域中的应用。他说道,岛津在每一领域都有成熟可靠的配置方案的经验累积,无论哪一个部分岛津总是本着工匠精神要求自己,做出精品项目,提供更新的产品、更好的解决方案,跟随行业发展,和用户共成长。中石化石科院李长秀教授报告中石化石科院李长秀教授的报告题目为《石化行业色谱分析解决方案及新标准解读》。她对中国石化科学研究院在油品分析气相应用发展情况做了详细的介绍。分别对汽油单体烃和族组成分析、汽油中非烃组分及非常规添加组分的测定、色谱模拟蒸馏分析多个油品分析的标准向与会嘉宾做了解读。此外,在结合产业的新发展方面,也分享了很多引领行业发展的新标准制定工作。她表示,新能源行业的发展开始进入到石油化工科学研究院的视野当中。江苏斯尔邦石化有限公司质检中心苏建萍主任报告江苏斯尔邦石化有限公司质检中心苏建萍主任报告题目为《江苏斯尔邦石化江苏斯尔邦石化质检中心及分析经验介绍质检中心及色谱应用经验介绍》。苏建萍主任作为化工产业的代表,其质检中心拥有71台岛津气相色谱仪及13台岛津其他仪器,双方形成了良好的合作关系。她在报告中介绍了质检计量中心的组织构架、职能以及将来规划。实验室采用了岛津公司的网络化系统部署管理,使用方便稳定,提升了备份数据的效率,同时也有效避免丢失数据从而保证实验室的稳健运行。在一些特殊分析方法建立中与岛津充分合作共同解决了很多行业难题。此外实验室还在申请CNAS认可,不断地对化验室的工作提升做出努力。 中科院大连化学物理研究所李杲教授报告 中科院大连化学物理研究所李杲教授报告题目为《催化研究---化工产业升级的根本动力》。李杲教授首先介绍了大连化物所研究成果在工业应用的璀璨成绩,刘中民院士团队DMTO技术,包信和院士团队甲烷无氧制烯烃芳烃,丁云杰教授团队醋酸加氢制备乙醇,李灿院士的汽油超深度脱硫技术,无处不体现催化研究的科学技术带来第一生产力。他结合自己课题组的研究方向,二甲醚催化转化制富含异构烷烃汽油,异丁烯醛催化合成MMA为此次论坛的产学研结合画上浓墨重彩的一笔,让大家了解到催化研究对于产业的升级是一个最核心的驱动力,从其研究的方向也能够领略到将来化工行业发展的趋势。 中科合成油技术有限公司李莹部长报告中科合成油技术有限公司李莹部长报告题目为《气相色谱在煤间接液化领域的应用》。李莹部长的报告技术内容丰富,充分展现了其在行业内色谱应用的高水平。他介绍了中科合成油的煤间接液化,F-T合成等关键技术,并结合多个已投产项目的实际分析技术支持进行经验分享,以及多个煤基费托合成产物的分析方法标准的制定,展示了其在国家能源战略布局的煤制油领域中,涉猎的广度和深度,为此次论坛奉献了一场精彩的报告,获得了现场业内同仁的热烈反响,在项目现场开车保运很多攻坚克难的工作经验分享也为了行业做出了很好的表率。 岛津分析测试仪器市场部网络化专员陈家鼎岛津分析测试仪器市场部网络化专员陈家鼎先生报告题目为《岛津LabSolutions CS实验室网络信息化管理解决方案》。在大数据流行的当下,实验室也同样将步入信息化的时代,对此,他讲述了如何理解、定义实验室网络化,实验室数据将何去何从;当前实验室管理条件下存在哪一些值得进步、改善的环节等重点内容。岛津网络化系统LabSolutions CS提供了相对完整的解决方案,并能够结合LIMS系统,实现高效率的管理。他详细介绍了岛津新推出的软件可以实现LIMS的关键性功能,并且能够很好的改善LIMS系统和网络化工作站原有结合方式的很多问题,引起了与会嘉宾的广泛关注。 岛津分析测试仪器市场部能源和化工组产品专员顾晖岛津分析测试仪器市场部能源和化工组产品专员顾晖先生的报告题目为《岛津化工行业气相色谱新技术及应用》。他介绍了烯烃样品中痕量砷烷、磷烷的GCMS解决方案,中心切割技术延长了色谱柱的使用寿命,减少了人员老化色谱柱以及标定仪器的工作量,实现了用一台仪器完成传统两台仪器的分析任务,节约了成本。他表示,新技术可提高分析仪器的使用效率,减少分析时间,及时为生产装置提供分析数据,在行业内有很好的应用前景。岛津FPD对硫化物分析的超高灵敏度,实现了用户对微量硫化物分析低成本、稳定、维护方便的期许。 岛津分析测试仪器市场部能源和化工组产品专员李言岛津分析测试仪器市场部能源和化工组产品专员李言先生的报告题目为《岛津气相色谱在化工催化研究领域的应用》。他介绍了光解水、光催化CO2还原产物分析的成熟成套解决方案,以及CO2电催化等近年来的研究热点对应的成熟分析方案;对费托合成,合成气转化、甲烷转化C1化学领域的应用方案,根据分析目标进行了分类,并且以高沸点产物在线分析方案为核心,将一个研究分析难点的解决方式和解决过程进行了充分的讲解;最后以多个科研领域创新方案为实例,讲解了其创新性和在化工项目的应用潜力。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 梅特勒托利多参加2012第五届中国北京食品安全高峰论坛
    第五届中国北京国际食品安全高峰论坛于2012年3月26-28日在北京中国国家会议中心(CNCC)召开,自2008年首次举办以来,中国北京国际食品安全高峰论坛迄今已连续举办五届,吸引了超过800多名来自国内外知名食品企业、科研机构和领先技术厂商专业代表出席。 梅特勒托利多带来了实验室质量控制和工业称量等全方位的解决方案,充分展示了分析天平、快速水分测定仪、全自动电位滴定仪、工业称量仪表等在内的检测仪器。 其中,SevenCompact&trade pH/离子(S220)和SevenCompact&trade 电导率(S230)于2011年12月最新上市,S220可测量pH、ORP和各种单位的离子浓度,S230可测量电导率、盐度、TDS、电阻率及电导灰分。SevenCompactTM系列产品秉承Seven系列台式仪表的优良品质,并引入创新的ISM(智能电极管理)技术,是精确的电化学测量技术与灵活功能、创新设计和便捷操作的完美结合,为实验室pH、电导率、离子测量建立新的标准。 此外,ICS226系列防水台秤为肉食品加工、禽类加工和水产加工等食品加工行业提供精确快速的称重服务。优秀的防水性能和出色的工业设计,使产品可以满足食品加工行业的特殊性要求。 更多信息,请登录梅特勒托利多网站: www.mt.com
  • 梅特勒托利多盛装亮相第五届慕尼黑上海分析生化展集中展示实验室解决方案
    第五届慕尼黑上海分析生化展于2010年9月17日在上海新国际博览中心落下帷幕,梅特勒-托利多作为世界领先的精密仪器制造商,盛装参加了此次盛会。慕尼黑上海分析生化展在亚太地区已成为最重要的分析、实验室技术、诊断和生化技术的展览会之一,此次共有来自22个国家和地区的468家展商参加了展览。 梅特勒-托利多带来了最先进的瑞宁移液器、分析天平、全自动电位滴定仪、多模块专业测量仪、新一代实验室合成反应器EasyMax、实时在线反应分析技术 ReactIR IC10、超越系列熔点仪等仪器设备,为来自全球的用户提供全方位的实验室技术解决方案。 梅特勒-托利多公司展台 梅特勒-托利多的RAININ® (瑞宁)&trade 96道手动移液工作站无疑是本次展会上的一大亮点,引起了众多观众的强烈兴趣。作为一台适合于所有实验室的功能强大的个人研究工具。准确和高效的Liquidator96手动移液工作站旨在最大限度地提升并简化工作流程,而无需专门的技术人员员费时进行复杂的电脑编程。不可思议的超快移液,Liquidator96手动移液工作站为高通量移液增添了出色的高品质功能并应用于领域。 梅特勒-托利多展出的RAININ® (瑞宁)&trade 96道手动移液工作站 RAININ瑞宁在现场进行的96道手动移液工作站的有奖征名活动,受到了参展观众的热烈反响。为了反馈广大梅特勒-托利多用户,RAININ® (瑞宁)&trade 96道手动移液工作站征名组委会还准备了Apple I-Phone、shuffle及时尚U盘等众多奖项! 梅特勒-托利多展出的RAININ® (瑞宁)&trade 96道手动移液工作站 梅特勒-托利多展出的合成反应器EasyMax、实时在线反应分析技术ReactIR IC10及超越系列熔点仪 光临展位的媒体同行与观众对梅特勒-托利多的产品表现出了浓厚的兴趣,其中不仅有国内的专业人员,更有来自美国、德国、日本、韩国等众多国家的用户。产品线的销售顾问向参观各类者们详细介绍了仪器的性能和特点,现场多名观众和行业专家给予了很高的评价。 有关梅特勒-托利多(METTLER TOLEDO) 梅特勒-托利多集团秉承&ldquo 品质至上、勇于开创、追求变革&rdquo 的企业宗旨,始终致力于为全球客户提供质量卓越的精密仪器和衡器产品,以及全面细致的技术支持服务。纵观世界称量及分析技术的发展,凝聚着梅特勒-托利多在专业领域坚定不渝的信念和不断累积的智慧。梅特勒-托利多以先进的解决方案和技术服务,改善人们的工作效率,为人们的社会生活和发展做出贡献! 更多信息,请浏览公司网站:www.mt.com
  • 岛津成像质谱显微镜应用专题---酶组织化学分析
    镜质合璧 还原真实质谱成像应用于酶组织化学分析 摘要检测酶促反应通常通过底物和酶反应后的产物继续反应显色并测量吸光度来实现。现有的酶促反应检测方法既要求底物和酶之间的初级反应,又要求随后产生颜色的二级反应。一种新的酶促反应检测方法利用质谱技术无需进行二级反应即可直接检测初级反应产物。将这种方法用于组织表面分析,还可以对酶活性进行可视化分析。本文描述了使用高空间分辨率质谱成像系统iMScope进行酶组织化学分析的新应用。 引言酶在组织中的分布通常用免疫组织化学(IHC)方法来测定。虽然IHC能够可视化表征酶蛋白的位置,但无法区分活性酶和非活性酶。酶组织化学作为一种成熟的方法,能够可视化分析酶活性,这是无法通过IHC分析实现的1),2) 。酶组织化学依赖组织切片表面上发生的酶活性化学反应,以此识别酶活性及其强度。可视化分析通常将反应底物涂敷到组织切片,组织切片与内源酶发生反应,产物继续通过另一种反应显色。采用这种方法,每种显色反应对应一种化合物,因此,多化合物可视化分析需要进行多种显色反应。使用这种方法来可视化分析酶活性的分布通常并非是一种简单的将底物添加到组织切片的过程。作为替代常规酶组织化学显色反应步骤的一种方法,本研究考察了利用成像质谱(MSI)直接检测小鼠脑切片和整个果蝇切片中酶促反应产物的方法3) 。 实验本研究试图对野生型小鼠脑切片和整个野生型果蝇切片中乙酰胆碱酯酶(AChE)活性的分布进行可视化分析。AChE能够催化底物乙酰胆碱分解为胆碱和乙酸。因此,本研究将乙酰胆碱涂敷到组织样本的表面,并检测其降解产物胆碱并评价酶活性。为与内源性胆碱进行区分,将氘标记的乙酰胆碱-d9(ACh-d9)作为底物,并检测胆碱-d9(Choline-d9)(图1)。利用喷枪将底物手动涂敷至组织切片表面。图1 MSI法酶组织化学原理将标记后的底物涂敷于样本表面,利用质谱检测酶促反应产物,并进行可视化分析。 本研究同时考察了进行半定量分析的反应时间和方法。 将α-氰基-4-羟基肉桂酸(α-CHCA,Sigma-Aldrich)作为基质,通过两步法4) 进行基质涂敷,该方法结合了基于iMLayer基质升华仪(图2)的升华法和手动涂敷α-CHCA溶液的喷雾法。 使用iMScope成像质谱显微镜(图3)进行MSI检测,并使用IMAGEREVEA MS质谱成像分析软件进行数据分析(图4)。iMScope实验参数如表1所示。 图4 IMAGEREVEA MS质谱成像数据分析软件 表1 MSI分析参数结果与讨论图 5:转化率公式和酶活性公式 图6(A) 样本组织表面底物转化比例与酶反应时间关系以底物涂敷时间为0分钟,结果显示所有乙酰胆碱-d9(底物)在5分钟内转化为胆碱-d9。(B) 乙酰胆碱酯酶活性在小鼠脑组织中比较MSI结合HE染色分析结果显示,酶活性在纹状体(CPu)、海马体(HP)和下丘脑(TH)中较高,而在胼胝体(CC)和小脑皮质(CBX)中较低。(C, D) HE染色和高空间分辨率成像分析小鼠海马体酶活性显示CA3区中酶活性较高。标尺:1mm 根据图5(1)中的公式计算底物转化率并绘制转化率与反应时间的关系图表明,乙酰胆碱-d9在涂敷于样品表面后迅速开始分解为胆碱-d9,并且在5分钟内转化停止并耗尽乙酰胆碱-d9(图6A)。因此,5分钟是用以测量酶活性的足够的反应时间。由于组织定位相关的生物基质效应会给半定量分析带来影响,图5(2)中的公式被认为是一种标准化方法用以校正乙酰胆碱-d9和胆碱-d9的离子化效率。 使用IMAGEREVEAL MS质谱成像数据分析软件提取m/z 155.17乙酰胆碱-d9和m/z 113.16胆碱-d9的质谱图像。利用IMAGEREVEAL MS中提供的四则运算方法,根据公式(2)计算胆碱酯酶活性分布的图像(图6B和图6D)。这些图像显示纹状体(CPu)、海马(HP)和下丘脑(TH)的AChE活性较高,而胼胝体(CC)和小脑皮质(CBX)的AChE活性较低(图6B)。 这些结果与传统酶组织化学方法高度匹配,证明该技术的可靠性。iMScope的高空间分辨率质谱成像还用于可视化分析大脑海马区的酶活性(图6C、6D)。 由于哺乳动物除AChE外还产生丁酰胆碱酯酶(BuChE),因此尝试对不同胆碱酯酶的活性分布进行可视化研究。BuChE将乙酰胆碱和各种其他胆碱酯转化为胆碱。将底物乙酰胆碱与四异丙基焦磷酸酰胺(iso-OMPA,一种BuChE抑制剂)一起涂敷于样品表面,利用MSI观察AChE活性的特异性分布。针对BuChE活性的特异性分布,也通过在一系列组织切片涂敷底物乙酰胆碱和AChE活性抑制剂加兰他敏(galantamine)进行研究。这些实验表明,在不含任何抑制剂样本的胼胝体(CC)中酶活性,在很大程度上被iso-OMPA抑制,这表明胼胝体中的大部分胆碱酯酶活性是由BuChE引起的(图7A)。图7使用抑制剂后在小鼠脑切片中可视化观察酶活性,以及整个果蝇切片中胆碱酯酶活性分布的MSI(A) 使用抑制剂后可视化观察酶活性Iso-OMPA抑制丁酰胆碱酯酶活性实现特异性检测乙酰胆碱酯酶活性加兰他敏抑制乙酰胆碱酯酶活性实现特异性检测丁酰胆碱酯酶活性(B) 果蝇中胆碱酯酶活性的分布尽管果蝇属于不同的门类,但该方法同样适用,并揭示了大脑和胸腹区的酶活性。尤其是在胸腹区,检测到了可溶性酶活性,表明该方法可提供常规酶组织化学难以获得的结果。 因此,将标记稳定同位素的底物与抑制剂一同涂敷于组织样本表面是一种更精确的酶组织化学研究方法。 本方法甚至可以用于果蝇(一种不同门的动物)的研究。如图7B所示,ChE活性在整个果蝇中分布不均匀,在大脑中ChE活性极高,在胸腹区ChE活性也较高。果蝇头部具有极高酶活性的结果与先前报告一致5),表明活性来自中枢神经系统中头神经节的胆碱能神经中的AChE。相比之下,胸腹区的ChE活性很可能不是由中枢神经系统中的AChE引起的。报告显示除中枢神经系统外,血液淋巴中也存在AChE6),并且Zador等人观察到可溶性AchE的存在,其结构与神经系统中的膜结合AChE不同7)。胸腹区的AChE活性与以往报告一致,证明本方法可有效进行ChE活性定位的研究。 结论本文描述了一种基于MSI进行酶组织化学的新方法,结果显示MSI无需显色反应即可获得酶活性的半定量分布结果。该方法同时还被用于果蝇切片分析,可有效可视化分析膜结合AChE和可溶性AChE的活性。尤其是可溶性酶活性的分布难以通过传统方法获得,这显示了本方法的优越性。对于其他酶(不仅包括水解酶,还包括转移酶),我们还将开发更多的可视化分析方法。 致谢诚挚感谢京都工业大学应用生物科学系染色体工程实验室的Masamitsu Yamaguchi教授提供果蝇样本。 参考文献1.Takamatsu, H. Histochemische Untersuchungen der Phosphatase und deren Verteilung in verschiedenen Organen und Geweben. Trans. Soc. Path. Japan 29, 429 (1939)2.Gomori, G. Microtechnical demonstration of phosphatase in tissue sections. Proceedings of the Society for Experimental Biology and Medicine 42, 23 (1939)3.Takeo E, Fukusaki E, Shimma S. A mass spectrometric enzyme histochemistry method developed for visualizing in situ cholinesterase activity in Mus musculus and Drosophila melanogaster. Anal. Chem. 92, 12379 (2020)4.Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization efficiency. J Mass Spectrom. 48, 1285 (2013)5.Toutant, J. P., Insect acetylcholinesterase: catalytic properties, tissue distribution and molecular forms. Prog Neurobiol. 32, 423 (1989)6.Chadwick, L. E., Actions on Insects and Other Invertebrates. In Cholinesterases and Anticholinesterase Agents, Koelle, G. B., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1963 pp 741-798.7.Zador, E., Tissue specific expression of the acetylcholinesterase gene in Drosophila melanogaster. Mol Gen Genet. 218, 487 (1989) 文献题目《质谱成像应用于酶组织化学分析》 使用仪器岛津iMScope TRIO 作者Shuichi Shimma1,2,3;Emi Takeo1;Kaoru Nakagawa;Takushi Yamamoto;Eiichiro Fukusaki1,2,31 大阪大学工学研究生院生物技术系2 大阪大学Shimadzu Omics 创新研究实验室3 大阪大学开放与跨学科研究倡议研究所
  • 可见-近红外地物光谱仪等两项行业标准通过SC6会议审查
    仪器信息网讯 2023年3月29日,全国工业过程测量控制和自动化标准化技术委员会分析仪器分技术委员会(SAC/TC124/SC6)四届一次年会暨标准审查会议在合肥市召开。中国机械工业联合会标准工作部处长王墨洋、SAC/TC124秘书长王春喜博士、合肥市市场监督管理局标准化处处长张亚鸣,SC6秘书处挂靠单位-中国仪器仪表行业协会秘书长& SC6副主任委员李跃光,SC6副主任委员金春法、李志刚以及秘书长马雅娟,本次会议协办单位-安徽省中智科标准化研究院有限公司总经理崔从俊,SC6委员及委员代表、标准主要起草人等100余人出席本次会议。会议第二天的主题为机械行业标准“可见-近红外地物光谱仪”、“菌落总数、总大肠菌群、粪 大肠菌群、大肠埃希氏菌酶底物法水质自动分 析仪技术要求”送审稿及相关文件的会议审查。SC6副主任委员金春法、李志刚分别主持该环节。奥谱天成(厦门)光电有限公司贺文丰和青岛佳明测控股份有限公司金立新分别进行标准编制汇报。会议现场机械行业标准“可见-近红外地物光谱仪”概况:可见-近红外地物光谱仪具有性价比高、测量快速、准确、操作简单、携带方便等特点,广泛应用于地质、农林业等各领域,未来,具有极大的发展空间。但是,目前国内还没有可见-近红外地物光谱仪性能测试方法标准,各厂家产品性能各异、差异性较大,缺少设备评价的统一标准,急需出台相关标准,有效规范仪器生产及使用,确保仪器的质量。同时,近些年来,在科技人员的共同努力下,国产地物光谱仪技术研究有了长足的发展,如光谱仪中光学系统、电路系统、信号处理系统、软件系统及应用等方面都有了较大的创新和改进,使仪器的性能与技术指标方面都有了不同程度的改善和提高,可以说已经达到国际先进水平,越来越多国内外客户都愿意使用国产地物光谱仪,为了更加规范市场,理应加强标准建立工作,在此基础上可以进行国际标准的申请工作。而且标准的建立,将更加促进可见-近红外地物光谱仪的规范发展,同时可以推动其在农林业、遥感、水质监测、环保监测等领域的应用。2019年初,经对国内外的相关标准(包括行业标准和企业标准)、国内外现有地物光谱仪的实际研发情况进行研究,对相关仪器各项功能和技术指标进行了分析,之后成功列入工业和信息化部2021年第二批行业标准制修订和外文版项目计划,任务完成目标2023年。SC6秘书处2021年9月发文组织成立机械行业标准“可见-近红外地物光谱仪”起草工作组。机械行业标准 “菌落总数、总大肠菌群、粪 大肠菌群、大肠埃希氏菌酶底物法水质自动分 析仪技术要求”概况:目前,国内还没有菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪的性能测试方法标准,同时该类仪器已应用于数十个国家级水站。建立起相应的产品标准,有利于产品质量提升、有利于规范市场、有利于产品应用开发。2019年初,查阅了国内外的相关标准(包括行业标准和企业标准),结合国内外现有酶底物法水质自动分析仪的实际研发情况,对仪表各项功能和技术指标进行了分析,之后成功列入工业和信息化部2021年第二批行业标准制修订和外文版项目计划,任务完成目标2023年。SC6秘书处2022年2月发文组织成立机械行业标准 “菌落总数、总大肠菌群、粪 大肠菌群、大肠埃希氏菌酶底物法水质自动分 析仪技术要求”起草工作组。SAC/TC124/SC6副主任委员金春法SAC/TC124/SC6副主任委员李志刚奥谱天成(厦门)光电有限公司贺文丰青岛佳明测控科技股份有限公司金立新行业标准“可见-近红外地物光谱仪”、“菌落总数、总大肠菌群、粪 大肠菌群、大肠埃希氏菌酶底物法水质自动分 析仪技术要求”送审稿及相关文件的会议审查分组进行。奥谱天成(厦门)光电有限公司贺文丰和青岛佳明测控股份有限公司金立新分别进行标准编制汇报分别介绍了标准编制说明、征求意见稿意见汇总处理表,对未采纳的情况进行了说明。委员们针对编制说明、标准正文逐一仔细审查,展开了激烈讨论,并给出修改建议。经过深入探讨后,参会委员和委员代表们一致表示同意通过本次会议提交的两个行业标准的审定,标准牵头单位主要起草人按上述修改建议意见进行补充和修改,使标准中文字更严谨,内容更精练,同意起草工作组根据本次会议的意见修改完善后启动行业标准报批程序。
  • 公示!第五届国产好仪器首批拟入选名单
    仪器信息网讯 第五届“国产好仪器”自启动以来,受到行业广泛关注。目前评选正在如火如荼的进行中,并已确定第一批入围名单。本届“国产好仪器”,由仪器信息网主办,并联合了诸如中国检验检疫科学研究院装备技术研究所、中国海关科学技术中心仪器验证评价与认证平台、中国食品发酵工业研究院、中国农业科学院茶叶研究所、AOAC 中国分部、南京市产品质量监督检验院、北京市营养源研究所有限公司、华测检测认证集团、内蒙古蒙牛乳业(集团)股份有限公司、山东鲁花集团有限公司、丰益(上海)生物技术研发中心有限公司、我要测网等多家食品领域支持单位。聚焦食品行业,第五届“国产好仪器”以“用户说好才是真的好”为原则,对食品领域用户围绕仪器应用需求满意度、质量满意度、性价比、推荐意愿、售后服务等多维度进行调研,评选出满足食品领域用户使用需求的“国产好仪器”名录。相较于往届评选,本届更加注重行业应用需求。经广泛发动、厂商申报、电话调研、信息复核、严格评审,现对第一批评选出的“国产好仪器”名录进行公示。第五届国产好仪器首批入围仪器名单(排名不分先后)企业名称品牌型号产品名称杭州喜瓶者仪器技术有限公司喜瓶者Aurora-F2全自动洗瓶机器皿清洗机海能未来技术集团股份有限公司海能K1160全自动凯氏定氮仪上海美谱达仪器有限公司美谱达P7双光束紫外可见分光光度计北京中仪宇盛科技有限公司中仪宇盛HS-30全自动顶空进样器四川优普超纯科技有限公司优普UPR(超)纯水机上海屹尧仪器科技发展有限公司屹尧科技M6微波消解仪上海喆图科学仪器有限公司喆图TGF-9140A电热恒温鼓风干燥箱钢研纳克检测技术股份有限公司钢研纳克 PlasmaMS 300电感耦合等离子体质谱仪奥普乐科技集团(成都)有限公司奥普乐HS-Auto126126位全自动顶空进样器天美仪拓实验室设备(上海)有限公司达美柯Velocity 18R Pro多功能台式高速冷冻离心机 本次入围名单将在仪器信息网进行为期10天的公示。所有入围产品的详细资料均可在“国产好仪器”专题进行查阅,如果您发现入围仪器与实际评选情况不符,请您于2023年10月28日前向仪器信息网国产好仪器项目组举报和反映情况,一经核实,项目组将取消其入围资格。详情查看。最终获奖的仪器将在“ACCSI2024中国科学仪器发展年会”上揭晓并颁发证书,评审结果将在多家专业媒体上公布。后续,我们将陆续公示第五届“国产好仪器”名录,敬请持续关注!注:本届国产好仪器申报将持续到11月底,有兴趣的厂商可随时关注,并前往“国产好仪器”专题进行申报。申报入口:https://www.instrument.com.cn/activity/goodcn/Gchyq2023/ 仪器信息网国产好仪器项目组联系方式:电话:010-51654077-8269 张女士传真:010-82051730电子邮箱:zhangyy@instrument.com.cn 关于国产好仪器仪器信息网自2013年发起“国产好仪器”活动,旨在扭转用户对国产仪器偏见,筛选和扶持一批优秀的国产仪器产品和企业,推过推广和宣传以及提供必要的资源整合,推动国产仪器发展。“国产好仪器”是指按照“用户说好才是真的好”的原则,通过广泛用户调研、实地走访考察用户单位和国产厂商,以“好用、够用”为核心,针对需求满足度、质量满意度、仪器性价比、服务满意度、推荐意愿度等多个维度广泛征集用户使用意见,在仪器相关用户调研基数达到要求的情况下,进行权重评分。筛选出一批有一定生产规模的国产科学仪器企业所生产的能满足用户需求、产品性能较为稳定、性价比较高、售后服务有保障且用户愿意向他人推荐的国产好仪器。截止到2022年底,“国产好仪器”共举办4届,联合16家权威机构,累计拨打100000人次电话,调研20000多位真实仪器用户,走访100多家企业、30多家典型用户单位,共评选出320台经得起市场检验的“国产好仪器”。期间网站充分利用平台优势,通过资源对接、仪器试用、线上会议、选型直播、BOSS代言等形式向广大用户推广好仪器名录,共吸引600000+用户关注和支持,编制《国产好仪器》手册,发行约10万册,受到经销商和用户的热烈欢迎。通过推广、宣传,“国产好仪器”品牌已深入人心,成为用户选购国产仪器重要参考、外部机构评估国产仪器厂商实力重要依据。一方面,厂商通过评选提升了销售业绩;另一方面,通过参评国产好仪器提升了品牌价值。而是否参与好仪器如今也成了资本评估厂商实力的重要依据。2023年,“第五届国产好仪器”将继续起航,聚焦食品行业,通过大量用户调研,寻找适合行业应用需求的“好仪器”,同时并将用户反馈的建议传递给仪器厂商,全面助力国产仪器高质量提升!
  • 第五届北京国际食品安全高峰论坛开幕
    仪器信息网讯 2012年3月27日,由北京食品学会及北京食品协会联合主办,太平洋国际展览有限公司承办的“第五届中国北京国际食品安全高峰论坛(CBIFS)”在中国国家会议中心开幕。本次高峰论坛为期两天,旨在为食品行业及食品安全检测部门提供更加广泛的学习和交流机会,针对当前重要的食品安全热点难点问题展开深入探讨,发布最新的食品安全前端技术和应用解决方案。论坛吸引了800余名业内人士参加、60余家企业参展,仪器信息网作为合作媒体亦参加了本次会议。 第五届中国北京国际食品安全高峰论坛现场   北京食品学会理事长金宗濂先生致开幕词   本次高峰论坛主要内容包括主论坛、产品展示会和专题研讨会三个组成部分,邀请了涉及食品产业链上各方面的政府官员、行业领导、专家学者、技术负责人等60余名嘉宾作报告,研讨主题包括:“食品安全管理与国际技术合作”、“食品安全研究与最新进展”、“微生物、毒素及致病菌检测”、“农兽药残留及重金属分析”、“从源头到终端——食品企业如何实现关键环节把控”、“食品安全快速检测技术”、“食品安全分析检测的样品前处理技术”、“牛奶及乳制品质量安全”、“辐照技术在食品安全中的应用”、“食品检测的创新技术与产品”及“食品检测方法标准与应用实践”。更多一手资讯,更多精彩内容,敬请继续关注仪器信息网即将发布的资讯专题:第五届中国北京国际食品安全高峰论坛 。 中国疾病预防控制中心刘秀梅研究员做大会报告    第五届中国北京国际食品安全高峰论坛展品展示会现场      附录:第五届中国北京国际食品安全高峰论坛   www.food2011.com
  • 中科院深圳先进院司同课题组开发无标记质谱筛选,赋能新酶活定向进化
    近日,中国科学院深圳先进技术研究院司同课题组联合中国医学科学院杨兆勇课题组,在国际学术期刊 Chemical Science 在线发表了题为:Directed evolution of a cyclodipeptide synthase with new activities via label-free mass spectrometric screening 的研究论文。该研究依托深圳合成生物研究重大科技基础设施(简称为“合成生物大设施”),开发了无标记质谱筛选技术,应用于环二肽合酶的定向进化改造,快速得到了 F186L 突变体催化合成野生型天然酶无法产生的新二酮哌嗪分子。定向进化是酶工程的重要方法,需要开展反复多轮的突变文库构建和筛选。现有面向酶定向进化的高通量筛选方法,通常利用偶联反应、生物传感器等手段,将底物或产物浓度信息转化成光学、电化学等信号。开发筛选方法的过程不但费事费力,且通常需要使用衍生化、特殊标记底物等方法,不利于发现新的催化活性。另一方面,质谱分析基于离子的质荷比(m/z)对反应物进行定性与定量测定,具有更好的普适性。更为重要的是,基于无标记(label-free)原理,可以通过非靶向质谱方法识别新的酶促产物,从而发现对应的新催化活性。但质谱筛选的这一能力在酶定向进化中的应用还非常有限,主要限制因素是检测样品进入质谱仪之前通常需要经过耗时的样品制备和色谱分离步骤,限制了质谱筛选的通量该研究依托深圳合成生物大设施的机器人平台,针对酶突变文库构建和筛选过程中的不同环节,如分子克隆、微生物培养、产物乙酸乙酯萃取、MALDI-TOF 质谱分析、数据处理等,开发了对应的自动化流程和方法,实现了微生物发酵产物的无标记质谱筛选,通量为每样品5秒钟(图1)。图1:高通量、无标记质谱筛选用于酶新催化活性的定向进化研究文章以环二肽合酶(cyclodipeptide synthases, CDPSs)为研究对象,验证无标记质谱筛选在酶定向进化中的应用。环二肽合酶利用氨酰-tRNA底物可以合成二酮哌嗪(diketopiperazines, DKPs)骨架;含有这类骨架的天然产物可以通过肠屏障、血脑屏障,是重要的药物先导化合物。然而,基于蛋白质工程改造环二肽合酶的成功案例非常有限,部分原因在于缺乏高通量的产物分析方法,相关研究仅限于少数理性设计突变。研究团队以链霉菌(Streptomyces noursei)来源的 AlbC 作为研究模型,使用大肠杆菌底盘进行文库构建与筛选。重组表达野生型 AlbC 的大肠杆菌的主要环二肽产物为 cFL。作者首先利用半理性设计,选取底物结合口袋附近的10个位点及口袋外与 tRNA 密切作用的4个位点,构建和筛选了定点饱和突变(site-saturation mutagenesis,SSM),快速发现了多个产物谱发生明显变化的突变体。其中,有文献报道的8个突变体数据与本文实验结果相符,验证了方法的可行性与准确性;在此基础上,结合新的质谱筛选方法,本文首次对选取的14个位点的266个可能突变体中的238个进行了系统性表征,大大拓展了环二肽酶关键位点的突变效应数据。遗憾的是,从半理性设计文库中并未发现可以合成新产物的 AlbC 突变体。研究团队进一步利用易错 PCR 技术构建了 AlbC 随机突变文库,对4500个随机挑选的克隆开展无标记质谱分析,最终筛选得到3个突变体。与野生型相比,这3个突变体质谱谱图中出现了新的质荷比为247的离子峰,经高分辨质谱和二级质谱分析,新的产物鉴定为cFV,在表达野生型AlbC的菌株中未被检测到。并且,这3个突变体经 DNA 测序分析发现均只含有F186L单一突变(图2)。文章最后,作者利用分子动力模拟技术,对 F186L 突变效应的分子机制进行了推测。图2:无标记质谱方法筛选得到AlbC突变体生产新的环二肽产物cFV总的来说,该研究依托深圳合成生物大设施的机器人平台,开发了面向酶定向进化的无标记质谱筛选技术,在新催化活性发现这一工程目标方面进行了概念性验证。未来发展方向包括进一步提高筛选通量、扩大适用分子范围、对接不同类型质谱仪等。论文链接:https://doi.org/10.1039/D2SC01637K
  • 中科院深圳先进院司同团队等开发无标记质谱筛选,赋能新酶活定向进化
    近日,中国科学院深圳先进技术研究院司同课题组联合中国医学科学院杨兆勇课题组,在国际学术期刊 Chemical Science 在线发表了题为:Directed evolution of a cyclodipeptide synthase with new activities via label-free mass spectrometric screening 的研究论文。该研究依托深圳合成生物研究重大科技基础设施(简称为“合成生物大设施”),开发了无标记质谱筛选技术,应用于环二肽合酶的定向进化改造,快速得到了 F186L 突变体催化合成野生型天然酶无法产生的新二酮哌嗪分子。定向进化是酶工程的重要方法,需要开展反复多轮的突变文库构建和筛选。现有面向酶定向进化的高通量筛选方法,通常利用偶联反应、生物传感器等手段,将底物或产物浓度信息转化成光学、电化学等信号。开发筛选方法的过程不但费事费力,且通常需要使用衍生化、特殊标记底物等方法,不利于发现新的催化活性。另一方面,质谱分析基于离子的质荷比(m/z)对反应物进行定性与定量测定,具有更好的普适性。更为重要的是,基于无标记(label-free)原理,可以通过非靶向质谱方法识别新的酶促产物,从而发现对应的新催化活性。但质谱筛选的这一能力在酶定向进化中的应用还非常有限,主要限制因素是检测样品进入质谱仪之前通常需要经过耗时的样品制备和色谱分离步骤,限制了质谱筛选的通量。该研究依托深圳合成生物大设施的机器人平台,针对酶突变文库构建和筛选过程中的不同环节,如分子克隆、微生物培养、产物乙酸乙酯萃取、MALDI-TOF 质谱分析、数据处理等,开发了对应的自动化流程和方法,实现了微生物发酵产物的无标记质谱筛选,通量为每样品5秒钟(图1)。图1:高通量、无标记质谱筛选用于酶新催化活性的定向进化研究文章以环二肽合酶(cyclodipeptide synthases, CDPSs)为研究对象,验证无标记质谱筛选在酶定向进化中的应用。环二肽合酶利用氨酰-tRNA底物可以合成二酮哌嗪(diketopiperazines, DKPs)骨架;含有这类骨架的天然产物可以通过肠屏障、血脑屏障,是重要的药物先导化合物。然而,基于蛋白质工程改造环二肽合酶的成功案例非常有限,部分原因在于缺乏高通量的产物分析方法,相关研究仅限于少数理性设计突变。研究团队以链霉菌(Streptomyces noursei)来源的 AlbC 作为研究模型,使用大肠杆菌底盘进行文库构建与筛选。重组表达野生型 AlbC 的大肠杆菌的主要环二肽产物为 cFL。作者首先利用半理性设计,选取底物结合口袋附近的10个位点及口袋外与 tRNA 密切作用的4个位点,构建和筛选了定点饱和突变(site-saturation mutagenesis,SSM),快速发现了多个产物谱发生明显变化的突变体。其中,有文献报道的8个突变体数据与本文实验结果相符,验证了方法的可行性与准确性;在此基础上,结合新的质谱筛选方法,本文首次对选取的14个位点的266个可能突变体中的238个进行了系统性表征,大大拓展了环二肽酶关键位点的突变效应数据。遗憾的是,从半理性设计文库中并未发现可以合成新产物的 AlbC 突变体。研究团队进一步利用易错 PCR 技术构建了 AlbC 随机突变文库,对4500个随机挑选的克隆开展无标记质谱分析,最终筛选得到3个突变体。与野生型相比,这3个突变体质谱谱图中出现了新的质荷比为247的离子峰,经高分辨质谱和二级质谱分析,新的产物鉴定为cFV,在表达野生型AlbC的菌株中未被检测到。并且,这3个突变体经 DNA 测序分析发现均只含有F186L单一突变(图2)。文章最后,作者利用分子动力模拟技术,对 F186L 突变效应的分子机制进行了推测。图2:无标记质谱方法筛选得到AlbC突变体生产新的环二肽产物cFV总的来说,该研究依托深圳合成生物大设施的机器人平台,开发了面向酶定向进化的无标记质谱筛选技术,在新催化活性发现这一工程目标方面进行了概念性验证。未来发展方向包括进一步提高筛选通量、扩大适用分子范围、对接不同类型质谱仪等。
  • 中国食品药品企业质量安全促进会公开征求《生物制品中DNase残留检测-核酸荧光底物法》等三项团体标准意见
    各有关单位及专家:由中国食品药品企业质量安全促进会立项,国家药品监督管理局疫苗及生物制品质量监测与评价重点实验室、武汉瀚海新酶生物科技有限公司提出的《生物制品中DNase残留检测-核酸荧光底物法》、《mRNA疫苗及药物中dsRNA杂质定量检测-ELISA法》、《生物制品中RNase残留检测-核酸荧光底物法》等三项团体标准,在汇总了标准起草工作组成员单位及有关企业和专家意见的前提下,现已完成征求意见稿,为保证该团标的科学性、实用性及可操作性,现公开征求意见。请各有关单位及专家认真审阅标准文本,对标准的征求意见稿(详见附件1、附件3、附件5)提出宝贵意见和建议,并将征求意见反馈表(详见附件7)于2024年09月30日前以信函或邮件的形式反馈至联系人,逾期未反馈意见的单位及个人视为无意见。联系人:孙金鑫联系方式:13121551000邮箱:FDSA@fdsa.org.cn 附件1:《生物制品中DNase残留检测-核酸荧光底物法》征求意见稿.docx附件2:《生物制品中DNase残留检测-核酸荧光底物法》征求意见稿 编制说明.docx 附件3:《生物制品中RNase残留检测-核酸荧光底物法》征求意见稿.docx附件4:《生物制品中RNase残留检测-核酸荧光底物法》征求意见稿 编制说明.docx附件5:《mRNA疫苗及药物中dsRNA杂质定量检测-ELISA法》征求意见稿.docx附件6:《mRNA疫苗及药物中dsRNA杂质定量检测-ELISA法》征求意见稿 编制说明.docx附件4:征求意见反馈表.docx中国食品药品企业质量安全促进会关于《生物制品中DNase残留检测-核酸荧光底物法》等三项团体标准征求意见的函.pdf
  • 科技部公布第五批创新型试点企业
    科技部 国务院国资委 中华全国总工会关于确定第五批创新型试点企业的通知 国科发体〔2012〕1062号   各省、自治区、直辖市及计划单列市、新疆生产建设兵团科技厅(委、局)、国资委(局)、总工会,各有关企业:   为贯彻落实全国科技创新大会和《中共中央国务院关于深化科技体制改革加快国家创新体系建设的意见》(中发〔2012〕6号)精神,加快培育创新型企业,强化企业技术创新主体地位,根据《关于组织开展第五批创新型企业试点工作的通知》(国科发政〔2011〕684号)要求,在有关部门和各地方的支持下,经认真研究,确定中国机械工业集团有限公司等126家企业为第五批创新型试点企业(名单见附件)。现将有关事项通知如下:   一、各试点企业要以开展试点为契机,认真落实《企业开展创新型企业试点工作申报书》中制定的试点方案,增强持续创新能力,努力创建创新型企业,走创新驱动发展之路。要注意总结经验,主动发挥在行业和区域发展中的示范带动作用。要加强与管理部门的联系,按时做好年度信息报送工作。试点过程中发生重大变动要及时报告管理部门。   二、科技部、国务院国资委和中华全国总工会(以下简称三部门)将根据创新型企业建设的总体部署和企业制定的试点方案指导企业开展试点工作,监督和检查企业试点工作进展与成效,有针对性地给予支持。建立动态调整机制,对不按要求开展试点的企业将取消试点资格,对因发生重大变动不宜继续进行试点工作的企业也将及时作出调整。   三、请各地方科技管理部门将本通知转发给相关试点企业,并会同本地国资监管机构、工会组织和有关部门加强对试点企业的管理和指导,加大政策落实和项目支持力度,及时总结试点工作经验,按年度向三部门报送试点工作报告。   联系方式:   科技部创新体系建设办公室   地址:北京市复兴路乙15号(100862)   电话:010-58881762 E-mail:cxb_jscxc@most.cn   国务院国资委规划发展局   地址:北京市宣武门西大街26号(100053)   电话:010-63193490 E-mail:keji@sasac.gov.cn   中华全国总工会经济技术部   地址:北京市复兴门外大街10号(100865)   电话:010-68591420 E-mail:qzldjs@163.com   附件:第五批开展创新型企业试点工作的企业名单   科 技 部 国务院国资委 中华全国总工会   2012年11月13日   附件: 第五批开展创新型企业试点工作的企业名单 (共126家)   中国机械工业集团有限公司   中国通用技术(集团)控股有限责任公司   中国电力建设集团有限公司   中国华电集团公司   上海化工研究院   上海玻璃钢研究院有限公司   中国建筑科学研究院   北京四方继保自动化股份有限公司   北京星昊医药股份有限公司   同方威视技术股份有限公司   北京亚东生物制药有限公司   天津经纬电材股份有限公司   天津市市政工程设计研究院   中国汽车技术研究中心   天津第一机床总厂   石家庄中煤装备制造股份有限公司   山西光宇半导体照明有限公司   山西振东制药股份有限公司   大同煤矿集团有限责任公司   内蒙古永业农丰生物科技有限责任公司   辽宁东亚种业有限公司   佳化化学股份有限公司   北方重工集团有限公司   辽宁忠旺集团有限公司   长春希达电子技术有限公司   吉林一正药业集团有限公司   长春市万易科技有限公司   黑龙江珍宝岛药业股份有限公司   哈尔滨辰能工大环保科技股份有限公司   齐重数控装备股份有限公司   上海中信国健药业股份有限公司   思源电气股份有限公司   上海市基础工程有限公司   上海电气电站设备有限公司   上海市建筑科学研究院(集团)有限公司   上海三菱电梯有限公司   上海都市绿色工程有限公司   上海置信电气股份有限公司   上海东方泵业(集团)有限公司   南通中远船务工程有限公司   中天科技集团有限公司   江阴兴澄特种钢铁有限公司   江苏中能硅业科技发展有限公司   江苏科行环保科技有限公司   南京高精传动设备制造集团有限公司   好孩子儿童用品有限公司   浙江三花股份有限公司   浙江凯恩特种材料股份有限公司   浙江银轮机械股份有限公司   浙江金洲管道科技股份有限公司   浙江大华技术股份有限公司   三维通信股份有限公司   安徽安科生物工程(集团)股份有限公司   安徽巨一自动化装备有限公司   安徽鑫龙电器股份有限公司   安徽省华信生物药业股份有限公司   安徽科力信息产业有限责任公司   合肥金星机电科技发展有限公司   安徽协和成药业饮片有限公司   福建文鑫莲业食品有限公司   福建三元达通讯股份有限公司   福建榕基软件股份有限公司   江西青峰药业有限公司   中国瑞林工程技术有限公司   山东玉皇化工有限公司   烟台泰和新材料股份有限公司   山东华特磁电科技股份有限公司   山东威高集团医用高分子制品股份有限公司   山东东阿阿胶股份有限公司   泰山体育产业集团有限公司   郑州新大方重工科技有限公司   多氟多化工股份有限公司   武汉启瑞药业有限公司   湖北菲利华石英玻璃股份有限公司   九芝堂股份有限公司   迅达科技集团股份有限公司   株洲千金药业股份有限公司   湖南华菱线缆股份有限公司   广州海格通信集团股份有限公司   广东粤海饲料集团有限公司   广州数控设备有限公司   中山大洋电机股份有限公司   京信通信技术(广州)有限公司   康美药业股份有限公司   上汽通用五菱汽车股份有限公司   海南锦瑞制药股份有限公司   海南神农大丰种业科技股份有限公司   重庆山外山科技有限公司   重庆莱美药业股份有限公司   太极集团重庆涪陵制药厂有限公司   四川川大智胜软件股份有限公司   四川九洲电器集团有限责任公司   成都康弘药业集团股份有限公司   成都国腾电子技术股份有限公司   中国水电顾问集团成都勘测设计研究院   贵州航天新力铸锻有限责任公司   遵义钛业股份有限公司   贵州同济堂制药有限公司   昆明制药集团股份有限公司   云南沃森生物技术股份有限公司   西藏芝芝药业有限公司   西藏海思科药业集团股份有限公司   中交第一公路勘察设计研究院有限公司   兰州大成科技股份有限公司   卧龙电气银川变压器有限公司   宁夏共享铸钢有限公司   宁夏机械研究院(有限责任公司)   青海清华博众生物技术有限公司   青海康普生物科技股份有限公司   新疆德蓝股份有限公司   新疆福克油品股份有限公司   辽宁生物医学材料研发中心有限公司   大连三维传热技术有限公司   大连理工计算机控制工程有限公司   宁波慈星股份有限公司   宁波精达成形装备股份有限公司   浙江金瑞泓科技股份有限公司   厦门三维丝环保股份有限公司   厦门金达威集团股份有限公司   青岛黄海制药有限责任公司   青岛康大兔业发展有限公司   青岛东软载波科技股份有限公司   青岛特锐德电气股份有限公司   深圳信立泰药业股份有限公司   深圳市佳创视讯技术股份有限公司   新疆科神农业装备科技开发有限公司
  • 肿瘤免疫微环境中的金属蛋白酶|附相关会议
    金属蛋白酶(MP)是一个在其活性中心具有金属离子的大型蛋白酶家族。根据结构域的不同,金属蛋白酶可分为多种亚型,主要包括基质金属蛋白酶(MMPs)、解整合素金属蛋白酶(ADAMs)以及具有血栓反应蛋白基序的ADAMs(ADAMTS)。它们具有蛋白质水解、细胞粘附和细胞外基质重塑等多种功能。相关会议推荐点击可免费报名金属蛋白酶在多种类型的癌症中表达,并通过调节信号转导和肿瘤微环境参与涉及肿瘤发生、发展、侵袭和转移的许多病理过程。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。MP的结构和表达基质金属蛋白酶(MMP)在脊椎动物中,MMP家族由28个成员组成,至少23个在人体组织中表达,其中14个在脉管系统中表达。基质金属蛋白酶通常根据其底物和其结构域的组织结构分为胶原酶(MMP1、MMP8、MMP13)、明胶酶(MMP2、MMP9)、溶血素(MMP3、MMP10、MMP11)、基质溶素(MMP7、MMP26)、膜型MMPs(MT MMPs)或其他MMPs。MMP家族有一个共同的核心结构。典型的MMPs由大约80个氨基酸的前肽、170个氨基酸的金属蛋白酶催化结构域、可变长度的连接肽或铰链区和约200个氨基酸的血红素蛋白结构域组成。不同类型的MMP具有不同于典型MMP的特定结构特征。例如,MT MMPs缺乏前结构域,而MMP7、MMP26和MMP23缺乏Hpx结构域和连接肽。此外,MMP2和MMP9包含纤连蛋白的三个重复。MMPs中的这些不同结构域、模块和基序参与与其他分子的相互作用,从而影响或决定MMP活性、底物特异性、细胞和组织定位。MMPs已在多种人类癌症中检测到,MMPs的高表达通常与大多数癌症的生存率降低有关,包括结直肠癌、肺癌、乳腺癌、卵巢癌和胃癌。其中MMP2和MMP9,能够降解基底膜中的IV型胶原,是研究最广泛的金属蛋白酶,与各种癌症患者的疾病进展和生存率降低相关。解整合素金属蛋白酶(ADAM)ADAMs是锚定在细胞表面膜上的I型跨膜蛋白,迄今已发现30多种。与MMPs类似,ADAMs包括前结构域和锌结合金属蛋白酶结构域。ADAM还包括一个在细胞表面蛋白中独特的去整合素结构域。ADAM的金属蛋白酶结构域高度保守,大多数ADAM都有一个富含半胱氨酸的结构域和跨膜区域相邻的EGF样结构域,然后是一个长度和序列在不同ADAM家族成员之间变化很大的胞内区。由于这些结构域的存在,ADAM可以结合底物并影响细胞粘附和迁移的变化,以及细胞表面分子的蛋白水解释放。它们的主要底物是完整的跨膜蛋白,如生长因子、粘附分子和细胞因子的前体形式。癌细胞通常表达高水平的ADAM,ADAM17是所有ADAM蛋白中研究最广泛的。一项评估ADAM17作为卵巢癌潜在血液生物标志物的研究表明,与对照组相比,培养的卵巢癌细胞系的培养基上清液以及卵巢癌患者的血清和腹水中的ADAM17水平明显更高。具有血栓反应蛋白基序的ADAM(ADAMTS)ADAM不同,ADAMTS是一种分泌型金属蛋白酶,其特征在于辅助结构域包含血栓反应蛋白1型重复序列(TSR)和间隔区,并且缺少跨膜区、胞内域和(EGF)样结构域,人ADAMTS家族包括19种蛋白。ADAMTS蛋白酶参与前胶原和von Willebrand因子的成熟,以及与形态发生、血管生成和癌症相关的ECM蛋白水解。研究表明,不同的ADAMTS具有不同的生物学功能,并且个体ADAMTS可以在不同的癌症中或根据临床环境发挥不同的作用。与MMPs和ADAMs相比,ADAMTS在TME中的参与研究较少,因此迫切需要系统地研究其在癌症中的功能。涉及癌细胞免疫相关MP的信号通路信号转导途径由多个分子组成,它们相互识别和相互作用,并传递信号以调节许多重要的生物学过程,如肿瘤细胞增殖、转移和免疫调节。三种信号通路尤其与免疫调节中的MP密切相关。肿瘤坏死因子信号肿瘤坏死因子-α(TNF-α)是一种重要的促炎细胞因子,参与免疫系统的维持和稳态,以及炎症和宿主防御。可溶性TNF-α通过蛋白水解酶ADAM17,也称为TNF-a转换酶(TACE),从跨膜TNF-α(tmTNF-α)裂解,该酶可通过激活TNF-α来协调免疫和炎症反应。鉴于ADAM17对TNF信号通路的受体和配体的作用,ADAM17被认为以多种方式影响TNF-α信号传导。例如,可溶性TNF-α产生的减少将导致tmTNF-α的积累,其将与TNFR2结合并导致不同的生物学结果。转化生长因子–β转化生长因子-β(TGF-β)作为肿瘤行为的关键调节因子,在肿瘤侵袭和转移、免疫调节和治疗抵抗中发挥重要作用。TGF-β也是TME免疫抑制的核心,根据具体情况对免疫系统具有多效性功能。MMP9和MMP2是已知的两种金属蛋白酶,可切割未激活的TGF-β前体并产生不同的TGF-β蛋白水解切割产物,从而导致TGF-β活化。此外,与CD44结合的MMP9降解纤连蛋白导致活性TGF-β的释放。癌细胞中MMP9的水平不仅可能影响TGF-β的蛋白水解,还可能影响TGFβ和TGF信号通路下游物质的表达。对乳腺癌中MMP9与TGF信号通路之间关系的研究表明,乳腺癌细胞中MMP9的过表达不仅显著上调了SMAD2、SMAD3和SMAD4的表达,还增强了SMAD2的磷酸化。Notch信号通路Notch信号涉及肿瘤生物学的多个方面,其在免疫应答的发展和调节中的作用比较复杂,包括塑造免疫系统和TME的组成部分,例如抗原呈递细胞、T细胞亚群和癌细胞之间的复杂串扰。特别是,Notch在不同免疫细胞的发育和维持中发挥着关键作用。配体与Notch受体结合后,下游信号由包括ADAM家族成员在内的一些蛋白酶介导。首先,受体/配体相互作用暴露了蛋白水解切割位点S2,其被ADAM金属蛋白酶切割。γ-分泌酶介导的S3处的后续裂解发生在跨膜区,导致Notch胞内结构域(NICD)的释放,该结构域转移到细胞核中,并将MAML与RBPJ结合,触发靶基因如Myc、P21和HES1的转录。已知ADAM10和ADAM17参与裂解S2,而ADAM17导致配体非依赖性Notch激活,ADAM10导致配体依赖性激活。MP对肿瘤微环境的调节TME是指肿瘤细胞周围的微环境,包括血管、免疫细胞、成纤维细胞、骨髓源性抑制细胞、各种信号分子和ECM。TME在调节癌症的免疫反应中起着关键作用。MP对ECM的影响ECM是TME基质的非细胞成分,ECM的重塑在癌症的发展和体内稳态以及免疫细胞募集和组织转移中起着重要作用。癌症进展过程中ECM的广泛重塑导致其密度和组成发生变化,具体而言,蛋白酶诱导的ECM成分的分解对于肿瘤细胞跨越组织屏障至关重要。MMPs和ADAMs是参与ECM降解的主要酶,参与ECM降解的MMPs可大致分为膜锚定MMPs和可溶性MMPs。ECM降解主要通过MT1 MMP激活的可溶性MMP(如MMP2、MMP9和MMP13)实现。ECM有三个主要成分:纤维、蛋白聚糖和多糖。MMPs通过与这些基质结合以促进各种ECM蛋白的周转,在组织重塑中发挥重要作用。MMPs降解ECM的具体机制尚不清楚,需要进一步研究。MP与免疫细胞之间的关系MP在促进免疫细胞活性和调节免疫细胞迁移方面发挥重要作用。MP和免疫细胞之间的关系如下图所示。ADAM10和ADAM17在静止的CD4+Th细胞表面表达,对调节CD4+Th的发育和功能很重要。ADAM10/17在T细胞共刺激受体以及共抑制受体的脱落中发挥关键作用。例如,CD154(CD40L)是一种II型膜共刺激受体,在T细胞和APC之间的相互作用后,CD154表达在几个小时内迅速上调,随后在ADAM10和ADAM17裂解后从T细胞表面释放。此外,ADAM10和ADAM17还作用于共刺激受体CD137,以及抑制性受体LAG-3、TIM-3,sLAG-3和sTIM-3的可溶性形式都是在ADAM10和ADAM17蛋白水解裂解后形成的。B细胞是体液免疫的关键细胞成分,位于脾脏中边缘区B细胞(MZB)表达高水平的CD80/86共刺激分子,导致T细胞活化。Notch2信号传导是MZB细胞发育所必需的,在MZB的发育过程中,Notch2异二聚体与基质细胞和APC上的DLL1等配体结合,这启动了一种未知的金属蛋白酶水解受体,导致Notch胞内结构域的释放,该结构域转移到细胞核并触发下游靶基因的表达。这种未知的金属蛋白酶可能是ADAM10。NK细胞表达IgG Fc受体FcγRIII(CD16),CD16分子可被ADAM17从活化的NK细胞表面裂解,ADAM17的抑制会削弱CD16和CD62L的胞外脱落,从而显著增加细胞内TNF-α和IFN-γ的水平。此外,MMPs和ADAMS可以从肿瘤细胞表面切割活化受体NKG2D的配体。这些裂解蛋白的可溶性形式与NKG2D结合,并诱导该受体的内吞和降解,导致肿瘤逃避监控。总的来说,ADAM17裂解的多种底物与NK细胞的不同作用有关。肿瘤相关巨噬细胞(TAM)有助于癌症的发生和恶性进展,高水平的TAM与预后不良和总体生存率降低有关。在多种癌症中,发现TAM通过分泌MMPs促进肿瘤血管生成和侵袭,并调节免疫反应。MMP的调节与TAM分泌的趋化因子密切相关。与MPs相关的免疫调节细胞因子多种来源于肿瘤细胞的细胞因子,包括TGF-β、EGF、HGF和TNF-α,介导许多MP的表达。其中最重要的是MMP9,其在血清和与肿瘤相关的组织中升高,并参与ECM的降解,以促进癌症中免疫细胞的迁移。此外,这些细胞因子必须被MP切割以参与肿瘤免疫过程。例如,被ADAM17切割的TmTNF-α产生活性sTNF-α。IL-12在T细胞发育和扩增中也起着关键作用,未激活的IL-12前体需要在被MMP14切割之后在TME中转变为活性状态。金属蛋白酶和血管生成迄今为止,已经报道了几种类型的肿瘤血管生成,包括萌芽血管生成和血管生成拟态(VM)。萌芽血管生成是通过血管基底膜中各种水解酶(如MP和组织纤溶酶)的上调实现的,这导致基底膜和ECM的降解和重塑。例如,在胰腺神经内分泌肿瘤中,MMP9分泌增加会从基质中释放出隔离的VEGF,从而将血管静止转变为活跃的血管生成。在肺癌细胞中,MMP2活性的抑制减少了其与整合素AVB3的相互作用,并抑制了下游PI3K/AKT信号介导的VEGF的表达,导致血管生成减少。VM是侵袭性肿瘤形成新血管的新模型,为肿瘤生长提供血液供应。研究表明,实体瘤的初始缺氧环境与VM密不可分,缺氧与MMPs的表达和活性密切相关。低氧诱导因子-1α(HIF-1α)已被证明直接调节MMP14、MMP9和MMP2的表达。靶向MP的免疫治疗鉴于MP在癌症免疫调节中的作用,人们开始探索靶向MP的免疫治疗,临床试验中出现了多种广谱MP抑制剂。然而,由于药物的非特异性靶向和MP在免疫调节中的复杂作用,MP抑制剂迄今未能改善癌症患者的生存和预后。最近,有报道称MP抑制剂可用于联合治疗,以提高免疫治疗的疗效。SB-3CT作为一种MMP2/9抑制剂,被认为可以提高抗PD-1和抗CTLA-4治疗黑色素瘤和肺癌小鼠模型的疗效。SB-3CT治疗不仅通过减少多种致癌途径导致PD-L1表达减少,而且与抗PD-1治疗相结合,显著改善了免疫细胞浸润和T细胞的细胞毒性。此外,SB-3CT与抗CTLA-4的组合增强了PD-L1表达的下调,并增加了肿瘤中活化的肿瘤浸润CD8+T细胞的丰度。Andecaliximab(GS-5745)是一种选择性抑制MMP9的单克隆抗体,GS-5745通过与MMP9前体结合并阻止MMP9活化来抑制MMP9,而与活性MMP9的结合则抑制其活性。Fab 3369作用于MMP14,阻断细胞表面表达的内源性MMP14,并抑制三阴性乳腺癌(TNBC)中ECM的降解。此外,有多种抗体可有效抑制ADAM17,包括A12、A9和MED13622。还有一些小分子抑制剂在临床开发中,在临床试验中显示出积极的效果。小结MP在TME中的免疫调节中发挥重要作用,包括ECM重塑、信号通路转导、细胞因子脱落和释放以及促进血管生成。与MP相关的新兴技术和药物在癌症诊断和治疗中得到了越来越多的探索。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。基于MP的探索和新技术具有巨大潜力,它们可能会为未来的癌症诊断和治疗提供有效的策略。参考文献:1.Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol.2022 13: 1064033.
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 中科院制备出酶燃料电池驱动的离子电渗透面膜
    离子电渗透,是一种离子流在电场力的驱动下在介质中有向扩散的物理过程。基于此原理,离子化的药物分子在电场力的作用下可主动透过皮肤的生物屏障,提高透皮和吸收的效果。然而目前基于离子电渗透的经皮给药技术或装置,都需依赖外接电源或金属基电池来驱动获得电场力,在安全性和便捷性上不甚理想。酶燃料电池是一种新型的燃料电池,可通过生物酶在电极上的催化,将廉价底物中的化学能直接转化为电能,在柔性可穿戴电子器件供电和传感等方面展示了应用潜力。鉴于其良好的产电性能、优异的安全性和生物相容性,酶燃料电池可提供产生电场力所需的清洁、安全、低成本的电能,进而促进药物经皮吸收,有望为基于离子电渗透的经皮给药技术提供了新的能源解决方案。中国科学院天津工业生物技术研究所体外合成生物学中心研究团队,首次将柔性可穿戴的酶燃料电池与面膜相结合,在无纺布基底上制备了基于葡萄糖和葡萄糖氧化酶的酶燃料电池,并证实了其可驱动离子电渗透以促进面膜相关有效成分的经皮吸收。首先,研究人员为了最大化离子电渗透效果同时保持材料的透水透气以及生物相容性,尝试了多种在无纺布基底上制备柔性电极的材料和方法,解决了电子中介体脱落、酶载量低、接触电阻大、由于碳纳米材料导致的面膜发黑等问题,所制备的酶燃料电池可以10 mM葡萄糖为底物产出约0.4 V的电压和23 μW/cm2的功率密度。其次,研究人员以罗丹明、烟酰胺、阿司匹林和熊果苷为例,对这些分子的经皮吸收效果进行了定性和定量的分析,基于Franz透皮实验的结果证明该离子电渗透面膜在15分钟内可提高2到3倍的分子经皮渗透量。此外,该面膜在基于小鼠急性足炎症模型的活体动物经皮给药实验中也表现出类似的促渗效果。最后,通过红细胞溶血实验和L929活性实验均证实了该面膜材料具有良好的生物相容性。这些结果初步证明了酶燃料电池驱动的离子电渗透面膜技术的可行性,为后续进一步提升其性能和可应用性奠定了基础,也为酶燃料电池驱动其他基于离子电渗透的经皮给药技术的开发提供了参考。该研究获得了国家重点研发计划的支持,相关发明专利已被授权,相关论文发表在Biosensors & Bioelectronics上,天津工业生物所博士生李泽华为论文第一作者,张以恒研究员、朱之光研究员为论文共同通讯作者。
  • 仿生酶切割癌细胞DNA,诊疗监测两不误
    人工金属酶作为一种潜在的分子药物,有望在人体内靶向治疗癌细胞,减少癌症治疗副作用。但未搞清内部催化机制时,其应用就显得有些束手束脚。本月,北京工业大学和中科院高能物理所联合的研究团队在《科学进展》上报告了一项研究,他们阐明了一种人工金属酶的精细分子结构和能级分布特征,并揭示了这种仿生酶的催化活性机制。天然酶有高效的催化性能,但生物医学中的应用对酶的稳定性和免疫原性有更高要求。为此,研究者对酶进行了一系列改造,使其得以在更多生物反应中施展拳脚。在新发表的研究中,科学家设计出活性中心为铜团簇的人工金属酶,辅以肿瘤靶向肽和血清白蛋白——前者帮助酶与肿瘤细胞定向结合,后者让酶更稳定、活性更高。为血清白蛋白换上金属团簇内核后,其生物兼容性和金属催化能力都有所改良。经过一系列计算和实验,科学家发现,这种人工金属酶与底物匹配度良好。而且,由于自身独特的几何形状,人工金属酶在肿瘤微环境中可长期、稳定、选择性地让过表达的过氧化氢转化,使其变为羟基自由基和氧气。羟基自由基既能持续切割肿瘤细胞的DNA,让治疗更高效,还能产生灵敏的化学发光,便于人们动态追踪疗效。研究团队还发现,随着催化反应的进行,人工金属酶的活性中心并不会损耗,因为团簇的金属价态实现了封闭式周期性循环,确保反应更稳定、持续。这项研究意味着人工金属酶的合成向精准按需又迈进一步。此外,金属团簇独特的催化动力学和稳定性构造出新的反应路径,帮助人们建立可视化检测、高效治疗特定肿瘤的新方法。
  • 祝贺“ASD地物光谱仪培训班暨最新研究应用进展交流会”圆满结束
    2013年9月3日-9月12日,北京理加联合科技有限公司(以下简称:理加联合)联合美国ASD公司分别在北京、西安、武汉、南京四个城市举办了&ldquo ASD地物光谱仪培训班暨最新研究应用进展交流会&rdquo 。 2013-09-03 北京 主办方:中国科学院遥感与数字地球研究所 会议在中国科学院遥感与数字地球研究所(奥运园区)A501会议室举办,吸引了中科院、农业、海洋、航天、气象、地质、大学等科研院所将近300名专家学者参加会议;会议邀请到了中科院遥感与数字地球研究所 遥感与数字所科研条件部主任、中科院怀来遥感试验站站长肖青老师做会议致辞。 上午,美国ASD公司联合创始人,现任首席技术官Brian Curtiss博士做了&ldquo ASD地物光谱仪在近感与高光谱遥感领域中的应用研究与进展&rdquo 的报告;理加联合特别邀请了国家卫星海洋应用中心宋庆君副研究员为大家介绍地物光谱仪在海洋水色中的应用。 下午,理加联合的ASD技术工程师韩善龙先生与大家分享了ASD地物光谱仪的使用方法及操作技巧;同时,Brian Curtiss博士与大家现场交流仪器操作及应用方面的知识;会议结束,Brian Curtiss博士给参会人员颁发培训合格证书。 2013-09-05 西安 主办方:西安理工大学水利水电学院 长安大学旱区地下水文与生态效应教育部重点实验室 会议在西安曲江宾馆第二国际会议厅举办,来自西北农林科技大学、陕西师范大学、西北大学、长安大学、中煤航测遥感局等科研院所100多名学者参加了会议;会议邀请到了长安大学环境科学与工程学院李彦鹏副院长致欢迎词。 上午,美国ASD公司联合创始人,现任首席技术官Brian Curtiss博士做了&ldquo ASD地物光谱仪在近感与高光谱遥感领域中的应用研究与进展&rdquo 的报告;理加联合特别邀请了中煤航测遥感局万余庆高级工程师为大家介绍光谱测试与应用研究。 下午,Brian Curtiss 博士与理加联合ASD技术工程师韩善龙先生在现场进行了仪器操作培训和应用交流;会议结束,BrianCurtiss博士给参会人员颁发培训合格证书。 2013-09-09 武汉 主办方:武汉大学 会议在武汉珞珈山国际酒店三楼多功能厅举办,来自武汉大学、中国地质大学、中国科学院、湖北大学等科研院所100多名学者参加了会议。 大会开始,理加联合市场总监朱湘宁先生致欢迎词;美国ASD公司联合创始人,现任首席技术官Brian Curtiss博士做了&ldquo ASD地物光谱仪在近感与高光谱遥感领域中的应用研究与进展&rdquo 的报告;理加联合特别邀请了武汉大学资源与环境学院费腾博士为大家介绍ASD地物光谱仪的部分应用案例。 下午,Brian Curtiss 博士与理加联合ASD技术工程师韩善龙先生在现场进行了仪器操作培训和应用交流;会议结束,BrianCurtiss博士给参会人员颁发了培训合格证书。 2013-09-12南京 主办方:南京农业大学国家信息农业工程技术中心 会议在南京翰苑大厦六楼报告厅举办,来自南京农业大学、南京大学、中国科学院南京地理与湖泊研究所、杭州师范大学遥感与地球科学研究院等科研院所100多名专家学者参加了会议。 大会开始,理加联合市场总监朱湘宁先生致欢迎词;美国ASD公司联合创始人,现任首席技术官Brian Curtiss博士做了&ldquo ASD地物光谱仪在近感与高光谱遥感领域中的应用研究与进展&rdquo 的报告;理加联合特别邀请了中国科学院南京地理与湖泊研究所段洪涛副研究员为大家介绍地物光谱仪在湖泊水色遥感研究中的应用。 下午,Brian Curtiss 博士与理加联合ASD技术工程师韩善龙先生在现场进行了仪器操作培训和应用交流;会议结束,BrianCurtiss博士给参会人员颁发了培训合格证书。 与会人员表示,地物光谱仪是遥感研究工作中的常用设备,此次会议的召开,使国内高光谱遥感研究领域的老师和同学们欢聚一堂,为交流最新的研究进展提供了一个非常好的平台。 参会人员通过参加此次会议,了解到光谱仪在地物研究过程中起到至关重要的作用,要得到优质的数据,必须选择权威并且有多样应用案例的产品,ASD光谱仪现已发展成为全球地物光谱仪第一品牌,是遥感及相关领域最权威的测量设备和工作标准,非常符合地物科研工作者对地物光谱仪的需求。 理加联合作为ASD地物光谱仪在中国的独家代理商,也会努力提升技术支持水平,为科研工作者提供更优质、更全面的服务。 相关介绍: 美国ASD公司&mdash &mdash 1990年,两位知名的遥感科学家Alexander F. H. Goetz博士和Brian Curtiss博士联手创立了ASD(Analytical Spectral Devices)公司,推出了第一台真正意义上可以在野外使用的地物光谱仪。历经23年,ASD成为全球地物光谱仪第一品牌,是遥感及相关领域最权威的测量设备和工作标准。ASD一直以用户的测量需求和用户体验为首要目标和任务,结合最新技术,提供最高标准的设备和完善的售后服务。 如欲了解更多,请点击:http://www.asdi.com/ 北京理加联合科技有限公司&mdash &mdash 成立于2005年,是科学遥感仪器在中国生态学,环境科学,农业,林业,地质领域最重要的经销商。 如果您想咨询关于ASD地物光谱仪的任何问题,请拨打010-51292601。 理加联合邀请您加入QQ群互动讨论: 群昵称:ASD光谱仪-认证交流群 号码:243178318 获取最新消息,请关注: 理加联合官方微博:http://weibo.com/LicaUnited 理加联合微信公众平台:理加联合
  • BLT小课堂 | 萤火虫萤光素酶在ATP检测中的应用
    前言:生物发光是一种在生物体内由酶将化学能转化为光能的现象,在自然界中有超过30种生物发光体系,而我们所熟知的萤火虫的发光体系就是其中研究最早,应用也最广泛的一种。萤火虫的发光现象是由其体内的萤光素酶(luciferase)的催化下三磷酸腺苷(adenosine triphosphate,ATP)与发光底物萤光素(lucierin)发生反应产生光。ATP被认为是一种在所有生物体生存和繁殖的细胞合成中必不可少的普遍能量来源,形象的说,它是一种通用的能量“货币”。ATP可以通过水解产生AMP和一个磷酸基团,同时释放出能量,供给细胞活动。ATP结构图发光反应的方程式:研究历史:1885年萤光素及萤光素酶第①次被Dubois提取出来;1952年Strehler和Totter首次使用萤光素酶粗制品测定ATP;1961年White等人工合成了萤光素;1985年Dewet, JR等首次克隆了P. Pyralis萤光素酶基因并在大肠杆菌中表达,从中得到具有活性的萤光素酶,从而开启了萤光素酶作为报告基因的历程。ATP的含量直接反应了细胞或微生物的含量,通过监测ATP含量的改变,可以评价多种药物、生物制剂或生物活性物质引起的细胞杀伤、细胞抑制和细胞增殖作用;另外ATP也常作为微生物污染的一个指标,检测ATP含量能直接反映出其受污染程度。测定生物体中ATP的水平及其动态变化便成为监测生物体必不可少的手段。接下来,小编将向大家具体介绍一下他在近年来的应用领域。应用领域01食品安全人类的身体健康、生命安全长期受到微生物污染的威胁,营养琼脂平板计数法是国际上针对微生物检测的现有标准方法,然而该方法要求在 37 ℃下持续培养 48 h,过于繁琐的操作无法实现快速检测。现下,国内也加大了对核酸法、电阻抗测量、免疫学方法、微菌落技术等各类微生物快速检测技术展开了研究、应用。ATP生物发光法因快速、简便且具有较高灵敏度的缘故,可用于实时监控微生物污染,与食品行业需求相符合,故而有关该技术的研究与应用十分广泛。其检测步骤通常为:①首先根据ATP发光检测试剂盒的使用说明将标准ATP按梯度稀释,与酶、底物、缓冲液按比例混合,使用发光检测设备(比如博鹭腾发光检测系列)测量对应的发光值,绘制标准曲线。②提取样品细胞中的ATP,稀释,之后按比例与酶、底物、缓冲液混合,使用发光检测设备测定发光值,代入标准曲线,即可知道样品中ATP浓度。(ATP浓度与细胞浓度关系的测定:取对数生长期的细胞,离心浓缩后用苔盼蓝染色,计活细胞数,之后在 96孔培养板上等比稀释,测定其发光值,发光值代入标准曲线获得ATP浓度,经过计算即可获得ATP浓度与细胞浓度关系。)应用案例:酒类制作过程中微生物浓度检测食品生产线卫生学检测环境保护部门水体微生物检测卫生监管部门微生物数量检测对应文献:[1]吴慧清.ATP生物发光法饮用水中细菌总数快速测定方法研究[J].中国卫生检验杂志,2009,19(9):1975-1978.[2]刘阳,牟金明.ATP生物发光法快速测定物体表面的菌落总数[J].安徽农业科学,2016,44(1):125-128.[3]易琳.微生物检测中 ATP 生物发光法的应用研究现状[J].生物化工,2019,5(1):124-126.[4]高红阁.ATP 生物荧光法在卫生监督工作中的应用进展[J].疾病监测与控制杂志,2013,7(9):548-550.[5]伍季.ATP生物发光法快速检测啤酒中的菌落总数[J].河南科学,2006,24(1):63-65.[6]李春艳,霍贵成.ATP生物发光法快速测定生乳中微生物总数的研究[J].食品工业科技,2008,29(7):233-238.[7]魏树源.三磷酸腺苷生物发光快速微生物检测法在疫苗中间品无菌试验中的应用[J].中国生物制品学杂志,2010,23(10):1120-1124.[8]丛苑,李平兰.ATP 发光法快速检测玉米中的霉菌[J].中国食品学报,2014,14(8):233-238.02药物敏感实验化疗是恶性肿瘤主要治疗手段之一,其地位已越来越重要。但因为不同类型的肿瘤以及不同个体的同类肿瘤存在异质性,以致惯用的经验式化疗效果尚不理想。临床上迫切需要有切实可靠的检测方法,在化疗实施前筛选出有效药物,进行个体化治疗,以提高疗效而减少毒副作用。ATP生物发光法是近年来发展起来的一种高度敏感的药物敏感试验。文献表明 ,将ATP生物发光法应用于临床个体肿瘤药物敏感性的预测,与临床有较好的相关性。基本思路为:①将癌细胞与药物体外混合培养一段时间。②与食品安全检测类似:绘制发光标准曲线→测定与药物混合培养细胞的发光值→代入标准曲线,最 后计算出药物对肿瘤的杀伤强度。应用案例:化疗药物筛选结核药物筛选细胞活性测定中医疗效评价对应文献:[1]周旻.ATP生物发光法检测卵巢癌细胞对化疗药物的敏感性[J].广东医学,2000,21(4):293-295.[2]陈历排.用微量板 ATP生物发光法检测肿瘤细胞对化疗药物的敏感性[J].肿瘤,2000,20(2):103-105.[3]刘君.三磷酸腺苷发光法快速检测结核分枝杆菌异烟肼耐药的研究[J].现代预防医学,2014,41(1):108-113.[4]梁镇兴.利用自主发光结核分枝杆菌快速连续检测抗结核药物的细胞内活性[J].实用医学杂志,2013,29(23):3823-3826.[5]张志敏.ATP释放法测定人外周血NK细胞活性及初步临床应用[J].免疫学杂志,1992,8(4):260-261.[6]湛学军.三磷酸腺苷生物发光法分析莪术油等中药抑制肝、胃癌细胞增殖活性的研究[J].江西医药,2005,40(11):706-708.[7]朱云仙.养心2号方对慢性心力衰竭大鼠心肌组织ATP及MMP的影响[J].南京中医药大学学报,2016,32(3):274-278.[8]彭艳.艾灸对脾虚大鼠空肠组织ATP含量和ATP酶活性的影响[J].中国现代医学杂志,2013,23(1):8-13.高灵敏度板式发光检测仪Lux-P110:目前已被多家学校、医院、企业所使用,具有极高的灵敏度(≤10amolATP或≤20zmol 萤光素酶)、超宽的线性范围(≥6个数量级),同时配备了两个原位进样器,支持双萤光素酶报告体系的检测。高灵敏度管式发光检测仪Lux-T020:管式发光检测仪主要针对单样品发光检测的客户,相比于Lux-P110,体积更加小巧,使用更加方便,灵敏度则与Lux-110相同。该系列设备支持试用,欢迎您与我们联系。
  • 施一公研究组在《自然》发表论文报道人体γ-分泌酶3.4埃冷冻电镜结构
    p   2015年8月18日,清华大学生命学院施一公教授领导的研究团队于《自然》(Nature)在线发表题为《人源γ-分泌酶的原子分辨率结构》(An atomic structure of human γ-secretase)的文章,报道了分辨率高达3.4埃的人体γ-分泌酶的电镜结构,并且基于结构分析研究了γ-分泌酶致病突变体的功能,为理解γ-分泌酶的工作机制以及阿尔茨海默症(Alzheimer’s disease, AD)的发病机理提供了重要基础。 /p p   阿尔兹海默症是一类神经退行性疾病,又称老年痴呆症,是当今世界面临的最为严峻的老年神经退行性疾病之一。临床表现为脑组织切片中出现淀粉样斑块,神经元逐渐死亡,认知和记忆能力受损,病人逐渐丧失独立生活能力,最后脑功能严重受损直至死亡。美国前总统里根和英国前首相撒切尔夫人都罹患该疾病。统计结果表明,在65岁以上人群中,其发病率高达10%,在85岁以上人群中,发病率更是达到30-50% 我国目前患该病的人口高达500万,约占世界患者总数的四分之一,并且由于预防治疗手段不足,缺乏特效药物,该疾病逐渐有发病年龄提前,发病人数增加的趋势,不但给病人及家属造成极大痛苦,也同时为社会带来沉重负担。 /p p   尽管如此,阿尔兹海默症的发病机理尚有待揭示。目前研究已知β-淀粉样沉淀(β-amyloid)是该病的标志性症状之一。而β-淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ-分泌酶(γ-secretase)。γ-分泌酶由四个跨膜蛋白亚基组成,分别为Presenilin(PS1)、Pen-2、Aph-1和Nicastrin。其中,编码PS1蛋白的基因中有200多个突变与AD病人相关,而PS1正是行使酶切功能的关键活性亚基。这些突变有可能导致PS1功能异常而引起阿尔兹海默症的发生。γ-分泌酶在阿尔兹海默症的发病中扮演着重要角色,很多药物的研发直接以γ-分泌酶作为靶点,希望通过调节其活性来治疗疾病。三维结构信息的缺失和突变致病机理的不明使得药物研发受到很大限制,所以获取其三维结构至关重要。但是γ-分泌酶是一个膜整合蛋白复合体,此前预测跨膜螺旋达到19个,其三维结构研究一直存在很多困难,瓶颈是获得性质良好适合结构生物学研究的重组蛋白复合体。 /p p   施一公教授2006年在清华大学建设实验室之初,就将揭示阿尔兹海默症的发病机理作为重点研究方向,其中一个主要环节是解析γ-分泌酶的高分辨率结构,揭示Presenilin突变体的致病机理。他们经过长期不懈的努力,积累了大量经验教训,终于在近年取得一系列重要突破: /p p   2012年12月,施一公研究组在《自然》(Li et al, Nature)报道PS1细菌同源蛋白PSH的晶体结构,并根据同源性首次构建了PS1的结构模型,揭示了PS1的结构折叠,并在结构上初步分析了在阿尔茨海默症病人中发现的PS1突变位点 /p p   2014年6月,施一公研究组与英国MRC分子生物学实验室白晓晨博士和Sjors Scheres研究员合作在《自然》报道了分辨率为4.5埃的γ-分泌酶复合物电镜结构,观察到了其跨膜区域呈马蹄形排布的结构,但是受限于分辨率,无法准确区分各个亚基的具体排布(Lu et al, Nature) /p p   2014年9月,施一公研究组在《美国科学院院刊》(PNAS)发表文章,报道了其中一个亚基Nicastrin同源蛋白胞外结构域的高分辨率晶体结构,推测了Nicastrin在底物招募过程中可能的机制,并且根据同源性构建了人源Nicastrin 胞外结构域的结构,结合该结构与此前解析的PSH晶体结构和4.5埃分辨率电镜结构,他们在γ-分泌酶跨膜区辨认出了PS1,并进一步推测了该复合物近20个跨膜螺旋的组装模式,但该结论仍需高分辨率的结构验证(Xie et al, PNAS) /p p   2015年3月,施一公研究组在PNAS发表论文,报道PS1的细菌同源蛋白PSH具有与γ-分泌酶类似的底物切割活性,并且其酶活也受到γ-分泌酶小分子抑制剂的抑制,并解析了该抑制剂与PSH的复合物结构,揭示了其抑制位点,从而使得PSH可以作为一个研究成本相对低廉的替代品来进行γ-分泌酶调控小分子的初步筛选(Dang et al, PNAS) /p p   2015年4月,施一公研究组在PNAS发表论文,报道人源γ-分泌酶4.3埃的冷冻电镜三维结构。与一年之前的4.5埃结构相比,尽管分辨率只提高0.2埃,但是跨膜区密度质量有了极大提高。此外他们在PS1的N端连接T4-溶菌酶蛋白,从而准确定位出PS1的第一个跨膜螺旋,并在此基础上判断出四个亚基,验证了在2014年PNAS文章中推测的组装方式。此外,他们利用性质非常缓和的去污剂制备样品,证明电镜观察到的结构并未因蛋白纯化和冷冻制备而受到影响。这个结构也是清华大学电镜平台的K2电子探测相机自2014年暑期正常运转之后解析出的最小分子量的结构(Sun et al, PNAS) /p p   最新发表的Nature论文是施一公研究组与英国研究组合作的延续,在获得纯度好、性质均一的蛋白样品的基础上,通过收集更多的数据、大量的计算和升级的分类方法,计算构建出了3.4埃的原子分辨率的γ-分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内,分别为跨膜区TM2-5以及TM6-9。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ-分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同,因此对于已有的阿尔兹海默症的发病机理提出了一些新的探讨。 /p p   这项新的研究结果首次在世界上展示了γ-分泌酶的原子分辨率结构,并且在结构信息的基础上分析了人们关心的γ-分泌酶中催化亚基PS1上的致病性的突变,研究了突变体的生化活性,对于更进一步了解γ-分泌酶切割底物的机制以及研究阿尔兹海默症的发病机理具有极为重大的意义,也为开发潜在的治疗阿尔兹海默症的高效药物提供了重要的分子基础。 /p p   在清华大学生命学院隋森芳院士指导下获得博士学位后在英国MRC分子生物学实验室从事博士后研究的白晓晨博士、清华大学生命学院博士后闫创业与博士生杨光辉为本文共同第一作者。本工作获得了科技部、国家自然科学基金委以及生命科学联合中心的经费支持。 /p p   相关论文链接: /p p   http://www.nature.com/nature/journal/v493/n7430/abs/nature11801.html /p p   http://www.nature.com/nature/journal/v512/n7513/full/nature13567.html /p p   http://www.pnas.org/content/111/37/13349.short /p p   http://www.pnas.org/content/112/11/3344.short /p p   http://www.pnas.org/content/112/19/6003.long /p p   http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14892.html /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/fee42244-dc1a-40b8-9ec8-5cc5f99ec51b.jpg" title=" 图1:人体γ-secretase3.4埃三维结构.jpg" / /p p style=" text-align: center " 图1:人体γ-secretase3.4埃三维结构 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/b3509646-2d0a-4abf-a2f4-48693029778e.jpg" title=" 图2: PS1与阿尔茨海默病相关突变的结构和生化分析.jpg" / /p p /p p style=" text-align: center " 图2: PS1与阿尔茨海默病相关突变的结构和生化分析 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201512/noimg/9562dd10-55db-4e59-8b1e-9078925d812b.jpg" title=" 图3:γ-secretase四个亚基跨膜区间的相互作用.jpg" / /p p /p p style=" text-align: center " 图3:γ-secretase四个亚基跨膜区间的相互作用 /p
  • 胰蛋白酶,组织解离、细胞消化的小帮手
    胰蛋白酶(胰酶,Trypsin),CAS:9002-07-7,为蛋白酶的一种,EC3.4.4.4,是从牛、羊、猪的胰脏提取的一种丝氨酸蛋白水解酶。来源于胰腺的一种丝氨酸蛋白酶,由223个氨基酸残基组成的单链多肽,底物特异性是带正电荷的赖氨酸和精氨酸侧链。胰酶主要切割赖氨酸和精氨酸羧基端,当两者之一紧随为脯氨酸的情况除外。另外,当切割位点任一边紧邻酸性残基,胰酶水解速率也会减缓。在组织细胞的体外培养和原代细胞培养中的组织细胞分散(将组织块制备成单个细胞悬液)以及传代细胞培养中,贴壁生长细胞的消化分散均要使用组织细胞消化液。常用的消化液为胰蛋白酶,EDTA等,其功能主要是使细胞间的蛋白质(如细胞外基质)水解,使组织或贴壁细胞分散成单个细胞,制成细胞悬液用于进一步的实验。以下是absin胰酶部分产品,全部现货供应哦~胰蛋白酶(猪源)1:250 abs47014936本品是由猪胰提取而得的一种肽链内切酶,白色至淡黄色粉末。可用于制备单细胞悬浮液,胰蛋白酶在用于细胞培养时,可用PBS溶解成浓度为0.25%,也可以加入0.02%EDTA ,过滤除菌后使用。溶于水≥10mg/ml,不溶于乙醇、甘油、氯仿和乙醚。本品具有以下特点:1、对电点pI 10.5。Ca2+对酶活性有稳定作用。 2、重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。 3、可用于制备单细胞悬浮液或贴壁细胞的消化、分离。货号名称abs47014936猪源胰蛋白酶1:250胰蛋白酶-EDTA消化液(0.25%) abs47014938本产品含0.25%胰酶,溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。货号名称abs47014938胰蛋白酶-EDTA消化液(0.25%)胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47047375本品含 0.25%胰酶和 0.02%EDTA(0.53mM),溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。本产品具有方便快速、稳定安全、细胞状态好等特点。货号名称abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红胰蛋白酶(牛胰) 1:2500 abs9154本品是由牛胰提取而得的一种肽链内切酶,白色或类白色粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。其广泛应用于分子生物学,药理学等科研方面。是一种专一性催化水解赖氨酸、精氨酸羧基形成的肽键,可用于蛋白质化学研究。货号名称abs9154胰蛋白酶(牛胰) 1:2500更多absin胰蛋白酶相关产品 :货号名称abs47014938胰蛋白酶-EDTA溶液abs9154胰蛋白酶(牛胰腺)abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红abs44073474重组牛胰蛋白酶abs47014937Trypsin (0.25%), Phenol Redabs47014936猪源胰蛋白酶1:250abs47014940胰蛋白酶,蛋白测序级abs47014939胰蛋白酶,组织培养级Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)...
  • 重磅!第五届国产好仪器第三批入围名单公示
    仪器信息网讯 第五届“国产好仪器”聚焦食品行业,自启动以来,受到仪器和食品行业广泛关注,并已确定第一批和第二批入选名单。本届“国产好仪器”本着“用户说好才是真的好”的原则,仪器信息网针对参选产品在用户群体中的使用情况展开调研,以“好用、够用”为核心,针对需求满足度、质量满意度、仪器性价比、服务满意度、推荐意愿度等多个维度广泛征集用户使用意见,在仪器相关用户调研基数达到要求的情况下,进行权重评分。同时,现根据所收集的线上、线下调研结果,在调研基数达到要求的情况下,进行权重评分,并结合调研进行,对入选第五届“国产好仪器”仪器设备进行分批公示。现对第三批评选出的“国产好仪器”名录进行公示,公示期至2023年12月22日。第三批公示的24台好仪器中,除了包含经仪器信息网用户调研入围的名单,还囊括了经“国产好仪器”支持单位——中国检验检疫科学研究院、中国海关科学技术研究中心提供的验证评价合格仪器名单。具体如下:第五届国产好仪器第三批入围仪器名单(排名不分先后)企业名称品牌型号产品名称浙江福立分析仪器股份有限公司福立GC9720 Plus气相色谱仪广州禾信仪器股份有限公司禾信仪器LC-TQ 5200三重四极杆液质联用仪北京东西分析仪器有限公司东西分析GC-4100GC-4100系列气相色谱仪珠海欧美克仪器有限公司欧美克TopSizer激光粒度分析仪上海仪电科学仪器股份有限公司(原上海雷磁仪器厂)雷磁WZB-175便携式浊度计上海仪电科学仪器股份有限公司(原上海雷磁仪器厂)雷磁ZDY-504常量水分滴定仪广州禾信仪器股份有限公司禾信仪器GGT 0620全二维气相色谱-飞行时间质谱联用仪常州磐诺仪器有限公司磐诺GC1949智慧型气相色谱仪杭州谱育科技发展有限公司谱育科技EXPEC 5210三重四极杆串联质谱仪上海世平实验设备有限公司上海世平Master-JX 2023R二氧化碳恒温培养振荡器天美仪拓实验室设备(上海)有限公司赛里安LC6000超高效液相色谱仪海尔生物医疗海尔生物医疗HFP-168E电热恒温培养箱中国检验检疫科学研究院验评合格名单珠海市迪奇孚瑞生物科技有限公司DigifluidicVirusHunter Plus数字微流控芯片式全自动核酸检测仪中国海关科学技术研究中心验评合格名单北京普析通用仪器有限公司普析通用T9CS紫外分光光度计北京衡昇仪器有限公司衡昇SC-300回旋振荡提取仪上海屹尧仪器科技发展有限公司屹尧科技TOPEX全能型微波化学工作平台北京北分瑞利分析仪器(集团)有限责任公司北分瑞利PAF-1100便携式原子荧光光谱仪 维科托(北京)科技有限公司维科托FSE-6快速溶剂萃取仪北京历元仪器有限公司历元EP-600D便携式离子色谱仪北京海光仪器有限公司海光仪器HGA-100直接进样测汞仪北京格瑞德曼仪器设备有限公司格瑞德曼HM100刀式研磨仪西派特(北京)科技有限公司西派特ExR510便携式激光拉曼光谱仪北京吉天仪器有限公司吉天仪器SA-50液相色谱-原子荧光联用仪大连依利特分析仪器有限公司依利特5100高效液相色谱仪 5100 (注:点击带下划线的名称可直达网页链接了解详情)本届“国产好仪器”评选活动由仪器信息网主办,联合多家食品领域头部用户单位,共同寻找满足行业应用需求的“国产好仪器”,后续我们还将陆续公示第五届“国产好仪器”入选名单,同时,本届“国产好仪器”还将收录由支持单位验证评价合格的仪器名单,共同助力食品行业用户号从海量信息中找到“对”的产品!本次入围名单将在仪器信息网进行为期10天的公示。所有入围产品的详细资料均可在“国产好仪器”专题进行查阅,如果您发现入围仪器与实际评选情况不符,请您于2023年12月22日前向仪器信息网国产好仪器项目组举报和反映情况,一经核实,项目组将取消其入围资格。最终获奖的仪器将在“ACCSI2024中国科学仪器发展年会”上揭晓并颁发证书,评审结果将在多家专业媒体上公布。 “国产好仪器”活动介绍、专家观点、活动报道等内容详见链接:https://www.instrument.com.cn/activity/goodcn/Gchyq2023/NewIndex(点击链接可直达)仪器信息网国产好仪器项目组联系方式:电话:010-51654077-8269 张女士传真:010-82051730电子邮箱:zhangyy@instrument.com.cn
  • 南京大学/厦门大学/中科大团队Nat. Catal.:可见光直接激发驱动的新光酶催化
    融合化学创新的生物制造,是可持续生物经济发展的原动力,也是当前中美科技博弈的焦点之一。生物制造的关键“芯片”是酶,然而现有酶的催化功能有限等问题极大地限制了生物制造的范畴。南京大学黄小强课题组自2021年建组以来,致力于融合生物与化学,实现新酶元件的创制和新分子生化体系的开发。近期,黄小强课题组与合作者以烯烃还原酶(ene-reductases, ER)为切入点,开发了可见光直接激发的新策略,实现了一例烯烃的不对称自由基氢芳基化转化。相关工作发表于Nature Catalysis。将酶催化和光催化结合的光酶催化,融合了可见光化学多样的反应性和酶的高选择性,成为当下开发新酶功能最有效的策略之一。ER是一类以黄素腺嘌呤单核苷酸(FMN)为辅因子的氧化还原酶,在自然界中催化C=C双键的双电子还原反应。前期Hyster、Huimin Zhao、吴起和徐鉴等课题组,通过可见光激发电子供体-受体(EDA)络合物的策略,开发了一系列净还原的自由基反应(图1b)。然而,直接可见光激发黄素蛋白催化非天然的双分子反应仍未有报道。图1. 受自然启发的光酶的氢芳基化。图片来源:Nat. Catal.除了光引发的自由基反应固有的选择性控制难题外,激发态的黄素蛋白面临很多竞争途径。首先,可见光激发的醌态黄素容易被反应缓冲液或氨基酸残基还原(图2,路径b)。其次,自由基碳碳成键步骤必须足够高效,以实现与无效的电子回转的竞争(图2,路径c)。第三,溶液中游离的未结合黄素可能引起消旋背景反应。受自然界中黄素依赖的脂肪酸光脱羧酶的启发,作者提出了一种直接光激发烯烃还原酶的新催化循环(图2)。首先,ER结合的辅因子FMNox被蓝色LED激发,由基态到达激发态FMNox*(Int. B)。激发态FMNox*单电子氧化富电子芳烃产生芳基自由基阳离子中间体以及半醌状态黄素辅因子FMNsq(Int. C)。随后的自由基C-C键形成,生成前手性自由基中间体(Int. D)。最后,酶活性位点内的电子和质子(或氢原子)转移,生成对映体富集的产物,并再生FMNox(Int. E)。图2. 设计的催化循环。图片来源:Nat. Catal.为了验证所设计的生物催化循环方案,作者选择了3-甲氧基噻吩1a和α-甲基苯乙烯2a作为模板底物,450-460 nm蓝色LED光照,发现几类烯还原酶可以以较低的反应性实现催化加氢芳基化(表1)。进一步研究发现,通过额外加入催化量的FMN作为添加剂,能够显著提高反应收率而不影响对映异构体选择性。通过条件优化,作者筛选到的葡萄糖酸杆菌来源的烯还原酶(GluER)可以实现对模板反应的高产率、高选择性催化,产物具有 (R) 选择性(97.5:2.5 er,entry 5);而来自酿酒酵母的老黄酶(OYE1)的产率为60%,具有 (S) 选择性(90:10 er,entry 6)。对以老黄酶为母本的突变体进行筛选,发现老黄酶的突变体(OYE1-F296A)的产率为65%,具有更好的 (S) 选择性(95:5 er,entry 7)。控制实验表明,惰性气氛、光照、酶都是反应正常进行所必需的。同时,降低酶催化剂的负载量到0.2 mol%,也能有52%的中等收率和优异的 (R) 选择性(95:5 er,entry 11)。表1. 条件优化。图片来源:Nat. Catal.接下来,作者使用GluER(ER1)、GluER_T36A-Y177F(ER2)、OYE1_F296A(ER3)、OYE1_F296G(ER4)对底物的适用性进行了考察(图3)。总体来看,该催化体系具有良好的底物适用范围和官能团耐受性,活化烯烃、内烯烃、非活化烯烃、以及各类芳基底物,都能顺利发生反应(27例,最高达99%收率)。通过使用不同的酶,该体系能够分别获得产物的两个对映异构体,即实现立体发散式生物合成。同时,反应可以以相同的效率和对映选择性放大到1 mmol级,如 (R)-3a的合成所示。此外,单晶X射线衍射研究确认ER3-4催化的产物的绝对构型为 (S)。图3. 代表性底物。图片来源:Nat. Catal.随后,作者进行了一系列的机理研究来验证所提出的催化反应机理。1)紫外-可见吸收光谱鉴定可见光直接激发FMN的关键过程(图4a);2)低温电子顺磁共振(EPR)实验和自由基捕获实验证实了该反应涉及的相关自由基中间体;3)自由基开环实验验证生成的自由基中间体,证实了Int. D的存在(图4d);4)氘代实验探索了自由基终止步骤的氢来源(图4e)。图4. 机理实验。图片来源:Nat. Catal.为了更好地理解关键的光氧化机制,作者进行了含时密度泛函理论(TDDFT)计算。计算结果显示,从1a到激发态FMNox*的单电子转移放热2.3 kcal/mol(图5a),支持可见光引发的单电子氧化在热力学上是有利的。作者为了研究OYE1_F296G中自由基反应过程的对映体选择性(Int. C → Int. E),进行了经典的MD模拟、QM/MM MD模拟和QM/MM计算,模拟结果支持自由基阳离子加成→质子转移→氢原子转移这个反应途径(图5c)。有趣的是,Int. C中的底物2a可以采用两种不同的构象,CH3基团可以朝里的,也可以是朝外的(图5b)。2a通过甲基(CH3-in → CH3-out)的翻转而发生的构象变化在动力学上非常容易,具有2.1 kcal/mol的较小能垒。从Int. C开始,QM/MM计算表明,对于CH3-in构象,1a+和2a之间的C-C耦合的能垒为15.6 kcal/mol,而CH3-out构象的能垒为12.7 kcal/mol,表明CH3-out构象更适合C-C偶联。这主要是因为2a的双键在CH3-out构象(3.75 Å)中与1a+-C2保持的距离比在CH3-in构象(4.17 Å)中更近。从IM1开始,计算表明阴离子FMNsq的N5可以作为从噻吩基C2位点提取质子的碱,CH3-in构象质子转移的能垒为12.9 kcal/mol,在CH3-out构象中,这一步反应能垒为13.5 kcal/mol。最后,前手性碳自由基可以从中性FMNsq物种中发生氢原子提取(HAT),分别从Int. D(CH3-in)得到 (R)-3a,从Int. D(CH3-out)得到 (S)-3a。图5c表明,对映选择性主要由1a+和2a之间的C-C偶联步骤决定。由于OYE1_F296G活性位点对底物的定位,(S)-3a的形成在动力学上优于(R)-3a,这与OYE1突变体形成的产物绝对构型一致。而对GluER催化反应的进一步计算表明,立体选择性也主要由C-C偶联步骤决定。图5. OYE1_F296G催化加氢芳基化的计算研究。图片来源:Nat. Catal.总之,南大/厦大/中科大团队合作报道了一例可见光直接激发黄素蛋白实现烯烃的不对称自由基加氢芳化反应,以优异的产率(最高达99%)和对映选择性(最高达99:1 er)制备了一系列对映体富集的氢芳基化产物。与先前报道的基于烯烃还原酶的光酶催化净还原体系不同,本文发展了一种机理上独特的氧化还原中性的催化循环,关键步骤是可见光直接激发黄素蛋白,并引发后续的单电子氧化和自由基加成途径。本文的理论计算部分由厦门大学王斌举课题组完成,电子顺磁共振实验部分由中国科学技术大学生命科学学院/中国科学院强磁场科学中心田长麟课题组完成,其余部分由南京大学黄小强课题组完成。南京大学博士研究生赵贝贝、厦门大学博士研究生冯键强和中国科学院强磁场科学中心于璐副研究员为论文的共同第一作者。黄小强特聘研究员、王斌举教授和田长麟教授为论文的共同通讯作者。论文得到了南京大学启动经费、科技部重点研发计划(2022YFA0913000, 2019YFA0405600, 2019YFA0706900)、国家自然科学基金(22277053, 22121001, 21927814, 21825703)、江苏省自然科学基金(BK20220760)、中国科学院青促会(2022455)等项目,以及稳态强磁场实验装置(SHMFF)的支持。原文(扫描或长按二维码,识别后直达原文页面):Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylationBeibei Zhao, Jianqiang Feng, Lu Yu, Zhongqiu Xing, Bin Chen, Aokun Liu, Fulu Liu, Fengming Shi, Yue Zhao, Changlin Tian, Binju Wang & Xiaoqiang HuangNat Catal., 2023, DOI: 10.1038/s41929-023-01024-0通讯作者简介黄小强博士,南京大学化学化工学院特聘研究员、国家青年人才(海外)、重点研发计划青年首席;已在Nature, Nat. Catal.(3), Nat. Commun., JACS (3), ACIE (2), Acc. Chem. Res.(2)等杂志发表一作/通讯论文多篇。实验室正在招聘生物合成和化学合成方向的博士后、博士研究生,详见课题组主页:https://www.x-mol.com/groups/huang_xiaoqiang
  • 仪器培训 | ASD地物光谱仪操作培训班开课啦(第五期)
    尊敬的各位老师、同学:为了深入探讨ASD地物光谱仪测量技术及应用,进一步提升客户的实际操作技能,ASD地物光谱仪操作培训班第五期来啦。在本次会议中,我们将着重介绍ASD地物光谱仪的操作过程,旨在深入探讨仪器原理、操作技巧、数据处理方法以及应用案例。会议主题:ASD地物光谱仪操作培训班日 期:2024年3月下旬时 间:待定地 点:北京市海淀区清河安宁庄东路18号光华创业园科研楼4层“北京理加联合科技有限公司”大会议室会议要求:本次会议旨在以实际操作为基础,为此,我们特别要求所有参会人员携带ASD地物光谱仪参会,参与演示、讨论和交流。为保障培训效果,每个单位限定1~2人参会,总参会单位:8-10个。会议日程:01 仪器原理与操作仪器概述:ASD地物光谱仪的结构、波长范围、分辨率、采样率等,标准配件介绍仪器操作指南:测量原理、仪器的开机、校准、数据采集步骤详解02 操作培训操作技巧分享:学习实际使用中的注意事项和技巧,包括野外操作的要点实地操作演示:参会者操作ASD地物光谱仪,进行实时的光谱测量03 数据处理方法数据导出与转换:将仪器采集的光谱数据导出到常见数据格式数据预处理:ViewSpecPro软件简介、水汽吸收带处理、阶跃处理04 仪器维护光纤检查、波长准确性检查、白板维护、电池维护05 交流与深入讨论在演示环节之后,我们将安排时间进行交流和深入讨论。参会人员可以分享他们的观察、疑问和经验。专业人员将对演示中出现的问题进行解答,并与参会人员共同探讨如何优化操作流程,充分利用仪器的优势。06 小测验交互式小测验:检验参会者对ASD地物光谱仪知识的掌握程度奖品与认可:对于表现出色的参与者,我们将颁发奖品和证书通过此次会议,您将有机会全面了解ASD地物光谱仪的原理、操作和应用,深入掌握相关技能。报名方式:01 关注“理加联合”微信公众号02 回复“培训班”,获取报名链接03 点击填写报名单注:如表单无法填写,表明本期培训班人员已满额,请关注下期培训班举办时间,感谢理解。为确保您的学习体验与您所在的城市更加贴近,我们需要您的帮助。您的选择将帮助我们更好地规划和组织培训,有助于我们更好地满足您的需求。请在报名单内进行选择!
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、操作简单和样品消耗少以及可与多种检测手段联用等优点,在酶分析研究中越来越受到关注[39-41]。近年来,固定化酶微反应器与生物活性靶向技术相结合已应用于中药酶抑制剂的筛选[42]。该方法将酶固定在经过修饰的石英毛细管内,捕获抑制剂后,洗涤未结合组分,进而通过蛋白质变性洗脱活性结合配体,允许直接并可重复注射生物样品到高效液相色谱上进行检测,筛选和分离一步完成,大大缩短了操作时间。但该方法制备过程中是比较复杂繁琐的[43-44],而且载体的孔隙率[45]、孔径[46]和表面化学[47-48]等因素也很容易影响固定化酶的性能。Wu等[49-50]用PDA对石英毛细管进行表面改性,并与氧化石墨烯共聚形成聚多巴胺/氧化石墨烯涂层,增加了固定化酶的结合率,并将该方法成功用于凝血酶和凝血因子Xa以及黄嘌呤氧化酶抑制剂的筛选。有研究者用3-氨基丙基三乙氧基硅烷对石英毛细管进行表面改性,采用戊二醛交联法进行酶的固定,并成功用于酶制剂的筛选。Rodrigues等[51]将此修饰方法用于黄嘌呤氧化酶(xanthine oxidase,XOD)抑制剂的筛选,成功地从不同天然产物中筛选出30个潜在的XOD抑制剂。Zhang等[52]将此修饰方法用于组织蛋白酶B抑制剂筛选,并从中药中发现了17个具有抑菌潜力的活性成分,发现山柰酚等5种天然产物有潜在的抑制作用,并以分子对接进行验证。Tang等[53]将此修饰方法用于脂肪酶抑制剂的在线筛选,结果发现6种天然产物对脂肪酶活性均有抑制作用。Zhao等[54]将此修饰方法用于神经氨酸酶抑制剂的筛选,发现了6种天然产物为潜在抑制剂。进一步测定了这6种化合物对神经氨酸酶潜在的抑制活性,由大到小分别为:甲基补骨脂黄酮A>补骨脂甲素>黄芩素>黄芩苷>白杨素和牡荆素。此外,还有研究者采用单片毛细管固定化酶反应器与液相色谱-串联质谱联用技术,成功用于酶抑制剂的筛选[55-56]。毛细管的高表面体积比有利于足够高浓度的酶用于酶促反应[57-58]。此外,由于注入的底物溶液直接与固定化酶分子接触,使传统的采样、反应、分离和检测多步操作简化为一步操作,因此该分析变得更简单,不需要额外的混合程序。与磁性载体相比,该技术将筛选和分离集成为一步,大大缩短了操作时间。该技术适用于复杂混合物中酶抑制剂的快速筛选,而且样品消耗量少,节省了试剂成本,可以实现酶抑制剂的快速分离。2.1.2 硅酸铝纳米管 硅酸铝纳米管(halloysite nanotubes,HNTs)是一种天然存在的硅酸盐纳米管,由于其优异的物理特性,引起了人们越来越多的兴趣。HNTs的内径为20~30 nm,外径为30~50 nm,长度为1~2 µm,为药物、酶和杀菌剂的储存提供了理想的纳米级包埋系统。更重要的是,HNTs的外表面主要由O-Si-O基团组成,内表面由Al2O3组成,为酶提供了更多的选择性结合位点,从而减少了配体在HNTs上的非特异性吸附[59]。因此,有研究者将HNTs作为一种新的酶固定载体材料用于酶抑制剂的筛选。Wang等[59]通过静电吸附作用将脂肪酶固定到羟基纳米管上用于厚朴中脂肪酶抑制剂的筛选,发现厚朴三酚和厚朴醛B 2种化合物对脂肪酶抑制活性较好。HNTs的内外表面为酶提供了更多的选择性结合位点,降低了非特异性吸附,但其合成较为复杂,收率较低,因此应用有限。2.1.3 多孔二氧化硅 多孔二氧化硅材料具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,同时还具有耐高温和低温、电气绝缘、耐氧化稳定性、耐候性、难燃、耐腐蚀、无毒无味以及生理惰性等特性[60]。Hou等[61]首先将α-Glu结合到脂质体囊泡中,然后采用反蒸发法将其负载到多孔二氧化硅表面,制备成受体脂质体生物膜色谱柱,用于五味子提取物的α-Glu抑制剂筛选,并通过体外实验进一步证实了五味子苷的降糖作用。2.2 有机载体材料2.2.1 中空纤维 中空纤维是一种具有孔径和内腔的有机聚合物,具有比表面积大、生物材料和有机溶剂消耗低,且设备便宜、用于中空纤维制备的材料来源丰富,是酶、细胞、脂质体等生物材料的理想载体,已被应用于酶固定化中。首先,对中空纤维进行活化。然后,将酶与已活化的中空纤维孵育使酶被吸附在中空纤维上。最后,将待测物与中空纤维固定化酶孵育,筛选待测物中潜在酶抑制剂。Zhao等[62]提出了一种基于吸附中空纤维固定化酪氨酸酶(tyrosinase,TYR)的方法,从葛根提取物中筛选潜在的TYR抑制剂。通过液相色谱-质谱分析,成功地检测出了7种潜在活性化合物,并进一步结合体外实验,发现葛根素、葛根素-6-O-木糖苷、葛根素和阿片苷具有良好的TYR抑制活性。中空纤维因其具有孔径、内腔及比表面积大等优点,为酶提供了充分的附着空间,但由于其清洗较为困难,导致重复利用率低。2.2.2 生物传感器 生物传感器是一种对生物物质敏感并可将其浓度转换为电信号进行检测的仪器。丝网印刷电极因其具有批量生产、低成本、高重现性、小尺寸等特点而被广泛应用于分析领域。所谓酶生物传感器法,是将酶固定在经过修饰的丝网印刷电极上,当与抑制剂接触时会发生电信号变化,通过检测电信号的变化,达到分析检测的目的。Elharrad等[63]为筛选药用植物中潜在的XOD抑制剂,研制了一种简便、灵敏的安培生物传感器,并用于测定多种药用植物对黄嘌呤氧化酶的抑制率,发现留兰香和马齿苋2种植物对黄嘌呤氧化酶抑制活性较高。以普鲁士蓝修饰丝网印刷电极表面,极大降低了生物传感器的检测电位,使该装置具有较高的选择性。该传感器具有结构简单、选择性好、成本低、稳定性好、结果快速等优点。2.2.3 纸 自2007年Whiteside研究小组首次提出微流体装置概念以来,纸作为一种新的载体材料,以其良好的生物相容性、大的比表面积、易于修饰、价格低廉等优点,在环境监测、化学检测、生物医学诊断等领域具有广阔的应用前景[64]。(1)滤纸:三维打印技术是利用一种纸分析仪器将纸张制作成为一种特殊的微流体装置,该装置成本低,具有较高的比表面积,易于结合分子吸附蛋白质。使用过的纸张设备可以很容易地通过燃烧来处理,可减少实验消耗品造成的污染。Guo等[65]将三维打印技术用于酶抑制剂的筛选,首先,用3D印刷的聚己内酯对滤纸进行改性,形成疏水区。然后,对滤纸进行准确切割,得到既具有亲水性又具有疏水性的改性纸。接下来,用壳聚糖对亲水区进行改性。最后,将α-Glu固定在亲水区,制备出具有独特微流体结构的三维打印技术微装置,并成功地将该方法用于筛选植物提取物中具有α-Glu抑制活性的物质,发现绿原酸、槲皮素-3-O-葡萄糖醛酸、异槲皮素和槲皮素4种化合物对α-Glu的抑制活性较好。该方法结合一些便携式探测器,如手机和照相机,可以获得定性和定量的结果。因此,很容易判断酶在纸上的固定化效果。(2)纤维素滤纸:纤维素滤纸(cellulose filter paper,CFP)具有成本低、来源广、表面积大、生物相容性好、表面羟基含量高等优点,被选为新型酶固定化载体,而且CFP可以快速从酶反应混合物中分离并终止反应,从而缩短了操作时间,简化了其他载体(如纳米材料和磁性纳米颗粒)所需的分离过程。Li等[66]以纤维素滤纸为载体,对α-Glu进行固定化。利用多巴胺的自聚-粘附行为,通过希夫碱反应和迈克尔加成反应,将聚多巴胺复合层包覆α-Glu与改性后的CFP共价结合形成固定化酶(CFP/DOPA/α-Glu)。用CFP/DOPA/α-Glu筛选11种中药中的α-Glu抑制剂,发现诃子对α-Glu的抑制作用最强。Zhao等[67]以CFP为载体,以壳聚糖为物理包覆剂引入氨基基团,然后以戊二醛为交联剂,通过希夫碱反应,将AchE与氨基功能化的CFP共价键合进行固定化酶。最后,将CFP固定化AchE应用于17种中药的抑制剂筛选。2.2.4 金属-有机骨架 金属-有机骨架(metal- organic framework,MOFs)为一种杂化多孔材料,由有机连接体和金属节点通过强的化学键组装而成。MOFs具有可调节孔径、大比表面积和热稳定性等优点。有研究表明,酶被固定在MOFs上后,其在可重用性、催化活性和稳定性方面的性能都有了很大的提高。Chen等[68]首先将ZrCl4和氨基对苯二甲酸溶于N,N-二甲基甲酰胺溶液中进行超声,然后分别加入HCl和HAc,得到混合物。随后,将混合物转移到不锈钢聚四氟乙烯内衬的高压釜中密封加热,反应混合物在空气中冷却至室温,然后离心。沉淀物用新鲜N,N-二甲基甲酰胺和无水乙醇洗净,后减压干燥,合成了金属有机骨架UiO-66-NH2。UiO-66-NH2通过沉淀交联固定化猪胰脂肪酶(porcine pancreatic lipase,PPL),得到的PPL@MOF具有较高的PPL载量和相对活力恢复率,并将PPL@MOF复合物用于筛选夏枯草脂肪酶抑制剂,发现了13种潜在的脂肪酶抑制剂。与磁珠、纳米粒子相比,MOFs材料酶固定量大、相对活力恢复率高。2.2.5 酶微柱 有研究者采用酶微柱法用于酶抑制剂的筛选,该方法属于固相萃取技术,操作简单,可与高效液相色谱耦合,实现了在线筛选,提高了酶抑制剂的筛选和分析效率。首先将硅胶分散在乙醇中,加入3-氨基丙基三乙氧基硅烷形成氨基功能化硅胶,然后将氨基功能化的硅胶与酶液混合,使酶固定在硅胶表面,洗去未结合酶,最后将酶固定化硅胶填入不锈钢微柱中形成酶微柱。Peng等[69]运用该方法成功的从金银花中筛选和鉴定XOD抑制剂。该方法与高效液相色谱的在线耦合提高了筛选和分析效率。与传统的与二维色谱耦合相比,该方法为直接与HPLC耦合,缩短了分析检测时间。3 总结与展望中药含有的化学成分复杂、种类繁多、作用机制比较复杂,一直是获取活性成分或者先导化合物的重要来源。以酶为靶标进行药物筛选是发现和寻找新药的重要环节之一。随着固定化酶技术的发展,研究者将固定化酶技术与中药酶抑制剂的筛选相结合,并通过高效液相色谱-质谱联用技术进行鉴定,筛选得到很多具有酶抑制活性的化合物,在一定程度上明确了中药发挥作用的活性成分及其作用机制。本文以不同载体材料为分类,综述了固定化酶技术在中药酶抑制剂筛选中的应用。磁珠是最常用的磁性载体材料,该类材料利用磁力吸引可使固定化酶配体配合物快速从体系中分离,且固定化方法简单,而且使用后的磁珠可以回收利用,能有效减少人力物力的投入。非磁性载体材料主要以石英毛细管应用最为广泛。此外,还有中空纤维、纳米管、生物传感器等材料用于筛选中药中的酶抑制剂,丰富了固定酶的载体材料。固定化酶技术在酶抑制剂筛选上的应用前景十分广泛,不仅节省了人力物力而且提高了新药研发的效率。目前,固定化酶技术仍然存在一些问题,如酶与载体材料的结合率较低、固定化酶的活力也会有所下降等。但相信随着科学技术的不断发展及酶抑制剂研究的不断深入,固定化酶技术会成为酶抑制剂筛选最有前景的方法之一。利益冲突 所有作者均声明不存在利益冲突
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制