当前位置: 仪器信息网 > 行业主题 > >

雌甾

仪器信息网雌甾专题为您提供2024年最新雌甾价格报价、厂家品牌的相关信息, 包括雌甾参数、型号等,不管是国产,还是进口品牌的雌甾您都可以在这里找到。 除此之外,仪器信息网还免费为您整合雌甾相关的耗材配件、试剂标物,还有雌甾相关的最新资讯、资料,以及雌甾相关的解决方案。

雌甾相关的资讯

  • 我国自主研发的量子磁力仪载荷实现全球磁场测量
    我国首台自主研发的量子磁力仪载荷——“CPT原子磁场精密测量系统”于7月27日搭载空间新技术试验卫星(SATech-01)发射。11月7日,国产量子磁力仪载荷的无磁伸展臂在轨展开,载荷进入在轨长期工作阶段,目前已获取五天的有效探测数据,实现了全球磁场测量,推进了我国量子磁力仪的空间应用研究。CPT原子磁场精密测量系统由CPT原子/量子磁力仪、AMR磁阻磁力仪、NST星敏感器、无磁伸展臂组成,由中国科学院国家空间科学中心太阳活动和空间天气重点实验室、复杂航天系统与电子信息技术重点实验室,以及中科院沈阳自动化研究所联合研制。无磁伸展臂一次性展开至4.35m后,处于伸展臂顶端的CPT原子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器远离卫星磁干扰和遮挡,开始获取有效探测数据。CPT原子/量子磁力仪在轨测量噪声峰峰值0.1nT。NST星敏感器获取了卫星在不同模式、不同时段下伸展臂的姿态变化实时数据,结合AMR磁阻磁力仪的三轴磁场探测,首次在轨验证了磁场矢量和姿态一体化同步探测技术。国产量子磁力仪首次全球磁场勘测图(空间中心太阳活动与空间天气重点实验室供图)CPT原子磁场精密测量系统载荷(空间中心、沈阳自动化所供图)无磁伸展臂地面展开测试(沈阳自动化所、空间中心和微小卫星研究院供图)CPT原子磁场精密测量系统伸展臂在轨展开状态示意图(微小卫星研究院供图)CPT原子磁力仪和AMR磁阻磁力仪在轨测量结果(空间中心供图)NST星敏感器相对于卫星本体坐标系的测试结果(空间中心、中科新伦琴NST星敏团队提供供图)
  • 光明再陷“变质门” 被投诉952次
    高层早前抱怨“会被抽死”的光明乳业[8.92 -1.55% 股吧 研报]再曝质量事件。9月8日,上海多个区的光明乳业订户发现收到的220毫升装的光明小口瓶鲜牛奶味道怪异,疑为变质。光明承认投诉达952人次,称是车辆温度没达标导致其中部分产品酸败。受此影响,光明乳业股票10日开盘走低,当天股价跌2.37%。   自称事件已处理完毕   8日早间,多位上海牛奶订户发现,送到家中的牛奶出现酸腐异味,出现异味的牛奶均是220毫升装的光明小口瓶鲜牛奶。   光明乳业当天下午称,公司接到消费者投诉反映小口瓶鲜奶(220毫升/瓶,批号:20120907)口感出现酸败情况。光明称,初步分析原因是该批次产品从工厂下线后集中存放于大冷库,为满足当天早上送奶上门服务,配送前进行移库的过程中,车辆温度没达到标准导致部分产品发生酸败。   9日下午,光明乳业相关负责人接受采访时表示,共接到该产品投诉952人次,截至9日,事件已全部处理完毕,投诉人数并未上升,“我们对消费者表示深深的歉意”。   上海市质监局进厂调查   上海市质监局9月8日下午表示,在上午收到投诉后即进厂展开调查,责成企业采取有力措施,做好善后工作。   光明乳业近期屡次被曝食品质量问题,光明乳业在上海人心中一直有着不错的口碑,一向稳健的光明到底怎么了?对于上述疑问,光明乳业相关负责人未正面回复,仅对近期发生的这些事件“非常抱歉”,并称“已和公众解释了原因并表达歉意”。   记者注意到,7月份被曝出菌落总数超标时,光明就曾在发布的《几个大家关心的事件情况通报及致歉信》中向消费者致歉并称会认真吸取教训,彻底对全国工厂及流通系统等每个环节进行全面检查和整改。   现在国家对乳制品的抽查已经到了无以复加的程度!这么抽(查)会抽死人啊!   ——光明乳业总裁郭本恒8月26日在中国乳制品工业协会第18次年会上如此表示   一家企业在短短几个月的时间里发生了多次问题,说明这个企业内部管理出现了问题。国家如此频繁的抽检都是问题不断,如果放松抽检,更会死人。   ——乳业专家王丁棉   今年以来光明乳业质量事件   9月8日 光明乳业再次卷入质量风波,上海952个光明牛奶订户发现,收到的220毫升装的光明小口瓶鲜牛奶味道怪异,疑为变质。   8月26日 中国乳制品工业协会第18次年会上,光明乳业总裁郭本恒抱怨“(对乳制品)这么抽(查)会抽死人啊”。   7月20日 广州市工商局抽查的部分光明奶油和50%减脂芝士片菌落总数超标。   6月27日 上海质监局获悉,6月25日乳品二厂生产的950ml光明“优倍”渗入清洗剂成分。   6月15日 安徽省颍上县部分学生食用光明乳业配送的牛奶后不适甚至呕吐。
  • 安徽首次采用地面核磁共振法测地灾
    记者近日从安徽省国土资源厅了解到,安徽首次启动“地面核磁共振方法进行滑坡地质勘查”应用研究项目,运用地面核磁共振方法进行地质灾害防治。   据悉,地面核磁共振是利用不同物质原子核弛豫性质差异产生的效应,在地面上观测、研究在地层中水质子产生的核磁共振信号的变化规律,进而探测地下水的赋存特征,实现对地下水信息的探测。   安徽省地质灾害点多面广,运用地面核磁共振方法能够经济、快速、准确的测出研究区段地下水的含水量、弛豫时间、相位等参数,并能根据上述参数反演其地下水孔隙度、渗透系数等水文地质参数,利用这些重要信息能够较好的识别滑坡滑带,为滑坡稳定性评价、治理提供关键性数据依据。
  • CISILE 2021宝德仪器再夺两枚金奖!
    2021年5月10日第十九届中国国际科学仪器及实验室装备展览会(CISILE 2021)在国家会议中心隆重召开。同期举办了CISILE 2021年度自主创新金奖的颁奖仪式。“CISILE科仪展自主创新奖金奖”的创立,旨在鼓励我国优秀的科学仪器研发制造单位,树立榜样力量,呼吁行业企业共同关注和重视创新与研发,进而推动我国科学仪器行业的高质量发展,逐步拉近与国际发达国家的技术差距,并以此服务我国建设科技强国。CISILE每年在参展的数百家企业中横向评比数以千计的科学仪器设备,从中遴选出性能优异的或极具创新的自主研发制造的科学仪器设备,并颁发“CISILE科仪展自主创新奖金奖”。宝德仪器继CISILE 2018获得BAF-4000全自动四道同测原子荧光光度计和BDFIA-8000全自动流动注射分析仪两款仪器金奖后,在本届CISILE 2021中,BUI-60全自动尿碘分析仪和BDHg-60直接进样测汞仪又同时荣登榜单,再夺两枚金奖!多年来,宝德仪器一直秉承着以创新求发展的理念,积极为推动我国科学仪器行业高质量发展贡献着自己的一份力量。
  • 2022年SCI期刊影响因子正式发布(附完整版下载)
    6月28日,2022年SCI期刊影响因子(Impact Factor,IF)正式发布,排名第一的仍然是神刊 CA-A CANCER JOURNAL FOR CLINICIANS,最新影响因子为286.13。其中,备受瞩目的Nature由去年的49.962变为69.504,Science由去年的47.728变为63.714,CELL由去年的41.582变为66.850,均出现明显上涨。而国产期刊Cell Research影响因子达到46.297,较去年IF 25.617,大幅上涨。(文末可下载完整版名单)最新影响因子TOP 100期刊完整版名单:2022最新SCI期刊影响子名单大全
  • 首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级
    meta charset=" utf-8" / meta http-equiv=" X-UA-Compatible" content=" IE=edge" / meta name=" viewport" content=" width=device-width, initial-scale=1" / meta name=" SiteName" content=" 国际科技频道" / meta name=" SiteDomain" content=" " / meta name=" SiteIDCode" content=" N0000083288" / meta name=" ColumnName" content=" 今日视点" / meta name=" ColumnDescription" content=" " / meta name=" ColumnKeywords" content=" " / meta name=" ColumnType" content=" " / meta name=" ArticleTitle" content=" 首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮" / meta name=" PubDate" content=" 2020-10-23 10:57:52" / meta name=" Keywords" content=" " / meta name=" Description" content=" 从电子到磁振子,量子计算元器件再升级" / meta name=" others" content=" 页面生成时间 2020-10-23 10:57:52" / meta name=" template,templategroup,version" content=" 386,32,2.0" / title 首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮-今日视点-国际科技频道 /title meta name=" keywords" content=" " / meta name=" description" content=" 首个二维集成磁振子电路研发成功,从电子到磁振子,量子计算元器件再升级|科技创新世界潮" / meta name=" baidu-site-verification" content=" 8VsUZuJwJp" / link href=" /cxzg80/xhtml/css/bootstrap.min.css" rel=" stylesheet" type=" text/css" / link href=" /cxzg80/xhtml/css/xwpd_xq.css" rel=" stylesheet" type=" text/css" / p /p !-- link rel=" stylesheet" type=" text/css" href=" http://www.cis2016.org/cis2016/xhtml/css/tupk.css" -- link href=" /cxzg80/xhtml/css/xwpd_list.css" rel=" stylesheet" type=" text/css" / script src=" http://push.zhanzhang.baidu.com/push.js" /script script src=" https://hm.baidu.com/hm.js?d11e62e2e2c8d774bb326bab95dd0a4d" /script script src=" /cxzg80/xhtml/js/jquery.min.js" /script script src=" /cxzg80/xhtml/js/xwpd.js" type=" text/javascript" /script script src=" /index/xhtml/js/jquery.PrintArea.js" type=" text/javascript" charset=" utf-8" /script script src=" /index/xhtml/js/article.js" /script script src=" /index/xhtml/js/common_detail_zhxx.js" /script script window._bd_share_config = {" common" : {" bdSnsKey" : {}," bdText" : " " ," bdMini" : " 2" ," bdMiniList" : false," bdPic" : " " ," bdStyle" : " 0" ," bdSize" : " 24" }," share" : {}," image" : {" viewList" : [" qzone" , " tsina" , " weixin" ]," viewText" : " 分享到:" ," viewSize" : " 24" }} with(document) 0[(getElementsByTagName(' head' )[0] || body).appendChild(createElement(' script' )).src = ' http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion=' + ~(-new Date() / 36e5)] /script script src=" http://bdimg.share.baidu.com/static/api/js/share.js?v=89860593.js?cdnversion=445429" /script p /p !--[if lt IE 9] script src=" //cdn.bootcss.com/html5shiv/3.7.2/html5shiv.min.js" /script script src=" //cdn.bootcss.com/respond.js/1.4.2/respond.min.js" /script ![endif]-- div cdata_tag=" style" cdata_data=" .rightFloat {width: 360px }" _ue_custom_node_=" true" /div link href=" http://bdimg.share.baidu.com/static/api/css/share_style0_24.css" rel=" stylesheet" / link href=" http://bdimg.share.baidu.com/static/api/css/imgshare.css?v=754091cd.css" rel=" stylesheet" / link href=" http://www.stdaily.com/cxzg80/xhtml/css/f_header.css" rel=" stylesheet" type=" text/css" / div class=" container " style=" position:relative " div class=" article" style=" background:#fff padding:15px " div class=" pages_content" id=" printContent" div class=" content" p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 近日,在追求更小、更节能的计算机方面科学家取得重要进展。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 为了解决电子移动产生的焦耳热限制,科学家们充分利用波的潜力,开发出一种磁振子电路,用自旋波来传播和处理信息。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 这种磁振子电路采用极简的二维设计,所需的能量比目前先进的电子芯片少约10倍,将来有望在量子计算和类脑的神经网络计算等领域获得应用。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " span style=" font-weight: bold " 磁振子,电子的替代品 /span /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 电子器件中信息的传输和处理是通过对电子的操控完成的,但是电子移动所产生的焦耳热限制了电子器件向小型化和低功耗方向的发展。于是科学家不断寻找电子的替代品,例如光子或磁振子。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 在量子力学的等效波图中,磁振子可以被看作是量化的自旋波。利用磁振子开发磁控器件组件,包括逻辑门、晶体管和非布尔计算单元,已经获得成功。但作为电路组成部分的磁定向耦合器,由于其毫米尺寸和多模频谱始终无法实用。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 现在,德国凯泽斯劳滕工业大学和奥地利维也纳大学的科学家成功开发出一款亚微米尺寸的磁定向耦合器,并通过波的非线性效应设计了一个易于加工的基于二维平面的半加器,实现了用自旋波来传播和处理信息。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 科学家们开发的这个集成磁振子电路尺寸极小,采用了极简的二维设计,所需的能量比目前最先进的电子芯片要少约10倍。相关成果发表在《自然· 电子学》上。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " span style=" font-weight: bold " 充分利用自旋波的波动性 /span /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 研究负责人、维也纳大学的安德列· 丘马克教授说:“最初计划的磁振子电路非常复杂,现在的版本比最初的设计至少好了100倍。”他把这归因于论文的第一作者,来自中国的王棋。 /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 博士毕业于德国凯泽斯劳滕工业大学,目前在维也纳大学从事博士后研究的王棋介绍说:“该研究源自我博士期间的一个项目,从概念提出、理论计算、仿真设计以及实验制备和测试,整个工作持续了近4年时间,光是仿真设计就重复了几百次,现在这个设计已经是第四个版本。” /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 接受科技日报记者采访时,王棋介绍说:“目前的电子设备,信息都是用电子携带的,但是电子的定向移动会导致焦耳热,功耗高。我们现在用自旋波(磁振子)来携带信息,进行计算,可以大幅降低功耗。而且由于磁振子是一种波,波的一些特性可用来简化设计,从而降低器件的尺寸。简单地说,波的基本量有振幅和相位,我们的研究中主要用波的振幅来携带信号,即振幅大,信号为1;振幅小,信号为0。” /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 王棋说:“起初我们的思路是模仿电子设备,通过构造14磁振子晶体管实现半加器,后来发现结构太复杂而且不容易实现。我们意识到还没有充分利用自旋波的波动性。因此,在最新的设计中我们利用了波的干涉,使用了自旋波导之间偶极作用与自旋波能量相关这个非线性效应来实现了半加器的设计。不过出于成本的考虑,整个半加器是在一个二维平面上加工的。目前这个设计只是功耗更低,速度还没有电子芯片快。” /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " span style=" font-weight: bold " 自旋波研究有重要意义 /span /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 王棋表示,这种磁振子电路的特殊之处在于,其信息由自旋波携带,信息的传播和处理过程中没有电子的参与,因此没有焦耳热,极大地降低了能量损耗。另一方面,通过利用波的干涉、衍射和非线性效应,又极大地简化了器件的设计。王棋说:“典型的半加器在电子芯片中需要14个晶体管,而我们的设计中只需要3根彼此靠近的纳米线。” /p p style=" margin-bottom: 0.5em text-indent: 2em line-height: 1.5 font-family: 宋体 font-size: 12pt " 王棋说:“目前的计算机都是建立在布尔体系(逻辑运算)之下的,我们的研究让人们看到了波的波动性的潜力,对于非布尔体系的计算,波比电子有很大的优势。目前的研究思路还是在和布尔体系下的电子计算机相比,这种情况下波的优势没有完全显现出来,将来我们要跳出布尔体系。” /p p style=" line-height: 1.5 text-indent: 2em font-family: 宋体 font-size: 12pt margin-bottom: 0.5em " 丘马克教授认为,磁振子电路在量子计算和类脑的神经网络计算等方面有广阔的应用前景。自旋波无热耗散、容易实现室温玻色-爱因斯坦凝聚等宏观量子效应的优点正在得到越来越多的关注。基于自旋波的信息传输、逻辑计算有可能成为后摩尔时代信息传输、处理的重要方式之一。因此,自旋波研究具有重要的科学意义和应用潜力。 /p /div /div /div /div link href=" http://www.stdaily.com/index/xhtml/images/ico/icon.ico" rel=" icon" type=" image/x-icon" / link href=" http://www.stdaily.com/index/xhtml/images/ico/icon.ico" rel=" shortcut icon" type=" image/x-icon" / link href=" http://www.stdaily.com/index/xhtml/css/f_footer.css" rel=" stylesheet" type=" text/css" /
  • 全部12982个!2021年最新SCI影响因子全名单(附带EXCEL下载)
    昨日,网上流传一份SCI影响因子名单,且只有400个期刊的影响因子。部分网友吐槽:我们的专业不配出现在TOP400上。小编最新整理一份最全的SCI影响因子全名单,涉及12982个被收录的期刊,包含其SCI期刊总被引数、影响因子、特征因子。今年,多个学科领域的期刊影响因子迎来暴涨。位列榜首的神刊CA-A CANCER JOURNAL FOR CLINICIANS影响因子高达508.702,远远甩开第二名的NATURE REVIEWS MOLECULAR CELL BIOLOGY(影响因子94.444)。两大综合类顶级期刊NATURE和SCIENCE的影响因子分别是49.962和47.728。以材料领域为例子,目前最热门的能源方向,影响因子再创新高,Nature旗下能源方向的Nature Energy影响因子已经高达60.858。而顶级期刊ADVANCED MATERIALS的影响因子也突破了30大关,高达30.849。全部期刊可点击下方“2021年最新SCI影响因子全名单”进行下载查看。2021年最新SCI影响因子全名单.xlsx
  • 天津恒奥科技响应中华慈善总会支援灾区倡议书
    天津恒奥科技响应中华慈善总会支援灾区倡议书 冷雪南飘,多少同胞饥寒交迫; 爱心汇聚,共融百年难遇之灾。 1月中旬以来,中国南方大部分地区和西北地区东部出现了罕见的持续大范围低温、雨雪和冰冻天气,极端天气给中国的交通运输、食品供应和移动通信等方面造成 的严重影响,更给人民群众的生产生活带来了无法估量的损失。中央气象台在1月27日继续发布暴雪红色警报:受冷暖空气的共同影响,预计27日左右,湖南北 部、湖北东部、河南东南部、安徽大部、江苏大部以及浙江西北部等地有大雪,其中,安徽中南部、江苏中南部、湖北东南部等地的部分地区有暴雪。截至28日 14时,1月10日以来的雨雪天气过程已造成安徽、江西、河南、湖南等14个省(区、市)7786.2万人受灾,因灾死亡24人,因灾直接经济损失 220.9亿元。 冷雪中,也许有一个赤脚的小孩等着我们的一双棉鞋;也许有白发的老人等着我们的一个保温杯;也许有露宿雪地的灾民等着我们的一床棉被;也许有滞留车站的旅客等着我们的一袋泡面;也许有手脚冻伤的同胞等着我们的一个暖水壶……。在祖国的南方风雪交加的日子里,在这场巨大的雪灾来临的时候,朋友们,让我们伸出援助之手,汇聚我们的爱心!用我们的爱心去融化寒冷的冰雪,用我们的爱心打开受灾人民的春天,用我们的爱心谱写和谐社会的篇章,用我们的爱心奏出中华民族团结抗灾的最强音! 不能让风雪继续肆虐灾区,不忍看到挣扎于冰天雪地的兄弟姐妹,不愿祖国的希望流离失所。让我们行动起来,在08奥运来临之前,向世界展示我们中华民族的团结,向世界展示我们中华民族抗击灾害的决心。我相信我们的爱心一定会催放出08年最温暖的春天! 我们恒奥公司始终关注着灾区的人民,公司的领导在第一时间响应中华慈善总会的号召,于公司内部发起捐款倡议,公司员工积极捐款支援灾区,共筹得善款:20,080元,已于今日电汇至中华慈善总会。我们号召分析仪器行业的同行积极的行动起来,用我们的双手,用我们的爱心帮助灾区人民度过难关。 天津市恒奥科技发展有限公司全体员工 2008-2-1
  • DAVINCI+将搭载紧凑型紫外可见光成像光谱仪(CUVIS)飞往金星
    6月2日,美国国家航空航天局(NASA)宣布,计划在2028-2030年间执行两项探索金星的任务,这是NASA时隔30年后再次对金星进行探测。NASA表示,这两个任务被分别称为“DAVINCI+”和“VERITAS”,内容包括研究金星的演化过程,并进一步了解金星的地质历史以及分析其与地球在发展方向上的不同。据悉,DAVINCI+将搭载紧凑型紫外可见光成像光谱仪(CUVIS),仪器将使用一种基于自由光学的新仪器对紫外线进行高分辨率的测量。而VERITAS将绘制金星表面的红外辐射图,并确定活火山是否将水蒸气释放至大气中,同时搭载深空原子钟-2,用这项技术产生的超精确时钟信号最终将有助于实现航天器的自主操纵,并加强无线电科学观测。
  • 中国分析测试协会召开第二次抗震救灾会议
    2008年5月23日中国分析测试协会组织“中国分析测试协会抗震救灾专项行动工作组”,召开了第二次抗震救灾专题会议。会议由秘书长张渝英研究员主持,有关方面专家、企业负责人共20多人参加了会议。 会议现场   张渝英同志首先传达了科技部领导对协会紧急组织抗震救灾工作的指示精神:协会的行动方案反映了灾区的迫切需要,将纳入科技部的统一救灾方案实施。科技部领导的肯定,坚定了大家积极投入紧急行动支援灾区的信心。   同时,会上检查了21日会议部署的工作,并进一步明确了目标和要求 根据22日灾区新提出的生物腐败引起的水源污染问题,紧急启动生物多胺、致病源菌、粪大肠杆菌的快速检测方法研究工作。   水源检测及应对处理方案等资料编制组,已收集到12家生产检测水源仪器厂家的相关信息,并得到他们全力支援抗震救灾的承诺 整理出水源净化技术实用手册,尽量做到简明易懂,操作性强。同时,选出100多家有水质检测认证的质检单位的信息,他们大都在四川、重庆、陕西、甘肃以及北京、上海等城市。目前正落实单位和人员的有关信息。会议要求下周一该组将上述资料完善、整理成册,随时准备送往灾区。   生物多胺、致病源菌、粪大肠杆菌的检测关系到灾区几百万同胞的生命安全,会议指定国家生物医学分析中心、北京理化分析测试中心和牛牛基因公司联合,紧急启动生物多胺、致病源菌、粪大肠杆菌的快速检测技术方法攻关工作,争取尽快把有关解决方案发送灾区。(今天发稿时已获信息,有关解决方案已于24日发送灾区有关单位。) 与会者在会议上讨论并作记录   参加会议的全体同志,以及相关单位的科技人员,怀着与灾区人民共患难的心情,以高度的责任感,争分夺秒,不分昼夜地投入战斗,为抗震救灾做着自己的贡献。   中国分析测试协会   2008.5.26.
  • Science:科学家测定超高热导率半导体-砷化硼的载流子迁移率
    中国科学院国家纳米科学中心研究员刘新风团队联合美国休斯顿大学包吉明团队、任志锋团队,在超高热导率半导体-立方砷化硼(c-BAs)单晶的载流子扩散动力学研究方面取得进展,为其在集成电路领域的应用提供重要的基础数据指导和帮助。相关研究成果发表在《科学》(Science)上。 随着芯片集成规模的进一步增大,热量管理成为制约芯片性能的重要因素。受到散热问题的困扰,不得不牺牲处理器的运算速度。2004年后,CPU的主频便止步于4GHz,只能通过增加核数来进一步提高整体的运算速度,而这一策略对于单线程的算法无效。2018年,具有超高热导率的半导体c-BAs的成功制备引起了科学家的兴趣,其样品实测最高室温热导率超过1000 Wm-1K-1,约为Si的十倍。c-BAs具有高的热导率以及超弱的电声耦合系数和带间散射,理论预测c-BAs同时具有颇高的电子迁移率(1400 cm2V-1s-1)和空穴迁移率(2110 cm2V-1s-1),这在半导体材料系统中颇为罕见,有望将其应用在集成电路领域来缓解散热困难并可实现更高的运算速度,因而通过实验来确认这种高热导率的半导体材料的载流子迁移率具有重要意义。 虽然c-BAs已被制备,但样品中广泛分布着不均匀的杂质与缺陷,对其迁移率的测量带来困难。一般可以通过霍尔效应,测定样品的载流子的迁移率,而电极的大小制约其空间分辨能力,并直接影响测试结果。2021年,利用霍尔效应测试的c-BAs单晶的迁移率报道结果仅为22 cm2V-1s-1,与理论预测结果相差甚远。具有更高的空间分辨能力的原位表征方法是确认c-BAs本征迁移率的关键。 通过大量的样品反复比较,科研团队确定了综合应用XRD、拉曼和带边荧光信号来判断样品纯度的方法,并挑选出具有锐利XRD衍射(0.02度)窄拉曼线宽(0.6波数)、接近0的拉曼本底、极微弱带边发光的高纯样品。进一步,科研团队自主搭建了超快载流子扩散显微成像系统。通过聚焦的泵浦光激发,广场的探测光探测,实时观测载流子的分布情况并追踪其传输过程,探测灵敏度达到10-5量级,空间分辨能力达23 nm。利用该测量系统,研究比较了具有不同杂质浓度的c-BAs的载流子扩散速度,首次在高纯样品区域检测到其双极性迁移率约1550 cm2V-1s-1,这一测量结果与理论预测值(1680 cm2V-1s-1)非常接近。通过高能量(3.1 eV,400 nm)光子激发,研究还发现长达20ps的热载流子扩散过程,其迁移率大于3000 cm2V-1s-1。 立方砷化硼高的载流子和热载流子迁移速率以及超高的热导率,表明可广泛应用于光电器件、电子元件。该研究厘清了理论和实验之间存在的差异的具体原因,并为该材料的应用指明了方向。 研究工作得到中科院战略性先导科技专项(B类)、国家自然科学基金、国家重点研发计划与中科院仪器设备研制项目等的支持。  图1.c-BAs单晶的表征。(A)c-BAs单晶的扫描电镜照片;(B)111面的X射线衍射;(C)拉曼散射(激发波长532 nm);(D)极微弱的带边发光(激发波长593 nm)及荧光成像(插图,标尺为10微米)。 图2.瞬态反射显微成像和在c-BAs中的载流子扩散。(A)实验装置示意图,激发波长为600 nm探测波长为800 nm;(B)不同时刻的瞬态反射显微成像(标尺1微米);(C)典型的载流子动力学;(D)0.5 ps的二维高斯拟合(E)不同时刻的载流子分布方差随时间的演化及载流子迁移率,误差标尺代表95%置信拟合区间。
  • 灵活高效再升级,PERCiV for DSX1000软件震撼登场!
    近日,Evident推出PERCiV for DSX1000新版本软件,使得PERCiV可兼容DSX1000数码显微镜。从质量保证到研发,从工艺开发到质量控制,PERCiV for DSX1000版具有高度的灵活性,可适用到各种检测任务中,帮助您获取理想、真实的数据。凭借强大的数据共享和安全功能,实现快速、高效的工作流程。简洁+模块化设计,易于上手PERCiV for DSX1000界面布局简洁,功能按钮简单易找,用户可以轻松访问软件的各项功能,如观察、采集、测量和分析,以快速获取高质量的图像,并在实时和静态图像上进行准确的2D测量和图像分析。软件自带的分布式指导,可以帮助新手快速掌握此软件。该软件是为您的工业显微镜实验室提供的一种综合性成像和测量解决方案。PRECiV软件可以控制Evident常规工业显微镜、显微镜编码功能、电动物镜转换器和数码相机。此外,该软件还支持第三方电动设备,包括电动载物台、载物台控制器等。图像观察模式选择丰富,高级测量与分析功能一应俱全一键式呈现样品的明场、暗场、斜射、偏振、MIX(明场和暗场)、偏光和微分干涉的图像在同一界面中,即使是初学者也能快速找到合适的观察方式。PERCiV for DSX1000软件中包括2D/3D的精准测量、轮廓测量和表面粗糙度分析。边缘检测和图像分析等工具帮助使用者解决复杂的任务。此外,PERCiV for DSX1000中使用人工智能(AI)技术轻松分析复杂图像,可以解决以前基于传统阈值的图像分析无法解决的问题,帮助使用者轻松、快速地挑选、查找目标对象。多种选配模块,满足您的定制需求PERCiV for DSX1000软件多种选配模块,其中就包括符合常规和前沿国际标准的材料解决方案,如晶粒度、铸铁分析、最恶劣视场、孔隙率、相分析、非金属夹杂物等。PERCiV for DSX1000新版本软件,与DSX1000数码显微镜兼容后,作为多功能和一体化的系统,将被广泛应用于各个行业中,包括电子、金属、汽车、制造和研究领域,用于检测和分析各种样品。无论哪个行业或哪种应用, PERCiV for DSX1000软件,兼具了易用性、灵活成像和智能功能,我们也可以对您的特殊应用进行定制化解决方案,达到您的工作和实验要求,帮助您提高工作效率。
  • 关于《无人船船载水质监测系统》等2项标准第二次讨论会时间调整通知
    p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/3bc56d7f-38dd-4b47-aeb7-4bc4f26d3ef5.jpg" title=" 232.jpg" alt=" 232.jpg" / /p p   各有关单位: /p p   根据中国质量检验协会与中国水利企业协会关于下达《无人船船载水质监测系统》《水质监测无人船安全作业技术标准》两项标准立项的通知(中检联发〔2019〕3号),为保证按时完成标准制定任务,进一步完善标准,经研究讨论决定,因疫情防控原因推迟的《无人船船载水质监测系统》等两项标准第二次讨论会举办时间调整为2020年5月21日通过视频会议召开,现就会议有关事宜通知如下: /p p   一、会议时间和方式 /p p   会议时间:2020年5月21日上午9:00-17:00。 /p p   会议方式:使用亿联会议软件召开会议,参会专家、起草负责人使用手机或笔记本电脑下载亿联会议(https://www.yealink.com.cn/)并注册登录,申请加入指定的企业通讯录,在云会议室选择进入视频会场参会。 /p p   二、会议内容 /p p   (一)标准起草负责人对标准编制修改情况进行汇报 /p p   (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准征求意见稿 /p p   (三)对标准下一步工作计划进行安排和确认。 /p p   三、联系方式 /p p   苑 萍 18366223266, lyndayuan@vip.163.com /p p   文 翔 13661041954, stevencsw8292@163.com /p p   王 军 010-63204884, slqx@mwr.gov.cn /p p   许汉平 010-63203604 /p p style=" text-align: right "   中国质量检验协会 /p p style=" text-align: right "   中国水利企业协会 /p p style=" text-align: right "   2020年4月17日 /p p br/ /p
  • 智能模块,高效可靠——奥林巴斯显微镜图像处理软件PRECiV再升级!
    现代的工业生产环境,诸如在钢铁、半导体、电子、检测等行业内,对于产品的检测及分析尤为重要。在推出备受喜爱的奥林巴斯工业显微镜软件Stream之后,奥林巴斯推出平台级工业显微镜软件PRECiV,为客户的显微检测工作提高效率。PRECiV承袭了奥林巴斯工业显微镜软件Stream的诸多功能和材料解决方案,同时也将在不久的未来作为平台级软件,与奥林巴斯各工业显微镜机型进行配合,完成从实验观察、图像拍摄、尺寸测量和报告导出等功能。高兼容性及界面模块化,满足个性化且直观可见PRECiV软件配备Capture、Core、Pro、Desktop四种软件包PRECiV具备广泛的兼容性,使用人员只需要按上述顺序选择合适硬件,并选择搭配合适的软件包,即可完成配置。“选择机型、选择相机、选择附件、选择软件版本”,仅此四步。若是奥林巴斯工业显微镜的老用户,则可在Stream工业显微镜软件的基础上,免费升级到同等权限级别的PRECiV。针对不同用户的工作需求和预算,PRECiV工业显微镜软件配备Capture、Core、Pro、Desktop四种权限级别的模块化软件包,广泛涵盖了客户的多样化需求。功能模块化展示,直观易用提高工作效率智能成像,大放异彩左:扩展焦点图象(EFI)后的观测效果 右:实时观测画面目前PRECiV所支持的2D测量(随着日后升级将支持3D测量),涵盖的多种材料解决方案,让其显得与众不同。在图像采集、定制化工具、测量/ 图像分析、设备支持等多功能的加持下,适应于各种成像条件。当载物台移动时,全景图像(大尺寸图像采集)会自动重建,用户即刻进入即时全景模式,外加EFI(扩展焦点图像)功能,可在图像焦点丢失情况下,随时重新聚焦图像,大大拓展了成像条件的局限性。尤其在手动全景模式下,它还可通过将图像移动到适当的位置来引导用户,重建基于每个图像的拼接,不惧成像难题。界面直观,符合国际标准的用户指导与Stream工业显微镜软件相比,PRECiV工业显微镜软件具有更直观的界面。新界面按用途功能分为图像控制、文件区域、控制面板、实时控制、垂直选项卡。功能之间导航简单,在边缘检测和辅助线扩展测量功能的配合下,实现了快速测量与成像,对电子生产线上的现场观察和记录,起到了关键性的作用;软件接通互联网后,会定期收到有关错误修复和改进的服务更新,进行安全和版本升级,并可通过网络共享成像条件与图像等信息,使测量结果再现,提高工作效率。PRECiV整体界面直观易用PRECiV同时还提供“从图像采集到符合国际标准报告”的用户指导,可对检测室所有用户的工作流程进行指导,帮助大幅提升工作效率。高效协作,数据共享通过网络共享结果和方法,以提高结果再现性。使用PRECiV工业显微镜软件,可以通过管理员对软件权限进行管理,根据生产和研发的不同环节分配对应的权限和操作界面,并且在后期还能够将观测数据上传到云端与团队成员进行共享。图像采集方式、校准信息等将会被完整的保留在JEPG格式之中,无需再将任何XML或TXT文件附上。当团队内不同用户需要对比或参考其他成员的数据时,可以方便快捷的从云端调取多设备的检测数据。简洁的操作界面、全面的量测功能、丰富的软件包配置和专业的材料解决方案,全方位满足用户实际需求,提升用户工作效率。未来,PRECiV将支持更多型号的显微镜,并兼任3D观测模式,我们相信这将成为诸如在钢铁、半导体、电子、检测等行业在内,实实在在的生产好帮手。
  • 芬兰SPECIM机载全光谱遥感系统AisaFENIX1K为林火监测做出重要贡献
    森林火灾是一种危害大的自然灾害,是森林扰动的主要类型之一,直接影响森林生态系统结构、碳循环甚至全球气候的变化。近年来,航空平台和传感器的技术进步有效地提升了机载遥感系统探测和监测森林火灾的能力,推动了机载遥感在森林可燃物调查及载量评估、火险测报预测、火场态势及火情监测、灾害损失评估以及火烧迹地生态修复治理等方面的应用。本文将主要介绍中国林业科学研究院机载光学全谱段遥感系统CAF-LiTCHy (即芬兰SPECIM AisaFENIX1K机载光学全谱段遥感系统)和如何利用系统所采集的多源遥感数据即正射影像、冠层高度模型、高光谱影像、热红外影像,分析其在森林火灾监测评价中的潜力,并以四川省西昌市“3.30 森林火灾”作为该系统火后灾情遥感调查和灾情评估应用示例,表明该系统可有效分析森林火灾的灾情信息、火场及火环境参数,可为预防、预报预警、扑救指挥、灾害评估和生态修复提供支持。中国林业科学研究院机载光学全谱段遥感系统CAF-LiTCHy (即芬兰SPECIM AisaFENIX1K机载光学全谱段遥感系统),是由芬兰SPECIM公司针对中国林业科学院光学全谱段地空综合森林观测系统及动态数据驱动森林火场全息模拟科研平台定制产品,共包含5个传感器:AisaFENIX1K全光谱高光谱相机、激光雷达、中波热像仪、长波热像仪以及高精度惯导系统,如图1所示。这套系统也是上套可同时采集380-2500 nm高光谱以及中长波热红外数据的航空机载系统,将获取用于林火监测预警、森林参数估测的温度场影像和高光谱影像以及相匹配的数字地面模型,为我国森林防火预警做出重要贡献。图1 CAF-LiTCHy即芬兰SPECIM AisaFENIX1K机载遥感观测系统此次研究的数据采集主要是针对2020-03-30发生森林火灾的泸山风景区,在明火全部扑灭后,完成航飞采集任务。该地区的乔林木主要以云南松为主,零星分布少量赤桉、杨树和栎树,林下有马桑、杜鹃、坡柳等灌木,以及黄茅、草、 莎草、 紫 茎 泽 兰等地被物。在春末干燥高温环境下,易于发生森林火灾,数据如图2所示。(a)CCD 影像(b)高光谱假彩色图像图2 西昌森林过火区机载高光谱数据结合高空间分辨率的机载 CCD 影像以及相关研究 (Lentile 等,2006; Veraverbeke 等, 2012;Meng 等,2017),将本次西昌森林火灾的林火烈度分为未过火、轻度过火、中度过火以及重度过火等4个等。对于单株林木的林火烈度判读标准如下:(1) 未过火:冠层为绿色且保持原本形状,枝叶结构未见火烧痕迹;(2) 轻度过火:树冠未全部被烧,绿色冠层占比 70% 及以上;(3) 中度过火:树冠的枝叶多数被烧黄或烧毁,绿色冠层占比 25%—70%;(4) 重度过火:树冠全部被烧,裸露出烧焦的黑色树干,绿色冠层占比 25% 及以下。图3(a)、(b)分别展示了不同林火烈度的高分辨率机载CCD影像和高光谱影像,不同林火烈度的区域在真彩色和假彩色显示影像中均可明显区分,尤其在中度和重度过火区。(a) 不同烈火程度的CCD影像(b) 不同林火烈度的高光谱影像(R = 887.07 nm,G = 668.89 nm,B = 580.26 nm)图3 不同烈火程度的CCD影像和高光谱影像图4展示了机载高光谱影像中火烧迹地、正常冠层、中度过火冠层、水体、裸土、柏油路的光谱曲线特征的光谱特征的变化,以此作为高光谱数据用于过火区森林冠层评估的理论依据,从该图中可以明显地观察到,相较于未过火的正常冠层,中度过火冠层由于叶片由绿变焦黄、叶绿素丧失,导致蓝、红光的吸收作用减弱,同时由于火烧导致叶片细胞结构发生变化,其叶片在800 nm—1100 nm 的反射峰明显削弱,另外叶片含水量的降低导致其在 1450 nm、1950 nm 的吸收率降低,反射率升高。此外,重度过火区的树木已成碳灰状,使得该火烧灰烬区域在 400 nm—2500 nm区间内的反射率在 0.1 附近。由此可见,过火区不同典型地物的光谱曲线反映了本次采集和处理后的机载高光谱数据具备有效刻画地物光谱特性的能力,对确定过火区的林木冠层受害程度以及估测森林火灾受害面积具有重要的理论依据。图4机载高光谱数据典型地物光谱曲线其次高光谱影像以及其波段衍生的指数可以在空间上更有效地反映林火烈度,结合Haboudane 等(2008)和Huesca 等(2013)的研究结果,利用高光谱数据的优窄波段信息分别计算了修正型土壤调节植被指数 (MSAVI)]和归一化燃烧率指数 (NBR),本文选取机载高光谱影像的673.34 nm(红 光 波 段)、804.22 nm(近红外波段)以及2132.65 nm (短波红外波段)的反射率来计算MSAVI与NBR,如图5所示。在未过火区,MSAVI和NBR 均较高;在重度过火区,MSAVI 和 NBR 均较低。同时,结合CCD影像的林火烈度标准的目视判读结果,利用阈值划分法对 NBR 进行林火烈度划分。图 5(d)展示了该区域林火烈度的空间分布,其中房屋、道路和裸地等非植被区也被归类为重度过火区域,在进一步的分析中可以结合分类结果或光谱特征进行剔除。由上述结果可见,利用高光谱数据及其衍生产品能在一定程度上反映此次森林火灾的受害程度,生成的林火烈度图在空间上与林内实际过火状况表现出很好的一致性。(a)机载高光谱影像 (b)修正型土壤调节植被指数 (c)归一化燃烧率指数 (d)林火烈度中国林业科学研究院机载光学全谱段遥感系统 CAF-LiTCHy集成了激光雷达扫描仪、热红外相机、CCD 相机、高光谱传感器等 4 种对地观测传感器,可同时获取观测区域内地物的垂直和水平结构、光谱以及温度等信息,其中,CCD 相机和高光谱相机具备对地物类型、植被状态 (树木冠幅、植被长势、水分含量、叶面积指数等)、火灾损失程度等灾情信息观测能力,其影像可用于地物类型识别、植被参数提取、火烧迹地识别、以及灾情评估等,从而为火行为预报模型提供的可燃物及环境参数。 参考文献:[1]. 庞勇,荚文,覃先林,斯林,梁晓军,林鑫,李增元 .2020. 机载光学全谱段遥感林火监测 . 遥感学报,24(10):1280-1292[2]. Pang Y,Jia W,Qin X L,Si L,Liang X J,Lin X and Li Z Y. 2020. Forest fire monitoring using airborne optical fullspectrum remote sensing data. Journal of Remote Sensing(Chinese),24(10):1280-1292[DOI:10.11834/jrs.20200290] 公司背景:芬兰SPECIM公司是上早制作商用高光谱相机的厂商,从1995年至今已有二十余年的生产历史,累计有5000余套设备应用于全球各个领域,其产品拥有优异的数据质量。AISA 航空高光谱相机系列是针对航空和国防应用开发的专业解决方案,涵盖VNIR (380-1000 nm), SWIR (1000-2500 nm) 和用于热成像的LWIR (7.6-12.4um) 光谱范围。产品包括:AisaKESTREL系列—高端无人机载高光谱相机、AisaIBIS—超光谱植物荧光探测高光谱相机、AisaFENIX系列—全光谱(400-2500nm)采集高光谱相机、AisaOWL—热红外(7.5-12.5um)高光谱相机。其高光谱传感器无与伦比的性能,使ASIA系统成为在航空高光谱领域的佼佼者,已有近100套系统在全球范围内使用。Quantum量子科学仪器贸易(北京)有限公司作为芬兰SPECIM公司的中国区的官方代理,将竭诚为新老客户服务。
  • 2024最新SCI影响因子发布!(附完整版下载)
    近日,科睿唯安发布2024年度《期刊引证报告》(Journal Citation Reports,简称 JCR)。今年JCR的最大变化为:把属于不同数据库,但属于同一学科的期刊统一进行排名。影响因子最高的仍然是Ca-A Cancer Journal for Clinicians,去年为254.7,今年重回巅峰至503.1。完整名单:2024JCR.xlsx小编也将食品领域2024年影响因子整理成文,点击查看:重磅!食品类SCI期刊2024年最新影响因子公布!部分名单如下:四大医学期刊变化NEJM、The Lancet、JAMA、BMJ,这四本综合性医学杂志,是我们统称的「四大医学期刊」,也是公认的历史最为悠久、顶级的综合性临床期刊。但几年看下来,四大刊已经有不小的变化……CNS三大期刊变化影响因子(IF)=(期刊前两年内发表的文章在当年被引用的总次数)/ (该期刊在这两年内发表的文章总数)2024影响因子变化对229个自然科学和社会科学学科进行统一排名。从对多个索引各自的JIF排名转为对229个自然科学和社会科学学科进行统一排名,不再单独发布同时编入多个索引的学科领域的JIF排名,而是将它们统一排名,以建立更加简明、全面的学科图景。即同一个期刊不会在不同的学科领域排名,而是按照自然科学和社会科学学科进行统一排名, 此举有利于高引方向的期刊,如材料, 化学,不利于低引方向的期刊。建立学科综合排名。ESCI期刊的JIF通常低于同学科的SCIE、SSCI或AHCI期刊。这是因为被SCI、SSCI或AHCI收录除了符合编辑严谨性和最佳出版实践的24项质量标准之外,期刊还需满足四项影响力标准。不过,科睿唯安了解到有些ESCI期刊的JIF是高于同学科SCIE、SSCI或AHCI期刊的。原因有两点:首先,ESCI与SCIE/SSCI/AHCI之间的区别不仅仅在于某一时间点上的期刊JIF,而是还要看期刊是否达到四项影响力标准;其次,自2022年起科睿唯安暂停了影响力评估,以集中力量对已提交和已索引的期刊进行质量评估。艺术和人文学科将不设JIF排名。平均引用速度和引文量在不同学科领域之间差距显著。总体来看,艺术和人文领域的引文量和引用速度远低于自然科学或社会科学领域。JCR数据的深度建模表明,为艺术和人文学科设置JIF排名会导致榜单上多处出现大量的并列期刊,进而造成四分位数分布的严重偏斜,有些四分位数甚至根本不会出现在某一学科中。科睿唯安官方与学术界分享了这一发现,并最终达成共识:如果对25个独立的艺术和人文类学科进行JIF排名,其结果不仅难以解读,也未必有实际价值。如果想对艺术和人文社科的期刊进行比较分析,最合适的方法是使用2021年引入的期刊引文指标(JCI)。因此决定,今年的JCR不设艺术和人文学科的JIF排名。
  • 关于召开无人船船载水质监测系统等两项标准第二次讨论会的通知
    p style=" text-align: center "   中国质量检验协会与中国水利企业协会 /p p style=" text-align: center "   关于召开无人船船载水质监测系统等两项标准 /p p style=" text-align: center "   第二次讨论会的通知 /p p style=" text-align: center "   中检联发﹝2020﹞1号 /p p   各有关单位: /p p   根据中国质量检验协会与中国水利企业协会关于下达《无人船船载水质监测系统》《水质监测无人船安全作业技术标准》两项标准立项的通知(中检联发〔2019〕3号),该两项标准已于2019年11月21日在杭州召开了标准第一次讨论会。 /p p   为保证按时完成标准制定任务,进一步完善标准,经研究讨论决定,我会将于2020年2月21日在北京召开《无人船船载水质监测系统》等两项标准第二次讨论会议,现就会议有关事宜通知如下。 /p p   一、组织单位 /p p   主办单位:中国质量检验协会 /p p   中国水利企业协会 /p p   承办单位:青岛中质脱盐质量检测有限公司 /p p   支持单位: /p p   中国水利水电科学研究院 /p p   珠江水利委员会珠江水利科学研究院 /p p   生态环境部海河流域北海海域生态环境监督管理局生态环境监测与科学研究中心 /p p   水利部交通运输部国家能源局南京水利科学研究院 /p p   大连海事大学无人驾驶船舶技术与系统协同创新研究院 /p p   自然资源部第一海洋研究所 /p p   河海大学河长制研究与培训中心 /p p   中国科学院西安光学精密机械研究所 /p p   哈工大(威海)船海光电装备研究所 /p p   深圳市百纳生态研究院有限公司 /p p   中科院软件研究所南京软件技术研究院 /p p   二、时间 /p p   (一)报到时间:2020年2月20日13:00-20:00 /p p   (二)会议时间:2020年2月21日09:00-14:00 /p p   三、会议地点 /p p   会议酒店:北京中国职工之家酒店 /p p   酒店地址:北京市西城区真武庙路1号 /p p   酒店电话:010-68576699 /p p   四、会议内容 /p p   (一)标准起草负责人对标准编制修改情况进行汇报 /p p   (二)对标准第二稿进行充分讨论、修改和完善,会后完善形成标准征求意见稿 /p p   (三)对标准下一步工作计划进行安排和确认。 /p p   五、联系方式 /p p   苑 萍 18366223266,lyndayuan@vip.163.com /p p   生江磊 18561658536,shengjianglei@foxmail.com /p p   王 军 010-63204884,slqx@mwr.gov.cn /p p   六、注意事项 /p p   (一)食宿由组委会统一安排,住宿费用自理 /p p   (二)为便于安排食宿,请参会人员提前一周提交回执表。 /p p   附件:《无人船船载水质监测系统》等两项标准参会人员回执表 /p p   中国质量检验协会 中国水利企业协会 /p p   2020年1月2日 2020年1月2日 /p p   附件 /p p   《无人船船载水质监测系统》等两项标准 /p p   第二次讨论会参会人员回执表 /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 631" style=" border: none margin-left: 9px margin-right: 9px" tbody tr style=" height:40px" class=" firstRow" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 单 span & nbsp & nbsp & nbsp /span 位 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:40px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 通信地址 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:40px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 邮政编码 /span /p /td td width=" 124" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td td width=" 58" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 传真 /span /p /td td width=" 157" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td td width=" 76" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family: 方正仿宋简体" E-mail /span /p /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:40px" td width=" 84" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 标准名称 /span /p /td td width=" 547" colspan=" 9" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 40" br/ /td /tr tr style=" height:49px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 姓名 /span /p /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 性别 /span /p /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 职务 /span /p /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 办公电话 /span /p /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 手机 /span /p /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 电子邮件地址 /span /p /td /tr tr style=" height:49px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 49" br/ /td /tr tr style=" height:41px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td /tr tr style=" height:41px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 58" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 80" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 121" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 156" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td td width=" 132" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 41" br/ /td /tr tr style=" height:84px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 84" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 房间预定 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 84" p span style=" font-size:16px font-family:方正仿宋简体" 大床 span _ /span 房()间, span _ /span 双床 span _ /span 间()间;入住时间自 span ____ /span 至 span _____ /span 。 /span /p p span style=" font-size:16px font-family: 方正仿宋简体" ( /span span style=" font-size: 16px font-family:方正仿宋简体" 注:双床房 span 560 /span 元 span / /span 天含早 span ) /span /span /p /td /tr tr style=" height:104px" td width=" 84" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 104" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 备注 /span /p /td td width=" 546" colspan=" 8" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 104" p style=" text-align:center" span style=" font-size:16px font-family:方正仿宋简体" 参会单位务必提前一周通过电邮方式将附件表格填好,发送到规定的邮箱。 /span /p /td /tr /tbody /table p   联系人及联系方式: /p p   苑 萍 18366223266 /p p   lyndayuan@vip.163.com(请将回执发至此邮箱) /p p br/ /p
  • 药物分析进展和应用专栏|植物甾醇分析技术介绍
    植物甾醇是常见的植物活性成分,同时也是人类饮食中的主要脂类成分组成部分。其结构与胆固醇类似,均具有环戊烷多氢菲母核,图1中的β-谷甾醇、菜油甾醇、和豆甾醇为较为常见的植物甾醇。由于植物甾醇与胆固醇具有相似的结构,二者均需溶于胶束后才能被人体吸收,植物甾醇能与膳食来源的胆固醇竞争进入混合胶束从而减少肠道对于胆固醇的吸收,因此有助于控制血液中的总胆固醇、低密度脂蛋白和甘油三酯水平,从而减少心血管疾病的风险(图2)[1]。近年来,随着人们对健康饮食的日益重视,越来越多的科研人员开始关注到含植物甾醇的食品及植物的分析技术的开发与运用,本文将重点介绍基于气相色谱-氢火焰离子化检测器联用技术及液相色谱-大气压化学电离质谱联用技术的植物甾醇分析方法。图1. 常见的三种植物甾醇结构图2. 植物甾醇降低血清胆固醇的示意图[1]1. 植物甾醇的分析技术食物与植物中的甾醇类成分经过前处理并富集后,可采用不同的分析技术与手段开展分析与鉴定。目前最常用于植物甾醇定量分析的技术为气相色谱法(Gas Chromatography,GC)。液相色谱法(Liquid chromatography,LC)、薄层扫描法(Thin Layer Chromatography Scanning,TLCS)等也可以进行植物甾醇组分的分离与定量分析。1.1 气相色谱-氢火焰离子化检测器联用技术(GC-FID)技术原理:氢火焰离子化检测器(Flame Ionization Detector,FID)的工作原理是基于有机化合物能够在火焰中发生自由基反应而被电离从而对待测物进行分析[2]。如图3所示,FID离子室中火焰分为A层预热层;B层点燃火焰;C层温度最高,为热裂解区,有机化合物CnHm在此发生裂解而产生含碳自由基CH:CnHm→CH含碳自由基进入反应层D层,与外面扩散进来的激发态原子或分子氧发生反应,生成CHO+及e-:CH+O→CHO++e-形成的CHO+与火焰中大量水蒸气碰撞发生分子-离子反应,产生H3O+离子:CHO++H2O→H3O++CO化学电离产生的正离子(CHO+,H3O+)和电子(e-)在外加直流电场作用下向两极移动而产生微电流,收集极与基流补偿电路间的电流作为微电流放大器的输入,微电流放大器输出的电流信号(或电压信号)经A/D转换器,将模拟信号转换成数字信号,由计算机记录下来并进行数据处理从而获得色谱峰。图3. 氢火焰离子化检测器(FID)的示意图技术特点:火焰离子化检测器(FID)是气相色谱常用的检测器,它对几乎所有有机物均有响应,特别是对于烃类化合物灵敏度高且其响应与碳原子数成正比。与此同时,它对于气体流速、压力、温度变化的细微差异相对不敏感,不易受到外界环境改变影响。通过该法对植物甾醇进行分析时,需要对样品进行衍生化处理,将游离的植物甾醇转化为适合GC分析的疏水性衍生物,如生成三甲基硅醚(TMS)衍生物。目前广泛使用于植物甾醇分析的衍生化试剂包括有:含N-甲基-N-三甲基硅烷基三氟乙酰胺(N-methyl-N-trimethylsilylfluoroacetamide,MSTFA)无水吡啶溶液、含1%的三甲基氯硅烷(Trimethylchlorosilane,TMCS)的双三甲基硅基三氟乙酰胺(Bis-trimethylsilyltrifluoroacetamide,BSTFA)等。通过GC-FID对植物甾醇进行定量时,常使用的内标包括有白桦脂醇(Betuline)、5α-胆甾烷醇和5α-胆甾烷-3β-醇等。分析仪器:1957年,澳(大利亚)新(西兰)帝国化学工业公司(Imperial Chemical Industries of Australia and New Zealand,ICIANZ)中央研究实验室的McWilliam和Dewar开发了第一台FID。目前FID检测器已经成为应用最广泛的气相色谱检测器之一,其获取、操作成本、维护要求均相对较低。市面上的气相色谱仪基本上均可配置FID检测器,包括安捷伦9000、8890、8860和7890气相色谱系列,赛默飞 TRACE 1300、1100系列,岛津Nexis GC-2030,珀金埃尔默 2400等进口气相色谱系统以及福立 GC9790、GC 9720,常州磐诺GC1949,上海仪电分析GC 128、北分瑞利 GC3500系列等国产气相色谱仪。1.2 液相色谱-大气压化学电离质谱联用技术(LC-APCI-MS)技术原理:大气压化学电离化(Atmospheric Pressure Chemical Ionization,APCI)原理与化学离子化相同,但离子化在大气压下进行。流动相在热及氮气流的作用下雾化成气态,经由带有几千伏高压的放电电极时离子化,产生的试剂气离子与待测化合物分子发生离子-分子反应,形成单电荷离子,正离子通常是(M+H)+,负离子则是(M-H)-。大气压化学离子化能在流速高达2 ml/min下进行,常用于分析分子质量小于1500道尔顿的小分子或弱极性化合物,主要产生的是(M+H)+或(M-H)-离子,很少有碎片离子,是液相色谱-质谱联用的重要接口之一。图4. 大气压化学电离源(APCI)的示意图技术特点:植物甾醇的发色团数量少,因此不适合通过紫外检测器检测;同时植物甾醇质子亲和力较小、酸性较弱、不宜在溶液中形成质子化的离子或去质子化生成阴离子,因此通过电喷雾电离(Electron Spray Ionization,ESI)的电离效率相对较差。由于植物甾醇亲脂性较强,分子量一般小于1000 Da,采用APCI离子源可以提供更高的植物甾醇检测灵敏度,且无需对样品进行衍生化,极大地缩短了分析所需的时间。研究人员还发现植物甾醇分析过程中,采用正离子模式能够提供了比负离子模式更高的灵敏度,且易于生成准分子离子峰[M+H]+、[M+H-H2O]+ [4]。分析仪器:目前国内外均有大量厂商生产搭配有APCI离子源的液相色谱质谱联用系统,已运用于药物研究、食品安全检测、生命科学和分子生物学等多个领域。Agilent 6470、6490系列三重四极杆液质联用系统,Bruker EVOQ LC-TQ液相色谱质谱联用系统,PerkinElmer QSight 400系列三重四极杆质谱仪,SHIMADZU LCMS-2020、LCMS-2050液相色谱质谱联用系统以及国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310LC-MS/MS、EXPEC 5250 气相/液相色谱-三重四极杆质谱联用仪、EXPEC5510LC-MS/MS、禾信仪器LC-TQ5100等均配置有APCI离子源。国产的江苏天瑞LC-MS 2000液质联用系统,杭州谱育科技EXPEC 5310系列质谱仪等均配置有APCI离子源。2. 应用实例2.1 基于GC-FID快速分析橄榄油中的植物甾醇在对特级初榨橄榄油样本进行皂化处理后,国际橄榄理事会(International Olive Council,IOC)方法采用乙醚对皂化样本多次液液萃取以提取植物甾醇;研究人员优化后前处理方法采用反相聚合物基质固相萃取柱对皂化样品中的植物甾醇进行提取。同时研究人员基于GC-FID建立了同时快速定量17种脂质(含内标胆甾烷醇)的分析方法,其中包括16种植物甾醇,这17种脂质的GC-FID色谱图如图4所示[5]。通过分析比对不同前处理方法结果,研究人员发现优化后前处理方法简单、省时,并减少了溶剂的使用量,但是与IOC官方方法获得的结果较为一致。通过GC-FID快速定量17种脂质的分析方法也有助于评估高价值且容易掺假的特级初榨橄榄油的真实性。图5. 特级初榨橄榄油样品采用IOC方法(A)及优化前处理方法(B)处理后,分别经由GC-FID分析得到色谱图。(1)胆固醇;(2)菜籽甾醇;(3)24-亚甲基胆固醇;(4)菜油甾醇;(5)菜油烷甾醇;(6)豆甾醇;(7)Δ7-菜油甾醇;(8)赪桐甾醇; (9)β-谷甾醇;(10)谷甾烷醇;(11)Δ5-燕麦甾醇;(12)Δ5,24-豆甾二烯醇;(13)Δ7-豆甾醇;(14)Δ7-燕麦甾醇;(15)高根二醇;(16)熊果醇;(IS)胆甾烷醇。2.2 基于LC-APCI-MS/MS快速分析饲料中的植物甾醇相较于GC-FID或GC-MS,LC-APCI-MS/MS无需进行样品衍生化即可完成植物甾醇的定量分析,极大地缩短了样品前处理时间。研究人员建立了基于LC-APCI-MS/MS的植物甾醇分析方法,并可在8分钟内快速定量6种目标植物甾醇[6],图6为胆固醇与6种植物甾醇混合标准溶液(500 ng/mL)的MRM提取离子流色谱图。该方法提供了一种适用于大豆、向日葵、草料、犊牛成品饲料和上述饲料混合物在内的不同类型饲料中的植物甾醇定量的方法。同时将实验结果与其他相关研究结果进行比较,显示出良好的一致性。该方法简单、快速,可以将其应用于其他饲料和食品中的植物甾醇分析。图6. 不同研究化合物混合标准溶液的MRM提取离子流色谱图。①麦角甾醇;②胆固醇;③岩藻甾醇;④Δ5-燕麦甾醇;⑤菜油甾醇;⑥豆甾醇;⑦β-谷甾醇3.小结与展望植物甾醇是植物中的生物活性化合物,同时因其在降低血液胆固醇水平方面有着重要意义,植物甾醇可作为保健食品中的功效成分用于调节人体机能。在这种情况下,有必要建立适合于保健食品中植物甾醇类化合物的分析方法,以评估保健食品质量。同时随着分析技术的发展和相关研究的不断深入,更多快捷、灵敏的分析技术也将成为植物甾醇分析的有力工具,并为更多不同的植物甾醇类化合物在降低血脂、预防心血管疾病等健康领域的运用提供支持与保障。参考文献:[1] Zhang R, Han Y, McClements D J, et al. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review[J]. Journal of Agricultural and Food Chemistry, 2022, 70(8): 2483-2494.[2] 胡坪, 王氢. 仪器分析(第五版)[M]. 北京:高等教育出版社,2019.[3] 国家药典委员会. 中华人民共和国药典(2020版):四部[M]. 北京:中国医药科技出版社,2020.[4] Mo S, Dong L, Hurst W J, et al. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry[J]. Lipids, 2013, 48: 949-956.[5] Gorassini A, Verardo G, Bortolomeazzi R. Polymeric reversed phase and small particle size silica gel solid phase extractions for rapid analysis of sterols and triterpene dialcohols in olive oils by GC-FID[J]. Food chemistry, 2019, 283: 177-182.[6] Simonetti G, Di Filippo P, Pomata D, et al. Characterization of seven sterols in five different types of cattle feedstuffs[J]. Food Chemistry, 2021, 340: 127926.
  • 1370万!中国食品药品检定研究院车载医疗器械电磁兼容测试系统等采购项目
    一、项目基本情况项目编号:0747-2461SCCZAH17项目名称:中国食品药品检定研究院2024年专项设备购置第八批预算金额:1370.000000 万元(人民币)最高限价(如有):1370.000000 万元(人民币)采购需求:采购内容及数量表包号设备序号设备名称数量台/套简要技术需求分包预算金额(万元)第7包7-1车载医疗器械电磁兼容测试系统1主要用于药品、化妆品、医疗器械等,具体详见第四章采购需求书。500.00第8包8-1核磁共振检测系统1450.00第9包9-1SAR及磁场量测系统1200.00第10包10-1高速摄像机1220.0010-2紊流型硬舱体隔离器1 (1)是否允许进口产品投标:不接受进口产品投标;(2)交货地点:中国食品药品检定研究院指定地点。(3)是否专门面向中小企业或小型、微型企业采购:非专门面向中小企业最高限价:(1)包件7、8、9:最高投标限价即各包件预算金额。 (2)包件10:10-1高速摄像机:120万;10-2紊流型硬舱体隔离器:100万。合同履行期限:交货期为合同签订后45日内。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年08月20日 至 2024年08月27日,每天上午9:00至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:中化商务电子招投标平台http://e.sinochemitc.com方式:网络标书销售:登录中化商务电子招投标平台http://e.sinochemitc.com,通过网上支付方式获取招标文件并支付平台使用及技术支持费(平台使用及技术支持费:500.00元人民币/包件)。潜在投标人需先进行网上注册(免费),具体步骤请参考帮助中心-招投标指南。支付成功后,可下载招标文件及增值税电子普通发票。中化商务电子招投标平台技术支持电话:+86 10-86391277。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国食品药品检定研究院     地址:北京市大兴区华佗路31号        联系方式:徐老师 010-53852468      2.采购代理机构信息名 称:中化商务有限公司            地 址:北京市丰台区丽泽路24号院平安幸福中心B座(邮编100071)            联系方式:何方、蔡培琳、王梦楠、华曲德吉央宗、何姗、王宏伟、黄凡 010-83923522、83923515            3.项目联系方式项目联系人:何方、蔡培琳、王梦楠、华曲德吉央宗、何姗、王宏伟、黄凡电 话:  010-83923522、83923515
  • 两次检测结果不同:沃尔玛转基因米再调查
    尽管时间已经过去半月,但湖南转基因大米风波仍未完全平息。   “昨天接到沃尔玛的电话,说他们准备起诉绿色和平组织中国总部(下称绿色和平)。”3月29日,涉及转基因大米风波的湖南汨罗龙舟米厂老板湛昔辉向记者透露事件的最新进展。   3月15日,绿色和平发布调查报告称在长沙沃尔玛超市检出含有抗虫转基因成分的“猫牙米”,这些米部分来自龙舟米厂。   “问题”大米很快被下架,湖南农业部门随即进行抽样调查,但湖南农业厅随后公布的抽样检测却显示,所有送检的大米和稻谷样本并未检出转基因成分。   “送检的样本中确实没有转基因成分,至于转基因大米到底能不能吃,现在还不好说。”湖南省农业厅转基因办工作人员向记者表示。   “我们目前并没有要起诉绿色和平的计划。”3月30日,沃尔玛中国总部公关总监李玲在接受记者电话采访时表示,沃尔玛一直在跟零售行业协会和政府进行沟通,希望尽快查清事件,并妥善处理。   为何两次检测结果会有如此大的差异?在商业化生产和流通并未获得批准的前提下,绿色和平指称的转基因大米究竟来自何处?本报记者对此展开了调查。   两次检测,不同结果   2010年3月15日,绿色和平一纸《超市生鲜散装食品调查报告》令全球零售巨头沃尔玛陷入困境。报告称沃尔玛长沙黄兴南路店出售非法转基因大米,涉事产品系来自湖南汨罗龙舟米厂的“猫牙米”。   3月20日,湖南省农业厅发布通告,公布了对猫牙米的抽样检测结果,称“本次检测共抽取了包括‘猫牙米’在内的32个大米及稻谷样品,经转基因生物产品成分检测机构检测,32个样品均未检出抗虫转基因成分”。   然而,记者从第三方检测机构获得的一份检测报告中看到,在猫牙米的样本DNA检测中发现含有Bt内毒素特异性基因序列,也就是说被检测的大米中确实含有转基因成分。   为何检测结果会产生如此大的差异?   “绿色和平抽查的大米是在2009年11月取的样,而湖南省农业厅抽的样是今年3月份的。”绿色和平中国总部发言人王伟康告诉记者,取样时间的不同可能是导致检测结果差异的原因,“我们的检测结果是委托第三方机构公正检测后得出的”。   她同时透露,在与猫牙米同一批次的检测中,绿色和平还发现沃尔玛的部分蔬菜和水果上残留的农药存在问题。“比如,本该用于西红柿的农药被用于小白菜,而且有些农药是联合国建议禁止使用的品种。”   王伟康表示,2009年11月抽样检查前的两个月,绿色和平曾与沃尔玛进行沟通,此后又分别在2009年12月和2010年3月与沃尔玛联系,但对方始终没有给出信息反馈。“感觉沃尔玛一直在逃避责任,并没有真正审视自身问题并对消费者负责。”   但沃尔玛似乎另有说法。李玲表示,绿色和平仅仅在报告发布前一天通过电子邮件告知沃尔玛,并没有与沃尔玛进行联系。“至于绿色和平,我们确实没有主动跟其联系。”   追查转基因大米源头   沃尔玛惊现转基因大米的消息很快传遍湖南,并影响到大米供应商龙舟米厂的生产销售。记者日前赶赴湖南汨罗红花乡东冲村龙舟米厂采访时,发现米厂大门紧闭,数名工人在米厂旁边的平房中打麻将。   “16日就停产了,也没有客户上门,现在还没有恢复(生产)。”湛昔辉告诉记者,自己的工厂是2004年底开的,由于经营对路,信誉较好,很快成为汨罗100多家米厂中的销量排名前三的米厂,年销量达到3000多吨,2009年11月,湛在长沙的一个经销商告诉他米厂的米已经进入沃尔玛销售,湛当时颇为高兴。   “谁想到会出这个事,收稻谷的时候哪个会看种子类型?”湛表示自己收购稻谷一般是看稻谷的成色和品质等,至于是什么谷种类型则很少关注,他同时坚称自己的工厂从未生产过转基因大米。   而湖南省农业厅的检测结果显示从龙舟米厂的抽样中并未检出转基因成分,这也似乎证实了湛的清白,那么转基因大米究竟从何而来?   湛昔辉透露,自己工厂加工大米的稻谷主要来自东冲村周围100公里以内,范围涵盖湖南岳阳、长沙的一些农村,以及湖北的部分地区。记者调查得知,2005年前后汨罗地区确实有“华恢1号”、“Bt籼优63”等国家禁止种植的转基因水稻销售,但是目前已经绝迹。   “当时种子是从怀化那边传过来的,它的抗病虫能力很强、产量比较高。”64岁的老农刘江勋告诉记者,尽管自己并不清楚转基因水稻是啥回事,但“Bt籼优63”这个特殊的稻种还是让他记忆尤深。   湖南某米业企业首席工程师对记者表示,转基因水稻在生态方面的风险已经开始显现,此前湖南怀化地区的转基因稻种在种植过程中曾经造成周围部分植物物种的灭绝,破坏了农业生态链,“这或许也是当年有关部门迅速禁绝转基因稻种的主要原因之一”。   相关调查显示,目前仅长沙沃尔玛和武汉中百仓储出现转基因大米,其它城市并未出现相同案例,而国家一直禁止转基因水稻商业化种植,此次转基因大米来源一时成疑。   “转基因稻种目前在我国应该是只存在实验室里,但不排除多个转基因稻种杂交衍生新的转基因稻种。”前述工程师谨慎分析转基因大米的可能来源。
  • 载有安捷伦车载式气质联用仪的移动检测车奔赴地震灾区
    载有安捷伦车载式气质联用仪的移动检测车奔赴地震灾区为确认灾区水质安全提供数据保障 2013年4月23日晚11时,载有Agilent 5975T车载式气质联用系统的移动水质监测车到达芦山地震灾区,为地震区域内灾后水质监测提供数据保障。地震灾后的重建阶段,防治次生灾害和灾民生活保障成为工作重点,其中灾区生活饮用水的安全、水源水质的安全都是当地领导关心的关乎民生的重要问题,移动水质监测车可以在灾区现场按照国家水质检测标准方法快速提供水质数据,为当地救灾工作和恢复重建的决策提供了快速数据支持。 Agilent 5975T LTM GCMS是一款专门针对于环保,食品,自来水,司法等领域中应对应急检测和快速检测的高性能车载气质联用仪; 5975T保留了安捷伦5975系列气质联用仪的优秀性能,整合了安捷伦专利的低热容(LTM)色谱技术,加入了适合车载的防震设计,使5975T成为唯一可以达到实验室分析品质的车载气质联用仪器。 全球超过70%的气质联用仪客户都使用安捷伦的气质联用仪器 安捷伦科技拥有超过40年的气质联用仪市场全球领导者的研发和生产气质联用仪器的历史,5975系列气质联用仪已经在全球销售了2万多台。许多行业应用的标准都是根据安捷伦的气质联用仪而制定, 同样因为Agilent 5975T GCMS具有安捷伦实验室GCMS的良好品质,实验室外所获得的结果同样可以以实验室标准来衡量,因此在应急检测中5975T的测试结果更加可靠。1、5975T 为现场快速应急分析需求提供可靠的技术支持 最近10年内,国内的多个省市由于突发的有机物环境污染事件发生导致水污染。面对突发的未知有机污染物水源污染,需要实验室品质的车载GCMS快速到达污染水源地,首先定性分析确定出主要的污染成分,其次,连续监测污染成分的变化直至浓度恢复正常。 5975T的下述特点和性能为现场快速应急分析需求提供可靠的技术支持。 1.1 可检测化合物质量范围更宽 应急分析要求仪器本身的性能能满足尽量多的有毒有害的危害环境化合物的定性检测,否则可能发生到现场后,GC/MS仪器根本不能分析的问题。5975T的质量范围是实验室GC/MS一样的指标2~1050, 保证能用GC/MS分析的危害环境化合物完全能被覆盖,不遗漏任何可能性。 1.2 唯一可以达到实验室分析品质的应急检测车载气质联用仪器 水的安全关系到千家万户,数据结果的准确性非常重要,只有准确可靠的结果才能保证对污染水源的科学正确处理,保证供水的安全。5975T具有实验室GCMS的品质,可以在现场分析得到实验室分析一样准确可靠的结果,不必再送样品回实验室做第二次的确证分析。 1.3 可提供更快速、可靠的检测结果,最大限度满足快速应急要求 应急监测对仪器方法和可靠性有着非常特殊的要求,要求快速反应。一般应急检测仪器中会附带一些标准方法,但是对于仪器标准方法中没有的化合物,不可能现场摸索新方法或用很多个方法(每个方法只分析几十种目标化合物)去慢慢地分析,如果是在实验室,可以慢慢去开发,去研究,但是在现场必须快速应对。安捷伦几十年的气质经验为5975T提供了一个很好的平台,我们在各个应用领域都有很全面的数据库,覆盖数百种目标化和物的分析方法和数据库帮客户解决这个问题,对未知化合物的鉴定非常容易,这也是目前市场上一些应急检测仪器所不具备的功能。例如,安捷伦有包含796 种有毒化学品数据库(含氯代二噁英和呋喃, 多氯联苯, 挥发物,半挥发物和 农药 等)。这些化合物对于饮用水安全具有重要意义。 当分析结束后,DRS(解卷积报告软件)和RTL(保留时间锁定)数据库软件自动地从谱图中找样品中存在的有毒化合物,自动地扣除样品基体干扰,避免人工操作带来的假阴和假阳结果出现。这样的一个方法就有了很广的应用覆盖性,满足应急监测的要求,就像我们使用百度搜索一样,方便,快速! 1.4 多种进样技术确保满足不同类型的液体准确分析要求 未知源水污染样品有可能很脏,基质复杂,也可能浓度很高(在污染发生初期),也可能很低(小于ppb浓度),有些溶解于水,有些不溶于水,需要灵活多样的样品处理和进样设备,才能快速地得到准确分析结果。 5975T可连接液体自动进样器,吹脱捕集,顶空,TSP(热分离进样杆) ,SPME(固相微萃取)等,适合不同类型和要求的分析。 1.5 可用于实验室检测的应急检测气质联用仪 5975T 不仅是一台用于现场快速分析的强大的现场监控GC/MSD 系统,而且它也可以用于日常实验室的分析。5975T 具有我们安捷伦的实验室台式GC/MSD 的同样的高性能和品质,包括从2 到1050u 的质量数范围适合最大范围的应用,以及经典的EI质谱和惰性离子源。无论何时何地,无论实验室还是野外,您都可以信赖那些可靠的,可重复性的结果。您要买的这台5975T的利用率会更高,您的宝贵投资可以得到更大的回报和创造更多的价值。 1.6 有信誉的、快速反应的售后技术支持。 安捷伦在国内有一支训练有素,反应快速的售后服务工程师团队,为我们的客户提供快速放心的服务和支持。 安捷伦提供业界最好的GC/MS产品和最专业的服务,有口皆碑,是客户长期价值的保障。2、满足应急检测能力的 Agilent 5975T 特点 5975T 将安捷伦5975 系列GC/MSD 的优秀性能和先进设计理念与我们专利的低热容GC 技术进行完美结合,创造出一台结构紧凑,高性能,高可靠性,适应现场快速分析的GC/MS 系统。5975T 采用的防震底座保证运输更安全。 2.1 满足美军标的抗震设计,性能稳定可靠 专用的抗震结构和减震底座设计 ,抗震性能达到美军标MIL-STD-810G:514.5C-3 方法!无论车把5975T 带到哪里,你都不用为抗震性能担忧,性能稳定可靠。 防震设计 2.2 高性能,超快速低热容色谱柱技术为应急检测提供快速保证 Agilent 专利, 最快的GC分离技术。升温速度可达1200 ℃/Min。可以帮您在应急现场快速得到分析结果。 利用安捷伦的DRS(解卷积报告软件)和RTL(保留时间锁定)数据库,更快速对现场化合物的筛查和分析。 整合快速分析的LTM技术非常适合车载 GC/MS - 5975T LTM GC/MSD 3. 多种进样系统,应对不同类型样品的应急分析需求 5975T可以配置多种不同的进样和样品处理装置,例如可配置安捷伦的7693A,7650A液体自动进样器,CTC自动进样器,吹扫捕集进样器,自动顶空进样器, TSP(热分离进样杆) ,SPME(固相微萃取)等,适合在现场或实验室内不同类型和要求的分析。以下主要介绍常配置的Stratum吹扫捕集进样器和热分离进样杆。 3.1 Stratum 吹扫捕集进样器 吹扫捕集自动进样器是检测水中挥发性有机物的常用进样设备,饮用水和地表水检测标准方法规定在使用气质联用仪作为检测仪器时,吹扫捕集自动进样器是标准的进样方法。 3.2 TSP(热分离进样杆)与萃取搅拌棒联用适合低浓度的有机化和物快速应急分析 SBSE(萃取搅拌棒)是一种适合在应急现场做低浓度样品富集的技术,只需要将外壁包裹着吸附材料的磁力吸附搅拌棒放入装有污染水样品的杯或瓶中,开动磁力搅拌器搅拌几分钟到10多分钟,痕量的污染有机化和物就会被富集吸附在搅拌棒上。通过萃取搅拌棒的富集,可以具有分析多种浓度低于ppb的污染化和物的能力。 热分离进样杆是安捷伦科技特有的装在毛细柱进样口的样品导入装置,可以实现在毛细柱进样口内的将吸附了污染样品的萃取搅拌棒热解析功能,请参考如下的TSP在5975T进样口的安装图1和TSP与毛细柱进样口连接的剖面和部件图2。 图2是热分离进样杆的示意图。1-TSP进样杆是将样品引入GCMS进样口的导入工具;2- TSP适配器将TSP进样杆连接到5975T GCMS进样口上,负责载气的输入,载气流入进样口将样品带入GCMS,此处载气的控制仍然由进样口原来的 EPC控制,TSP适配器只是改变气体流路位置,没有改变进样口的硬件结构,可以很简单的将TSP安装在GCMS进样口上;3-进样口衬管,TSP进样杆将搅拌棒带入GCMS原有的衬管,在这里样品汽化挥发,由载气带入色谱柱;样品被被毛细柱分离后不同化合物进入MS被分析。 SBSE技术不需要大量的溶剂萃取,富集效率比SPME(固相微萃取)高,因为动态搅拌富集,重复性也SPME好,使用简单方便,因此是一个适合污染水源现场分析的方法。对于半挥发或不挥发的污染物,吹脱捕集技术或顶空分析技术很难分析,但是,SBSE技术具有较好的效果。 1 TSP进样杆;2 TSP适配器;3 进样口衬管;4 萃取搅拌棒 图2. TSP在进样口的剖面和零件连接   安捷伦科技的车载式气质联用仪目前已经在水源地移动实验现场分析和污染减排等项目中得到广泛应用。 5975T车载式气质联用仪是目前市场上唯一可以帮您在现场第一时间得到实验室品质检测结果的车载气相色谱/ 质谱联用系统。 有关更多安捷伦车载式气质联用仪在地震灾区现场工作的消息,请关注安捷伦化学分析官方微博:http://www.weibo.com/agilentchem关于安捷伦科技 安捷伦科技公司(NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012财年,安捷伦的净收入达到 69亿美元。如欲了解关于安捷伦的详细信息,请访问www.agilent.com。
  • SCIEX质谱新品发布会:深耕远播三十载 创新决定未来
    p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 2019年7月30日,SCIEX公司在北京举办SCIEX API III上市三十周年庆祝活动暨2019新品发布会,百余位业内领导、专家及用户等出席本次活动。 /span /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/f3612ff7-0ae0-4ade-b26c-21ab18fe2306.jpg" title=" 1.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 1.jpg" / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/0b8177c6-7b73-4e3b-ae4f-01d2004ceb86.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center" img style=" width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/a690ce6a-8816-4876-b522-52b51dd13eac.jpg" title=" 2.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" alt=" 2.jpg" / /p p style=" text-align: center text-indent: 2em " span style=" text-indent: 2em " 活动现场 /span span style=" text-indent: 2em " br/ /span /p p style=" text-indent: 2em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/9f673931-aa5c-4254-b0c3-efed38240fc8.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: center " span style=" text-align: justify text-indent: 2em " SCIEX公司副总裁及中国区总经理 邵宏女士致辞 /span /p p style=" text-align: justify text-indent: 2em " 本次发布会,SCIEX重磅推出了一系列新品致敬30年的创新发展。据悉,此次北京发布会也是2019年SCIEX在中国举办新品发布会的第一站。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/14206521-d83d-4284-ae29-8933f0a2ccb0.jpg" title=" 15.jpg" alt=" 15.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center" span style=" text-indent: 2em " SCIEX 全球商业技术及中国区市场和应用总监 靳文海博士 /span span style=" text-indent: 2em " 主持发布会 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201907/uepic/b829f4ae-3211-4d23-9a26-e21d52ace652.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: center " 新品揭幕仪式 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201907/uepic/2e09bdcf-5299-48cf-b4d6-0a67fda7aed4.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center" 农业部蔬菜品质监督检验测试中心研究员 刘肃致辞 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/eee73f09-6c12-4800-bac0-a4016b56ac9b.jpg" title=" 8.jpg" alt=" 8.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center " 北京大学心血管研究所/天坛医院脂代谢中心主任 郑乐民致辞 /p p style=" text-align: center " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 338px " src=" https://img1.17img.cn/17img/images/201907/uepic/984fe0bf-551a-4e00-9140-b178f9ef4413.jpg" title=" 9.jpg" alt=" 9.jpg" width=" 600" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-indent: 2em " 中国质谱学会秘书长/北京师范大学教授 谢孟峡与SCIEX签署中国首台TripleTOF sup & reg /sup 6600+系统购买意向书 /span /p p style=" text-align: center " span style=" text-align: center text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 399px " src=" https://img1.17img.cn/17img/images/201907/uepic/0f2a16ed-378a-493a-aff2-cd5402674067.jpg" title=" 10.jpg" alt=" 10.jpg" width=" 600" height=" 399" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" text-indent: 2em " SCIEX Triple Quad& #8482 5500+ /span /p p style=" text-align: justify text-indent: 2em " 30年前,SCIEX在美国亚特兰大发布了首台商业化基于大气压电离源(API)的液相色谱-质谱联用仪——API III。2019年,同样在亚特兰大,SCIEX推出了三大创新技术和产品,SCIEX Triple Quad& #8482 5500+系统–QTRAP sup & reg /sup Ready、TripleTOF sup & reg /sup 6600+LC-MS/MS系统以及Scanning SWATH sup & reg /sup 采集技术。 /p p style=" text-align: justify text-indent: 2em " SCIEX& nbsp 专注于液相色谱质谱联用技术(LC-MS/MS),拥有丰富的产品线。多年来,SCIEX围绕着液质联用技术的创新研发,打造着高端质谱技术为核心的分析平台。 /p p style=" text-align: justify text-indent: 2em " 农业部蔬菜品质监督检验测试中心研究员刘肃、北京大学心血管研究所/天坛医院脂代谢中心主任郑乐民以及中国质谱学会秘书长/北京师范大学教授谢孟峡分别致辞。专家们真情讲述自己多年来与SCIEX共同成就的故事。肯定了SCIEX品牌在业内的影响力和产品优异性能。同时,也对本次发布的质谱新品和新技术表示了浓厚的兴趣及深深的期待。新品发布之后,主办方还安排了新产品和新技术的学术报告。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/b1ea7fc1-f271-4f18-86e6-3394320aa56f.jpg" title=" 11.jpg" alt=" 11.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center" span style=" text-indent: 2em " 报告题目:续写业界传奇,只为更好定量——SCIEX 5500+新品技术创新和应用 /span /p p style=" text-align: center text-indent: 2em " 报告人:SCIEX食品、环境及公安领域应用主管 刘冰洁 /p p style=" text-align: justify text-indent: 2em " 刘冰洁介绍到,SCIEX Triple Quad& #8482 5500+系统–QTRAP sup & reg /sup Ready是一款二合一质谱,可以同时拥有三重四极杆质谱(Triple Quad)的定量功能和线性离子阱质谱(QTRAP)的定性功能。该系统将续写SCIEX 5500所保持的高性能,并且具有更好的定量定性的性能、高灵敏度,扩展至更宽的动态范围、更快的极性切换速度,更好的重现性和耐用性。可以广泛适用于从合规检测如食品、环境、法医、药物等应用领域,到高端科研需求如靶向代谢组学研究等应用领域的应用。 /p p style=" text-align: justify text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201907/uepic/90a21047-eaf3-491e-a49e-38b3c7a32823.jpg" title=" 12.jpg" alt=" 12.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" style=" text-align: center max-width: 100% max-height: 100% width: 600px height: 400px " / br/ /p p style=" text-align: center text-indent: 2em " span style=" text-indent: 2em " 报告题目:专为优秀的定量而设计的高分辨质谱系统——SCIEX 6600 sup + /sup 新品技术创新和应用 /span /p p style=" text-align: center text-indent: 2em " span style=" text-indent: 2em " 报告人:SCIEX 组学科研领域应用专家 赵颖华 /span /p p style=" text-align: justify text-indent: 2em " TripleTOF sup & reg /sup 6600+LC-MS/MS系统是SCIEX公司为大规模定性定量分析而设计的质谱仪,可助力工业组学、生命科学及药物研发等不同类型组学的研究。该系统可以搭载低流速离子源及接口技术,以提供灵敏而可靠稳定的定性定量效果,让用户在常规分析流速、微升流速和纳升流速之间根据需求实现无缝切换。全新设计的TOF质谱离子入口透镜将分窗口电离和离子流控制,延长了仪器的正常运行时间。此外,该系统还引入了全新的Scanning SWATH采集技术,并在SCIEX云计算中使用OneOmics sup & #8482 /sup 进行高性能的数据处理。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/9b492f1e-95e8-4e4c-ab5c-405a399d50cf.jpg" title=" 13.jpg" alt=" 13.jpg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em text-align: center " 报告题目:将SCIEX卓越的定量技术推向超高通量水平——SCIEX Echo MS技术创新和应用 /p p style=" text-align: center text-indent: 2em " 报告人:SCIEX药物分析领域应用主管 司丹丹 /p p style=" text-align: justify text-indent: 2em " 作为本次发布会的压轴报告,司丹丹主要介绍了SCIEX与一些大型制药公司多年来共同合作的成果——声波激发进样质谱(Acoustic Ejection Mass Spectrometer,AEMS)。系统将开放式端口接口(OPI)技术与声波雾化进样技术结合,进一步拓展了应用领域。该系统无需连接液相色谱直接进样,可提供每秒3个样本的分析通量,并实现直接进样,从而消除交叉污染的风险。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 400px " src=" https://img1.17img.cn/17img/images/201907/uepic/0d7cc1cf-f95d-4c46-9ec9-424e39148c2a.jpg" title=" WechatIMG995.jpeg" alt=" WechatIMG995.jpeg" width=" 600" height=" 400" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em " 部分与会专家合影 /p p style=" text-indent: 2em " br/ /p
  • 心系灾区,慧荣和捐款六十余万助力河南灾后建设
    2021年8月6日下午,北京慧荣和科技有限公司为河南省特大暴雨灾区捐款六十万元助力灾区建设,河南省慈善总会对慧荣和科技的善举表示感谢。一方有难,八方支援,是中华民族的传统美德,极端强降雨让河南省大部分地区遭遇特大水灾,引起社会各界关注,慧荣和科技一直秉承国家兴亡,匹夫有责,责任在我的文化理念,在突如其来的灾难面前,慧荣和作为有担当的企业,愿为灾区建设贡献一份力量。“天灾无情人有情”北京慧荣和科技有限公司党支部党员积极带头个人捐款,并号召全体员工“奉献一份爱心”,大家纷纷慷慨解囊,给灾区人民捐款,短短一个多小时,就募捐到捐款46570元。慧荣和科技全体员工用实际行动诠释了爱,表达了对河南省灾区人民的挂念和祝福。向洪水中遇难的同胞表示沉重的哀悼,向曾奋战在抗洪抢险救灾一线的英雄们表示致敬。洪水已经退去,抗洪救灾取得了阶段性的胜利,在我党的坚强领导下,在全国人民的大力支援下,英勇的河南人民一定会取得灾后重建的最终胜利!
  • 新品发布|辞旧迎新之际,德国Eltra(埃尔特)再推新品Elementrac CS-i碳硫分析仪
    2018年1月,德国Eltra(埃尔特)在万众瞩目中隆重推出新款Elementrac CS-i碳硫分析仪。新款CS-i专为精确测定碳、硫元素含量而研发,它采用高频感应炉通入纯氧燃烧样品,同时配备最多4个高灵敏度的红外检测池来测定碳、硫含量,测定范围可以根据用户的具体要求进行调整。新款CS-i可以对钢铁、铸铁、铜、矿石、水泥、陶瓷、玻璃、有色金属、高温合金等无机材料中不同含量的碳、硫元素进行同步分析。新款ELEMENTRAC CS-i细节优势:n 自由配置不同范围的红外检测池n 新的自动真空除尘系统,确保更高的测量精度和稳定性n 新设计的粉尘过滤器恒温装置,提升了硫的检测精度n 新设计的反应催化炉,使碳的测定更准确n 新设计的高频感应炉功率可以任意设置,针对低熔点的样品测定更加精确n 新的ELEMENTS软件具有分析和诊断功能 参数:测量范围*1.0 g样品碳*0.5 ppm – 6.0%硫*0.5 ppm – 4.5% 常规参数测试时间40 s校准固体标样检测红外吸收法典型样品铁、铸铁、铜、矿石、水泥、合金、土壤、玻璃、有色金属、合金试剂—无水高氯酸镁—惰基氢氧化钠(附着于惰性载体上)—铂硅催化剂电源230 V AC ± 10% 50/60 Hz最大15 A,3450 W所需气体—氧气99.5%(2 – 4 bar)—压缩空气(4 bar)接口USB*测量范围与仪器配置有关
  • 防灾减灾:生命探测仪、无人机等科技手段挑大梁
    5月12日,我们将迎来第15个全国防灾减灾日。近年来,随着我国科技研发水平不断提升,越来越多的科技成果被应用于防灾减灾领域,一大批科技含量极高的防灾减灾设备投入实战。地震预测、火灾救援、台风预报……在灾害来临的紧要关头,一批“黑科技”冲在最前线,发挥着无可替代的重要作用,最大限度地避免、减轻了灾害对经济社会造成的损失,有力保障了人民生命财产安全。卫星监测地震降低震灾损失地震是我国造成人员伤亡最多的自然灾害,同时我国也是世界地震灾害最严重的国家之一。全球死亡人数超过20万人的地震有7次,其中4次发生在我国。从过去的“震时救灾”到当前的“综合减灾”,地震监测预报、地震灾害防御、地震应急救援构筑了我国综合减灾三大体系,正在尽可能将震灾损失降到最低。地震预测一直是世界性难题,其中一大困难在于现有技术手段很难探知从震源到地表的全过程。虽然人类目前仍然无法深入地球的“内心”,但当我们从太空望向地球时,观察、研究其磁场的变化情况或许将为地震预测提供新的视角与思路。在近期举办的第35届全国空间探测学术研讨会上,中国科学院国家空间科学中心研究员、国际宇航科学院院士、“张衡一号”卫星计划首席科学家兼工程副总设计师申旭辉,介绍了2018年发射的我国地震立体观测体系天基观测平台首颗卫星“张衡一号”在轨运行5年取得的进展。5年时间里,电磁监测试验卫星“张衡一号”已经观测到全球约60次7级以上地震、近600次6级以上地震、数万次5级地震。“我们发现,高达80%的6级以上地震在发生前半个月有明显前兆信号,较多出现在震前一周左右。通常卫星探测到的前兆信号不会出现在震中的正上方,往往偏离震中几百公里。”申旭辉介绍道。卫星监测突破了传统地震科学研究的限制,电磁波可以从地下到太空跨圈层传播。统计数据表明,空间电磁扰动与地震发生具有明显相关性。科学家通过卫星可以将电磁观测范围拓宽至全球尺度。从震例观测、收集的角度来讲,“天上一年等于地面二三十年”。卫星监测可以让科学家开展大样本统计研究,为检验各种方法和模型提供了基础。“张衡一号”能够发挥空间对地观测的大动态、宽视角、全天候优势,通过获取全球电磁场、电离层等离子体、高能粒子观测数据,对中国及周边区域开展电离层动态实时监测和地震前兆跟踪,弥补地面观测的不足,开辟了探索地震监测预测新途径。不过,申旭辉也坦言,目前大量前兆信号都是在地震发生后通过数据回溯找出来的,只有少量数据是提前发现的,这是因为数据处理非常复杂,在有限的人力和计算能力条件下无法对全球数据做到实时跟踪。申旭辉表示,现有空间卫星技术手段还无法实现时间、地点、强度三要素具备的精确地震预报,要想真正实现地震预报不能单靠一颗卫星,还要依赖地震学、电磁学、大地测量学、地球化学等多学科、多手段相结合。探测仪“能摸会闻”搜救废墟被困人员在2022年4月发生的长沙居民自建房倒塌事故中,一款由应急管理部上海消防研究所和中南大学联合研发的基于多输入多输出(MIMO)雷达的人体目标辨识与定位装备和多模融合生命探测仪大显身手。救援人员利用MIMO雷达人体目标辨识与定位装备,成功探测到3名被困人员的具体位置,为后续精准救援提供技术支撑。同时,救援人员借助多模融合生命探测仪,通过视频系统深入到废墟缝隙中,确定了2名幸存者的被困位置及周围环境,帮助救援人员科学决策、精准施救。应急管理部上海消防研究所高级工程师李震告诉科技日报记者,这两款新型生命探测装备是“十三五”国家重点研发计划项目“复杂灾害条件下生命搜救装备研究与应用示范”的最新成果。基于MIMO雷达的人体目标辨识与定位装备具有探测距离远、定位精度高、识别数量多的功能特点,可以准确搜索定位废墟下被困人员位置,实现多个目标的三维定位,降低误报率,提高探测结果的置信概率,使灾害救援现场搜救效能得到显著提升。多模融合生命探测仪则能够综合利用多种传感器对废墟内被困人员进行探测,并将雷达回波、图像和声音等信息无线传输到手持终端进行综合判断分析,其可有效克服单一传感器探测的技术缺陷,提高生命搜救效率。不只“耳聪目明”,有的新型生命探测设备还“能摸会闻”。中国科学院上海微系统与信息技术研究所研究员陶虎团队受星鼻鼹鼠“触嗅融合”感知启发,将嗅觉、触觉传感器与机器学习算法融合,研发出了“触嗅一体仿生智能机械手”(以下简称智能机械手)。该装置可以在人体被瓦砾石堆覆盖的场景下,协助开展应急救援。在模拟救援中,智能机械手对包括人体在内的11种典型物体进行了识别,准确率达96.9%。智能机械手内部的触觉传感器通过接触抚摸感知压力的变化,采集物体的硬度、轮廓和局部的样貌信息。智能机械手的嗅觉传感器中装有特定的气敏材料,它们在接触特定气体后会产生电阻变化。特定的气体组合又代表特定的物质,例如硫化氢、氨气等就是人体的特有气味。救援人员只需让智能机械手进行触摸,结合传感器采集信息,智能机械手就能够快速判断出被救人员的位置。该研究第一作者、中国科学院上海微系统与信息技术研究所博士生刘孟玮表示,模拟环境的测试已证明智能机械手具备实战能力。一旦出现紧急灾害,智能机械手即可投入救援。目前智能机械手已经具备基础的仿生和传感器功能,相关研究团队还将深化研究,通过进一步提升传感器性能和精进算法,智能机械手未来还能够敏锐地捕捉人体的脉搏,进而判断其生命体征。给台风“做CT”提升气象预报能力台风是发生在西北太平洋和南海海域的强热带气旋,台风活动有显著的季节性特征,大多数台风发生在夏秋季节。台风带来的主要灾害有暴雨、大风和风暴潮等。作为一个多台风影响的国家,几乎年年夏天,我国沿海省份的群众都会紧张地关注着台风动向,相关部门也严阵以待。在广东省茂名市电白区莲头半岛东南方6.5公里外的海上,矗立着一座铁塔,这是我国首个海洋气象综合观测平台——博贺海洋气象野外科学试验基地(以下简称基地)海上综合观测平台。这里是我国观测台风的最佳地点之一。近年来,该试验基地已经发展成为我国海洋灾害性天气研究最重要的野外观测试验基地,为认识和理解台风、海雾和冬春季海上大风等天气过程的边界层过程和致灾机理,积累了一批宝贵的实测数据,在台风预测、海洋灾害防治中发挥着重要作用。中国气象局广州热带海洋气象研究所海洋气象观测研究组首席黄健介绍,台风本质上是在海上生成的超大涡旋,当台风快要登陆时,利用观测平台上先进的海洋气象观测设备,可以给台风“做一个综合CT扫描”,从而得到关于台风的一些数据。这些数据可以用来优化现有台风预报模型的物理过程参数化方案,进一步提升数值模式对台风路径和强度的预报能力,为防治台风带来的次生灾害提供参考。目前,依托该平台,相关研究团队已经进行登陆台风观测试验研究29项,包括威马逊、天鸽、暹芭等。不仅如此,基地还首次对华南沿海海雾开展综合观测试验,迄今共观测到30多个典型华南海雾。无人机“天降神兵”迅速控制森林火情5月5日,四川攀枝花东区弄弄坪街道高峰社区后山发生森林火灾。经过救援人员两天两夜的扑救,明火已于5月7日凌晨被扑灭。每年我国都会发生多起森林火灾,给群众生命财产造成极大威胁。仅今年4月,全国已发生森林火灾56起,而森林火灾的消防救援一直是世界性难题。“森林火灾往往发生在干旱、气温较高的季节,且具有火势大、扩散快、点多面广的特点。而且不少森林火灾发生在山区,地形崎岖,交通不便,极大增加了灭火的危险性。”中国低空安全研究中心主任、中国无人机产业创新联盟副理事长孙永生此前在接受科技日报记者采访时说。无人机可以帮助解决森林消防中“盲区多、危险性强”等问题。此前在北京延庆区的一场森林防火实战演练中,无人机应急救援团队率先用无人机飞达消防员无法到达之地,化作“天降神兵”,展开全面无死角侦察。其搭载的多种摄像头实时对灾害现场进行画面直播,观察灾害现场情况。无人机一旦发现燃点,迅速报出准确坐标,并绘出火场3D态势图,辅助决策者进行指挥调度,快速执行精准救援计划。森林消防对无人机的基本要求是发现早、反应快、决策准、效果实。森林火灾的起因往往是复杂的,不同的火情需要针对性的灭火方案和灭火设备。无人机可以装载多种类型的灭火剂,并根据现场情况进行使用。航天科工仿真技术有限责任公司无人机灭火系统设计师杨兴光表示,对于森林消防来说,单一的无人机由于载重、处理能力等限制,难以直接有效扑灭火灾。为了消除隐患,将火灾尽量遏制在初生阶段,通过采用无人机蜂群战术,将智能算法注入无人机群,形成层次化布局、协同作战,能够大大提升森林火灾的灭火效能。
  • 2023年SCI期刊影响因子正式发布(附完整版下载)
    6月28日,科睿唯安发布2023年度《期刊引证报告》(Journal Citation Reports,简称 JCR)。影响因子(IF)最高的Ca-A Cancer Journal for Clinicians 由286.13降至254.7。Nature、Science 和 Cell 分别为64.8、56.9、64.5。国产期刊影响因子最高的仍是Cell Research,最新IF为44.1。  2023最新SCI期刊影响子名单大全.xlsx  2023JCR10分以下.xlsx  IF部分名单如下:
  • 祝贺!南开大学一个月内Science再+1
    12月15日,国际顶级期刊Science在线发表南开大学最新研究成果。该研究题为“Self-sustaining personal all-day thermoregulatory clothing using only sunlight(仅用太阳光驱动的全天候自持续人体热管理衣物)”。这是南开大学不到一个月内发表的第二篇Science论文,也是化学学院陈永胜教授团队在南开大学发表的第三篇Science论文。研究成果涉及一种新型太阳能驱动的柔性且可持续的个人体温调节衣物系统,该衣物系统能够在不同环境温度下维持人体热舒适度,将热舒适区域从22-28°C扩展到12.5-37.6°C,它能耗低、效率高,仅需12小时的太阳能量输入,就可以实现24小时的可控制和双模式体温调节,显示出极强的适应性。该衣物系统利用柔性太阳能电池和电卡热管理模块,能在白天制冷、夜晚保暖,提高了能源效率,且设计紧凑、便于穿戴。这一突破为人类在极端环境下的生存提供了新的可能性。Working schema when wearing our flexible OETC to achieve individual thermal comfort in a cycle between hot (in sunlight) and cold (in dark) environments as demanded“如果可以实现在太阳下制冷,在黑夜里保暖,并且可以利用无限和无处不在的太阳能来实现上述全天候和自持续的人体热管理,我们人类的生存空间将获得极大的扩展。”陈永胜说。Performance of the flexible OETC systemWearable thermoregulatory performance of OETC.The thermoregulation performance of OETC compared with cotton clothing and prospect of personal space travel.研究还面临着提高能源效率、扩大服装规模以及开发更高效材料等挑战。陈永胜表示:“我们将继续努力,通过研究,进一步优化提升其性能,为绿色能源的更好利用以及提高人类在极地、太空等极端恶劣环境中的生存能力作出更多的贡献。”化学学院2021级博士研究生王子源和材料科学与工程学院2021级博士研究生薄轶文为共同第一作者。陈永胜为第一通讯作者,马儒军、刘永胜为共同通讯作者,南开大学化学学院为第一单位。(左:马儒军教授 中:陈永胜教授 右:刘永胜教授)文章来源于南开大学微信公众号。
  • (纽迈分析-中油测井)创新联合出成果:移动式全直径二维核磁共振测量仪助力车载岩石物理实验室建设
    12月1日,主题为“智能驱动、数字决策”的中油测井新产品发布会在西安召开。 中国工程院院士邱爱慈、王双明、李宁,陕西省科学技术厅、中国石油总部部门、油气和新能源板块、工程技术板块、同行企业、石油高校等41家单位160余人出席会议。 此次发布会,中油测井发布了MLab车载岩石物理实验室、IDS智能导向系统、hiDAS光纤传感系统、FITS过钻具测井系列、LogUDB中国石油统一测井数据库等5项新产品。 纽迈与MLab车载岩石物理实验室 纽迈公司在核磁共振技术方面拥有多年的研发经验和技术积累,而中油测井公司在测井行业具有广泛的应用场景和实际经验。基于双方在技术研发和行业经验方面的优势互补,为推动核磁共振技术在测井行业的应用和发展,服务好国家重大战略需求,为我国测井行业作出新的更大贡献,纽迈与中油测井共建了核磁共振技术创新联合体。 MLab车载岩石物理实验室的核心设备移动式全直径二维核磁共振测量仪便是联合体双方联合开发的重要成果。 车载岩石物理实验室 车载岩石物理实验室由移动式全直径二维核磁共振测量仪、全直径岩心光学扫描仪、全直径岩心自然伽马能谱测量仪、漫反射红外光谱测量仪、岩石高温热解分析仪组成,有效集成了传统施工现场测试的及时性,以及实验室测试的精细化等优点,具有绿色、安全、快速、无损、机动性强的等特点。 可用于井场新鲜全直径岩心的快速连续测量,提供岩性、物性、含油性和孔隙结构及烃源岩特性参数、为测井解释、储层评价、甜点优选提供数据支撑,尤其适用于致密油、页岩油等非常规储层的快速精确评价,助力石油天然气勘探开发。 移动式全直径二维核磁共振测量仪 基于移动式全直径二维核磁共振测量仪等设备的车载岩石物理实验室充分发挥钻井取心的价值,最大程度的保持原位地层信息,为数字岩心建设提供解决方案。 当岩心出井后,去除岩心表面的泥浆或者密闭液,立刻将岩心用保鲜膜包裹,减少岩心中流体的逸散,首先连续采集以一维核磁T2谱,获取岩心孔隙度、孔隙结构信息。然后采集二维核磁T1-T2谱,计算含油饱和度,核磁共振仪器的最小回波间隔0.2毫秒,纵向分辨率1cm、2cm、4cm、10cm可选。每次扫描1米岩心,2cm分辨率下的一维核磁采集时间12分钟,二维核磁单点采集时间3分钟。 移动式全直径岩心核磁扫描技术能够检测大尺寸岩心,全面描述强非均质性储集层的真实孔隙结构,代表性强;可以在岩心出井的第一时间进行无损、快速测量;能够设定测量速度,模拟不同测井速度下的测量效果;同时具有更高的纵向分辨率。
  • 美国宇航局在纳米卫星有效载荷上首次使用赛多利斯一次性无菌液体处理袋
    赛多利斯无菌袋随火箭进入外太空这是Flexboy不平凡的应用:美国航空航天局将首次使用50毫升和150毫升的赛多利斯一次性无菌袋进行外太空研究, 美国政府机构,美国国家航空航天局艾姆斯研究中心,硅谷,CA,计划发射带有细胞培养载荷的纳米卫星进入太空,以检测在零重力环境下细胞的生长情况。这些细胞培养物将被存储在一个赛多利斯Flexboy无菌储液袋中。纳米卫星上配备一个微型实验室, 其中的光学传感器可以监测细胞生长情况,测量体积不超过一个鞋盒的大小,最多重15公斤或33磅。此项研究的使命具有和测试治疗真菌感染药物以及测试抑制细菌生长的抗生素药物具有类似的意义。美国国家航空航天局进行此项研究的目的在于为长时间暴露在失重的条件下的宇航员提供更好的医疗服务。Flexboy令人兴奋的应用:参加美国宇航局的航天生物实验This is no ordinary application for Flexboy: NASA will be using the 50 ml and 150 ml version of Sartorius single-use bags for the first time to conduct research in outer space. The U.S. governmental agency, NASA Ames Research Center, Silicon Valley, CA, plans to launch nanosatellites, with a payload of cell cultures, into space in order to examine cell growth in a zero-gravity environment. These cultures will be stored in a Sartorius Flexboy. Measuring not much larger than a shoe box and weighing 15 kilograms, or 33 pounds, at most, the nanosatellites are equipped with a mini-lab, in which cell growth is monitored by optical sensors. There have been missions similar to these in order to test medications for treating fungal infections as well as antibiotics for curbing bacterial growth. Such research conducted by NASA is designed to provide better medical care to astronauts exposed to the conditions of weightlessness over long periods.赛多利斯集团是一家国际领先的实验室仪器、生物制药技术和设备的供应商。实验室产品及服务部为客户提供一流的实验室仪器如实验室天平、移液器和纯水设备、实验室耗材包括实验室过滤器和移液器吸头,以及优质的服务。生物工艺解决方案涵盖过滤、液体处理、发酵、细胞培养和纯化,并致力于生物制药行业过程控制。工业称重专注于对食品,化工和制药行业生产工艺过程中的称重、监控和控制。 赛多利斯集团在欧洲、亚洲以及美洲都拥有自己的生产及研发机构,并已在全球110多个国家设立了办事处及代表处,总共拥有5,000多名员工。 赛多利斯中国 电话:400.920.9889 / 800.820.9889 传真:021.68782332 邮箱:info.cn@sartorius.com 官网:www.sartorius.com.cn
  • 扫描电镜不适合测磁性材料吗?——安徽大学林中清33载经验谈(11)
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 【作者按】一直以来的观点都认为磁性材料不适合用电子显微镜来观察。理由似乎无可辩驳:电子显微镜的关键部件,磁透镜,会将磁性材料磁化并在透镜表面形成吸附。造成的影响是电镜性能大大的下降,若情况严重,会使得电镜无法形成图像。正是基于这一缘由,许多电镜室将磁性材料拒之门外,拒绝对这类样品进行检测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 虽然我们对磁性材料十分的在意,但对磁性材料的定义却很少能说得清楚,许多过分的误杀也由此产生。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 什么是磁性材料?扫描电镜的磁透镜和磁性材料之间有何关联?怎样判断测试结果是否受样品磁性的干扰?如何对磁性较强的材料进行测试?怎么避免其对镜筒的污染?所有这些问题,都将在本文中给您一一解答。 /span /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 15px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-family: 微软雅黑 " strong span style=" font-size: 18px " 一、什么是磁性材料 /span /strong strong span style=" font-size: 18px " /span /strong /span /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.1 物质磁性的来源 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " “磁性理论”起源于安培的“分子电流假说”:分子中存在回路电流,即分子电流,分子电流相当于一个最小的磁性单元。分子电流对外界的磁效应总和决定磁性是否对外显示。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 安培理论是建立在当时分子学说体系的基础之上,现在我们知道组成物质的最基本粒子是原子,在原子学说的理论体系中,“分子电流”并不存在,故必须建立新的模型假说。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 波尔在卢瑟福原子结构模型理论和普朗克量子理论的基础上,提出了被称为经典的原子模型假说(见经验谈4)。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 基于原子模型假说,对物质磁性来源的解释是:物质的磁性源自物质原子中电子和原子核的磁矩。原子核的磁矩很小可以忽略,故物质的磁性取决于“电子磁矩”。电子的磁矩源自电子运动,电子的轨道运动形成“轨道磁矩”,自旋运动形成“自旋磁矩”。在充满电子的壳层中,电子的在轨运动占满了所有可能方向,各种方向的磁矩相互抵消,因此总角动量为零。我们在考虑物质磁性时只需考虑那些未填满电子的壳层,称为“磁性电子壳层”。物质对外显现磁性的状态,也取决于这个磁性电子壳层的状况。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2 磁性物质的分类 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物质的磁性源自原子中电子运动所形成的磁矩。任何物质都存在着电子的轨道运动和自旋运动,因此都存在着磁矩,只是依据电子填充核外电子轨道的情况按大类分为:反磁(抗磁)、顺磁、铁磁,这三大类磁性物质。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2.1 反磁性与反磁性物质 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁性也称为抗磁性。定义为:在外加磁场的作用下,电子的在轨运动会产生附加转动(Larmor进动),动量矩将发生变化,产生与外磁场相反的感生磁矩,表现出“反磁性”。应该说所有的物质进入磁场都会表现出反磁的特性,那么为啥还有反磁性物质这一分类呢? /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁性物质:当物质的原子核外电子充满所有轨道时,无论是单质还是配合物所形成的杂化轨道,电子各向磁矩都将完全的相互抵消,因此该类物质在进入磁场后电子只表现出反磁特性。称为反磁性物质。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2.2 顺磁性物质 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁性物质:物质的分子或原子中含有未成对电子,这些电子的磁矩在各自的原子和分子中无法完全抵消。而热扰动的影响使原子和分子间的未成对电子无序排列,造成个体磁矩的互相抵消,最终合磁矩为零,物质整体对外不显磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物体进入磁场后,未成对电子将受磁场作用而趋向磁场排列,同时热扰动的作用使其趋向混乱排列,但综合结果是在磁场方向产生一个磁矩分量,对外表现出磁性,低温会使得磁矩分量加强。常温下拆除磁场后,热扰动的作用会使这些单电子重归无序排列,合磁矩归零,对外不表现磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁物质按照磁性强弱可粗分为:弱顺磁、顺磁、超顺磁。“弱顺磁”物质进入磁场,对外表现出的磁性极弱,需极精密设备才能测出。“超顺磁”物质靠近磁场后,表现出的磁性极强接近铁磁。普通顺磁材料的磁性介于两者之间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁物质大致包括以下几大类:过渡元素、稀土元素、还有铝、铂等金属,氮的氧化物、稀土金属的盐,玻璃,水,非惰性气体等等。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 1.2.3 铁磁性物质 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 相对于顺磁性物质,铁磁性物质原子核外的电子轨道上有更多未配对电子。这些未配对电子的自旋方向趋同,形成所谓的 “磁畴”。 “磁畴”可认为是同方向电子的集合,由其形成的“饱和磁矩”要远大于单电子形成的磁矩。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 铁磁性物质各原子或配合物所形成的磁畴,相互之间大小和方向都不相同。如同顺磁性物质一样,在热扰动影响下这些磁畴杂乱排列,最后形成的合磁矩为零。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 当铁磁物质进入磁场,这些磁畴在磁场影响下趋向沿磁场方向的趋同排列,而热扰动影响下的杂乱排列趋势相对磁场对磁畴的影响要小很多,故该物质进入磁场后表现出的合磁矩比顺磁性物质要强大得多。当外加磁场达到一定值(饱和值),移除磁场影响后,常规的热扰动无法使得这些磁畴回归无序排列状态,合磁矩保持进入磁场的强度,物质对外继续保持被磁化的状态。该现象被称为“磁滞”现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 高温(500-600度)所形成的热扰动才会使得处于“磁滞”状态的磁畴重新回归无序排列,这就是高温消磁的缘由。一些所谓的交变磁场消磁器也能打乱磁畴的有序排列,但是效果最佳、消磁最彻底的方法,还是高温消磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " “磁滞”现象最先在铁器上被发现,故该磁特性被称为“铁磁性”。过渡族金属及其合金和化合物都具有这种特性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 综上所述,物质的磁性来自它们原子核外电子的运动,严格来说所有的物质都带有磁性。依据物质进入磁场后对外所表现出来的磁性可分为:反磁、顺磁以及铁磁性材料。顺磁性材料依据磁性强弱可粗分为弱顺磁、顺磁、超顺磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁或弱顺磁材料进入磁场,对外不表现出磁性或表现出的磁性极其微弱(只有精密仪器才能测得);顺磁及超顺磁性材料进入磁场后会表现出较强的磁性;铁磁性材料不仅进入磁场表现出强磁性,离开磁场后还具有强烈的磁滞现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 15px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-size: 18px font-family: 微软雅黑 " strong 二、电镜对磁性材料的影响 /strong /span /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 电子显微镜的光源是高能电子束,对电子束进行会聚的最佳方案是采用电磁透镜。因此在电镜中充满着各种磁场,不可避免会对进入磁场的那些易被磁化的样品产生影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 扫描电镜对样品产生磁影响的主要部件是物镜。不同类型的物镜对样品的磁影响不同。扫描电镜物镜类型分为三类:外透镜、内透镜、半内透镜。下面将分别加以探讨。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 2.1 外透镜物镜 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物镜磁场被封闭在物镜内部,样品置于物镜的外围,物镜的磁场对样品产生的影响极其微弱或基本不产生影响。 /span span style=" font-family: 微软雅黑 text-indent: 2em " & nbsp & nbsp /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/8410991c-d00d-4266-b0b6-1091eb88c9ab.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 从上图可见,外透镜物镜模式,磁场影响不到样品,样品可以极度靠近物镜观察。但由于磁场的封闭,使得进入物镜的样品表面电子信息减少,不利于镜筒内探头对其接收。对观察表面信息较弱的样品,成像质量不如其它透镜模式。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 2.2内透镜物镜 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 样品置于物镜磁场中,物镜磁场对样品磁影响极大。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: 微软雅黑 text-indent: 2em " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/36bc7008-2663-4aa7-91a8-e46dd75a471c.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 如上图,样品置于磁场中。物镜磁场将电子束激发并溢出样品的电子信息基本都收集到探头。探头接收到更为充足的样品信息,故成像质量优异,特别适合弱信号样品形成高分辨像。缺点是:样品尺寸不可过大。对样品的磁性质限制大,只允许对反磁性或磁性极弱的弱顺磁样品进行测试。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 2.3半内透镜物镜 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物镜对样品仓泄漏部分磁场,样品在靠近物镜时(WD≤2mm)进入磁场,受到磁场的强烈影响。但随着工作距离加大,其受磁场的影响逐渐减弱,远离物镜时(WD≥7mm)受磁场影响极小,WD& nbsp & gt & nbsp 8mm以后基本不受磁场的影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 以上WD是指样品上最高点到物镜下平面的距离。 /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/aa3a5112-d480-4bb6-a699-15e1a7a9c536.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 该透镜模式被目前绝大多数追求高分辨性能的扫描电镜所采用。特点是:镜筒内探头对样品电子信息的接收能力介于外透镜和内透镜模式之间;对样品的检测尺寸、磁特性的限制不大;有利于对绝大部分样品进行高分辨观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 高分辨扫描电镜为了帮助镜筒内探头获取更多的二次电子,基本上都采用半内透镜物镜设计,其优势在于兼顾面较为广泛。顺磁性、铁磁性样品只要保持一定工作距离且本身不带有磁性,测试效果与反磁性物质没有区别。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 15px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-size: 18px font-family: 宋体, SimSun " strong 三、如何判断样品的磁性 /strong /span /p /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 如何评判样品磁性的强弱是否适合进行扫描电镜检测。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 许多实验室都依据样品名称或采用磁铁对样品进行测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 1.& nbsp 依据名称:把磁性样品等同于铁、钴、镍,并扩展为含 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " & nbsp & nbsp 铁、钴、镍的所有材料。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 2.利用磁铁:只要磁铁可以吸引,就被认为是磁性样品。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 凡符合以上所罗列的样品,统统列为扫描电镜的禁测样品。实践证明,这种判断方式简单粗暴,错误百出。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 通过前面的介绍我们知道,材料按磁性区分为反磁性、顺磁性、铁磁性物质。弱顺磁、反磁性物质进入磁场不会受到磁场影响,顺磁、超顺磁、铁磁性材料进入磁场会被磁化。一旦离开磁场,顺磁、超顺磁物质恢复原状,而铁磁性物质会表现出强烈的磁滞现象。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 依据样品的磁特性和物镜的分类,样品磁特性对电镜测试的影响首先要考虑以下两种情况: span style=" font-size: 16px font-family: 微软雅黑 color: rgb(0, 176, 240) " strong 样品本身带磁或不带磁 /strong /span 。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " A)& nbsp 样品本身带磁:所有电镜都会受到影响。吸附污染镜筒、扰乱电子束影响测试结果,这些都是样品带磁的直接后果。可采用铁制品(薄铁片、大头针)来检测样品是否带磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " B)& nbsp 样品本身不带磁性: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 1.& nbsp 物镜采用内透镜模式,测试时需检测样品是否为顺 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 磁材料。用磁铁,如磁铁能吸引该样品,则不可测。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 2.& nbsp 物镜是半内透镜模式,大工作距离(WD& gt 8mm)测试& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 无限制,小工作距离测试,则需如上检测其顺磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 3. 外透镜物镜模式,理论上不受工作距离影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 其次, strong span style=" font-size: 16px font-family: 微软雅黑 color: rgb(0, 176, 240) " 样品的合磁矩会随着物体体积的改变而发生变化,体积越小合磁矩越微弱 /span /strong 。这是量变到质变的关系,因此对于外透镜和半内透镜模式设计的扫描电镜,可采用以下的方式对测试样品进行筛选,并选用与之相匹配的样品处理方式。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " a.& nbsp 直径在两、三百纳米以下的小颗粒,合磁矩总量极其微弱,一般不会对测试工作产生太大的影响。充分的分散、采用稍大一些的工作距离,即可放心测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 这类小颗粒材料的堆积体容易使得合磁矩增加,松散的堆积与基底结合不牢,易受电子束轰击溅射并吸附在镜筒上。达一定值,会对仪器性能产生影响,特别是磁性稍强一些的纳米颗粒。故制样时,应极力避免堆积体的形成。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " b.& nbsp 微米级别颗粒所形成的合磁矩就应当引起重视。充分的固定和远离镜筒(WD& gt 8mm)是保证样品测试的关键。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 个人体会是绝大部分情况:合磁矩较大的样品,所需观察的表面细节都较大,采用样品仓探头在大工作距离(15mm)下观察,获取的样品信息将会更加充分。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 固定、分散好样品,控制好工作距离,只要样品本身不带磁(铁片试),进行SEM测试基本都不会有问题。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 12px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-family: 微软雅黑 font-size: 18px " 四、如何对磁性较强的样品进行SEM测试 /span /strong /p /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 对磁性较强的样品应当排除采用内透镜物镜设计的扫描电镜对其进行测试。下面的讨论主要针对外透镜和半内透镜。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 4.1外透镜物镜模式 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 采用这类物镜模式的扫面电镜。无论物质具有铁磁或是顺磁特性,只要未被磁化,理论上可以在任何位置进行测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 但是样品最好能被充分固定,特别是粉末样品,更要保证每一个颗粒都有很好的固定。否则小工作距离观察,粉末颗粒在电子束轰击下,也容易溅射进镜筒对磁场产生干扰。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 4.2半内透镜物镜模式 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 这类物镜模式由于有部分磁场外泄,因此样品必须远离物镜观察。具体工作距离依据样品合磁矩大小的不同而不同,一般来说大于8mm工作距离是比较安全的。其他操作和外透镜模式基本相同,只是固定必须更为加强。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 对于大型块状物体建议使用夹持台,以保证测试的安全。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 如果发现有像散消除不掉的现象,基本说明样品被磁化,可通过高温或消磁器进行消磁处理来排除磁场干扰。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 铁磁性、顺磁性物质的细节一般都在几十纳米以上,大工作距离下采用样品仓探头观察,将呈现更为丰富的样品信息。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 前面的文章已经探讨过,小工作距离、镜筒探头组合,适合观察松软样品的几纳米细节信息,拥有这种特性及细节的样品,基本都是反磁或弱顺磁样品,漏磁对其不产生影响。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 text-align: justify text-indent: 32px " /span /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 12px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " span style=" font-family: 微软雅黑 font-size: 18px " strong 五、半内透镜物镜测试强磁性样品的实例 /strong /span /p /section /section /section /section /section /section /section p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/916e6529-9bb5-49a2-b8d3-57f48734f16e.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/7674d57d-40c8-42c8-bfaf-3d270d6d42b4.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ca2e06fc-9f45-4296-a1b1-717ac9a0af50.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/868c5744-d43f-4cdd-acae-e6012c5ba6b5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/978c64de-0c97-4b8d-9e4e-5a032c4cacd7.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-align:center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0ee817bf-2352-4e19-92dd-37e18e7d0f0e.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " /span /p section style=" box-sizing: border-box text-align: justify " section style=" position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" text-align: center justify-content: center margin: 10px 0% position: static box-sizing: border-box " section style=" display: inline-block width: auto vertical-align: top min-width: 10% max-width: 100% height: auto border-top: 1px solid rgb(92, 107, 192) border-top-left-radius: 0px padding: 0px 20px box-sizing: border-box " section style=" margin: 0px 0% position: static box-sizing: border-box " powered-by=" xiumi.us" section style=" display: inline-block min-width: 10% max-width: 100% vertical-align: top transform: matrix(1, 0, -0.2, 1, 0, 0) -webkit-transform: matrix(1, 0, -0.2, 1, 0, 0) -moz-transform: matrix(1, 0, -0.2, 1, 0, 0) -o-transform: matrix(1, 0, -0.2, 1, 0, 0) border-style: none none none solid border-width: 1px 5px 1px 0px border-radius: 0px border-color: rgba(255, 255, 255, 0) rgba(255, 255, 255, 0) rgb(92, 107, 192) rgb(223, 46, 0) padding: 5px 10px background-color: rgb(92, 107, 192) box-shadow: rgba(255, 255, 255, 0) 0px 0px 0px line-height: 1 letter-spacing: 0px width: auto height: auto box-sizing: border-box " section style=" color: rgb(255, 255, 255) font-size: 12px text-align: justify letter-spacing: 4px line-height: 1 box-sizing: border-box " powered-by=" xiumi.us" p style=" white-space: normal margin-top: 0px margin-bottom: 0px padding: 0px box-sizing: border-box " strong span style=" font-size: 18px font-family: 微软雅黑 " 六、总结 /span /strong /p /section /section /section /section /section /section /section p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 物质的磁性主要来自于核外电子的在轨运动,因此所有物质都具有一定磁性。依据物质进入磁场后对外表现出的磁特性可将物质分为:反磁性、顺磁性、铁磁性这三类。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 反磁性物质由于核外不存在未成对电子,无论是否进入磁场,其合磁矩都为零,对外不表现出磁性。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁性物质核外存在未成对电子,故具有一定的个体磁矩。热扰动的影响使得原子或分子间未成对电子排列杂乱,个体磁矩互相抵消,最终合磁矩为零,对外不表现磁性。当这类物质进入磁场,未成对电子受磁场的影响,克服热扰动的束缚而按磁场方向趋同排列,合磁矩不为零,将对外表现出磁性。由于合磁矩较弱,离开磁场后热扰动会使得这些未成对电子重归无序,磁性也随之消失。依据磁性的强弱,顺磁性物质可分为:弱顺磁、顺磁、超顺磁。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 铁磁性物质的原子核外存在多个方向一致的未成对电子,形成“磁畴”。磁畴的合磁矩要远强于单个未成对电子,因此在离开磁场后,常温下,热扰动无法使这些磁畴重归无序,对外表现出所谓“磁滞”现象。该现象最先出现在铁器上,故被称为“铁磁性”。500度以上的高温,热扰动会使得磁畴重归无序,磁滞现象随即消失,这就是所谓的“高温消磁”。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 扫描电镜的物镜有三种模式:外透镜、内透镜、半内透镜。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 外透镜模式:物镜磁场封闭在透镜中不对外泄露,因此样品受磁场影响极小。缺点是镜筒内探头获取的样品信息较少,不利于形成样品的高分辨形貌像。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 内透镜模式:样品置入物镜磁场,受磁场影响极大。优点是镜筒内探头获取样品信息充分,有利于高分辨像的形成。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 该物镜模式对样品的限制极大。体积大小是一方面,更关键在于对样品磁性质的限制,故应用面不大,市占率不高。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 半内透镜模式:物镜对样品仓泄漏部分磁场,小工作距离时样品进入物镜泄漏的磁场,大工作距离样品远离物镜磁场。该透镜模式兼顾了外透镜和内透镜模式的优、缺点。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 目前外透镜及半内透镜模式是高分辨扫描电镜的两类主力机型。主流的观点认为: 外透镜模式适合磁性材料观察,半内透镜模式适合样品的高分辨观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 通过对物质的磁性及物镜类型的仔细剖析发现,这种观念显得过于简单和偏颇。其存在的根源是基于两个错误概念: /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 1.& nbsp 小工作距离才能获得高分辨像,并引伸为是进行扫描 & nbsp 电镜高分辨测试的基本选择。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 2.& nbsp 磁性材料才有磁性,且一定会被半内透镜物镜所磁化。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 在样品的测试工作中,常常发现实际情况却是如下表现。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 样品被磁化:无论哪种物镜模式都不会获得满意的结果。电子束都会被干扰,也都有可能被吸到物镜中去。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 样品未被磁化:理论上外透镜物镜模式对样品进行测试可不受限制;半内透镜物镜模式,样品需在大工作距离下测试。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 工作距离和图像分辨力之间并非是一种单调的变化关系。需要获取的样品表面信息细节大于20纳米,采用大工作距离、样品仓探头组合反而有更高的图像分辨力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 顺磁性、铁磁性物质的表面细节都较粗,在大工作距离下测试,获得的结果更充分,细节分辨更优异。因此这类样品更适合在大工作距离下采用样品仓探头来观察。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 近几篇文章都在反复且充分的展示这样的结果:大工作距离测试对于扫描电镜来说极为关键。它不仅能给我们带来更多的样品信息,还充分扩展了应对疑难样品的操作空间。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 特别是对于磁性较强的样品,扫描电镜在大工作距离测试时的分辨能力越强大,获取的样品表面信息就越充分。 /span /p p style=" text-align: justify text-indent: 2em " strong span style=" font-size: 16px font-family: 微软雅黑 " 参考书籍: /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《扫描电镜与能谱仪分析技术》张大同2009年2月1日 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 华南理工出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《微分析物理及其应用》 丁泽军等 & nbsp & nbsp & nbsp 2009年1月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 中科大出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《自然辩证法》 & nbsp 恩格斯 & nbsp 于光远等译 1984年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 人民出版社 & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 《显微传》 & nbsp 章效峰 2015年10月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " & nbsp 清华大学出版社 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 日立S-4800冷场发射扫描电镜操作基础和应用介绍 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " 北京天美高新科学仪器有限公司 & nbsp 高敞 2013年6月 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px font-family: 微软雅黑 " img style=" max-width: 100% max-height: 100% float: left width: 80px height: 124px " src=" https://img1.17img.cn/17img/images/202008/uepic/3f96819c-185b-42ce-b06e-a5d9445545c0.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 80" height=" 124" border=" 0" vspace=" 0" / strong 作者简介: /strong 林中清,1987年入职安徽大学现代实验技术中心从事扫描电镜管理及测试工作。32年的电镜知识及操作经验的积累,渐渐凝结成其对扫描电镜全新的认识和理论,使其获得与众不同的完美测试结果和疑难样品应对方案,在同行中拥有很高的声望。2011年在利用PHOTOSHIOP 对扫描电镜图片进行伪彩处理方面的突破,其电镜显微摄影作品分别被《中国卫生影像》、《科学画报》、《中国国家地理》等杂志所收录、在全国性的显微摄影大赛中多次获奖。& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " strong style=" text-indent: 2em " span style=" font-family: 微软雅黑 " 延伸阅读: /span /strong /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200714/553843.shtml" target=" _self" style=" text-indent: 2em font-family: 微软雅黑 font-size: 16px color: rgb(0, 176, 240) text-decoration: underline " span style=" text-indent: 2em font-family: 微软雅黑 font-size: 16px color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(10) /span /a /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200616/551389.shtml" target=" _self" style=" font-family: 微软雅黑 text-indent: 2em font-size: 16px color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑 text-indent: 2em font-size: 16px color: rgb(0, 176, 240) " 扫描电镜工作距离与探头的选择(上)——安徽大学林中清32载经验谈(9) /span /a /p p style=" text-align: justify text-indent: 2em margin-bottom: 15px " span style=" font-size: 16px font-family: 微软雅黑 " /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " span style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " a href=" https://www.instrument.com.cn/news/20200515/538555.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " 如何正确选择扫描电镜加速电压和束流 ——安徽大学林中清32载经验谈(8) /a /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200414/536016.shtml" target=" _self" style=" text-indent: 2em color: rgb(0, 176, 240) margin: 0px padding: 0px font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em " 扫描电镜操作实战技能宝典——安徽大学林中清32载经验谈(7)& nbsp /span /a /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200318/534104.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 扫描电镜的探头新解——安徽大学林中清32载经验谈(6) /span /a span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline font-family: 微软雅黑 " & nbsp /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200218/522167.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 二次电子和背散射电子的疑问(下)——安徽大学林中清32载经验谈(5) /span /a span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline font-family: 微软雅黑 " & nbsp /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20200114/520618.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 二次电子和背散射电子的疑问[上]-安徽大学林中清32载经验谈(4) /span /a span style=" margin: 0px padding: 0px text-indent: 2em color: rgb(0, 176, 240) text-decoration-line: underline font-family: 微软雅黑 " & nbsp /span /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20191224/519513.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 电子枪与电磁透镜的另类解析——安徽大学林中清32载经验谈(3)& nbsp /span /a /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " a href=" https://www.instrument.com.cn/news/20191126/517778.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " span style=" margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 " 扫描电镜放大倍数和分辨率背后的陷阱——安徽大学林中清32载经验谈(2)& nbsp /span /a /p p style=" margin-top: 0em padding: 0px color: rgb(68, 68, 68) text-indent: 2em margin-bottom: 15px " span style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " a href=" https://www.instrument.com.cn/news/20191029/515692.shtml" target=" _self" style=" color: rgb(0, 176, 240) margin: 0px padding: 0px text-indent: 2em font-family: 微软雅黑 text-decoration: underline " 扫描电镜加速电压与分辨力的辩证关系——安徽大学林中清32载经验谈 /a /span /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制