当前位置: 仪器信息网 > 行业主题 > >

二硒

仪器信息网二硒专题为您提供2024年最新二硒价格报价、厂家品牌的相关信息, 包括二硒参数、型号等,不管是国产,还是进口品牌的二硒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二硒相关的耗材配件、试剂标物,还有二硒相关的最新资讯、资料,以及二硒相关的解决方案。

二硒相关的资讯

  • 淀粉中顺丁烯二酸和顺丁烯二酸酐高效液相检测方法
    近日台湾被曝&rdquo 毒淀粉&rdquo 事件,即食品中发现含顺丁烯二酸的有毒淀粉。珍珠奶茶、甜不辣、粉圆、板条、鸡排等这些台湾经典美食均中枪。顺丁烯二酸又名马来酸酐,是工业原料,加入淀粉后可增加食物的弹性、黏性及外观光亮度,在食品中属非法添加物,会对人体肾脏造成极大损伤。 天津博纳艾杰尔科技有限公司采用Venusil MP C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的高效液相色谱检测方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的定量检测。 样品制备 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL乙醇-水(5:95,v:v)混合溶液,涡旋2min,超声提取20 min后用乙醇-水混合溶液定容至50 mL,摇匀,8000 r/min离心5 min,取上清液过0.45&mu m尼龙滤膜,待测。 色谱条件 色谱柱:Venusil® MP C18 5&mu m 100Å 4.6× 250mm 流动相:水(磷酸调pH至3.0):乙腈=90:10 波 长:215nm 流 速:1mL/min 柱 温:30℃ 进样量:20ul 色谱图 图1 0.1ug/ml标准溶液色谱图 图2 淀粉空白样品色谱图 图3 10mg/kg淀粉添加样色谱图 订货信息 名称 规格 订货号 Venusil MP C18 5µ m;100Å ;4.6*250 mm VA952505-0 1.5mL样品瓶 短螺纹透明带书写处,100/PK 1109-0519 1.5mL样品瓶盖 100/PK 0915-1819 微孔滤膜(Nylon) 13mm,0.45&mu m,200个/包 AS021345 一次性注射器 2ml无针头,100支/包 LZSQ-2ML 乙腈 4L/瓶,色谱纯 AH015-4
  • 苯系物分析用二硫化碳促销
    CNW二硫化碳的纯度大于等于99.9%,苯低含量低,能够满足水、空气、土壤以及室内空气质量监测中苯系物的萃取和含量测定。(&rho =1.26g/ml) 产品货号 产品名称 品牌 规格 报价(元) 促销价(元) 4-114001-0500# (低苯级)二硫化碳 CNW 500ml 1120.00 896.00 截止时间:2010年4月30日 售完为止!
  • *成果信息:用于空气中苯和TVOC分析的二次热解吸仪
    由上海科创色谱仪器有限公司**开发的该装置可以与*通用型气相色谱仪器相联,不仅可以解吸活性炭吸附管中苯系物,通过二次热解吸及直接进样方式,很方便地*分析空气中苯,还可以解吸Tenax吸附管中TVOC,通过一次热解吸或二次热解吸直接进样方式,很方便地*分析空气中TVOC,更完善更合理地**标准GB11737、GB50325、GB/T18883中需要解决的分析问题。不仅操作方便,被测组份分离度提高,而且方法检测灵敏度和定量分析*度也大大提高,价格大大低于目前市场上的*二次热解吸仪。填补了国内空白。(*号:2005200454443)本网站栏目中有该设备的图片或到上海科创公司网站查看www.shupkc.com *来电咨询:021-69982681,66529903,66529206,66529775,66529781
  • 关于热脱附解吸仪二级解吸“热气流瞬时解吸技术”的说明
    热脱附解吸仪是分析空气中挥发性有机物的重要前处理设备,其中二级解吸时的解吸速度和效率直接决定仪器的性能。图1 AutoTD系列自动热脱附解吸仪我公司使用了“热气流瞬时解吸技术”,在传统加热丝加热的基础上,使用了高温热气流辅助加热,在二级解吸开始的瞬间,高温热气流打开,冷阱中填料的温度瞬间达到设定值,消除了热量传递带来的影响,冷阱升温速度趋近于无穷大,样品解吸速度快,峰形好,残留少。图2 “热气流瞬时解吸技术”示意图
  • 汇集分析方案,聚焦材料科学:(二)材料表面分析
    材料是人类赖以生存和发展的物质基础,各种材料的运用很大程度上反映了人类社会的发展水平,而材料科学也日益成为人类现代科学技术体系的重要支柱之一。 材料表面分析是对固体表面或界面上只有几个原子层厚的薄层进行组分、结构和能态等分析的材料物理试验。也是一种利用分析手段,揭示材料及其制品的表面形貌、成分、结构或状态的技术。为此,岛津针对性地提供了全面的表征解决方案,助力材料科学研究。 材料表面分析扫描探针显微镜SPM / X射线光电子能谱仪 / 电子探针显微分析仪EPMA 原子力显微镜 SPM-9700HT SPM-9700HT在基本观察功能的基础上融入了更强的测量功能,具备卓越的信号处理能力,可得到更高分辨率、更高质量的观察图像。SPM-9700HT 应用:金属蒸镀膜的表面粗糙度分析以1 Hz和5 Hz的扫描速度对金属蒸镀膜的表面形貌进行观察,画质及表面粗糙度的分析结果相同。 应用:光栅沟槽形状检测以1Hz和5Hz的扫描速度对光栅的表面形貌进行观察,经过断面形状分析,沟槽形状检测结果均相同。可控环境舱原子力显微镜 WET-SPM WET-SPM为原子力显微镜实验提供各种环境,如真空、各种气体(氮、氧等)、可控湿度、温度、超高温,超低温、气体吹扫等。实现了原位扫描,可追踪在温度、湿度、压力、光照、气氛浓度等发生变化时的样品变化。 WET-SPM 应用:树脂冷却观察室温下树脂的粘弹性图像中,可以观察到两相分离。冷却至-30℃,粘弹性的差异基本消失。 应用:聚合物膜的加热观察聚合物膜在不同加热温度下的形貌变化,在相位图上可清晰观察到样品表面因加热而产生的物理特性变化。调频型高分辨原子力显微镜 SPM-8100FM 岛津高分辨率原子力显微镜SPM-8100FM使用调频模式,极大提高了信号的灵敏度,即使在大气环境甚至液体环境中也能获得与真空环境中同样超高分辨率表面观察图像。无论是表面光洁的晶体样品还是柔软的生物样品,都实现了分子/原子级的表征。SPM-8100FM首次观察到固体和液体临界面(固液界面)的水化、溶剂化现象的图像,因此实现了对固液界面结构的测量分析。 SPM-8100FM 应用:液体中原子级分辨率观察图为在饱和溶液中观察NaCl表面的原子排列。以往的AFM(调幅模式)图像湮没在噪声中。通过调频模式则可以清晰地观察到原子的排列,实现真正的原子级分辨率。 应用:大气中Pt催化粒子的KPFM观察通过KPFM进行表面电势的测定,TiO2基板上的Pt催化粒子可被清晰识别。同时可以观察到数纳米大小的Pt粒子和基板间的电荷交换。右图中,红圈区域是正电势,蓝框区域是负电势。对于KPFM观察,调频模式也大幅提高了分辨率。 X射线光电子能谱仪AXIS SUPRA+ X射线光电子能谱仪(XPS)是一种被广泛使用的表面分析技术,主要用于样品的组成和化学状态分析,可以准确地确定元素的化学状态,应用于各种低维新材料、纳米材料和表面科学的研究中。AXIS SUPRA+是岛津/Kratos最新研发出的一款高端X射线光电子能谱仪,具备高能量分辨、高灵敏度、高空间分辨的特点。 AXIS SUPRA+ 化学状态和含量分析 深度剖析 化学状态成像分析电子探针显微分析仪 EPMA 电子探针显微分析仪(Electron Probe Micro-Analyzer,EPMA)使用单一能量的高能电子束照射固体材料,入射电子与材料中的原子发生碰撞,将内壳层的电子激发脱离原子,在相应的壳层上留下空穴,在外壳层电子向内壳层空穴跃迁的过程中,发出具有特征波长的X射线。EPMA使用由分光晶体和检测器组成的波谱仪检测这些特征X射线,用于材料成分的定性、定量分析。 EPMA的波谱仪的检测极限一般为0.005%左右,检测深度为微米量级,其成分像的二维空间分辨亦为微米量级,定量分析的精度可以达到传统的化学分析方法水平。 配备了多道波谱仪的EPMA是材料学研究中微区元素定性、定量分析的不二之选,属于科研工作必不可少的分析仪器。 EPMA-1720 EPMA-8050G 应用:超轻元素EPMA分析-渗碳均匀性的图象分析
  • 莱比信剧透第二弹来袭~
    2018年10月31日,莱比信将携手旗下众多品牌亮相第九届慕尼黑上海分析生化展(analytica China 2018)!E3馆3552展位,等你强势围观!莱比信隆重推出实验室自动化及生物制造主题展先来一睹为快~让自动化技术开启实验室4.0时代干细胞智能工厂—为“人体组织修复”提速移植3D打印器官将不再遥远! 另外德国Gonotec渗透压仪 、德国Klotz粒度仪 、德国Haver & Boecker筛分机 、 英国Lovibond比色计 、德国ZIEGRA制冰机 、 德国Kruess旋光仪等众多知名品牌热销机型都将精彩亮相,更多解决方案欢迎莅临展位咨询!莱比信中国将带您体验一体化的采购之旅~ 莱比信 诚邀您莅临第九届慕尼黑上海分析生化展(analytica China 2018)2018年10月31日-11月2日丨上海新国际博览中心【E3馆3552展位】
  • 访上海二恶英分析实验室
    中国科学院上海高等研究院分析测试中心超痕量二恶英分析实验室,是上海首家符合国际标准的二恶英检测实验室。   二恶英检测过程是怎样的?其分析结果能否为二恶英污染防治提供可靠的科学数据?带着这些疑问,记者日前来到中国科学院上海高等研究院分析测试中心的超痕量二恶英分析实验室一探究竟。   二恶英分析实验室应势而生   上海高等研究院分析测试中心副主任萧友琳介绍说,二恶英毒性高,难降解,易累积,是一级致癌物。我国17个主要行业的二恶英排放企业有万余家,涉及钢铁、废弃物焚烧、有色金属冶炼、食品、医药化工等多个领域,每年预计全国有3.6万个企业提检样品。   然而,我国严重缺乏二恶英排放、污染研究的监测数据和检测机构,目前国内监测二恶英的技术和水平都比较低。建立国际标准的二恶英分析实验室,开展二恶英的监测和检测至关重要。在这种情况下,中科院上海高等研究院分析测试中心超痕量二恶英分析实验室应势而生。   萧友琳说,实验室投资约2500万元,工作人员主要由技术人员构成。目前工作人员有9人,其中博士3人、硕士3人。萧友琳自豪地说:“实验室还花费 400万元引进了一套进口的高分辨率气相色谱质谱联用仪,具有双色谱净量系统,目前在亚洲尚属首台。仪器目前一天可以做40个样品,未来计划再引进两套,规模扩大后每天可做120个样品。”   从样品到分析报告最少仅3天   记者首先来到了分析实验室的收样室。据介绍,在收到二恶英的样品后,工作人员按照样品的不同形态贴上标签,放入保存室的冰箱内。然后依次经过整理室和药品室,这两个房间分别用于准备清洗和存放萃取二恶英的试剂。   随后,记者来到前处理室。在这里,含有二恶英的样品经过萃取被提取出来,然后经过浓缩、净化、去杂留纯等一系列过程,最终得到提纯的二恶英。   提纯后的二恶英将进入高分辨率气相色谱质谱联用仪室。据萧友琳介绍,这套仪器可将二恶英样品分析周期大幅缩短至3~7天,远小于国际一般21天的分析周期。   谈到分析实验室对二恶英分析的时效性时,萧友琳介绍了这样一个案例:今年春节前,广州某研究单位对二恶英采样进行前处理,然而按照国际标准的方法操作后,回收率总是达不到要求。这家研究单位紧急联系上海超痕量二恶英分析室,希望能加急完成操作。上海方面接到样品后,经过对样品来源的了解,在前处理的方法上做出调整和修改,重新进行前处理,然后经过仪器分析,做出报告,最终在3天后成功完成了样品分析,并出具相关报告。   样品资料比对确定污染源   “仪器分析之后,如何确定二恶英的污染来源呢?”采访中,记者提出了这样的疑问。   萧友琳解释说,上海超痕量二恶英分析实验室还有一个优势,就是建立了一个大型的样品资料库,用作二恶英来源的对比。通过这个样品资料库,可以精准地判断出样品的污染源。   萧友琳说,超痕量二恶英分析实验室建成后,曾组织实验室团队赴浙江某垃圾发电厂进行垃圾发电厂周边二恶英的本底调查。通过对发电厂周围空气、植物、土壤进行采样分析,再与实验室中大量的样品资料进行比对,推测出二恶英来源和分布情况。   经过分析,发现垃圾发电厂附近的二恶英主要来源于垃圾焚烧炉,空气中二恶英主要分布在西北,所造成的是短期影响 植物中二恶英主要分布在西北,所造成的影响是中期影响 土壤中二恶英主要分布在东北,所造成的是长期影响。这一分析结果,为当地从源头防治二恶英污染提供了科学依据。   据了解,环境保护部、外交部、国家发改委等9个部委联合出台的《关于加强二恶英污染防治的指导意见》提出了控制污染的约束性指标,即到2015年,重点行业二恶英排放强度降低10%。二恶英作为主要特征污染物逐步纳入有关行业的环境影响评价文件中,并将在京津冀、长三角、珠三角等重点区域开展二恶英排放总量控制试点工作。   中科院上海高等研究院分析测试中心将立足上海、面向全国开展二恶英检测服务,在固定源排放废气、环境空气领域提供样品采集和分析检测服务。   据悉,目前超痕量二恶英分析实验室已对外开放,接受了首批企业样品的委托分析。实验室的建成可为上海地区及国内外开展固体废弃物焚烧、钢铁业、有色金属冶炼业、食品、化工等领域各项基质的二恶英分析检测,提供迅速、正确、可靠的科学数据。   萧友琳表示:“超痕量二恶英分析实验室的优势在于分析周期短、分析量大,并提供从源头防治二恶英的整改方案。我们的目标是成为国内二恶英检测范围最广、速度最快的实验室。”
  • 谱标只做合格的的二手分析仪器
    二手分析仪器首先要有品质保证、售后服务保障,它们必须是能够正常使用的,在功能、性能上能够完全满足客户需要分析仪器,即要让顾客感受到虽然购买的是二手仪器,却与购买新仪器无异,这才是合格的的二手分析仪器。我们谱标科技所有的仪器在出售前都需要经过调试、检测,送至客户后,再次检测,培训,zui后待客户成功验收。谱标科技5月份库存的二手仪器我们工程师已经全部调试检测通过,合格的二手分析仪器有:1,安捷伦品牌二手气相色谱-质谱联用仪 7890/5975C/7683/百位盘/机械泵 二手气质联用仪GCMS 7890B/5975C/7693 二手气质联用仪GCMS 6890/5973/7683 二手气质联用仪GCMS 6890-5973 二手气质联用仪GCMS 6890N-5975C 带FID 二手电感耦合等离子体质谱ICPMS ICPMS-7500CX 二手液相色谱仪 1100 二手液相色谱 1200 二手顶空进样器 7694 44位 二手气相色谱仪 6890 2,岛津品牌二手液相色谱仪 LC-20AD 二手气相色谱仪 GC-2010/FID 二手高效液相色谱仪 LC2030+DAD检测器 3, AB品牌二手液相色谱质谱联用仪LCMSMS API3200+LC20AB 4,PE品牌二手原子吸收(石墨炉火焰一体机) Analyst800二手顶空进样器 PE-40 5,Varian品牌二手原子吸收分光光度计 AA240Z+GTA120 二手原子吸收分光光度计 AA240FS 二手等离子体发射光谱仪 Varian 710-ES 6,CEM品牌二手微波消解仪 mars6 二手微波消解仪 MARSX 7,Thermo品牌二手原子吸收单火焰AAS-3300 (配套ICE3300) 谱标科技致力于进口二手高端分析仪器在国内的销售和服务,产品涵盖气相色谱仪、气质联用仪、高效液相仪、液质联用仪、质谱系统等,经营的品牌主要有:安捷伦Agilent、岛津Shimadzu、PerkinElmer、 AB Sciex等。谱标科技注重建立起自有的技术团队,公司的核心工程师团队拥有资力深厚维修工程师十人以上、 资力深厚应用工程师5人,所有核心成员均服务过全球zui为知名的仪器公司,具有5~20年的工作经验。凭借经验丰富、技术力量雄厚的工程师团队,以及以客户利益为本的宗旨,我们为广大用户在色谱、质谱仪器的软硬件使用、维护、维修、认证、应用和数据安全等多方面提供完善的技术支持和解决方案。同时,我们拥有稳定的国外进口仪器采购渠道,能够保证用户得到高品质的精选二手分析仪器。
  • 最强二氧化碳吸收器问世
    物美价廉,可用于电池及人造树研制 一种新的聚合物被证明适于去除大气中的二氧化碳   美国加利福尼亚州的研究人员生产出一种能够从空气中去除大量二氧化碳气体的廉价塑料制品。沿着这条路,这种新材料将能够用于大型电池的研制,甚至在避免灾难性气候变化的尝试中,成为旨在降低大气二氧化碳浓度的“人造树木”的主要成分。   这些长期目标一直吸引着由洛杉矶市南加利福尼亚大学(USC)的化学家George Olah领导的研究团队。作为1994年诺贝尔化学奖得主,Olah一直设想未来社会主要依赖由甲醇(一种简单的液体酒精)制成的燃料。随着容易开采的化石燃料在未来几十年变得愈发稀缺,他提出,人们可以贮存大气中的二氧化碳,并将其与从水中分离的氢相结合,从而形成一种具有广泛用途的甲醇燃料。   Olah和他的同事还在研制一种廉价铁基电池,这种电池能够储存由可再生能源产生的额外电力,并在需求高峰时输入电网。在运行时,铁电池会从空气中攫取氧。但即便只有微量的二氧化碳加入反应也将使电池报废。最近几年,研究人员开发出一些很好的二氧化碳吸收装置,它们由名为沸石的多孔固体与金属有机骨架构成。但是这些吸收装置价格昂贵。因此Olah和他的同事着手寻找一种成本更低的替代方法。   研究人员转而求助聚乙烯亚胺(PEI),这是一种廉价的聚合物,同时也是一种像样的二氧化碳吸收器。但它只能在表面俘获二氧化碳。为了增大PEI的表面积,USC的研究团队将这种聚合物溶解于一种甲醇溶剂中,并将其铺在一堆煅制二氧化硅的上面,后者是一种工业生产的、由玻璃熔解的小滴制成的廉价多孔固体。当溶剂蒸发后,留下的固体PEI便具有很大的表面积。   当研究人员对新材料的二氧化碳吸收能力进行测试时,他们发现,每克该物质在潮湿的空气中——类似于目前大多数的环境条件——平均可吸收1.72毫微摩尔的二氧化碳。这已经远远超过近期由氨基硅制成的另一个竞争对手1.44毫微摩尔每克的吸收值,并且在迄今进行的二氧化碳吸收能力测试中处于最高水平。研究小组在日前出版的《美国化学会志》中报告了这一研究成果。   如果二氧化碳处于饱和状态,这种PEI-二氧化硅合成物也很容易再生。当聚合物被加热至85摄氏度后,二氧化碳便会飘离。而其他常用固体二氧化碳吸收器则必须加热超过800摄氏度才能够赶走二氧化碳。   哥伦比亚大学的二氧化碳空气捕获专家Klaus Lackner表示:“这很有趣。它能够在低温下工作真太好了。”研究团队成员之一、USC的化学家Surya Prakash认为,这使它除了保护电池之外还能够用来抓住空气中的二氧化碳。这种聚合物可用于建造旨在减少大气中二氧化碳浓度的人造树大农场,以及防止气候变化的最严重破坏。但前提是世界各国愿意花费数不清的资金来控制大气中的二氧化碳。   由于这种聚合物会在高温下降解,因此意味着它不可能用于吸收来自工厂烟囱或汽车排气管中的二氧化碳——那里的二氧化碳通常浓度很高且温度也很高。为了克服这一瓶颈,Prakash说,USC的研究团队如今正在研制高表面积且更耐热的PEI。
  • 月旭科技“毒淀粉”中顺丁烯二酸(酐)的测定方案
    近日,相关媒体报道台湾当地很多经典小吃,如粉圆、黑轮、板条、芋圆、地瓜圆等食品中被检测出含有违法添加物&ldquo 顺丁烯二酸&rdquo 。该物质又称马来酸酐(简称顺酐),主要用于工业粘着剂,若加入食物中可增加食物弹性及保质期,人体吸入后会引起咽炎、喉炎和支气管炎,同时也会对人体肾脏造成极大的损伤。 月旭科技采用Ultimate® AQ-C18液相色谱柱开发了淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐含量的高效液相色谱检测方法。该方法灵敏度高、准确度好且前处理简便,适用于淀粉及其制品中顺丁烯二酸(酐)和顺丁烯二酸酐含量的测定。 样品前处理 准确称取2.50g样品(精确至0.01g)于50mL比色管中(淀粉食品用均质机粉碎后称取),加入50mL体积分数为5%的乙醇水溶液,涡旋5min,超声提取30min后,定容至50mL,摇匀,4000r/min离心5min后,过0.22µ m滤膜进行上机测定。 色谱条件 色谱柱:月旭Ultimate® AQ-C18(5µ m, 4.6× 250mm) 流动相:乙腈:0.1% H3PO4水溶液 = 2:98 流速:1.0mL/min 柱温:30oC 进样量:20µ L 标样浓度:10µ g/ml 检测器:214nm 溶剂空白色谱图 顺丁烯二酸标准品色谱图 不含顺丁烯二酸空白样品色谱图 空白样品加标色谱图 回收率结果考察(n = 5) 订货信息
  • 华虹无锡二期12英寸线年底前试产
    大半导体产业网消息,日前,华虹半导体披露了截至2024年6月30日止的第二季度综合经营业绩。华虹半导体总裁唐均君对公司2024年第二季度业绩评论称,半导体市场正在经历从底部开始的缓慢复苏。在经历了数个季度的持续疲软后,市场在部分消费电子等领域的带动下出现了企稳复苏信号。他提到,华虹半导体2024年第二季度销售收入达到4.785亿美元、符合指引,毛利率为10.5%、优于指引,均实现了环比增长。产能利用率也较上季度进一步提升,已接近全方位满产。公司第二条12英寸生产线的建设正在紧锣密鼓地推进中,预计年底前可以试生产,届时公司的产能及特色工艺平台将得到进一步的拓展和提升、挖掘出更大的潜力。据了解,今年4月20日,华虹制造(无锡)项目FAB9主厂房全面封顶。该工程为华虹无锡集成电路研发和制造基地二期项目,总投资67亿美元,将建设一条工艺等级65/55-40nm、月产能8.3万片的12英寸特色工艺生产线。目前,华虹半导体在上海金桥和张江建有三座8英寸晶圆厂,月产能约18万片。另在无锡高新技术产业开发区内建有一座月产能9.45万片的12英寸晶圆厂(“华虹无锡一期”),这不仅是全球领先的12英寸特色工艺生产线,也是全球第一条12英寸功率器件代工生产线。目前,正在推进华虹无锡二期12英寸芯片生产线的建设。
  • 分会二:环境分析(9月16日9:15-16:00)
    Session 2: Environmental Analysis 分会二:环境分析   Chairman 分会主席: Meilin Wang 汪海林, Ralf Zimmermann   16 September, 2010 Hall W1,ROOM W1-T1 09:15-09:45 Emerging Contaminants Research in China: Highlights and Challenges 中国对于新兴污染物研究的重要性和挑战 Hailin Wang 汪海林 CAS-Research Center for Eco-Environmental Sciences/ China 中科院环境中心 09:45-10:15 Status and Trends of Emerging Contaminants in the South China Coastal Region with Special References to Marine Cetaceans and Waterbird Eggs 中国南部沿海地区的新型污染物的现状和趋势及对鲸鱼及海鸟蛋的影响 Paul Kwan-sing LAM City University of Hongkong 香港城市大学 10:15-10:45 Determination of the Inorganic Arsenic Species As(III) and As(V) in Hanoi Ground-water by Using Portable Capillary Electrophoresis with Contactless Conductivity 便携式毛细管电泳仪非接触测定河内地下水中砷As(Ⅲ)和As(V)含量 Pham Hung Viet Hanoi University of Science/ Vietnam 越南河內自然科学大学 10:45-11:15 Recent developments in arsenic speciation with detection by atomic spectrometry 原子光谱技术分析砷形态最新进展 Jianhua Wang 王建华 Northeastern University/ China 东北大学 11:15-11:45 Speciation of PCB's and PAH's in the Aquatic Ecosystem 水生生态系统中多氯联苯(PCB)聚芳烃(PAH)的存在形式 Jacek Namiesnik Gdansk University of Technology, Gdansk/ Poland 波兰哥但斯克工业大学 13:00-13:30 Soft Photo Ionization of Organic Molecules in Mass Spectrometry : Application for on- line Monitoring, GC and Evolved Gas Analysis in Thermal Analysis 质谱中软光离子化有机分子: 应用于热分析在线检测、气相色谱和逸出气分析 Ralf Zimmermann University of Rostock and Helmholtz Zentrum Muenchen, Munich/ Germany 德国亥姆霍兹国家研究中心 13:30-14:00 Health Effects of Particulate Matter 微小颗粒物对机体健康影响 Kelly BéruBé Cardiff University Wales/ United Kingdom 英国卡迪夫大学 14:00-14:30 Reducing Uncertainities in Global Black Carbon Emission Inventories 碳黑排放增加对全球影响研究 Judith C. Chow Desert Research Institute, Reno/USA 美国沙漠研究所 14:30-15:00 The Bio-reactivity of Ambient Particulates in Beijing Air–Results from Plasmid Scission Assay 通过质粒断裂效应评价环境特别是北京空气的生物活性 Longyi Shao 邵龙义 University of Mining and Technology, Beijing/ China 中国矿业大学 15:00-15:30 Analysisof Organic Compounds in Ambient and Source Aerosols 大气中的有机物分析 Jürgen Schnelle-Kreis Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen, Munich/ Germany 德国亥姆霍兹国家研究中心 15:30-16:00 Secondary Organic Aerosols in the Atmosphere : A detailed Chemical Analysis using Off-and on-line Mass Spectrometric Techniques 在线质谱和离线质谱技术分析二次有机气胶(secondary organic aerosols,SOA) Thorsten Hoffmann Johannes-Gutenberg-University Mainz/ Germany 德国美因茨大学
  • 第二轮通知|第二届表面分析技术与应用主题网络研讨会
    表面分析技术是一种统称,指利用电子、光子、离子、原子、强电场、热能等与固体表面的相互作用,测量从表面散射或发射的电子、光子、离子、原子、分子的能谱、光谱、质谱、空间分布或衍射图像,得到表面成分、表面结构、表面电子态及表面物理化学过程等信息的各种技术。表面分析技术广泛应用于材料表征等领域,是目前最前沿的分析技术之一。仪器信息网将于2023年11月14-15日举办第二届表面分析技术与应用主题网络研讨会,以分享表面分析技术及应用研究的新进展,推动表面分析技术与应用领域的发展。旨在利用互联网技术为广大科研者及相关专业人员提供一个方便、高效的免费学习平台,让大家了解最新的表面分析技术及应用研究动态,与同行们交流心得,共同进步。此次表面分析技术与应用主题网络研讨会共设置了4个主题会场,分别是:光电子能谱(XPS/AES/UPS)技术与应用、扫描探针显微镜(AFM/STM)技术与应用、电子探针/原子探针技术与应用、二次离子质谱(SIMS)技术与应用等其他表面分析技术与应用。诚邀业界人士报名参会。一、主办单位仪器信息网二、会议时间2023年11月14日-15日三、会议形式线上直播,直播平台:仪器信息网3i讲堂四、会议日程1. 专场安排第二届表面分析技术与应用主题网络研讨会时间专场名称11月14日上午光电子能谱(XPS/AES/UPS)技术与应用专场11月14日下午扫描探针显微镜(AFM/STM)技术与应用专场11月15日上午电子探针/原子探针技术与应用专场11月15日下午二次离子质谱、拉曼光谱及其他表面分析技术与应用专场2. 详细日程(以会议官网最终日程为准)时间报告题目演讲嘉宾专场1:光电子能谱(XPS/AES/UPS)技术与应用专场(11月14日上午)09:00待定姚文清清华大学/国家电子能谱中心 研究员/副主任09:30待定岛津企业管理(中国)有限公司/岛津(香港)有限公司10:00XPS在材料研究中的应用程斌北京化工大学 研究员/副主任10:30XPS在纳米薄膜厚度测量中的应用刘芬中国科学院化学研究所 副研究员11:00同步辐射光电子能谱技术及其应用朱俊发中国科学技术大学 教授专场2:扫描探针显微镜(AFM/STM)技术与应用专场(11月14日下午)14:00纳米测量技术国际标准化工作的意义探讨黄文浩中国科学技术大学 教授14:30基于扫描探针的原子制造技术的探索陆兴华中国科学院物理研究所 研究员15:00多频静电力显微镜电学性质动态测量技术钱建强北京航空航天大学 教授15:30日立AFM在表面分析方面的应用刘金荣日立科学仪器(北京)有限公司 高级工程师16:00扫描探针显微镜在神经形态器件中的应用研究惠飞郑州大学材料科学与工程学院 研究员16:30原子力显微镜在高分子表征中的应用张彬郑州大学 教授专场3:电子探针/原子探针技术与应用专场(11月15日上午)09:00电子探针分析在关键金属矿产研究中的应用陈振宇中国地质科学院矿产资源研究所 研究室主任/研究员09:30待定沙刚南京理工大学 教授10:00原子探针层析技术原理及其在镍基合金中的应用李慧上海大学 副研究员10:30电子探针在材料科学中的应用刘树帅山东大学材料学院材料表征与分析中心 副主任专场4:二次离子质谱、拉曼光谱及其他表面分析技术与应用专场(11月15日下午)14:00二次离子质谱(SIMS)质量分辨的测量李展平清华大学分析中心 高级工程师14:30拉曼光谱分析技术和扫描电镜分析技术在古代陶瓷器科学研究中的应用刘松中国科学院上海光学精密机械研究所 副研究员五、参会方式1. 本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/icsa2023/#canhuijiabin 2. 温馨提示1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。六、会议联系1. 会议内容张编辑,15683038170,zhangxir@instrument.com.cn2. 会议赞助刘经理,15718850776,liuyw@instrument.com.cn 仪器信息网2023年11月2日附:往届会议回顾1. 首届表面分析技术与应用主题网络研讨会https://www.instrument.com.cn/webinar/meetings/icsa2022/
  • 在线水质分析仪器-技术、应用与市场(二)
    p    a href=" https://www.instrument.com.cn/news/20190701/488014.shtml" target=" _blank" strong 在线水质分析仪器-技术、应用与市场(一) /strong /a /p p   3、水质在线分析仪器的应用简介 /p p   在线水质分析仪器作为获取水质信息的源头技术,凡是人类活动用到水的领域,诸如水环境监测、饮用水处理与安全保障、工业水处理的过程控制、污水处理等等,都是在线水质分析仪器的应用范围。 /p p   按照应用目的的不同,在线水质分析仪器可以分为监测型和过程型在线分析仪器两类产品。 /p p   监测型分析仪器主要用于单纯的水质监测,获取水质参数数据,以判断水质是否达到法规的要求,以及环境水质(地表水、地下水、海水等)和饮用水水质安全的预警性监测,不参与水处理工艺过程控制。要求监测的水质参数主要是环保法规或者水质标准规定的主要污染物指标,对应用技术的需求主要是水样预处理技术以及仪器系统集成技术等。在中国,典型的监测型在线水质分析仪器应用有: /p p   一、工业企业废水污染源及市政污水处理厂排放自动监测,主要监测参数有: COD、氨氮、Ph值、总磷、总氮、重金属(镍、六价铬、总汞、铅、镉、铜、氟离子等)。这些水质分析仪器为企业实现污染物排放自行监测,防止和及时发现可能的废水超标排放,申报环境保护税,以及环保监察部门实时了解企业水污染物排放情况提供了依据。 /p p   二、地表水水质自动监测:江河湖库重要断面以及水源地的水质自动监测,江河水的主要监测参数有:常规5参数(溶解氧、水温、电导率、浊度、Ph值)、氨氮、高锰酸盐指数(CODMn)、总磷、总氮等 湖泊和水库一般会增加叶绿素a及蓝绿藻指标 水源地涉及到饮用水的安全问题,会要求增加生物毒性、大肠杆菌等水质指标以及氟离子等具有行业性/地域性特征水质污染指标的在线监测。大量地表水在线水质分析仪器的安装和应用,为全面了解国内环境水质状况,对可能的水质恶化和突发性水质污染提供预警,以及为水环境和水资源管理部门生态调水及合理使用水资源提供数据支持。 /p p   三、饮用水管网及二次供水水质自动监测,主要参数有浊度、余氯、Ph值、电导率、温度、色度等。饮用水水质在线监测,一方面对可能发生的水质超标事件进行预警,防止不合格的自来水进入居民家庭 另外,大量管网的水质数据,也可支持自来水厂优化水处理工艺以及管网输水调度决策。 /p p   四、海水监测,常规的指标是温度、盐度、深度(简称温盐深,英文缩写CTD),另外还会根据需要增加溶解氧、叶绿素a、浊度以及硝氮、有色可溶性有机物(CDOM)等综合反应海水质量状况的水质指标。 /p p   过程型分析仪器,顾名思义,主要用于水处理工艺过程监测与控制,所测量的水质参数会参与过程控制,以优化水处理工艺、提升水处理效率, 在保证末端水质达标的前提下,实现水处理过程节能降耗的目的。过程型分析仪器更多要求原位、实时,连续监测,对仪器的测量速度与响应时间要求较高。 /p p   过程型在线水质分析仪器,被广泛应用于火力发电厂、核电厂、石油化工企业、大型冶金企业、造纸企业等为代表传统流程工业以及半导体厂、生物制药厂等新兴工业企业中,为工业水处理过程控制以及锅炉水、蒸汽、电子级超纯水等各类生产用水的品质检测提供了实时可靠的水质数据和水处理过程控制依据。 /p p   以石油化工行业为例,作为传统的流程工业,石油化工厂有着用水量大、不同用水工艺水质差异显著、涉及生产装置多的特点,其水处理流程几乎涵盖了从原水、软化水、高纯水、蒸汽到废水处理及回用的所有类型的水质特点、水处理技术和工艺,有着最全面和最具有代表性的水质在线分析仪器应用场景。目前石化企业中常用的在线水质分析仪器,根据不同工艺要求及不同用水点来分,主要有: /p p   一.新鲜水净化处理:浊度分析仪、pH分析仪、余氯分析仪 /p p   二.软化水及脱盐水处理:硬度分析仪、电导率分析仪、pH分析仪、二氧化硅(SiO2)分析仪、钠离子分析仪、SDI(污染指数)等 /p p   三.锅炉水及蒸汽质量监测:二氧化硅(SiO2)分析仪、钠离子分析仪、微量溶解氧分析仪、磷酸根分析仪、电导率分析仪、pH分析仪、 /p p   四.循环冷却水:总磷/磷酸盐分析仪、pH分析仪、浊度分析仪、电导分析仪、余氯分析仪、总有机碳(TOC)分析仪、在线荧光示踪监测仪、水中油分析仪等 /p p   五.凝结水回用:总有机碳(TOC)分析仪、电导率分析仪等 /p p   六.工业废水处理及回用:溶解氧分析仪、pH/ORP分析仪、悬浮物分析仪、COD分析仪、氨氮分析仪、水中油分析仪等 /p p   七.厂区雨水监测及排放管理:总有机碳(TOC)分析仪、悬浮物(SS)分析仪、水中油分析仪、水面油膜监测仪等 如果仪器实时监测到雨水的水质指标超过排放标准或者有油品泄漏,就会自动关闭雨水排放口,将超标雨水排入废水处理单元或者事故池储存,以免造成对环境水体的污染,或者对废水处理单元的冲击。 /p p   在半导体厂、生物制药厂这类对水质有着极高要求的高技术新兴产业中,高精度的二氧化硅(SiO2)分析仪(检出限可达0.1µ g/L)、总有机碳分析仪、水中颗粒物分析仪(可测粒径0.05µ m)、高精度微量溶解氧分析仪等高性能在线水质分析仪器以及各种结构和性能的氟离子分析仪(半导体厂)、微生物分析仪(生物制药厂)都已经有了越来越多的应用。 /p p   另外,在自来水厂,各种量程的在线浊度分析仪、余氯/总氯分析仪、pH分析仪、碱度分析仪、游动电流分析仪等都有着广泛的应用,参与水厂的自动加药、加氯等工艺的过程控制,这些在线水质分析仪器的应用,极大的提高了自来水的自动化运行水平,保证了自来水出厂水质的安全可靠。 /p p   在市政污水处理厂,溶解氧分析仪、污泥浓度分析仪、pH/ORP(氧化还原电位)分析仪、硝氮分析仪、氨氮分析仪为代表的在线水质分析仪器在过去数十年间也已经获得了大量的成功应用,为污水厂的稳定运行、节能降耗和达标排放提供了可靠的支持。由于用于水处理过程控制,仪器安装的数量较大,这类分析仪器通常以安装维护方便、单价较低的水质传感器形式出现。 /p p   对于不同类型的在线水质分析仪器,技术要求也是不同的,一般而言,监测型分析仪器对测量数据的准确度要求较高,数据可以作为有关部门进行执法管理的依据,对检测原理和方法的限制较多,要求是成熟的分析技术 而过程型分析仪器对仪器的可靠性和稳定性要求较高,要求仪器能够及时可靠地反应水质变化的趋势,以便为水处理过程控制提供依据。对仪器的响应时间要求较高,对仪器的检测方法和原理限制少,允许更多创新型的新原理、新方法的在线分析仪器应用。 /p p   4、水质在线分析仪器技术与市场的发展前景 /p p   全球人口的持续增加和经济的持续发展,带来了用水量增加、水资源短缺以及水环境质量和生态恶化的压力,提出了对水处理工业和水环境保护产业更高的要求和需求,将进一步推动在线水质分析仪器市场的发展。当下处于物联网、大数据和人工智能的时代,也需要更多的数据,在线水质分析仪器作为物联网感知层的重要组成,其数据提供者的需求将被放大,要求出现更多高可靠性、低能耗、低维护、低成本现代在线水质分析仪器。现代在线水质分析仪器技术是在分析化学、材料科学、通信技术、计算机、过程控制理论等多学科发展的基础上产生和发展起来的,这些学科的创新和发展,也将为在线水质分析仪器的创新和进步进一步提供支持。 /p p   另外,随着绿色分析理念的大力推广,绿色分析技术的不断出现,未来的在线水质分析仪器将会尽量减少使用和产生有毒化学品,在设计上也会更加考虑降低仪器的能耗和分析的用水量。 /p p   流式细胞术、生物预警技术、核酸酶重金属特异性反应、微流控技术等诸多新的测量原理,已正在或者即将被在线水质分析仪器采用 量子点、石墨烯、碳纳米管、生物芯片、水凝胶等新材料也开始进入水质监测领域 /p p   在仪器数据处理方面,各种新算法及水质模型不断出现, 将提升各种新型在线水质分析仪器的功能及完善数据后处理,提供更多有价值的水质数据和信息-不仅是仪器硬件和分析技术,软件和数据处理技术也将成为在线水质分析仪器的重要组成部分。在未来,在线水质分析仪器将成为“硬件+材料+软件+算法”的组合。 /p p   随着新的分析原理、方法的出现和应用,以及各种新材料的采用,传感器对复杂水质的适应性会得到提高 同时,物联网技术的应用,可以实现对和水样直接接触的传感器自身寿命及运行状态进行远程实时监测、管理以提高维护效率、降低维护成本。 /p p   还有,伴随3D打印技术的成熟应用,根据待测水样的不同水质情况,实现差异化设计、制造也将成为现实 比如:饮用水和海水、工业废水,即使是测量同一个水质指标,也可选用不同材质、结构和制造工艺来生产传感器,以满足不同水质条件的要求。 /p p   更重要的是,和所有电子产品一样,传感器的成本必然会随着物联网时代大规模的应用出现超出想象力的下降,这时,免维护的一次性在线水质传感器将成为现实。和传感器一样,结构复杂的在线水质分析仪器的成本问题也必然随着大规模的应用得到降低 仪器的维护问题也可以通过设计的优化、新材料以及耐用元器件的采用得到改进,特别是,工业物联网技术的进步,可通过产品在硬件上增加必要的传感器,在测试流程中,获取过程节点的参数指标及变化曲线,智能判断拐点、斜率、峰值、积分面积等指标,转化为对应的数学模型,形成一套用于描述“仪器行为”的监控系统,通过“仪器行为”来评估在线水质分析仪器状态,以实现这种精密设备的远程管理和诊断,进行有针对性的预维护等手段降低维护量及维护费用,从而进一步推动在线水质分析仪器应用规模的扩大。 /p p   从市场发展角度来看,就像其他任何一种新兴技术和行业一样,水质在线分析仪器市场也会经历从市场初期的缓慢增长到高速成长的发展历程。在初期,市场需求受到了两种因素的制约:其中一个主要因素是投入产出分析,相对于过低的水资源费、水价以及废水排放需要支付的费用而言,当时在线分析仪器的投资和运行成本都比较高。还有一个因素是在线水质分析仪器和技术自身的限制,当时在线水质分析仪器的稳定性、可靠性等还不能完全满足市场的要求 可以实现在线分析的水质参数也不是很多 另外,由于水质条件的多样化与复杂性,即使是面对同一个水样,测量不同水质参数时,对仪器测量方式,安装方式的要求都有不同,这对以在线水质监测系统为代表的应用技术也提出了很高的要求。这些因素造成了监管部门和行业的运行管理者以及水处理工程师对采用在线水质分析仪器都持有谨慎的态度,在当时严重制约了在线水质分析仪器的应用与推广。进入21世纪以来,由于水资源短缺、水环境污染的问题日益严重,行业同时迎来了水资源费上涨、饮用水水质标准提高、废水排放标准更加严格以及用水量及用水人口增加、水价上涨等诸多挑战和机会 在法规的压力和市场的推动下,加强水环境监测、淘汰粗放式的水处理及用水模式,采用更加先进的过程控制系统以提高水处理效率、降低水处理及用水成本就成为了人类社会必然的选择 与此同时,技术的发展使得在线水质分析仪器的稳定性与可靠性有了很大提高、可以实现在线监测的水质参数越来越多、在线水质分析仪器的功能也越来越强大 市场需求的增长和水质在线分析仪器自身的技术进步共同推动了行业的高速发展。 /p p   在中国,随着日益严格的环保法规的驱动,特别是以在线监测作为主要技术路线的环境监测技术政策的推动下,监测型在线水质分析仪器将继续保持高速成长。与此同时,石油化工、冶金、火力发电等传统高耗水工业用水效率的提高以及行业自身的技术进步,半导体、生物制药等对水质要求更加严格的新兴行业的快速发展,都会进一步提高对在线水质分析仪器的需求,过程型在线水质分析仪器也将保持持续的增长。物联网、大数据、云计算以及即将到来的5G时代,需要更多的传感器类型的在线水质分析仪器,低功耗、低成本的在线水质分析传感器将会迎来爆发的机会。 /p p   在市场需求和技术进步的共同推动下,在线水质分析仪器及其应用技术必将得到快速发展,仪器的稳定性与可靠性会有进一步的提高、可以实现在线监测的水质参数将越来越多、在线水质分析仪器的功能也将越来越强大,市场将会在很长一段时间内保持可持续的增长趋势。 /p p   5、结束语 /p p   在线水质分析仪器及技术,作为涉及分析化学、水质科学、电子与信息技术、材料科学、数据科学等传统与现代科学的综合性跨学科技术,经过过去几十年的发展,无论在水环境监测、饮用水安全保障还是工业过程用水领域都得到了普遍的应用。随着人类社会经济的进一步发展,特别是在大数据、物联网等各种高新技术发展的推动下,在线水质分析仪器及其应用技术还将得到更大的发展。 /p p   在中国,随着目前政府环保法规日益完善、公众环境保护意识提高,尤其是执政党提出了“绿水青山就是金山银山”的可持续发展的生态环境理念的情况下,加强水环境质量的监测以及废水排放的监管,采用更加先进的过程控制技术以提高水处理效率、降低水处理及用水成本,提高用水效率已经成为了水环境监管部门、水处理行业以及中国社会的必然选择。同时,随着中国这个制造大国研发制造水平的不断提升,都将促进作为获取水质信息最重要的测量技术-在线水质分析仪器技术高质量高速度的发展。 /p p style=" text-align: right " strong (供稿:重庆昕晟环保科技有限公司& nbsp 总经理程立) /strong /p
  • 二轮通知:中国分析测试协会标记免疫分析专业委员会 2024年学术峰会
    中国分析测试协会标记免疫分析专业委员会2024年学术峰会通知(第二轮)各相关单位、专家、同仁:中国分析测试协会标记免疫分析专业委员会拟将举办2024年学术峰会。此次会议主题“精准诊断,维护健康”,邀请业界专家学者参会交流。会议组织学术报告会、新技术推广、新产品展示等活动,多家媒体实时报道大会盛况。会议特别设立优秀青年论文墙报展,以加强人才培养,促进青年人才梯队建设。一、时间会议:2024年4月18日-20日二、会议地点:中国湖北省襄阳市高新区长虹北路11号(襄阳富力皇冠假日酒店)三、会议主要内容:1.学术报告会2.常委会会议3.企业专题卫星会4.新产品发布会5.新产品展示6.优秀青年论文墙报展 四、参会注册1.报名方法:请关注“标记免疫资讯”微信公众号填写报名信息,预留酒店。网上报名截止时间2024年3月31日。2.注册费:3月31日前注册交费1000元/人;现场交费1200元/人。会议统一安排食宿,费用自理。3.费用缴纳1)银行转账;户名:中国分析测试协会 账号:0200049209024907457开户行:工商银行北京市阜外大街支行注:请务必备注汇款人姓名、单位。2)线上缴费、开具电子普通发票:手机微信/支付宝扫描二维码进入支付页面缴费;完成缴费后在下一页面选择“去开票”,填写开票信息获取电子普通发票。电子普通发票提取方式:通过所填写开票信息中预留的手机号码或邮箱,查看“诺诺网”发送的短信或邮件,自行下载打印。3)现场缴费:现场可刷卡、现金、微信缴费。备注:微信和转账缴费后请在大会网站的个人中心上传汇款凭证,会务组根据汇款凭证发送注册确认函,报到时直接在已缴费注册处,出示此函报到。 银行汇款及现场缴费上传发票信息:扫描对应二维码提交普票或专票开票信息,发票现场领取。五、优秀青年论文征文1.征文范围:标记免疫的最新研究成果、新技术以及新方法。2.参加征文作者年龄在45岁以下。3.征文请通过会务邮箱提交,提交截止日期为2024年3月20日。4.论文摘要形式:500-800字。格式备注:中文用宋体,英文采用Times new Roman;标题三号,正文小四,行间距1.5倍。六、会务组联系人及方式陈吉波 电话:18611998500 冯杰 电话:15210009299会务邮箱:bjmy_2021@sina.com七、会议日程见附件 此次会议要求已担任专委会第二届委员的专家、同道参会;同时也邀请从事检验医学、临床病理、核医学、食品药品检验、公共卫生检测、产品研发企业及生物医药投资等各地IVD行业相关单位和行业专家、从业人员积极参会交流,促进行业和学科的共同发展。 2024年3月25日附件:会议日程
  • 国内二手仪器仪表市场生态分析
    在仪器仪表行业中,二手仪器市场在国内兴起较早,但是一直处于不温不火的状态。其中存在的因素有哪些呢?随着大环境的变化仪器厂商的分销仪器策略的调整,那么二手仪器市场究竟占有率会有多大呢? 二手仪器市场兴起背景   美国是二手设备最集中的国家。所谓二手设备是指原始购买需要购买二手仪器,二手仪器之所以有市场,主要是两个方面:第一个是供货渠道好,国外很多厂家的设备仪器都是有期限的,而且企业也存在设备更新等问题,所以就被一些有门路的人找到了机会,看到了商机 第二个是国人也开始重视实用性,性价比现在都看重了,不是只是单一的看重品牌。二手仪器对于大药厂来说是没市场,因为他们不差钱。但是对于刚创业的企业来说,还是有吸引力的。   二手仪器市场存在的瓶颈   二手仪器市场存在第一因素就是新仪器太贵,而生产及研发部门的需求是时刻存在且不断扩增的,再者仪器本身的产品的更新周期是很慢的,出于降低成本,保障生产的角度,购买二手仪器就是一个很好的选择。但是二手市场不规范化,供货渠道也不统一,售后服务也无法保障,在很大程度上给二手仪器市场带来了发展瓶颈。众所周知,每一台仪器的价格都不菲,现在购买仪器,客户不仅看重仪器质量,还看重售后质量,以及技术支持。买一台仪器,需要很多后续服务的。仪器和后续放到仪器,是一个有机整体。   最近这些年以来,国内购进了不少二手设备。有的买得很成功,短时间内就能正常使用。有的买得不很成功,设备较长时间不能投产使用,或投产了但效率低、故障率高、停机检修时间长。有的甚至仍在包装箱中。这就向我们提出了一个问题,买进二手设备应如何操作和决策,才能达到投资少、见效快、促进生产发展的目的呢?   二手仪器市场国产和进口仪器并非平分秋色   虽然我国计量仪器仪表产业有了一定的发展,但远远不能满足国民经济科学研究,国防建设以及社会生活等各个方面日益增长的迫切需求,我国计量仪器产品,绝大部分属于中低档技术水平,而且可靠性、稳定性等关键性指标尚未全部达到要求,高档,大型仪器设备几乎全部依赖进口,中档产品以及许多关键零部件,国外公司同样占有国内市场60%以上的份额。这是国产仪器的现状,至于二手仪器,大部分用户会选择进口仪器,但是国产的仪器售后这一方面又是非常的便捷。   二手仪器选购主导因素   二手仪器准备采购的前期准备,应和订购新设备一样,给予高度重视。不能因其价格便宜、功能又齐全而放松要求。和订购新设备不同,对其规格和功能,要根据典型工艺的需要—一核对。还要了解和掌握设备的出厂年代、服役状况及其控制系统的型式。根据网友归纳,在购买二手仪器时,主要会考虑吧以下几个问题:二手原因、质量、价格和售后。大家对于二手仪器的选购,了解二手设备的原因是一项很重要的功课,也是很重要的参考指标,二手仪器大致原因有以下几个方面:(1)因出产年代较早、生产效率已满足不了生产的需要。这种设备长期服役,其功能和功能质量是正常的。(2)因工厂倒闭或转向而闲置的。这种设备亦经长期服役,其功能及功能质量经受过考验。质量是前提,仪器再便宜用起来不好也不行,质量才是硬道理,对于仪器质量的判断,做一套性能确认是很好的方法,确认仪器精度各方面都不存在问题。价格是关键因素,价格不能太高,应最好在五折以下比较有优势。   售后应该是客户最为关心的问题,保修合同应在半年以上,可付费购买延长保修合同(1年),顺带保养仪器。如果不提供购买延保合同,二手仪器商有专业工程师可以提供上门维修。一定要注意保修条件,以及本身的维护力者再出售的未使用或已使用的设备,亦即既有全新的也有翻新的量。如果缺乏维修文件,保修条件又较差,那么购买这种二手仪器产品。对于测试仪器来说,无论全新或翻新的产品均经过检查或的风险就较大,必须慎重考虑。
  • 安东帕盛装出席第二届全国药品质量分析论坛会议
    4月19日,安东帕公司盛装出席了在中国泰州医药城会展中心举行的&ldquo 第二届全国药品质量分析论坛&rdquo ,获得圆满成功。 本次论坛为期三天,安东帕公司将针对药品质量分析与提高中值得推广的新仪器、新技术、新方案推荐给来自各个药品行业的专家学者。 安东帕的仪器样机在展台中亮相并在展位中现场演示,给与会者带来直观的视觉感受,并由我们的应用专家对安东帕公司的的产品应用作了详细的解说,吸引了许多专家的关注与询问。 安东帕公司是世界著名的高品质顶级分析仪器制造商,八十六年来始终坚持以&ldquo 满足客户需要&rdquo 为核心责任,在发展战略上,安东帕对用户的应用需求非常注重, 对药品行业的应用特点和发展动态极其关注。 药物分析中旋光度、比旋度、折光率、黏度、密度、有害元素含量等特性都是日常常规检测项目。安东帕公司为药物特性分析、各种样品前处理设备及方法设定了一系列的解决方案。
  • 东西分析推出液相色谱检测淀粉中顺丁烯二酸检测方法
    针对近日媒体爆出的台湾毒淀粉事件,东西分析推出&ldquo LC5510 测定淀粉中的顺丁烯二酸&rdquo 的解决方案,可登陆仪器信息网下载资料,下载地址:http://www.instrument.com.cn/netshow/SH100293/down_241900.htm 关于我们:北京东西分析仪器有限公司成立于2002年(其前身是成立于1988年的北京东西电子研究所),到现在已拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,中国分析仪器制造行业著名企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。公司以雄厚的科研技术实力为后盾,以严格的质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的产品。在食品安全、农产品安全、饲料分析检测方面公司有专门的研发中心和分析应用中心,多年的配套解决经验,可为客户提供全套的解决方案和符合国标的分析方法验证,具有广泛的客户群。
  • 美国规定婴儿奶粉须含硒,今日起生效
    美国食品及药物管理局(FDA)于2015年6月通过一项最终规则,修订关于婴儿配方奶粉营养规格及标签的规例,要求必须把硒加入所需营养清单,并订立婴儿配方奶粉最低及最高的硒含量。该项最终规则的生效日期已确定为2016年6月22日。《美国食品、药品及化妆品法》规定婴儿配方奶粉必须含有29种指定营养,并为各种营养订立最低含量水平,也为其中9种营养订立最高含量水平。FDA最初为婴儿配方奶粉订立营养规格时,未有把硒列为必要营养。其后,硒被认定为一种必要营养,遂于今年6月决定把硒列入所需营养清单,并规定婴儿配方奶粉须标明每100千卡的硒含量。同时要求婴儿配方奶粉的最低及最高硒含量分别为2.0毫克/100千卡和7.0毫克/100千卡。
  • 十款国内外知名洗发水 九款检出二恶烷
    你知道你用的洗发水是否含有致癌物质?洗发水是消费者每周都要使用的日化产品,但很少有人去关注其成分和含量。然而,记者在近期展开的调查中发现,市面上大多数洗发水产品均含有一种叫“二恶烷”的致癌物质,而且个别含量不低。   在广州某大型超市,记者购买了市面部分畅销的10款洗发水产品,其中包括部分国内外知名洗发水品牌。随后,记者将这些洗发水送至“广东省保化检测中心”,(该机构是省级卫生化妆品监督检验机构,属于国家卫生部全国化妆品卫生监督抽检指定检验机构、广东省食品药品监督管理局认定的法定监督检验机构)和“广州市质量监督监测研究院”(该机构是三大国家级化妆品质量监督检验中心之一),两家权威机构进行检测。   几天之后,记者拿到了两大中心提供的检验报告,两份报告一致检测出:这10款畅销的洗发水,其中9款均被检测出含有二恶烷。   二恶烷有多毒?   据华南理工大学化工学院钟振声副教授介绍,二恶烷虽然是毒性物质,但是要看它对人体造成的危害主要看量有多大。如果二恶烷以溶液等形式被人喝进肚里,就会直接进入血液,危害比较大。但是如果以膏状等涂抹于皮肤之上,经过皮肤吸收之后再进入血液中的量也许就很少了。但具体有多大量会产生危害,还要进行毒理测试才能确定。   二恶烷含量最高达19.5   美国标准最多为5   根据“广州市质量监督监测研究院”出具的检验报告,这9款洗发水的二恶烷含量最高为19.5。最低也达到了5.9,含有二恶烷的9款洗发水中,有7款产品的二恶烷含量超过了10。由于中国没有出台二恶烷含量的限量标准,而全球知名化学品公司禾大国际相关人士对记者说,美国的化妆品原料(表面活性剂,也称AES)的二恶烷行业标准为20,“表面活性剂”在洗发水中的添加量一般为15~20%,因此,洗发水成品中的二恶烷含量正常为3~4,加上还要添加其他活性剂,洗发水中二恶烷含量最多也应该是5。但根据广州日报委托的检验结果看,多数洗发水这一含量在10~20之间。   内行爆料:洗手液沐浴露也含二恶烷   一位消费者在他的博客中说:这让我们知道二恶英之外,又有一种叫二恶烷的致癌物质。想想咱们中国人也真经得起折腾,总有一天,咱们会锻炼得百毒不侵的。   还有消费者说,同样是洗发水,为何有的含有这种有害物质,有的却不含呢?这说明还是跟企业的社会责任心有关,企业不能见利忘义,政府部门也不能忽视监管,不然,这种有害物质只会越来越泛滥。   “不光是洗发水,其他日化产品也或多或少含有二恶烷!”广东省保化检验中心主任郑伟东说,根据我们检验的结果,市面上的洗发水大多数含有二恶烷,洗手液中一部分产品含有二恶烷,沐浴露中较少一部分产品含有二恶烷。这些产品中,二恶烷含量有轻有重,主要取决于原料的质量。   看到报道后,一些专业人士还打来电话,建议本报提醒消费者注意:尽量少使用免费供应的沐浴产品。广东一位原料供应商人士来电说:桑拿和洗浴场所的免费洗浴产品中的有害成分更多,二恶烷含量更高。   消费者号召多用天然物质   还有消费者建议“少用化学品,多用天然物质”。他认为,化学洗涤剂实际上就是石油副产品。在这些被包装得多彩多姿的化学洗涤剂的使用过程中,人们正在不知不觉地如同吸毒般地依赖着它。   “还是用回以前的那些天然洗发物质啦!”不少消费者发出号召,比如用淘米水、茶籽粉、捞饭汤、云南皂角、芦荟汁、蛋清等来洗发,既便宜又放心。一位消费者还详细介绍了用蛋清洗发的方法:首先用水将头发洗干净,然后将蛋清打入手心,将手心的蛋清在头发上来回揉搓,约5分钟左右,将头发漂洗干净就可以了。   不含二恶烷原料价贵5倍   洗发水企业能否在技术上将这种有害物质避免带入到化妆品里面去呢?香港化妆品化学师学会陈创光的回答是肯定的。   洗发水企业为何不做这项工作呢?几位专业人士均表示:一是意识问题,二是成本问题。   陈创光表示,含二恶烷的表面活性剂(AES)并不是不可代替,目前已经有新的表面活性剂能达到更好的效果,不过价钱要贵4到5倍,因此很多企业不愿意采购这种替代原料。   企业:不会掏钱去做检验   国家化妆品监督检验中心相关人士在记者送检的时候告诉记者,他们只负责检验二恶烷的含量,但是合格与否他们不做判定。   国家食品药品监督管理局去年曾表示,化妆品中含微量二恶烷不会对人体产生伤害,但是到底多少才是“微量”,目前也没有一个标准。   美国对洗发水原料有行业标准为20PPM,成品的二恶烷含量应在10PPM以内。   而一些被检出二恶烷含量的企业昨日向本报记者表示,国家并没有要求他们对采购的原料和成品中的二恶烷进行检测,也没告诉他们含量多少是“红线”,他们当然不会掏钱去做检验。
  • 迪马“毒淀粉”中顺丁烯二酸(酐)检测解决方案
    近日,台湾“毒淀粉”事件愈演愈烈,广大民众陷入“毒食”恐慌。所谓“毒淀粉”,主要是指在淀粉中添加了顺丁烯二酸酐。顺丁烯二酸酐(Maleic anhydride)简称马来酸酐或失水苹果酸酐,遇水即水解成顺丁烯二酸(又称马来酸)。加入淀粉后可增加食物的弹性、黏性及外观光亮度,但会对人体肾脏造成极大损伤。目前,我国国家标准GB 2760-2011未将顺丁烯二酸酐列为食品添加剂。方法优势 我国现有的国家标准GB/T 23296.21-2009采用高效液相色谱及内标法对食品模拟物中顺丁烯二酸及顺丁烯二酸酐进行分离与测定,但关于淀粉及淀粉制品中顺丁烯二酸酐的检测尚未见报道。2012年,浙江省质量技术监督检测研究院采用迪马科技Platisil ODS C18液相色谱柱开发了基于高效液相色谱(HPLC)测定淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的方法。该方法的灵敏度高、准确度好、前处理操作简单,适用于淀粉及其制品中顺丁烯二酸和顺丁烯二酸酐总含量的批量检测。样品前处理 称取2.50 g样品(精确至0.01 g)于50 mL比色管中(淀粉制品用粉粹机磨碎后称取),加入25 mL体积分数5%的乙醇水溶液,涡旋2 min,超声提取10 min后用提取液定容至50 mL,摇匀,12000 r/min离心5 min后,过膜上机测定。色谱条件色谱柱:Platisil ODS C18,250 mm × 4.6 mm,5 μm (Cat.#:99503)流动相:甲醇-1‰磷酸溶液(2∶98)流速:1.0 mL/min柱温:30 ℃进样量:15 μL检测器:UV 214 nm 色谱柱的选择 参考标准GB 25544-2010及有关马来酸的文献报道,为减少目标物出峰时间附近物质的干扰,延长其色谱保留时间,本方法采用Platisil ODS C18色谱柱,与普通ODS C18柱相比,该色谱柱可以纯水为流动相。 顺丁烯二酸标准品色谱图含顺丁烯二酸阴性样品加标的谱图 添加回收结果 回收率 88%~89%(添加水平:10、50、100 mg/kg) 相对标准偏差(n=5) 定量下限 5.0 mg/kg * 以上数据来源于高效液相色谱法测定淀粉及淀粉制品中的顺丁烯二酸与顺丁烯二酸酐总含量,分析测试学报,2012,31(8),1013-1016 “毒淀粉”中顺丁烯二酸(酐)检测解决方案相关产品信息: 货号 名称 规格 样品前处理 37177 针头式过滤器 Nylon 13 mm,0.22 μm 100/pk 37180 针头式过滤器 Nylon 13 mm,0.45 μm 100/pk 色谱柱及保护柱 99503 耐100%纯水流动相反相液相色谱柱Platisil ODS C18 250 × 4.6 mm, 5 μm 标准品 46672 顺丁烯二酸酐[108-31-6] 1 g 46671 顺丁烯二酸[110-16-7] 1 g HPLC溶剂 缓冲盐 离子对试剂 50102 甲醇 HPLC级 4 L 50108 无水乙醇 HPLC级 4 L 50133 磷酸 HPLC级 50 mL 通用色谱产品 52401B 瓶架/蓝色 50 孔 52401A 瓶架/白色 50孔 5323 样品瓶(棕色/螺纹 2 mL, 100/pk 5325 样品瓶盖/含垫(已经组装) 100/pk H80465 HPLC 进样针 25 μL
  • 西尔曼科技生物过程分析仪隆重上市
    为了得到品质优良、性能高效的产品,需要对其培养过程进行连续不间断的监测,并对在培养过程中出现的各种可能的问题加以控制和解决。而发酵过程是时变、非线性、强耦合的复杂生化过程,同时离线测量生化参数耗时长,难以及时控制发酵过程,这给实时检测培养过程中的重要生化参数带来巨大困难,因此生物传感器技术作为动物细胞培养过程关键生化参数检测不可或缺的手段,能有效克服这一不足。动发酵过程的控制优化是维系生产目标实现的关键手段,只有在线实时的对物理参数的变化、细胞代谢、营养产物的生成、目标产物浓度的变化进行监控和分析,才能有效地进培养过程的控制,达到产品优质、高效生产的目的。 一般的生物过程参数分为物理参数、物理化学参数、化学参数和生物学参数。化学参数有:底物浓度(葡萄糖、乳酸、谷氨酸、谷氨酰胺、氨、钠和钾等)、中间代谢产物浓度和产物浓度等,生物学参数有:活细胞浓度、氧吸收速率(oxygen uptake rate, our)、二氧化碳释放速率(carbon dioxide excretion rate, cer)、呼吸熵(respiratory quotient, rq)等。 目前检测培养基底物浓度的常见方法有高效液相色谱法、化学滴定、生化分析仪等方法。这些方法一般存在以下缺点,第一检测时间长,培养液成分复杂,用液相作为培养过程监控的手段耗材成本高,时间成本更高;第二,用化学滴定的方法存在特异性差,重复性差,耗费时间等缺点,第三传统的生化分析仪检测时间短,特异性强,但是对于生产和科研,培养基组分复杂,原料存在批次间不稳定等问题,背景色的干扰会导致检测结果呈非线性,重复性差、而且总体灵敏度和准确度较低,并且生化试剂寿命有次数和时间的限制,单次检测成本高昂。 西尔曼发酵过程分析仪 深圳西尔曼科技最新推出的发酵过程分析仪基于酶电极法—固定化酶膜技术,具有检测时间快(反应时间只需20秒)、昂贵的酶等生化试剂可以重复利用(酶膜寿命大于3000次)、操作简单、自动化程度高、重复性好(cv小于2%)、单次检测成本低等优势。可用于发酵过程精准控制、培养基浓度监控、培养基优化、补料策略优化、有毒有害代谢物监控等领域。m800系列仪器可选自动稀释模块,扩展了检测范围,显著降低了操作员人为造成的偏差。西尔曼科技发酵过程分析仪参数详解项目参数备注测试原理酶电极法不受样品背景色干扰电极结构铂金丝、银片杆状电极比卡片式电极耐用,抗氧化,高阻抗,寿命长耗材不做时间限制,可使用到自然失活进口仪器耗材做时间限制,到期强制停用,造成检测成本过高耗材成本固定化酶膜,可重复利用酶比色法试剂需求量大,一次性试用准确性系统误差小于1%可与液相色谱仪做相关分析,相关系数大于0.99样品重复检测支持,可设置重复检测次数设置后仪器自动重复检测检测范围0.05-100g/l需配合预稀释模块分辨率0.01g/l变异系数小于2%样品检测重复性优于酶比色法检测项目葡萄糖、乳酸、谷氨酸、赖氨酸、谷氨酰胺、乙醇、甲醇等可根据用户需求自由组合单个样品反应时间20秒单个项目检测时间45秒所有项目检测时间60秒反应池结构溢流式开放式反应池,比微流路易清洗,给酶膜提供长时间液体环境,不怕短暂停电管路材质泰克管复合材料,易清洗,易更换,不易堵塞硬件材料泵、阀、芯片、采样针等控制部件为国际大品牌样品预稀释功能可选自动进样盘标配15位自动进样盘进样方式高精度全自动进样自动标定是结果输出打印,u盘导出,数据查询通讯接口usb、rj45、rs232可与质检中心电脑相连接测样时技能要求任何人可操作,无难度测试速度高,无须预稀释样品,实际速度高达60样品/小时测量精度高,无人为误差显示屏8寸彩色触摸屏软件人机交互、类似iphone图标化设计产品设计标准医疗级设计标准样本量低至10ul人工成本检测时检测人员可从事其它工作,且无须增加岗位人员,效率很高;售后服务成本低,提供上门技术指导和安装维修,定期保养,7*24小时服务投资回报率可以优化目前人员结构,提高劳动效率,满足未来发展需要数据存储容量4000西尔曼发酵过程分析仪检测准确度验证1.m100与高效液相色谱仪的检测数据对比 本数据来源于某高校生物工程学院实验室 2.s10手动款仪器检测数据分析西尔曼发酵过程分析仪在发酵调控中的应用 将西尔曼发酵过程分析仪用于发酵调控,对比应用前后发酵液糖浓度。 未使用发酵过程分析仪之前,补料控制根据以前的经验和菲林滴定数据,糖浓度的控制呈现波浪状,忽高忽低,不稳定,发酵的环境不稳定,代谢途径自然也是在不断变化。使用发酵过程分析仪的检测数据作为发酵调控的依据,得到的糖浓度曲线非常平滑,基本可以做到恒化培养,找到最佳浓度,激活有利于效价提升的代谢途径,增产稳产就是这样简单。
  • 赛默飞的验“毒”术:教你测定“毒淀粉”中的顺丁烯二酸(酐)
    毒奶粉、瘦肉精、塑化剂&hellip 近年来食品&ldquo 染毒&rdquo 事件频发,食品安全已经成为公众关注的焦点之一。因此,作为食品安全问题源头之一的食品添加剂也渐渐进入消费者视野。今年3月,台湾爆发&ldquo 毒淀粉&rdquo 事件,食物中惊现含有顺丁烯二酸(酐) 的有毒淀粉。作为检测领域的世界领导者,赛默飞世尔科技(以下简称:赛默飞)积极响应,针对顺丁烯二酸酐可水解成马来酸的特性,提出运用离子色谱法测定淀粉中的顺丁烯二酸(酐)的解决方案。 顺丁烯二酸(HO2CCH=CHCO2H),又称&ldquo 马来酸&rdquo ,是饱和二元羧酸,可以用于树脂化学黏合剂原料。在淀粉中加入一定量的顺丁烯二酸,可增加食物的弹性、黏性、外观光亮度、以及保质期。然而,长期超标食用含顺丁烯二酸的食品,将极大程度损伤人体肾脏功能,甚至引发不孕不育。令人担忧的是,食品专家指出,顺丁烯二酸(酐)在食品领域可能存在一定滥用现象,成本的低廉以及效果的显著促使不法商家使用顺丁烯二酸(酐)作为食品添加剂,以谋取暴利。 离子色谱法测定淀粉中的顺丁烯二酸(酐) 顺丁烯二酸与反丁烯二酸(又称&ldquo 富马酸&rdquo )互为几何异构体,其中反丁烯二酸可以作为食品添加剂应用于食品中,主要起酸度调节剂作用,是食品添加剂卫生标准(GB2760-2011)允许添加的食品添加剂。相反,顺丁烯二酸(酐)则并未收入允许添加的食品添加剂目录。对于顺丁烯二酸(酐)在食品领域可能存在的滥用现象,赛默飞推出一种测定淀粉中顺丁烯二酸(酐)的方法,以满足食品安全监测的迫切需求。 顺丁烯二酸酐遇水则水解成马来酸,因此可以通过检测样品中马来酸的含量,得到顺丁烯二酸(酐)的总量。赛默飞针对马来酸作为一种有机酸极易溶于水且呈阴离子状态的特性,运用离子色谱法测定淀粉中顺丁烯二酸(酐)的测定方法。 与我国目前已有毛细管电泳法以及现行国家标准GB/T 23296.21-2009采用的高效液相色谱法等检测方法相比,赛默飞推出的离子色谱法测定淀粉中顺丁烯二酸(酐),不但样品前处理简单、便捷,而且方法稳定,线性范围内相关性好,准确度高,受其他因素干扰小,可以成为检测淀粉中的马来酸的有效手段。 赛默飞验&ldquo 毒&rdquo 术解决食品安全中的添加剂隐患 作为科学服务领域的世界领导者,赛默飞始终积极关注食品安全问题。对于近年来食品添加剂引发的食品安全事故层出不穷,赛默飞采取快速应对方式,在事件发生的第一时间组织分析专家开展检测工作,及时建立和发布相应解决方案。除了&ldquo 毒淀粉&rdquo ,赛默飞对于&ldquo 毒奶粉&rdquo 、塑化剂、瘦肉精等都有着独到的验&ldquo 毒&rdquo 术。 早在&ldquo 毒奶粉&rdquo 事件爆发之时,美国食品和药物管理局就发布过用赛默飞TSQ Quantum LC-MS/MS系统检测婴儿配方乳制品中三聚氰胺和三聚氰酸残留的方法。2007年,美国国家食品安全与技术中心又借助赛默飞的TSQ Quantum Ultra TM三重四级杆液相色谱串联质谱仪,建立了一个新的液相色谱串联质谱方法测定食品中的三聚氰胺。除了提供先进的检测技术,赛默飞还将独有的线样品前处理技术TurboFlow色谱净化和TSQ Quantum LC-MS/MS分析结合,使分析流程得到大大简化和操作自动化。赛默飞三聚氰胺检测方法因此获得了&ldquo 2009荣格食品饮料业技术创新奖&rdquo 。除此之外,赛默飞还针对塑化剂中的邻苯二甲酸二乙基乙酯(DEHP)和邻苯二甲酸二异壬酯(DINP),瘦肉精中的&beta -受体激动剂,以及防霉保鲜剂中的富马酸二甲酯(DMF)等食品添加剂推出了简单易行,分析时间短,且适用于大规模筛选的处理办法。 不止如此,赛默飞立足于整个食品安全的产业链,涵盖仪器设备、试剂以及LIMS实验室信息管理系统的无敌产品组合,为大家提供从农场到实验室到工厂&mdash &mdash 最全面的食品安全解决方案。 了解更多赛默飞食品安全完全解决方案信息,请点击http://www.thermo.com.cn/foodsafety。 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国 赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 光电二极管中的带隙之争:直接与间接材料的能量之战
    直接带隙和间接带隙是固体材料中两种不同类型的能带结构,它们在电子的能级分布和电子激发行为上有显着差异,影响着器件的效率、响应速度和应用场景。工作原理直接带隙光电二极管直接带隙指的是材料的价带(valence band)和导带(conduction band)的能级在动量空间中的最小距离发生在相同的动量值(通常是在动量为零处)。换句话说,电子在从价带跃迁到导带时,其动量不会发生显着变化,这种跃迁过程不需要额外的动量(或波矢)。因此,直接带隙材料通常在吸收或发射光子时具有高效率,能量损失较小。例如,常见的直接带隙材料包括氮化镓(GaN)和砷化镓(GaAs)。直接带隙材料的光电二极管利用其电子从价带到导带的直接跃迁特性。当光子(光量子)击中材料并激发电子从价带跃迁到导带时,电子和空穴对会迅速分离并在电场作用下产生电流。这种跃迁过程不需要额外的动量,因此直接带隙材料在光电二极管中表现出高效的光电转换效率和快速的响应速度。例如,氮化镓(GaN)和砷化镓(GaAs)等直接带隙材料被广泛用于高速光通信、激光雷达和高频光电探测器等应用中。 间接带隙光电二极管间接带隙则是指材料的价带和导带的能级在动量空间中的最小距离发生在不同的动量值上。在这种情况下,电子在从价带跃迁到导带时,除了能量外还必须具备额外的动量(波矢)以保持能量守恒。这使得在光子吸收或发射时,电子可能会通过与晶格振动(声子)相互作用来释放或吸收额外的动量。因此,间接带隙材料通常在吸收或发射光子时会有较大的能量损失。典型的间接带隙材料包括硅(Si)和锗(Ge)。 间接带隙材料的光电二极管则需要额外的动量来实现电子的跃迁。这种额外的动量通常是通过与晶格振动(声子)相互作用来获得,因此在光电转换过程中会引入更大的能量损失。典型的间接带隙材料如硅(Si)和锗(Ge),虽然其光电转换效率较低,但由于在集成电路、传感器和太阳能电池等应用中具有成熟的制造技术和低成本的优势,仍然被广泛使用。研究方向直接带隙材料的研究方向包括:提高效率和响应速度: 进一步优化直接带隙材料的电子结构和晶体质量,以提高光电转换效率和响应速度。新型器件架构: 探索新型光电二极管的结构设计,如量子阱结构和纳米结构,以改善光电性能。应用拓展: 将直接带隙材料应用于更广泛的光电子器件中,如高功率激光二极管和光伏电池。间接带隙材料的研究方向包括:提高光电转换效率: 探索通过材料工程和表面修饰等方法提高间接带隙材料的光电转换效率。减小能量损失: 研究如何减少光子吸收到电子-空穴对生成之间的能量损失,以提高器件性能。集成电路应用: 开发新型间接带隙材料的光电子集成电路应用,包括在传感器和数据通信中的应用。直接带隙和间接带隙在光电二极管中的不同应用和研究方向反映了它们在材料科学和光电子技术中的重要性和多样性。随着技术的发展和对能源效率的不断追求,研究人员和工程师在不同的材料选择和器件设计中持续探索和优化,以满足不同应用场景下的需求和挑战。光伏检测请搜寻光焱科技
  • 霸王洗发水被曝含致癌成份二恶烷
    霸王旗下中草药洗发露、首乌黑亮洗发露以及追风中草药洗发水,经过香港公证所化验后,均含有被美国列为致癌物质二恶烷。   14日消息,据香港《壹周刊》报道,霸王旗下中草药洗发露、首乌黑亮洗发露以及追风中草药洗发水,经过香港公证所化验后,均含有被美国列为致癌物质二恶烷。   美银美林发表研究报告,就《壹周刊》有报道指霸王洗发水含致癌成份二恶烷,该行指若证实报道,相信必将影响其品牌所有产品销售,进而可能导致品牌形象受损及影响高性能产品的推售,该行表示,今日霸王必受到市场的负面回应。   霸王公司首席执行官万玉华对此回应称,该物质在原料上出现,但称全行业大部份洗头水均有,强调含量少对人体无害。   据了解,类似事件曾有发生。2009年3月,强生的婴儿香桃沐浴露中便被中国国家质检总局检出微量的二恶烷。强生曾回应称,二恶烷在一些原材料中自然存在无法避免,并指出“强生婴儿香桃沐浴露含的二恶烷符合国家标准”。   名词解释   二恶烷,有机化合物,别名二氧六环、1,4-二氧己环,无色液体,稍有香味。属微毒类,对皮肤、眼部和呼吸系统有刺激性,并且可能对肝、肾和神经系统造成损害,急性中毒时可能导致死亡。主要用作溶剂、乳化剂、去垢剂等。   延伸阅读   “霸王式危险”源自安全标准的空白与落后   霸王声明强调产品安全 将委托第三方做产品检测   霸王4小时发17条微博澄清 七成网友表示不再买
  • 安捷伦再次盛装出席第二届化学和药物结构分析研讨会
    安捷伦再次盛装出席第二届化学和药物结构分析研讨会 (CPSA Shanghai 2011)   CPSA(Chemical & Pharmaceutical Structure Analysis, 化学和药物结构分析研讨会)是每年在美国举办的化学和制药行业领域的顶级盛会,深受广大药物研发和药物分析科学家的欢迎。继去年4月CPSA Shanghai 2010首届中国年度研讨会在上海成功登陆之后,CASA Shanghai 以先进技术与解决方案汇集一堂,东西方文化迸发出卓越思想的独特理念在广大中国药物研发和药物分析的高端科研人员之间引起了广泛的期待和良好的口碑。2011年4月13-16日,CPSA Shanghai 2011 在中国上海浦东Renaissance酒店如期举行,三百余位来自五湖四海,汇聚全球顶尖国际跨国制药公司,药物研发外包公司(CRO)及中国一流药物研发和药物分析的科研人员济济一堂,共同探讨了化学和药物结构分析领域的热点问题和需求,结构分析策略和业绩基准,深度审视创新型技术和药物研发的实践方法。   安捷伦公司再次以特别赞助商盛装出席了本次CPSA Shanghai 2011 ,安捷伦美国总部的众多公司高管和科学家应邀积极参与了晚宴主题报告,主持并参加了部分分会报告,以及展会,墙报等系列学术活动。   4月 14日晚,安捷伦公司再次举办了本次研讨会的大会欢迎晚宴----&ldquo 安捷伦之夜(Agilent Night)。在安捷伦公司大中华区生命科学市场部经理庄晨杰先生的主持下, 安捷伦公司副总裁及生命科学集团全球业务总经理John Pouk 先生,安捷伦公司副总裁及全球LC/MS业务总经理John Fjeldsted 先生,以及安捷伦公司生命科学集团大中华区总经理赵影女士带领他们的全球经理团队和中国团队热烈祝贺CPSA 2011 的再次成功召开,并诚挚感谢多年来一直支持和关心安捷伦中国业务成长的广大用户。安捷伦公司全球LC/MS产品经理Lester Taylor博士应邀作了Simultaneous Determination of the PK Profile of Clozapine and its Metabolites in Rat Plasma Using a High-Resolution 6540 QTOF Instrument的晚宴主题报告,博得全体与会专家,学者和与会科研人员的热烈掌声。席间,祥和欢乐之余,欢迎晚宴仍然充满高度互动的学术交流气氛,东西方文化再次交汇,大家热切期待明年再相逢。                     安捷伦公司副总裁及生命科学集团全球业务总经理John Pouk 先生致辞                        安捷伦公司全球LC/MS产品经理Lester Taylor博士做主题报告                            CPSA Funder Mike Lee 与Lester Taylor 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 岛津'PFAS二高一自'方案:高效分析新污染物
    全氟或多氟烷基化合物(Per- and Polyfluoroalkyl Substances,PFAS),是近年来备受关注的一类新污染物。研究表明,经由饮用水和其他环境介质的PFAS暴露给公众健康带来一定风险,目前全氟辛基磺酸(PFOS)、全氟己基磺酸(PFHxS)、全氟辛酸(PFOA)三类PFAS已列入POPs公约及我国《重点管控新污染物清单》。国内外相继发布了水质PFAS分析相关法规(HJ 1333-2023、GB 5750.8-2023、EPA 537.1等),现有方案一般采用离线SPE进行浓缩富集,样品用量大,操作繁琐耗时,容易引入误差或干扰。此外,不同法规的分析目标物数量存在差异,给法规依从分析带来挑战。岛津特别推出 “PFAS二高一自”应用方案:高灵敏-直接进样方案、高通量-平行液相方案、自动化-On-line SPE分析方案,水样直接上机,至多覆盖46种分析目标物,让PFAS分析更有信心。“PFAS二高一自”应用方案PFAS广泛用于铬雾抑制剂、灭火剂、不粘涂层等领域,在水体中呈现种类多、含量低的特点。为了同时兼顾法规和科研需求,覆盖更多的分析目标物,提升灵敏度和分析效率,岛津隆重推出“PFAS二高一自”特色应用方案,在法规基础上进行升级,满足您的个性化需求。三种方案均采用LCMS-8060NX三重四极杆串联质谱仪,灵敏度极高,水样无需离线SPE浓缩,直接上机,PFOA和PFOS轻松达到ppt级别灵敏度,满足大部分法规的要求,来看看“PFAS二高一自”的亮点吧!高灵敏-直接进样方案Nexera LC+LCMS-8060NX● 优异的灵敏度,PFOA和PFOS-0.5 ng/L;● 40种目标物+9种内标同时分析高通量-平行液相方案Nexera MX+LCMS-8060NX● 单次分析时间仅5.5 min,两条流路交替分析,通量高;● 41种目标物+9种内标同时分析自动化-On-line SPE分析方案On-line SPE+LCMS-8060NX● 1mL样品直接上机,PFOA、PFOS线性低点0.2ng/L;● 15 min分析46种目标物+9种内标“PFAS二高一自”特色应用方案推荐搭配以下全氟分析专用的配件和方法包●洁净样品瓶1.5 mL,Shimadzu LabTotal Vial for LC/LCMS(P/N 227-34001-01);●延迟柱和无氟化管路包(P/N:S225-46100-41),有效避免系统本底的干扰;●PFASs MRM数据库,包含93种PFAS的MRM参数,68个目标+25个内标(P/N:M232-07175-41);●LC/MS/MS 饮用水中PFAS分析方法包(P/N:S225-45420-91),覆盖EPA 533和537.1法规要求;↓高灵敏-直接进样方案赏析↓高灵敏-直接进样方案,非常考验仪器的极致灵敏度及稳定性,LCMS-8060NX标配Ion Fucus离子源,进一步提升了离子导入效率,从而提升了灵敏度及抗污染性能。40种目标物仅需50 μL上样量,线性范围0.5-100 ng/L,以PFOA和PFOS为例,定量限可达0.5 ng/L,灵敏度优于美国EPA的MCLs(最大污染水平)4 ng/L。● 线性在1-100 ng/L范围内,PFOA和PFOS,线性回归系数r20.99;↓高灵敏-平行液相方案赏析↓在传统的LCMS分析过程中,梯度洗脱的冲洗再平衡阶段质谱不再采集“有用”数据,属于质谱空闲时间,单次分析的质谱空闲时间一般在30-50%,岛津Nexera MX平行液相系统,采用独特的MX-DST技术,实现了流路1在分析的同时,流路2在冲洗和平衡,在液相梯度完成并且目标峰出峰结束后,便可交替流路开始下一针的分析(即重叠进样功能),将质谱空闲时间有效利用起来。同时,Nexera MX搭配LabSolutions Connect软件和MX Solution软件,实现参数优化和数据采集的智能化处理。使用高通量-平行液相系统,41种PFAS目标物、9种内标单次分析仅5.5 min,大大提升了质谱的利用率,实现了降本增效。兼顾效率的同时,灵敏度也能达到PPT级别。● 仪器配置及条件● 色谱图41种PFAS目标物、9种内标色谱分离良好,2 ng/L PFOA 和PFOS色谱图如下。41种PFAS目标物、9种内标TIC图(62 ng/L)↓自动化-On-line SPE分析方案赏析↓自动化-On-line SPE分析方案,配备了捕集上样模块,实现在线富集,超大体积进样(2000 μL定量环),实现一机多用,节省样品分析时间等,轻松实现自动化分析,告别繁复的手动前处理。46种PFAS目标物、9种内标在10 min内实现了良好的分离,色谱峰形良好。46种分析目标物以全氟/多氟烷基酸类,全氟烷基酸前体类为主,包括了羧酸类、磺酸类、饱和/不饱和调聚羧酸类、调聚磺酸、磺酸醚、羧酸醚、磺酰胺等共10类。● 系统配置系统控制器:SCL-40输液泵:LC-40D X3×2,LC-40B X3自动进样器:SIL-40C X3(2000 μL定量环)柱温箱:CTO-40C(FCV-36AH)质谱仪:LCMS-8060NX混合器:20μL×2● 分析目标物分类自动化-On-line SPE分析目标物分类● 自动化-On-line SPE分析条件● 灵敏度自动化-On-line SPE分析方案标准曲线图(PFOA和PFOS)●线性结果46种PFAS线性相关系数R0.995,具体如下表所示;结语“PFAS二高一自”特色应用方案,简化了前处理了,实现了更多目标物的分析,更适合法规依从和风险筛查。以上案例中的LCMS-8060NX,可以升级为新款LCMS-8060RX三重四极杆液质联用仪,LCMS-8060RX采用全新开发的IonFocus离子源,配备新开发的CoreSpray技术,提高ESI 喷雾针同轴度,进一步提升了分析数据的稳定性。
  • 第二届微/纳流控细胞分析学术报告会( 第二轮通知)
    p style=" text-align: center text-indent: 0em line-height: 1.5em " span style=" color: rgb(192, 0, 0) font-size: 18px " strong 第二届微/纳流控细胞分析学术报告会 /strong /span /p p style=" text-align: center text-indent: 0em line-height: 1.5em " span style=" font-size: 18px " span style=" font-size: 18px color: rgb(192, 0, 0) " strong The Second Symposium for Cell Analysis on Micro/Nanofluidics /strong /span strong style=" color: rgb(192, 0, 0) text-indent: 0em " & nbsp /strong /span /p p style=" text-align: center text-indent: 0em line-height: 1.5em " span style=" color: rgb(0, 112, 192) font-size: 18px " strong 第二轮通知 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 首届微/纳流控细胞分析学术报告会于在2018年9月25-26日在北京西郊宾馆举行,会议吸引了100余位从事微流控分析及相关研究方向的科研工作者、青年学生及企业研发人员参会交流,为进一步推进微流控细胞分析基础研究与应用开发的快速发展,“ strong 第二届微/纳流控细胞分析学术报告会/The Second Symposium for Cell Analysis on Micro/Nanofluidics /strong ” strong 拟定于2019年9月25-26日在北京西郊宾馆召开 /strong 。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 本次会议旨在为从事相关领域基础、应用和开发研究的专家学者、科研人员、博士后、研究生等提供广泛多学科交叉学术交流平台,展示微/纳流控细胞分析领域的最新科研成果。会议已邀请了十余位国内外知名专家做主题报告,并将从投稿的摘要中安排5-10名口头报告和部分墙报。本次会议将在国际著名期刊Trends in Analytical Chemistry(Elsevier,影响因子8.4)出版由25篇综述论文组成的“Cell Analytical on Micro/Nanofluidics”专刊(http://www.linlab-tsinghua-edu.org/tdh/index.php/Home/Index/tznw/id/156)。英国皇家化学会(Royal Society of Chemistry)和会议主办单位将共同评选优秀墙报奖,颁发奖状和奖金。会议为期2天,含主题报告、口头报告、墙报等交流形式。会议诚邀高等院校、企事业单位专家、学者、青年学生以及对微/纳流控细胞分析由兴趣的各行各业的代表踊跃投稿,积极参会。会议相关的信息如下: /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 1、已确定的主题报告专家(排名不分先后): /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" border: none" tbody tr class=" firstRow" td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 专家姓名 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 单位 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 报告题目 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Prof. Tony Jun Huang, /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Duke & nbsp University /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Acoustofluidics: & nbsp merging acoustics and microfluidics for biomedical applications /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 陈子林教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 武汉大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " CE/CEC-MS & nbsp for Pharmaceutical and Cell Analysis /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 方群教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 浙江大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 基于液滴技术的微流控细胞分析 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 杨朝勇教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 厦门大学 /span span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" / /span span style=" font-size: 16px line-height: 115% font-family: 宋体" 上海交通大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" A Paired-Seq & nbsp Approach for High-throughput Single-cell Transcriptome Sequencing /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " pre style=" line-height:115%" p style=" line-height: 1.5em " Prof.& nbsp Yanwei& nbsp Jia br/ /p /pre /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " pre style=" line-height:115%" p style=" line-height: 1.5em " The& nbsp University& nbsp of& nbsp Macau br/ /p /pre /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " pre style=" line-height:115%" p style=" line-height: 1.5em " Cell-based& nbsp Drug& nbsp Screening& nbsp on& nbsp Microfluidics br/ /p /pre /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 林金明教授 /span span style=" font-size:16px line-height: 115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 清华大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Chemical operations on a living single cell by & nbsp open microfluidics /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 龙亿涛教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 南京大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 纳米孔道单分子界面传感分析 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 熊春阳教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 北京大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Mechanical characterization of single cells based & nbsp on microfluidic techniques /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Prof. Katsumi Uchiyama /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Tokyo Metropolitan University /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Possible application of push-pull nozzle system for single cell analyses & nbsp and manipulation /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Prof. Seong Ho Kang, /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Kyung Hee University /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Fluorescent-free 3D Super-resolution Microscopy based on & nbsp Wavelength-dependent Plasmonic Scattering Illumination /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Prof. Xiujun Li, & nbsp /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" University of & nbsp Texas at El Paso /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Microfluidic & nbsp Platforms for Single-cell Analysis /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 黄卫华教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 武汉大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 三维微流控芯片体外及体内检测循环肿瘤细胞 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 孙佳姝研究员 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 国家纳米科学中心 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 基于微流控技术的循环肿瘤标志物分离分析 /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 朱永刚教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 哈尔滨工业大学(深圳) /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Microfluidic & nbsp devices for long-term continuous and cell metabolite analysis /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 赵永席教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: 宋体" 西安交通大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Engineering & nbsp Microdevices for Circulating Tumor Cells: From Enrichment, Release to Single & nbsp Cell Analysis /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Prof. Yan Xu /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Osaka Prefecture University /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" Towards molecular manual-assembly: /span   span style=" font-size: 16px line-height: 115% font-family: & #39 Times New Roman& #39 , serif" nanofluidic manipulation of single nanometric objects & nbsp and extracellular vesicles /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Prof. & nbsp /span /p p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Takehiko & nbsp Kitamori /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " University of Tokyo /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Micro and Nano fluidic for & nbsp Bio- and Analytical Technologies /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 梁琼麟副教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:宋体" 清华大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" font-size:16px line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 " Perfusable & nbsp 3D-glomerulus-on-a-chip fabricated with topographical hollow hydrogel & nbsp microfiber /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" line-height:115% font-family:宋体 color:windowtext" 刘笔锋教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" line-height:115% font-family:宋体 color:windowtext" 华中科技大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 color:windowtext" Single cell cellomics with microfluidic & nbsp chip /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" line-height:115% font-family:宋体 color:windowtext" 王进义教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" line-height:115% font-family:宋体 color:windowtext" 西北农林科技大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" line-height: 1.5em " span style=" line-height:115% font-family:宋体 color:windowtext" 基于微流控芯片的肝组织结构单元构建及组装 /span /p /td /tr tr style=" height:11px" td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 11" p style=" line-height: 1.5em " span style=" line-height:115% font-family:宋体 color:windowtext" 蒋兴宇教授 /span /p /td td width=" 123" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 11" p style=" line-height: 1.5em " span style=" line-height:115% font-family:宋体 color:windowtext" 南方科技大学 /span /p /td td width=" 284" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 11" p style=" line-height: 1.5em " span style=" line-height:115% font-family:& #39 Times New Roman& #39 ,& #39 serif& #39 color:windowtext" Microfluidics for rapid synthesis and & nbsp screening of nanoscale drug carriers /span /p /td /tr /tbody /table p style=" text-align: center " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 2、会议时间和地点 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (1) & nbsp 会议时间:2019年9月25-26日(9月24日14:00-22:00报到) /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (2)& nbsp & nbsp 会议地点:北京西郊宾馆(北京海淀区王庄路18号) /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (3)& nbsp & nbsp 会议注册网址: /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " http://www.linlab-tsinghua-edu.org/tdh/index.php/Home/Login/regist /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong br/ /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 3、会议主题 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (1)& nbsp & nbsp 单细胞分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (2)& nbsp & nbsp 循环肿瘤细胞(CTCs) /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (3)& nbsp & nbsp 芯片模拟器官 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (4)& nbsp & nbsp 微流控芯片细胞行为研究 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (5)& nbsp & nbsp 药物筛选 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (6)& nbsp & nbsp 微流控设计、加工与制备方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (7)& nbsp & nbsp 微流控在化学、生物学、医学等领域的应用研究 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (8)& nbsp & nbsp 其他与微流控、细胞相关的最新研究成果 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 4、征稿要求 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (1)未在国内外学术刊物上公开发表或在国际、国内学术会议上报告的论文。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (2)论文摘要一律用Word编辑。论文摘要请用A4版面(一页以内),按照会议提供模板书写,中文或英文均可接受。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (3)论文一经评审录用后,发出录用通知。被录用的论文一般不再退回修改,作者在寄论文摘要时应做好一次性定稿准备,文责自负。论文录用与否,一概不退。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (4)论文提交截止日期:2019年9月10日。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (5)论文提交方式:网上注册成功后根据在线投稿说明,填写相关信息并在线上传。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 5、重要时间 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 会议第一轮通知:2019年7月份 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 会议第二轮通知:2019年8月份 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 会议投稿截止日期:2019年9月10日 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 会议投稿录用通知:2019年9月12日 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 6、会议费用 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 正式代表:1000元/人; 学生代表:800元/人(凭学生证) /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " (1)转账汇款 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 户名:清华大学 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 开户银行:工行海淀西区支行 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 账号:0200004509089131550 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " *汇款留言务必标注:第二届微流控会议+姓名。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " *为方便核对及提早开具会费发票,缴费成功后,烦请邮件告知。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 7、会议食宿 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 会议期间,食宿及交通费用自理,请您尽早联系酒店预定房间。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " br/ /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong 8、联系方式 /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 联系人:林斌歆 & nbsp 电话:13599901397& nbsp Email:linlab@mail.tsinghua.edu.cn /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " & nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 有关会议的详细介绍、日程安排、宾馆住宿等相关信息,请登录会议网址(http://www.linlab-tsinghua-edu.org/tdh/index.php/)查询。敬请关注! /p p style=" text-align: justify text-indent: 2em " br/ /p p style=" text-align: right text-indent: 0em line-height: 1.5em " strong 微/纳流控细胞分析学术报告会组委会 /strong /p p style=" text-align: right text-indent: 0em line-height: 1.5em " strong 2019年8月20日 /strong /p p style=" margin-right: 56px text-align: center text-indent: 40px break-before: page line-height: 1.5em " strong span style=" font-size:20px line-height: 150%" 第二届微 /span /strong strong span style=" font-size:20px line-height:150% font-family: & #39 Times New Roman& #39 ,& #39 serif& #39 " / /span /strong strong span style=" font-size:20px line-height:150%" 纳流控细胞分析学术报告会报名回执表 /span /strong /p p style=" margin-right: 56px break-before: page line-height: 1.5em text-indent: 0em text-align: center " strong span style=" font-size:20px line-height:150%" ( span style=" line-height: 150% font-size: 12px color: rgb(255, 0, 0) " 文末附件下载 /span ) /span /strong strong /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 629" style=" border: none" tbody tr style=" height:32px" class=" firstRow" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 姓名 /span /p /td td width=" 129" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td td width=" 68" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 手机 /span /p /td td width=" 136" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td td width=" 128" rowspan=" 5" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td /tr tr style=" height:32px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 职称 /span /p /td td width=" 129" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td td width=" 68" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 电话 /span /p /td td width=" 136" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td /tr tr style=" height:32px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 同行人姓名、职称 /span /p /td td width=" 170" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td td width=" 163" colspan=" 2" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td /tr tr style=" height:31px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 单位 /span /p /td td width=" 333" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" br/ /td /tr tr style=" height:31px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 通讯地址 /span /p /td td width=" 333" colspan=" 4" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" br/ /td /tr tr style=" height:31px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 是否作学术报告 /span /p /td td width=" 461" colspan=" 5" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 31" p style=" text-indent: 48px line-height: 1.5em " span style=" font-size: 16px line-height: 125%" & nbsp /span /p p style=" text-indent: 48px line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 是( /span span style=" font-size: 16px line-height: 125%" ) span & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /span 否( ) /span /p /td /tr tr style=" height:32px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 报告题目 /span /p /td td width=" 461" colspan=" 5" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td /tr tr style=" height:32px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 会议摘要(中 span / /span 英文) /span /p p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" ( span 500 /span 字左右) /span /p /td td width=" 461" colspan=" 5" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td /tr tr style=" height:32px" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" 个人简介 /span /p p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px line-height: 125%" (300字左右 span ) /span /span /p /td td width=" 461" colspan=" 5" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " height=" 32" br/ /td /tr tr height=" 0" td width=" 168" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 129" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 41" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 27" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 136" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td td width=" 128" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " br/ /td /tr /tbody /table p style=" line-height: 1.5em " span style=" font-size:16px line-height:125%" & nbsp /span /p p style=" line-height: 1.5em " span style=" font-size:16px line-height:125%" 备注:请尽快将本注册表反馈至会务组邮箱,以便进行网上传: /span span span style=" font-size:16px line-height:125%" a href=" mailto:linlab@mail.tsinghua.edu.cn" linlab@mail.tsinghua.edu.cn /a /span /span /p p style=" line-height: 1.5em " span /span /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201908/attachment/9467c59a-720a-4b07-9489-562c54878043.docx" title=" 第二届微纳流控细胞分析学术报告会第二轮通知.docx" 第二届微纳流控细胞分析学术报告会第二轮通知.docx /a /p
  • 岛津应用:贻贝中脂质成分的全二维分析方案
    在代谢组学中将对整体脂质进行系统分析称为脂质组学。脂质是生物的能量之源,是生物膜的主要构成成分,也担负着参与生物体内信号传导的重要作用。但是,构成脂肪酸的种类和不饱和度的组合多种多样,因此,在同时检测中很难进行全面的分析。对生物样品进行整体脂质提取后,通常先根据脂质的种类采用正相或HILIC(亲水相互作用色谱)进行分离,再对各部分脂质进行LC/MS分析。该方法的缺点是耗时较长。 全二维液相色谱仪可组合一维和二维不同的分离模式,并根据其分离特性,在各维的单独分析中对难以分离的组分进行高度分离。本文向您介绍使用可有效对多脂质组分进行全分离的岛津Nexera-e系统对贻贝中的脂质进行分离的分析示例。在一维系统使用HILIC色谱柱进行半微量分离,在二维系统进行超快速反相分离,并联用了岛津离子阱飞行时间质谱仪(LCMS-IT-TOF)作为检测器。Nexera-e和LCMS-IT-TOF联用可以得到受外部环境影响而变化的整体脂质的属性信息,从而可以对海洋生物的生物标记物及其脂质组分的变化进行更深层次的分析。 了解详情,敬请点击《Nexera-e 和LCMS-IT-TOF 联用对贻贝中脂质成分进行全二维分析》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 北分三谱发布北分三谱二次(冷阱)热解吸仪新品
    ATDS-3430型二次(冷阱)热解吸仪新品上市一、仪器简介ATDS-3430型热解吸仪是北京北分三谱仪器有限责任公司自主研制推出直接面向国内外广大用户的换代产品。该仪器适用于对化工建筑材料、食品、大气及室内环境中沸点在350℃以下各种气体的定性、定量检测,可与任何国内、国外气相色谱仪、气质联用仪相连,其自动化程度、重复性和灵敏度等指标完全能够满足目前国家新颁布的有关环境检测的标准,并且在结构上具有自身独特的功能优势及令人满意的性能与价格比。全自动化设计、触摸大屏显示、操作更为方便。 二、仪器特点和主要功能1、 采用半导体制冷,节约使用成本,电子制冷和二阶热脱附流程以保证得到窄的色谱峰形;2、样品传输管线全部采用进口高惰性脱活管路,无残留,无交叉污染,保证样品进样的重复性和准确性;3、 微机程序控制,主要功能有: ⑴ 方法参数设置、实时动画显示工作状态、运行时间; ⑵ 解吸区、进样阀、样品传输管和二次解吸区,四路均单独加热控温; ⑶ 设定好分析程序,按下运行键自动完成样品分析; ⑷ 可以根据用户需求配置为常温二次解吸仪或低温二次解吸仪; ⑸ 可同步启动GC、色谱数据处理工作站,也可用外来程序启动本装置;4、本机自带标样模拟采样的功能,可以更方便的通过热解吸仪制作工作曲线;5、采用高温六通阀,最高使用温度可达240℃;6、通过时间编程,自动实现解吸、吹扫吸附、再解吸、进样、反吹清洗等功能;7、采用电子制冷和二阶热脱附流程以保证得到窄的色谱峰形;8、样品传输管和进样阀有自动反吹功能,避免了不同样品的交叉污染;9、为了配套进口气相色谱仪使用起来更方便精确,本仪器还配有针对各种进口仪器的专用接口,连接方便;10、六通阀与传输管线的连接点处于加热保温箱内,无传输冷点,保证了样品的完整性;11、进样针头更换方便,可连接国内外所有型号的GC进样口;12、一体化设计,整机结构紧凑;微电脑控制,全中文7寸液晶显示,操作简单、方便。13、二次解析升温速率>3000℃/min,峰宽<3s 三、仪器主要技术参数1、解吸1温度控制范围:室温—450℃,以增量1℃任设;2、阀进样系统温度控制范围:室温—2600℃,以增量1℃任设;3、样品传送管线温度控制范围:室温—260℃,以增量1℃任设,采用24V低压供电;4、解吸2温度控制范围:室温—450℃,以增量1℃任设;升温速率〉3000℃/min;5、冷阱温度控制范围:-35℃—室温,以增量1℃任设,采用最先进的电子制冷装置;6、温度控制精度:、RSD:≤2.5%(0.05μg甲醇中苯);11、富集时间:0~60min;12、进样时间:0~60min; 13、样品位:1位;14、采样管规格:直径≤6.5mm,长度≥150mm;15、进样方式:六通阀电机驱动;16、仪器尺寸:长×宽×高=380mm×220mm×410mm3;17、仪器重量:约15kg;18、功率:500W 四、仪器应用范围:1、《HJ/644-2013环境空气 挥发性有机物的测定 吸附管采样-热脱附气相色谱-质谱法》;2、《HJ/T400-2007车内挥发性有机物和醛酮类物质采样测定方法》;3、《GB/T18883-2002室内空气质量标准》;4、《HJ/583-2010环境空气苯系物的测定固体吸附/热脱附-气相色谱》;5、《GB/50325-2010民用建筑工程室内环境污染控制规范》等。6、《HJ734-2014固定污染源废弃 挥发性有机物的测定 固相吸附/热脱附-气相色谱》等。  北京北分三谱仪器有限责任公司是一家集研发、生产、销售和服务于一体的专业分析仪器生产厂家。主要生产:气相色谱仪、顶空进样器、热解析仪、解析管老化仪、电子皂膜流量计、氢气发生器、空气发生器、氮气发生器等产品。公司拥有一批长期从事色谱仪开发及分析应用、维修经验丰富的工程师,在色谱类仪器的维护、维修、和调试等方面的技术力量雄厚。近年来,我们已为国内著名高等院校、科研单位、生产企业及检验检测机构提供了大量先进的分析仪器和设备及完整的系统解决方案。正是因为高品质的产品、专业的应用及完善的售前售后服务,我们赢得了广大用户的支持与信赖,具有良好的声誉。 北京北分三谱仪器有限责任公司技术部 创新点:ATDS-3430型热解吸仪是北京北分三谱仪器有限责任公司自主研制推出直接面向国内外广大用户的换代产品。该仪器适用于对化工建筑材料、食品、大气及室内环境中沸点在350℃以下各种气体的定性、定量检测,可与任何国内、国外气相色谱仪、气质联用仪相连,其自动化程度、重复性和灵敏度等指标完全能够满足目前国家新颁布的有关环境检测的标准,并且在结构上具有自身独特的功能优势及令人满意的性能与价格比。全自动化设计、触摸大屏显示、操作更为方便。 北分三谱二次(冷阱)热解吸仪
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制