当前位置: 仪器信息网 > 行业主题 > >

松茋

仪器信息网松茋专题为您提供2024年最新松茋价格报价、厂家品牌的相关信息, 包括松茋参数、型号等,不管是国产,还是进口品牌的松茋您都可以在这里找到。 除此之外,仪器信息网还免费为您整合松茋相关的耗材配件、试剂标物,还有松茋相关的最新资讯、资料,以及松茋相关的解决方案。

松茋相关的资讯

  • 滨松:“光”是我们的事业——访日本滨松光子学株式会社代表取缔役专务取缔役、固体事业部部长山本晃永先生
    p   时值滨松光子学株式会社中国子公司——滨松光子学商贸(中国)有限公司成立5周年,滨松在北京举办了“与光同行,第一届滨松中国光技术交流会”。会后,仪器信息网编辑在时隔六年之后再次采访了滨松公司代表取缔役专务取缔役、固体事业部部长山本晃永先生。 /p p style=" text-align: center " img title=" 山本晃久先生_副本.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/ebc18955-bc05-4c1d-a923-ea44bb33f71f.jpg" / /p p style=" text-align: center " span id=" _baidu_bookmark_start_77" style=" line-height: 0px display: none " ? /span span style=" color: rgb(0, 0, 0) " span id=" _baidu_bookmark_start_71" style=" line-height: 0px display: none " ? /span strong 日本滨松光子学株式会社代表取缔役专务取缔役、固体事业部部长山本晃永先生 /strong strong span style=" color: rgb(0, 112, 192) " /span /strong /span span id=" _baidu_bookmark_end_78" style=" line-height: 0px display: none " ? /span span id=" _baidu_bookmark_end_72" style=" line-height: 0px display: none " ? /span br/ /p p   半导体光探测器产品在中国的市场情况如何?面对激励的竞争,滨松公司有何优势,又如何保持竞争力?滨松公司在民用市场的新品现状如何?对近年来中国市场的发展以及中日企业之间的差异有何看法?面对这些问题,山本晃永先生为我们进行了详尽的解答。 /p p    strong span id=" _baidu_bookmark_start_95" style=" line-height: 0px display: none " ? /span span style=" color: rgb(0, 112, 192) " 令客户“安心”的半导体器件打开中国市场 /span /strong span id=" _baidu_bookmark_end_96" style=" line-height: 0px display: none " ? /span /p p   滨松的光电倍增管(PMT)在全球市场中占有极高的份额,甚至于“滨松”两个字已经成为了PMT的代名词。但山本晃永先生却提到,滨松公司现在正处于“转变期”,即产品业务从之前的真空光电探测器件向半导体光电器件进行转变。目前半导体光探测器件的用途非常多、市场前景看好,大家普遍认为这是未来的一种发展趋势,相应的市场竞争也非常激烈。“作为滨松公司来讲,在这个市场上提供更好、更优良的产品,是我们的核心竞争力所在。”这个“好”不仅仅指产品质量,更重要的是客户的一种“安心感”,采访过程中,山本晃永先生多次提到了让客户“安心”。 /p p   实际上,滨松公司开始推广半导体器件是从其PMT优势领域开始的,如分析仪器和医疗设备领域。滨松PMT的客户在寻求半导体光探测器件时,基于对滨松公司的信任,依然会购买滨松的产品 同时,滨松公司与客户之间多年的合作,对客户的需求有着深入的理解,进而可以为客户提供安心、放心的产品。 /p p   山本晃永先生这样解释道,“之前中国客户往往更注重价格,这个我们可以理解,也提供了价格合理的产品。但要把一个产品长期做下去,除价格以外,还要有良好的性能及配套的服务,这些因素综合在一起则构成了安心感。”了解客户的真实需求,为客户提供放心、安心的产品和服务,这也是滨松公司固体事业部一直坚持在做的工作。 /p p   当然,正如山本晃永先生补充所说,当前中国客户的观念实际上已经转变:价格重要,品质更重要。客户开始逐渐理解滨松公司对产品品质的追求,他说:“正如我们的计算机上会写着‘Intel Inside’一样,希望今后我们的客户在出售自己生产的仪器时,会在仪器上标注‘HAMAMATSU Inside’,希望这个标志可以提高用户对仪器品牌的信任,让用户买了安心。” /p p   相对于欧美市场,近几年来滨松公司在中国市场的发展非常迅猛。山本晃永先生认为其原因主要有以下几点:“第一是越来越多的欧美公司将生产厂迁至了中国 第二是中国近年来也出现了很多本土厂家 第三是原本仅做出口业务的一些中国厂商也增加了在国内销售的业务。”这些变化,对于滨松公司而言,无疑意味着中国市场对其产品的需求量进一步扩大。“中国人民的生活水平在不断提高,消费能力也在不断提高,加之中国人口众多,所以我们相信未来中国市场还会有巨大的发展。” /p p   而在谈到半导体光探测产品在中国市场的发展情况时,山本晃永先生介绍说目前这类产品在中国已有了较多用户:“首先是医疗设备领域的用户,目前中国医疗仪器的厂商逐渐发展成熟,并已开始逐渐占领原本由欧美产品所主导的市场,我们也因此扩大了可用于医疗影像、检验医学等仪器的探测器的产量 其次针对一些中国当下特有的社会问题或需求,如PM2.5监测、食品快检等,我们推出的微型光谱仪等产品获得了热烈关注,这在欧美市场上都是很少见的的 最后是中国建筑行业所需要的测距产品,滨松公司产品的出货量很大。” /p p    strong span id=" _baidu_bookmark_start_103" style=" line-height: 0px display: none " ? /span span style=" color: rgb(0, 112, 192) " 与成熟产品“连接”拓展民用市场,独特的研发理念助力新品推出 /span /strong span id=" _baidu_bookmark_end_104" style=" line-height: 0px display: none " ? /span /p p   相对于科研和工业领域,民用市场的规模要大得多,滨松公司在民用市场的拓展虽然刚刚开始,但已经有了一定成效。 /p p   分析仪器不仅仅需要传感器,还需要信号处理、数据分析、结果显示等模块,如果在传感器上加上这些功能,整个仪器的体积会变大、价格会提高,不适合用于民用市场。对此,山本晃永先生说:“我们的思路是利用现有的类似iPhone,iPad等成熟数码产品的显示功能、数据处理功能及分析功能,把我们的传感器与其连接,或是直接内嵌其中,进而实现我们的目标功能。”这样,今后用户在家里即可进行健康监护或诊断,然后通过网络将测试结果传输至医院,最后医院再将结果反馈回来,大大提高了便利性。 /p p   目前,滨松公司已与客户合作共同研制此类型产品,相信不久的将来就可以问世。另外,滨松公司与国内企业的合作也非常顺利,比如利用红外光谱测定奶粉品牌以及非法添加物质的产品已经上市销售。“这些产品今后还被期望于检测食物是否腐烂以及是否有农药残留等,市场前景很好。” /p p   推向民用市场的产品除了价格是重要的一面外,“附加值”也十分重要。山本晃永先生认为“附加值”指的是产品的性能与可靠性,而在医疗设备和分析仪器领这样的具有高附加值的领域,滨松公司的业务进行的十分成功。而谈到下一步滨松将要进军的领域与推出的产品时,山本晃永先生介绍,滨松公司正在研制汽车用测距产品。选择最擅长的产品特性作为切入点,这也是滨松公司进入民用市场的策略之一。 /p p   当然,这些新产品之所以能够得以推出,与滨松公司在研发方面投入的强大力量是密不可分的。“公司每年在研发上投入的费用约占销售额的12%-15%。研发投入比例之高,在整个日本公司中都名列前茅。”关于这点,山本晃永先生却解释说:“但我们并不因研发费用占比高而自满,甚至因此认为自己是一家完美的公司。相反,我们认为研发费用不仅仅需要思考如何使用,更需要思考如何‘回收’”。 /p p   所谓研发费用的“回收”,指的是研发出更符合市场需求、更适合用户的产品。据山本晃永先生介绍,在滨松公司,有价值的研发是为了满足客户的需求,而绝不是随心所欲去做自己想做的事情。滨松公司一直在考虑如何“回收”研发费用,将最终的实惠反馈给客户。既满足客户需求,又不导致产品价格的大幅增加。 /p p    strong span id=" _baidu_bookmark_start_111" style=" line-height: 0px display: none " ? /span span style=" color: rgb(0, 112, 192) " 不断创新保持企业活力,用户的期待成为改进的动力 /span /strong span id=" _baidu_bookmark_end_112" style=" line-height: 0px display: none " ? /span /p p   近年来一些传统的、知名的日企在全球的业务面临着危机,如东芝被收购,索尼图像传感器业务被收购等。对此,山本晃永先生感叹道:“一个企业的寿命通常是30年,之后就可能走下坡路。所以,想长久的发展下去,企业需要保持一定的危机感。并且,大力投入研发、不断地推出新产品新技术 另外,在组织架构上也要不断出新。” /p p   “如果仅仅是搞PMT,滨松公司也会面临很多危机。正是因为我们不断开发新的产品,比如半导体器件、成像产品、激光产品等,滨松公司才得以持续发展。”另外,企业内部要保持充分的沟通交流,在外部要充分倾听客户的意见。对于客户的意见,山本晃永先生强调:“要听不好的意见,客户提出的难题或是抱怨对企业来讲非常重要,因为在这些东西里才能找出客户真正需要的东西。” /p p   当前,人们普遍会有“日企反应速度慢”这样一种印象。滨松公司在发展的过程中,也存在着这样的问题。但是面对激烈的竞争,滨松已经意识到了问题并在积极改进,尤其是固体事业部的反应已大大加快。特别是这次的技术交流会,参会人员的热情更是让山本晃永先生感受到了客户对滨松公司的期待。“我们确实需要做出很多改进。大多数日本企业由于文化问题,并没有给出足够的创业空间。日本人总的来讲比较内向、腼腆,这一点应该向中国人学习,更加主动跟对方沟通。”山本晃永先生几乎每年都会来中国两次,参加了很多技术交流会也拜访了很多客户,在此过程中深深感到了中国的变化。“中国变化很快,日本企业再不跟上就落后了!” /p p   滨松公司以自己是从事光子技术的企业而倍感荣幸:“光子技术还有有许多未知未涉的地方等待着我们去开发,充满美好的前景也存在挑战。我们对今后充满信心!”山本晃永先生以此结束了本次采访。 /p p style=" text-align: center " img title=" 采访合影_副本.jpg" src=" http://img1.17img.cn/17img/images/201609/insimg/2efb6621-cac6-4b9e-a561-e64f55ce82cc.jpg" / /p p style=" text-align: center "    span id=" _baidu_bookmark_start_119" style=" line-height: 0px display: none " ? /span span style=" color: rgb(0, 0, 0) " strong 采访现场合影 /strong /span span id=" _baidu_bookmark_end_120" style=" line-height: 0px display: none " ? /span /p p    strong em span style=" color: rgb(112, 48, 160) " 采访后记 /span /em /strong /p p   提到日本企业,人们往往立即会联想到“认真、严谨、保守”,但笔者在采访山本晃永先生的时,除了聆听山本晃永先生介绍如何给客户带来“安心感”之外,也听到了很多诸如创新、创业等词汇。一家企业之所以能在市场上一直保持竞争力,“招牌”产品固然重要,但更重要的是不断创新,以及如何在瞬息万变的市场上保持新品的竞争力。滨松公司作为仪器核心元器件企业,站在仪器生产企业的“源头”,在光电倍增管等真空器件产品的成熟市场之中,不断拓展半导体器件市场,并已初具成效。光电倍增管尚未沉寂,半导体器件已然成为滨松公司的另一大“利器”。 /p p   另外,不得不提的是,山本晃永先生在采访过程中不断提到中国的变化,并直言“中国企业有很多值得日本企业学习的地方,再不改变的话日本将无法跟上节奏”。正是在类似的对比中,滨松公司不断取长补短,得以发展壮大。关注“光”,深入理解“光”,把“光”作为滨松公司存在的价值。笔者一直在思考,中国本土的仪器企业可以向滨松公司学习的是否更多? /p p style=" text-align: right "   (采访:刘丰秋 撰稿:王明煜) /p p br/ /p
  • 【瑞士步琦】助您轻松解决RNA的干燥和递送
    RNA 的干燥和递送平台在过去几年中,脂质纳米颗粒(LNPs)已被发现是 RNA 传递的有效载体,有多个传染病和癌症治疗的临床试验可证实。以 mRNA 为载体的疫苗对于治疗严重疾病如严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)的成功一定程度上可归功于开发了包含 mRNA 的 LNPs 以实现有效的细胞内传递。本文探讨了喷雾干燥工艺作为冻干以外的另一种脱水过程,可以提高 LNPs 的稳定性并提供可替代的给药途径。▲图1.聚乙二醇化脂质纳米颗粒和脂质体的示意图RNA 疫苗的挑战疫苗液体配方的稳定性问题可能成为其工业化和分销的障碍。高温可能会影响疫苗的稳定性因此,通常需要冷链系统来保持疫苗的活性。mRNA 储存过程中的化学不稳定性包括 N-糖苷键的水解、磷酸二酯键的水解、胞嘧啶衍生物的脱氨和核碱基或糖部分的氧化。然而,当疫苗转化为干粉时,可获得更强的热稳定性和更长的保质期。利用冻干技术制备 RNA 疫苗冻干或冷冻干燥是干燥疫苗最常用的方法,处理过程由三部分组成:组成部分形成冰晶的冷冻过程通过低温升华除去冷冻水的初级干燥过程通过解析干燥除去残留水的次级干燥过程较高的冷冻温度、较慢的冷冻速率和较长的次级干燥时间都有利于干燥过程的稳定性。然而,在这个复杂的过程中会产生应力源,如冷冻和干燥应力。冰对颗粒产生的机械应力和 PEG 层的结晶会导致颗粒融合,这些都是在冷冻过程中可能发生的情况。冷冻保护剂或冻干保护剂等辅料是在冻干前添加到颗粒悬浮液中的稳定剂,最常用的是糖类(如海藻糖)或糖醇(如甘露醇)。关于使用冷冻保护剂或冻干保护剂来稳定纳米颗粒的几个理论中,非晶玻璃理论最为广泛接受,具体是指在冷冻过程中,冷冻保护剂凝固成颗粒周围的无定形玻璃,保护它们免受融合。2007 年,Jones 等人报道,在冷冻干燥之前,在自扩增 RNA 中加入海藻糖,可以在冷藏条件下保持至少 10 个月的稳定性,并且在转染后,观察到了高水平表达[1]。几年后,mRNA 疫苗对传染病(流感)的有效性首次在动物模型中得到证实。冻干的 mRNA 流感疫苗在小鼠免疫前 37°C 可以稳定保存 3 周[2]。该研究小组在后来的一篇论文中报道,在 70°C 条件下暴露于抗狂犬病感染的非复制 mRNA 疫苗并不影响其保护能力[3]。CureVac 也报道,另一种同样抗狂犬病的 mRNA 疫苗经海藻糖冻干,在 5-25°C 下可以稳定保存3年,在 40°C 可稳定保存 6 个月[4]。最近,发表了一项关于 mRNA 负载 LNPs 的研究,Zhao 等人比较了两种不同的长期储存mRNA纳米颗粒的方法。他们观察到,尽管使用 20% (w/v)的蔗糖或海藻糖稳定了纳米颗粒的大小和 mRNA 的体外递送效率,但相同的颗粒在体内递送效率不高。原因可能是在冻干和重构过程中纳米颗粒结构发生了变化。在添加 5% (w/v)蔗糖或海藻糖的液氮中冷冻装载 mRNA 的 LNPs 可能是长期储存的替代方案[5]。利用喷雾干燥技术制备 RNA 疫苗喷雾干燥提供了一种替代方法来生产干燥疫苗,这种疫苗能耗更低,操作成本更低,并且避免了细胞冷冻和高真空。喷雾干燥是一个连续的干燥过程,它包括四个主要阶段:主要阶段液体进料的雾化热干燥气体与雾化喷雾的接触干燥颗粒的形成颗粒的气固分离一个重要的观点是,喷雾干燥疫苗可用于非传统给药途径,如口服、肺部或鼻内途径。尽管有这些优点,但在喷雾干燥过程中,由于高温和剪切力,系统可能不稳定。热应力和剪应力都增加了动能,加剧了颗粒的碰撞。在此过程中脂质部分熔化也会导致颗粒聚集,因此建议使用熔点高于 70℃ 的脂质。粒径分布、聚合物分散性指数(Pdi)接近1和高变异系数的差异是颗粒聚集的信号。可以通过添加合适的稳定剂或使用酒精来代替水溶液分散介质可以降低热应力。另一方面,可以通过使用低脂质含量或添加稳定剂来最小化剪切应力。糖类是最常用的稳定剂,但也常添加其他辅料,如二价离子、蛋白质、表面活性剂和聚合物。1998 年,医药领域首次对脂质纳米颗粒进行喷雾干燥研究,其作者展示了将固体 LNP 悬浮液成功转化为粉末形式,使用非常低的脂质浓度(1%)和高海藻糖浓度(25%)作为喷雾干燥基质[6]。在喷雾干燥之前,在脂质纳米颗粒上添加生物聚合物,如酪蛋白、果胶或木瓜蛋白酶,可以有效防止 LNP 聚集。Gaspar 等人用木瓜蛋白酶层覆盖固体 LNP,然后用海藻糖或甘露醇喷雾干燥[7]。也有报道将装载姜黄素的固体 LNP 用一层果胶进行喷雾干燥,然后进行化学交联。交联确实可以改善固体 LNP 的物理化学性质[8]。作者也使用了不同的天然多糖,如果胶、卡拉胶、羧甲基纤维素、阿拉伯胶和海藻酸盐作为壁材,但都发生了颗粒聚集。而用果胶或卡拉胶喷雾干燥含有 20-30% 油酸的 LNP 可获得稳定的粉末颗粒[9]。文献中报道了聚合物杂交 LNP,例如用透明质酸与聚丙烯酸交联制备了阿昔洛韦载药聚合物混合脂质纳米颗粒。与常规制剂相比,阿昔洛韦的溶解度可提高 30%,提高了其作为口服给药系统的生物利用度[10]。最近,Dormenval 等人用甘露醇作为稳定赋形剂制备了喷雾干燥负载 siRNA 的聚合物杂化 LNP。该小组还打算使用微流体技术进一步扩大工艺规模[11]。目前为止,还没有商业化的喷雾干燥疫苗。然而,已有药企开展了一些研究,特别是以流感和结核病为重点的研究。关于喷雾干燥的 mRNA 治疗目前报道研究较少,与喷雾干燥的 mRNA 载药 LNPs 也较少。Patel等人首次报道可吸入的 mRNA 递送,在他们的研究中, mRNA 通过雾化方式由超支化聚氨基酯(hPBAEs)传递给小鼠,在小鼠肺上皮中观察到高水平的基因表达[12]。最近香港大学的研究人员首次表明,可以使用喷雾干燥和喷雾冷冻干燥制备可吸入的 mRNA 干粉。这种聚乙二醇化的 KL4/mRNA 复合物在健康小鼠的肺中产生了良好的基因表达,并且没有引起明显的毒性和炎症反应[13]。结论基于临床前和临床研究,使用 LNPs 作为纳米载体的 mRNA 疫苗已显示出治疗多种化学疾病包括传染病和癌症的巨大潜力。LNPs 与其他载体相比具有多种优势: mRNA 保护、更高载荷的递送、靶配体的结合以及与佐剂的共传递。通常情况下,mRNA 疫苗制剂以液态开发并冷冻储存。为了优化其分布和储存能力,人们对开发耐热的 mRNA 配方产生了兴趣。喷雾干燥是传统冻干技术的一个不错替代选择,因为喷雾干燥在颗粒工程和非传统疫苗给药途径有天然优势。关注瑞士步琦,无论是冻干技术还是喷雾干燥,都能为您的 RNA 干粉制备提供完美解决方案。▲L-300 冻干机▲S-300 喷雾干燥仪5参考文献Jones KL, Drane D, Gowans EJ. Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques. 2007 43(5):675–681.Petsch B, Schnee M, Vogel AB, et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. 2012 30(12):1210–1216.Stitz L, Vogel A, Schnee M, et al. A thermostable messenger RNA based vaccine against rabies. PLoS Negl Trop Dis. 2017 11(12):e0006108.Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet. 2017 390(10101):1511–1520.Zhao P, Hou X, Yan J, et al. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact Mater. 2020 5(2):358–363.Freitas C, Müller RH. Spray-drying of solid lipid nanoparticles (SLNTM). Eur J Pharm Biopharm. 1998 46(2):145–151.Gaspar DP, Serra C, Lino PR, et al. Microencapsulated SLN: an innovative strategy for pulmonary protein delivery. Int J Pharm. 2017 516(1–2):231–246.Wang T, Ma X, Lei Y, et al. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. Colloids Surf B Biointerfaces. 2016 148:1–11.Wang T, Hu Q, Zhou M, et al. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology. Int J Pharm. 2016 511:219–222.Sithole MN, Choonara YE, du Toit LC, et al. Development of a novel polymeric nanocomposite complex for drugs with low bioavailability. AAPS PharmSciTech. 2018 19:303–314.Lokras C, Cano-Garcia A, Wadhwa G, et al. Identification of factors of importance for spray drying of small interfering RNA-loaded lipidoid-polymer hybrid nanoparticles for inhalation. Pharm Res. 2019 36:142.Patel AK, Kaczmarek JC, Bose S, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater. 2019 31:e1805116.Qiu Y, Man R, Liao Q, et al. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide. J Control Release. 2019 314:102–115.
  • 第18届日本数字病理研究会在滨松市成功召开
    2019年8月29日-31日,第18届日本数字病理研究会在日本滨松市成功举办。此次大会由日本数字病理研究会主办,滨松光子学株式会社承办,共吸引了300余位来自日本,美国,中国,中国台湾,蒙古国的专家学者参与,是代表日本数字病理发展水平和研发技术较高的专业学术会议。此次大会以“What we should do today toward the brilliant future of Digital Pathology”为主题,邀请了国际医疗福祉大学病理诊断中心长村义之教授和森一郎教授、龟田综合医院病理科福冈顺也教授、滋贺县立综合医院研究所真锅俊明教授以及美国DPA医学博士、解剖病理学负责人Marilyn Bui教授等数字病理领域的权威学者发表演讲。演讲主要围绕数字病理的标准化、数字病理的未来、数字病理学实践教育等问题展开,引起了现场与会学者的热烈讨论。图为滨松公司的数字病理产品在北欧地区的典型应用案例,尤其是在全数字化和大尺寸切片批量化自动扫描方面,NanoZoomer发挥了重要的作用,其可靠性和优异的图片质量饱受用户好评。图为滨松公司资深应用专家小仓 隆先生主持大会流程,分享NanoZoomer系列产品在远程医疗、教学会议和AI等多个领域的广泛应用。图为滨松光子学株式会社系统事业部部长丸野 正先生作为承办方为晚宴致辞日本病理学会前任理事长/国际医疗福祉大学病理诊断中心长村义之教授、中国病理AI专家91360公司常江龙博士与大会主持人滨松光子学株式会社小仓 隆 先生合影数字病理是一项针对于病理切片数字化的新兴技术。在医院的诊断、数据储存和共享、科研、会议、教学,以及第三方诊断机构的病理会诊中潜力巨大。作为行业的领导者,滨松公司也将一如既往的为中国数字病理行业提供更坚实的技术和广泛的国际合作平台,为推动中国数字病理行业的标准化、平台化以及人工智能辅助诊断做出我们的努力。
  • 上海松江区与启迪控股签订科技产业战略合作协议
    p   1月17日,松江区与启迪控股座谈会暨合作项目签约仪式举行。区委书记程向民,区委副书记、区长秦健,启迪控股董事长王济武,启迪控股副总裁胡波、安红平,清华大学精密仪器系主任、中组部“千人计划”成员欧阳证等出席,副区长陈小锋主持。 /p p   程向民在座谈会中表示,松江区与启迪控股签订全面战略合作协议,是松江区与启迪合作的一个新的里程碑,是启迪在松江发展的升级版。围绕着国家战略、长三角经济战略、上海“四个中心”建设和清华大学产学研一体化,启迪选择以松江为基地,辐射各个发展领域,标志着双方合作进入了新的历史阶段。要唯实唯干,共同推进G60上海松江科创走廊建设,要登高望远、站高谋实,将G60上海松江科创走廊建设成为国家级战略平台,纳入到长三角发展战略当中。 /p p style=" TEXT-ALIGN: center" img title=" 09da0ed.jpg" src=" http://img1.17img.cn/17img/images/201701/insimg/7de97c30-5f1f-4437-8821-e3662bd68d1a.jpg" / /p p style=" TEXT-ALIGN: center" 松江区委书记程向民 /p p   要着眼于上海建设“卓越的全球城市”,以G60上海松江科创走廊建设中的体制机制创新体现中国特色社会主义制度自信,集中力量办实事、干成事。要打破行政区划障碍,推动科创要素流动和自由组合;探索投贷联动的科创银行、跨省平衡占补土地指标、释放土地容积率等制度创新,通过制度供给和要素供给推动先进制造业发展。松江区委、区政府看好双方合作的未来,希望双方高起点、高标准地推进合作项目。 /p p   秦健说,松江区与启迪控股全面战略合作协议的签订,是今年上海科创中心建设的开门红,要乘势而上,深化合作,共铸辉煌。启迪未来在松江二期、三期以及总部的建设,对于G60上海松江科创走廊建设是重要的支撑,有助于形成产业集聚效应。启迪作为桥梁对接清华大学的资源,对于松江转型发展过程中科技含量的提高至关重要。区委、区政府将大力支持分析仪器研究院等平台的建设,在相关政策方面给予扶持,通过建设宜居宜业的科创环境,做精内涵、做优生态,推动科创领域的发展。 /p p style=" TEXT-ALIGN: center" img title=" aad7f2e.jpg" src=" http://img1.17img.cn/17img/images/201701/insimg/ca9d4317-8f68-4bf1-929d-fbaf81035237.jpg" / /p p style=" TEXT-ALIGN: center" 座谈会现场 /p p   2016年5月,启迪控股在松江的首发项目,启迪漕河泾(中山)科技园,正式开园。紧跟上海科创中心建设的步伐,依托高校及科研院所的技术力量,以“先进智造”作为核心产业,以打造成长三角乃至全国的“先进制造业”智库与研发中心为目标,吸引了一大批优秀项目、科创企业以及众创空间等入驻。王济武表示,上海转型发展的动能和势能强大,启迪控股见证了G60上海松江科创走廊建设成为上海科创战略的重要平台。启迪愿与松江联合打造大规模的创新基地,推动创新集群发展和跨地域协同发展,建设面向长三角的以G60上海松江科创走廊为核心的科创平台。在此基础上,建设以松江为中心的千兆高速互联网,连接周边城市。在松江搭建科技城的总部,要建设集研发、教育、医疗、住宿等于一体的生态型园区,满足科创各方面的需求。未来可将精准医疗作为松江启迪园区的引领性产业,在松江组建启迪医疗集团,推动新型医疗产业的发展。 /p p   会上,秦健和王济武分别代表松江区政府和启迪控股股份有限公司签订了全面战略合作协议。安红平介绍了上海G60分析技术产业集群构建方案,根据方案估计,分析技术产业集群五年内有望实现销售总额200亿元,培育企业180家,设立院士、专家工作站20个,可贡献税收12亿元。 /p p style=" TEXT-ALIGN: center" img title=" 5332030.jpg" src=" http://img1.17img.cn/17img/images/201701/insimg/faf2ba7a-1cc5-4c6d-9b53-8c9aee16324b.jpg" / /p p style=" TEXT-ALIGN: center" 松江区政府和启迪控股股份有限公司签订协议 /p p strong ----------- /strong strong “延伸阅读”------------------ /strong /p p   1月17日,区政府与清华启迪签订全面战略合作协议。双方合作的首期重要战略目标之一是打造上海G60分析技术产业集群,在中国分析仪器行业发展中起到辐射长三角、服务全国、走向世界的引领作用。在未来5年内,区政府与清华启迪计划投入6亿元,带动30亿,推动世界先进分析仪器技术在G60科创走廊的发展、孵化并引进150家以上分析技术产业公司,落户启迪漕河泾(中山)科技园,聚集6000名以上产业科技人才,力争创造200亿的年产值。 /p p   上海G60分析技术产业园区的发展力图探索新模式,将建立一个分析技术产业研究院,指导并扶持产业集群的发展。该产研院将采用政府引导,多元化投资,市场化运作的策略,拥有一个高水平的技术指导委员会和一支具有丰富产业化经验的运行团队。目前,中科院院士陈洪渊、谭蔚泓,美国科学院院士Richard N. Zare、R. Graham Cooks、 朱健康,美国工程院院士Michael R. Ladisch及多名国家千人计划学者专家,都已加入技术指导委员会,为产研院建立博士后工作站引进人才,推动关键技术的研发与引进,提升产业集群的整体技术水平。 /p p   清谱科技将是入驻上海G60分析技术产业园的首批企业之一,其创始人清华大学精密仪器系主任,国家千人计划专家欧阳证教授,也是积极推动上海G60分析技术产业发展方案的策划者之一。清谱科技是一家研发生产小型质谱仪并用于食品安全及精准医疗的高科技创业公司。“上海G60分析技术产业园区将成为一个在世界上最具特色、最有实力的分析仪器产业化平台。”欧阳证教授在记者的采访中提到,“松江区政府领导对发展高科技的决心及对未来分析技术产业的信心,加上清华启迪建设高科技园区的经验及对技术创新的坚持,是我们投身上海G60分析技术产业发展的主要原因。” /p p style=" TEXT-ALIGN: center" img title=" 5570855.jpg" src=" http://img1.17img.cn/17img/images/201701/insimg/c41b3504-f0bc-402f-86c5-d8dfd2b81a92.jpg" / /p p   据了解,启迪漕河泾(中山)科技园是由启迪控股、临港集团和松江区政府三方共同合作的高科技园区,地处G60上海松江科创走廊“一廊九区”的松江新城总部研发功能区,是G60上海松江科创走廊的重要节点。园区总规划面积100万平方米,其中园区一期共7万平方米,自去年开园以来,共引进了106家企业,园区入驻率达到95%,其中70%以上的企业均是与智能制造关联的“专精特新”企业。 /p p   园区初步形成了“一轴三链”的产业布局。在智能制造科创中心定位下,以智能制造为发展轴,整合政、产、学、研、经、介、贸、媒全要素资源,打造启迪系的“水、陆、空”军——启迪清源、清芸阳光、亚都环保为龙头的环保新能源产业链,发展以创驱科技、中原内配、安士能为主导的新能源汽车、电动汽车产业链。发挥远中贝达安医疗器械、上海依奈德生物科技、邦邦机器人在医疗器械领域的技术领先优势,形成医疗器械产业链的聚集。作为清华大学与上海市“市校合作”的落地项目以及松江区土地二次开发代表项目(一期),通过“基地+专业平台+基金”的模式,吸引了一大批智能制造领域的技术驱动型企业。 /p p br/ /p
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/官网:https://www.bmftec.cn/links/10
  • 仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/ 官网:http://www.bmftec.cn/smart
  • 滨松中国将参加第11届国际光子与光电子学会议(POEM 2018)
    第11届国际光子与光电子学会议将于2018年10月31日至11月3日在中国武汉华美达光谷大酒店举行,滨松中国将参加本次会议。POEM 2018将有两个会议主题:光电器件和集成(OEDI)和光子能源(PFE),涉及光电器件及集成等方面。滨松将在会议期间展示空间光调制器及相机在涡旋光领域的应用,欢迎您届时莅临,咨询交流。 滨松InGaAs相机滨松LCOS-SLM空间光调制器
  • 保姆级"观展宝典"上线,轻松玩转第21届中国环博会!
    保姆级"观展宝典"上线,轻松玩转第21届中国环博会!第二十一届中国环博会将于8月13-15日在上海新国际博览中心隆重举行,为了减轻大家观展的负担,我们特别推出了最新款的》《观展宝典》,里面包括参观时间、入场指南、交通路线、展位图、日程表等,希望能够人手一份,参观必看。??? 请扫描左侧二维码进入预登记页面参观时间8月13日(星期四) 09:00-17:008月14日(星期五) 09:00-17:008月15日(星期六) 09:00-16:00入场指南请您凭真实、有效个人身份证信息参与实名登记,所有进入展馆范围的人员须统一采用“随申码 测温 刷验身份证原件”的入场方式。别遗忘我,我很重要!!!交 通 指 南乘地铁前往乘坐【地铁7号线】【花木路站】下,从2号出口步行大约2分钟可直接抵达展馆北入口(2号厅)乘出租车前往下车点可设为:上海新国际博览中心1号门,龙阳路2345号自驾前往l途经南浦大桥 芳甸路/新国际博览中心出口 左转进入芳甸路 右转进入花木路 新国际博览中心7号门 P1停车场 东大厅入口 开始参观。l途径杨浦大桥 锦绣路/新国际博览中心出口 右转进入花木路 新国际博览中心7号门 P1停车场 东大厅入口 开始参观14馆展位图上下滑动图片区域展位号规律为了让观众更快速的找到心仪的企业站台,今年中国环博会的展位号标识规律进行了调整。要快速找到XX展位,请掌握以下规律!例子:E2馆C43展位要怎么找呢?2020中国环境技术大会 完整日程上下滑动图片区域展会全程直播渠道为了应对此次展会的疫情限制,我们也开展了线上展会多渠道实时直播。打破时间,空间限制,展会24小时不打烊,直播后还可以无限回播~展会照片直播主办方官方摄影师将共享劳动成果,扫码查看云相册,用高清大图装点你的朋友圈!现场论坛直播今年,12日的中国环境技术大会将在举办当天为大家全程现场直播!扫码上方二维码获取同步直播链接。现场嘉宾采访官方直播 直播间1 直播间2此外,环保圈也在现场开设了Boss直播间,与行业大咖面对面,你可不能错过哦~END
  • 滨松新型三级结构MCP,解决小质谱仪低真空度难题
    要说近年来被公认增长最快的分析仪器,毫无疑问非质谱仪莫属。据美国acs网站统计,目前国际上排名前十的仪器厂商中,有七家都在从事质谱仪的研发和生产。就中国而言,对质谱仪的需求也在快速增长。质谱分析是一种测量离子质荷比(质量-电荷比)的分析方法。首先通过电离源将样品中各组分电离成离子,接着在高真空的质量分析器中,在电磁场的作用下主要根据质荷比(带电离子质量/所带电荷的数量)将离子进行分离,使这些离子最后在探测器上产生可以被互相区分的信号。对于不同的组分,电离生成的离子不同——故而质谱可以被用于鉴定样品中的不同组分。质谱仪基本结构示意图质谱技术发展至今已逾百年,质谱工作者们站在彼此的肩头,将一个简单的物理现象在理论和实践上推到如今的高度,使其成为了分析领域最重要的方法之一。目前质谱已不仅是常规化学分析中的重要手段,逐渐也开始被用于生命科学、国土安全、食品安全、临床医学检测和空间技术等热门领域。质谱技术的应用领域越来越广泛但我们知道,传统的实验室台式质谱仪昂贵、耗能、连接气路管道、需要强力真空泵,并且经常需要前端的分离系统,机体往往庞大笨重。若要应用于临床、机场安检、食品安全等原位现场测量场景,仪器必须小型化。不过,说小型化就小型化,你问过真空系统的意见了吗?没错,在小型化质谱仪的设计中,最大的一个挑战在于真空系统。上面在简介质谱仪工作原理的时候,已经提到,“真空”是质谱仪内部工作的必要条件。保持高真空度可以防止分子、离子、电子之间发生碰撞,避免噪声的产生。也就是说,真空度越高,质谱仪的信噪比越好。 遗憾的是,真空系统往往比较笨重,小型质谱仪也只能选择小型的真空泵,而泵速的下降,会直接导致系统真空度降低,这会严重影响质量分析器及探测器的正常运行。而从目前的研究结果来看,质谱的背景噪声主要来自探测器端,这源于一个叫离子反馈的作用。 常见的质谱探测器(如mcp、电子倍增器/em)都是将离子转化为电子;电子被电场加速、倍增并最终检出。而加速的电子会和残余气体分子碰撞,产生正离子。这些正离子在电场中会反向运动,再次轰击产生电子,这个过程称为离子反馈(ion feedback,ifb)。由于正离子反向运动是需要时间的,所以离子反馈所产生的信号与真实信号本身并不会叠加,反而成为了噪声/杂峰的重要来源。离子反馈(ion feedback,ifb)过程示意图而低真空度下较高浓度的气体分子是客观存在的,因此相比于控制离子生成,更为明智的做法是控制生成离子的走向。但如今四级杆及离子阱质谱仪一般采用的电子倍增器(em),却并没有办法解决这一问题。 新探测器技术的出现,成为了质谱仪小型化的一个关键。 小质谱仪不要慌,滨松gen3 mcp来了微通道板(mcp)也是应用于质谱仪中的一种常用探测器,特别是tof-ms。但传统的两片结构的mcp(见下图a)和电子倍增器(em)等其他传统质谱探测器一样,残留的气体分子也会发生电离生成正离子,并返回mcp形成离子反馈。不过,滨松最新推出的拥有三级结构的mcp,通过实现控制离子走向的策略,成功解决了上面说到的问题。传统两片结构(bi-planer mode)和滨松最新三级结构(triode mode)mcp的结构和电位对比滨松最新推出的适用于小型质谱仪的gen3 mcp 滨松gen3 mcp采用了这样的结构设计:在mcp出口和打拿极之间加入栅网电极构成三级结构,栅网电极作为阳极(负高压模式下接地),后端打拿极和mcp入口则被设置为等电位,这样残留的气体分子电离生成的正离子会从栅网电极向打拿极运动,并被打拿极俘获。这种三级的创新结构设计可以避免电离正离子返回mcp,从而在源头上解决了暗电流的问题。下图是三级结构的滨松gen3 mcp和传统两级mcp电流输出结构在不同真空度下的实验数据对比。传统两片结构(bi-planer mode)和滨松最新三级结构(triode mode)mcp的实测噪声(暗电流)对比 可以明显的看出,在105增益下,传统的2片mcp电流输出型组件在真空度高于10-3pa的情况下即会发生离子反馈。而对于三级结构的gen3 mcp,即使真空度降低到1pa,仍然不会发生离子反馈。凭借在低真空度下的优异表现,加上小巧的尺寸(有效面积直径:14mm),滨松gen3 mcp将会大大释放束缚在质谱仪真空系统上的缰绳,方便开发者开发更为灵活便携、功耗更低、更适合现场使用的小型质谱仪。滨松gen3 mcp有效面积直径:14mm滨松致力于光电技术探索60余年,在质谱探测器的研究也已有40余年的历史,可为质谱应提供mcp、em、离子化光源等产品。2018年我们推出了,并也将继续推出更多应用于质谱的新品(文章底部的小编传送门中,有部分新品链接)。希望通过探测技术的原始创新,从最底层技术出发,稳定而坚实地推动最终质谱应用的发展。
  • 新年拿地谋扩产,松江这家高新技术企业开年喜事连连
    掌握更多具有自主知识产权的关键技术,从而主导产业发展方向,带领企业走上高质量发展的必由之路,已成为当前松江民营企业家的高度共识。位于车墩镇的上海知楚仪器有限公司就是这样一家企业,通过十多年研发积累,该公司已获得国内多项专利,产品不仅实现“国产替代”,市场份额也在节节攀升。刚刚步入2024年,企业就连连迎来新订单涌现、新建产业园等喜事。新年拿地谋扩产 新建知楚产业园上海知楚仪器有限公司创建于2010年,是一家专注于打造生命科学仪器产业链的企业。产品广泛应用于全国各大高校、医疗卫生、农业环保、卫生防疫、科研等单位,并远销美国、印尼、新加坡等国家,为蛋白结构、微生物、细菌培养、生命科学、食品工业和生物化学反应及细胞组织等研究提供了有效帮助。近日,当记者走进上海知楚仪器有限公司时,公司董事长钱俊正在仔细琢磨刚完成的厚厚一沓知楚产业园规划图,他兴奋地告诉记者,计划于今年拿地,目前正在跟车墩镇政府积极地磋商细节。据他介绍,这个产业园占地40多亩,主要用于制造生命科学仪器,预计建成后产值能够达到七八亿,实现税收5000万元。钱俊告诉记者,之所以急着研究拿地扩产的事情,是因为新年伊始就收到不少订单,眼下,拿地扩产是企业的头等大事。为何高校、科研院所和医药企业都不约而同地选择知楚仪器的产品?钱俊介绍,企业通过多年研发积累,不仅产品的性价比高,而且技术也更有竞争力,比如高通量筛选振荡培养箱这件产品,知楚仪器已实现最高每分钟1000转,二氧化碳振荡培养箱也已实现国产替代。根据中国仪器仪表行业协会2022年掌握的情况和相关统计,2020年至2022年,上海知楚仪器有限公司振荡培养箱(摇床)的市场占有率位居全国第一、全球前三,在国内外都享有较高的知名度和影响力。研发创新强支撑 发展步子迈得稳不创新就要落后,创新慢了也要落后,知楚仪器清楚地知道这一点。企业能在振荡培养箱这个细分行业获得今天这样领先的地位,与其成立之初就把创新研发定位成企业发展重中之重是分不开的。记者在企业智能制造研发中心看到,专利证书栏上方有“用造飞机的精神造摇床”这样一行字,环顾四周,研发人员要么正埋头在电脑前,要么在仪器上做实验,一派忙碌场景。据公司高管介绍,研发中心内的知楚示范实验室,由企业与江南大学和南方科技大学共建,每年研发投入占产值10%左右,研发人员占员工总数30%以上。通过大家的共同努力,目前企业已获得国内多项专利,包括2项发明专利、48项实用新型专利,7项软件著作权,3项外观设计,2项集成电路布图,8项商标注册,18项实审发明专利,还有17项专利正在申请中。公司也陆续获得了上海市科技小巨人企业、上海市服务制造示范企业、上海市专精特新企业、松江区质量创新企业及企业技术中心等荣誉称号。记者获悉,国内曾高度依赖进口的哺乳动物细胞振荡培养箱,进口率达到80%左右,而如今,随着知楚仪器等国内企业的成长和技术进步,国产替代不仅完全占领了国内市场,还实现了出口突破。知楚仪器目前主要的客户有清华大学、北京大学、上海恒瑞医药、药明康德、齐鲁制药等。有了研发创新的强力支撑,企业经营业绩稳速发展,年复合增长率达到16.94%。企业的发展离不开松江良好的营商环境,钱俊告诉记者,企业在人员落户、税收办理等方面都感受到了松江“店小二”式的用心、用情服务,曾3天就完成相关审批,节省了很多时间和精力,企业落户在这里很安心,对未来发展也充满信心。
  • 利用 FTIR 快速、轻松地对锂离子电池 中所用的溶剂进行材料鉴定
    利用 FTIR 快速、轻松地对锂离子电池 中所用的溶剂进行材料鉴定使用 Agilent Cary 630 FTIR 光谱仪鉴定常用的 LIB 电解液溶剂摘要由于便携式电子设备的广泛使用和电动汽车 (EVs) 的普及,对锂离子电池 (LIBs) 的 需求越来越大。此外,对与风能、太阳能和潮汐能等间歇式能源所产生的清洁电力 相关的电池储能的需求也不断增长。 LIB 电解液的制造商必须对原材料进行质量保证 (QA),以便在使用前确保其组成符合所需的规格要求。本研究证明,采用衰减全反 射 (ATR) 采样技术的 Agilent Cary 630 FTIR 光谱仪可通过简单的方法快速、可靠地 鉴定 LIB 电解液溶剂。该方法也可用于致力于改进电池技术的研发 (R&D) 团队。前言电解液是锂离子 (Li-ion) 电池 (LIBs) 的关键组分,它能够促进 电池工作过程中在阳极与阴极之间的电荷离子转移。 LIBs 在 成本、容量、充电时间和寿命方面的整体性能在很大程度上依 赖于电解液的组成。 LIB- 电解液含有锂盐、溶剂和添加剂[1]。 常用的电解液为溶于碳酸酯溶剂(例如,碳酸乙烯酯 (EC)、 碳酸二乙酯 (DEC)、碳酸二甲酯 (DMC) 和碳酸甲乙酯 (EMC)) 中的六氟磷酸锂 (LiPF6)[2, 3]。电池生产中使用的原材料对 LIBs 的整体性能起着至关重要的 作用,因为这些材料会影响最终产品的可靠性和耐用性。为了 确保在生产过程中使用合适的原材料,原材料鉴定测试是 LIB 行业中至关重要的 QA 和安全性分析手段。傅里叶变换红外光谱 (FTIR) 是一种无损分析技术,广泛用于 原材料鉴定测试应用。 FTIR 通过测量 IR 辐射的吸收,得到样 品的特征化学指纹。这种简便易用的技术无需任何样品前处理 步骤,能够快速鉴定材料。本研究采用配备钻石晶体 ATR 附件 的 Agilent Cary 630 FTIR 光谱仪 (图 1)对常用的 LIB-电解液溶剂进行鉴别验证。本应 用简报介绍了使用 Agilent MicroLab 软件 创建参考光谱库,并 应用基于方法的方案确认各种电解液溶剂的鉴定结果。图 1. Cary 630 FTIR 光谱仪非常小巧、轻便(20 × 20 cm ,重 3.6 kg),易于操作并可根据样品进行放置,确保获得高质量结果实验部分仪器本研究采用两台配备钻石晶体 ATR 附件的 Cary 630 FTIR 光谱 仪。利用位于安捷伦科技有限公司全球解决方案开发中心(新 加坡)的仪器创建表 1 中列出的光谱参考库。使用该谱库创 建常规的材料鉴定方法。然后将该方法转移至位于澳大利亚 墨尔本的安捷伦光谱卓越中心的另一台仪器上,对 4 种“未 知”溶剂进行鉴定(图 2)。创建谱库采用表 1 中列出的化学品创建谱库。使用 MicroLab 软件可以 轻松创建、维护并管理谱库。只需几秒即可创建新谱库,并且 无论是在创建时还是在其他任意时间,均可直接从结果界面添 加光谱。表 1. 用作光谱标准物质以创建谱库的 LIB 溶剂溶剂名称简称CAS供应商碳酸乙烯酯EC96-49-1Sigma-Aldrich Co碳酸二甲酯DMC616-38-6Sigma-Aldrich Co碳酸甲乙酯EMC623-53-0Tokyo Chemical Industry Co. LTD乙酸乙酯EA141-78-6Sigma-Aldrich Co第 1 步:创建谱库已知溶剂数秒内生成谱库Agilent Cary 630 FTIR-ATR光谱采集第 2 步: 未知样品分析未知溶剂Agilent Cary 630 FTIR-ATR, 采用自动谱库搜索即刻获得用颜色标记的结果图 2. 使用 Agilent Cary 630 FTIR 光谱仪和 Agilent MicroLab 软件创建用于 LIB 溶剂鉴定的鉴定方法1 开始分析2 按照图片式软件指导进行操作3 即刻获得颜色标记的有指导意义的结果图 3. 使用直观的 Agilent MicroLab 软件,通过 Agilent Cary 630 FTIR 光谱仪获得答案只需三步即可轻松完成。图片式软件减少了培训需求,同时尽可能降低用户引 起错误的风险软件用于 Cary 630 FTIR 光谱仪的 MicroLab 仪器控制软件采用可 视化界面,可指导用户执行从样品引入到报告生成的各个分析 步骤(图 3)。样品使用 Cary 630 FTIR,通过分析 4 种独立的“未知”溶剂样品 (这些样品为市售溶剂,物质名称在容器标签上标明) 来测试 用户生成的谱库。样品包括两种碳酸甲乙酯溶液、碳酸二甲酯 和乙酸乙酯。分析使用配备 ATR 附件的 Cary 630 FTIR 分析液体样品时,将一小 滴样品置于 ATR 晶体上。测量完成后,可以用乙醇将晶体擦 拭干净(如有必要) 。仪器操作条件和参数如表 2 所示。表 2. Agilent Cary 630 FTIR-ATR 操作参数参数设置方法谱库搜索所用谱库用户生成的 LIB 溶剂谱库检索算法相似度光谱范围4000–650 cm–1背景扫描次数10样品扫描次数24光谱分辨率2 cm-1背景校正空气补零因子无切趾函数HappGenzel相位校正Mertz不同颜色表示的 置信度阈值绿色(高置信度): 0.95黄色(中置信度): 0.90–0.95红色(低置信度): 0.90结果与讨论采用 Cary 630 FTIR 分别分析了 4 种“未知”溶剂。使用相似 度算法搜索用户生成的 LIB-溶剂谱库,经鉴定,未知样品 1 和 2 为 EMC,匹配质量指数 (HQI) 分别为 0.99393 和 0.94530。未 知样品 3 经鉴定为 DMC,HQI 为 0.97820;样品 4 为 EA(HQI 为 0.99679),如表 3 所示。针对每个谱库项目,软件会自动计算 HQI,该值表示实测光谱 与谱库谱图的匹配程度。在原材料鉴定和确认工作流程中, HQI 通常用作合格/不合格标准。分析人员可以在 MicroLab 软 件中自行设置基于 HQI 的阈值。表 3. 使用 Agilent Cary 630 FTIR-ATR、用户生成的 LIB 溶剂谱库和相似度检索 算法所获得的 LIB 溶剂鉴定结果样品名称材料鉴定结果匹配质量指数未知样品 1碳酸甲乙酯 (EMC)0.99393未知样品 2碳酸甲乙酯 (EMC)0.94530未知样品 3碳酸二甲酯 (DMC)0.97820未知样品 4乙酸乙酯 (EA)0.99679用颜色标记的结果为了轻松查看 Cary 630 FTIR 生成的数据,根据用户定义的 置信度阈值对获得的每个样品的材料鉴定结果进行颜色标记 (图 4)。在本研究中, HQI 高于 0.95 的结果标记为绿色,表明光谱匹 配结果良好,材料的鉴定结果具有高可信度。如图 4 所示, 未知样品 2 的鉴定结果为中等置信度 (HQI :0.90–0.95),并 将颜色标记为橙色。根据分析目的的不同,中等置信度结果可 能向分析人员表明需要进一步研究所测试的溶剂批次。对结果进行颜色标记使 Cary 630 FTIR 系统成为一种简便易用 的一站式解决方案,有助于快速做出决策。样品测量完成后, MicroLab 软件会在屏幕上直接显示最终结果,无需用户进行 任何输入。该软件自动执行谱库搜索,并向操作人员提供最终 的经颜色标记的结果。Ac图 4. Agilent Cary 630 FTIR 光谱仪对 4 种 LIB 溶剂样品的鉴定分析结果(红色曲线)以及谱库匹配结果(蓝色曲线)。表中显示了未知样品 1 至 4 的匹配质量、所用 谱库和匹配结果名称(分别标记为 A 至 D)结论Agilent Cary 630 FTIR 光谱仪提供了一种简单易用的方法, 适用于对锂离子电池 (LIB) 电解液生产中所用的溶剂进行材料 鉴定。Cary 630 FTIR 和 MicroLab 软件有助于快速、轻松地创建 LIB 溶剂谱库,从而快速鉴定 4 种“未知”溶剂样品。MicroLab 软件根据匹配质量指数 (HQI) 对鉴定结果进行颜色 标记,简化了数据审查流程。通过谱库实现了所有 4 种溶剂 的准确鉴定,尽管其中 1 种样品被标记为需要进一步研究。本研究表明,配备 ATR 采样附件的 Cary 630 FTIR 具有出色 的灵活性,适用于对 LIB 相关溶剂进行材料确认。 Cary 630 FTIR 为 LIB 原材料制造商和 LIB 生产商提供了准确、可靠的 材料鉴定方法。它也为致力于开发新一代材料的研发团队提供 了支持。
  • MetaSPR技术|激发纳米递送新活力
    纳米递送系统利用纳米材料将将药物、生物分子或其他治疗剂精确地递送到体内特定部位增强治疗效果、减少副作用并提升药物稳定性。该系统主要包括核酸递送、基因治疗递送、非病毒性基因传递、脂质纳米颗粒等,广泛应用于癌症治疗、遗传病治疗、疫苗研发、诊断工具等医药领域,为药物递送提供了新的可能性。纳米递送系统中的GPS纳米递送系统(NDDS)的开发成效极大程度上依赖于其靶向性。MetaSPR技术的融入,使得评估纳米载体与目标靶点的结合亲和力的验证变得更为精准,进而有效评判其靶向性能。这一评估步骤对纳米载体设计的优化至关重要,确保NDDS能大幅提升药物疗效并减少不必要的副作用,同时保证符合药品监管的高标准,为顺利进入市场提供必需的数据依据,并促进建立行业标准及推广最佳实践,有力推进了该领域的健康发展。 MetaSPR技术在纳米药物递送系统(NDDS)中的应用Aβ蛋白(Amyloid-β protein)聚集是阿尔茨海默病(Alzheimer's Disease, AD)的关键病理特征之一。抑制Aβ蛋白的聚集是治疗AD的潜在策略。纳米脂质体作为一种药物载体,可以通过封装或与药物分子结合来提高药物的稳定性、生物利用度和靶向性。 MetaSPR技术在脂质体(Liposome)研究中的应用间充质干细胞(MSC)为治疗对现有药物或手术技术无反应的顽固性疾病,特别是脑内炎性疾病提供了巨大的希望。但由于缺乏对生物膜的界面和分子的重视,现有的细胞表面工程技术在提高MSC归巢能力方面效率受限。因此,具有高效率的MSC表面工程改造是非常有必要的。 MetaSPR技术在脂质纳米颗粒(LNP)研究中的应用磷脂分子构成的生物膜是细胞膜的主要成分,纳米颗粒与磷脂分子的相互作用研究有助于理解药物载体与细胞膜之间的相互作用,为设计更有效的药物输送系统提供理论基础。在诊断工具和治疗剂的靶向递送方面,也需要考虑纳米颗粒与磷脂的相互作用,以提高药物的生物利用度和减少副作用。 纳米材料与蛋白冠的相互作用MetaSPR技术在纳米递送领域的突破性应用,无疑照亮了纳米递送系统优化道路上的每一个关键转折,犹如“芯”时代的科技灯塔,引领走向着更加高效、安全、智能化的医疗新领域。
  • 滨松中国受邀出席第23届配位化合物光化学及光物理学国际研讨会
    第23届配位化合物光化学及光物理学国际研讨会(ISPPCC 2019)将于2019年7月14-19号在香港城市大学举办,滨松中国受邀出席。 ISPPCC研讨会每两年举办一次,旨在为光化学、光物理和配位化学领域的前沿研究提供一个国际论坛。今年的ISPPCC研讨会将重点关注分子传感和光学成像,光催化、太阳能燃料和能源用材料,光谱学和配位化合物发光,超分子光化学和光物理学,理论和计算无机光化学,超快激发态过程等研究,届时将会有超过250位专家学者参会讨论。 在此次研讨会中,滨松中国将携Quantaurus-QY Plus C13534-11紫外近红外绝对量子产率测量仪和分子取向性特征测量系统C14234-01亮相。并且滨松工程师kengo Suzuki将会发表题目为“Evaluation of photoluminescence materials and OLED devices using state of the art spectroscopic techniques”的演讲,欢迎大家交流讨论。
  • 滨松中国将出席第29届国际激光雷达技术与应用学术会议
    第29届国际激光雷达技术与应用学术会议,将于2019年6月24号到28号在合肥举办。 本次大会旨在展现用于测定大气数据的新型雷达科技,本次会议重点倾向于展现能通过多种设备和平台,对天气预测、环境和气候变化进行检测的设备。 滨松中国将于会议期间在会场(天鹅湖大酒店长江厅)设置展台,携宽动态范围光电探测器、平衡探测器和激光器等产品亮相。滨松LiDAR用光电倍增管模块具有高量子效率、宽动态范围等特性,且体积小巧,具备门控功能,可用于测量大气成分、云层部分(如气溶胶、云、边界层等)及温度等,平衡探测器和激光器产品在该应用中也因高性能,而受到业界的信赖,届时欢迎参观和咨询。
  • 前处理时间仅为MALDI法的1/10,滨松新研辅助离子化基板
    滨松公司新开发了使用多孔氧化铝制作的辅助离子化基板DIUTHAME(Desorption Ionization Using Through Hole Alumina MEmbrane),大幅缩减质谱成像分析时待测样品进行离子化所需的前期处理的时间。只要将本产品放置在待测样品上,就能完成质量分析的前期处理,与目前主要的离子化方法之一基质辅助激光解析电离(Matrix-Assisted Laser Desorption/Ionization、下面简称MALDI)方法相比,它将前期处理时间缩短到十分之一。因此可以用在市场上已有的MALDI-TOF-MS设备,主要面向目前正在使用MALDI-TOF-MS设备的制药、工业领域的国内外企业以及大学研究人员。该产品将于2018年5月11日(星期五)面世。本产品由滨松公司和光产业创成大学院大学的内藤康秀副教授共同研发,将于5月15日(星期二)到5月18日(星期五)为止为期4天,在阪急酒店(大阪府吹田市)举办“日本质量分析学会暨日本蛋白质组学会2018年联合大会”上展出。※多孔氧化铝:细小的规则排布的氧化铝通孔。※TOF-MS:飞行时间质谱。按照离子的飞行时间来测定质量的质量分析方法。 关于质量分析质量分析是通过对待测样品进行电子束、激光等照射方法,使待测样品的原子、分子发生离子化,通过对质量的测定,对待测样品中包含原子、分子的种类、数量、分子结构等进行精密分析的方法。质谱仪由将待测样品离子化的离子化部分、分离离子的离子分离部分、分离后的离子探测部分等组成,针对待测样品结合各种离子化方法、离子分离法,广泛应用于环境、食品、化学、法医学、生命科学等领域。质量分析结构研发背景MALDI是将能吸收激光能量的低分子有机化合物(下面称matrix)与待测样品混合,通过激光照射,对待测样品进行离子化的方法。并且,因为它不破坏蛋白质等大分子结构就可以进行离子化,通过同时得到的离子质量和位置信息,实现对待测样品的成分、分布状态进行质谱成像分析,尤其是在生命科学领域和制药领域,应用预计会不断扩大。但是,利用MALDI进行的质谱成像,与Matrix的混和、涂抹、到干燥的前期处理的过程大概需要30分钟,而且它需要在待测样品上均匀的涂抹Matrix,所以想要寻找不需要采用Matrix的离子化方法。 产品概要本产品采用的是利用单独孔径直径为200nm左右(纳米,10亿分之1)的多孔氧化铝,是面向质谱成像的离子化辅助基板。将本产品放置到待测样品上,利用毛细管现象,将待测样品的分子上升到表面,通过激光照射分子使之离子化,不会破坏分子结构,在不使用Matrix的情况下,实现质谱成像。另外,除了提供有效直径为17mm的产品外,还研发了不需要获得位置信息的有效直径为2mm的产品,该产品面向一般的质量分析。多孔氧化铝具有铝着色等用途,所以采用它作为离子化的辅助基板的部分材料,而成功研发了本产品。※毛细管现象:在细管内侧,液体从管子中上升的现象。MALDI采用DIUTHAME的激光离子化法 MALDI是对混合了基质的待测样品进行激光照射使之离子化的方法。采用DIUTHAME的激光离子化方法是利用多孔氧化铝的毛细管现象,对基板表面上升的待测样品的分子进行激光照射,使之离子化。本产品只要放在待测样品上,就能完成前期处理,在无需处理待测样品的情况下,待测的液体样品的分子会自动上升到产品表面,所以不需要向MALDI一样将基质均匀的涂在待测样品表面的过程。放置后3分钟左右就可以完成质谱成像分析的前期处理,不需要熟练的基质涂抹技术,且能得到重现性高的测定结果。此外,在对小分子样品进行质谱分析时,与待测样品一起离子化的Matrix是不能使用的,因此,MALDI中所不能测定的小分子,在使用本产品是也能进行准确的测量。本产品可以用在既有的MALDI-TOF-MS设备上,可以提高目前正在使用MALDI-TOF-MS的制药领域和工业领域的研发效率。今后,我们仍会在产品的结构设计上继续钻研,开发离子化效率更高用途更广泛的产品。本产品的特点1、将质谱成像分析的前期处理时间缩短为十分之一因只要将本产品放在待测样品上就可以完成质谱成像分析的前期处理工程,将原本MALDI需要30分钟处理时间缩短为3分钟左右。2、实现高质量的质谱成像分析只要将本产品放在待测样品上就可以完成质谱成像分析的前期处理,不需要像MALDI中需要熟练地将基质均匀涂抹。因此,不会出现前期处理中随机误差,以及获得比MALDI的质谱成像更高的重现性。3、 高精度测量低分子本产品不使用像MALDI与待测样品一起离子化的小分子基质,因此,它可对工业材料、兴奋剂禁药等的MALDI无法测定低分子进行高精度的测量。主要规格离子化辅助基板DIUTHAME系列
  • 如何实现纳米药物的靶向递送?
    脂质体及聚合物作为纳米药物的常用载体,在药物合成方面已取得了巨大的成功,但在靶向递送方面,仍存在着诸多挑战,纳米药物该如何实现靶向递送呢?在谈论靶向之前,先要了解一个关键的药理学概念,以器官靶向为例:器官靶向药物输送不是将所有给药剂量都输送到目标器官,而是提供足够的剂量以达到所需的生物效果,同时限制脱靶积累的毒性;即使大部分注射剂量没有到达目标器官,也应该足以引起生理效应并为患者提供益处。靶向方式分类纳米药物靶向的方式多种多样,总的来讲,可以分为三大类(如图1)。图1. 靶向方式归类图被动靶向被动靶向依赖于调整纳米颗粒的物理性质,如大小、形状、硬度和表面电荷,使其与解剖学及生理学相结合。例如,调节纳米颗粒的大小可以确定纳米颗粒从不连续的血管(如肝脏和脾脏中的血管)外渗的趋势。主动靶向主动靶向包括用化学或生物的方法修饰纳米颗粒的表面,使其特异性地与靶器官高度表达的受体或其他细胞因子相结合。例如,用单克隆抗体修饰纳米颗粒,以使核酸传递到难以转染的免疫细胞中。内源性靶向内源性靶向包括设计纳米颗粒的组成,使其在注射时与血浆蛋白的一个不同的亚群结合,从而将其引导到目标器官并促进特定细胞的摄取。例如,参与体内胆固醇运输的蛋白质已被证明是脂质纳米颗粒有效的肝细胞传递所必需的。对比而言,被动靶向和内源性靶向的设计度与可控性相对较低,主动靶向自然成为了靶向递送的研究焦点。在肝外靶向的研究中,就涉及了较多的主动性靶向,表1也列出了多种肝外给药的纳米颗粒组合物。表1. 用于肝外给药的纳米颗粒组合物靶向修饰方法药物靶向本质上为官能团之间的相互作用,即纳米药物表面的核心基团与受体部位的基团进行化学结合。以脂质纳米颗粒为例,载体组分中的PEG脂质多位于颗粒表面且本身易于修饰,因此,可以在PEG脂质上加载受体部位的结合基团以实现靶向目的。以下列举了几种常见的PEG脂质修饰方法。马来酰亚胺修饰使用DSPE-PEG2000-马来酰亚胺作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过其取代的羧基端半胱氨酸直接与肽偶联,可以形成肽靶向的纳米粒子。再如SS-31,一种线粒体靶向的四肽,具有巯基,只需与马来酰亚胺标记的脂质纳米颗粒孵育,即可进行硫酰马来酰亚胺偶联。NHS修饰NHS酯通常用于标记胺基生物分子。NHS酯与胺基的反应具有pH依赖性,结合的较佳pH值与生理环境的pH值相同。使用DMG-PEG-COOH-NHS作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过在C端添加赖氨酸修饰MH42,并通过其侧链的伯胺偶联,可以形成肽靶向的纳米粒子。同样,许多具有胺基的抗体和靶向肽也可通过该反应偶联到脂质纳米颗粒上:乳铁蛋白可特异性结合活化的结肠巨噬细胞上的LRP-1,实现细胞靶向抗炎治疗;还有较为熟知的程序性死亡配体1单克隆抗体的应用。氨基修饰氨基有利于醛酮分子的化学选择性附着。甘露聚糖还原端醛基与氨基羧基修饰的脂质之间肟偶联反应的正交特性保证了脂质纳米颗粒表面多糖分子的取向。甘露聚糖受体靶向脂质体既可以作为抗菌药物递送的载体,也可以作为用于免疫治疗的重组疫苗的载体。DBCO修饰DBCO标记可促进巯基-炔反应,并可选择性偶联荧光探针、亲和标记和细胞毒性药物分子。例如,抗体scFv-N3可被有效地偶联到DBCO修饰的脂质纳米颗粒上。研究发现,抗体修饰的脂质纳米颗粒可穿越血脑屏障,并诱导脑特异性积累,以治疗中枢神经系统疾病。结论:人体复杂的生化环境给纳米药物的靶向递送制造了诸多阻力。在实际探索中,被动靶向,主动靶向和内源性靶向,可作为靶向设计的联合工具,在寻找绝对的靶向位点、真实的靶向机理与达到实际的靶向效果之间寻求平衡。在此当中,主动性靶向的尝试值得支持,正如文中所讲PEG脂质的各种修饰方式,大量的设计性尝试定能排除越来越多的靶向干扰因素,朝靶向机理的挖掘处更深一步。参考文献:1. Menon, Ipshita et al. “Fabrication of active targeting lipid nanoparticles: Challenges and perspectives.” Materials Today Advances (2022): n. pag.2. Dilliard, S.A., Siegwart, D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater (2023).3. Herrera-Barrera, Marco et al. “Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.” Science Advances 9 (2023): n. pag.应用范围:纳米药物制备系统:
  • 《Science Advances》:仿松针多级非对称结构超疏水表面多尺度液滴定向输运
    液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from localreconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/
  • 重磅!张锋团队开发出全新mRNA递送平台
    RNA疗法被认为可以解决一切蛋白质层面的疾病。近日,来自美国麻省理工学院的华人科学家、著名CRISPR技术先驱张锋教授带领的研究团队,开发了一种全新的RNA递送平台,可向细胞提供分子疗法。这个名为SEND(选择性内源性衣壳化的细胞递送)的可编程系统能够封装和递送不同的RNA药物,朝着更安全、有针对性地传递基因编辑系统和其他分子疗法迈出了重要一步,有望为基因疗法带来新变革。相关研究论文发表在20日的《科学》杂志上。  “生物医学界一直在开发强大的RNA分子疗法,但以精确和高效的方式将它们传递给细胞仍是具有挑战性的。”张锋表示,SEND有望克服这些挑战。  SEND的核心是一种天然存在于人体内的名为“PEG10”的蛋白,研究人员发现,PEG10具有在细胞之间运输RNA的潜力。相比其它蛋白,细胞释放PEG10颗粒的数量更多,且PEG10颗粒也大多含有它们自己的mRNA,这表明PEG10可能能够包装特定的RNA分子。  为了开发SEND技术,研究小组确定了PEG10的mRNA中的分子序列,即PEG10识别并用来包装其mRNA的“信号”。当将这些信号序列加在RNA分子两端时,PEG10就可以选择并“打包”这些RNA“货物”。  然后,研究人员使用了两种不同的促进细胞融合的蛋白质(fusogen)修饰PEG10,使PEG10“包裹”能够靶向特定类型的细胞、组织或器官,在细胞试验中实现RNA递送。  利用SEND系统,研究人员成功将CRISPR-Cas9基因编辑系统递送到了小鼠和人类细胞中,以编辑目标基因。  张锋说:“通过混合和匹配SEND系统中的不同要素,我们相信它将为开发针对不同疾病的疗法提供一个模块化平台。”  由于SEND系统是由人体内自然产生的蛋白质组成的,因此与其他RNA药物递送方式相比,SEND能在测试细胞中高效工作,理论上它不会触发不必要的免疫反应。未来,SEND或将替代用于递送RNA药物的病毒载体和脂质纳米颗粒,进一步扩大基因疗法的工具箱。  接下来,研究团队将在动物身上测试SEND系统的递送效率,并进一步探索更多可用于该系统的人体内蛋白。
  • 滨松中国将参展第12届中国检验医学暨输血仪器试剂博览会
    由全国卫生产业企业管理协会医学检验产业分会(CACLP/CAIVD)举办的“第十二届中国检验医学暨输血仪器试剂博览会”将于2015年3月18-20日在福建厦门国际会展中心举行。 届时,滨松中国将出席参展(D区,505,506展台)。本次我们将重点展出体外诊断中的免疫分析、生化分析、血液分析、分子诊断应用的光电探测器解决方案。除此之外,滨松公司最新研制的世界最小光电倍增管(组件)、光源模块、光谱仪,以及新型的MPPC(硅光电倍增管)组件模块,亦将在本次展览会上与大家见面,通过诠释小型化、集成化的前端概念,为体外诊断应用带去更多、更好的可能。 为了更好的和与会的业内人士沟通交流,滨松中国将在参展同期举办一场交流会(厦门国际会展中心2楼215#会议室),届时,来自滨松集团国内外的业务负责人、技术工程师等,将和与会者一起分享光电探测器在体外诊断中的应用,展现滨松产品对世界体外诊断的推动和引领,以及行业的全新视野。滨松中国期待您的莅临!点击链接进行技术交流会参会报名:http://www.hamamatsu.com.cn/Survey/10214/index.html 技术交流会报名,以及会议和展会详细信息,敬请咨询:王锦秋 010-65866006-663 18611250227 wjq@hamamatsu.com.cn 马繄明 010-65866006-666 13601238333 mym@hamamatsu.com.cn 单小虎 010-65866006-665 18910686869 sxh@hamamatsu.com.cn李艳鹏 021-60897018-208 18117239226 lyp@hamamatsu.com.cn 第十二届检验医学展滨松中国展台位置:D区,505,506展台滨松中国检验医学展同期技术交流会会议地址:厦门国际会展中心2楼215#会议室
  • 限时促销: 买滴定仪送LabX软件
    从这一刻起,体验LabX软件的便捷与强大: - 网络滴定 - 双向控制 - 自定义界面 - 方法参数实时验证 - 多种报告导出格式 - 符合GLP/GMP规范 亲爱的用户: 衷心感谢您对LabX系列滴定软件产品的支持。为答谢广大客户,分析仪器部从2012年6月15日起至2012年12月31日推出: 买滴定仪送LabX软件活动 活动期间,按照正常流程订购T70/T90/V30/C30任意一款型号,将可免费获得LabX light滴定软件(51106551)一套,多买多得。 立即报名订购! 通过此次促销活动,我们希望您能够更深刻的感受Mettler-Toledo产品的卓越品质,和LabX软件给您的工作带来的高效和便捷。 同时,衷心祝愿您和您的家人: 身体健康!工作顺利!万事如意! 本活动解释权归梅特勒-托利多所有
  • 滨松中国将参展中国神经科学学会第12届全国学术会议
    中国神经科学学会于1995年成立,目前个人会员人数8000多名,分别来自中国科学院、中国医学科学院、军事医学科学院、中国中医研究院、全国综合性大学、医学院校、医院的精神科、神经内科、神经外科、眼科、耳鼻喉科、骨科、麻醉科、内分泌科及小儿科等临床学科,以及神经药物的生产和研究单位。本次大会将对近年来我国乃至世界神经科学的最新发展及其科研成果进行研讨交流。会议将邀请国内外注明专家做大会报告,届时全国各大医院神经科学专家以及相关科室负责人,全国大专院校、科研院所等单位的神经科学专家学者也将参加本次大会。本次大会定于10月12日-15日在天津.社会山会议中心召开。滨松中国将携生物科研成像用相机、数字切片扫描系统产品出席参加本次会议,届时欢迎到场参观(01-60)。
  • 【安捷伦】如何优化资金流,降低业务拓展的风险?五招助你轻松实现
    您的业务发展急需高性能新仪器?有限的资金预算却让您止步不前?一个支付计划五个密招,让您无需投入大额资金,即可轻松购入安捷伦前沿技术,购买就是如此灵活!五招,一个对策,让您无惧资金压力,提前尝试前沿科技安捷伦融资购买方案,拥有心仪技术的新选择安捷伦融资购买方案可以助您完美平衡新技术需求与财务风险控制:- 减轻资金压力:解决一次性仪器采购资金压力大、资金流紧张、更新仪器预算不足等财务问题- 抢占市场先机:率先尝试最新技术,拥有仪器专属使用权,不再让资金问题成为您成功的障碍!点击此处,访问安捷伦融资购买方案产品页面,了解详细信息。安捷伦明星产品“食品安全检测三套件”也可采用融资购买方案食品中农、兽残分析全流程解决方案三套件,包括:- 遵从 GB2763 的农残 GC/MS/MS 全流程解决方案- 遵从 GB2763 的农残 LC/MS/MS 全流程解决方案- 多兽残 LC/MS/MS 全流程解决方案 2.0 版现在,您可以采用融资购买方案购买此食品安全检测三套件!您在前期仅需较低的投资成本,即可使用最新的技术方案,让您的实验室成为食品中农、兽残检测的行业先锋的同时,还使您的工作变得更加省时、省力,和节约分析成本。仅需 4 步,急速完成审批流程关注“安捷伦视界”公众号,获取更多资讯。
  • Nature|张锋团队借助AI开发出全新蛋白质定向递送系统
    2023年3月29日,张锋教授及其团队在 Natrue 期刊发表了题为:Programmable protein delivery with a bacterial contractile injection system 的研究论文。通过AlphaFold辅助蛋白质设计开发了一种蛋白质递送系统——改造、利用独特的细菌“注射器”将蛋白质注射到人类细胞中。这一系统为将各种蛋白质(包括用于基因编辑的蛋白质)递送到不同类型的细胞提供了一种安全有效的方式,有望改变基因治疗、癌症治疗等前沿疗法格局。内共生细菌是一类特殊的细菌,它们可以寄生在宿主细胞的内部,并已然进化出复杂的传递系统使其分泌调节宿主细胞的生物因子。例如,细胞外可收缩注射系统(eCIS),正是这样一种类似于“注射器”的大分子复合物。eCIS通过驱动一个“针头”结构穿透细胞膜,然后将携带的蛋白质有效载荷注入到真核细胞中。在这项最新研究中,张锋团队首先选定了eCIS的一个亚型——Photorhabdus virulence cassette(PVC)。PVC由一个约20kb的操纵子组成,包含16个核心基因(pvc1-16),以及下游的有效载荷Pdp1和Pnf。研究团队发现,PVC有效载荷蛋白的N端高度无序区域是其“包装结构域”,只要将其与想要递送的蛋白(例如GFP)融合,就能将其加载到PVC复合体中。PVC系统可以被重新编程以在真核细胞中定制蛋白递送于是,研究团队使用人工智能蛋白设计平台AlphaFold,通过氨基酸序列预测蛋白质结构,重新设计了发光杆菌的注射器,使之从靶向结合昆虫细胞改为靶向结合人类细胞。类似的,这套系统也可以学会靶向小鼠细胞。细胞实验的结果显示,经过改造,“注射器”识别人类细胞和小鼠细胞的效果接近100%。同时,研究人员通过重新设计发光杆菌eCIS的另一部分,还能根据需要让它们装载不同的蛋白质,包括基因编辑系统的核酸酶Cas9、碱基编辑器、可以杀死癌细胞的毒素等。重新设计细菌的胞外可收缩注射系统,将其改造为专门靶向特定人类细胞递送所需蛋白质的装置结果表明,PVC系统经过改造后可以在细胞和体内靶向递送蛋白质,并在基因编辑、癌症治疗和临床靶向递送等领域展现出广阔的应用前景,未来可能成为许多生物疗法的关键递送工具。论文链接:https://www.nature.com/articles/s41586-023-05870-7
  • 兰州化物所药物分子定位递送多模式成像示踪研究取得新进展
    p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 癌症是威胁人类生命与健康的重大疾病,药物治疗(化疗)是治疗癌症的有效手段之一。为进一步提高疗效、降低毒副作用,抗癌药物的定位递送和精确释放成为抗癌药物研发的重要内容。然而,如何实时在线精准示踪抗癌药物的递送过程、靶向释药过程以及生物分布与代谢是迫切需要分析科学解决的难点和核心问题。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 中国科学院兰州化学物理研究所师彦平研究员团队近期 strong 利用荧光成像和质谱成像相结合的多模式成像分析技术成功实现了实时精准示踪定向结直肠的新型前药定位递送、释放、分布与代谢的全过程。 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ee9f6066-0d03-4b96-ba02-2f83b4e4a4ce.jpg" title=" lanhuasuo.png" alt=" lanhuasuo.png" / /p p style=" text-align: center " strong style=" text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 14px " 利用多模态成像分析技术实现定向结直肠的新型前药的实时精准示踪 /span /strong /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 研究人员创新性地设计合成了一种新型的偶氮基前药AP?N=N?Cy,该偶氮基前药由前体药物分子(AP)通过多功能的偶氮苯基团与近红外荧光团(Cy)相连接而成。研究结果表明: strong 该偶氮基前药不仅可作为对偶氮还原酶响应的近红外探针以实时示踪药物递送过程,而且还可作为抗癌药物分子(AdP)的递送平台。 /strong 基于偶氮还原酶会特异性地在结肠中分泌,该偶氮基前药实现了在结肠中特异性的定位递送与靶向释放。 /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 该偶氮基前药可以口服,并且在到达结肠前具有高稳定性和低毒性。鉴于抗癌药物分子释放与荧光开启过程的同步性,可利用荧光成像方法对抗癌药物分子在体外、离体和体内的递送进行精确示踪,并利用质谱成像在分子水平上对AdP和Cy在不同组织中的生物分布进行精确分析。据了解, strong 这是首次通过多模式成像方法在体内对结肠特异性的药物释放和生物分布进行实时的精准示踪。 /strong /span /p p style=" line-height: 1.75em text-indent: 2em " span style=" font-family: 宋体, SimSun " 该研究成果近期发表在 strong Analytical Chemistry(2020,& nbsp 92:& nbsp 9039-9047) /strong 上,以上工作得到了国家自然科学基金和中国科学院青年创新促进会的支持。 /span /p p br/ /p
  • 美专家用金纳米粒子制成药物递送装置
    美国麻省理工学院的一个科研小组利用金纳米粒子以及红外线,研制出了一个递送数种药物的可控装置。   科研小组在最新一期《美国化学学会-纳米》杂志上报告说,其设计所依据的原理是当金纳米粒子暴露在红外线之下时,它们就会融化,释放出其表面所携带的药物。不同形状的金纳米粒子会对不同波长的红外线发生反应,因此只要控制红外线的波长,就能控制金纳米粒子所携每种药物的释放时间。   癌症、艾滋病等很多疾病的治疗都涉及多种药物治疗方案。目前已有的药物递送装置最多只能释放两种药物,而且释放时间必须提前设定。而这种新型药物递送装置可以从患者体外进行控制,且理论上最多可以递送4种药物。
  • 科学家定向开发新的基因递送载体用于基因治疗
    近日,发表在《Cell》上的一项题为“Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species”的研究中,来自美国布罗德研究所和哈佛大学等研究机构的研究人员开发出一个新的腺相关病毒(AAV)家族作为基因递送载体用于基因治疗。  重组腺相关病毒(rAAV)是最常用于体内基因替代治疗和基因编辑的载体,但全身递送后特定组织的选择性转导仍然是一个挑战。遗传性肌肉疾病会导致进行性肌肉萎缩,治疗选择很少且无法治愈。基因疗法已在临床试验中显示出治疗肌肉萎缩症的希望,但需要高剂量的携带基因的病毒才能到达全身肌肉,而这些试验中使用的病毒通常更多地进入肝脏而不是肌肉,进而导致一系列严重的问题。  研究人员建立了一种体内策略来进化和严格选择AAV的衣壳变体,这些变体能够有效地递送到所需的组织。使用这种方法,研究人员确定了一类含有RGD基序的衣壳,在小鼠和灵长类动物体内定向进化出一种工程化改造的AAV载体—MyoAAV,研究显示这种载体能够高效靶向肌肉组织,递送到肌肉组织的效率是传统病毒载体的10倍以上。同时,与传统递送载体相比,该载体在遗传性肌肉疾病中的治疗剂量降低大约100到250倍,这一研究成果极大地减少了肝脏损伤和其他严重副作用的风险。   论文链接:  https://www.cell.com/cell/fulltext/S0092-8674(21)01002-3
  • 直播 | 深入外泌体: 冷冻电镜下的新一代药物递送载体
    细胞排出废物的“垃圾桶”,到如今科研界热度居高不下的宠儿,外泌体在某种意义上完成了质的飞跃。外泌体是细胞分泌到胞外的一种囊泡(Extracellular Vesicles,EVs),其大小为30-150nm,具有双层磷脂膜结构,含有丰富的内含物(包含蛋白质、核酸等多种活性生物分子)。外泌体应用于疾病诊断、药物装载及做为治疗药物等方面,它穿透性极强、吸收更佳、低免疫原性,使得它成为了非常优质的“活性物质递送系统”。外泌体由蛋白质、核酸、脂质组成,含有较高水平的胆固醇、鞘磷脂及饱和脂肪酸。相比其他载体,外泌体在递送药物方面有着显而易见的优势:①外泌体的安全性非常高;②外泌体有非常好的靶向性潜力;③外泌体具备工程改造潜力;④外泌体有优秀的多分子装载能力。药物递送系统(DDS)的表征是新药研发致关重要的一个环节,反应DDS 的特性。冷冻电镜是外泌体直观表征的不二利器,通过将外泌体样本快速冷冻,可以获得外泌体近生理状态下形貌信息细节,直接表征多项指标;还可以通过冷冻电子断层扫描技术获得外泌体近生理状态下的3D结构,为新药开发打开纳米世界的大门。随着冷冻电镜技术的不断发展,已经突破分辨率极限,达到原子级别。冷冻电镜技术对外泌体的探究越来越细致,为了更深入的走进外泌体,了解冷冻电镜下的新一代药物递送载体,药融圈联合赛默飞共同邀请到苏州唯思尔康科技有限公司SVP何新军以及赛默飞世尔科技材料与结构分析业务拓展经理刘靖怡2位行业专家,于2023年5月18日做客线上直播间,揭开外泌体的神秘面纱。
  • 光子改变世界,滨松助力未来——2018滨松光子展隆重举行
    p    strong 仪器信息网讯 /strong 2018年11月1日,由日本滨松光子学株式会社(Hamamatsu Photonics K.K.,以下简称滨松集团或滨松)举办的Photon Fair 2018(以下简称滨松光子展)于日本静冈县滨松市ACT CITY展览馆拉开帷幕。滨松光子展是由滨松集团主办的每5年1届的光子技术综合性展览会,旨在将滨松集团现阶段的科学研究成果及最新技术应用展示给光产业领域从业人员与广大群众,向社会传达滨松集团对光子技术的开发应用理念和利用光子技术改善生活、服务社会的美好愿景。仪器信息网作为国内专业媒体带来展会的全程报道。 /p p style=" text-align: center " img width=" 400" height=" 267" title=" PHOTON FAIR 2018 滨松光子技术综合展览会.jpg" style=" width: 400px height: 267px " alt=" PHOTON FAIR 2018 滨松光子技术综合展览会.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/5ccfb8c3-e7e6-46b3-ad88-d936b949da2f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " PHOTON FAIR 2018 滨松光子技术综合展览会 /p p   本届展会展览区共分为科学研究(Science & amp Research)、汽车(Automotive)、生活(Life)、医疗与生命科学(Medical & amp Life Science)、制造(Manufacturing)、环境(Environment)六大板块。共吸引超过5000名专业观众的注册,活动累计超过10000人次参加,规模较上届展会显著提升。 /p p   会展同期亦开设了多个主题演讲及技术研讨会。滨松集团董事长昼马明、加州大学欧文分校教授布鲁斯· 特洛伯格、丰田汽车株式会社先进技术开发公司常务理事鲤渕健、斯坦福大学医学部循环器科主任研究员池野文昭分别作大会报告,畅谈了他们对光子技术在精准医疗、汽车自动驾驶等领域将深刻改变人们生活方式的预期及信念。分会场上,来自滨松集团中央研究所及四大事业部—电子管、固体、系统、激光的近40名技术专家向与会嘉宾介绍了滨松在光电技术领域所做出的最新进展。 /p p   从展馆入口进入序幕厅,庄严肃穆的氛围萦绕四周,墙幕上依次浮现出对滨松集团创立和发展有着深远影响的三位前人的成就与事迹。滨松创始人名为堀内平八郎,通过从师 “日本电视机之父”高柳健次郎,意识到了光电转换技术的巨大可能性,以此建立起了滨松公司。后来,在第二代社长昼马辉夫的带领下,滨松成功开发出性能超越世界标准的光电倍增管产品,开启了滨松迈向领先光子技术企业的发展进程。依托自光电倍增管开发生产时期积累的先进光子技术,滨松的应用领域迅速扩展,并渗透至人们生活的方方面面。21世纪常被称作“光的时代”,滨松在未知未涉领域的探索和挑战也未曾停歇。 /p p style=" text-align: center " img width=" 291" height=" 400" title=" 展览厅典籍.jpg" style=" width: 291px height: 400px " alt=" 展览厅典籍.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/0fba8af3-a2a8-4ae8-b833-a0d08a4b462f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 展览厅典籍 /strong /p p style=" text-align: center " strong img width=" 400" height=" 300" title=" 宣传影片.png" style=" width: 400px height: 300px " alt=" 宣传影片.png" src=" https://img1.17img.cn/17img/images/201811/uepic/8cb61183-f4e1-437d-8d22-e4e2cbc5b57b.jpg" border=" 0" vspace=" 0" / /strong /p p   序幕厅后方的大荧幕上循环放映宣传影片,由滨松现任社长昼马明为参观者介绍滨松数年来在光子技术领域所取得的杰出成就,以及未来的发展方向。 /p p   绕过荧幕跨入主展览厅,新产品和新技术应用随之映入眼帘,流光溢彩的现场布置令人仿佛置身充满科技感的未来世界一般。那么本次展会又有哪些精彩的内容呢?请随仪器信息网编辑一同跨越通往未来之旅的大门。 /p p style=" text-align: center " img width=" 400" height=" 267" title=" 展会现场.jpg" style=" width: 400px height: 267px " alt=" 展会现场.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/d3009afd-44b6-4cfc-aa71-20c145afdf82.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 展会现场 /strong /p p strong ENVIRONMENT 环境展区 /strong /p p style=" text-align: center " img width=" 400" height=" 267" title=" ENVIRONMENT 环境展位.jpg" style=" width: 400px height: 267px " alt=" ENVIRONMENT 环境展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/b26200a3-5b93-4b91-a052-92ce35e24e88.jpg" border=" 0" vspace=" 0" / /p p   随着社会经济的不断发展,近年来环境问题也日趋凸显,人们在物质需求不断增长的同时,对环境质量提出了高的要求。在能源开发和勘探,灾害预防,以及水、土壤、大气的环保监测等领域,也有着滨松产品与技术的身影。 /p p   展区的内容十分丰富,新品齐放。在土壤检测区域的质量分析中,展现了滨松在2018年推出的一系列应用于质谱仪电离和探测中的器件 烟气监测中,除了最新推出的波长可调谐中红外量子级联激光器(QCL)模块首次面世外,最新在研的QCL产品也首次以DEMO的形式披露。能源方面,还看到了滨松产品在激光核聚变中的应用。 /p p style=" text-align: center " img width=" 400" height=" 309" title=" 滨松质谱用探测器件新品.png" style=" width: 400px height: 309px " alt=" 滨松质谱用探测器件新品.png" src=" https://img1.17img.cn/17img/images/201811/uepic/b7a25d31-b1a8-4b1d-8bd9-ec7ba9394781.jpg" border=" 0" vspace=" 0" / /p p   滨松质谱用探测器件新品,包括高气压下(达1Pa)仍可高增益正常工作的栅网阳极结构第三代MCP、大幅简化和缩短MALDI-TOF-MS前处理时间的辅助离子化基板、MCP+AD、通道式电子倍增器 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 滨松最新发布的波长可调谐中红外QCL模块.jpg" style=" width: 400px height: 300px " alt=" 滨松最新发布的波长可调谐中红外QCL模块.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/d069f817-5d51-4539-a31d-ac9fc2e2c25f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 滨松最新发布的波长可调谐中红外QCL模块 /strong /p p   其具备小型且高速波长调谐的特点,搭载输出8~10μm中红外激光双上层组合结构的QCL,形成低反射涂层、实现稳定的波长扫描。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 用于石油勘探的滨松高温光电倍增管.jpg" style=" width: 400px height: 300px " alt=" 用于石油勘探的滨松高温光电倍增管.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/dcc5f242-03a4-406b-93da-a0484de5a095.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 用于石油勘探的滨松高温光电倍增管 /strong /p p strong MEDICAL& amp LIFE SCIENCE 医疗与生命科学展区 /strong /p p style=" text-align: center " img width=" 400" height=" 267" title=" MEDICAL& amp LIFE SCIENCE 医疗与生命科学展位.jpg" style=" width: 400px height: 267px " alt=" MEDICAL& amp LIFE SCIENCE 医疗与生命科学展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/52052d3f-056e-4b78-a68f-b9a0dd088d0e.jpg" border=" 0" vspace=" 0" / /p p   光子技术同样可对人们的健康保驾护航。医疗是滨松光子技术应用中非常重要的部分,其应用覆盖PET、全身及牙科X射线成像、体外诊断、POCT、病理诊断、血氧测量等。 /p p   在光子展中,一台脑部PET(Positron Emission Computed Tomography,正电子发射型计算机断层显像)探测端的拆解引人注目,其中展示了PET下一代探测器——硅光电倍增管(MPPC)技术。滨松首次将PET用MPPC模块化,降低了成本,提高了空间分辨率,且可帮助设备制造商加速研发周期。另外,亦展示了基于MPPC技术的X射线光子计数模块,其可大幅提高探测灵敏度,降低了X射线量的要求,更加安全,且可促成整机成本的降低。而其也被认为是颠覆CT技术的新一代产品。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 头部PET探测端的内部展示.jpg" style=" width: 400px height: 300px " alt=" 头部PET探测端的内部展示.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/f7df04ed-fe1d-477e-9580-331ac6e37888.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 头部PET探测端的内部展示 /strong /p p   此外,结合近年来医疗中的热点“POCT”,光子展中也集中展示了各类微型化的器件,并首次披露了下一代微型PMT及超小型电源的开发品。 /p p style=" text-align: center " img width=" 400" height=" 325" title=" 可用于POCT应用的小型化2W闪烁氙灯及高度集成化的光学模块.png" style=" width: 400px height: 325px " alt=" 可用于POCT应用的小型化2W闪烁氙灯及高度集成化的光学模块.png" src=" https://img1.17img.cn/17img/images/201811/uepic/78a8fe64-64ad-4df1-bf9d-c8b72035ab6f.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 可用于POCT应用的小型化2W闪烁氙灯及高度集成化的光学模块 /strong /p p style=" text-align: center " img width=" 400" height=" 300" title=" 可在基因测序中发挥重要作用的滨松科研级相机产品.jpg" style=" width: 400px height: 300px " alt=" 可在基因测序中发挥重要作用的滨松科研级相机产品.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/93926dc3-7454-491a-b8ee-66a8b2525651.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 可在基因测序中发挥重要作用的滨松科研级相机产品 /strong /p p strong LIFE 生活展区 /strong /p p style=" text-align: center " img width=" 400" height=" 267" title=" LIFE 生活展位.jpg" style=" width: 400px height: 267px " alt=" LIFE 生活展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/fec6f21f-cb63-47c8-86a9-a43b9d6dc0dc.jpg" border=" 0" vspace=" 0" / /p p   光电技术与人们的生活也是息息相关,“生活”展位上展示了一系列可应用于测距、食品检测、纺织品检测、可穿戴设备(脂肪、皮肤水分等检测)、物联网等应用的光传感技术。其中融合了MOEMS技术的一系列微型化产品十分抢眼,其中就包括刚刚与10月推出的SMD系列超微型光谱仪。 /p p   该款光谱仪产品波长响应范围在640~1050nm,结构极其紧凑,与同样对近红外光有响应的前代产品相比,SMD系列体积约为其1/14,重量为其1/30,灵敏度却是其50 倍。它能够满足现场食品的实时测定、农作物的质量检查、无人机环境分析等用途的要求。未来有望整合入移动终端,做到随用随测。现场的演示DEMO也展示了其优秀的光谱测量能力。 /p p style=" text-align: center " img width=" 400" height=" 267" title=" SMD型微型光谱仪.jpg" style=" width: 400px height: 267px " alt=" SMD型微型光谱仪.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/72221512-88cb-42bd-a3b1-1014f73092c7.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong SMD型微型光谱仪 /strong /p p strong SCIENCE& amp RESEARCH 科学研究展区 /strong /p p style=" text-align: center " strong img width=" 400" height=" 267" title=" SCIENCE& amp RESEARCH 科学研究展位.jpg" style=" width: 400px height: 267px " alt=" SCIENCE& amp RESEARCH 科学研究展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/b97580ac-70ae-45f4-8d76-b1e42e8d8975.jpg" border=" 0" vspace=" 0" / /strong /p p   科学研究是人类社会发展进步的基础,技术与应用的创新也是依托在其成果之上。科学研究展区上展示了光子技术在生物、物理、化学领域科研中的应用。年代展中,让我们看到了从1960年开始到现在,滨松助力的世界大型科研实验,其中所用到的光电探测器许多也同台亮相,如两度助力诺贝尔物理学奖的中微子探测器20英寸光电倍增管、用于希格斯玻色子探测并助力2013年诺贝尔物理学奖诞生的硅APD等。 /p p   另外,通过从分光到探测和分析光谱,这次也展示了应用于化学科研,覆盖广泛光谱波段范围的光子探测技术。生物方面,则以“看见光”、“制造光”、“操纵光”来进行多面的展示,其中许多前沿的科研课题引人注目,如当下颇受热议的“光镊”的研究。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 用于超级神冈实验中微子探测的20英寸光电倍增管.jpg" style=" width: 400px height: 300px " alt=" 用于超级神冈实验中微子探测的20英寸光电倍增管.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/e3637ff2-3949-4577-b464-04e0f20a179d.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 用于超级神冈实验中微子探测的20英寸光电倍增管 /strong /p p style=" text-align: center " strong 上面的签名为2015年诺贝尔物理学奖得主梶田隆章 /strong /p p style=" text-align: center " img width=" 400" height=" 297" title=" 从γ射线_X射线到太赫兹波段探测滨松所覆盖的产品及技术.png" style=" width: 400px height: 297px " alt=" 从γ射线_X射线到太赫兹波段探测滨松所覆盖的产品及技术.png" src=" https://img1.17img.cn/17img/images/201811/uepic/c82d0ece-e6aa-475f-b642-4a8249a9b153.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 从γ射线/X射线到太赫兹波段探测滨松所覆盖的产品及技术 /strong /p p strong AUTOMOTIVE 汽车展区 /strong /p p style=" text-align: center " strong img width=" 400" height=" 267" title=" AUTOMOTIVE 汽车展位.jpg" style=" width: 400px height: 267px " alt=" AUTOMOTIVE 汽车展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/508a9168-8d10-47b9-b878-bb9ca490e65c.jpg" border=" 0" vspace=" 0" / /strong /p p   汽车产业发展已历百年,近年来汽车在逐渐向智能化、电动化、网联化发展。滨松以提高汽车舒适性、安全性为中心,进行了一系列发光和受光器件的研发,在汽车领域已耕耘了40余年。本次展示了其在自动驾驶激光雷达、抬头显示、汽车MOST网络、自动防眩后视镜等应用中的光电传感方案。 /p p style=" text-align: center " img width=" 400" height=" 298" title=" 测距应用DEMO演示.png" style=" width: 400px height: 298px " alt=" 测距应用DEMO演示.png" src=" https://img1.17img.cn/17img/images/201811/uepic/24fec317-030b-49d0-bc45-13aafaa5aab8.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 测距应用DEMO演示 /strong /p p strong MANUFACTURING 制造展区 /strong /p p style=" text-align: center " strong img width=" 400" height=" 267" title=" MANUFACTURING 制造展位.jpg" style=" width: 400px height: 267px " alt=" MANUFACTURING 制造展位.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/18ca0868-0b79-4c22-b9e3-f3e8c7be6b65.jpg" border=" 0" vspace=" 0" / /strong /p p   制造业的发达程度代表了社会生产力水平的高低,工业制造也离不开光电器件、系统的辅助,可以说,光子技术开启了更先进制造业的通路。展区从X射线无损检测、激光加工、UV· EB加工、工业监控四个方面,展示了滨松光电技术对半导体制造的支持,以及一系列相关的产业应用。 /p p style=" text-align: center " img width=" 400" height=" 300" title=" 滨松光子技术对半导体制造的支持.jpg" style=" width: 400px height: 300px " alt=" 滨松光子技术对半导体制造的支持.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/e3ff67c1-f8c3-4c1c-9a3b-f19dc065f661.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 滨松光子技术对半导体制造的支持 /strong /p p style=" text-align: center " img width=" 400" height=" 300" title=" 可用于X射线行李检测的新型PDA(光电二极管阵列).jpg" style=" width: 400px height: 300px " alt=" 可用于X射线行李检测的新型PDA(光电二极管阵列).jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/2b41794c-f948-46c0-a939-a8d89043636b.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 可用于X射线行李检测的新型PDA(光电二极管阵列) /strong /p p style=" text-align: center " img width=" 400" height=" 300" title=" 在激光加工中所需的光调制技术(空间光调制器).jpg" style=" width: 400px height: 300px " alt=" 在激光加工中所需的光调制技术(空间光调制器).jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/842adb26-f034-428c-b871-0591e8106a30.jpg" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 在激光加工中所需的光调制技术(空间光调制器) /strong /p p   光可以做什么?2018滨松光子展以实际产品和应用的形式,令与会者感受到了光为人类带来的无限可能,不禁让人惊叹光子技术的强大“使能”。未来,以科研、汽车、制造、环境、生命科学为代表的多个领域,乃至更多应用场景都将出现光子技术的新成果、新方向。正如滨松不断探索人类未知未涉的企业理念所述,只有基础技术走在应用、产业、市场的前方,才有可能推动社会的不断进步。光子技术将如何影响人们生活的各方各面?又将为人类社会发展带来怎样的贡献?还让我们拭目以待! /p p /p p strong /strong /p
  • 滨松发布滨松MCP微通道板F14844新品
    滨松MCP微通道板F14844是栅网阳极结构,在MCP出口和阳极之间加入栅网阳极构成三极结构,该设计可以避免反馈的正离子返回MCP,从而实现控制噪声离子的走向,高气压1Pa下的暗电流始终和高真空时保持一致,更加贴合小型质谱仪器的需求。MCP有效面积: 14.5 mm dia,紧凑小巧。参数形状Circular结构Demountable TypeMCP级数2外观尺寸Dia.32 mmMCP有效面积Dia.14.5 mm真空法兰安装Not available快速时间响应No尺寸创新点:栅网阳极结构MCP产品在MCP出口和阳极之间加入栅网阳极构成三极结构,该设计可以避免反馈的正离子返回MCP,从而实现控制噪声离子的走向,高气压1Pa下的暗电流始终和高真空时保持一致,更加贴合小型质谱仪器的需求。 滨松MCP微通道板F14844
  • mRNA疫苗递送载体分析技术进展与应用-脂质纳米颗粒
    脂质纳米颗粒(Lipid nanoparticles, LNPs)是一种具有均匀脂质核心的脂质囊泡,因其高包封率和高转染效率等特点,广泛用于核酸等药物的递送,目前 Moderna、CureVac和BioNTech等mRNA 疫苗企业研发的预防新型冠状病毒肺炎(COVID-19)mRNA 疫苗均采用了LNPs递送技术。LNPs 是一种多组分脂质递送系统,通常包括阳离子/可电离脂质、中性磷脂(辅助性脂质)、胆固醇以及聚乙二醇化脂质(PEG-脂质),如图1所示。阳离子/可电离脂质是LNPs系统实现递送功能的关键,由于LNPs带正电,能够吸引带负电的mRNA,并结合在LNPs内部,可以避免被溶酶体降解,提高mRNA在体内的稳定性。LNPs的各种组分的准确含量和配比是脂质纳米颗粒的形成和稳定的重要影响因素,如磷脂和胆固醇能够稳定LNPs结构,聚乙二醇化脂质能够延长LNPs在生物体内的循环半衰期。因此,分析和监测LNPs制备过程的脂质载体是控制LNPs质量的关键,能够保证脂质纳米颗粒的形成并提高其稳定性。由于LNPs的主要四种组成组分的结构中不含明显的紫外吸收基团,在传统的紫外检测器上没有或具有较低的响应信号,因此高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)和拉曼光谱技术(Raman spectra)是LNPs研发和生产中常用的分析技术,本文对这两种常用的脂质纳米颗粒分析技术进行简要介绍。图1. mRNA脂质纳米颗粒示意图1. 高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)1.1 技术原理:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD)将高效液相色谱与蒸发光散射通用检测器联用,其中蒸发光散射检测器(evaporative light scattering detector,ELSD)是20世纪90年代出现的通用型检测器。其工作原理如图2所示,被分析对象经过色谱分离后,随流动相从色谱柱流出,流出液引入雾化器与通入的气体(常为高纯氮,也可是空气)混合后喷雾形成均匀的微小雾滴,经过加热的漂移管,蒸发除去流动相,被分析组分形成气溶胶,然后进入检测室,用强光或激光照射气溶胶,产生光散射,最后使用光电二极管检测散射光。图2. 蒸发散射检测器(ELSD)的部件及原理[3]1.2 技术特点:高效液相色谱-蒸发光散射联用技术(HPLC-ELSD),采用的蒸发光散射检测器能够检测不含发色团的化合物,非常适合紫外检测响应信号不佳的半挥发性及非挥发性化合物的分析,它对各种物质有几乎相同的响应,但其灵敏度通常较低,尤其对于有紫外吸收的组分其灵敏度较紫外检测器约低一个数量级,高效液相色谱-蒸发光散射联用技术较适用于氨基酸、脂肪酸、聚合物、脂质、生物载体以及无紫外吸收的辅料的分析。1.3 分析仪器:第一台ELSD是由澳大利亚的Union Carbide研究实验室的科学家开发,距今已经数十年。目前ELSD通常与液相色谱配套使用,主流液相色谱品牌均可配备。该类设备国内外均有生产,如国内的上海通微ELSD-UM5800Plus蒸发光散射检测器、美国安捷伦1260 II 蒸发光检测器、岛津ELSD-LT III 蒸发光检测器、沃特世2424 蒸发光检测器、美国奥泰(Alltech)蒸发光散射检测器ELSD 6100等。2. 拉曼光谱技术(Raman spectra)2.1 技术原理:拉曼光谱法研究化合物分子受光照射后所产生的非弹性散射-散射光与入射光能级差及化合物振动频率、转动频率间关系。拉曼光谱采用激光作为单色光源,将样品分子激发到某一虚态,随后受激分子弛豫跃迁到一个与基态不同的振动能级,此时,散射辐射的频率将与入射频率不同。这种“非弹性散射”光被称之为拉曼散射,频率之差即为拉曼位移(以 cm-1 单位),实际上等于激发光的波数减去散射辐射的波数,与基态和终态的振动能级差相当。频率不变的散射称为弹性散射,即瑞利散射:如果产生的拉曼散射频率低于入射频率,则称之为斯托克斯散射;反之,则称之为反斯托克斯散射。实际应用中几乎所有的拉曼分析均为测量斯托克斯散射。2.2 技术特点:拉曼光谱技术具有快速、准确、不破坏样品的特点,样品制备简单甚至不需样品制备。谱带信号通常处在可见或近红外光范围,这也意味着谱带信号可以从包封在任何对激光透明的介质(如玻璃、石英或塑料)中或将样品溶于水中获得。拉曼光谱能够单机、联机、现场或在线用于过程分析,可适用于远距离检测。现代拉曼光谱仪使用简单,分析速度快(几秒到几分钟),性能可靠。因此,拉曼光谱与其他分析技术联用比其他光谱联用技术从某种意义上说更加简便,适合对药用辅料,以及脂质纳米颗粒的形态和组成成分的分析[4]。2.3 分析仪器:拉曼光谱仪器在实验室台式/在线和现场便携/手持仪器两个方向上呈现了多元化的发展。实验室仪器追求更高性能,目前常用的实验室拉曼光谱仪主要包括国内卓立汉光Finder微区激光拉曼光谱仪、港东科技LRS-4S显微拉曼光谱仪、奥谱天成 ATR8300自对焦显微拉曼成像光谱仪、日本HORIBA LabRAM HR Evolution高分辨拉曼光谱仪 、LabRAM Soleil 高分辨超灵敏智能拉曼成像仪、英国雷尼绍(Renishaw)inVia Oontor显微拉曼光谱仪、赛默飞DXR 3xi 显微拉曼成像光谱仪等。便携式与手持式小型拉曼光谱仪致力于现场检测,在快速检测方面得到应用,如国内南京简智的SSR-5000便携式拉曼光谱仪、奥谱天成ATR6600手持式拉曼光谱仪、鉴知技术(同方威视) RT6000S手持拉曼光谱仪、美国必达泰克i-Raman Prime高通量便携拉曼光谱仪、美国海洋光学ACCUMAN (SR-510 Pro)便携拉曼光谱仪、美国赛默飞First Defender RM手持拉曼等。3 应用实例分享3.1 采用HPLC-ELSD技术定量7种脂质有研究人员基于HPLC-ELSD技术建立同时定量7种脂质类成分的分析方法[5],包括阳离子脂质CSL3和DODMA、胆固醇Chol、磷脂DSPC和DOPE、亲水性聚合物脂类PolyEtox和DSPE-PEG2000,这7种脂质在高效液相色谱的C18 色谱柱上能够实现良好分离,见图3。通过分析4种不同脂质成分(CSL3/Chol/DSPE-PEG2000/DSPC、CSL3/Chol/PolyEtOx/DSPC和CSL3/Chol/DSPE-PEG2000/DOPE)以及不同脂质比的LNPs配方,评估了HPLC- ELSD方法在脂质定量中的适用性,同时发现LNPs中各类脂质在透析纯化后等比例损失了约40 %,这提示纯化步骤后脂质定量的重要性,该方法可以用于优化LNPs的配方和最终质量控制。图3. HPLC-ELSD方法检测到的7种脂类混合标准溶液的色谱图[5]3.2 采用拉曼光谱技术研究脂质纳米颗粒骨架和空间排列脂质纳米颗粒(LNPs)表面电荷的极性和密度能够影响静脉内给药的免疫清除和细胞摄取,从而决定其递送到靶标的效率,有研究人员采用不同配比的带负电荷脂质的抗坏血酸棕榈酸酯(AsP)和磷脂酰胆碱(HSPC)制备了AsP-PC-LNPs。采用DXR拉曼显微镜在50-3500 cm的位移范围内测定AsP/HSPC不同配比(4%,8%和20% w/w)的拉曼光谱。其中在位移1101cm-1和1063 cm-1处峰的强度比(I1101/I1063)和 1101cm-1和1030 cm-1处峰的强度比(I1101/I1030)均表示脂肪链C-C骨架的紊乱程度。由图4和图5可知,当AsP/HSPC比值分别为4%和8%(w/w)时,与仅含HSPC组无显著差异,而当AsP/HSPC比值增加到20%(w/w)时,两组峰强度均比下降,即过量的AsP增强了AsP-PC水合物中的脂肪链排序。在拉曼位移717cm−1处是C-N 的伸缩振动,随着AsP/HSPC比值逐渐增加,超过8%(w/w)时717cm−1处拉曼位移略有红移。当AsP/HSPC比值继续增加到20%(w/w)时,717cm−1处拉曼位移略微蓝移,结果表明低比例的AsP(≤8%,w/w)使极性的HSPC排列略无序和松散,而过量的AsP使极性的HSPC排列有序,进一步验证了拉曼光谱是研究脂质纳米颗粒骨架和空间排列的有力手段。图4 具有不同AsP比例的AsP-PC-LNPs的拉曼光谱图5 不同AsP比例的AsP-PC-LNPs拉曼光谱I1101/I1063和I1101/I1030的强度比4.小结与展望LNPs在疫苗、核酸等基因治疗等生物技术药物研发方面发挥着重要作用,LNPs中各类脂质配方的组成和配比,影响着疫苗等生物技术药物的稳定性、有效性、安全性。因此选择合适的分析技术,建立可行的分析方法,确保疫苗等生物技术药物中LNPs载体质量与稳定性,具有重要意义。参考文献:[1] Verbeke R, Lentacker I, De Smedt S C, et al. Three decades of messenger RNA vaccine development[J]. Nano Today, 2019, 28: 100766.[2] Karam M, Daoud G. mRNA vaccines: Past, present, future[J]. Asian Journal of Pharmaceutical Sciences, 2022, 17(4): 32.[3] Magnusson L E,Risley D S, Koropchak J A. Aerosol-based detectors for liquid chromatography[J]. Journal of Chromatography A, 2015, 1421: 68-81.[4] Fan M, Andrade G F S, Brolo A G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry[J]. Analytica chimica acta, 2020, 1097: 1-29.[5] Mousli Y, Brachet M, Chain J L, et al. A rapid and quantitative reversed-phase HPLC-DAD/ELSD method for lipids involved in nanoparticle formulations[J]. Journal of pharmaceutical and biomedical analysis, 2022, 220: 115011.[6] Li L, Wang H, Ye J, Chen Y, et al. Mechanism Study on Nanoparticle Negative Surface Charge Modification by Ascorbyl Palmitate and Its Improvement of Tumor Targeting Ability[J]. Molecules. 2022 27(14):4408.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制