当前位置: 仪器信息网 > 行业主题 > >

油胺

仪器信息网油胺专题为您提供2024年最新油胺价格报价、厂家品牌的相关信息, 包括油胺参数、型号等,不管是国产,还是进口品牌的油胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合油胺相关的耗材配件、试剂标物,还有油胺相关的最新资讯、资料,以及油胺相关的解决方案。

油胺相关的论坛

  • 【讨论】如何测定苯胺中焦油

    我们实验室用热重(温度-质量变化曲线)测定苯胺中焦油的含量,但是苯胺易挥发,在称量时就挥发了许多,导致焦油含量不准确。本想有热重的内部天平称量样品,但是天平不易稳定。所以一直在探索更好的测定方法,不知道你们是如何测定苯胺中焦油的,请大侠指点

  • 【求助】有谁知道油溶苯胺黑

    有谁知道油溶苯胺黑,它里面的杂质,特别是氯离子含量怎么样!为什么油溶苯胺黑在水里浸泡后过滤得到的水颜色是蓝色!

  • 三氯丙醇就是酱油版的“三聚氰胺”吗?

    山西醋勾兑风波未完,酱油又被卷进来.近日,港媒曝出用水解植物蛋白等7种化合物可配制出可能致癌的"化学酱油",与酿造酱油从口味和质感都相差无几。  调味品协会负责人称,酿造酱油和配制酱油之分,不属于食品安全问题;而我们更想知道的,不是配制酱油是否属于食品安全问题,而是它安全不安全?7种化合物配制可产生致癌物,那它肯定不安全,既不安全,它不是食品安全问题,又是什么问题呢?  配制酱油的致癌风险,是因为人工配制过程中,大豆中所含的丙醇因酸水解而生成二类致癌物质三氯丙醇.北京一轻研究院研究员鲁绯表示,国家行业标准对三氯丙醇物质是规定有限量的,只要控制在限量范围内,就是安全的.专家的说法肯定是有科学依据的,我们应该相信科学,然而我们却无法相信生产者都能科学操作,也无法相信对国标执行的监管是百分之百负责任的.  限量范围内安全,它是一个放之四海而皆准的真理;三聚氰胺、瘦肉精,乃至砒霜,只要限量使用都应该安全,然而我们有没有能力控制这个"限量"却是个问题.美国等24个国家是允许饲料添加瘦肉精的,那是因为他们确信瘦肉精能够确保控制在标准内使用.而据说,我们国家严格禁止添加瘦肉精的主要原因,就是担心失控.滥用食品添加剂的问题空前严重,越来越没有底线的语境下,我们如何相信二类致癌物质三氯丙醇在配制酱油中会"限量使用"呢?而最令人不能接受的是:目前的酱油国标中并没有对三氯丙醇的限量规定,据说国家"正在考虑把对其限量写进去".难怪酱油协会人士瞪眼说"不属于食品安全问题".  终于明白:三氯丙醇,其实就是酱油里面的"三聚氰胺".二者都严重危害人体健康乃至夺命;三聚氰胺原来不也说无法检测吗,因为和现在酱油中的三氯丙醇一样,国家标准既没有限量一说,更没规定检测.  国家质检总局今年4月公布了对酱油的国家质量监督抽查结果,合格率在95.9%.然而所谓的"合格率95.9%"并不包括致癌物质三氯丙醇检测,就是说,不管酱油里含有多少致癌物,都可能被检测为"合格".而且,我们无法知道,各种食品中还有多少"三聚氰胺"和"三氯丙醇"逍遥于国家标准之外,非等到不幸被媒体曝料或业内人士良心发现,才会出现写进标准的"考虑"?然而,从揭地沟油教授、奶业协会人士被封口,以及醋业协会副会长被责令辞职的下场来看,今后再有人"良心曝料",可能要先作风险评估了.

  • 航空煤油燃烧性检测需要测试苯胺点的相关疑问?

    □PT-oil-2013-21 航空煤油燃烧性检测 □苯胺点;□萘系烃含量,这个能力验证项目谁做过,一般航煤苯胺点是多少摄氏度?做法是不是也是10ml航煤,10ml苯胺点(分析纯99.8%以上),谢谢~备注:标准是否是ASTM D611或ISO 2977或GB/T 262-2010?

  • 椰油酰胺丙基甜菜碱

    椰油酰胺丙基甜菜碱——两性离子表面活性剂由于两性表面活性剂具有良好的表面活性剂性能、低刺激性以及被称为解毒性的刺激缓和性能(A.L.L. Hunting, 1985 ; G. Panzer, 1980),故它们被广泛地应用于温和的无泪香波和敏感的皮肤清洁剂。然而,在过去几年中,由于对两性表面活性剂基本特性的不断关心,人们进行了深入的研究;其结果显示,除了固有的特性之外,两性表面活性剂有着更多的功能属性。罗地亚公司的研究结果显示,通常被看作是杂质的副产品在控制化妆品配方发泡性和流变性方面发挥着十分重要的作用。从而人们可以通过调整产品组分,提供特制的性能。

  • 聚丙烯酰胺在石油开采领域的应用

    [font=&][size=18px]聚丙烯酰胺是一类多功能的油田化学处理剂,广泛用于石油开采的钻井、固井、完井、修井、压裂、酸化、注水、堵水调剖、三次采油作业过程中, 特别是在钻井、堵水调剖和三次采油领域。聚丙烯酰胺水溶液具有较高的粘度, 有较好的增稠、絮凝和流变调节作用, 在石油开采中用作驱油剂和钻井泥浆调节剂。在石油开采的中后期, 为提高原油采收率,我国目前主要推广聚合物驱油和三元复合驱油技术。通过注入聚丙烯酰胺水溶液, 改善油水流速比,使采出物中原油含量提高。在三次采油中加入聚丙烯酰胺, 可增加驱油能力, 避免击穿油层, 提高油床开采收率。中国石油工业是聚丙烯酰胺的最大用户, 聚丙烯酰胺的科技进步促进了中国石油工业的发展, 石油工业的需求又加速了聚丙烯酰胺的科技创新步伐与行业的发展。[/size][/font]

  • 润滑油溶解能力和挥发性

    [color=#333333]溶解能力通常用苯胺点来表示。不同级别的油对复合添加剂的溶解极限苯胺点是不同的,低灰分油的极限值比过碱性油要大,单级油的极限值比多级油要大。[/color][color=#333333][/color][color=#333333]  挥发性[/color][color=#333333][/color][color=#333333]  基础油的挥发性对油耗、粘度稳定性、氧化安定性有关。这些性质对多级油和节能油尤其重要。[/color]

  • 中红外分析N-甲基苯胺,甲缩醛

    中红外分析N-甲基苯胺,甲缩醛

    单位是做汽油检测的,最近要上新项目做汽油中N-甲基苯胺,甲缩醛2种添加剂,用的是中红外,初步查到的信息是N-甲基苯胺,的定性是在红外谱图中有检出甲基胺的吸收峰,则判断N-甲基苯胺检出。没接触过红外,不知道怎么看红外谱图中甲基胺的特征吸收峰。附上一张N-甲基苯胺的红外图。希望有懂的 给点建议http://ng1.17img.cn/bbsfiles/images/2012/03/201203221523_356642_2052186_3.jpg

  • 椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定

    椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定

    [align=center][b]椰油酰胺丙基甜菜碱中一氯乙酸、二氯乙酸和羟基乙酸的测定[/b][/align] 椰油酰胺丙基甜菜碱(CAB)是一种两性表面活性剂,因其对眼睛和皮肤刺激性低,对头发和皮肤有护理效果并产生大量稳定泡沫,在肥皂和硬水中有出色的起泡性和洗涤性,故广泛用于香波和泡沫浴液等洗涤用品中。 在工业生产中,常使用一氯乙酸(MCA)作为原料生产CAB。而工业MCA中含有少量的二氯乙酸(DCA),DCA是生物学证实具有潜在致癌风险的物质,同时在生产过程中残留的MCA对皮肤、黏膜有很强的腐蚀性,通常采用水解法将MCA转化为刺激性更小的羟基乙酸(GCA)。椰油酰胺丙基甜菜碱产品的指标含量分析中,一般要求一氯乙酸<20ppm,二氯乙酸<300ppm,羟基乙酸<0.5%。[b]色谱条件:[/b]色谱柱:[b]Kromasil C8(4.6*250mm,5μm)[/b]柱 温:24℃检测器:紫外检测器波 长:200nm流动相:乙腈:水=10:90(每1000mL中加入2.0mL磷酸)流 速:1ml/min进样体积:20μL采集时间:10min[img=,690,219]https://ng1.17img.cn/bbsfiles/images/2018/10/201810291003374445_9066_2428063_3.png!w690x219.jpg[/img] 图1 :一氯乙酸、二氯乙酸和羟基乙酸混标色谱图[img=,690,328]https://ng1.17img.cn/bbsfiles/images/2018/10/201810291003547039_780_2428063_3.png!w690x328.jpg[/img] 图2 :椰油酰胺丙基甜菜碱样品色谱图[b]总结[/b]参考国标GB/T 28193-2011表面活性剂中氯乙酸(盐)残留量的测定方法,建立高效液相色谱法,一次性测定样品中一氯乙酸、二氯乙酸和羟基乙酸的含量。其优点是以高比例水相作为流动相,样品不需要进行萃取、酯化等前处理,操作方便,快速高效。使用Kromasil C8色谱柱分离样品中一氯乙酸与其余组分,效率高,分离度好,结果可靠,可为椰油酰胺丙基甜菜碱生产厂家提高产品质量提供参考。[b]注:由深圳爱湾医学检验实验室验证 [/b]

  • 玛咖酰胺,玛咖烯,玛咖总芥子油苷等玛咖生物活性成分含量分析检测

    98% 储存温度:0℃~8℃ 同时,玛咖科研团队经过长期科研积累,根据玛咖产业发展面向全国开展各项技术服务: http://i05.c.aliimg.com/img/ibank/2014/404/045/1641540404_1639412196.jpg?__r__=1409631792515 玛咖研发技术服务: 玛咖研究中心引领我国玛咖产业发展——玛咖核心技术研究——玛咖良种培育——玛咖标准化种植——采收及深加工——玛咖新型健康产品开发和推广。 核心技术:玛咖良种培育——玛咖标准化种植——玛咖中生物活性成分含量检测分析——玛咖中活性成分浓缩提取制备技术——玛咖生理活性物质作用机理研究——玛咖深加工过程中生物活性成分稳定性研究等。 http://i03.c.aliimg.com/img/ibank/2014/683/551/1659155386_1639412196.jpg?__r__=1409632084109 开展多项技术服务: 玛咖研究中心实现了玛咖中生物活性成分物质,如:玛咖酰胺、玛咖烯、玛咖咪唑生物碱、玛咖苄基芥子油苷、异硫氰酸苄酯类物质等玛咖特征活性物质的结构解析、含量测定、制备技术。 样品品质检测分析: 玛咖生物活性成分:1 玛咖酰胺;2 玛咖烯;3 总芥子油苷;4 挥发油(主要检测异硫氰酸苄酯类物质等);5 玛咖咪唑生物碱;6 甾醇 7 皂苷等 玛咖基础营养成分:1 蛋白质;2 氨基酸(氨基酸总量及水解17种氨基酸比例);3 膳食纤维

  • 【原创大赛】橡胶油理化性能指标对橡胶油及橡胶制品性能的影响

    【原创大赛】橡胶油理化性能指标对橡胶油及橡胶制品性能的影响

    [align=center][b]橡胶油理化性能指标对橡胶油及橡胶制品性能的影响[/b][/align][align=center]董彩玉,李淑娟,苍飞飞[/align][align=center](北京橡胶工业研究设计院,北京 100143)[/align][b]摘要:[/b]橡胶油是橡胶行业中的重要原材料之一,橡胶油用量呈现逐年递增的趋势。了解必要的性能指标对橡胶油及橡胶制品性能的影响至关重要。本文对橡胶用油品的参数对其质量评价的影响做简要总结。[b]关键词:[/b]橡胶油;检测指标;检测方法;橡胶性能 橡胶油是一种工业润滑油,是生橡胶充油、不溶性硫磺充油和橡胶制品加工过程中的重要助剂。在橡胶制品生产配方中加入橡胶油可以改善橡胶的弹性、柔韧性、易加工性、易混炼性等特性。随着橡胶工业的高速发展,作为橡胶加工中仅次于生胶、炭黑的第三大原材料,橡胶油用量也呈现逐年递增的趋势。为达到填充油或者作为配合剂(加工用油)质量控制的目的,了解理化性能对橡胶油及橡胶制品性能的影响十分必要。 橡胶油是链烷烃、环烷烃和芳香烃的化合物或混合物,每种组分所占比例不同体现出的油品各方面性能也会有差异。所测参数可体现油品的相对组分和性能,用户可以根据测试结果选择所需性能的油品。物理化学性质不同的橡胶油对硫化胶具有不同的影响。下面就橡胶用油品的参数对其质量评价的影响做简单介绍。1极性化合物 石油产品中的极性物质非常重要。这些所谓的极性化合物通常是含有氧、硫、氮的杂环有机化合物,如图1所示。由于这些极性物质的化学特性,可能会与橡胶产品配方中的部分配合剂在加工成型过程中发生反应,也可能在加工成型过程中发生分解,进而影响胶料的硫化特性,导致橡胶产品质量的不稳定。因此去除油品中的硫、氮等元素已经成为石油产品提炼过程中必不可少的环节。[img=,476,138]http://ng1.17img.cn/bbsfiles/images/2017/09/201709011435_01_2984502_3.jpg[/img]2沥青质 沥青质物质为橡胶油的杂质,是石油产品中比较重的组分,外形为固体无定形物,黑色,相对密度略大于1。通常是作为正戊烷的不溶物来测量的。如果油品中含有大量的沥青质,将会导致硫化胶在加工过程中生热较大,自身的滞后损失增大,而且含有的大量多环芳烃物质会对环境造成一定污染,因此橡胶用油品要尽量去除沥青质等重质组分。3蜡含量 蜡对于橡胶油来说也是一项重要参数。石油蜡分子与其它油分子近似,但主要以正构烷烃为主,还含有少量的异构烷烃、环烷烃和微量的芳香烃。由于分子结构中存在规整的烷烃链段,因此油品中的蜡可以在特定温度下结晶,尤其是在较低温度下蜡会由于结晶而析出胶料,与胶料的相容性变差,并且可能导致胶料喷霜。4粘重常数(VGC)芳香度可通过粘重常数(VGC)来体现,一般来说,芳香烃含量与粘重常数成正比,橡胶油精练程度与粘重常数成反比。即VGC越高,芳香度越大,说明分子结构中的芳香烃含量越高,与丁苯橡胶等的相容性更好,但可能会使橡胶产品对环境产生污染。5 碳型分布碳型分布(又称碳型分析,碳型结构或碳型组成)用于描述橡胶油中链烷烃碳数,环烷烃碳数,芳香烷烃碳数占总碳数的比例。通过测定C[sub]N[/sub]、C[sub]A[/sub]、C[sub]P[/sub]的含量从结构上确认了油品的组分。所有橡胶油均含有上述三种结构,只是不同油中这三种结构的比例不同而已,比例的不同直接影响到油品的理化性能和橡胶产品的物理性能。6平均分子量平均分子量是油品的一个重要性质。由于油品是由许多烃类组成的复杂混合物,故其分子量称为平均分子量。当考察油在胶料中的填充效果时,该性质也是考虑的一项重要因素。油品的平均分子量可由实验得到,可通过查图表得到,也可通过有关的经验公式求得。其中油品的粘度经常用作为测试平均分子量的传统方法。具有相同化学结构的油品,平均分子量越大,粘度也就越高,芳香烃含量也就越多。油品的粘度影响胶料的加工特性。此外,高粘度赋予硫化胶优异的耐久性和耐老化性。7 粘度 影响油品粘度的因素主要有油品的化学组成、相对分子量、温度和压力等。粘度是与流体性质有关的物性参数,它反应了液体内部分子间的摩擦力,上述这几个因素中温度和压力是测试时可人为控制的实验条件,所以在相同的实验条件下,粘度与化学组成及分子量具有密切的关系,从测试数据也可大致推断油品中各组分的相对含量,通常,当碳原子数相同时,油品中各种烃类的粘度依次由小到大为正构烷烃异构烷烃芳香烃环烷烃,且环数增多,粘度增大。也就是说粘度随环数的增加、异构程度的加大和环上碳原子在油品分子中所占的比例的增加而增大。表现在不同原油的相同馏分中,含环状烃多的油品比含烷烃多的油品具有更高的粘度。同系烃中相对分子质量越大,分子间引力增加,粘度越大。因此,石油馏分越重,粘度明显增大。粘度测试需要指出测试的温度和使用的方法。橡胶油粘度是衡量油和聚合物之间粘度是否适应的一个大致标准,同时也用以反映油品的流动特性。橡胶油粘度越高,则油液越粘稠,粘度既影响胶料的塑性等加工性能又影响硫化胶的物理机械性能,使用低粘度橡胶油,润滑作用好,能使硫化胶具有较低的硬度和低温弹性,耐寒性提高,但挥发损失大;使用高粘度的芳烃油能提高硫化胶的拉伸强度、拉断伸长率,降低定伸应力,但耐寒性和弹性降低。油品粘度的大幅度变化将会影响胶料的粘弹特性。8苯胺点 如前所述,苯胺点指将等体积的苯胺与油混合后相互溶解为均一溶液的最低温度。相似相溶,温度越高溶解越快。苯胺点的高低取决于烃类的结构和油品的化学组成。极性大的烃类与苯胺的分子结构相似,在苯胺中的溶解度就大,故苯胺点就低。当碳原子数相等时,苯胺点的高低顺序为:芳烃烯烃环烷烃烷烃,烯烃和环烷烃的苯胺点较相对分子质量与其接近的环烷烃稍低,多环环烷烃的苯胺点远较相应的单环环烷烃为低;对同族烃类,其苯胺点均随相对分子质量和沸点的增加而增高。苯胺点作为橡胶油的重要指标,其高低可以大致反映油品的极性大小及油品的组成,可以简单地说明芳烃含量。苯胺点高,芳烃含量小,与橡胶相容性不好,反之,苯胺点越低表示芳烃含量越高,与橡胶相容性越好,加工工艺性能越好。一般来说,橡胶油苯胺点在35~115℃范围内比较合适。9低温流动性 倾点指石油产品在规定的实验仪器和条件下冷却到液体不移动后缓慢升温到开始流动时的最低温度。凝点是指石油产品在规定的实验仪器和条件下冷却到液面不移动时的最高温度。一般情况下,同一油品的倾点比凝点略高几度,两个指标均用于表示橡胶油的低温流动性,过去我国常用凝点,现在国际通用倾点。倾点或凝点偏高,油品的低温流动性就差。此特性可以表示对橡胶产品操作工艺温度的适用性。环烷油的倾点和凝点最低,低温性能最好。高倾点油品将会影响胶料的低温性能和动态性能。选用倾点和凝点较低的橡胶油,能提高胶料的耐寒性和耐低温物理性能。10酸碱性 橡胶油中任何酸性或碱性的组分存在都将会影响胶料的硫化特性。尤其是油品中的酸性物质会对传统的硫磺硫化体系造成影响,因为该体系的促进剂大部分为含氮物质为碱性物质,酸性组分的存在会中和碱性促进剂,从而明显延迟橡胶材料的硫化速度。11 密度 密度是石油及其产品最基本的物理性质。油品的密度取决于组成它的烃类的相对分子量和分子结构,温度对密度也有影响。当碳原子数相同时,烃类的密度由小到大分别为烷烃环烷烃芳香烃,正构烷烃异构烷烃。同种烃类,密度随沸点升高而增大,当沸点范围相同时,含芳烃越多,其密度越大;含烷烃越多,其密度越小。一般含正构烷烃多的原油其密度较小,而含硫、氮、氧等有机化合物及胶质、沥青质较多的原油密度较大。密度不仅能直接表征油品的特性,还可以间接推算其它物理性能。密度测试时需要指出测试温度,结果才有参考价值。 当橡胶产品按重量出售时橡胶加工油的相对密度就十分重要。通常情况下,芳烃油相对密度大于烷烃油和环烷烃油的相对密度。芳烃油密度大约在1g/cm[sup]3[/sup]。12光稳定性和热稳定性 橡胶制品生产厂通常比较注重橡胶油的光稳定性。尤其在紫外光照射下橡胶产品会发生黄变,交联,硬化变质等转变。橡胶油对光的敏感以芳烃含量来衡量。一般选定波长260nm测定紫外吸光度,此波长为芳香环的特征吸收波长。吸光度0.5,橡胶油的颜色稳定性较好。热稳定性也是橡胶企业关心的一个指标,因为温度升高会使氧化反应的速率增大,尤其橡胶在高温加工时,由于分子降解而使胶料的性能下降。13闪点、燃点和自燃点 油品的闪点与其蒸气压有关,亦与其馏分组成有关,油品的沸点越高、馏分越重、相对分子质量越大,其闪点越高。反之,油品的沸点越低,馏分越轻,相对分子质量越小,越易挥发,其闪点和燃点越低。油品闪点和燃点的高低取决于低沸点烃类含量,烷烃的闪点比对应的烯烃要高。油品闪点的高低取决于油品中沸点最低的那部分烃类含量。当有极少量轻油混入到高沸点油品中时,就能引起闪点显著降低。通常情况下,烷烃比芳烃容易氧化,故含烷烃多的油品自燃点比较低,但其闪点却比粘度相同而含环烷烃和芳烃较多的油品高。在同类烃中,随相对分子质量增大,自燃点较低,而闪点和燃点增高。在同类烃中,随相对分子质量增大,自燃点降低,而闪点和燃点增高。对碳原子数相同的烃类,自燃点的顺序为:烷烃环烷烃,烯烃芳烃;闪点、燃点的顺序正好相反。闪点是橡胶油不可缺少的一个重要指标,同时也可衡量橡胶油的挥发性的大小。橡胶油的闪点与橡胶配炼、加工、硫化、贮存及预防火灾有直接的关系,是安全管理的重要参数。国家标准是低于63℃就是即为危险品,一般质量好的芳烃油闪点应该在200℃左右。14硫含量 油品中含有元素硫及硫化物,硫化物通常包括硫化氢、硫醇、硫醚、二硫化物、噻吩等。其中硫醇、硫醚等多含于轻质油品中。而复杂的缩合物通常多含于重质油品中。硫及硫化物油品中的存在不仅对石油炼制有危害,也会严重影响油品的质量及其应用。含硫物质通常具有特殊的异味,尤其是硫醇具有强烈的恶臭味,油品中的硫含量若超出规定的允许范围,不仅会影响人们的感官性能,还会严重制约油品的安定性,加速油品氧化、变质的进程,甚至导致储油容器及使用设备的腐蚀。橡胶油中的硫含量会对橡胶材料的硫化体系造成影响,进而影响橡胶产品的物理使用性能。一般用户要求橡胶油含硫量低。15 杂质含量 橡胶用油品中的杂质主要用水分和灰分两项指标来衡量。由于橡胶加工油的用量比较大,水分含量较大时,在胶料的混炼和硫化过程中会以蒸汽的形式释放出,且会对分散性产生影响,加工成型后橡胶产品可能会产生气孔等质量问题。 灰分主要是油品燃烧后的高温灼烧产物,一般为金属氧化物,这些杂质来源于提炼、生产、后处理以及运输等环节混入的金属类杂质,部分金属杂质会影响橡胶材料的硫化性能和物理性能,使橡胶材料的耐老化性能变差,也会危害橡胶产品的色泽,因此尽量减少该类杂质的污染。如灰分中的五氧化二钒(V[sub]2[/sub]O[sub]5[/sub])熔点较低,粘附在金属表面上发生高温腐蚀性磨损,尤其在钠存在下,生成低熔点的钒钠混合氧化物,增加腐蚀作用。16折光率 作为液体物质纯度的标准,折光率比沸点更为可靠。利用折光率,可以鉴定未知化合物,也用于确定液体混合物的组成。在对橡胶油的研究中,人们发现橡胶油的分子结构不同,它们的折射率大小也不同。通常情况下,折光率与橡胶油结构组成之间的关系是:烷烃类折光率最小,芳香烃类折光率最大,而环烷烃类则介于两者之间。同时,橡胶油的折光率还与该油的相对分子质量有关,相对分子质量越大,折光率越大。如同样是石蜡基橡胶油,小相对分子质量的折光率小于大相对分子质量的折光率。所以,对于不同类型的橡胶油,只有在它们的相对分子质量大致相近的情况下,相互之间比较才有意义。相对分子质量越大,折光率越大。17挥发性油品中的一些物质分子量过低,在储存、胶料加工及橡胶产品的使用过程中都可能会挥发,挥发物会导致所添加油品质量与原配方设计质量不符,影响油品的增塑效果。另一方面一些油品中含有过量的低分子量物质,这些低分子物质与胶料的高分子链相容性较差,在加工过程中更容易析出,从而降低硫化胶的耐老化性。在成型之后的橡胶产品使用过程中,随着老化的发生,这些过量的低分子量物质将会导致老化后的橡胶产品硬度增加或降低,缩短产品的寿命。18 其它此外,橡胶油的外观颜色等特性也都能反映其组成情况,对橡胶产品产生一定的影响。如颜色深不能用于浅色橡胶产品等。[b]结语[/b]受学术水平、测试经验和时间的限制,且篇幅有限,本文不足之处在所难免,本文的目的在于方便与同行共同交流学习及测试心得,肯请各位同行专家能够及时提出宝贵经验、意见及建议。[align=center][/align]

  • 如何测定乳品中的双氰胺

    新西兰奶粉事件继续发酵,各方权威人士纷纷声明双氰胺毒性小于三聚氰胺,但不排除对儿童有影响。而目前国内和国际上还没有相关的限量标准和检测方法,仅有欧盟规定了每天双氰胺的日摄入限量。据文献查询,目前对食品中双氰胺的检测主要有高效液相色谱法、液质法和分光光度法,不知道各位板油有没有做过相关的检测?还有没有其他的检测方法?欢迎大家积极发言。

  • 【求助】咪鲜胺微乳剂等的标准

    咪鲜胺微乳剂噻嗪酮乳油吡虫啉悬浮剂多杀霉素乳油抗蚜威可湿性粉剂氟铃脲乳油苯丁锡可湿性粉剂丙溴磷。氯乳油苯醚甲环唑。甲硫可湿性粉剂氟啶脲乳油异丙威可湿性粉剂噻嗪酮可湿性粉剂上面的这些标准,有知道的可以发给我看看吗,谢谢啊!

  • 伯胺的检测方法

    在一般的棕榈油中含有百分之一以下的伯胺产品,有没有好的方法进行鉴别和定量

  • 石油苯胺点

    苯胺与试油混合后所测得的临界溶解温度,称为苯胺点,单位℃。苯胺点是有机化合物的混合物的特性参数之一,具有可加性,如:A、ρ、vt都是具有可加性的指标。苯胺点是衡量轻质石油产品溶解性能的指标。在石油工业中常用苯胺作溶剂,测定石油化工产品或某些烃类在苯胺中的溶解度,当苯胺与试油在较低温度(室温)下混合时分为两层,加热后,试油在苯胺中的溶解度增大,继续加热至两相刚好达到完全互溶,这时界面消失,此时混合液的温度即为苯胺点(也称为临界溶解温度)。由于组成油品的各种烃类的极性是不同的,按相似相溶理论,各种烃类在苯胺中的溶解度是不同的。烃类分子的结构(极性)与苯胺分子结构(极性)越相似,这种烃类在苯胺中的溶解度就越大,苯胺点越低,换句话说,烃类分子结构与苯胺分子结构越相似,溶解(互溶,达临界溶解温度)所需温度越低,苯胺点越低。相反,烃类分子结构与苯胺分子结构越不相似,溶解所需温度越高,苯胺点越高。对于不同的油品来说,由于组成不同,它的苯胺点是不同的,即使两个沸程范围相同的油品,但来自不同原油,苯胺点也会不同。经研究表明,这主要与油品的化学组成有关。除此之外,还与剂油比和苯胺纯度以及操作条件有关。

  • 地沟油盲样考试记

    地沟油检测是“世界级难题”、是对检测人员的挑战,有人甚至说地沟油让搞检测的人无地自容,国家象上次三聚氰胺一样再一次向社会征集方法。本人搞了这么多年检测,试探性的开展的地沟油检测技术摸索,随便写了一下方法,去年年底应征了,据说报名的方法有700多种。国家进行了几轮筛选,很荣幸进入盲样考试阶段。 星期一先到北京汇报方法,然后拿了近40份油样,天哪,外观上这些那里是地沟油,与正常油有什么区别,完全没有。有些一点颜色、气味都没有了,主持人还说盲样也许是按照一点比例进行稀释的,下面的人都说假如水与水掺能区别吗? 回到单位,按照前期准备的方法,组织了几个人连夜检测,40份样品累死人了,地沟油由于没有确定指标,大海捞针,每个样品进样后检测50min,多个方法多个指标进行确定。有几个油样,什么东西都没有了,你说这是油样吗?和我们小时候吃的油完全不一样,只能看看有没有异样的东东了,忙了3天终于确定了22个地沟油阳性样品,上午写好盖章上报国家。 检测后,本人打心底里佩服搞地沟油精炼的专家!

  • 食品中N-亚硝胺的测定

    最近在做亚硝胺,前处理参考了国标法,参考了很多文献。乙腈提取和二氯甲烷提取都做了,油很多,回收率特别特别不好。跪求亚硝胺的前处理方法。

  • 石油苯胺点

    苯胺与试油混合后所测得的临界溶解温度,称为苯胺点,单位℃。苯胺点是有机化合物的混合物的特性参数之一,具有可加性,如:A、ρ、vt都是具有可加性的指标。苯胺点是衡量轻质石油产品溶解性能的指标。在石油工业中常用苯胺作溶剂,测定石油化工产品或某些烃类在苯胺中的溶解度,当苯胺与试油在较低温度(室温)下混合时分为两层,加热后,试油在苯胺中的溶解度增大,继续加热至两相刚好达到完全互溶,这时界面消失,此时混合液的温度即为苯胺点(也称为临界溶解温度)。由于组成油品的各种烃类的极性是不同的,按相似相溶理论,各种烃类在苯胺中的溶解度是不同的。烃类分子的结构(极性)与苯胺分子结构(极性)越相似,这种烃类在苯胺中的溶解度就越大,苯胺点越低,换句话说,烃类分子结构与苯胺分子结构越相似,溶解(互溶,达临界溶解温度)所需温度越低,苯胺点越低。相反,烃类分子结构与苯胺分子结构越不相似,溶解所需温度越高,苯胺点越高。对于不同的油品来说,由于组成不同,它的苯胺点是不同的,即使两个沸程范围相同的油品,但来自不同原油,苯胺点也会不同。经研究表明,这主要与油品的化学组成有关。除此之外,还与剂油比和苯胺纯度以及操作条件有关。

  • 【资料】矿物绝缘油中糠醛含量测定方法

    矿物绝缘油中糠醛含量测定方法 DL/T 702—1999 Determination of furfural content in mineralinsulating oil by spectrophotometric method 1 范围 本标准规定了矿物绝缘油中糠醛含量的测定方法,适用于运行中矿物绝缘油的糠醛含量的检测。2 引用标准下列标准所包括的条文,通过在本标准中引用而构成为本标准的条文,本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方法应探讨使用下列标准最新版本的可能性。GB/T6683—1997 石油产品试验方法 精密度数据确定法GB 7597—87 电力用油 (变压器油、汽轮机油) 取样方法IP 297—1980 石油产品中的糠醛测定方法(英国石油协会标准)3 方法概要本方法采用水为萃取剂萃取油中的糠醛,以醋酸苯胺作显色剂,采用分光光度法对绝缘油中糠醛进行测定。测定范围为0.1mg/L~4mg/L。4 样品采集油样采集按GB 7597的有关规定进行,采样宜用250mL具塞棕色玻璃瓶,油样应充满至容器体积的95%左右。油样采集后不宜超过7d。5 仪器、设备和药品5.1 仪器5.1.1 分光光度计:721型或其它型号可见光分光光度计5.1.2 全玻璃蒸馏装置(见附录A)5.2 药品5.2.1 苯胺(分析纯)。5.2.2 糠醛(分析纯)。5.2.3 冰醋酸(分析纯)。5.2.4 脱脂棉。6 准备工作6.1 全玻璃蒸馏装置应洗净、烘干待用。6.2 测试前重新蒸馏糠醛、苯胺,蒸馏前应加入适量沸石以防爆沸(对油样进行蒸馏时亦应加入沸石)。蒸馏时,前10mL和后10mL遗弃,收取中间馏分待用。6.3 显色剂的配制显色剂的配制比例按冰醋酸∶苯胺=9∶1配制(体积比)。由于二者混合时要放出热量,在配制时应将新蒸馏的苯胺徐徐加入冰醋酸中,边加边搅拌,应使混合液温度低于20℃。配制的醋酸苯胺在常温下只能保存8h,在5℃~8℃时可保存3d。如发现颜色变黄,应重新配制。6.4 标准储备液的配制取新蒸馏的糠醛(淡黄色)1g左右(称准至0.0002g)置于1L棕色容量瓶中,用蒸馏水稀释至1L,摇匀即为糠醛标准水样储备液,置于避光处放置2d后备用。7 试验步骤7.1 绘制工作曲线取上述标准水样储备液1.00mL于1L棕色容量瓶中,用蒸馏水稀至刻度,摇匀,即为糠醛标准工作液,按表1配制标准色阶,同时记录制作工作曲线时的温度(表1以工作液的浓度为1.159mg/L为例)。表 1 油中糠醛含量工作曲线序 号 1 2 3 4 5 工作液取样量mL 1 3 5 7 10 糠醛含量µ g 1×1.159 3×1.159 5×1.159 7×1.159 10×1.159 最大吸光度A 0.079 0.080 0.165 0.235 0.336 试验温度:22℃ 按表1的数据分别取糠醛的标准工作液于25mL比色管内,在第一支比色管内加入10mL显色剂,加蒸馏水至刻度,摇匀,用30mm比色皿,在波长520nm处,以蒸馏水做参比液,测定溶液的最大吸光度。用同样的操作方法在第二支比色管内加入10mL显色剂,读取最大吸光度。照此方法分别读取其余标准工作液显色后的最大吸光度,并通过回归分析求出糠醛含量与最大吸光度的关系式,相关系数不得低于0.995,否则须重做。同时绘制糠醛含量—最大吸光度图。7.2 油样的测定取待测油样100mL于500mL烧瓶中,加55mL蒸馏水,装冷凝管进行蒸馏萃取。馏出液经滤纸和脱脂棉过滤,以滤去蒸馏带出的油组份。当馏出液至45mL时停止蒸馏(如馏出液未到45mL时油样开始剧烈爆沸,应停止加热。馏出液体积以实际馏出液体积为准),蒸馏液再过滤一遍,滤液待用。取10mL上述滤液(如糠醛含量过高,可减少取样量)于25mL比色管中,加入10mL显色剂,并加蒸馏水至刻度,摇匀,转移到30mm比色皿内,于520nm处进行比色。记录最大吸光度值,并由标准曲线得出25mL比色液中糠醛含量。7.3 结果计算P=aV/75V2式中: P——油样中糠醛含量,mg/L;a——25mL比色液中含糠醛的量,µ g; V——萃取液体积,mL;V1——萃取液取样量,mL;75——油样萃取率为75%。8 试验要求8.1 苯胺与糠醛的显色反应受温度影响较大,测试时室内温度波动不宜超过2℃,当条件变化时,应重做工作曲线。8.2 糠醛标准水样如果浓度高,在1000mg/L以上,则15d内吸光度无显著变化。对蒸馏萃取液,特别是低含量的油样萃取液,建议放置时间不超过3h。8.3 显色剂与水样混合后应充分振荡,使之完全混合。8.4 由于蒸馏过程中,油中轻组分会带入蒸馏液中而影响以后的比色效果,故应将馏出液通过滤纸、脱脂棉过滤,以确保滤液清彻透明。8.5 糠醛在水中溶解较慢,因此配制糠醛标准水样时,应充分振荡并于避光处放置2d,以保证混合均匀。8.6 室温较高时,配制醋酸苯胺应浸在冰浴中进行。8.7 被测油样中糠醛含量应小于4mg/L,如油样中糠醛浓度过高,则应用新油稀释后再萃取。9 精密度9.1 两次平行测试结果的差值不得超过下列数值:样品含糠醛范围 mg/L 允许差 mg/L0.82以下 0.110.82~3.8 0.369.2 取两次平行试验结果的算术平均值为测定值。附录A(提示的附录)蒸馏装置示意图1—500mL平底烧瓶;2—三通;3—温度计套管;4—温度计;5—直形水冷凝管(长330mm);6—漏斗;7—量杯图 A 蒸馏装置示意图

  • 【讨论】聚焦三聚氰胺污染,三聚氰胺为何致结石!!

    三聚氰胺作为化工原料主要用于生成三聚氰胺- 甲醛树脂,同时还广泛用于涂料、塑料、黏合剂、纺织、造纸等工业生产中。2007 年3 月中旬以来,美国发生多起猫、狗等宠物中毒死亡事件,原因是作为宠物食品原料的麦麸和大米浓缩蛋白中污染了三聚氰胺。  1 三聚氰胺的理化性质  三聚氰胺(Melamine),又名蜜胺,氰尿三酰胺。分子式C3H6N6,分子量126.15,无色至白色晶体,不可燃。少量溶于水、乙二醇、甘油及吡啶,微溶于乙醇,不溶于乙醚、苯、四氯化碳。密度(16 ℃时)1.573 g/cm3,熔点354 ℃(分解)[1]。受热或燃烧时,分解生成含氢化氰、氮氧化物和氨等有毒和刺激性烟雾。聚氰胺属于低毒急性毒类。三聚氰胺有3 种同系物,分别为三聚氰酸(cyanuricacid)、三聚氰酸一酰胺(ammelide)和三聚氰酸二酰胺(ammeline)。  氰酸[7]。  目前认为三聚氰胺中毒的机制是肾衰。虽然在肾脏和膀胱中都发现了结晶,但现在仍不清楚在三聚氰胺摄入之后肾衰竭的发生和肾脏的结晶作用之间是否有直接的联系。Cornell 大学的Smith 拍摄了结晶的电子显微镜照片,并在实验室进行三聚氰胺和三聚氰酸的混合实验,重现这种结晶的形成。  6 三聚氰胺的检测方法  工业上测定三聚氰胺的纯度通常采用苦味酸法和升华法。这两种测定方法准确度较高,但操作繁琐,分析时间较长。另有报道,采用电位滴定法更简便,准确度与前两种方法相当[10]。辜雪英等(2007 年)建立了饲料中三聚氰胺残留量的高效液相色谱分析方法,认为此法的样品预处理简单,精密度和回收率完全符合残留分析要求,干扰小,分离速度快,适合食品中三聚氰胺的快速筛选[11]。

  • 配制硫代乙酰胺试液加这个有什么用?

    硫代乙酰胺试液 取硫代乙酰胺4g,加水使溶解成100ml,置冰箱中保存。临用前取混合液(由1mol/L氢氧化钠溶液15ml、水5.0ml及甘油20ml组成)5.0ml,加上述硫代乙酰胺溶液1.0ml,置水浴上加热20秒钟,冷却,立即使用。【取混合液(由1mol/L氢氧化钠溶液15ml、水5.0ml及甘油20ml组成)5.0ml】这个是什么原理?如何解释?

  • 【资料】食品中甲胺磷和乙酰甲胺磷农药残留量的测定方法

    食品中甲胺磷和乙酰甲胺磷农药残留量的测定方法1.适用范围本方法适用于谷物、蔬菜和植物油中甲胺磷和乙酰甲胺磷的残留量分析,其最小检出限分别为7.79×10-12g和1.79×10-11g。2.原理概要含有机磷的样品在富氢焰上燃烧,以HPO碎片的形式,放射出波长526nm的特征光,这种特征光通过滤光片选择后,由光电倍增管接收,转换成电信号,经微电流放大器放大后,被记录下来,样品的峰高与标准品的峰高相比,计算出样品相当的含量。3.主要试剂和仪器3.1.主要试剂丙酮;二氯甲烷:重蒸;无水硫酸钠;活性炭:用3mol/L盐酸浸泡过夜,抽滤,用水洗至中性,在120℃下烘干备用;甲胺磷(methamidophos):≥99%;乙酰甲胺磷(acephate):≥99%;甲胺磷和乙酰甲胺磷标准溶液的配制:分别准确称取甲胺磷和乙酰甲胺磷的标准品,用丙酮分别制成0.1mg/mL的标准储备液。使用时用丙酮稀释配制成单一品种的标准使用液(1mg/mL)和混合标准工作液(每个品种浓度为1mg/mL)。贮藏于冰箱中。3.2.仪器气相色谱仪:具有火焰光度检测器;电动振荡器;K-D浓缩器或旋转蒸发器;离心机。4.试样的制备取谷物实验样品经粉碎机粉碎,过20目筛后,制成谷物试样。取蔬菜实验样品洗净,晾干,去掉非食部分后剁碎或经组织捣碎机捣碎,制成蔬菜试样。5.过程简述5.1.提取和净化蔬菜:称取蔬菜试样10g,精确至0.001g,用无水硫酸钠(因蔬菜含水量不同而加入量不同,约50~80g)研磨呈干粉状,倒入具塞锥形瓶中,加入0.2~0.4g活性炭(根据蔬菜色素含量)及80mL丙酮,振摇0.5h,抽滤,滤液浓缩定容至5mL,待气相色谱分析。谷物:称取谷物试样10g,精确至0.001g,置于具塞锥形瓶中,加入40mL丙酮,振摇1h,抽滤,浓缩,定容至5mL,待气相色谱分析。小麦:称取小麦试样10g,精确至0.001g,置于具塞锥形瓶中,加入0.2g活性炭及40mL丙酮,振摇1h,抽滤,浓缩,定容至5mL,待气相色谱分析。植物油:称取植物油试样5g,用45mL丙酮分次洗入50mL的离心管内,加入5mL水,混匀,在3 000r/min下离心5min,吸取上清液,下面油层再加10mL水和10mL丙酮,离心5min,吸取上清液,合并两次上清液,用K-D浓缩器浓缩近干,残渣和水加入40g无水硫酸钠,研磨呈干粉状,倒入具塞锥形瓶中,加入0.3g活性炭、60mL二氯甲烷,振荡0.5h,抽滤,定容至5mL,待气相色谱分析。5.2.色谱条件色谱柱:玻璃柱,内径3mm,长0.5m,内装2%dEGS/Chromosorb W AWdMCS,80~100mesh。气流:载气,氮气70mL/min,空气0.7kg/cm2,氢气1.2kg/cm2。温度:进样口200℃,柱温180℃。5.3.测定定性:以甲胺磷和乙酰甲胺磷农药标样的保留时间定性。定量:用外标法定量,以甲胺磷和乙酰甲胺磷农药已知浓度的标准样品溶液作外标物,按峰高定量。6.结果计算Xi=hi•Esi•V1hsi•V2•m式中:Xi——样品中i组分有机磷含量,mg/kg;Esi——注入标样中i组分有机磷的含量,ng;hi——样品的峰高,mm;hsi——标样中i组分的峰高,mm;V1——浓缩定容体积,mL;V2——注入色谱样品的体积,μL;m——样品的质量,g。7.方法的精密度添加回收试验中甲胺磷和乙酰甲胺磷的变异系数分别为2.36%和3.95%。8.甲胺磷和乙酰甲胺磷的保留时间在5.2的气相色谱条件下,甲胺磷的保留时间为0.9min,乙酰甲胺磷的保留时间为1.9min。9.来源:GB 14876—94

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制