当前位置: 仪器信息网 > 行业主题 > >

辣根

仪器信息网辣根专题为您提供2024年最新辣根价格报价、厂家品牌的相关信息, 包括辣根参数、型号等,不管是国产,还是进口品牌的辣根您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辣根相关的耗材配件、试剂标物,还有辣根相关的最新资讯、资料,以及辣根相关的解决方案。

辣根相关的资讯

  • 蛋白质印迹实验具体操作步骤
    蛋白质印迹实验具体操作步骤 蛋白质印迹免疫分析的过程包括蛋白质经凝胶电泳分离后,在电场作用下将凝胶上的蛋白质条带转移到硝酸纤维素膜上,经封闭后再用抗待检蛋白质的抗体 作为探针与之结合,经洗涤后,再将滤膜与二级试剂-放射性标记的或辣根过氧化物酶或碱性磷酸酶 偶联抗免疫球蛋白抗体 结合,进一步洗涤后,通过放射自显影或原位酶反应来确定抗原-抗体-抗抗体复合物在滤膜上的位置和丰度。 【蛋白质印迹实验所需试剂】 1.IgG 标准品 2.羊抗人辣根过氧化物酶(HRP)标记的IgG 抗体 3.转移buffer:Tris 3.03g,Gly14.4g,甲醇200ml,加三蒸水至 1000ml充分溶解,4℃冰箱贮存。 4.Tris buffer(TBS):Tris 2.42g,NaCl 29.2g,溶于600ml三蒸水,再用1N HCl调至pH7.5,然后补加三蒸水至1000ml. 5.漂洗液(TTBS):TBS液500ml,加 Tween20 250ul. 6.封闭液:5%脱脂奶粉。 7.抗体buffer:1.5g BSA溶于50ml TTBS. 8.显色液DAB(3.3-diaminobenzidine,3.3-二氨基联苯胺)配制:5mg DAB溶于10ml 柠檬酸buffer(0.01mol/L 柠檬酸2.6ml,0.02 mol/L Na2HPO4 17.39ml),加30% H2O2 10 &mu l(临用时现配)。 9.脱色液:甲醇250ml,冰醋酸100ml,加蒸馏 水至1000ml. 10.氨基黑染色液(0.1%氨基黑 -10B):0.2g 氨基黑-10B 溶于200ml 脱色液中,充分搅拌溶解,滤纸 过滤。 【蛋白质印迹实验操作步骤】 一、样品的SDS -聚丙烯酰胺凝胶电泳 按实验四操作步骤进行。加样时,注意在同一块胶上按顺序做一份重复点样,以备电泳结束时,一份用于免疫鉴定,一份用于蛋白染色显带,以利相互对比,分析实验结果。 二、转移印迹 1.转移前准备:将滤纸,硝酸纤维素膜(NC)剪成与胶同样大小,NC膜浸入蒸馏 水中 10-20min 后浸入转移buffer中平衡30min . 2.凝胶平衡:将电泳后的SDS -PAGE胶板置于转移buffer 中平衡 30-60min. 3.按图操作:逐层铺平,各层之间勿留有气泡和皱折。 4.开始转移,连接正负极,盖好盖子,接上电源,恒流 0.8mA/cm,室温下转移1h,转移后的凝胶再用氨基黑10B染色液染色20min ,然后脱色检测转移效果。 三、免疫染色 1.转移后的NC膜于5%脱脂奶粉中封闭,4℃过夜。 2.TBS洗膜1-2次,10min/次。 3.加HRP标记的抗体,室温1h . 4.TBS 洗3次,10min/次。 5.NC膜再转入DAB显色液中,置暗处反应,待显色反应达到最佳程度时,立即用三蒸水洗涤终止反应。
  • 人ELISA试剂盒的操作技巧
    掌握了实验技巧之后,人ELISA试剂盒实验入门新手学起来都会快的多。本篇文章中的小窍门包含了要求、方法等技术,为大家整理出了这些个人ELISA试剂盒小窍门:1.加酶试剂后用吸水纸在酶标板表面轻拭吸干。2.合理安排检测量,以免反应板过多造成洗板等待时间长。3.吸取液体时,要用量程和需要量接近的枪去吸,减少误差。4.要尽量做双孔实验,这样才既能保证数据的准确性,又能反映出试剂盒的精密度。5.样品稀释液应用加液器加注,并经常校对其准确性。6.为防止样品蒸发,试验时将反应板放于铺有湿布的密闭盒内,酶标板加上盖或覆膜。7.未使用完的酶标板或者试剂,请于2-8℃保存。辣根过氧化物酶标记抗人IgG工作液请依据所需的量配置使用。请勿重复使用已稀释过的辣根过氧化物酶标记抗人IgG工作液。8.ELISA试剂盒实验中,加样后及时放人孵箱,标本较多时,要分批操作。按说明步骤严格控制操作时间,防止孵育时间人为延长,导致非特异性结合紧附于反应孔周围,难以清洗彻底。9.剩余样品及废弃物应经121℃高压蒸汽灭菌30分钟,或用5.0g/L次氯酸钠等消毒剂处理30分钟后废弃。10.人ELISA试剂盒洗涤时各孔均需加满液体,防止孔口有游离酶不能洗净。11.每次实验留一孔作为空白调零孔,该孔不加任何试剂,只是最后加底物溶液及2N H2SO4。测量时先用此孔调OD值至零。12.手工洗板时每次加入洗涤液后。应静置15~30s,不要将一个酶标孑L中的洗涤液溅入另一酶标孔中,防止交叉污染。甩去洗涤液后将酶标板放在毛巾或吸水纸上拍干。13.对样本的结果有疑问时需要使用其他检测方法进行验证。14.没有去离子水或双蒸水时,可以使用娃哈哈纯净水配制溶液,切勿使用自来水。15.在使用微量加样器时,吸取不同瓶子中液体后要更换枪头,即使吸取标准品溶液。16.吸取液体时速度不易太快,以免产生气泡,人ELISA试剂盒吸取的量不够准确。17.吸取液体时要选用量程和需要量接近的微量加样器吸,减少误差。小鼠肿瘤坏死因子配体相关分子1(TL1)ELISA试剂盒 ,英文名: TL1 ELISA Kit小鼠肿瘤坏死因子可溶性受体Ⅱ(TNFsR-Ⅱ)ELISA试剂盒 ,英文名: TNFsR-Ⅱ ELISA Kit小鼠肿瘤坏死因子可溶性受体Ⅰ(TNFsR-Ⅰ)ELISA试剂盒 ,英文名: TNFsR-Ⅰ ELISA Kit小鼠肿瘤坏死因子β(TNF-β)ELISA试剂盒 ,英文名: TNF-β ELISA Kit小鼠肿瘤坏死因子α(TNF-α)ELISA试剂盒 ,英文名: TNF-α ELISA Kit小鼠肿瘤坏死因子α(TNFα)ELISA试剂盒 ,英文名: TNFα ELISA Kit小鼠肿瘤蛋白p53(TP53)ELISA试剂盒 ,英文名: TP53 ELISA Kit小鼠肿瘤标志物(CA724)ELISA试剂盒 ,英文名: CA724 ELISA Kit小鼠中性粒细胞明胶酶相关脂质运载蛋白(NGAL)ELISA试剂盒 ,英文名: NGAL ELISA Kit小鼠中性粒细胞弹性蛋白酶(NE)ELISA试剂盒 ,英文名: NE ELISA Kit小鼠脂氧素A4(LXA4)ELISA试剂盒 ,英文名: LXA4 ELISA Kit小鼠脂联素(ADP)ELISA试剂盒 ,英文名: ADP ELISA Kit
  • 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白: ELISA的样本实验准备 在收集样本前都必须有一个完整的计划,必须清楚要检测的成份是否足够稳定。对收集后当天就进行检测的样本,及时储存在4℃备用。对于隔天再检测的样本,及时分装后冻存在-20℃备用,有条件的,最好-71℃冻存备用。标本反应(此时蓝色立转黄色)。终止液的加入顺序应尽量与底物液的加入顺序相同。为了保证实验结果的准确性,底物反应时间到后应尽快加入终止液。 8.用酶联仪在450nm波长依序测量各孔的光密度(OD值)。 在加终止液后15分钟以内进行检测。 注: 1. 用户在初次使用试剂盒时,应将各种试剂管离心数分钟,以便试剂集中到管底。 2. 每次实验留一孔作为空白调零孔,该孔不加任何试剂,只是最后加底物溶液及2N H2SO4。测量时先用此孔调OD值至零。 3. 为防止样品蒸发,试验时将反应板放于铺有湿布的密闭盒内,酶标板加上盖或覆膜。 4. 未使用完的酶标板或者试剂,请于2-8℃保存。标准品、生物素标记抗体工作液、辣根过氧化物酶标记亲和素工作液请依据所需的量配置使用。请勿重复使用已稀释过的标准品、生物素标记抗体工作液或、辣根过氧化物酶标记亲和素工作液。 5. 建议检测样品时均设双孔测定,以保证检测结果的准确性。 洗板方法 手工洗板方法:吸去(不可触及板壁)或甩掉酶标板内的液体;在实验台上铺垫几层吸水纸,酶标板朝下用力拍几次;将推荐的洗涤缓冲液至少0.3ml注入孔内,浸泡1-2分钟。根据需要,重复此过程数次。 自动洗板:如果有自动洗板机,应在熟练使用后再用到正式实验过程中。 计算 以标准物的浓度为横坐标(对数坐标),OD值为纵坐标(普通坐标),在半对数坐标纸上绘出标准曲线,根据样品的OD值由标准曲线查出相应的浓度;再乘以稀释倍数;或用标准物的浓度与OD值计算出标准曲线的直线回归方程式,将样品的OD值代入方程式,计算出样品浓度,再乘以稀释倍数,即为样品的实际浓度。 注意事项 1. 当混合蛋白溶液时应尽量轻缓,避免起泡。 2. 洗涤过程非常重要,不充分的洗涤易造成假阳性。 3. 一次加样时间最好控制在5分钟内,如标本数量多,推荐使用排枪加样。 4. 请每次测定的同时做标准曲线,最好做复孔。 5. 如标本中待测物质含量过高,请先稀释后再测定,计算时请最后乘以稀释倍数。 6. 在配制标准品、检测溶液工作液时,请以相应的稀释液配制,不能混淆。 7. 底物请避光保存。 8. 不要用其它生产厂家的试剂替换试剂盒中的试剂。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 元旦优惠大酬宾“上海远慕生物”感谢一路有您!
    尊敬的各位客户: 值此辞旧迎新之际,为答谢全国客户朋友及终端客户对上海远慕生物的一贯支持,在2018年元旦来临前夕特举行一次特大优惠酬宾活动,预祝大家在2018年能够取得开门红的佳绩。 活动:以下是我司促销产品,更多优惠产品请联系客服! 甲基丙烯酸异癸酯/甲基丙烯酸异癸酯 吴茱萸次碱84-26-4 标准胎牛血清(碳吸附过滤) 酵母粉琼脂 大鼠血管内皮细胞生长因子C(VEGF-C)ELISA试剂盒 醛品红染色液 辣根过氧化物酶标记的羊抗兔IgG 小鼠细胞膜表面免疫球蛋白(SmIg)ELISA试剂盒 牛肉膏蛋白胨琼脂培养基 CAS:65039-10-3,氯化1-烯丙基-3-甲基咪唑 CAS:920-66-1,六氟异丙醇价格 CAS:63700-19-6,尿苷二磷酸葡糖醛酸现货供应 大鼠5羟色胺(5-HT)ELISA检测试剂盒 人5羟色胺(5-HT)ELISA检测试剂盒说明书 人转化生长因子β1(TGF-β1)ELISA检测试剂盒说明书 小鼠转化生长因子β1(TGF-β1)ELISA检测试剂盒,进口elisa试剂盒 活动时间:即日起至1月31日 注:活动期间,凡购买古朵指定产品即可享受特价优惠!本次活动的zui终解释权归上海远慕生物科技有限公司所有。 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • 西湖大学院士团队快速检测新冠中和抗体进展
    新冠抗体特别是中和抗体的快速检测,不仅有利于新冠疫苗的安全效用评估,而且有助于阐明新冠病毒免疫学、流行病学和个体化医学的多项关键性问题。西湖大学Mohamad Sawan院士团队利用光纤生物膜干涉技术(Fiber optic-biolayer interferometry (FO-BLI,图1A)实现了对SARS-CoV-2结合抗体与中和抗体的快速检测(图1B,1C),成果发表于Biosensors and Bioelectronics。图1. 光纤结构 (A),光纤表面新冠结合抗体(B)与新冠中和抗体(C)检测原理图。生物膜干涉技术是一种通过检测干涉光谱的位移变化来检测传感器表面反应的技术,被广泛用于分子间亲和力的表征。此项目巧妙地利用3,3′-Diaminobenzidine (简称DAB, 一辣根过氧化物酶HRP的反应底物)放大信号,实现了对新冠抗体的精准定量分析。本课题的特别之处在于,实现了对结合抗体高灵敏性(10 ng/mL)与全程13分钟的检测,以及对中和抗体高灵敏性(10 ng/mL)与全程7.5 min的检测(图2)。图2. FO-BLI生物传感器对新冠结合抗体与中和抗体的检测流程。通过对多种新冠抗体与新冠适配体的预临床分析,与接种疫苗后健康人群体内血清样本的临床研究,此技术所产生的结果与商业化试剂盒产生的结果有很好的一致性。考虑到检测方案具有很强的灵活性,它可用于对新冠变异体Delta与Omicron等中和抗体的快速筛选。该技术不仅适用于对单个血清样本的个体化分析,同时适用于高通量的样本分析。目前,技术成果已申报两项国家发明专利。西湖大学工学院CenBRAIN团队助理研究员卞素敏博士为本文第一作者,浙江大学医学院附属邵逸夫医院尚敏研究员为共同第一作者,CenBRAIN创始人Mohamad Sawan院士为通讯作者。该工作得到了国家自然科学基金与浙江省领军型创新创业团队项目等经费的资助。原文链接:https://doi.org/10.1016/j.bios.2022.114054
  • 鼎昊源全自动转印仪Blotstainer在蛋白免疫印迹上的应用
    鼎昊源全自动转印仪Blotstainer在蛋白免疫印迹上的应用 由于蛋白免疫印迹的步骤操作较为繁琐,要求精度较高,实验中一步出现操作失误就会导致整个实验的白白浪费。并且一抗二抗试剂也比较宝贵,所以采用仪器操作可以降低实验的风险,保证实验的顺利进行。 鼎昊源推出的全自动转印仪就是替代人工操作的好选择,它配有自动移液系统,温控系统和孵育摇床。自动移液系统包括10个管路,相互独立,避免交叉感染。温控系统范围在4℃到80℃之间,满足蛋白免疫印迹,核酸分子杂交实验的孵育温度。整套系统根据客户自定义的操作程序自动完成。为了方便客户使用,全自动转印仪出厂预设了免疫印迹,核酸杂交,原位杂交和免疫组化的自动程序。 内置标准蛋白免疫印迹程序如下: Step Task Time Action Buffer Memo Execute x times 1 Set temp Off Temperature to RT 2 Incubate 00:05 Wash PBST Wash membrane X2 3 Set temp ON, 10℃ Temperature 10℃ 4 Incubate 01:00 Blocking Block solution Blocking 5 Incubate 02:00 AB-step Primary antibody Primary antibody 6 Incubate 00:05 Wash PBST Wash membrane X4 7 Incubate 00:30 Sec. antibody Second antibody Second antibody 8 Set temp Off Temperature to RT 9 Wash 00:05 PBST wash PBST PBST wash X10 10 Ready to stain in dark room 设置温度到室温 用0.01M PBS洗膜,5min × 2次。 设置温度到10℃ 4、加入包被液,平稳摇动,1hr。 5、加入一抗(按合适稀释比例用0.01M PBS稀释,液体必须覆盖膜的全部),2hr。 6、弃一抗,用0.01M PBS分别洗膜,5min× 4次。 7、加入二抗(辣根过氧化物酶偶联)(按合适稀释比例用0.01M PBS稀释),0.5hr。 8、设置温度到室温 9、弃二抗,用0.01M PBS洗膜,5min× 10次。 10、加入显色液,避光显色至出现条带时放入双蒸水中终止反应。 全自动转印仪在上述程序中可以实现在蛋白免疫印迹孵育过程中的温控,更加保证一抗二抗的活性,这是一般手工操作所达不到的。 整套程序5个小时内自动完成,不需要人工换液和取出薄膜。当然上述程序可以按照用户实际需要来调整全自动转印仪的程序。 关键词:蛋白免疫印迹,全自动转印仪
  • 穿越血脑屏障!UCLA卢云峰团队研发新型纳米胶囊
    p style=" text-align: justify "   在世界范围内,中枢神经系统(CNS)相关疾病已经成为各年龄段患者中致病率和致死率最高的一类疾病。尽管多年来对于中枢神经相关疾病的科学和临床研究一直未有停歇,然而针对这类疾病的治疗方法仍然极其有限。其中需要面临的最大挑战是如何有效地跨越血脑屏障,将药物,尤其是大分子药物,投递入中枢神经系统。因此,开发新型、普适性强、并能跨越血脑屏障的药物投递平台,将是治疗中枢神经相关疾病的关键突破。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/cbf11921-e8dd-4743-b80d-14448d8bfee6.jpg" title=" 卢云峰教授.jpg" alt=" 卢云峰教授.jpg" width=" 167" height=" 254" style=" width: 167px height: 254px " / /p p style=" text-align: center " strong 卢云峰教授 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/4a21eeb8-c37c-43aa-b45a-b90a114537e4.jpg" title=" 000.jpg" alt=" 000.jpg" width=" 561" height=" 374" style=" width: 561px height: 374px " / /p p style=" text-align: center " strong span style=" text-align: justify " UCLA卢云峰教授团队 /span /strong br/ /p p style=" text-align: justify "   近日, span style=" color: rgb(0, 112, 192) " strong 美国加州大学洛杉矶分校(UCLA)卢云峰教授团队 /strong /span 在材料学领域的综合性权威期刊 strong i Advanced Materials /i /strong (2018年, strong IF:21.950 /strong )上发表封面文章(图1),题目为 strong “ i A Bioinspired Platform for Effective Delivery of Protein Therapeutics to the Central Nervous System /i ” /strong ,报道了新型中枢神经系统投递平台,通过将蛋白类药物包裹在含有胆碱和乙酰胆碱类似物的纳米胶囊中,实现高效的中枢神经系统投递。该研究论文的第一作者为吴迪博士。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/5c4eaa11-bf0d-419f-9b4e-b9dd0efe3ab8.jpg" title=" 001.jpg" alt=" 001.jpg" width=" 584" height=" 211" style=" width: 584px height: 211px " / /p p style=" text-align: center " strong 图1:研究成果发表于材料领域权威期刊Advanced Materials. /strong /p p style=" text-align: justify "   尽管血脑屏障对进入中枢神经系统的分子具有极其苛刻的选择性和限制性,但为满足大脑内部的营养及信号转导需求,其对某些分子如乙酰胆碱和胆碱却有大量的受体表达和高效的转运机制。受其启发,研究者利用纳米胶囊技术将含有胆碱和乙酰胆碱的类似物(2-甲基丙烯酰氧乙基磷酸胆碱(MPC))包裹于蛋白类药物表面,在胆碱转运体及乙酰胆碱受体的介导下,使蛋白类药物得以高效的穿透血脑屏障,进入中枢神经系统(图2)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/0eee24b0-a41e-41f4-a71f-b7164ab6edea.jpg" title=" 002.jpg" alt=" 002.jpg" width=" 548" height=" 383" style=" width: 548px height: 383px " / /p p style=" text-align: center " strong 图2:纳米胶囊的制备及中枢神经系统投递原理示意图 /strong /p p style=" text-align: justify "   为显示该方法的普适性,研究者利用纳米胶囊运载了多类蛋白分子,如牛血清蛋白(BSA),辣根过氧化物酶(HRP),利妥昔单抗(RTX)和神经生长因子(NGF)等。透射电子显微镜下,纳米胶囊显示为表面为中性,直径为30纳米的球形分子,利用可降解交联剂的断裂使纳米胶囊破裂从而实现蛋白载体的有效释放(图3)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/12411180-b471-4ce0-bce4-2b0ba61fa14b.jpg" title=" 003.jpg" alt=" 003.jpg" width=" 586" height=" 306" style=" width: 586px height: 306px " / /p p style=" text-align: center " strong 图3:纳米胶囊水合半径(a),表面电性(b),形貌(c),释放(d)及释放后蛋白分子活性(e,f)的测定 /strong /p p style=" text-align: justify "   在小鼠和恒河猴动物模型中,该技术的中枢系统投递效率得到了有效的验证。纳米胶囊包裹的蛋白在小鼠的体内分布实验中,显示出高于未包裹的蛋白对照组40余倍的投递效率。同时,静脉注射一天后在采集到的恒河猴的脑脊液中,通过透射电子显微镜研究者观察到大量的具有相同大小(30 纳米)和形貌的纳米胶囊分子。其在恒河猴脑脊液中的浓度最高可达血液浓度的5.6%。研究者还发现,该纳米胶囊的中枢神经系统投递效率具有显著的剂量依赖性,提高静脉注射浓度可显著提高其中枢神经系统投递效率,这意味着该投递效率仍有巨大的提升空间(图4)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/d44c0756-3049-403e-aea5-1dc95cb89bbb.jpg" title=" 004.jpg" alt=" 004.jpg" width=" 537" height=" 418" style=" width: 537px height: 418px " / /p p style=" text-align: center " strong 图4:纳米胶囊小鼠体内分布(a),恒河猴脑脊液中纳米胶囊形貌(b),浓度(c)及脑脊液浓度占血浆浓度百分比(d) /strong /p p style=" text-align: justify "   由于该方法制备简单,高度适用于各种蛋白药物,中枢神经系统投递效率高,并具有良好的生物安全性,这一技术为蛋白类药物用于中枢神经系统相关疾病的治疗开辟了全新的道路,具有重大的理论研究和临床转化意义。 /p p style=" text-align: justify "   ————————————————————————————————— /p p style=" text-align: center " strong 欲知更多生命科学资讯,就关注仪器信息网生命科学官微 span style=" color: rgb(0, 112, 192) " “3i生仪社” /span /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/632108c3-9f34-4da1-9a2e-2a7344c75fab.jpg" title=" qrcode_for_gh_91d290758d40_258.jpg" alt=" qrcode_for_gh_91d290758d40_258.jpg" width=" 223" height=" 223" style=" width: 223px height: 223px " / /p
  • 牛细小病毒(CPV)ELISA检测说明书
    牛细小病毒(CPV)ELISA检测说明书本试剂盒仅供研究使用。 96T使用目的 :本试剂盒用于测定牛血清,血浆及相关液体样本中细小病毒(CPV)表达。实验原理 :本试剂盒采用双抗体夹心酶联免疫法(ELISA)测定标本中牛细小病毒(CPV) 。用纯化的牛细小病毒(CPV)抗体包被微孔板,制成固相抗体,可与样品中细小病毒(CPV)抗原相结合,经洗涤除去未结合的抗体和其他成分后再与 HRP 标记的细小病毒(CPV)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物 TMB 显色。TMB 在 HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。用酶标仪在 450nm 波长下测定吸光度(OD 值) ,与 CUTOFF 值相比较,从而判定标本中牛细小病毒(CPV)的存在与否。试剂盒组成 :1 30 倍浓缩洗涤液 20ml×1 瓶 7 终止液 6ml×1 瓶2 酶标试剂 6ml×1/瓶 8 阳性对照 0.5ml×1 瓶3 酶标包被板 12 孔×8 条 9 阴性对照 0.5ml×1 瓶4 样品稀释液 6ml×1 瓶 10 说明书 1 份5 显色剂 A 液 6ml×1 瓶 11 封板膜 2 张6 显色剂 B 液 6ml×1 瓶 12 密封袋 1 个标本 要求 :1.标本处理:血清、血浆标本可直接检测2.标本按要求制备后尽早进行实验。如不能及时检测,可将标本在-20℃保存一个月,但应避免反复冻融。3.不能检测含 NaN3 的样品,因 NaN3 抑制辣根过氧化物酶的(HRP)活性。操作步骤 :1. 编号:将样品对应微孔按序编号,每板应设阴性对照 2 孔、阳性对照 2 孔、空白对照 1孔(空白对照孔不加样品及酶标试剂,其余各步操作相同)2. 加样:分别在阴、阳性对照孔中加入阴性对照、阳性对照(标准品)50μl。然后在待测样品孔先加样品稀释液 40μl,然后再加待测样品 10μl。加样将样品加于酶标板孔底部,尽量不触及孔壁,轻轻晃动混匀,3. 温育:用封板膜封板后置 37℃温育 30 分钟。4. 配液:将 30 倍浓缩洗涤液用蒸馏水 30 倍稀释后备用5. 洗涤:小心揭掉封板膜,弃去液体,甩干,每孔加满洗涤液,静置 30 秒后弃去,如此重复 5 次,拍干。6. 加酶:每孔加入酶标试剂 50μl,空白孔除外。7. 温育:操作同 3。8. 洗涤:操作同 5。9. 显色:每孔先加入显色剂 A 50μl,再加入显色剂 B 50μl,轻轻震荡混匀,37℃避光显色15 分钟10. 终止:每孔加终止液 50μl,终止反应(此时蓝色立转黄色) 。11. 测定:以空白空调零,450nm 波长依序测量各孔的吸光度(OD 值) 。 测定应在加终止液后 15 分钟以内进行。结果判定 :试验有效性:阳性对照孔平均值≥1.00 阴性对照平均值≤0.15临界值(CUT OFF)计算:临界值=阴性对照孔平均值+0.15阴性判定:样品 OD 值 临界值(CUT OFF)者为细小病毒(CPV)阴性阳性判定:样品 OD 值≥ 临界值(CUT OFF)者为细小病毒(CPV)阳性注意事项1.操作严格按照说明书进行,本试剂不同批号组分不得混用。2.试剂盒从冷藏环境中取出应在室温平衡 15-30 分钟后方可使用,酶标包被板开封后如未用完,板条应装入密封袋中保存。3.浓洗涤液可能会有结晶析出,稀释时可在水浴中加温助溶,洗涤时不影响结果。4. 封板膜只限一次性使用,以避免交叉污染。5.底物请避光保存。6.试验结果判定必须以酶标仪读数为准,使用双波长检测时,参考波长为 630nm7.所有样品,洗涤液和各种废弃物都应按传染物处理。终止液为 2M 的硫酸,使用时必须注意安全。保存 条件及有效期1.试剂盒保存: ;2-8℃。2.有效期:6 个月
  • 博纳艾杰尔提供粮油、乳品、 饲料检测新方案
    三聚氰胺、地沟油、麦乐鸡&hellip .食品安全已经日益引起我们的重视,如何更进一步了解我们日常所接触的食品?知道它们之中有哪些我们需要的成分和我们不需要的成分?博纳艾杰尔为您提供粮油、乳品、饲料检测新方案,有利器在手,您可高枕无忧! 三聚氰胺分析 博纳艾杰尔可提供适合多种方法的耗材,客户可以任意选择: 三聚氰胺分析全攻略 《GB/T 22388-2008原料乳与乳制品中三聚氰胺检测方法》 《GB/T 22400-2008原料乳中三聚氰胺快速检测液相色谱法》 氨基酸分析方法包 博纳艾杰尔科技推出的Venusil-AA 氨基酸分析方法是基于目前广泛使用的PITC(异硫氰酸苯酯)衍生剂的HPLC 氨基酸分析方法。  ■ 衍生方便、快速,只需室温反应30min;  ■ 衍生物单一、稳定,-20℃可贮存数月;  ■ 分析时间短(水解氨基酸仅需12min);  ■ 结果准确,试剂、副产物、溶剂等多种干扰因素可通过快速蒸发去除;  ■ 紫外检测(254nm)灵敏度高,可达1 pmol;  ■ 一级、二级氨基酸均可检测。 &beta 内酰胺酶试剂盒 本试剂盒由中国药品生物制品检定所(NICPBP)监制,试剂盒内所采用试药、菌株和培养基均是通过NICPBP验证的国家级标准品,可溯源。完全符合中华人民共和国卫生部《乳及乳制品中舒巴坦敏感&beta -内酰胺酶类药物检验方法》。 NICPBP 2007年发表的文章《Development of a Method for the Detection of &beta -Lactamases in Milk Samples》被AOAC认可为&ldquo 已知的第一个牛奶中&beta -内酰胺酶检测方法&rdquo ,同时NICPBP根据实验结果,开发了&beta -内酰胺酶的专用试剂盒,并授权博纳艾杰尔科技独家代理销售。 牛乳中添加&beta -内酰胺酶并未进行安全性评价,因此,属于非法添加。本试剂盒是检测牛乳中添加&beta -内酰胺酶的专用试剂盒,检测限为4 U/mL。 检测原理:&beta -内酰胺酶可水解&beta -内酰胺类抗生素(如青霉素),使其失去抗菌活性。而&beta -内酰胺酶抑制剂(如舒巴坦)可抑制&beta -内酰胺酶活性,使抗生素(如青霉素)维持其抗菌活性。 免疫亲和柱: 基于抗原抗体反应,特异性抗体连接在柱体内,选择性吸附样品中的待检物,杂质不被吸附,流出柱外,柱上结合的目标物再被特定的洗脱液洗下来,可以用于液相色谱(HPLC)分析或者ELISA含量测定,是一种高效的前处理柱。 特点及应用:主要用于含黄曲霉毒素的样品,如玉米、花生、麦类、面粉、薯干、豆类、花生酱、油类、牛奶、肉类。  ■ 黄曲霉毒素(G1,G2,B1,B2)  ■ 黄曲霉毒素(G1,G2,B1,B2,M1,M2)  ■ 黄曲霉毒素B1  ■ 黄曲霉毒素M1 固相萃取前处理柱: 利用理化原理,用吸附性填料装填萃取柱,用于净化含真菌毒素的样品,高效快速,且成本较低,萃取柱易于保存。 Cleanert PEP&mdash 黄曲霉毒素、呕吐毒素 Cleanert PAX&mdash 赭曲霉毒素 ELISA试剂盒: 竞争性酶联免疫吸附(ELISA)检测方法,通过抗原抗体的特异反应以及辣根过氧化物酶催化TMB显色,样本吸光值与目标物的含量成负相关,采用酶标仪检测,实现目标物的定量测定。 特点及应用:酶联免疫吸附(ELISA);酶标仪;定量测定  ■ 三聚氰胺  ■ 黄曲霉毒素总量  ■ 黄曲霉毒素总量  ■ 黄曲霉毒素B1  ■ 黄曲霉毒素B1  ■ 黄曲霉毒素M1  ■ 玉米赤霉烯酮  ■ 呕吐毒素 胶体金快速检测试纸: 将特异性的抗体或抗原以条带装固定在硝酸纤维膜的某一区待,胶体金试剂(抗体或单克隆抗体)吸附在结合垫上,当待检样本加到试纸条一端的样本垫上后,通过毛细作用向前移动, 溶解结合垫上的胶体金标记试剂后相互反应,再移动至固定的抗原或抗体区域时,待检物与金标试剂的结合物又与之发生特异性结合而被截留,聚集在检测带上,可通过肉眼观察到显色结果,从而实现特异性免疫诊断。 测试卡分析快速,仅需3-5分钟,无需专业人员操作,无需借助仪器,可以凭肉眼观察到结果,定性检测,测试卡可常温保存。 特点及应用:快速;定性检测;三聚氰胺;常温保存  ■ 三聚氰胺  ■ 黄曲霉毒素总量  ■ 黄曲霉毒素B1
  • 核酸质谱领军者Agena Bioscience被Mesa Labs收购
    美国科罗拉多州当地时间2021年10月20日(北京时间2021年10月21日),Mesa Laboratories, Inc.(纳斯达克股票代码:MLAB)宣布,已经完成此前宣布的对Agena Biosciences,Inc的收购。通过此次高度战略性的收购,Agena在分子诊断方面的创新方法与Mesa强强联合,将共同致力于精益求精的业务模式,提高运营和商业效率。Mesa和Agena将携手助力健康事业。Agena将作为Mesa的一个独立运营部门进行运营,其财务表现将作为一个全新的临床基因组学部门来进行财务报告。Mesa将在美国圣地亚哥市拓展业务。圣地亚哥市是Agena的总部,那里将继续运行,同时将加强Agena在全球其他办事处的业务和品牌。Mesa公司总裁兼首席执行官Gary Owens评论道:“收购Agena是Mesa的一个重要的里程碑,重新引导Mesa的战略轨迹,在生命科学市场迈向更高增长率的应用领域。通过此次收购,我们预计未来超过90%的收入将来自生物制药、医疗设备和医疗保健服务等垂直领域的销售。” 关于Mesa Laboratories, Inc.Mesa是一家为制药、医疗保健和医疗器械行业设计和制造关键质控解决方案的全球领导者。Mesa通过四个事业部 (灭菌和消毒控制、生物制药开发、仪器和持续监测)提供产品和服务,以帮助客户确保产品的完整性,提高患者和工人的安全度,并改善世界各地人们的生活质量。Mesa的业务部门主要分布在美国和欧洲。关于Agena BioscienceAgena是一家领先的提供临床基因组学工具的公司,为全球临床实验室和研发合作伙伴开发、制造和提供高灵敏度、低成本、高通量的基因分析解决方案。- END -关于Agena Bioscience:Agena Bioscience在德国、中国和澳大利亚设有分公司并拥有庞大的分销商网络,在全球30多个国家销售其产品。Agena前身是美国核酸质谱技术开发与生产厂商Sequenom(西格诺),其核酸质谱业务在2014年正式独立并更名为Agena Bioscience,更加专注于MassARRAY DNA质谱遗传分析系统及配套试剂的开发和生产,为全球客户提供更优质的产品及服务。2021年,Agena正式加入Mesa Labs。MassARRAY® 系统是一个基于质谱分析的平台,高度灵敏且经济高效,被广泛应用于全球各地的不同领域中,例如实体瘤和液体活组织标本的癌症分析、遗传病检测、药物遗传学、农业基因组学和临床研究。我们的使命是为基因组学和临床测试实验室提供实用的解决方案,以提高生产力并缩短获得结果所需的时间。无论是评估样本质量、筛检样本中具有实用意义的突变,还是对数十乃至数千份样本实现常规的基因检测,我们的产品和服务都在帮助实验室将基因组学研究成果转化为主流的临床实践。
  • 瘦肉精介绍及检测方法
    瘦肉精介绍 中文名:瘦肉精;克伦特罗;学名盐酸克伦特罗;是一种平喘药。该药物既不是兽药,也不是饲料添加剂,而是肾上腺类神经兴奋剂。盐酸双氯醇胺;克喘素;氨哮素;氨必妥;氨双氯喘通;氨双氯醇胺。   英文名:   Clenbuterol Spiropent Planipart NAB365;4-Amino-3,5-dichloro-alpha-(((1,1-dimethylethyl)amino)methyl)benzenemethanol   CAS号:37148-27-9   分子式:C12-H18-Cl2-N2-O   理化特性   白色或类白色的结晶粉末,无臭、味苦,熔点161℃,溶于水、乙醇,微溶于丙酮,不溶于乙醚。 瘦肉精检测方法 GB/T 5009.192-2003 动物性食品中克伦特罗残留量的测定   气相色谱-质谱法(GC-MS)   GC-MS法优点是把色谱高效快速的分离效果和质谱高灵敏度的定性分析有机合起来,能在多种残留物同时存在的情况下对某种特定的残留物进行定性、定量分析,而且具更高的检测极限。Fente C. A等用GC-MS法检测牛毛中CLB的残留,最低检测限为5ng/g;Pteer Batioens应用气相色谱-串联质谱法(GC-MS-MS)对牛、羊、猪组织中的CLB含量进行检测,最低检测限为2ng/g;刘琪等用GC-MS法(EI离子源)检测猪尿中的CLB,检测限为0.5ng/mL;VanRhijin等用三甲基硅基或2-二甲基硅基吗啉衍生物检测尿提取物中的CLB,衍生物用电脉冲方式或化学离子化方式扫描,会产生更高的灵敏度。另外,GC-MS法与HPLC法相比,检测灵敏度更高,假阳性率更低。因此,我国将GC-MS法定为检测CLB的确证性方法(NY/T468~2001)。   高效液相色谱法(HPLC)   HPLC适合测定热不稳定和强极性的&beta -激动剂及其代谢产物,而且,HPLC可以与柱前提取、纯化及柱后荧光衍生化反应和质谱(MS)等系统联用,容易实现分析过程的自动化。黄士新等(1995)应用紫外检测器,在&lambda =243nm,色谱柱:shimpackCLC-ODS150× 6.0mn,流速:1mL/min,柱温:室温30℃的条件下检测猪肝脏和猪肉中的CLB残留,最低检测限可达2ng/g[4]。国外有人应用HPLC (二极管阵列检测器)测定动物性食品中CLB残留,测得最低检测限为1.26ng/g,回收率达98.9%[5]。目前,我国已将HPLC法作为检测CLB残留的半确证性方法,最低检测限范围为1~15ng/g,其优点是专属性好、选择性强、检测精确度较高,而且假阳性率低;缺点是样品处理时间长,检测过程烦琐、难于操作,需贵重仪器,在实际应用中受到一定的限制。   酶联免疫吸附法(ELISA )   利用免疫学抗原抗体特异性结合和酶的高效催化作用,通过化学方法将植物辣根过氧化物酶(HRP)与克伦特罗(CL)结合,形成酶偶联克伦特罗。将固相载体上已包被的抗体(羊抗兔IgG抗体)与特异性的抗克伦特罗抗体结合,然后加入待测克伦特罗和酶偶联克伦特罗,它们竞争性与克伦特罗抗体结合,洗涤后加底物,根据有色物的变化计量待测克伦特罗量。若待测克伦特罗多,则被结合的酶偶联克伦特罗少,有色物量就少。用目测法或比色法测定样品中的克伦特罗含量,比色的最佳波长为450 nm,参比波长应大于600 nm。   胶体金免疫层析法(Colloidal gold immunochromatography)   利用竞争法胶体金免疫层析技术,检测液中的Clen与金标垫上的金标抗体结合形成复合物,若Clen在检测液中浓度低于灵敏度值,未结合的金标抗体流到T区时,被固定在膜上的Clen-BSA偶联物结合,逐渐凝集成一条可见的T线;若Clen浓度高于灵敏度值,金标抗体全部形成复合物,不会再与T线处Clen-BSA偶联物结合形成可见T线。未固定的复合物流过T区被C区的二抗捕获并形成可见的C线。C线出现则表明免疫层析发生,即试纸有效.   液相色谱&mdash 质谱/质谱法(HPLC-MS/MS)   参见SN/T 1924&mdash 2007 进出口动物源食品中克伦特罗、莱克多巴胺、沙丁胺醇、特布他林残留量的检测方法。   本标准适用于动物源性食品肌肉和内脏中克伦特罗、莱克多巴胺、沙丁胺醇、特布他林残留量的检测。   试样中的药物残留采用pH5.2的乙酸铵缓冲液提取,同时加入&beta -盐酸葡萄糖醛甙酶-芳基硫酯酶进行酶解后,提取液经C18和SCX双SPE柱净化,液相色谱&mdash 质谱进行测定,内标法定量。
  • 疾病标记物的化学发光免疫分析试剂盒的研制 荣获2013年度北京市科学技术奖
    清华大学和北京科美生物技术有限公司(原北京科美东雅生物技术有限公司)合作完成的&ldquo 疾病标记物的化学发光免疫分析试剂盒&rdquo 项目,荣获2013年北京市科学技术奖二等奖,主要完成人林金明、应希堂、李海芳、李振甲等。   体外免疫诊断技术,是利用免疫试剂对血液或体液中疾病相关标志物的特异性识别和反应,评价疾病标志物的异常表达含量水平,准确判断疾病的发生和 发展程度。体外免疫诊断在临床检测中被越来越广泛的使用。继荧光、放射性同位素和酶免疫技术之后,化学发光免疫(Chemiluminescent immunoassay,CLIA) 作为新的免疫分析技术,不仅较放射性免疫无毒无污染,且具有更高的灵敏度和准确性,近年来成为国际争相发展的高端临床疾病诊断试剂。国际市场上的主流 CLIA试剂都由国外企业所垄断。国内体外诊断起步较晚,较欧美有十年以上的差距,市场对诊断试剂的巨大需求长期依赖进口。发展国产化的高端免疫诊断试 剂,对发展我国医药卫生产业和提高社会医疗保障有重要意义。   面向国家需求,立足技术创新。肿瘤和传染病是我国的高发性、高危性疾病。近年来环境污染造成内分泌类疾病患者人数迅速攀升。林金明教授领导的项 目团队与北京科美生物技术有限公司合作,通过10多年的努力,针对肿瘤、传染病和内分泌等高发性疾病诊断的需求,自主技术创新了系列化学发光免疫检测体 系,成功研制了具有自主产权的化学发光免疫诊断试剂和仪器,填补我国化学发光免疫试剂产品空白。项目获得国家授权发明专利15项,国家医疗器械注册证49 项,16项北京市自主创新产品证书,其中关于&ldquo 人类缺陷免疫病毒抗体化学发光诊断试剂盒&rdquo 获科技部&ldquo 国家重点新产品&rdquo 证书。   团队以酶催化化学发光为技术核心,在酶标记技术、抗体包被技术、磁颗粒分离技术和化学发光体系等方面取得多项技术创新:(1)研发了酶标记技术 与抗体包被技术,掌握了辣根过氧化物酶和碱性磷酸酶标记抗体或抗原核心技术;(2)发明了高灵敏度、高稳定性、宽检测窗口期的化学发光底物液;(3)发明 微孔板磁颗粒化学发光免疫分析新技术,使分析时间缩短20倍的同时灵敏度提高近百倍,达到国际领先 (4)发明了人类免疫缺陷病毒(HIV)病毒抗体的&ldquo 双抗原夹心CLIA&rdquo 新技术,指标达到国内外同类产品的领先水平。建立高灵敏度、高通量、快速高效的 化学发光免疫检测体系,开发新一代化学发光免疫分析试剂盒,填补我国化学发光免疫试剂产品空白。   产学研相结合,实现技术快速转化。项目通过产学研相结合的方式,将创新技术快速转化为产品,推向市场并获得广泛应用。基于创新技术研发的 CLIA试剂,通过企业的小批量中试和大量的临床样品检验比对,再进行技术的微调与改进,最终形成适合市场需求和经受实际应用考验的高灵敏度、高特异性、 高稳定性的CLIA系列产品。研发的肿瘤系列磁颗粒CLIA诊断试剂盒,已在肺癌、胃癌、肝癌、结肠癌、胰腺癌、前列腺癌、卵巢癌和乳腺癌等临床诊断上获 得广泛应用。研发的内分泌甲亢和性腺两大系列CLIA诊断试剂盒,可进行血清中促甲状腺素TSH、三碘甲腺原氨酸FT3、游离甲状腺素,性腺类包括前列腺 特异性抗原PSA、人血清中促黄体生成激素、类固醇性激素、促黄体生成素、孕酮、雌二醇等激素标志物的临床检测。在传染病系列CLIA试剂盒方面,研发了 国际上第一个艾滋病抗体微孔板CLIA试剂盒。继后还开发了乙型肝炎、丙型肝炎病毒表面抗原和梅毒螺旋体抗体诊断的CLIA试剂盒产品。这些CLIA试剂 已成为国内最具竞争力和市场占有率最高的诊断产品,在行业内起到引领和示范作用。   该项目成果于2009年获得中国分析测试协会科学技术奖一等奖,2011年获得中国产学研创新成果奖,2013年获得北京市科学技术奖二等奖。 项目成果为国内艾滋病防治、肿瘤体检筛查和传染病控制提供了便捷、低价、可靠的产品。项目推动了我国高端临床免疫检测试剂的发展,逼迫进口试剂降价,取得 了很好的社会和经济效益。   链接:项目负责人林金明 清华大学化学系教授,博士生导师,清华大学分析中心主任,化学系副系主任和分析化学研究所所长。1992&mdash 2002年在日本昭和大学药学院及东京都立大学 学习和工作。2001年入选中国科学院&ldquo 百人计划&rdquo ,同年获得国家杰出青年科学基金,受聘中国科学院生态环境研究中心研究员,博士生导师;2004年入选清华大学&ldquo 百名人才引进计划&rdquo ,2008年受聘教育部长江学者特聘教授。长期从事化学发光机理和化学发光免疫分析研究,近年来在微流控芯片细胞药物代谢及 循环癌肿瘤细胞检测方面的研究处于国际领先水平,CTC诊断技术已部分产业化,并在推广中。在国际刊物上发表研究论文300余篇,编著出版《化学发光基础 理论》、《化学发光免疫分析》和《环境、健康与负氧离子》专著3部。
  • SPR技术vs ELISA技术的优势
    ELISA酶联免疫吸附测定,在过去50年中一直是抗体,多肽,蛋白质和其他生物分子定量和检测的金标准。ELISA检测有3种主要类型:直接法,间接法和三明治夹心法。所有这些方法都依赖于二次反应产生可测量的信号,由标准吸收光光度计,分光光度计,荧光计等检测。ELISA的主要优点是高灵敏度和特异性。以标准三明治ELISA测定为例,链霉亲和素化学的使用允许多种酶(例如辣根过氧化物酶)与检测抗体结合,导致靶标分子的信号放大。但是,三明治ELISA具有以下缺点:01 繁琐耗时的洗涤和孵育步骤-需要数小时至数天才能获得结果02 需要优化选择捕获抗体和检测抗体,以防止交叉反应03 需要标签或酶和底物进行反应间接检测04 终点检测,不提供动力学数据05 洗涤步骤可能洗去任何感兴趣的低亲和互作的靶标分子表面等离子体共振(SPR)作为一种光学检测技术,其灵敏度和特异性[1-3]可以解决这些问题。本文将重点介绍 SPR 技术(图1)相对于夹心 ELISA(图2)的主要优势。图1 SPR技术工作原理示意图图2 ELISA技术工作原理示意图SPR 是一种无标记的实时互作检测技术SPR是一种光学的无标记技术,通过检测传感器表面折射率的变化来实现测量。在SPR实验中,平面偏振的单色入射光在全内反射条件下照射在高折射率(RI)(通常是玻璃棱镜)的材料上。如果由于分析物与表面固定受体结合而导致折射率发生变化,则SPR响应信号将发生变化。此外,可以实时收集SPR信号以确定动力学和亲和力信息。ELISA是一种终点检测方法,只能提供亲和力数据。SPR实验的两种模式都涉及收集不同浓度的分析物的传感响应数据(SPR随时间的响应)。有两种类型的SPR进样模式,分别是手动进样和泵辅助进样。手动进样模式仅通过确定传感器图的平衡解离常数(KD)来获取亲和力数据。泵辅助模式通过确定结合和解离速率来获得KD,从而产生亲和力和动力学数据。SPR技术可快速获得结果在ELISA实验中,洗涤、孵育、阻断、信号生成步骤都需要额外的时间和手动步骤。相比之下,SPR绕过了二级反应步骤(不需要第二个抗体和检测步骤)的需要,因为它通过折射率的变化直接检测任何结合。此外,清洗和任何其他传感器准备步骤都可以在SPR仪器本身内部快速完成。样品进样和清洗步骤可以通过手动进样或通过泵实现。最重要的是,与ELISA(数小时至数天)相比,SPR可以更快地获得结果(以分钟到几小时为单位)。SPR在检测低亲和力相互作用方面的优势对于特定互作检测,低亲和力互作同时也是需要捕捉的信号。Nechansky的一篇文章回顾了ELISA和SPR检测人源抗人抗体(HAHA)对治疗性单克隆抗体(mAbs)反应的研究[4]。HAHA的一个结果是可诱导自身免疫,其副作用可危及生命。因此,监测免疫反应中和抗体(IgG和IgM)浓度非常重要。在Lofgren等人的一项研究中,研究人员发现SPR能识别出4.1%的阳性患者,而ELISA为0.3%[5]。在所有测试的KD值(从8.1 x 10-10 M到1.1 x 10-6M)的抗体中,ELISA在检测亲和力最高的抗体时,灵敏度更高。相较与ELISA,SPR检测低亲和力抗体时具有更高的灵敏度[5]。这可能是由于低亲和力抗体在ELISA重复洗涤过程中丢失,而SPR即使在低KD相互作用时也能实时收集数据[4]。低亲和力抗体是早发性自身免疫的指标,可以通过亲和力成熟的过程转变成高亲和力抗体。为了确保患者安全,可将SPR用作检测低亲和力抗体[4]的高灵敏方法,即使患者不表现出任何临床症状,医生也可以更好地监测患者免疫反应的抗体水平。简而言之,SPR能够更早期发现HAHA反应发作的患者。Affinité Instruments P4SPR Affinité Instruments的P4SPR是一款出色的SPR仪器,可以提供高质量的实验数据,以满足您的研究需求。与ELISA测定相比,它不需要标记或二次反应,并减少了大量宝贵的研究时间。由于实时监测,它还可以检测低亲和力相互作用,灵敏度高于ELISA。P4SPR可应用于抗体、多肽、蛋白、核酸、小分子等多种样本之间互作检测。基于巧妙的S型流路设计,一次样品测试即可获得三次重复的实验数据,节省样品使用量,简化实验流程,同时获得高质量的实验数据。为了能够帮助大家轻松入门,快速了解分子互作市场概况和技术流派,仪器信息网特别组织策划“分子互作分析技术”专题(点击查看)。References[1] Hana Vaisocherová, Vitor M. Faca, Allen D. Taylor, Samir Hanash, Shaoyi Jiang. Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera. Biosens.TM Bioelectron. 24, 2143-2148 (2009).[2] Katrina Campbell, Anne-Catherine Huet, Caroline Charlier, Cowan Higgins, Philippe Delahaut,Christopher T. Elliott. Comparison of ELISA and SPR biosensor technology for the detection of paralytic shellfish poisoning toxins. J. Chromatogr. B, 877, 4079–4089 (2009).[3] Marlen Zschätzsch, Paul Ritter, Anja Henseleit, Klaus Wiehler, Sven Malik, Thomas Bley, Thomas Walther, Elke Boschke. Monitoring bioactive and total antibody concentrations for continuous process control by surface plasmon resonance spectroscopy. Eng. Life Sci., 19, 681-690 (2019).[4] Andreas Nechansky. HAHA – nothing to laugh about. Measuring the immunogenicity (human antihuman antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. J. Pharm. Biomed. Anal., 51, 252-254 (2010).[5] J.A. Lofgren, S. Dhandapani, J.J. Pennucci, C.M. Abbott, D.T. Mytych, A. Kaliyaperumal, S.J. Swanson, M.C. Mullenix, Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of Panitumumab, J. Immunol., 178, 7467–7472 (2007).
  • HLA检测的新芯片系统于Invitrogen推出
    Invitrogen(现属于生命科技公司)近日推出最新的自动化芯片系统,用于免疫遗传学检测,包括人白细胞抗原(HLA)的研究。Prodigy™ 系统是一种高级的DNA和蛋白分析工具,能简化并加速组织相容性研究、疫苗和药物开发,以及疾病相关的研究。      Prodigy™ 系统是第一个高通量、序列特异性的寡核苷酸探针系统,能简化HLA检测的复杂性。HLA标志物是细胞表面蛋白,在人类免疫系统中起了重要的调节作用。当身体受到外源蛋白或分子如细菌、病原体和病毒的侵袭时,它们充当了警报的角色。   与市场上的其他系统相比,Prodigy系统有着一些独特的技术改进。它的密度是目前磁珠分析的5倍,而且支持一键式的无人值守自动化,使研究人员能将宝贵的时间花在数据处理或制备更多样品上。Prodigy的内在可扩展性使它能够对500多个分析物进行多重分析,同时提供高分辨率和无以伦比的可靠性。   它的通量也是行业领先的,能在9小时内获得约290个基因型,并包含了集成软件,能简化数据分析和说明。由于具有500多个分析物的分析能力,Prodigy系统还能在未来容纳新的基因型,使它能够与现有设备轻松整合。   Prodigy的工作流程只是简单的5步:(1) 生成工作表 (2) PCR准备与扩增 (3) 将扩增物和试剂加入仪器,按下开始的按钮,然后离开 (4) 仪器自动运行分析,对芯片成像并处理数据 (5) Prodigy HLA分析软件将数据转化成基因型。   Prodigy系统的特征:   用户友好的触摸屏,用于仪器的设定   集成照相机对芯片进行快照,并转移到软件分析   芯片的容量是目前磁珠的5倍   条形码阅读器能识别胶条的批号,便于追踪   每次能运行1-12个胶条,8-96个样品   所有基因座的相同1.5小时扩增策略   体型小巧,占地面积少
  • 合肥研究院制备单根可视化的表面增强拉曼光谱纳米反应器
    近日,中国科学院合肥物质科学研究院智能机械研究所刘锦淮课题组的研究员杨良保等人成功制备了单根可视化的表面增强拉曼光谱(SERS)纳米反应器,并利用其监测及检测了等离子驱动和小尺寸金纳米颗粒催化的两种化学反应。该成果不仅实现了对两种催化体系的检测及监测,对设计更好的SERS活性平台及监测催化体系有重要意义。相关成果发表在英国皇家化学会《化学通讯》杂志上(Chem. Commun. 2015, DOI: 10.1039/C5CC03792A)。   近几年,监测等离子体驱动及金纳米颗粒催化的反应受到广泛关注,因此研究人员设计并拓展了各种各样的监测体系。众所周知,表面增强拉曼光谱(SERS)已经成为一个强大的分析方法。与其他的振动光谱相比,SERS技术不仅可以提高检测的灵敏度,更重要的是它还可以提供分子的指纹信息。这些优势使得SERS成为检测及监测催化反应的最佳分析工具。但是,大多数纳米结构作为SERS活性基底,依然存在着热点的构筑不均、纳米结构容易团聚等问题,这些问题使得SERS检测的重现性差。   针对上述问题,智能所科研人员设计了一种杂化的双金属纳米结构,可以将两种金属的特性结合到一个纳米结构中:以一维的银纳米线为模版,将合成的小尺寸正电荷金纳米颗粒利用静电吸附组装到银纳米线上。将金纳米颗粒有序地修饰在银纳米线上,颗粒和线之间的等离子耦合以及金颗粒的有序组装使得整个体系可以作为一个SERS活性平台,解决了银纳米线的SERS活性由于纵向的等离子体吸收在近红外区域,不能和激光很好地匹配而减弱的问题,成功实现对目标物的灵敏性和重现性检测。   科研人员设计的这种单个一维的SERS反应器,由于颗粒和线的等离子体耦合以及小尺寸的金纳米颗粒的具有催化效应等特点,既可以实现对等离子体驱动的化学反应监测,又可以监测金颗粒催化的反应。更重要的是,由于银纳米的长度在微米量级,可以在拉曼光学显微镜下进行清晰定位,这使得催化体系可以限定在一个固定的区域,减少周围基底的干扰。   该研究工作得到了国家重大科学仪器设备开发专项任务、国家重大科学研究计划纳米专项和国家自然科学基金等项目的支持。 单根可视化的SERS纳米反应器监测催化反应示意图
  • 中科院脑智卓越中心孔妤博士:电镜技术平台发展与使用心得分享
    生命科学基础研究与人类健康和社会经济发展密切相关,在科学和经济社会领域中的重要性日渐增强。Science 曾发布125 个挑战全球科学界的重要基础问题,其中涉及生命科学的问题约占 54%。生命科学研究过程离不开各类科学仪器的帮助,今年,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展、学习仪器使用方法。本篇由中国科学院脑科学与智能技术卓越创新中心电镜技术平台主管孔妤撰写,她根据多年工作经验,详细介绍了电镜技术的发展,并分享了生物电镜实验的心得体会。以下为供稿内容: 电镜技术平台是中国科学院脑科学与智能技术卓越创新中心公共技术中心的一个重要分支,成立之初只有一台老式透射电镜,经过多年发展,目前已具备不同配置的三台电镜和全套的电镜制样设备。平台现有专业技术人员4名,最大程度地满足中心及上海地区电镜实验方面的需求。平台大型设施的建设和功能拓展是与生物电镜技术的迅猛发展、科研方向的转变息息相关的。现就生物电镜技术及在神经科学中的实践进行分享。一、电镜简介电镜的发明起源于1927年电子光学领域先驱Hans Bush的电子束聚焦理论。1932年Knoll和Ruska创造出了世界第一台透射电子显微镜(Transmission Electron Microscope,TEM),把经加速和聚集的电子束投射到非常薄的样品上。1940年科学家们又发明了第一台扫描电子显微镜(Scanning Electron Microscope,SEM),可以看到散射的电子而不是通过样品的电子。由于高速电子的波长远小于光子,电镜的分辨率远远高于光学显微镜,用于观察光镜不能分辨的细微物质结构。经历几十年的发展,透射电镜和扫描电镜在多尺度上均能实现超高分辨率的洞察力,冷冻电镜的分辨率甚至达到2.0Å或更小的原子级理论极限值。随着生物样本保存方法和超薄切片技术的建立,电镜在细胞生物学、神经生物学、病理学、结构生物学、传染病学、药学和植物学等多领域的研究中发挥着不可替代的作用。二、透射电镜技术 透射电镜由电子光学系统、真空系统和电气控制系统三部分组成,其中电子光学系统是透射电镜的核心,包括照明系统、成像系统和图像观察系统。成像原理是:在真空条件下,高压加速的电子束穿透一层很薄(通常几十至几百纳米)的样品,形成透射电子,透射电子在电磁透镜的作用下在荧光屏或相机上成像,当电子束投射到样品时,样品的原子序数越大,荧光屏上呈现的像就越暗,所以呈现出明暗不同的灰度图像。由于生物样品的组成元素都较轻,因此用重金属元素标记膜结构可以实现生物超微结构的观察。以下为我们常用的几种生物透射电镜制样技术:1.常温包埋切片技术:早期的透射电镜主要用于病毒等极小病原体的样品形貌观察,后来发展到可以通过超薄切片观察生物样品组织和细胞内的超微结构。为保存生物样品在生活状态的超微结构特征,需要使用戊二醛、甲醛或丙烯醛等醛基固定液对样品进行化学固定,由于化学固定剂存在一定的渗透速度,生物组织需要切得尽可能的小(通常1mm3左右),以保证中心部分的细胞在发生自溶前得到固定。甲醛的分子较小,能够快速地渗透到组织内部进行固定,但甲醛只有一个醛基,固定能力较弱并且固定效果可逆,所以较难渗透的样品一般采用甲醛和戊二醛混合固定液。戊二醛具有两个醛基,可以对生物组织中的蛋白质、糖类等结构进行交联固定,具有较好的固定效果,是最常用的电镜固定液。固定后的样品再经后固定、乙醇梯度脱水、树脂渗透、包埋及聚合后即可进行超薄切片。超薄切片的制备是生物电镜技术的关键,用钻石刀获得厚度一般为50-100nm切片,收集于带膜的金属载网上,经醋酸铀和柠檬酸铅染色后在透射电镜上进行观察。2.高压冷冻-冷冻替代技术(HPF-FS):针对于一些特殊样品,单一化学固定易发生组织收缩、细胞外空间损失和细胞降解的现象,高压冷冻固定可以避免这些问题。高压冷冻是在2100bar压力下将生物样品在30毫秒内进行冷冻固定,极大限度地保存样本自然生理状态的结构特征,为研究细胞结构与功能的关系提供充分而准确的超微结构信息,避免了因化学固定引起的各种假象,同时还可以捕捉到一些光、电刺激后细胞动力学的错综变化瞬间。冷冻固定后的样品需要转移至冷冻替代仪中进行逐步回温和替代,随着温度逐渐升高,替代液中的锇酸、醋酸铀及醛类也会渗透至组织细胞中发挥固定和染色作用。HPF-FS技术虽然有着固定速度快,样品接近自然生理状态的优点,同时也存在着固定体积小(厚度不超过200μm)、易于产生冰晶损伤、设备依赖性等问题,限制了该项技术的广泛应用。3.免疫电镜技术(IEM):基本原理类似于免疫组织化学,将电镜技术与免疫标记技术结合,通过电镜下观察到的(高电子密度)标记物如胶体金或DAB染色来标记某种特定的物质,达到对某种物质在细胞中的超微定位和对组织进行超微结构研究的目的。该技术较为复杂,包括包埋前免疫、包埋后免疫、冷冻超薄切片等不同的技术路线。路线的选择依据在于是否最大限度地保存抗原的免疫活性和组织的超微结构。不能根据这些技术出现的先后来认为其先进性,它们各具优缺点,又各有相应的适用范围。①包埋前免疫是在树脂包埋之前完成免疫标记流程。固定后的样品,经过冻融或表面活性剂处理后,增加细胞膜的通透性,之后进行一抗和二抗的标记,二抗偶联胶体金标记,或辣根过氧化物酶,辣根过氧化物酶通过过氧化物反应,将DAB底物氧化沉淀在目标位点,沉淀的DAB反应物会和之后的锇酸反应,生成特定的黑色标记。完成标记的样品经过常规的电镜包埋切片制样流程,就可以在电镜下观察超微结构和其上的特异标记。包埋前免疫技术的标记效率较高,但由于标记过程中需要增加膜的通透性,所以膜结构通常保存较差。②包埋后免疫是将固定后的样品进行树脂包埋和超薄切片,将切片收集在带支撑膜的镍网上,对镍网上的切片进行免疫胶体金标记,胶体金的粒径通常为5-20nm,使用不同粒径的二抗来实现对不同抗原的多重标记。由于制样过程中需要尽可能的保存抗原,常采用的固定剂是4%多聚甲醛+0.1~0.5%戊二醛溶液或只使用4%多聚甲醛。树脂一般选择在较低的温度(-10℃~50℃)下进行紫外聚合的LR-white,LR-Gold或K4M,HM20等丙烯酸盐类树脂。HPF-FS技术也可用于包埋后免疫电镜的制样,能明显提高样品结构和抗原的保存效果。③冷冻超薄切片是将固定后的样品在-120℃进行冷冻超薄切片(50-100nm),捞于镍网上再进行胶体金免疫标记。标记后的样品用醋酸铀染色并用甲基纤维素封片后就可以进行电镜观察。由于不需要有机溶剂脱水和树脂包埋,冷冻超薄切片技术具有标记效率高,膜结构保存良好的特点,但是对技术人员的技能和经验要求高。4.负染色技术:负染色又称阴性反差染色,它是利用高密度的、且在透射电镜下又不显示结构的重金属盐(如磷钨酸、醋酸铀等),把生物标本包围起来、在黑暗的背景上显示出呈现阴性反差样品的微细结构。负染色所显示的电镜图像,正好与组织超薄切片正染色相反,其样品结构为透明浅色,而背底则为无结构的灰色或黑色。负染色技术无法看到样品的内部结构。这种方法操作简单,图像衬度高,广泛应用于水溶性样品中的颗粒性物质或生物大分子等样品质量和结构的快速检测分析,如外泌体、脂质体、细菌、病毒、蛋白质和纳米制剂等。样品的纯度和浓度都有要求,如果杂质太多样品中有盐类结晶会干扰染色反应。5.冷冻电镜技术(Cryo-EM):近年来冷冻透射电镜成为最为热门的生物研究技术之一,主要包括单颗粒分析(Single particle,SPA)和冷冻电子断层扫描(tomography)两个技术分支。单颗粒分析技术通常依赖于均质的样品,通过将纯化的蛋白质瞬间冷冻在Quantifoil金网上,将载网通过冷冻样品杆或冷冻传输装置放入冷冻电镜中进行观察,在保持蛋白天然构型的前提下,解析蛋白的构象特征。单颗粒分析在电镜下观察每个蛋白质分子在某个角度的投影,获得多个不同方向和/或粒子图像,再通过数据分析和图像分类算法得到该蛋白分子的三维构象图。随着冷冻电镜的加速电压的提高(300kV)和算法的迭代更新,单颗粒分析的分辨率甚至可以达到1.2埃,实现对蛋白质结构原子级别的解析,适用于膜蛋白、蛋白质等大分子复合物的研究。冷冻电子断层扫描技术是一种无标记的冷冻成像技术,能以纳米分辨率提供细胞器和蛋白质复合物的3D数据集。以细胞为例,首先需要对细胞进行低温冷冻(玻璃化),通过聚焦离子束 (FIB) 对细胞目标区域减薄,得到减薄的细胞冷冻薄片。将冷冻薄片置于冷冻电镜下,通过样品杆的倾转,拍摄冷冻薄片在不同角度下的一系列2D图像,然后将其重建为 3D 数据集。冷冻电子断层扫描不需要对样品进行任何脱水、染色或标记,并可以与光学显微术联合使用,获得目标细胞器、蛋白质的在细胞中的位置和纳米分辨率级别的三维结构信息。相比于SPA,冷冻电子断层扫描不仅能获得单个蛋白质的结构信息,还能得到它们在细胞内的空间排布特征以及周围亚细胞结构的三维超微特征。三、扫描电子显微镜技术扫描电镜由真空系统、电子束系统和成像系统三大系统组成。不同于透射电镜,扫描电镜的成像原理是用极细的电子束在样品表面进行逐点扫描,激发样品表面放出二次电子、背散射电子等电子信号,通过不同的电子探测器接受不同来源的电子来形成样品的表面形貌像(二次电子)或衬度像(背散射电子)等,所以扫描电镜的常用功能包括二次电子成像和衬度成像。1.二次电子成像:用被入射电子轰击出的样品外层电子成像,能量低,只能表征样品表面。生物组织在高真空条件水分会快速挥发,影响并破坏样品形态。生物样品必须经过干燥才能进行扫描电镜观察。含水的特殊生物样品也可以通过低真空模式(成像质量下降)或冷冻传输的方法进行观察。干燥方式一般有冷冻真空干燥和临界点干燥两种,其中临界点干燥法是我们常用的方法,它可以消除液体表面张力对脱水过程中样品形态的影响。干燥后的样品还需要用真空镀膜仪在表面喷镀一层导电金属,镀膜厚度控制在5-10nm为宜,用来消除荷电效应,减少热损伤,并提高在扫描电镜中定位检查所需的二次电子信号。2.衬度成像:电子照射到待测样品的过程中,样品能发射一部分电子,背散射电子探头就会检测到这些电子,从而产生相应的电信号,通过放大电路 之后,在对其进行相应的转换,后在检测器 上显示相应待检测样品表面的相关信息图像。背散射电子的数量主要与样品的原子序数有关,原子序数越大,反射的背散射电子就越多,因此可以用来对重金属加强染色的生物样品进行背散射电子成像,得到类似于透射电镜成像的效果。目前我们主要依赖于场发射扫描电镜对树脂包埋的样品进行连续切片扫描后获得序列图像,由此得到第三维度的信息。场发射扫描电镜XY的分辨率已达到2nm以上,Z轴分辨率由切片的厚度决定,现有三种策略:系列块表面(SBF-SEM)、原位聚焦离子束切割(FIB-SEM)和自动化带式收集超薄切片(ATUM-SEM)。我们实验室较早采用ATUM-SEM技术开展纳米尺度上神经网络连接和脑图谱绘制的工作,该技术最大优势在于样品可一直保存和重复成像。将连续切片按顺序收集在支持条带或硅片上,放入扫描电镜中利用高通量自动化图像采集软件进行序列成像,获得样品的三维图像数据堆栈。这些海量数据的处理和分析、目标结构的分割和3D渲染等环节都具有较强的挑战性。然而,SBF-SEM技术则是将配有钻石刀的超薄切片机整合到扫描电镜中,对暴露出的样品表面进行自动连续切片和系列背散射电子成像。FIB-SEM的成像原理与SBF类似,不同之处在于聚焦离子束替代了钻石刀切割,实现了更高的Z轴分辨率,在小体积生物样品的三维重构研究中应用非常广泛。四、电镜在神经生物学中的应用与展望电镜技术作为纳米级的生物学成像技术,为神经系统超微形态学观察、疾病病理诊断和神经环路连接图谱绘制提供了二维或三维精细结构信息。神经系统具有复杂的生物结构,有比较粗大的神经纤维、神经突起(最小直径约200 nm),也有很多精细的结构如突触间隙约20 nm及其中的囊泡(直径约30 nm)。神经组织的另一个显著特点是神经元有大量的神经突起或投射到其它神经核团上产生联系,这些神经突起、相互连接可以延伸很长的距离,甚至可以达到数毫米,构成极其复杂的神经网络。全脑神经网络连接具有极精细结构和不规则投射途径促进了体电镜技术的发展,也是当前神经生物学研究的重点之一。除此之外,光电关联技术(CLEM)在神经环路连接中的应用也较多,该技术是将FM和EM技术进行优势互补,集成应用于同一个细胞对象上,可获取多重结构信息和高分辨率。由于电镜无法感知荧光信号,在电镜里找到荧光所确定的感兴趣区域,并让两种图像准确叠合成同一信息,是关联成功的关键。CLEM的工作流程以模板化组合,但不管哪种方案目标都是最大限度的保留来自光学和电子显微镜的图像信息,尽量在EM成像之前拍好FM,避免电子束和高真空对荧光信号产生漂白作用。样品制备的基本原则是在保存荧光信号和获得高衬度电镜结构之间找到平衡点。另外,图像配准时可利用内源性的标志物如血管、细胞核、髓鞘等结构以微米精度进行逐步关联。生物电镜的样品制备原理虽然大同小异,但生物类型、样品来源、实验目标的不同决定了制样方案的多样化,这就对电镜工作者提出了更高的经验要求。非标准化流程的电镜实验数量的增多,更需要依赖多元化的制样和成像方案。电镜技术平台作为一个专业性极强的团队,在现有仪器的基础上,会不断开发新的电镜方法和设备的使用功能,为科研用户提供一站式高质量技术服务,为科研项目提供了更好的技术保障。 电镜技术平台工作人员合影作者简介:孔妤,博士,正高级工程师,现任中国科学院脑科学与智能技术卓越创新中心电镜技术平台主管,上海市显微学学会理事。从事神经生物学电镜技术和神经组织超微结构研究多年,承担青年促进会、上海市科委等多项课题项目,发表国内外研究论文十余篇。近年来主要从事微观脑网络结构分析与重构技术、光镜电镜联用技术、免疫电镜技术等在神经环路连接研究中的应用,技术全面,经验丰富,为科研工作者论文的发表提供了高水平的技术支撑服务。点击图片了解话题详情欢迎广大网友投稿:lizk@instrument.com.cn(内容包括但不限于:生命科学科研故事、生命科学相关仪器/技术分享、市场洞察等)
  • 宋海波教授:体外诊断产业面临着哪些压力
    近年来,我国IVD产业以15%以上的年增速快速成长,2018年我国的体外诊断产品市场容量已达700亿元,成为整个医疗器械行业中增速最快的细分市场。但按全国人均计算,我国每人每年的体外诊断支出仅5美元左右,远低于发达国家平均25-30美元的水平,仍处于行业生命周期中的发展阶段。随着人们对健康事业关注增强、人口老龄化进程加剧、以及国家对医疗行业的相关政策的支持,健康中国建设的不断推进,预计在未来五年甚至更长的一段时间,我国IVD行业仍将处于快速发展的黄金时期。体外诊断仅耗费了3%的医疗资源,但是提供了临床诊断超过70%的信息,被称为医生的“眼睛”。今年中美贸易摩擦以来,以中兴、华为为首的通讯行业首当其冲,受到了很大的影响。这些前车之鉴也让许多体外诊断行业从业者开始思考一个问题:如果发达国家突然停供涉及体外诊断命脉的上游原材料和关键部件,我们的体外诊断产业会面临着什么样的压力?!体外诊断系统主要由诊断仪器和诊断试剂构成,然而无论是诊断仪器还是试剂来说,都存在着与通讯行业类似的核心元器件和原材料严重依赖进口的“卡脖子”情况。我国体外诊断试剂上游原材料市场容量预计将达60亿,再加上体外诊断仪器关键零部件(组件),总体市场容量将高达100亿元以上,但大量依赖进口的情况非常严重。对于常见的体外诊断仪器来说,其主要依赖进口的核心元器件包括:(1)单光子计数模块单光子计数模块是化学发光免疫分析的核心关键部件,用于对化学发光试剂所产生的微弱光子进行计数,目前国内年消耗量约一万个,单价在6000-10000元/个。目前国内只有深圳新产业生物和深圳迈瑞公司购买光电倍增管(价格约2000-2500元/个),自己研发电路来构成单光子计数模块,其它公司都需要对外采购,市场几乎全部被日本滨松公司所垄断。(2)凹面平像场光栅凹面平像场光栅是高端全自动生化分析仪的核心关键零件,用于后分光单色光的产生。目前国内生产高端全自动生化分析仪的厂家(深圳迈瑞、长春迪瑞、深圳新产业)都是使用日本岛津(SHIMADZU)的凹面平像场光栅。国内宁波源绿光电有限公司也实现了凹面平像场光栅的生产,但由于价格和质量的原因,并未获得国内主要生化分析仪的厂家的认可。(3)激光器激光器是流式细胞仪、流式颗粒荧光分析仪、数字PCR、高端五分类血液分析仪的重要关键部件,用于产生稳定且光斑窄细的光源,以便对检测对象进行照射或激发,从而形成检测信号。目前高端流式细胞仪等仪器都采用美国相干(Coherent)的产品,价格在3万-4万/个。国内苏州维林光电有限公司已经可以实现高性能激光器的生产,价格约在2万/个,仅有进口产品的一半左右,获得部分国内厂家的使用。(4)加样针加样针是高端全自动生化分析仪和全自动化学发光免疫分析仪的重要关键零件,用于吸取微量样品(最低1ul)到反应杯中。加样针是一系列设备的关键零部件,其质量直接影响仪器的整体性能指标。目前国产高端生化分析仪和化学发光分析仪的加样针全部依赖进口,加样针的进口供应商主要有日本伊藤制作所、日本高砂和瑞士UNIMED等。深圳万臣科技和深圳中科康森瑞特也在做加样针,但因为性能原因,目前还没有在国产高端仪器中得到应用。(5)柱塞泵柱塞泵是全自动生化分析仪、全自动化学发光免疫分析仪等体外诊断仪器的关键部件,主要用于吸取样品和试剂。目前国内高端体外诊断产品都选用美国IDEX公司的柱塞泵,价格在1500-2000/个。近几年深圳垦拓、深圳恒永达、东莞聚瑞公司都研发并量产出性能不错的柱塞泵,并在一些国内知名体外公司的一些产品中得到应用。(6)无阀柱塞泵无阀柱塞泵是全自动化学发光免疫分析仪的重要关键部件,主要用于将激发底物泵入反应杯。无阀柱塞泵的厂家主要是日本的IWAKI,价格2000元/个左右。去年东莞信浓公司研发出无阀柱塞泵,并在一些公司的产品中试用,但目前还没有大批量使用。(7)电磁阀电磁阀是全自动生化分析仪、全自动化学发光免疫分析仪、五分类血液分析仪的关键部件,主要用于液流的切换和通断,其性能好坏直接影响整机性能。目前高端产品的电磁阀主要还是进口品牌,主要有德国宝帝和日本SMC,价格500-1000/个。深圳垦拓最近几年进步很快,研发并量产的电磁阀在很多国内体外诊断公司的产品中得到批量应用。(8)鞘流池鞘流池是全自动五分类血液细胞分析仪、流式细胞仪、流式颗粒荧光分析仪的关键部件,主要用于产生鞘流和检测区域,每年需求量约为4万~5万个。目前主要依赖德国Hellma、日本Japan cell等进口供应。目前国内有光学器件加工公司相继投入到流动室的产品研发当中,其中已经实现量产的有福州高意科技、福州荣德光电科技等,前者与迈瑞公司独家合作开发,一般不销售给国内其他血球仪厂家;而福州荣德光电近两年才有产品出现,厂家使用均还处于样品验证阶段,并未批量使用。由于流动室的制程工艺从石英玻璃毛坯到成品涉及约几十道工序,多数关键工艺依赖于熟练的技工,因此制程稳定性差,不良率较高。目前国产产品的精度不如进口流动室,使得其一般只使用在低端五分类血球仪,不能使用到要求较高的中高端产品。体外诊断试剂中核心原材料对于进口依赖的情况与诊断设备相比有过之而无不及:(1)抗原和抗体主要用于各类免疫诊断,是最重要的体外诊断原料之一,广泛用于酶联免疫分析、化学发光免疫分析、胶体金侧向层析、荧光免疫侧向层析等检测平台,目前国内市场容量已经接近30亿。抗原和抗体国际先进企业包括Hytest,Medix, Meridian等。国内创新创业在这一领域极为活跃,许多新项目与国外的差距越来越小,但也应该看到目前自身免疫、高血压等大类的核心原料国内仍然无法自主生产,而且部分单体市场价值在1亿元以上的大宗抗体(如HbA1c、d二聚体、CKMM等)国内产品的质量仍无法达到临床应用的需求,几乎全部依赖进口。(2)酶/辅酶/酶底物广泛用于生化、免疫、分子、POCT、凝血、血糖等几乎所有的体外诊断子领域,是应用面最广泛的核心生物原料,目前国内的酶/辅酶/酶底物市场约20亿,主要由罗氏、东洋纺等进口品牌主导。酶制剂相关的产品技术门槛高,市场较为零散,国内各个细分领域发展不平衡,国内企业在RT-PCR分子诊断领域、凝血、血糖等大量使用酶的体外诊断领域的实力仍较薄弱。部分基础性原料如辣根过氧化物酶、抗坏血酸氧化酶等量大面广的基础性产品严重依赖进口,“卡脖子”现象极为严重。(3)磁微粒/微球/NC膜是磁微粒化学发光、胶乳免疫比浊、免疫荧光、液相芯片、核酸提取等过程的关键材料与反应载体。目前国内磁珠市场约2亿,胶乳微球约1亿,NC膜约2亿。这部分产品国内主流厂家几乎全部采用进口如Merck、GE、Thermo Fisher、JSR的产品。近年来,国内已有一些团队进行了相当深入的核心技术储备,但目前还没有形成大规模的销售,其生产工艺稳定性与品牌影响力还有待检验,总体国产化率仍然极低。试剂原材料和设备元器件在整个体外诊断产业链中居于重要的战略意义。它们是体外诊断技术创新的源头,下游临床应用技术的创新往往需要原材料层面进行支撑,因此想要掌握最先进的诊断技术,常常需要先掌握最先进的原料技术;其次,这些核心原料对于诊断系统的性能影响极大,核心原料的性能极限在很大程度上决定了体外诊断系统性能的上限,想要开发性能最强的诊断技术也经常需要高端的原料进行支撑。目前我国核心原料产业大量依赖进口,国外厂家处于垄断地位导致成本高居不下,严重影响了中国企业的国际竞争力。而且在贸易战的背景下,大量进口的核心原材料持续顺畅供应难以得到充分保障,严重影响了整个体外诊断行业的产业安全。仅拿辣根过氧化物酶这一种原料举例,该酶制剂的市场价值仅有数千万元人民币,但是却支撑了将近一半的生化诊断试剂以及大部分酶联免疫分析试剂及相当部分的磁微粒化学发光试剂,一旦这单一原料的进口供应不稳定,将直接导致国内体外诊断行业出现极大的波动,对下游数万亿的医学检验乃至整个医疗产业造成极大的影响。2017年罗氏诊断生命科学部原料部全球销售额近2.65亿瑞士法郎,约合17亿人民币,其中生化和免疫原料占到50%以上,分子诊断原料占到约30%。罗氏诊断也是较早进入到中国市场的国际公司之一,据统计2017年罗氏在中国IVD原料销售额超过2亿人民币,是中国诊断试剂生化酶原料市场份额最大者和市场领跑者。东洋纺健康医学部2017年度全球销售近357亿日元,约合20亿人民币。东洋纺在中国IVD市场产品以生化原料和大包装试剂为主,也在积极布局分子诊断原料市场,2017年总体原料销售近2亿人民币。BBI公司2017年全球销售额近4.6亿人民币,其中蛋白质和抗体相关产品销售额近4700万人民币,增长幅度为36.2%。此业务毛利率为41.6%。迈迪安生命科学部2016年全球销售额近5000万美金,其中中国市场贡献超过400万美金,增长62%,中国市场的高增长率也是未来迈迪安发展的关键。我国本土化的生物原材料上游活跃生产研发经营企业瀚海新酶、菲鹏生物、蓝园生物、阿匹斯、诺唯赞、海狸生物、百川飞虹、海肽生物、华美生物、中美歆新、探生生物、普泰生物、为度生物、英芮诚、珠海博美、爱博生、博奥森、隆基生物、科跃中楷、奥创生物、健乃喜、上海领潮、贤至生物、近岸科技、索莱尔博奥、万科隆、格瑞林等也有着不错的市场表现。我国的上游关键原材料行业近年来有了长足的发展,但仍存在如下显著的发展瓶颈:1) 起步晚,基础弱:国产体外诊断产业规模的形成也就二十年的时间,近十年发展尤为迅速,但关键原料和关键部件基本都是选用国外品牌,国内关键原料和关键部件是随着国内体外诊断产业发展跟随着发展的,有一定的滞后性。而且关键原料对于整个体外诊断产业来说属于上游,市场空间要小,因此进入这个领域的都是个人为主,公司规模普遍不大,研发能力欠强,产品质量不高,工艺稳定性不佳,这些都是一个产业从小到大发展的必经过程,也是目前需要正视的现状;2)品牌弱,市场推广难:体外诊断下游厂家在研发阶段,为保证产品质量,一般都是选用进口的关键原料和关键部件,另外体外诊断试剂的毛利率比较高,因此下游生产企业选用国产原料和部件动力不高。而对于已经研发完成的产品,如果要变更关键原料和关键部件,按照现在的医疗器械的管理条例需要重新注册或注册检验,因此只有在有很大的成本压力的情况下,下游厂家才有意愿去选用国产关键原料和关键部件,进一步造成国产化替代的成本较高。此外,国内大部分体外诊断试剂或仪器厂家对于国产原料歧视性对待,导致原料厂商处于弱势地位,即使在产品质量过关的情况下,也常常会面对客户过分的价格要求,导致难以获得合理的利润进一步发展壮大。体外诊断的核心原料产业是牵一发而动全身的战略领域,谁能在此领域获得发展或尽早布局,谁将是未来体外诊断发展的主载,且该领域的发展和进步既保证了体外诊断产品生产研发的战略安全,也很好的解决了“受制于人”和确保产品安全生产的“备胎”问题。认真面对这些问题,如何确保我们国家的体外诊断生产安全,在突发制约状况发生的情况下,我们能有很好的“备胎”计划,这就需要我们有很好的建议和进行深入的思考。对于我国本土化的上游原材料生产企业而言,需要更加系统且严谨地进行有效的质量控制,从原材料到最后的生产纯化及工艺都必须严格把关,做好体外诊断试剂、仪器生产的坚实后盾,共同推动我国体外诊断行业走上更加健康的发展道路。为此,需要本土化的原料供应商进一步的提升自身的创新能力与产品质量,不断增强自己的核心竞争力,这是获得长久发展的根本;其次,需要下游体外诊断试剂和仪器的生产企业要改变观念,一定要知道产品的质量是在迭代中提高的,任何一款产品都是在使用过程中发现问题并解决问题,在问题的不断的解决中持续提高产品品质,如果国产的下游生产企业不使用国产的原料和部件,那么我们国家的体外诊断产业就永远会耽心被国外“卡脖子”;再者,我们的资本和生产企业应重视和关注上游原材料的生产企业,要加大在这一领域的投入。这就如同我们国家的检验科不使用国产的体外诊断产品,就不可能成就我们国产的体外诊断产业发展一样。另外,下游厂家也不要一味的认为国产的就应该比进口便宜很多,不比进口便宜很多就不使用国产的,任何高质量的产品一定需要高投入的研发,靠低廉的价格就很难促进高质量产品的提升。观念不仅仅是从企业自身的经济角度看,而应该从整个行业和企业长久发展的角度去战略定位。为了促进关键原料和关键部件的发展,下游生产企业可以适当参股上游关键原料和关键部件的研发与生产公司,组成合作共赢的战略伙伴,进而推动和促进上游关键原材料的生产和研发。马克思在 100 多年前就告诉我们一条真理,“从来就没有什么救世主,也没有神仙皇帝”。因此我们有责任和义务去关心支持我们本土化的上游原材料的生产、研发和销售企业,以更高的角度和要求来帮助我们本土化的上游原材料生产研发经营企业不断的提升品质和规模,当然人类健康的事业要靠全人类的共同努力,我们不能排斥发达国家的先进技术和优越性能与品质的好产品,正因如此我们必须始终在短板领域保有创新和进取的勇气,只有这样才能不断的缩小差距,才能在更好的为人类健康事业发展和进步服务的同时,不断的发展强大自身。宋海波教授全国卫生产业企业管理协会副会长全国卫生产业企业管理协会医学检验产业分会会长中国分析测试协会标记免疫分析专业委员会副主任委员全国卫生产业企业管理协会实验医学分会秘书长中国医学装备协会检验医学分会学术委员会副主任委员全国医用临床检验实验室和体外诊断系统标准化技术委员会常务委员中国体外诊断网、体外诊断资讯网、《中国体外诊断产业发展蓝皮书》编委会主编《复合医学杂志》、《国际检验医学杂志》等杂志常务编委天津医科大学、吉林医药学院客座教授中国医疗器械政策研究与安全评价中心特聘研究员CACLP创始人
  • 流式荧光技术检测与化学发光技术检测那些事儿
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工前段时间,有很多新关注崔工公众号的朋友问崔工一个问题,什么是流式荧光检测技术?它的原理是什么?传统的化学发光检测技术又有什么?问崔工这个问题的朋友应该是刚进入到这个行业,还不是很了解这个行业。今天就跟大家聊聊,供大家参考。— 1 —什么是流式荧光检测技术?从百度百科了解到,流式荧光,又称悬浮阵列、液相芯片等,是近20多年逐渐发展起来的多指标联合诊断技术。该技术以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,多指标并行分析,最多可一管同时准确定量检测2-500种不同的生物分子。具有高通量、高灵敏度、并行检测等特点。可用于免疫分析、核酸研究、酶学分析、受体、配体识别分析等多方面、多领域的研究。流式荧光检测技术的原理是什么?将荧光标记后的单细胞(或颗粒)悬液进入吸样管,进而随鞘液进入流动室。进入流动室之前的管道变细,迫使鞘液从四周、样本在中心进入流动室,在外加压力的作用下由下向上(或由上向下)直线流动。鞘液充满流动室将样品裹挟,当二者通过流动室喷嘴流出时,压力迫使鞘液包裹的液滴包含单一细胞或颗粒垂直通过检测区。在检测区与液滴垂直的位置设置激光,在与激光垂直的位置设置探测器(透镜等),液流、激光、探测器互相垂直并聚焦于一点实现流体动力聚焦。荧光标记的细胞或颗粒在激光激发下发出散射光和荧光的发射波,散射光和发射光被检测器获取,再经一系列滤光片、光栅处理去除干扰并将光信号经光电转换和放大后输入计算机,并由软件分析处理。而细胞分选则是对荧光标记的目的分子分别加载正或负电荷,当其在随液滴滴落的过程中受到外加高压电场的作用发生偏转而落入接收容器,从而获得目的细胞群。流式荧光检测技术有什么技术特点?1、高通量:将许多种不同荧光编码的微球放在同一反应体系内,一次可同时检测2-500种生理病理指标,这与传统方法的逐个检测相比是质的飞跃。2、高敏感性:流式荧光技术最高的检测下限可达0.01 pg/ml,常规的酶联免疫吸附试验(ELISA)仅为μg级,比后者检测的灵敏度提高10—100倍。3、线性范围宽:检测的线性范围比常规的ELISA方法高10倍以上,可达3-5个数量级。检测浓度范围为pg-μg级。4、反应快速:因流式荧光技术的杂交或免疫反应在悬浮的液相中进行,反应所需的时间短(从2 h缩短到20—40 min),杂交后常不用清洗,即可直接读数,所以检测效率高于固相杂交。5、重复性好:杂交发生在准均相液体环境中,其结果稳定,重复性非常好。检测时,抽取其中的100颗微球读数,最终的数据取其均值或中位值,这样可将误差减到最小。6、利于探针和被检测物的充分反应:由于液相环境更有利于保持蛋白质的天然构象,所以也更有利于探针和被检测物的反应。7、操作简便:流式荧光技术平台的整个反应过程只涉及加样和孵育,最后上机读数,操作步骤少,简单易用。— 2 —什么是化学发光检测技术?这里既然是跟流式荧光检测相比较的,那这里的化学发光检测技术指的是化学发光免疫分析技术。化学发光免疫分析:是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。化学发光检测技术的类型及原理化学发光检测技术的类型分为直接化学发光免疫分析,化学发光酶免疫分析和电化学发光免疫分析。直接化学发光免疫分析用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗 原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和 NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、 发光 。由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可从标准曲线上计算出待测抗原的含量。化学发光酶免疫分析酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成 固相包被抗体-待测抗原-酶标记抗体复合物;经洗涤后,加入底物(发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光电倍增管将光信号转变为电信号并加以放大,再把它们传送至计算机数据处理系统,计算出测定物的浓度。电化学发光免疫分析电化学发光免疫分析 (electrochemiluminescence immunoassay, ECLIA)是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。化学发光免疫分析技术的优势是什么?1、灵敏度高:灵敏度高是化学发光免疫分析关键的优越性。化学发光免疫分析能够检出放射性免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。2、宽的线性动力学范围:发光强度在4-6个量级之间,与测定物质浓度间呈线性关系。这与显色酶联免疫分析吸光度(OD 值)2.0 的范围相比,优势明显。虽然同位素放射免疫也有较宽的线性动力学范围,但是放射性限制其应用。3、光信号持续时间长:化学发光免疫分析的光信号持续时间可达数小时甚至一天,简化了实验操作及测量。4、分析方法简便快速:绝大多数分析测定仅需加入一种试剂(或符合制剂)的一步模式。5、结果稳定、误差小:样本本身发光,不需要额外光源,避免了外来因素的干扰(光源稳定性、光散射、光波选择器),分析结果稳定可靠。6、安全性好及使用期长:到目前为止还未发现化学发光免疫分析试剂的危害性;另外这些试剂稳定,保存期可达一年之久。以上是对什么是流式荧光技术检测与化学发光技术检测基本原理做了一个说明,供大家参考。【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)(本文编辑:刘立东 点击查看KOL主页)
  • 全国生命分析化学研讨会:药物分析论坛
    仪器信息网讯 2010年8月20日,由国家自然科学基金委员会化学科学部主办,北京大学、清华大学和中国科学院化学研究所共同承办的“第三届全国生命分析化学学术报告与研讨会”在北京大学召开。研讨会同期召开了“食品分析、药物分析、仪器装置”等多场专题论坛,“药物分析”专题论坛共吸引了300余位业内人士的参加。   会议由南昌大学倪永年教授、陕西师范大学张成孝教授联合主持,中国科学院大连化学物理研究所梁鑫淼研究员、北京理工大学屈锋教授、中国科学院大连化学物理研究所秦建华研究员等专家为与会者作了精彩的报告。 倪永年教授 张成孝教授   报告人:中国科学院大连化学物理研究所梁鑫淼研究员   报告题目:中药复杂体系分离分析新策略与方法   梁鑫淼研究员表示,其课题组将高通量制备、高通量SPE浓缩和正交分离三种方法相结合,发展了一种新的分离策略。该策略的应用有利于制备效率的提高、微量化合物和高纯度化合物的制备,对于中药物质基础研究具有重要意义。   高通量制备技术能够在短时间内将复杂中药分为大量组成相对简单的小组分,使得后续分离较为容易,分离效率有了明显提高。该课题组以中等极性组分为例,发展了中药小组分的高效高通量制备方法。该方法利用HPLC的高效性,快速将复杂样品切割为组成相对简单的小组分,简化了进一步的纯化分离,有利于制备效率的提高 四通道平行制备色谱的采用,将制备通量提高四倍,在短时间内制备出大量馏分,实现了中药小组分的高通量制备。   高通量浓缩技术是高通量制备技术的重要组成部分。由于反相液相色谱流动相中水的比例较大,使得这些小组分浓缩十分困难,成为制约整个制备过程的瓶颈问题。该课题组针对大量中药小组分的浓缩问题,通过SPE填料的选择、高通量SPE浓缩仪的设计、回收率的考察发展了基于SPE的高通量浓缩方法。该方法浓缩效率高,可一次实现48个馏分的浓缩,实现了中药小组分的高通量浓缩。   通过高通量制备获得大量的中药小组分,其中一些较为简单的组分可以在不同类型的C18或C8柱上通过二次制备获得纯化合物,但对于较为复杂或含有难分离化合物的组分,这种简单的二次制备很难获得高纯度的化合物。因此,梁鑫淼课题组发展了中药小组分的正交分离方法,选择与C18正交性好的色谱模式或色谱柱,一方面能够对中药小组分进行深入分析,更好地揭示中药的复杂程度 另一方面有利于高纯度化合物的分离制备。   报告人:北京理工大学屈锋教授   报告题目:毛细管电泳在生物分析检测中的新应用   毛细管电泳作为高效、快速、简单、低成本的微量分子技术在生物体(细胞、微生物)和生物大分子(蛋白质、核酸)研究中具有着广泛的应用空间和潜力。   屈锋课题组近年来进行了以下研究: 1)针对动物细胞的活性分析,建立了单细胞连续流毛细管电泳双波长检测分析方法和基于特异性染料的毛细管区带电泳细胞活性分析法 2)利用毛细管区带电泳分析大肠杆菌基因突变菌株,探索毛细管电泳在基因突变菌株研究中的新应用 研究了大肠杆菌与核酸适配体库的相互作用,以及毛细管电泳测定微生物表面电荷特征的方法 3)蛋白质与核酸适配体文库的相互作用评价方法,以及多种蛋白质适配体的毛细管电泳筛选方法对比研究 4)离子液与天然核酸和合成核酸的相互作用的毛细管电泳表征研究。   报告人:中国科学院大连化学物理研究所秦建华研究员   报告题目:微流控芯片生物化学实验室   微流控芯片又称“芯片实验室”(Lab-on-a-Chip),具有将化学、生物实验室的基本操作功能单元缩微到一个几平方厘米芯片上的能力,被认为是本世纪的重要科学技术之一,具有重大应用前景。   多年来,秦建华研究员所领导研究组围绕微流控芯片技术、方法以及在生物医学和化学领域中的应用等方面开展了一系列研究工作,建成了具有自主知识产权和核心竞争力的微流控芯片及其应用系统。   该研究组在已有的玻璃、石英、PDMS 和PMMA 等不同材料芯片制备方法的基础上,建立了富有特色的基于水凝胶的液塑PDMS 芯片制备技术,和以蜡疏水隔离及硝酸纤维素膜为特征的纸芯片制备技术,构建了一系列功能化微流控芯片平台。   据介绍,在发展平台技术的同时,该研究组开展了一系列基于分子、细胞甚至动物水平的生物医学应用研究,并逐渐形成系统和特色:1)构建了集成化芯片核酸分析系统 2)构建了规模集成化芯片免疫分析系统 3)构建了微流控芯片细胞学研究平台,包括细胞水平高内涵药物筛选平台,集成有肝微粒体生物反应器和电泳分离功能的药物代谢研究平台,以及肿瘤细胞与微环境相互作用研究平台(图1)。4)以经典模式生物线虫为对象,建立了基于液滴和微泵阀控制的芯片模式生物药物筛选平台,用于神经退行性变疾病(帕金森病)研究。   报告人:广西师范大学赵书林教授   报告题目:微流控芯片电泳在线衍生化学发光检测巯基类药物   赵书林教授在报告中介绍到,其课题组采用集成柱前和柱后反应器的微流控芯片,以N-(4-氨基丁基)-N-乙基-异鲁米诺(ABEI)和邻苯二甲醛(OPA)为衍生试剂,建立了微流控芯片电泳在线衍生化学发光测定巯基类药物的新方法。其详细考察了影响在线衍生反应、电泳分离和化学发光检测的各种因素。在优化的实验条件下,化学发光检测四种巯基类药物(硫普罗宁、卡托普利、硫鸟嘌呤、6-巯基嘌呤)的检测限为8.9~13.5 nmol/L。该方法用于人血浆中巯基类药物,相对标准偏差小于4.9%,回收率为93.4%~101.6%。   报告人:桂林理工大学李建平教授   报告题目:基于酶放大效应的分子印迹传感器检测超微量土霉素   目前,分子印迹传感器由于检测原理限制,灵敏度一直较低,李建平教授将酶放大效应引入其中,制备了一种基于酶放大效应的新型分子印迹传感器,大大提高了检测的灵敏度。   该实验以土霉素(OTC)作为目标模板分子。分子印迹膜修饰在电极的表面,把土霉素分子通过与孔穴中功能位点的作用连接在分子印迹膜上。由于葡萄糖氧化酶和辣根过氧化物酶标记的土霉素(OTC-GOD 和OTC-HRP)存在空间位阻效应,部分孔穴只能识别OTC,而不能识别酶标记的OTC,因此李建平教授在检测之前引入了“掩蔽”这一步骤,以使所有的印迹孔穴全部被占据。然后将传感器在高浓度的酶标记的土霉素溶液中进行孵化,使得OTC-GOD(HRP)将OTC从置换出来。随着标记酶减少,分子印迹传感器在检测体系中的电化学信号将会明显降低。样品中土霉素的浓度与酶对溶液中底物催化反应导致浓度变化产生的电化学信号有直接关系,这就达到了利用酶放大效应提高分子印迹传感器灵敏度的目的。   报告人:兰州大学张海霞教授   报告题目:新型键合型聚赖氨酸固定相的制备与评价   张海霞教授通过表面键合的方式将NCA-赖氨酸单体聚合到氨丙基功能化的硅胶上,合成新型聚赖氨酸固定相,并对其进行元素分析,红外光谱等表征。通过与C18商业柱的色谱行为进行对比,评价了其在高效液相色谱中,对苯系物,酸性物质,碱性物质,以及强极性和亲水性小分子物质的色谱保留行为。并且该实验研究了流动相中水含量,缓冲溶液PH值,离子强度的不同对色谱保留行为的影响。结果表明聚赖氨酸固定相是反相和亲水混合作用色谱模式。具有很好的应用前景。   此外,来自大同大学的冯锋教授、西南大学的袁若教授分别为大家作了“荧光法研究哮喘病人淋巴细胞膜上钠钙交换的异常表现”、“基于合金功能化的硅纳米纤维和凝集素-糖蛋白为复合固载基质的拟双酶葡萄糖生物传感器的研究”的专题报告。
  • 免疫组化(IHC)的 "疑难杂症" 再也不愁
    免疫组化简介免疫组织化学又称免疫细胞化学,是指带显色剂标记的特异性抗体在组织细胞原位通过抗原抗体反应 和组织化学的呈色反应,对相应炕原进行定性、定位、定量测定的一项新技术。它把免疫反应的特异性、组织化学的可见性巧妙地结合起来,借助显微镜(包括荧光显微镜、电子显微镜)的显像和放大作用,在细胞、亚细胞水平检测各种抗原物质(如蛋白质、多肽、酶、激素、病原体以及受体等)。免疫组化基本原理免疫组化技术是一种综合定性、定位和定量;形态、机能和代谢密切结合为一体的研究和检测技术。在原位检测出病原的同时,还能观察到组织病变与该病原的关系,确认受染细胞类型,从而有助于了解疾病的发病机理和病理过程。 免疫酶组化技术是通过共价键将酶连接在抗体上,制成酶标抗体,再借酶对底物的特异催化作用,生成有色的不溶性产物或具有一定电子密度的颗粒,于普通显微镜或电镜下进行细胞表面及细胞内各种抗原成分的定位,根据酶标记的部位可将其分为直接法(一步法)、间接法(二步法)、桥联法(多步法)等,用于标记的抗体可以是用免疫动物制备的多克隆抗体或特异性单克隆抗体,最好是特异性强的高效价的单克隆抗体。直接法是将酶直接标记在第一抗体上,间接法是将酶标记在第二抗体上,检测组织细胞内的特定抗原物质。目前通常选用免疫酶组化间接染色法。那么,显色常用的酶为辣根过氧化物酶(HRP),常用的显色底物为DAB(3,3’-二氨基联苯胺),偶尔用AEC(3-氨基-9-乙基咔唑)。碱性磷酸酶(AP或AKP)也是目前免疫诊断试剂最常用的标记酶之一,稳定性好、灵敏度高。表1. 免疫组化(IHC)显色系统的选择免疫组化注意事项1. 组织取材为避免蛋白丢失及组织受损引起的非特异试剂吸附,取材须快速(组织块也不宜太大)且要尽量避免人为损伤。2. 固定固定要及时、彻底,但也不能固定过久。实验证明甲醛固定时间越久的组织越容易出现自发荧光及非特异性染色。一般以 12~36 小时最好。3. 石蜡片与冰冻片的选择石蜡片制作对设备要求较冰冻片低,组织结构更好,保存条件简单时间也久。但对部分蛋白有较强烈的破坏作用,对蛋白保护较冰冻片差。冰冻片对蛋白的保护较石蜡片好,制作起来也较快。4. 灭活过氧化物酶(HRP)系统的一定要做内源性过氧化物酶的灭活,而对于碱性磷酸酶(AP)系统和免疫荧光这个步骤不需要做。5. 抗原修复不同的样本、不同的蛋白其最佳的抗原修复方式会有所区别,热修复(酸性修复液(柠檬酸盐修复液)、碱性修复液(EDTA 修复液)及酶修复(蛋白酶)都可做尝试。对于陈旧的样本要增加修复强度,比如延长修复时间。6. 封闭常用的封闭液有 5% BSA 和血清。BSA 是通用型的封闭液。血清应选择与二抗同源的血清。7. 抗体孵育一抗一定要与实验及样本匹配的,孵育条件以 4 ℃ 过夜最佳。二抗应匹配一抗,37 ℃ 孵育半小时即可。8. 显色DAB 显色建议在镜下控制反应时间,在阳性及背景之间选择平衡点。免疫组化常见问题分析1.脱片产生的原因有哪些 1、烤片时间不够,或温度不够,可以延长烤片时间和提高烤片温度; 2、多聚赖氨酸玻片质量的问题。 3、组织切的不好,切片机的问题例如比较老的旧的机器切的厚或者不均匀,或者切片者手法不好等。 4、修复的问题:抗原修复的时候高压时间过长了,或者放进100度的修复液时手法不好,咚的一声就丢进去了,这样超容易脱片。此外,用EDTA修复比柠檬酸容易脱片,但是你要用到EDTA的时候也没办法,只有从另外的问题上着手。 5、操作的时候甩的太猛了,有脱片嫌疑的片子最好不甩或轻轻甩,用卫生纸从边缘上慢慢吸水。 6.组织的问题,我用的组织癌症的很多,越是癌症组织有坏死之类越容易脱。2.边缘效应1、组织边缘与玻片粘贴不牢,边缘组织松脱漂浮在液体中,每次清洗不易将组织下面试剂洗尽所致. 解决办法:制备优质的胶片(APES或多聚赖氨酸),切出尽量薄的组织切片,不厚于4微米,组织的前期处理应规范,尽量避免选用坏死较多的组织;2、切片上滴加的试剂未充分覆盖组织,边缘的试剂容易首先变干,浓度较中心组织高而致染色深。解决办法:试剂要充分覆盖组织,应超出组织边缘2mm。用组化笔画圈时,为了避免油剂的影响,画圈应距组织边缘3-4mm。3.切片染色后背景太深,如何区分特异性sing与非特异性着色全片着色是指整个切片全都染上了颜色,着色的强度可深可浅,总之,分不清那些组织是阳性那些组织是阴性。出现这种现象的原因有:(1)抗体浓度过高:一抗浓度过高是常见的原因之一。解决办法是,每次使用新抗体前应当对其工作浓度进行测试,使每一抗体个体化,找到适合自己实验室的理想工作浓度,既使是即用型的抗体也应如此,不能只简单的按说明书进行染色。(2)抗体孵育时间过长或温度较高:解决办法是,严格执行操作规程,最好随身佩带报时表或报时钟,及时提醒,避免因遗忘而造成时间延长。现在流行的二步法(Polymer)敏感性很高,要求一抗孵育的时间不是传统的1小时,而是30分钟,因此,要根据染色结果进行调整。(3)DAB变质和显色时间太长:DAB最好现用现配,如有沉渣应进行过滤后再用。配制好的DAB不应存放时间太长,因为在没有酶的情况下,过氧化氢也会游离出氧原子与DAB产生反应而降低DAB的效力,未用完的DAB存放在冰箱里几天后再用这种似乎节约的办法是不可取的。DAB的显色最好在显微镜下监控,达到理想的染色程度时立即终止反应。不过当染色片太多时或用染色机时,这样做似乎不现实,但至少应对一些新的或少用的抗体显色时进行监控,避免显色时间过长。(4)组织变干:修复液溢出后未及时补充液体、染色切片太多、动作太慢、忘记滴液、滴液流失等都是造成组织变干的原因。解决的办法是操作要认真仔细,采用DAKO笔或PAP Pen在组织周围画圈,可以有效的避免液体流失,也能提高操作速度。(5)切片在缓冲液或修复液中浸泡时间太长(大于24小时):原因上不清楚,但现象存在。有的实验室喜欢前一天将切片脱蜡至修复,第二天加抗体进行免疫组化染色,如果将装有切片和修复液的容器放在4º C冰箱过夜,对结果无明显影响,如果放在室温,特别是炎热的夏天,会出现背景着色,因此,不可存放时间太长。(6)一抗变质、质量差的多克隆抗体:注意抗体的有效期,过期的抗体要麽不显色要麽背景着色。用新买的抗体时最好设立阳性对照和用使用过的抗体作比较。4.免疫组化染色呈阴性结果1、抗体浓度和质量问题以及抗体来源选择错误;2、抗原修复不全,对于甲醛固定的组织必须用充分抗原修复来打开抗原表位,以利于与抗体结合;建议微波修复用高火4次*6min试试。有人做过实验,这是最佳的时间和次数。若不行,还可高压修复;3、组织切片本身这种抗原含量低;4、血清封闭时间过长;5、DAB孵育时间过短;6、细胞通透不全,抗体未能充分进入胞内参与反应;7、开始做免疫组化,我建议你一定要首先做个阳性对照片,排除抗体等外的方法问题。5.背景1、考虑一抗浓度高;2、然后调整DAB孵育时间;3、也要考虑血清封闭时间是否过短;4、适当增加抗体孵育后的浸洗次数和延长浸洗时间等。
  • 邀请函 | 深蓝云Gene-π 数字PCR学堂(北京站)预约开始啦,唯技术不可辜负哦!
    数字PCR技术的诞生和发展为核酸精准定量和基因检测提供了全新的思路,可实现单细胞/单分子层面的绝对定量。目前,该技术已经在肿瘤个体化诊疗、基因编辑、液体活检、病原微生物、先进的细胞治疗、基因治疗检测等前沿生命科学研究、临床医学检验、药物研发等多个领域实现突破性应用和发展。在先进治疗领域,数字PCR可以提供比qPCR更精准的核酸定量,不依赖于标准品和标准曲线,直接读取阳性信号,通过泊松分布校正得到目标基因的绝对拷贝数,并具有检测周期短,灵敏度和精确度高等特点。用于先进的细胞治疗、基因治疗相关载体的滴度检测,病毒完整性检测,宿主残留检测以及微生物检测等,突破现有检测方法的局限性,精准质控确保结果可靠。为更好地让广大学者了解数字PCR技术,Gene-π数字PCR学堂——核酸绝对定量分析及应用训练营(北京站)将于2021年05月13日在北京召开。聚焦于数字PCR原理、实验操作、应用进展、结果分析,先进治疗中的质量控制、病毒载体标准品定量等核心内容,训练营将携资深技术专家,为广大学员带来从理论到实战、从入门到精通的饕餮盛宴。培训时间地点时间:2021年5月13日地点:北京市昌平区中关村生命科学园医疗园路 北大医疗创新谷二层第二会议室培训日程您在PCR实验操作中是否遇到过问题?如何在实验过程中设置质控要求?数字PCR在什么浓度范围内检测是准确的?数字PCR的最低检测限如何评估?数字PCR引物探针设计和qPCR有什么区别及如何评估其质量?在本次训练营中都可以得到答案,心动了吗?心动了就赶紧报名吧!场地有限,报名从速哦。可以通过扫描下方二维码进行报名哦!敲黑板了!我们的初衷是--真诚地把先进技术和应用带给大家!只要您提交了报名申请,经审核通过后,收到报名成功确认通知,就可以参加我们的培训班啦!因场地有限,先到先得哦。赶紧报名吧!
  • 【邀请函】Gene-π 数字PCR学堂2021第一站——上海张江马上开课啦,赶紧先“约”为快哦!
    数字PCR技术的诞生和发展为核酸精准定量和基因检测提供了全新的思路,可实现单细胞/单分子层面的绝对定量。目前,该技术已经在肿瘤个体化诊疗、基因编辑、液体活检、病原微生物、先进治疗检测等前沿生命科学研究、临床医学检验、药物研发等多个领域实现突破性应用和发展。在先进治疗领域,数字PCR可以提供比qPCR更精准的核酸定量,不依赖于标准品和标准曲线,直接读取阳性信号,通过泊松分布校正得到目标基因的绝对拷贝数,并具有检测周期短,灵敏度和精确度高等特点。用于先进治疗相关载体的滴度检测,病毒完整性检测,宿主残留检测以及微生物检测等,突破现有检测方法的局限性,精准质控确保结果可靠。为更好地让广大学者了解数字PCR技术,Gene-π数字PCR学堂——先进治疗中核酸绝对定量分析及应用(上海张江站)将于2021年04月7日在上海张江召开。聚焦于数字PCR原理系统、实验操作、应用进展、结果分析,先进治疗中的质量控制、病毒载体标准品定量等核心内容,训练营将携中外知名学者、资深技术专家,为广大学员带来从理论到实战、从入门到精通的饕餮盛宴。培训时间地点时间:2021年04月07日地点:中国药谷生物医药创新交流中心(上海市浦东新区蔡伦路 781 号一楼)培训日程主办单位中国医药生物技术协会基因检测技术分会上海市浦东新区生物产业行业协会上海市遗传学会长三角一体化基因检测联盟转化医学网承办单位北京深蓝云生物科技有限公司艾普拜生物科技(苏州)有限公司参会报名您在PCR实验操作中是否遇到过问题?如何在实验过程中设置质控要求?数字PCR的在什么浓度范围内检测是准确的?数字PCR的最低检测限如何评估?数字PCR引物探针设计和qPCR有什么区别及如何评估其质量?在本次训练营中都可以得到答案,心动了吗?心动了就赶紧报名吧!场地有限,报名从速哦。可以通过扫描下方二维码进行报名哦!敲黑板了!我们的初衷是--真诚地把先进技术和应用带给大家!只要您提交了报名申请,经主办方审核通过后,收到报名成功确认通知,就可以参加我们的培训班啦!因场地有限,先到先得哦。赶紧报名吧!
  • Illumina收购HLA分型解决方案供应商Conexio Genomics
    2016年1月26日,Illumina宣布,公司已经收购了澳洲的HLA分型解决方案供应商Conexio Genomics,交易的具体条款没有披露。  Illumina在2015年3月首次与Conexio合作提供TruSight HLA解决方案。此次收购将使Illumina开发NGS-based移植手术诊断化验产品技术。  “Conexio产品和人员的加入将巩固我们的HLA能力,并证明Illumina对HLA和移植科学领域的持续承诺,”Illumina的HLA的市场开发联席董事Alex Lindell在声明中说。  Conexio的 NGS开发项目将并入Illumina的现有业务单元。
  • 安捷伦签约收购 Lasergen 公司 向临床DNA测序诊断领域扩张
    p style=" text-indent: 2em " 2018 年 4 月 10 日,北京——安捷伦科技公司(NYSE:A)与 Lasergen 公司日前宣布双方已经签署最终协议:安捷伦以 1.05 亿美元的价格收购 Lasergen 公司剩余股权。Lasergen 是一家新兴的生物技术公司,专注于 DNA 测序创新技术的研发。 br/ /p p style=" text-indent: 2em " 2016 年 3 月,安捷伦对这家私人控股公司进行了初始投资,收购了该公司 48% 的股权,并拥有其剩余股权的两年期买入期权。安捷伦于 2018 年 2 月 23 日发布了行权通知。 /p p style=" text-indent: 2em " Lasergen 和安捷伦一直在开展紧密的合作,采用基于 Lasergen 公司 Lightning Terminators& #8482 化学测序技术,共同开发临床应用的下一代测序工作流程。与目前市场上的其他技术相比,Lightning Terminators 提供了更快、更准确、更经济的基因组测序技术。 /p p style=" text-indent: 2em " 安捷伦诊断与基因组学集团总裁 Jacob Thaysen 表示:“构建临床应用的下一代测序工作流程,是安捷伦在诊断战略中对抗癌症和遗传性疾病的关键环节。我们致力于为临床决策提供以患者为中心的、可操作的信息。确保为客户提供涵盖我们所有诊断模式的综合体验是基本的要求,并将成为未来关键的差异化因素。” /p p style=" text-indent: 2em " 安捷伦基因组事业部副总裁兼总经理 Kamni Vijay 博士表示:“在过去的两年中,安捷伦和 Lasergen 紧密合作,建立了强有力的合作伙伴关系。安捷伦决定收购Lasergen剩余股份,表明了我们对其团队和技术的承诺,同时也体现了我们构建全方位常规临床下一代测序工作流程的战略目的。” /p p style=" text-indent: 2em " Lasergen 总裁兼首席执行官 Mimi Healy 博士表示:“很高兴 Lasergen 和安捷伦团队能够继续开展成功合作,将 Lasergen 在下一代测序化学领域的专业知识与安捷伦在靶向富集、临床判读支持软件以及自动化和微流体方面的领先技术融为一体。下一代测序分子诊断市场仍在起步阶段,我们在创建综合临床工作流程方面占据了独特位置,并将最终提供更好的治疗决策和精准的医疗措施。” /p p style=" text-indent: 2em " Lasergen 成立于 2002 年,总部位于德克萨斯州休斯敦,在加利福尼亚州圣地亚哥设有一个办事处。Lasergen 目前拥有 45 名员工。 /p p style=" text-indent: 2em " 此次交易还需要满足其他惯例成交条件,并获得监管部门批准。 /p p style=" text-indent: 2em " strong 关于 Lasergen 公司 /strong /p p style=" text-indent: 2em " Lasergen 公司是一家新兴的生物技术公司,专注研究新兴化学技术在生物科学解决方案中的商业应用。Lasergen 在核苷酸化学和新一代测序技术方面的专业技术,已经获得了一系列重大发现,得出突破性的化学测序技术(Lightning Terminators& #8482 )和精准的测序平台。该公司 2002 年成立,总部位于德克萨斯州休斯顿,近期在加利福尼亚州圣地亚哥设立了另一个办公场所。& nbsp /p p style=" text-indent: 2em " strong 关于安捷伦科技公司 /strong /p p style=" text-indent: 2em " 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者。拥有 50 多年的敏锐洞察和创新,安捷伦的仪器、软件、服务、解决方案和专家能够为客户最具挑战性的难题提供更可靠的答案。2017 财年,安捷伦营业收入为 44.7 亿美元,全球员工数约为 14,200 人。 /p p style=" text-indent: 2em " strong 前瞻性陈述 /strong /p p style=" text-indent: 2em " 本新闻稿包含 1934 年《证券交易法》中定义的前瞻性陈述,并受其中规定的安全港规则约束。前瞻性陈述包括但不限于:关于安捷伦未来收入、盈余和盈利能力的信息;规划的新产品;市场趋势;未来对安捷伦产品和服务的需求;客户期望;以及 2018 财年第二季度和整个财年的收入和非美国通用会计准则(non-GAAP)获利指导。这些前瞻性陈述涉及风险和不确定因素,可能导致安捷伦的业绩与管理层当前预期产生实质性差异。这些风险和不确定因素包括但不限于:客户业务实力不可预见的变化;对当前以及新产品、技术和服务的需求不可预见的变化;当前市场不可预见的变化;客户的购买决策和时机,以及我们不能实现由于整合和重组活动所带来的预期节省的风险。此外,安捷伦在经营方面所面临的其他风险包括:顺利度过各个业务周期的能力;达到和实现其成本节约目标而受益的能力,或将其成本结构成功调整到适应业务状况不断变化的能力;持续的竞争、定价和毛利率压力;成本削减举措带来的风险,如可能会损害我们开发产品、保持竞争力和有效经营的能力;地缘政治方面的不确定性和全球经济状况给安捷伦的运营、市场和业务能力带来的影响;提高资产绩效以适应需求变化的能力;我们的供应链适应需求变化的能力;在正确的时间,以正确的价格和两者兼具的情况下成功推出新产品的能力;安捷伦成功整合近期并购的企业的能力;安捷伦成功符合特定复杂法规的能力;以及安捷伦向证券交易委员会提交的文件(包括我们截止到 2018 年 1 月 31 日的第一季度报告 Form 10-Q)中详述的其他风险。前瞻性陈述是根据安捷伦管理层的理解和假设以及当前可以得到的信息而作出的。安捷伦不负责公开更新或修改任何前瞻性陈述。 /p
  • 肿瘤标志物 7 种检测方法学大比拼
    p style=" text-align: justify "   肿瘤具有高死亡率、高转移率和高复发率,是危害人类健康的重大疾病。诊断肿瘤的传统方法有病理组织活检、核磁共振成像(magnetic resonance imaging,MRI)、电子计算机断层扫描(computed tomography,CT)、B超、X线胸片、内镜检查等。这些检查对于肿瘤早期的检测效果十分有限,部分检测方法不仅价格昂贵,且会给患者带来痛苦。因此,在肿瘤早期阶段开展快速、有效的检测十分必要,不仅可以达到早发现、早治疗的目的,还可以改善患者就医体验。肿瘤标志物的筛检对于肿瘤早期检测具有重要意义[1]。 /p p style=" text-align: justify "   肿瘤标志物是指由肿瘤组织或宿主与肿瘤相互作用所产生的一类活性物质,能够提示肿瘤存在与生长变化。肿瘤标志物常常存在于血清、细胞、尿液、体液或组织中,常见的有癌胚蛋白、肿瘤抗原、酶类标志物、激素、糖类抗原等。肿瘤标志物检测具有操作便捷、标本易获取、非侵入性、价格低廉、易于动态监测疾病等优点。肿瘤标志物的检测对于肿瘤的预防、早期诊断与鉴别诊断、辅助肿瘤分类、疾病监测、指导治疗和预后判断有重要作用,可有效弥补其他医学技术对肿瘤诊断、治疗及预后判断的不足[2]。肿瘤标志物种类繁多,检测方法也各异,本文将几种常见肿瘤标志物检测方法的研究进展作一综述。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " strong 1、放射免疫分析 /strong /span /p p style=" text-align: justify "   放射免疫分析是一种传统的检测肿瘤标志物的方法,是将放射性核素检测技术与抗原抗体结合特异性的特点相结合,以定量微量物质。放射免疫分析多使用放射性核素125I,因其具有放射性高、易标记、衰变过程中释放的射线易于被检测等优势,逐渐替代了3H和14C而被广泛使用。放射性核素标记具有高灵敏度、易于商品化等优势,曾被广泛应用,但与其他方法[3]相比,存在试剂盒使用寿命短、有放射性污染风险等缺点,目前已逐渐被其他检测方法取代。 /p p style=" text-align: justify "   span style=" color: rgb(0, 32, 96) " strong  2、化学发光免疫分析 /strong /span /p p style=" text-align: justify "   化学发光免疫分析是目前常用和较为成熟的肿瘤标志物检测技术,其利用化学发光物质作为标记物,根据发光信号的强度来判断待测物质的量。自1928年德国化学家Albrecht发现鲁米诺的化学发光特性后,该检测技术由于灵敏度高、快速、线性范围广、仪器结构简单、适合小型化、无放射性危害等优点得到不断发展[4,5]。化学发光免疫分析为化学发光法,使用直接发光物质(如吖啶酯)标记抗体,或使用酶类催化剂(如辣根过氧化物酶)[6]标记抗原抗体。将化学发光技术与微芯片电泳化学发光(microchip-electrophoresis chemiluminescence,MCE-CL)等技术联合使用,具有效率高、分析快、自动化程度高、需要更少样品和试剂的优点[7,8]。 /p p style=" text-align: justify "   传统化学免疫分析采用酶标技术,用辣根过氧化物酶催化鲁米诺的免疫测定技术曾被广泛使用,目前的免疫测定系统通常使用信号探针标记抗体并进一步测量目标分析物浓度。但这类天然酶具有稳定性差、来源有限、对环境变化敏感、易受环境影响而变性等缺点,且标记过程通常会损害抗体分子的生物活性,因而基于金属及金属复合物[9,10]、磁性纳米颗粒[11]、量子点[12]等催化发光底物的无酶免疫系统[13]不断发展,将电化学技术和化学发光相结合检测肿瘤标志物,兼具了化学发光的高灵敏度和电化学的时间、空间可控性[14,15]的优点。有研究人员以CuS纳米粒子作为过氧化物酶模拟物,设计了一种新型的无标记化学发光(chemiluminescence,CL)免疫方法测定甲胎蛋白,与基于酶标的CL免疫测定法相比,提出的无标记测定模式更简单、价廉、快速。采用无标记的CL免疫测定法测定甲胎蛋白的线性范围为0.1~60ng/mL,检出限为0.07 ng/mL,且此CL免疫测定系统显示出良好的特异性、可接受的重复性和良好的准确性[16]。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " strong 3、酶联免疫吸附试验 /strong /span /p p style=" text-align: justify "   酶联免疫吸附试验是一项临床上已普及的检测技术,这一技术将抗原或抗体包被于固相支持物上,将酶标抗原或抗体加入抗原抗体复合物中,通过底物使酶显色来达到检测目的。不同的研究人员会采用不同的酶联免疫吸附试验策略,如使用单克隆多克隆抗体[17]及嵌合抗体[18]来开发肿瘤标志物检测试剂盒。酶联免疫吸附试验被开发后其检测系统得到不同的优化,如凝集素及生物素-亲和素系统[19]在酶联免疫吸附试验中的应用大大增强了其检测的敏感性,荧光素酶夹心酶联免疫吸附试验系统[20]也使检测的敏感性不断增强。酶联免疫吸附试验不仅适用于对单一分析物的测定,在多个分析物同时存在时,同样具有良好的适用性[21]。 /p p style=" text-align: justify "   除酶联免疫吸附试验外,越来越多的研究集中于开发具有酶样活性的模拟酶[22]。ZHANG等[23]以Cu2+作为助催化剂,利用Cu2+/Ag-AgI复合物作为催化剂具有在可见光下使3,3´ ,5,5´ -四甲基联苯胺(3,3´ ,5,5´ -tetramethylbenzidine,TMB)颜色产生变化的特性,构建了夹心型比色法,通过监测TMB溶液的颜色变化以定量癌胚抗原的水平,其开发的比色免疫测定在血清样品分析中表现出良好的选择性、重复性和稳定性。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " strong 4、免疫传感器 /strong /span /p p style=" text-align: justify "   免疫传感器一直备受肿瘤研究者关注和青睐。将特异性免疫反应与生物传感技术相结合形成的生物传感器,其生物识别部分来自抗原与抗体的特异性识别和结合作用,通过理化换能器和信号放大装置将生物信号转变为电信号用于检测。与其他几种检测方法相比,免疫传感器具有灵敏度高、操作方便、设备简单、成本低、可实现实时动态检测等优势。目前,免疫传感器大部分处于试验阶段,正向高通量、商品化发展,以满足临床大样本检测的要求,随着技术的不断成熟,有望成为肿瘤标志物的新型检测手段。检验医学网 /p p style=" text-align: justify "   金属纳米材料由于拥有独特的光学、电子和催化特性常被用于构建免疫传感器[24,25]。LIU等[26]使用多孔铂纳米颗粒和PdPt纳米笼同时测定肿瘤标志物癌胚抗原和甲胎蛋白,利用多孔铂纳米颗粒较大的表面积和较强的导电性,PdPt纳米笼优异的催化性能及高负载能力,增强和放大响应信号,实现了对双重分析物的灵敏测定。另外,使用纳米合金材料制作的传感器,与使用单一金属材料相比具有更好的生物相容性,金属之间良好的协同作用使传感器催化性能进一步被放大。ZHANG等[27]使用PdPt纳米颗粒,以石墨烯片和多壁碳纳米管作为传感平台,组成纳米复合物修饰电极,来测定肿瘤标志物潜伏膜蛋白-1,比单独使用Pd纳米粒子具有更高的过氧化物酶活性,PdPt凹面不仅可以提供较大的表面积,还可以提供更丰富的催化反应活性位点。 /p p style=" text-align: justify "   碳纳米材料,包括单壁碳纳米管、多壁碳纳米管、石墨烯、碳纳米纤维、碳球等,由于其良好的力学性能、较高的化学稳定性、特殊的电学性质、优异的机械性能和良好的导热性被广泛用于免疫传感器的制造,制造的传感器具有响应速度快、电子传递速率高、负载量大、吸附性好、催化活性等优点。LIANG等[28]研制了以双层酶修饰碳纳米管作为标记的夹心型免疫传感器,利用层层自组装技术将辣根过氧化物酶装配到多壁碳纳米管上,实现了信号放大,为临床分析的超灵敏检测提供了有力的支持。 /p p style=" text-align: justify "   聚合物复合材料由于良好的氧化还原性能,被作为免疫传感器信号指示剂[29,30]。TANG等[31]用聚多巴胺-PB2+(PDA-Pb2+)纳米复合材料作为氧化还原体系,用壳聚糖-金纳米复合材料涂覆电极,对癌胚抗原进行敏感性的电流分析。利用聚合物复合材料制作的免疫传感器,因聚合物复合材料掺杂带来的半导体或导体性质,其活性可被调节,掺杂/去掺杂的可逆过程使其可检测不同的分析对象,扩大了检测范围。 /p p style=" text-align: justify "   免疫传感器的制备除上述几种材料外,还常引入其他具有不同功能的材料来提高性能。如利用量子点高表面活性、小尺寸及对光、电、温度等敏感的特性,构建的传感器灵敏度较高[32,33] 利用磁性纳米粒子的磁效应构建的传感器抗干扰性好[34] 利用介孔材料良好的孔隙结构和界面结构构建的传感器,能够保持酶良好的活性和功能性 利用水凝胶构建的传感器稳定性好,水溶性高,能够对外界刺激产生响应并产生相应变化[35]。此外,利用羟基磷灰石(hydroxyapatite,HAP)纳米颗粒,利用HAP-NPs与钼酸盐的反应检测甲胎蛋白,构建的传感器选择性好、灵敏度高,且成本低[36]。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " strong 5、蛋白组学 /strong /span /p p style=" text-align: justify "   蛋白组学是近年来兴起的肿瘤研究领域热点之一,以蛋白质为核心,对蛋白质的表达模式和功能模式进行研究。蛋白组学技术具有高通量、微型化、自动化的优势,目前被广泛用于临床肿瘤学研究,为肿瘤标志物的研究提供了良好的平台,但同时具有检测成本昂贵、对技术人员操作要求高等缺点。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " ①双向电泳 /span /p p style=" text-align: justify "   双向电泳是蛋白组学的经典技术,是利用蛋白质的等电点和不同相对分子质量来分离蛋白质的一门技术。双向电泳是蛋白组学的核心技术之一,能够通过染色强度得到蛋白质翻译后修饰的信息,能够同时分离数千种蛋白质。但其有不能分辨低拷贝数蛋白、检测蛋白比估计总蛋白数少、耗时长、操作过程繁琐等缺点,不能实现完全自动化,研究者常将其与质谱技术联用以分离、鉴定蛋白质[37],即将蛋白质用双向电泳分离后,运用质谱技术进行逐一鉴定,这也成为蛋白组学研究的核心技术。相差凝胶电泳在双向电泳的基础上利用不同的染色对2个样本进行标记,通量更高,提高了凝胶间的可比性,工作效率得到提升。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " ②质谱技术 /span /p p style=" text-align: justify "   质谱技术是将物质离子化,根据不同质荷比进行时间和空间的分离,进而获得样品的相对分子质量、分子结构等多种信息的分析方法。由于其具有高分辨力、高精度等特点被广泛用于多个领域。近年来,常用色谱-质谱技术,因其兼具了色谱的分离能力和质谱的鉴定能力,能够对蛋白质进行准确、快速的分析和定量[39,40]。基质辅助激光解吸飞行时间质谱和电喷雾电离质谱是经过改进的质谱技术,前者利用基质吸收激光的能量,得到肽质量指纹谱,通过检索数据库以鉴定蛋白质 后者利用电喷雾法,液相化多肽以鉴定蛋白质。这2种方法能保证电离时样品分子的完整性,不会使离子碎片化。检验医学网 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " ③蛋白质芯片 /span /p p style=" text-align: justify "   蛋白质芯片是近十年来新兴的分析技术,即在支持物表面排列蛋白质探针以捕获目标蛋白,再通过检测器进行定性或定量分析。根据载体性质不同,可分为固相蛋白质芯片和液相蛋白质芯片,临床上常用来筛选和寻找肿瘤标志物。反相蛋白质芯片也是蛋白组学高通量方法[41]。蛋白质芯片不仅可用来研究蛋白质与蛋白质之间的相互作用,还可研究蛋白质与核苷酸间的相互作用,具有通量高、速度快、灵敏度高的优点。DUAN等[42]设计了一种蛋白质芯片,使用胶体纳米金标记葡萄球菌属蛋白A作为指标,应用免疫金银染色增强技术扩增检测信号,此蛋白质芯片可在不存在交叉反应的情况下检测乙型肝炎病毒抗体和丙型肝炎病毒抗体,并可在40min内提供结果,速度相对酶联免疫吸附试验等方法更快。YANG等[43]开发了一种微阵列芯片,首次使用硅和水凝胶作为微阵列的载体,构成的芯片具有二氧化硅和水凝胶两者的优点。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " ④表面增强激光解析及电离飞行时间质谱 /span /p p style=" text-align: justify "   表面增强激光解析及电离飞行时间质谱是将质谱与蛋白质分离技术相结合的技术,能够检测到其他传统方法检测不到的蛋白质,只需少量样品,检测时间短且重复性高,可分析复杂样品。该技术基于特殊芯片的表明增强吸附作用,将样品蛋白质吸附到芯片上后,将结合蛋白质解离成核电离子以绘制质谱图。将健康人与肿瘤患者的蛋白图谱进行比较,能够发现差异表达的蛋白质。JIN等[44]开发了一种对糖类抗原19-9正常的胰腺癌患者与健康或良性个体进行诊断和鉴别诊断的方法,使用与CM10芯片联合的表面增强激光解吸及电离飞行时间质谱分析相关样品,生成了具有不同蛋白质的诊断模型。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " strong 6、分子生物学方法 /strong /span /p p style=" text-align: justify "   检测肿瘤标志物的分子生物学方法包括聚合酶链反应(polymerasechain reaction,PCR)、荧光原位杂交技术(fluorescencein situ hybridization, FISH)、逆转录PCR、单链构象多态性(single-strand conformationpolymorphism,SSCP)、多种测序技术等。分子生物学技术具有高通量,特异性强、敏感性高等优势,但也存在价格昂贵、检测周期长等缺点。 /p p style=" text-align: justify "   PCR是目前被广泛使用的一种简单、敏感、高效、特异和快速的,能在体外扩增DNA的技术。由经典PCR衍生出的技术被广泛应用于肿瘤标志物的检测,如逆转录PCR被用于口咽癌[45]、结直肠癌[46]、前列腺癌[47]、肺癌[48]等多种肿瘤的检测。甲基化特异性PCR是一种检测特异位点甲基化的技术[49],检测DNA甲基化敏感性极高,KOIKE等[50]发现甲基化特异性PCR对于胃癌标志物的检出率高于逆转录PCR。此外,多种PCR衍生技术如扩增融合PCR、实时荧光定量PCR等也被运用于肿瘤标志物的检测。 /p p style=" text-align: justify "   FISH以标记的特异寡聚核苷酸片段作为探针,根据核酸碱基配对原理,将标记的探针与单链核酸片段配对,在荧光显微镜下观察目标序列的分布。FISH虽属于低通量检测,但目前已被用于检测肿瘤细胞[51]、突变染色体[52]、染色体重排[53],在肿瘤生物标志物检测和个体化医疗方面具有重要意义。 /p p style=" text-align: justify "    span style=" color: rgb(0, 32, 96) " strong 7、液体活检 /strong /span /p p style=" text-align: justify "   液体活检是一种从血液等非实性样本中取样,用于诊断和检测肿瘤的方法。液体活检技术主要包括循环肿瘤细胞(circulating tumor cell, CTC)检测、循环肿瘤DNA(circulating tumor DNA, ctDNA)检测、外泌体检测等。与组织活检相比,液体活检能够早期筛查、检测肿瘤标志物,克服了肿瘤的时空异质性,具有无创、易反复取样、操作简便、可实时监控等优点,但同时也有价格昂贵、检测标准不统一等缺点。CTC检测目前主要使用的是免疫细胞化学方法,但CTC极低的丰度及其异质性使其面临着技术挑战。ctDNA检测主要采用分子生物学方法,但ct DNA具有易降解、含量低等缺点,为精准检测带来困难。外泌体检测在肿瘤诊断方面显示出良好的应用前景,是具有发展潜力的诊断方法,但其提取及操作尚无统一流程,检测系统有待进一步完善,以满足临床大规模样本检测的需要。检验医学网 /p p style=" text-align: justify "    strong 总结 /strong /p p style=" text-align: justify "   肿瘤标志物作为临床上肿瘤辅助诊断、治疗参考以及预后判断的重要指标,目前在应用上愈发广泛,临床对检测技术的要求也不断发展。不仅有大量灵敏度或特异性更高的标志物被发现,而且在检测方法上也紧跟临床工作需求而不断发展。不同检测方法均有其优势与不足,如何对不同方法进行整合,提高肿瘤标志物的检出能力,是研究者们需关注和探索的问题。能够在肿瘤早期检出低含量肿瘤标志物,永远是临床肿瘤诊断的主要需求。不管使用何种材料,使用何种方法,提高检测的敏感性和特异性及稳定性永远是肿瘤标志物研发所追求的目标。 /p p style=" text-align: justify text-indent: 2em " strong 参考文献 /strong /p p   [1]GERDTSSON A S, WINGREN C, PERSSON H, et al. Plasma protein profiling in a stage defined pancreatic cancer cohort-implications for early diagnosis[J]. Mol Oncol, 2016, 10(8): 1305-1316. /p p   [2]COLEMAN R L, HERZOG T J, CHAN D W, et al. Validation of a second-generation multivariate index assay for malignancy risk of adnexal masses[J]. Am J Obstet Gynecol, 2016, 215(1): 82e1-82. e11. /p p   [3]MURATA T, TSUZAKI K, NIRENGI S, et al. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: comparison between radioimmunoassay and enzyme-linked immunosorbent assay[J]. J Diabetes Investig, 2017, 8(4): 475-479. /p p   [4]CHANG Y, XU J, ZHANG Q. Microplate magnetic chemiluminescence immunoassay for detecting urinary survivin in bladder cancer[J]. Oncol Lett, 2017, 14(4): 4043-4052. /p p   [5]NAKAGAWA M, KARASHIMA T, KAMADA M, et al. Development of a fully automated chemiluminescence immunoassay for urine monomeric laminin-γ2 as a promising diagnostic tool of non-muscle invasive bladder cancer[J]. Biomark Res, 2017, 5: 29. /p p   [6]ZHAO L, DAN W, SHI G, et al. Dual-labeled chemiluminescence enzyme immunoassay for simultaneous measurement of total prostate specific antigen (TPSA) and free prostate specific antigen (FPSA)[J].Luminescence, 2017, 32(8): 1547-1553. /p p   [7]LIU J, ZHAO J, LI S, et al. A novel microchip electrophoresis-based chemiluminescence immunoassay for the detection of alpha-fetoprotein in human serum[J]. Talanta, 2017, 165: 107-111. /p p   [8]LI S, YANG T, ZHAO J, et al. Chemiluminescence noncompetitive immunoassay based on microchip electrophoresis for the determination of β-subunit of human chorionic gonadotropin[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1053: 42-47. /p p   [9]ZHANG Q, DAI H, WANG T, et al. Ratiometric electrochemiluminescent immunoassay for tumor marker regulated by mesocrystals and biomimetic catalyst[J]. Electrochimica Acta, 2016, 196: 565-571. /p p   [10]LI S, SHI M, ZHAO J, et al. A highly sensitive capillary electrophoresis immunoassay strategy based on dual-labeled gold nanoparticles enhancing chemiluminescence for the detection of prostate-specific antigen[J]. Electrophoresis, 2017, 38(13-14): 1780-1787. /p p   [11]HUANG Z J, HAN W D, WU Y H, et al. Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein[J]. J Electroanal Chem, 2017, 785: 8-13. /p p   [12]GUO Z, HAO T, DU S, et al. Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene as conducting bridge[J]. Biosens Bioelectron, 2013,44: 101-107. /p p   [13]SHIM C, CHONG R, LEE J H. Enzyme-free chemiluminescence immunoassay for the determination of thyroid stimulating hormone[J]. Talanta, 2017, 171: 229-235. /p p   [14]ZHANG M, GE S, LI W, et al. Ultrasensitive electrochemiluminescence immunoassay for tumor marker detection using functionalized Ru-silica@nanoporous gold composite as labels[J]. Analyst, 2012, 137(3):680-685. /p p   [15]BABAMIRI B, HALLAJ R, SALIMI A. Ultrasensitive electrochemiluminescence immunoassay for simultaneous determination of CA125 and CA15-3 tumor markers based on PAMAM-sulfanilic acid-Ru(bpy)32+ and PAMAM-CdTe@CdS nanocomposite[J]. Biosens Bioelectron, 2018, 99: 353-360. /p p   [16]YANG Z, CAO Y, LI J, et al. Smart CuS nanoparticles as peroxidase mimetics for the design of novel label-free chemiluminescent immunoassay[J]. ACS Appl Mater Interfaces, 2016, 8(19): 12031-12038. /p p   [17]CHEN S L, LI Y L, TANG Y, et al. Development and evaluation of a double antibody sand wich ELISA for the detection of human sDC-SIGN[J]. J Immunological Methods, 2016, 436: 16-21. /p p   [18]YAMASHITA J, KOBAYASHI I, TATEMATSU K, et al. Sand wich ELISA using a mouse/human chimeric CSLEX-1 antibody[J]. Clin Chem, 2016, 62(11): 1516-1523. /p p   [19]OUJI-SAGESHIMA N, GERAGHTY D E, ISHITANI A, et al. Establishment of optimized ELISA system specific for HLA-G in body fluids[J]. HLA, 2016, 88(6): 293-299. /p p   [20]LI Y, LI Y, ZHAO J, et al. Development of a sensitive luciferase-based sand wich ELISA system for the detection of human extracellular matrix 1 protein[J]. Monoclon Antib Immunodiagn Immunother, 2016,35(6): 273-279. /p p   [21]LAKSHMIPRIYA T, GOPINATH S C B, HASHIM U, et al. Multi-analyte validation in heterogeneous solution by ELISA[J]. Int J Biol Macromol, 2017, 105(Pt 1): 796-800. /p p   [22]WANG J, CAO Y, XU Y, et al. Colorimetric multiplexed immunoassay for sequential detection of tumor markers[J]. Biosens Bioelectron, 2009, 25(2): 532-536. /p p   [23]ZHANG B, WANG X, ZHAO Y, et al. Highly photosensitive colorimetric immunoassay for tumor marker detection based on Cu2+ doped Ag-AgI nanocomposite[J]. Talanta, 2017, 167: 111-117. /p p   [24]LAI G, WANG L, WU J, et al. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers[J]. Anal Chim Acta, 2012, 721: 1-6. /p p   [25]LIANG Y H, CHANG C C, CHEN C C, et al. Development of an Au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva[J]. Clin Biochem, 2012, 45(18): 1689-1693. /p p   [26]LIU N, FENG F, LIU Z, et al. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP[J]. Microchim Acta, 2015, 182(5-6): 1143-1151. /p p   [27]ZHANG X, ZHOU D, SHENG S, et al. Electrochemical immunoassay for the cancer marker LMP-1 (Epstein-Barr virus-derived latent membrane protein 1) using a glassy carbon electrode modified with Pd@Pt nanoparticles and a nanocomposite consisting of graphene sheets and MWCNTs[J]. Microchim Acta, 2016,183(6): 1-8. /p p   [28]LIANG M, YUAN R, CHAI Y, et al. Double layer enzyme modified carbon nanotubes as label for sand wich-type immunoassay of tumor markers[J]. Microchim Acta, 2011, 172(3-4): 373-378. /p p   [29]LIU Z, RONG Q, MA Z, et al. One-step synthesis of redox-active polymer/AU nanocomposites for electrochemical immunoassay of multiplexed tumor markers[J]. Biosens Bioelectron, 2015, 65: 307-313. /p p   [30]CAI X, WENG S, GUO R, et al. Ratiometric electrochemical immunoassay based on internal reference value for reproducible and sensitive detection of tumor marker[J]. Biosens Bioelectron, 2016, 81: 173-180. /p p   [31]TANG Z, MA Z. Ultrasensitive amperometric immunoassay for carcinoembryonic antigens by using a glassy carbon electrode coated with a polydopamine-Pb(Ⅱ) redox system and a chitosan-gold nanocomposite[J]. Microchim Acta, 2017: 1-8. /p p   [32]LIU W, ZHANG A, XU G, et al. Manganese modified CdTe/CdS quantum dots as an immunoassay biosensor for the detection of Golgi protein-73[J]. J Pharm Biomed Anal, 2015, 117: 18-25. /p p   [33]TIAN J, ZHOU L, ZHAO Y, et al. Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay[J]. Talanta, 2012, 92: 72-77. /p p   [34]SUN X C, LEI C, GUO L, et al. Giant magneto-resistance based immunoassay for the tumor marker carcinoembryonic antigen[J]. Microchim Acta, 2016, 183(3): 1107-1114. /p p   [35]WANG H, MA Z. A cascade reaction signal-amplified amperometric immunosensor platform for ultrasensitive detection of tumor marker[J]. Sensors Actuators B Chemical, 2017, 2017: 254. /p p   [36]HUANG Y, TANG C, LIU J, et al. Signal amplification strategy for electrochemical immunosensing based on a molybdophosphate induced enhanced redox current on the surface of hydroxyapatite nanoparticles[J]. Microchim Acta, 2017, 184(3): 1-7. /p p   [37]HODGKINSON V C, AGARWAL V, ELFADL D, et al. Pilot and feasibility study: comparative proteomic analysis by 2-DE MALDI TOF/TOF MS reveals 14-3-3 proteins as putative biomarkers of response to neoadjuvant chemotherapy in ER-positive breast cancer[J]. J Proteomics, 2012, 75(9): 2745-2752. /p p   [38]CHEN Y T, CHEN H W, DOMANSKI D, et al. Multiplexed quantification of 63 proteins in human urine by multiple reaction monitoring-based mass spectrometry for discovery of potential bladder cancer biomarkers[J]. J Proteomics, 2012, 75(12): 3529-3545. /p p   [39]SINCLAIR J, TIMMS J F. Ovarian cancer[M]. Clifton: Humana Press, 2013: 271. /p p   [40]WANG F, XIE B, WANG B, et al. LC-MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers[J]. Glycobiology, 2015, 25(12): 1362-1374. /p p   [41]SONNTAG J, BENDER C, SOONS Z, et al. Reverse phase protein array based tumor profiling identifies a biomarker signature for risk classification of hormone receptor-positive breast cancer[J]. Translational Proteomics, 2014, 2(1): 52-59. /p p   [42]DUAN L, WANG Y, LI S S, et al. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method[J]. BMC Infect Dis, 2005, 5: 53. /p p   [43]YANG Z X, CHEN B A, WANG H, et al. Hand y, rapid and multiplex detection of tumor markers based on encoded silica-hydrogel hybrid beads array chip[J]. Biosens Bioelectron, 2013, 48: 153-157. /p p   [44]JIN X L, XU B, WU Y L. Detection of pancreatic cancer with normal carbohydrate antigen 19-9 using protein chip technology[J]. World J Gastroenterol, 2014, 20(40): 14958-14964. /p p   [45]GAO G, CHERNOCK R D, GAY H A, et al. A novel RT-PCR method for quantification of human papillomavirus transcripts in archived tissues and its application in oropharyngeal cancer prognosis[J]. Int J Cancer,2013, 132(4): 882-890. /p p   [46]YADEGARAZARI R, HASSANZADEH T, MAJLESI A, et al. Improved real-time rt-PCR assays of two colorectal cancer peripheral blood mRNA biomarkers: a pilot study[J]. Iran Biomed J, 2013, 17(1): 15-21. /p p   [47]VAN NESTE L, BIGLEY J, TOLL A, et al. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection[J]. BMC Urol, 2012, 12: 16. /p p   [48]LIN Q, MAO W, SHU Y, et al. A cluster of specified microRNAs in peripheral blood as biomarkers for metastatic non-small-cell lung cancer by stem-loop RT-PCR[J]. J Cancer Res Clin Oncol, 2012, 138(1): 85-93. /p p   [49]GONZALGO M L, NAKAYAMA M, LEE S M, et al. Detection of GSTP1 methylation in prostatic secretions using combinatorial MSP analysis[J]. Urology, 2004, 63(2): 414-418. /p p   [50]KOIKE H, ICHIKAWA D, IKOMA H, et al. Comparison of methylation-specific polymerase chain reaction (MSP) with reverse transcriptase-polymerase chain reaction (RT-PCR) in peripheral blood of gastric cancer patients[J]. J Surg Oncol, 2004, 87(4): 182-186. /p p   [51]LV Y, MU N, MA C, et al. Detection value of tumor cells in cerebrospinal fluid in the diagnosis of meningeal metastasis from lung cancer by immuno-FISH technology[J]. Oncol Lett, 2016, 12(6): 5080-5084. /p p   [52]TINAWI-ALJUNDI R, KNUTH S T, GILDEA M, et al. Minimally invasive prostate cancer detection test using FISH probes[J]. Res Rep Urol, 2016, 8: 105-111. /p p   [53]FERNÁ NDEZ-SERRA A, RUBIO L, CALATRAVA A, et al. Molecular characterization and clinical impact of TMPRSS2-ERG rearrangement on prostate cancer: comparison between FISH and RT-PCR[J]. Biomed Res Int, 2013, 2013(3): 465179. /p p br/ /p
  • 真迈生物高通量基因测序仪GenoLab M Dx获批国药监三类医疗器械注册证
    9月3日,国家药监局官网发布医疗器械批准证明文件,真迈生物GenoLab M Dx高通量基因测序仪(NGS测序仪)获批国家药品监督管理局(NMPA)三类医疗器械注册证(国械注准20243221655),标志着其在国内获准临床应用,三类医疗器械是国家最高级别的医疗器械。GenoLab M Dx是一款国产自主知识产权的可逆末端终止测序法高通量基因测序仪,采用基于芯片扩增的表面荧光测序技术SURFSeq对碱基的荧光信号进行识别,实现边合成边测序,可兼容主流NGS建库试剂盒和生信分析软件;同时,兼具双芯片平台和滚动上机模式,具有精准高效、灵活开放的优势,可为NGS检测应用开发提供多元化赋能,为用户带来优秀的测序使用体验。真迈生物董事长颜钦博士表示:“2022年7月,真迈生物的单分子基因测序仪GenoCare 1600获得单分子领域首个NMPA证,此次GenoLab M Dx获批三类医疗器械证,是真迈生物NGS平台产品获得NMPA批准的第一个证,它的正式获批是真迈生物在国内布局临床的重要里程碑,为公司高通量产品阵列院内合规发展注入强心剂,引领公司在临床领域的拓展和深化;也将为合作伙伴基于GenoLab M Dx平台开发的检测产品加速进入临床提供助推剂,促进合作创新,为医疗领域带来更多先进技术和解决方案。”近年来,NGS技术蓬勃发展,其高准确度、高通量、高效的检测能力,在肿瘤、生殖健康、遗传性疾病、传感染病学等领域展现出积极的临床作用与意义,显著改变了我们对疾病诊断和治疗的理解,有力推动了医学研究和临床诊断水平提升。
  • China Lab 2018:上海乐枫国内发布重磅新品Genie系列纯水系统
    p strong 仪器信息网讯 /strong 2018年3月28日,上海乐枫携全新的Genie系列纯水系统亮相China Lab 2018。吸引了众多华南地区的实验室用户驻足交流体验。乐枫副总经理 杨卫利就众多纯水用户的提问做了一一解答,展会现场人来人往,非常热闹。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/4ea34f74-c25e-4427-9867-6eabcec63bc8.jpg" title=" 1.jpg" style=" width: 600px height: 450px " width=" 600" vspace=" 0" hspace=" 0" height=" 450" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(84, 141, 212) " strong 上海乐枫展台掠影 /strong /span /p p span style=" color: rgb(84, 141, 212) " /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/378682b3-e96d-4d0f-841b-3b671bf23018.jpg" title=" 2.jpg" style=" width: 600px height: 337px " width=" 600" vspace=" 0" hspace=" 0" height=" 337" border=" 0" / /p p   乐枫副总经理 杨卫利非常热情地向国外和国内客户介绍全新的Genie系列纯水系统。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/790df602-4bb1-4fd1-b0c7-bcdfb2ab925c.jpg" title=" 3.jpg" style=" width: 600px height: 337px " width=" 600" vspace=" 0" hspace=" 0" height=" 337" border=" 0" / /p p style=" text-align: center " span style=" color: rgb(84, 141, 212) " strong Genie系列纯水系统 /strong /span /p p   1. 主机,主控屏,手柄三者之间无线连接,在实验室可按取水需要设置取水点,取水距离不受主机位置的限制。通过作为核心大脑的主机屏,可远程控制和操作主机。 /p p   纯水系统各组成部分的放置,不再彼此限制,不但让用户享受到更大的自由度,而且减少了实验室管线纷杂的乱象,避免了线路接触不良带来的故障隐患,让实验室更美观,实验操作更安全。 /p p br/ /p p    /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/f05e4152-f430-420d-8aed-8fcb3bede84d.jpg" title=" 4.jpg" / /p p 2. 创新“1+N”的取水模式(N=1,2,3,4,5......),即一台主机可配多个手柄。 /p p  & nbsp 一个实验室内,用户装好主机后,根据取水要求铺设好纯水管路,就可自由添加手柄,便捷地使用纯水了。主机可挂墙,或藏于实验台下的橱柜,而主机屏则既可与主机或手柄放置在一起,也可以单独放置在管理者的办公桌上或抽屉里,大大节省实验室空间,最大限度地方便用户使用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/7414271a-41e0-408f-a070-eb2cf4c119ae.jpg" title=" 5.jpg" / /p p 3. 多屏控制模式(主机屏与手柄显示屏)。高清触控屏均采用一体式按键设计,防水,在实验室里不用脱下乳胶手套都可以使用。 /p p   全新设计的手柄,小巧精致,手握舒适感强,可单手操作。根据实验人员查看习惯设计的显示屏,简洁直观,灵动又不失设计感。 /p p 4. 创新的细节设计 - 安装和控制 /p p   纯化柱耗材安装无需任何工具,安装耗材有三重防呆设计,确保准确到位,绝对不会发生纯化柱错误安装而报废的情况。 /p p   操作和维护过程实现全过程追溯,实时反馈,全方位监控。用户可随时查看系统配件工作状况,也可随时调用安装或维护的历史数据,配件货号等等信息。 /p p   另外,Genie水机同时还具有远程控制,远程诊断,产水流速恒定,水箱循环模式等诸多优点。这台功能强大的实验室纯水机,结合现代化的先进技术,成功实现了上海乐枫的设计初衷 – 为实验人员提供一台可与实验室共同发展的纯水系统平台,不仅升级简单,而且可随着用户个性化需求的变化,开发和添加新的功能模块和附件,未来应用有无限的可能性。可以说Genie是一台“与时俱进”的纯水设备,也必然会冲击传统纯水行业的一些应用模式和习惯,给这个行业带来革命性的改变。 /p p   这是乐枫在美国Pittcon2018上展出全新Genie系列纯水系统后,首次在国内市场亮相。新发布的Genie系列纯水系统相比上一代产品,使用和控制更加灵活自由,更节省空间,安全防护也更加可靠,未来可能具有广阔的市场空间。 /p
  • 安捷伦获得Population Genetics公司分子条形码等专利组合
    p   北京时间2017年7月25日,安捷伦科技公司(NYSE:A)(“安捷伦”)今天宣布,安捷伦获得了Population Genetics Technologies (PG)公司的分子条形码和样本条形码专利组合。PG成立于2005年,主要从事将诺贝尔奖得主Sydney Brenner的知识产权(IP)组合商业化的工作,该IP组合主要涉及高灵敏度和高特异性的第二代测序(Next Generation Sequencing ,NGS)技术。 2015年,PG成为拥有30余项专利的IP持股实体。关于这次购买的相关财务条款没有被披露。 /p p   “我们的客户越来越需要具有最高性能的完整的第二代测序工作流程。”安捷伦科技副总裁兼基因组部总经理Herman Verrelst说,“随着IP组合的增加,我们现在可以为客户提供从QC到靶向序列捕获,再到结果分析和解析完整的值得信赖的目标富集解决方案,以满足客户的需求。” /p p   此次从PG公司获得的知识产权包括分子条形码和样本条形码相关的专利,这些专利是有关提高NGS检测的准确性和灵敏度的技术。通过整合这些专利,安捷伦能为客户提供可定制的靶向序列捕获解决方案,使客户能够检测极少量DNA的超低突变频率,是检测癌症和生殖遗传中罕见变异的理想方案,包括液体组织活检。 /p p   “我们很高兴将这些技术带给客户。”安捷伦诊断与基因组集团总裁Jacob Thaysen表示:“我们制定了一个在诊断领域保持增长并建立完整的临床常规NGS工作流程的策略。这次收购便是执行该策略的又一个例子,同时也贯彻了我们帮助客户提高生活质量的宗旨。“ /p p   安捷伦最新的NGS文库预备解决方案Agilent SureSelectXT HS采纳入了该IP组合的分子条形码。这些分子条形码的并入提高了整体精度,并且形成了比竞争产品更丰富的数据库,涵盖更多的组织类型及高、低质量FFPE样本。 /p p   安捷伦和PG公司早前达成协议,授权安捷伦使用PG公司相关分子条形码专利技术,这使得安捷伦NGS平台的少数基因变异水平低于0.1%。 /p
  • Genzyme9.25亿美元出售基因测试部门
    日前,GenzyME宣布签定出售资产协议,Laboratory Corporation of America HoldinGS (LH)将以9.25亿美元现金收购Genzyme旗下基因测试部门Genzyme Genetics。根据协议,LabCorp收购标的包括所有测试服务丶技术丶智慧财产权丶9家实验室。LabCorp承诺完成交易时留任基因测试部门现有1900名员工。   相关链接:赛诺菲安万特向Genzyme发起185亿美元收购提议
  • 基于流的分析微阵列 ——使用选择性生物探针进行定量和定性测定
    迈克尔塞德尔(Michael Seidel)• 如果要在一个样品中测定多种分析物,分析微阵列是理想的解决方案。基于流的分析系统的优势在于它们可以在现场以自动化的形式快速、定量地分析样品。• 近年来,基于流式化学发光 (CL) 微阵列的微阵列芯片读取器 (MCR) 分析平台不断优化,其在各种生物分析应用中的实用性得到了证明。• GWK Präzisionstechnik 公司以原型开发的形式进一步优化了最新一代设备。该设备提供了使用泵和阀门控制实现全自动测定性能的可能性,并通过集成的高灵敏度 CCD 相机进行后续测量图像采集,非常适合长达 2 分钟的采集时间。由于要建立各种生物分析试验进行研究,该仪器被命名为 MCR-Research (R)(图 1)。• 在下文中,将简要描述各个微阵列检测类型以及应用程序。图 1:用于 SARS-CoV-2 抗体检测的基于流式 CL 微阵列的 MCR-R 微阵列分析平台示例。 检测血液中针对 SARS-CoV-2 的抗体检测针对 SARS-CoV-2 的抗体的问题是在大流行开始时提出的,由巴伐利亚研究基金会资助。重组抗原(SARS-CoV-2 蛋白,包括刺突蛋白 (S1) 和核衣壳 (N) 蛋白以及受体结合结构域 (RBD))固定在微阵列芯片上。血液样本中的抗体可以与这些重组抗原结合。然后,带有辣根过氧化物酶 (HRP) 标记的抗人 IgG 抗体通过泵系统通过流通式微阵列芯片,在随后的步骤中通过添加鲁米诺和过氧化氢来观察结合的抗体。基于流动的微阵列免疫测定 (MIA) 原理的一个主要优点是使用间接非竞争性 MIA 非常快速和同时测定针对不同抗原的抗体(图 2)。因此,例如,可以将疫苗衍生抗体与 SARS-CoV-2 感染后的抗体区分开来。 图 2:血清和血液中 SARS-CoV-2 抗体的间接非竞争性 MIA 流程图。此外,可以确定针对不同 SARS-CoV-2 变体的抗体,或者可以通过其他呼吸道病原体扩展抗体组,例如,检测针对流感的抗体。此外,MCR 的多功能性与相关的流通微阵列芯片和程序选项也提供了建立的可能性,例如,通过竞争性 MIA 对中和抗体进行定量分析。在这里,可以确定哪些抗体实际上可以阻止病原体进入细胞,从而在预防感染方面特别有效。CL-MIA 只需不到 15 分钟,可用于现场分析,例如医疗实践。使用 CL-MIA 和 MCR 检测 SARS-CoV-2 抗体的第一个结果已经发表 [1,2]。 基于抗体的蒸发冷却系统嗜肺军团菌检测和亚型分析媒体多次报道军团菌爆发,通常可以追溯到蒸发冷却系统。这些系统可以产生含有军团菌的生物气溶胶,这取决于致病菌株,在吸入可吸入的嗜肺军团菌后,会在人体中引发轻度庞蒂亚克热或严重的肺炎,即军团病。为此,成立了第 42 届 BImSchV,负责规范蒸发冷却系统、冷却塔、湿式分离器的安全技术运行以及冷却水中军团菌的定期控制。如果超过测量值(冷却塔每 100 毫升 50,000 个军团菌,其他需要报告的系统每 100 毫升 10,000 个军团菌),则必须立即采取措施大幅降低病原体浓度。此外,必须进行血清分型。代替使用凝集试验(血清组 1 和血清组 1-15 之间的区别)对嗜肺军团菌进行常规血清分型,甚至使用大量 ELISA 微量滴定板对嗜肺军团菌血清组 1 进行亚型分型,也可以使用 MCR。根据该申请,原型设备被称为 Legiotyper。此外,在军团病爆发的情况下,尽快确定源头很重要。这也可以通过仪器实现。一组单克隆抗体固定在流通式微阵列芯片上。样品手动注入系统,然后是全自动 CL-SMIA(图 3)。单克隆抗体对L. pneumophila血清群 1的不同血清和亚群表现出不同的亲和力和选择性。图 3:CL-SMIA 示意图:(1) 样品注射,(2) L. pneumophila SG1 亚型与特异性捕获抗体的结合,(3) 抗 SG1 检测抗体与已经结合的军团菌的结合,(4 ) CL 反应和图像采集。细菌与流通式微阵列芯片上的相应单克隆抗体特异性结合。夹心是由对血清组 1 特异的生物素标记的多克隆抗体形成的。加入 CL 试剂后,进行 CL吸收。通过将单个菌落悬浮在缓冲液中并在大约 30 分钟内使用该仪器执行 CL-SMIA,在培养后的所有情况下都可以进行血清分型和亚型分型。在由德国联邦经济和技术部资助的 WIPANO 项目 LegioRapid 中,首次建立了用于蒸发冷却系统快速卫生评估的独立培养方法的标准化方法,该方法在测量后定量确定治疗成功率值已超过。除了 qPCR 和与免疫磁分离 (IMS) 相结合的流式细胞术之外,Legiotyper 被用作第三种方法。定量测量结果通过qPCR和IMS流式细胞仪从100 mL中100军团菌的浓度获得,其中100 mL水样通过聚碳酸酯过滤器(孔径=0.22µm)过滤,洗脱液直接用于定量测定。只有在样本中发现最低浓度为106个细胞/100 mL时,才能使用Legiotyper进行血清或亚型。对于培养样本,这个最低浓度不是问题。对于不依赖培养的方法,样品体积必须增加到至少 10 L 才能达到至少 10 4的浓缩系数。正在对合适的过滤方法进行研究 [3]。对于气溶胶中嗜肺军团菌的分析,可以使用相同的 CL-SMIA,但在样品制备方面存在差异。必须首先使用气溶胶收集器对气溶胶进行采样,科里奥利 µ 旋风收集器适用于该收集器。在这里,细菌以液体形式分离,其中可以直接取样和测量。在 AIF 项目 LegioAir 中,首次表明在生物气溶胶中进行血清分型是可能的。 使用 haRPA对军团菌进行分子生物学检测微阵列芯片阅读器不仅可用于基于抗体的检测,还可用于分子生物学。课题组开发了异质不对称重组酶聚合酶扩增(简称haRPA,图4)[4,5],可用于军团菌属。通过在 39°C 下加热流通式微阵列芯片在系统上进行检测。对于 haRPA,军团 菌属特异性引物在空间上固定在 DNA 微阵列芯片上。图 4:可以在 MCR-R 上执行的 haRPA 原理。(1) 带有固定反向引物的 DNA 微阵列,(2) 添加 DNA 提取物后,重组酶打开双链靶 DNA,(3) 聚合酶延伸反向引物直到 (4) 单链结合蛋白分离, (5) 生物素化的正向引物与固定的双链结合,直到 (6) 第二条 DNA 链被聚合酶延伸。(7) 最后,固定化的扩增子通过链霉亲和素-HRP 进行标记,并使用 CL 进行可视化。 等温核酸扩增可扩增基因组 DNA 的靶序列。通过第二个生物素标记的引物,形成的扩增子被标记并用作链霉亲和素-HRP 的锚点,该链霉亲和素-HRP 通过流通式微阵列芯片。最后,与其他测定一样,通过使用集成 CCD 相机记录 CL 反应生成 CL 图像。信号的强度取决于样品中 DNA 的初始量。扩增允许对非常少量的初始 DNA 进行定量。haRPA 的原理还允许通过将不同的引物固定在微阵列表面上进行多重分析。这样,样品可以在 45 分钟内区分军团 菌。以及对人类最危险的军团菌属嗜肺军团菌,它可以更好地评估潜在的健康风险。 地表水中的藻类毒素的监测MCR-R 也用于环境监测。AIF-ZIM 项目 MARCA 关注为即将到来的藻华开发早期预警系统。它是基于云的监测系统的重要组成部分,可用于预测藻类大量繁殖和地表水中蓝藻毒素的形成等。由于水体富营养化和气候变化,被称为藻华的蓝藻大量繁殖变得越来越频繁。在这种现象期间,水变得非常浑浊,水中的蓝藻毒素含量急剧增加。其后果是水生大型植物的退化和对生物体、人类和动物的危害。为了预测藻华并在早期采取预防措施,正在开发一种预警系统,该系统能够使用 Triton 水传感器系统持续监测可能指示藻华的化学和物理参数。这些是温度、电导率、总溶解固体 (TDS) 和总悬浮固体 (TSS)、浊度、溶解氧、溶解硝酸盐和总硝酸盐。此外,该仪器还监测水中的蓝藻毒素浓度。这可以通过再生间接竞争 CL-MIA(图 5)实现,并且由系统在 7 分钟内完全自动执行。例如,微囊藻毒素-LR 的检测限为 4.8 µg/L,因此低于 WHO 的 10 µg/L(对于微囊藻毒素)的限值,低于该限值可假设对健康产生不利影响的可能性较低。图5:再生间接竞争性MIA的示意图:(1)样品(抗原)与一级抗体的孵育,(2)未结合的一级抗体与固定化毒素的结合,(3)检测抗体结合,(4)CL反应和图像采集,以及(5)下一次测量的再生。细菌亲和过滤用亲和粘结剂的筛选微阵列芯片阅读器可用于定量或定性检测,以及研究新的亲和性结合物及其对细菌的结合行为。例如,这些是抗菌多肽、酶或抗体。生物素化细菌通过流通微阵列芯片自动进入设备,在该芯片上固定待研究的亲和力粘合剂。随后,链霉亲和素HRP与结合的生物素结合并催化CL反应,这被捕获为图像。用适当的缓冲液洗脱细菌后,获得第二个CL图像。因此,细菌的结合和洗脱行为可以得到快速而全面的评估。与无标签生物传感器相比,生物素标签可以更精确地跟踪这种反应。这种筛选策略的另一个优点是可以同时固定多个亲和结合物。这为一次测试许多亲和结合物提供了一种快速的方法,也允许细菌、亲和结合剂和洗脱缓冲液之间的组合具有高度的多样性。总结这里描述的例子令人印象深刻地展示了MCR-R分析平台在仪器生物分析中的广泛应用。因此,各种高度相关的领域都可以受益于生物分析方法的使用,因此必须在未来继续推动其扩展。参考文献[1] Klüpfel, J. Koros, R.C. Dehne, K. Ungerer, M. Würstle, S. Mautner, J. Feuerherd, M. Protzer, U. Hayden, O. Elsner, M. Seidel, M. Automated, flow-based chemiluminescence microarray immunoassay for the rapid multiplex detection of IgG antibodies to SARS-CoV-2 in human serum and plasma (CoVRapid CL-MIA). Analytical and Bioanalytical Chemistry, 2021, 413, 5619–5632. https://doi.org/10.1007/s00216-021-03315-6 .[2] Klüpfel, J Paßreiter, S. Weidlein, N. Knopp, M. Ungerer, M. Protzer, U. Knolle, P. Hayden, O. Elsner, M. Seidel, M. Fully automated chemiluminescence microarray analysis platform for rapid and multiplexed SARS-CoV-2 serodiagnostics. Analytical Chemistry, 2022, 94, 6, 2855-2864. https://doi.org/10.1021/acs.analchem.1c04672 .[3] Wunderlich, A. Torggler, C. Elsaesser, D. Lück, C. Niessner, R. Seidel, M. Rapid quantification method for Legionella pneumophila in surface water. Analytical and Bioanalytical Chemistry, 2016, 408(9), 2203-2213. https://doi.org/10.1007/s00216-016-9362-x .[4] Kunze, A. Dilcher, M. Abd El Wahed, A. Hufert, F. Niessner, R. and Seidel, M. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Analytical Chemistry, 2016, 88, 898-905. https://doi.org/10.1021/acs.analchem.5b03540 .[5] Kober, C. Niessner, R. Seidel, M. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray. Biosensors and Bioelectronics, 2018, 100, 49-55. https://doi.org/10.1016/j.bios.2017.08.053 . 关于作者Michael Seidel德国加钦慕尼黑工业大学水化学研究所分析化学和水化学系主任Michael Seidel在斯图加特大学学习技术生物学,并在图宾根大学获得物理化学博士学位。在Miltenyi Biotec GmbH担任项目负责人后,他在分析化学主席处成立了一个微阵列研究小组,由Reinhard Niessner教授领导。2014年,他以化学发光微阵列为主题,学习分析化学。直到现在,他还是由Martin Elsner教授领导的分析化学和水化学主席“生物分析和微分析系统”小组的负责人。他的研究兴趣在于建立创新的(生物)分析方法和仪器、生物传感器、分析微阵列、超顺磁性纳米颗粒、浓缩和分离方法,以快速或自动分析药物、毒素、生物标记物、蛋白质、病原菌和病毒,或在水质监测、食品分析或体外诊断领域的抗生素抗性基因。原文:Flow-based analytical microarraysQuantitative and qualitative determinations with selective biological probesWiley Analytical Science,2 September 2022供稿:符 斌
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制