当前位置: 仪器信息网 > 行业主题 > >

共轭

仪器信息网共轭专题为您提供2024年最新共轭价格报价、厂家品牌的相关信息, 包括共轭参数、型号等,不管是国产,还是进口品牌的共轭您都可以在这里找到。 除此之外,仪器信息网还免费为您整合共轭相关的耗材配件、试剂标物,还有共轭相关的最新资讯、资料,以及共轭相关的解决方案。

共轭相关的资讯

  • 理化所合成共轭莫比乌斯索烃研究取得进展
    p & nbsp & nbsp 在分子层面具有莫比乌斯构象的共轭体系有着独特分子性质,在分子合成和芳香性理论基础研究领域具有重要意义。莫比乌斯构象的共轭分子通常处于亚稳态结构,此类分子的合成与表征长期以来是合成化学中的难点,基于莫比乌斯共轭分子构建更复杂的超分子复合体更具挑战。 /p p & nbsp & nbsp 近日,中国科学院理化技术研究所超分子光化学研究团队与厦门大学科研人员合作,利用铜模板法高效合成对苯撑全共轭索烃,并通过单晶X-射线衍射揭示固态下的该索烃化合物由两个稳定莫比乌斯构象的共轭碳环组成。理论计算结果显示,构成索烃的共轭碳环之间存在高达每摩尔84千卡的分子内非共价π-π相互作用,是稳定分子固态下莫比乌斯构象的关键。理论模型确认了该碳环π体系的共轭性和芳香性。 /p p & nbsp & nbsp 合成化学与理论化学的结合对探索具有复杂且新颖结构的分子具有重要意义。对苯撑全共轭索烃不仅可作为互锁超分子结构的组成单元,也可作为一类新型莫比乌斯共轭分子。该研究为分子设计以及探索芳香性和成键规律提供了新思路。 /p p & nbsp & nbsp 相关研究成果发表在《自然-通讯》上,理化所研究员丛欢是论文通讯作者并主导研究工作,厦门大学教授朱军作为共同通讯作者负责理论计算的研究;理化所研究生范洋洋、厦门大学研究生陈丹丹、理化所博士后黄泽傲是论文共同第一作者。相关研究得到了中科院战略性先导科技专项、国家重点研发计划、国家自然科学基金委、中组部和中国博士后科学基金的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/73d9e6f3-810c-4287-8b3c-efed19cc057e.jpg" title=" W020180806306976252698.png" / /p p style=" text-align: center " 基于莫比乌斯共轭的分子构建更复杂的超分子复合体 /p
  • 共轭高分子合成化学前沿科学问题研讨会召开
    7月21日上午,由我校承办的国家自然科学基金委“共轭高分子合成化学前沿科学问题研讨会”在哈尔滨召开。国家自然科学基金委化学学部董建华处长主持开幕式。校长助理郭斌代表学校在开幕式上致辞。香港科技大学的唐本忠院士及来自中国科学院化学所、长春应化所、清华大学、北京大学、浙江大学、上海交通大学、复旦大学、厦门大学、北京师范大学、吉林大学等著名高校,包括国家杰出青年基金获得者在内的中青年学者共计60多人参加了此次学术研讨会,其中30多人分别作报告。   本次会议采取重点报告与自由讨论相结合的方式,以自由讨论为主。议题涉及共轭高分子合成化学的新概念与新思想、共轭高分子合成化学相关的前沿方向等前沿科学问题、具有挑战性的研究方向、“十二五”期间光电高分子合成化学优先发展领域和国家自然科学基金应优先资助的方向等问题。   我校理学院、基础与交叉学院、材料学院、化工学院的相关学科领域师生20多人参加了研讨会,其中青年教师崔铁钰、邱云峰将分别作口头报告。我校承办此次会议,意在为相关学科领域的教师搭建一个与知名学者和同行开展学术交流的平台,促进研究方向的交叉融合,营造深入开展基础研究的氛围,为中青年教师的健康快速成长铺路搭桥。      会议现场
  • “一米新真空太阳望远镜多层共轭自适应光学系统”投入使用
    在国家自然科学基金的支持下,中国科学院光电技术研究所联合云南天文台成功研制国家重大科研仪器“一米新真空太阳望远镜多层共轭自适应光学系统”并投入使用,实现了大视场自适应光学技术从原理方法创新到实际仪器应用的跨越。   2月2日至3日,该仪器技术指标现场测试会在云南天文台抚仙湖太阳观测基地召开。测试专家组经现场技术指标测试后认为,该仪器各项技术指标达到了资助项目计划书的要求,可以对太阳目标长时间稳定闭环工作,在大气相干长度r0优于10cm@500nm情况下,可见光波段成像分辨力优于0.2″,校正视场大于1′。   “一米新真空太阳望远镜多层共轭自适应光学系统”是光电所联合云南天文台申请的国家自然科学基金国家重大科研仪器研制项目(自由申请)。该项目瞄准空间天气预报重大需求和太阳物理科学前沿研究,针对云南天文台一米新真空太阳望远镜(New Vacuum Solar Telescope,NVST)研制一套多层共轭自适应光学(Multi-Conjugate Adaptive Optics, MCAO)系统,对太阳大气进行大视场、高分辨成像和光谱观测。   该仪器基于研究提出的新型MCAO架构,采用3块变形镜、2个大视场多视线波前传感器以及2套波前实时处理机,实现了在角分量级视场内对大气湍流波前像差的有效补偿。目前,该仪器已与NVST后端科学仪器对接进行常规观测,为太阳风暴的预警预报和太阳物理科学研究持续提供高质量的光谱和成像数据。
  • AB与Dalton合作开发抗体药物共轭物的质谱分析方法
    AB Sciex和Dalton Pharma Services8月26号表示,他们已经达成合作,将协作开发抗体药物共轭物的分析方法。合作重点是发展共轭分子化学结构的质谱分析工作流程。   &ldquo 成功开发抗体药物共轭物面临的一个关键挑战是理解最终分子的结构和有效负载,&rdquo Dalton化学经理Tan Quach在一份声明中说。&ldquo 确定药物在特定抗体分子上的结合位置,以及结合的分子数量是新的ADC药物可能成功的一个重要指标。&rdquo   &ldquo 质谱的最新进展为理解生物基质中ADC药物开发和工作机制等挑战问题提供了解决方案,&rdquo AB Sciex 公司LC / MS业务副总裁Chris Radloff说,&ldquo 利用这些分子很困难,通过形成这种合作,ADC开发者可以减少并发症,获得准确的结果,最终行成更安全、更有效的治疗方法。&rdquo   这项研究将使用AB Sciex 的TripleTOF 5600 + Selexion技术和TripleTOF 6600平台。   Dalton Pharma Services   Dalton is a contract pharmaceutical manufacturer which provides completely integrated chemistry, development, and manufacturing to biotechnology and pharmaceutical clients around the world. In its 42,000 sq. ft. facility, Dalton operates cGMP manufacturing of Active Pharmaceutical Ingredients (APIs), sterile injectables, finished drug products in vials or syringes, as well as solid oral dosage forms. APIs can be produced in gram to kilogram quantities, including sterile APIs. Dalton contract capabilities can support you at any stage of the regulatory process (Phase I, II, III, or commercial). Development services include chemistry and process development, medicinal chemistry, custom drug conjugation, targeted drug delivery systems, analytical method development and validation, ICH stability testing, formulation, and polymorphism screening. Dalton also supports the industry' s pharmaceutical research programs with a catalog of 1400+ reference standards, building blocks, metabolites, and impurities with its Dalton Research Molecules business.
  • AEM:高储钠性能超级电容器研究分享
    北京化工大学杨志宇教授AEM:高储钠性能超级电容器研究分享超级电容器因其良好倍率性能、循环性能的可再生能源存储设备,已成为热门的电化学可再生设备。然而,超级电容器的实际应用仍面临能力密度低、性能提升依赖于先进电极材料开发等困难。目前常采用法拉第电极材料,包括过渡金属氧化物、过渡金属氮化物和过渡金属二硫化物等提高超级电容器的能量密度。其中,过渡金属氧化物因具有高理论电容,低成本,环境友好等优势,作为潜力巨大的电极材料应用在超级电容器中。然而半导体性质的过渡金属氧化物仍有固有电子电导率低,充放电过程中容量和倍率性较差等不足,因此如何设计良好的电子结构对于优化过渡金属氧化物的电化学性能至关重要。北京化工大学杨志宇研究员及团队在知名期刊Advanced Energy Materials上发表了题为“Elevating the Orbital Energy Level of dxy in MnO6 via d–π Conjugation Enables Exceptional Sodium-Storage Performance”的文章。过渡金属氧化物 (TMO) 具有固有的低电子电导率,而原子轨道相关的调节对于促进储能应用中的电子转移动力学至关重要。该研究利用 d-π 共轭策略来提高 TMO 的电子电导率。选择具有大共轭体系的酞菁 (Pc) 分子来修饰过渡金属氧化物 (δ-MnO2)。通过密度泛函理论(DFT)模拟,验证MnO2和Pc之间的强d-π共轭可以提高MnO6单元中低能轨道(dxy)的轨道能级,进而提高dxy的氧化还原活性,从而显著提高电化学钠存储性能。结果与讨论作者采用扫描电镜和透射电镜等设备分析材料的形貌结构,X射线能谱分析样品的电子结构和成分信息,紫外可见吸收光谱检测材料在250-800nm波长范围带隙,采用X射线吸收光谱展现材料的边缘结构和精细结构。使用北京卓立汉光仪器有限公司自主研发的Finder Viseta激光显微共聚焦拉曼光谱仪检测原位拉曼光谱,用于揭示其充放电循环过程中结构变化。图1 a)MnO2-Pc合成示意图;b)XRD谱图;c)FTIR光谱图;d)能量损失图;e) TEM图像;f)选定区域电子烟摄图;g)高分辨率TEM图像;h-l)元素映射图图2:a)CV曲线,MnO2-Pc 和MnO2 在20 mV s&minus 1;b)GCD曲线,MnO2-Pc 和MnO2 在 1 Ag&minus 1;c)GCD曲线,MnO2-Pc在不同电流密度下;d)比容量 ,MnO2-Pc和MnO2在不同电流密度下;e)Nyquist图,MnO2-Pc and MnO2;f) CV曲线,MnO2-Pc在不同扫描速率下;g)拟合曲线 h)电流贡献值 i)三次充放电过程中原位拉曼光谱图图3 a-c)pDOS(投影状态密度)曲线;d)轨道能级图;e-f)计算 ELF的DFT切片;g)轨道能级提升和加速电子转移特征示意图。图4 a) MnO2-Pc(阴极)// AC(阳极)ASC原理图。b) 1.0 m Na2SO4溶液中MnO2-Pc和AC的CV曲线。c) 100 mV s&minus 1时不同电位范围的CV曲线。d)不同扫描速率下CV曲线;e) GCD曲线(不同电流密度)。f)本工作中ASC的Ragone图与报道结果进行比较。结论:本文用 Pc 修饰 MnO2 以调节低能轨道 dxy 的轨道能级,并获得了更高的 MnO2-Pc 电化学储能性能。DFT 研究表明,轨道杂化引起的强 d-π 共轭提高了 dxy 的轨道能级并扩展了轨道能量分布,从而促进了电子转移动力学并激活了 dxy 的氧化还原活性。轨道能级提升策略有效地提高了 MnO2-Pc 的电化学 Na+ 存储能力。获得的 MnO2-Pc在 1 A g-1 时显示出 310.0 F g-1 的高比电容,在 20 A g-1 时显示出 211.6 F g-1 的优异倍率容量。这项工作为改进 过渡金属氧化物的电化学 Na+ 存储提供了轨道能级提升策略的机理见解,这种有效的策略可以扩展到储能应用中其他先进电极材料的设计。原文链接:https://doi.org/10.1002/aenm.202300384相关产品推荐本研究的拉曼光谱采用Finder系列拉曼光谱仪检测,该系统全新升级为930全自动化拉曼光谱分析系统,如需了解该产品,欢迎咨询。产品链接:https://www.zolix.com.cn/Product_desc/1105_1562.html 作者简介杨志宇,北京化工大学研究员。北京理工大学博士学位,清华大学博士后。主要研究方向为电化学领域。目前的研究方向是 (i)电化学储能,(ii)电催化CO2还原,电催化甲酸氧化和电催化氮还原 (iii)电容除盐。已发表一作、通讯SCI论文60余篇,包括JACS、AEM、AFM、Nano Energy、JEC、Small、CEJ、JMCA、JPS,申请专利7项,授权5项。免责声明北京卓立汉光仪器有限公司公众号所发布内容(含图片)来源于原作者提供或原文授权转载。文章版权、数据及所述观点归原作者原出处所有,北京卓立汉光仪器有限公司发布及转载目的在于传递更多信息及用于网络分享。如果您认为本文存在侵权之处,请与我们联系,会第一时间及时处理。我们力求数据严谨准确,如有任何疑问,敬请读者不吝赐教。我们也热忱欢迎您投稿并发表您的观点和见解。
  • 【国内首发】通过复眼仿生的MOEMS拉曼探头了解简智仪器MOEMS 阵列光斑检测技术
    【新一代小型拉曼必配技术】 近年来,拉曼光谱快检技术在食品安全、生物医药、分子结构研究、化工过程、生物化学、考古及文物鉴定、公安与法学样品分析、反恐技术等各行各业得到广泛应用,被称为“分子指纹”的拉曼光谱技术因其无损、便捷、速度快、稳定性高的优良特性,在光学快检领域受到大力推崇。但是实际使用过拉曼光谱检测方法的都知道,由于采用聚焦测量的方式,在对有些目标物检测时,必须很小心。由物像共轭关系可以知道,只有在光谱仪接收狭缝的像点发出的所有光信号才能被光谱仪所接收。因此当激发激光的聚焦点正好处于这个位置的时候,拉曼信号才有最高的收集效率。为了获得更高的分辨力,色散光谱仪的狭缝,通常只有几十个微米,所以在进行拉曼检测的时候我们需要对激光进行聚焦。对于一些应用这是非常方便的,比如需要对天然宝石中的胞体进行研究。但在很多时候,高聚焦也带来了其它的问题。比如:深色物质,由于深色物质会吸收大部分激光功率,因此容易引起样品的灼烧。在测量文物字画时有损害样品的可能,而测量黑火药、烟火药等炸药时,甚至有直接引爆的危险。如下图此外,由于拉曼的聚焦特性,因此实际上只能进行“点测量”,对于一些非均匀样品的分析,高聚焦很可能导致对检测谱图代表性的质疑。如果被测物为非均匀混合物,很可能测量的那个点上,并没有目标物。比如测一个注胶的翡翠手镯,但测量点上没有胶,可能就会被误认为A货翡翠。测量多组分混合的固体违禁品时,可能测量点上只有食用辅材而不包含违禁品。 如下图针对这种情况,出现了一些针对性技术:首先是ORS移动光斑技术,这种技术通过降低单个位置激光照射时间来避免引燃物体。但由于微机械传动结构很难保证光斑运动轨迹在某个平面范围上均匀分布,因此实际效果只是光斑在某个小范围内呈线性“抖动”,并且由于单点功率密度并没有下降,因此很多情况下仍旧会灼烧甚至引爆物品,而且对设备光机结构要求非常高,导致可靠性下降。 第二种是TRS透射技术。该技术对样品要求很高,需要是薄片状样品,而且受数值孔径的限制,这种方式的光学效率不高,测量范围更小。 第三种是采用非聚焦方式的“大光斑”技术,由于不在物镜聚焦点上测量,使得照射光斑扩大,但由于违背了前面所说的聚焦测量的原则,因此导致收光效率大幅损失,即使在周围加上反射腔做弥补,也至少损失一个数量级以上的光学效率。 并且,以上三种技术都只能将光斑范围扩大到毫米级,在实际应用中仍然太小了。而且后两种技术还会大幅的损失光学收集效率,导致信号恶化,无法有效分辨样品。 如何才能获得一个较大面积的拉曼特征并且实现激光功率的均匀分布,而又不以牺牲光学效率为代价呢?复眼昆虫眼部分解成无数的复眼,每个小的眼睛均可独立成像,通过复眼结构昆虫获得了更高的视野和反应速度。从昆虫的复眼,我们获得了很好的启示。通过对复眼的仿生,科学家发明了“蝇眼相机”,具有160度的视野,能够同时聚焦物体的不同深度。 如果像复眼一样,有无数个小透镜同时对激发光聚焦,我们就可以在透镜的焦平面将激发光平均分配为很多份。每个小的透镜都是一套独立的光学系统,光谱仪狭缝和样品激发位置构成物象共轭关系。由于小透镜位置不同,我们可以把检测点覆盖在一个很宽的范围同时检测,解决了拉曼检测实际上只能进行“点测量”的问题。 这就是简智仪器通过研究率先推出的MOEMS 阵列光斑检测技术,不止解决了拉曼光谱高聚焦容易引起样品的灼烧的问题,同时实现了拉曼检测技术从“点测量”到“面测量”的突破。简智仪器依托自身元器件级的研发设计能力,突破重重设计和工艺难点,将传统拉曼中使用的单一透镜,优化为阵列微透镜,然后再做对应的光路系统的优化,研发出来的复眼仿生的MOEMS拉曼探头,实现将检测范围扩大为厘米量级!而光点能量降低1-2个数量级,并且在检测范围内,均匀分布上百个聚焦光斑点;并且每个光斑点,保持了高数值孔径,在不显著降低接收效率的前提下,又均匀地分摊了激光照射功率,可以对样品进行大面积检测。特别是在测量危险样品时,由于单点功率低于5mw,因此,绝对安全。彻底杜绝拉曼光谱灼烧损坏样品,或者引燃引爆危险品的可能性!并且在均匀分摊激光功率的同时,保持超高拉曼接受效率,不会因为测量深色物体而导致信号恶化无法正确分辨。MOEMS 阵列光斑检测技术可以解决目前对于违禁品等混合样品在拉曼检测中出现的代表性问题,避免了对高吸收率物质(如黑火药、ABS材料等)进行拉曼光谱检测时出现的烧蚀损毁现象,解决了易燃目标目前无法用拉曼技术直接检测的问题,同时创新性地实现了低能量密度下的大面积拉曼检测,是对传统拉曼检测技术的革新性变化。简智仪器有信心,MOEMS将成为下一代便携式拉曼光谱的常态性必配技术。绝对安全的保证,将大幅扩大拉曼光谱技术的适用范围。简智仪器在现场快检技术发展高峰论坛暨2019简智新品发布会上发布该项新科技,为拉曼快检底层技术革新拉开了序幕。2019年简智仪器即将推出的Easy-Raman EV系列新款手持式拉曼光谱产品也将搭载MOEMS阵列光斑检测技术,敬请期待。
  • Angew:近红外有机电致发光(NIR-OLED)新突破
    近年来,高效率近红外发光材料因其在生物成像、医疗、光通信和夜视器件等方面的重要应用而备受关注。除了无机近红外量子点和卤化物钙钛矿等材料外,各种有机近红外材料包括传统的荧光小分子材料、共轭聚合物、稳定的发光自由基、热激活延迟荧光(TADF)材料和金属有机配合物磷光材料等因其具有化学结构可调、稳定性好、便于制备近红外有机电致发光器件(NIR-OLED)的优势而得到迅速的发展。在这些有机近红外材料中,后三种材料在OLED中对单线态和三线态激子的利用率能够达到100%,从而提高了器件的效率。尽管如此,受制于能隙法则 (energy gap law),即随着激发态和基态之间的能隙差减小,非辐射跃迁速率常数呈指数增加,导致开发高效率的有机近红外发光材料( 700 nm)一直是一个巨大的挑战,从而严重限制了相关器件电致发光效率的提升。目前,扩展π-共轭和增强发光分子的电荷转移(CT)是红移材料发光波长的两种常见方法,通常需要将两种方法相结合才能获得近红外区的发光。因此,以前报道的近红外发光材料由于具有很强的CT性质,发光光谱半峰宽(FWHM)通常高达70-150 nm。当最大发光波长小于770 nm时会有部分光谱覆盖可见光区域,严重降低近红外光的纯度,这种情况不利于高性能纯近红外发光或夜视器件的制备。如若为了提高近红外光纯度,将材料的最大发光波长红移至超过770 nm,则发光效率将进一步显著降低。因此,到目前为止,尽管已有极少量性能较好的NIR-OLED获得超过15%的外量子效率,但表现出纯近红外发光的OLED电致发光效率通常低于5%。近日,西安交通大学化学学院杨晓龙、孙源慧、周桂江等人与五邑大学陈钊合作报道了电致发光效率达到16.43%的纯近红外发光NIR-OLED。作者通过优化Ir(III)配合物的分子结构设计降低金属中心到配体电荷转移跃迁,提高三线态激发态中的基于配体的ππ跃迁成分,成功地将发光光谱半峰宽降低至43 nm,因此获得了最大发射峰位于730 nm附近的纯近红外发光材料 (图1)。图1. 近红外Ir(III)配合物的分子设计策略和发光性质。与其他纯近红外材料相比,由于具有相对较短的发射波长,因此可以缓解能隙法则的不利影响。此外,理论计算表明论文报道的配合物激发态形变非常小,因而最终获得了优异的近红外发光效率。作者采用溶液法制备了具有传统结构的电致发光器件(图2),选取的功能层材料具有合适的能级,能够有效地促进从主体到客体之间的能量传递,并将激子限制在发光层内,因此,器件的电致发光光谱与其对应的光致发光光谱近乎一致。基于BIqThIr和BIqThIrO的器件电致发光波长分别为737 nm和733 nm,半峰宽仅有47 nm和44 nm,这使整个光谱中近红外成分超过98%,实现了纯近红外发光。图2. (a) 器件结构。(b) 电致发光光谱。(c) 电流密度(J)-电压(V)-辐射度(R)曲线。(d) 电致发光效率与电流密度的特性关系。由于具有优异的近红外发光性能,溶液法制备的NIR OLED最高电致发光效率分别高达15.00%和16.43%,显著超过了已报道的基于近红外Ir(III)配合物的器件最高电致发光效率,也显著超过了采用溶液旋涂法制备的基于不同有机近红外发光材料的器件最高电致发光效率 (图3)。图3. (a) 基于Ir(III)配合物的溶液旋涂法和真空沉积法NIR-OLED发光峰在700-900 nm范围内的最大电致发光效率。(b) 基于不同有机发光材料溶液旋涂法NIR-OLED发光峰值在700-900 nm范围内的最大电致发光效率。综上所述,作者提出了一种开发高效率纯近红外发光材料的新策略。通过合理地设计分子结构来调控三线态性质,减少能隙定律的不利影响,为如何改善近红外材料发光性能提供了新的思路。这一成果近期发表在Angewandte Chemie International Edition 上,该论文第一作者为西安交通大学化学学院杨晓龙副教授,通讯作者为西安交通大学化学学院孙源慧副教授、周桂江教授与五邑大学陈钊博士。原文(扫描或长按二维码,识别后直达原文页面): Narrowband Pure Near-Infrared (NIR) Ir(III) Complexes for Solution-Processed Organic Light-Emitting Diode (OLED) with External Quantum Efficiency Over 16 %Xiaolong Yang, Shipan Xu, Yan Zhang, Chengyun Zhu, Linsong Cui, Guijiang Zhou, Zhao Chen, Yuanhui SunAngew. Chem. Int. Ed., 2023, DOI: 10.1002/anie.202309739
  • 细胞增殖检测新技术——EdU 取代BrdU
    直接测定DNA合成是细胞增殖检测的最准确方法之一,是测定物质毒性、评估药物安全评价、细胞健康的基本方法,其中以前常用的方式是利用胸腺嘧啶核苷酸类似物&mdash &mdash BrdU进行检测。因为在细胞周期的S期,和细胞一起孵育的BrdU能掺入DNA分子中,再结合BrdU抗体与渗入DNA的BrdU特异性结合,就能够检测到DNA复制活跃的细胞。 但BrdU有一大缺点,就是需要变性DNA后才能与抗体结合,但这就破坏了DNA双链结构,影响了其他染料的结合染色,导致染色弥散,准确性降低等问题。哈佛大学医学院细胞生物学家Adrian Salic就认为:&ldquo 为了能够暴露BrdU的抗原表位,必须用高浓度的盐酸,乙酸或酶解,但经历了如此严重的处理后,细胞原本精巧细致的结构在显微镜下就变得惨不忍睹了。&rdquo 事实上,现在有一种新的检测方法能避免这种情况的发生&mdash &mdash EdU检测。EdU (5-乙炔基-2&rsquo 脱氧尿嘧啶核苷)也是一种胸腺嘧啶核苷类似物,但其连有的炔羟基团在天然化合物中很少见,在细胞增殖时能够插入正在复制的DNA分子中,基于EdU与染料的共轭反应可以进行高效快速的细胞增殖检测分析,可以有效地检测处于S期的细胞百分数。与传统的免疫荧光染色(BrdU)检测方法相比,更简单,更快速,更准确。EdU只有BrdU抗体大小的1/500,在细胞内更容易扩散,不需要严格的样品变性(酸解、热解、酶解)处理,有效地避免了样品损伤,有助于在组织、器官的整体水平上观测细胞增殖的真实情况,具有更高的灵敏度和更快的检测速度。Adrian Salic特别强调:&ldquo 与传统的免疫荧光染色不同,EdU反应能在几分钟内完成,且不需要进行严格的样品变性处理,使得组织成像更简单易行。&rdquo 细胞增殖检测方法基于EdU与Apollo?荧光染料的完美结合准确检测新合成的DNA,简单,快速,准确。这种检测方法非常快速,且只需简单的几个步骤,因此也适用于高通量筛选试验,如在药物筛选中检测加药后细胞的活力。 图1 BrdU 与EdU 检测原理示意图 表1 BrdU 与EdU 检测优缺点比较 图2 BrdU 需要DNA 变性后才能与抗体结合,导致BrdU、Hoechst 染色弥散,边缘模糊不清; 而EdU 边缘清晰完整,检测更灵敏、更准确EdU可以检测新合成的DNA,而EU则可以检测新合成的RNA。EU是一种尿嘧啶核苷类似物,能够在RNA转录时期代替尿嘧啶( U )渗入正在合成的RNA分子,基于EU与Apollo?荧光染料的特异性反应进行RNA检测。EU能够在体内和体外水平检测时间和空间上RNA合成的变化,能够更方便地研究RNA转录位点,结合相关抗体标记能够检测与RNA有相互作用的蛋白。结合EdU和EU进行检测新合成的DNA和新合成的RNA,可以深入开展细胞增殖、细胞周期、细胞毒性、DNA复制及修复、信号通路等方面的研究。
  • 默克液相色谱柱毫无分享:Supelco® Discovery系列液相色谱柱
    液相色谱分析方法作为实验室的常用分析方法,在制药、环境、食品等领域应用广泛。而高品质的液相色谱柱分辨率高,灵敏性强,分析更快,性能一致,助力实验效率事半功倍。今天向大家推荐的液相色谱柱好物是:默克Supelco® Discovery系列液相色谱柱应用广泛Discovery系列是Supelco® 经典液相色谱柱,受到药物研发质控和生产企业的广泛认可,适用于LC-MS;可替代目前市面上大多数C18柱。Discovery HS F5广泛应用于紫杉醇及其相关化合物的分离;Discovery RP-Amide C16是化妆品中32种禁用染料的国家标准指定专用柱;300Å Bio Wide Pore大孔径反相硅胶柱,助力多肽和蛋白的分析。键合相种类丰富:Discovery C18 -- 通用型,药物研发和生产企业Discovery HS C18 -- 高碳载量 20%Discovery HS F5 --独特选择性,位置异构体Discovery RP-Amide C16 -- 极性化合物酸类和酚类Discovery BIO WIDE --天然和合成肽(疏水性多肽)的分离Discovery CN --对疏水性化合物的快速洗脱,适合分析强碱性化合物典型应用解析:面包样品基质中脱氢乙酸的色谱分离脱氢乙酸是一种具有多种工业用途的有机化合物。它可以用作合成树脂中的增塑剂;用作杀菌剂或杀菌剂;也可以用作食品防腐剂。该应用使用Discovery® HS C18高效液相色谱柱,按照现行中国国家标准方法(GB 5009.121-2016)检测面包中的脱氢乙酸。 结果表明,面包样品基质中脱氢乙酸的色谱分离度令人满意,方法的线性度、检出限和定量限均满足规定的检测要求。脱氢乙酸结构式非羧基酸类中性或碱性条件下易形成共轭结构分离难点:易产生强的次级保留,峰形变形严重,保留时间漂移 实验条件色谱柱Discovery® HS C18 250 x 4.6 mm,5um (568523-U)流动相[A] 20 mM ammonium acetate, pH 3.5 with acetic acid [B] methanol (70 : 30=A : B)流速1.0 mL/min检测器UV 293 nm进样量L1.专属性2.重复性(脱氢乙酸浓度为10ppm)MeasurementsMean areaSTD 1283.7STD 2284.8STD 3284.2STD 4284.8STD 5283.2Mean284.1Standard Deviation 0.7RSD (%) 0.23.线性4.检出限和定量限
  • 新品发布 | Welbuffer生物缓冲液-1分钟完成试剂配制
    缓冲溶液是指当加入少量强酸、强碱或稍加稀释时,能保持其pH值基本不变的溶液,它对强酸、强碱或稀释有一定的抵抗作用。由于缓冲溶液中同时含有较大量的弱酸(抗碱成分)和共轭碱(抗酸成分),它们通过弱酸解离平衡的移动以达到消耗掉外来的少量强酸、强碱,或对抗稍加稀释的作用,使溶液的H+离子或OH-离子浓度没有明显的变化,因此具有缓冲作用。用传统方法配制时需要计算、称量、混合并使用强酸碱调节pH,操作繁琐费时。月旭科技特推出Welbuffer缓冲速溶颗粒或片剂,能够解放您的双手,无需搅拌,一步加水溶解完全即可完成试剂配制,晃动混匀即可,无需磁力搅拌。即取即用,使用简单、快速。我们本次新品提供免费试用,如果您感兴趣,可以浏览至文末申请试用哦~产品优势1. 运输及存储便捷大多数试剂都是对温度有要求、重量较重、体积较大的,因此在存储、配送方面的费用占比是很大一部分的成本,而颗粒剂与片剂可以有效减缓这些问题。2. 使用方便,提高效率一步加水快速溶解完全即可完成试剂配制。即取即用,使用简单、快速、无需计算、称量及混合,无需使用强酸碱调节pH。3. 稳定可靠高纯度、生物级生产原料,进行广泛测试,包含多项技术指标(重量、pH值、pKa值、电导率以及杂质含量等)。采用制药工艺生产,将大容量试剂配制完成后经过滤纯化,再使用喷雾干燥技术获得均匀颗粒。4. 批次重复性好少量试剂的人工配制往往造成批间差异大的问题。通过大批量的颗粒剂配制,分装成大量三年有效期的小包装。每次一包颗粒剂即加水即用的特点可有效避免批间差的问题。5. 可定制根据用户的需求,可定制不同配方、不同包装及不同剂型的产品。6. 有效期长在室温(2-30℃)避光干燥密封保存及运输的条件下,有效期长达3年。产品用途分类1. 科研诊断用缓冲液(PBS及Tris缓冲液试剂速溶颗粒剂及片剂)2. 蛋白分析检测用缓冲液(PAGE蛋白电泳缓冲液速溶颗粒及片剂)3. 分子生物学实验用缓冲液(DNA/RNA电泳缓冲液速溶颗粒及片剂)产品信息试用申请今天的新品为大家提供了四款产品,可以申请免费试用,分别是:TBST缓冲液速溶颗粒;PBS缓冲液速溶颗粒(pH7.4);TBS缓冲液速溶颗粒;PBST缓冲液速溶颗粒。如果您有需要,可以识别上方二维码,选择您想试用的产品。
  • 赛默飞发布Thermo Scientific™ Orbitrap Exploris 120新品
    赛默飞发布了新一代四极杆-静电场轨道阱台式质谱仪Orbitrap Exploris 120。Orbitrap Exploris 120 高分辨质谱仪扩展了 Thermo Scientific Orbitrap Exploris 质谱产品线,为实验室进行高通量靶标筛查和定量提供了便利和坚固的技术支持。高分辨率、高质量精度(HRAM)能力提供了在解决方案中获得准确结果的快速途径,能够实现日复一日的可用性和持续一致的性能。帮助用户轻松应对不同分析领域的各种挑战!l 超高的工作效率通过全新的设计避免用户频繁维护仪器,优化仪器的工作时间,将用户的精力节省下来更多地去关注实验结果,保证工作持续、稳定地进行;l 简单易用通过软件优化和丰富的内置方法模板,让仪器使用更便捷,操作更简单,降低仪器和软件的学习成本,保证用户快速上手;l 稳健性内标校正使得仪器可以实现超长时间的质量轴稳定性;结构设计避免仪器被样品污染,从而达到更长的有效工作时间,为用户产生更大的价值。全新的设计带来优越的分析性能和体验1. 全新一代四极杆Orbitrap 质谱仪均采用扫描速度更快的高场 Thermo Scientific™ Orbitrap™ 质量分析器,扫描速度可达22 Hz。更快的扫描速度可以在更短的时间内分析更多的化合物,而不会出现丢峰或者扫描点数不够的情况,实现好的定量表现。同时更快的扫描速度也可以在相同时间内采集更多化合物的二级信息,提高化合物鉴定通量,实现定性分析百无一漏;2. 在分辨率设置为60,000的条件下,在不损失灵敏度的情况下实现高达1.4 Hz的正负极性切换扫描速度。一针进样即可获得正负两种模式的数据,大大缩短数据采集耗费的时间,让用户有更多时间和精力对数据进行深入的分析和挖掘,进而获得满意的结果;3. 全新一代四极杆Orbitrap 质谱仪均使用高场 Orbitrap 质量分析器,在保证超高扫描速度的同时,还可实现120,000的分辨率,让质量偏差mDa级别的干扰物无处遁形,为用户分析复杂基质样品提供充足的信心。同时也可以提高数据分析的效率,避免被各种干扰物迷惑,快速、准确地获得满意的结果;4. 内置Thermo Scientific™ EASY IC™ 内标校正源,在仪器工作的同时即可实时校正质量轴,可实现连续五天质量漂移不超过1 ppm,为高通量分析时的质量精度保驾护航!5. 具有全新的扫描方式选择,包括DDA,DIA,targeted SIM和 targeted MS/MS等模式,丰富的扫描模式保证用户能够从容面对不同领域内各种不同的分析挑战;6. 高质量的共轭双曲面四极杆与RF应用相结合,可在更小的隔离窗口下实现极高的离子传输效率,提供出色的选择性,同时降低灵敏度损失。 Orbitrap Exploris 120 质谱仪在更小的仪器体积内实现了更好的性能,并通过 Thermo Scientific™ 数据采集软件实现了简单、一致的用户体验。 Orbitrap Exploris 120 质谱仪具有好的稳健性,为用户提供更长的仪器运行时间,保证结果产出效率。该仪器。Orbitrap Exploris 120系统通过全新的设计,实现了体积更小的同时具有无与伦比的性能表现!创新点:• 最高可达120,000分辨率、最快22Hz的扫描速度和1.4Hz的极性切换扫描速 • 全新的离子路径设计,结合更加强悍的高场Orbitrap,带来前所未有的性能表现 • EASY-IC内标校正源,可实现连续5天质量偏移小于1ppm,仪器超强的质量稳定性表现、节省仪器维护成本与精力 • 体积最小的Orbitrap高分辨质谱仪,体积约为QE系列的一半,为实验室节省更多空间 Thermo Scientific™ Orbitrap Exploris 120
  • Revolve Generation2正倒置一体电动荧光显微镜震撼来袭,拒绝不清晰
    你想要显微镜拍照像玩手机APP一样简单吗?想要拍出的图片清晰度直接可用于出版吗?想要更智能更时尚的操作和数据传输吗?想要拍照更轻松而不用长时间盯着目镜筒吗?那么Revolve Generation 2正倒置一体电动荧光显微镜来喽,化繁为简,功能升级;隆重推出DIGITAL HAZE REDUCTION(DHR)实时数字化图像处理功能,增加宽场荧光显微镜图像锐度,抑制噪声减少模糊,提高荧光检测分辨率;精确Z-Stacking功能帮您全景深观察样品,较厚样品荧光检测效果出众。这就是我,既有颜又有才!科研小伙伴是否遇到过,使用宽场荧光显微镜荧光拍摄不够清晰?使用共聚焦拍摄速度慢,而且荧光容易淬灭?小编给大家捋捋,看看到底应该怎么选,拒绝焦虑。宽场荧光显微镜与激光共聚焦成像效果区别▷ 激光共聚焦:使用激光点对样品进行逐点扫描,通过共轭聚焦技术,可有效避免邻近点光线干扰,获得更高分辨率。但对于活细胞荧光观察伤害性大,光漂白严重,由于是逐点扫描,所以成像时间长。▷ 宽场荧光显微镜:使用场光源对样本进行全视野照明成像,会出现光噪声、散射和炫光等现象,降低了图像分辨率,针对较厚样本大多只能平面成像。但拍摄速度快,对于活细胞荧光成像伤害性小,可有效避免光漂白。Revolve Generation2是您的不二之选,为什么这么说呢,往下看 ↓☑ 独有的实时DHR数字降噪技术,通过数字化图像处理,在镜下实时显示高分辨图像,清晰展现样本细微结构,颠覆传统成像效果。☑ Z轴高精度自动层扫,配合实时DHR数字降噪技术,在保持高分辨率的同时,对较厚样本进行全景深扫描合成,实现全景深观察。新一代Revolve正倒置一体电动荧光显微镜,拥有最流行的触屏操控方式,配备智能荧光成像系统,将Z-Stacking全景深成像和DHR数字降噪功能有机联合,提升分辨率告别照片模糊,为您打造全新的成像体验。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
  • 东华大学团队造出双功能纳滤膜,兼具脱盐和抗菌两大能力
    纳滤(Nanofiltration)是一种高效节能的膜分离工艺,可有效地去除多价离子和有机化合物,在水处理、制药和食品工业等领域具有重要的应用前景。透水性和离子筛分能力,是纳滤膜分离性能的主要指标。增大渗透性分离层的表面积,则能在提升水通量同时保持盐份的截留。目前,聚酰胺基纳滤微孔膜,已被广泛用于液体基分子/离子分离。然而,在兼具渗透、截留、抗菌和自清洁方面,这种膜仍然存在一定的瓶颈。受到氨基/亚胺与酰氯缩合交联形成致密聚酰胺网络的启发,东华大学材料科学与工程学院、纤维材料改性国家重点实验室教授团队,提出通过将多氨基卟啉基共轭微孔聚合物(PACMP,porphyrin-aniline conjugated microporous polymers)接枝到聚酰胺上,借此来扩大纳滤膜的分离表面积的策略。(来源:团队)得益于 PACMP 与聚酰胺膜牢固的共价接枝,并借助减薄分离层厚度、增加分离表面积、增加粗糙度等方法,纳滤膜的水通量能达到纯酰胺膜的两倍,同时还能保持较高的盐截留率。此外,PACMP 在光照下光激发单线态氧可有效杀灭细菌,体现了卟啉基聚合物接枝的聚酰胺膜优异的抗菌性能。就其研究意义来说:一方面,课题组发现了粉末状聚合物牢固负载制备二维材料的方法,并对原子力显微镜图像处理表征膜表面积变化的独特方法加以探索,也从后处理角度解决了共轭微孔聚合物难加工成形的问题。另一方面,该工作通过卟啉基聚合物修饰聚酰胺纳滤膜,制备了一种复合膜材料,其具备分离层较低、传质阻力小的优势,进而可以造出双功能纳滤膜。这种双功能纳滤膜拥有水通量翻倍的特点,可以实现有效抗菌的功能。基于此,该团队研发出一种可以高效解决膜易污染、膜通量低等问题的新策略。期间,课题组所引入的共轭微孔聚合物,不仅解决了膜分离过程中渗透率和截留率存在 trade-off 的难题,而且赋予分离膜以优异的抗菌和抗阻垢性能,未来有望用于工业分离领域,例如浓缩、脱盐、油水分离、染料提纯、天然药物分离、有机/无机液体分离等。日前,相关论文以《超渗透性抗菌偶联微孔聚合物-聚酰胺复合膜的表面工程》为题发在 Science China Materials 上。在论文投稿期间,其中一位审稿人非常认可通过卟啉基共轭微孔聚合物,来赋予纳滤膜原位抗菌性的方法。其还表示,利用原子力显微镜图像处理表征膜表面积的方法给他留下了深刻印象。而在研究中,该团队通过阅读文献、结合实际应用,发现传统的聚酰胺纳滤膜存在几个突出的问题,包括水通量待提高、盐离子或分子的截留率长期运行难保持、膜表面易结垢易污染等。调研发现,纳滤膜的分离层厚度,会对水/溶剂传质的阻力产生影响,即较厚且致密的分离层会导致传质阻力大幅增加,长期运行之后容易导致表面结垢,从而造成通量下降以及膜污染。相反的,使用薄的分离层可以提高膜的通量,并能保持较高的截留率。针对低通量、易结垢问题,该团队确立了如下目标:制备分离层减薄的聚酰胺纳滤膜,进而造出一种可以确保纳滤性能和稳定膜结构的纳滤抗菌膜,最终实现较高的通量和抗污染特性。同时,通过引入共轭微孔聚合物,优异的截留性能得以保证。另外,他们发现卟啉基聚合物材料具有较好的光吸收性能,在光照下能激发产生单线态氧活性成分,通过氧化破坏细胞器可以抑制细菌的生长。因此,可以将卟啉基共轭微孔聚合物 PACMP 作为光敏材料,以作为单线态氧的“生成器”,从而发挥杀菌的功能。基于以上调研与论证,该团队又提出这样一个课题计划:将氨基封端的卟啉基共轭微孔聚合物 PACMP,与酰氯通过酰胺化反应“预接枝”形成多酰氯聚合物,接着通过一步界面聚合法,让多酰氯聚合物和酰氯的混合溶液,同时与哌嗪单体完成酰胺化反应,从而形成聚酰胺纳滤复合膜。随后,针对含有不同剂量的共轭微孔聚合物的纳滤膜,他们对其进行纳滤性能测试,包括纯水通量测试、多种盐溶液的通量及截留率测试等。为了研究纳滤膜的抗菌性能,通过膜在光照/黑暗条件下对比、聚合物含量对比等,课题组检测了革兰氏阴性、阳性两种细菌的存活率。最后,通过长期通量/盐截留测试,表征了膜结构与纳滤性能的稳定性。而在研究纳滤膜精细结构如何分离层表面积时,该团队遇到了一个难题:即如何定量表征膜分离层表面积的变化?通过扫描电子显微镜,他们观察到纳滤膜分离层厚度只有 120-150nm,这是一个极薄且非常脆弱易破损的表面,对其表面进行定量表征几乎是不可能实现的。正当犯难时,他们想到通过对比原子力显微镜二维图像明暗场,可以反映材料表面高度起伏的变化,由此得到对应的高度曲线和三维立体结构。这时课题组设想,通过单位投影面积中明暗对比程度,是否可以得到实际表面积与单位投影面积的增量(变化量)?事实证明,该方法既巧妙、又可靠,原本困扰他们许久的膜精细结构的表征问题也就迎刃而解了。此外,传统聚酰胺纳滤膜具有两面亲水性,理论上水相溶液可以从任何一面渗透到另一面。对于特定的应用场景,比如高湿度环境或极干燥沙漠环境,假如水分可以选择性地透过就会显得更为重要。因此,他们将致力于研制亲水和疏水的两性非对称膜。亲水面允许高湿度环境的水分透过进入到干燥环境;背水面则能有效阻止水分从低湿度环境蒸发。由此,亲疏水膜可以调节膜覆盖下环境的湿度变化。另外,亲疏水非对称膜还可以拓展应用以下场景:即去除有机溶剂中微量的水分、或水相中微量的有机溶剂。
  • 理化所在氮掺杂非交替纳米带非线性光学材料方面获进展
    随着激光技术的发展,非线性光学材料在光限幅、全光开关、光通信等领域展现出广阔的应用前景。其中,有机π-共轭材料因具有高的非线性光学系数、低的非线性响应阈值、易于结构调控的非线性光学性能等优势而备受关注。线性并苯类稠环是一类经典的有机π-共轭材料,被广泛应用于有机光电器件中。而该类材料随着共轭长度的增加,化学稳定性变差,极易被氧化或发生Diels-Alder反应。同时,随着共轭体系的增大,分子间聚集程度增强,溶解性及其合成难度提高,因而限制了这类材料的开发及应用。   近日,中国科学院理化技术研究所特种影像材料与技术研究中心副研究员孙继斌、湘潭大学教授陈华杰课题组、英国剑桥大学博士曾维轩等合作,采用酮胺缩合策略,构建了一类化学性能稳定、溶解性好的氮掺杂非交替纳米带分子(图1),并将该类材料应用于非线性光学领域,揭示了氮掺杂非交替纳米带分子优异的反饱和吸收性能(图2)。其中,研究引入末端三蝶烯和侧基三异丙基硅乙炔,有效抑制了分子间的聚集,显著提升了材料的溶解性,是目前已报道的分子长度最长的可溶解氮杂非交替纳米带——含13元稠环分子。此外,多重五元环的植入有效阻断了线性并苯类稠环的全局芳香性,实现了基态与激发态兼具的局域芳香性,因而提高了π-共轭系统的稳定性,使得材料(NNNR-2)的三阶非线性吸收系数达到374cmGW–1,且在同等测试条件下,显著高于经典非线性光学材料C60(153cmGW–1)。   相关研究成果以N-Doped Nonalternant Nanoribbons with Excellent Nonlinear Optical Performance为题,发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家自然科学基金委员会、湖南省教育基金会和玛丽居里研究计划的支持。图1. 氮杂非交替纳米带分子NNNR-1和NNNR-2的(a)化学结构和(b)理论结构模拟图2. 氮杂非交替纳米带分子NNNR-1和NNNR-2的非线性光学性能
  • 赛默飞发布新一代Orbitrap Exploris 240质谱仪新品
    新一代Orbitrap Exploris 240质谱仪赛默飞发布了新一代四极杆-静电场轨道阱台式质谱仪Orbitrap Exploris 240。该系统继续扩展新一代 Orbitrap Exploris系列产品,改善并提高了大量关键的光学离子部件和仪器设计解决方案,扩展了先前的 Thermo Scientific™ Q Exactive ™ 系列质谱仪的分析能力。新质谱仪操作简单,可智能获取高分辨率高质量精度数据,为各种技术水平的用户提供快速获得高质量结果的通道,应对各种应用范围内的分析挑战!1. 采用快速扫描的高场 Thermo Scientific™ Orbitrap™ 质量分析器,全新扫描速度最高可达22Hz,具有出色的定性和定量性能;2. 可与包括 Thermo Scientific™ FAIMS Pro™ 接口在内的 Thermo Scientific二代离子源兼容,进一步提升定量准确性和分析通量;3. 具有 Thermo Scientific™ AcquireX ™ 数据采集工作流程,可进行全面、自动化的样品分析;4. 内置Thermo Scientific™ EASY IC™ 离子源内标校正,单次校正后可提供至少五天的高质量精度!5. 具有全新的扫描方式选择,包括 TopN/TopSpeed DDA,DIA 和 MSX等模式;6. 全新一代四极杆Orbitrap 质谱仪均使用高场 Orbitrap 质量分析器。 Orbitrap 中心电极的尺寸与 Orbitrap 内部获得的超高真空相结合,可实现最高240,000的分辨率;7. 高质量的共轭双曲面四极杆与RF应用相结合,可在狭窄的隔离宽度下实现极高的离子传输效率,提供出色的选择性,同时降低灵敏度损失。 全新的设计带来优越的分析性能和体验1. 在定性和定量蛋白质组学实验中的优异表现——Orbitrap Exploris 240可与选配的FAIMS Pro 高场非对称离子迁移谱接口联用,可以无缝地添加到现有的无标记定量 (或同位素标记定量)多路复用的工作流程中,提高低丰度多肽的信噪比,从而提高灵敏度,并最小化共流出肽段的干扰,同时减少离线分馏的时间。该组合增加了蛋白质组的覆盖率,减少了干扰,提高了定量的可信度。2. TMT多路复用同位素标记中的卓越表现——更高分辨率的 MS/MS 扫描为 Thermo Scientific™ TMT 实验带来了更精确的比值测定。在单次 LC-MS 实验中, TMT 或 TMT pro 试剂允许同时分析最多11个或16个样本。当 Orbitrap Exploris 240 质谱与可选的 FAIMS Pro 接口结合使用时,可减少与TMT实验中共隔离的干扰带来的比值压缩问题。3. 代谢组学从发现到高通量研究的完整解决方案——Orbitrap Exploris 240 质谱仪利用 Thermo Scientific™ AcquireX ™ 智能数据采集来收集更有意义的数据,结合强大的Compound Discoverer软件工作流程和数据处理,具有轻度捕集模式,可以减少或消除化合物意外碎裂导致的错误注释。4. 通过简化的操作完成生物制药的多功能应用方向——新一代质谱仪Orbitrap Exploris 240可与Thermo Scientific™ BioPharma 选配项一起使用,该选项可将质量范围扩大至 m/z 8000 ,应对生物治疗大分子蛋白如单克隆抗体和抗体药物偶联物的非变性质谱分析的挑战! Orbitrap Exploris 240 质谱仪在更小的仪器占用空间内实现了领先的性能,并通过 Thermo Scientific™ 数据采集软件实现了简单、一致的用户体验。 Orbitrap Exploris 240 质谱仪具有高可用性和稳健性,确保了通用性和正常运行时间。该新仪器在蛋白质鉴定、使用非标记 DDA 或 DIA 定量蛋白质组分析、多路复用 TMT 定量分析等方面表现出了优异的性能。Acquire X 软件可以让用户深入分析小分子化合物。此外,该系统能够利用肽图、自上向下、亚基和非变性分析方法对蛋白质和生物制药进行详细、全面的结构表征。Orbitrap Exploris 240系统拥有更小的体积,全新的设计,无与伦比的性能!创新点:• 最高240,000的分辨率让质荷比相差mDa级别的干扰物无处遁形;最快22Hz的扫描速度和1.4Hz的极性切换扫描速度保证化合物定性分析百无一漏 • 全新的离子路径设计,结合更加强悍的高场Orbitrap,带来前所未有的性能表现 • EASY-IC内标校正源,可实现连续5天质量偏移小于1ppm,仪器超强的质量稳定性表现、节省仪器维护成本与精力 • AcquireX智能化数据依赖型采集模式,自动实时更新方法的包含列表和排除列表,以获得更多低丰度化合物的二级碎片信息,实现复杂样品的深度分析 • 体积最小的Orbitrap高分辨质谱仪,体积约为QE系列的一半,为实验室节省更多空间 新一代Orbitrap Exploris 240质谱仪
  • 长春应化所在全高分子太阳能电池领域取得系列进展
    p   在光能转化为电能方面,全高分子太阳能电池采用p型高分子半导体(给体)和n型高分子半导体(受体)的共混物作为活性层,与传统的无机太阳能电池相比,具有柔性、成本低、重量轻的突出优点,已成为太阳能电池研究的重要方向之一。但是,n型高分子半导体的种类和数量远远少于p型高分子半导体,因此开发n型高分子半导体材料是发展全高分子太阳能电池的核心。 /p p   中国科学院长春应用化学研究所高分子物理与化学国家重点实验室刘俊课题组,提出采用硼氮配位键(B←N)降低共轭高分子的LUMO/HOMO能级,发展n型高分子半导体的策略,并发展出两类含硼氮配位键的n型高分子半导体受体材料,其全高分子太阳能电池器件效率与经典的酰亚胺类n型高分子半导体相近。 /p p   该课题组首先阐明了硼氮配位键降低共轭高分子LUMO/HOMO能级的基本原理,首次将硼氮配位键引入到n型高分子半导体的分子设计中(Angew. Chem. Int. Ed., 2015, 54, 3648)。进而提出了两种用硼氮配位键设计n型高分子半导体受体材料的分子设计方法:一是在共轭高分子的重复单元中,用一个硼氮配位键取代碳碳共价键,使共轭高分子的LUMO/HOMO能级同时降低0.5–0.6eV,将常见的p型高分子半导体给体材料转变为n型高分子半导体受体材料(Angew. Chem. Int. Ed., 2016, 55, 5313) 二是先设计基于硼氮配位键的新型缺电子单元——双硼氮桥联联吡啶,再用于构建n型高分子半导体受体材料(Angew. Chem. Int. Ed., 2016, 55, 1436)。 /p p   研究表明,硼氮配位键n型高分子半导体具有LUMO轨道离域、LUMO能级可调的特点(Chem. Sci., 2016, 7, 6197)。基于该独特的电子结构,在得到全高分子太阳电池器件效率6%的同时,实现了光子能量损失0.51 eV,突破了传统有机太阳能电池光子能量损失最小值0.6eV的极限,也是已知文献报道的最低值(Adv. Mater., 2016, 28, 6504)。 /p p   该工作获得了科技部“973”项目、国际自然科学基金、中组部“青年千人计划”和中科院先导计划等项目的资助。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201611/insimg/4e516292-452d-47ca-ae56-f629db3e32c9.jpg" title=" 1_副本.jpg" / /p p style=" text-align: center "   长春应化所在全高分子太阳能电池领域取得系列进展 /p p br/ /p
  • 高灵敏快速比色-荧光双模检测典型氧化剂研究获进展
    近日,中国科学院新疆理化技术研究所爆炸物传感检测团队在高灵敏快速比色-荧光双模检测典型氧化剂的研究获得进展,相关研究成果发表在Analytical Chemistry上。   高锰酸钾(KMnO4)、次氯酸钠(NaClO)等典型氧化剂是代表性非制式爆炸物原料,而过量排放会造成环境污染。因此,开展氧化剂的高灵敏、高选择性、现场快速检测和分析对维护国家公共安全与环境保护具有重要意义。   有机光学探针因具有结构可调、官能团多样、发光效率高、反应快、识别位点特异等优点,被广泛应用于典型氧化剂检测。目前,相关研究集中在调控探针结构增强单个目标物检测性能方面,如何通过探针设计实现对不同氧化剂的同时区分检测颇具挑战。   中国科学院新疆理化技术研究所爆炸物传感检测团队基于KMnO4和NaClO皆可氧化双键,以及氧化能力和反应机制不同的特征,提出了基于D-π-A(电子给体-π共轭桥-电子受体)结构的“一箭双雕”探针分子设计策略,实现了对KMnO4和NaClO的比色-荧光双模区分识别。   研究基于多氰基呋喃(TCF)中甲基易与醛基进行羟醛缩合反应生成双键的特点,以自身含有碳碳双键的TCF为拉电子基,以对二甲氨基苯甲醛为推电子基,设计制备了TCF基D-π-A型比色-荧光探针分子(DMA-CN)。由于KMnO4可以同时打断TCF和π共轭桥中的碳碳双键,而NaClO仅可以打断π共轭桥中的碳碳双键,进而生成具有不同光学性质的产物,从而产生不同的比色和荧光信号。   研究发现,DMA-CN对KMnO4的荧光-比色检测限分别达60 nM和 91 nM,而对NaClO的荧光-比色检测限达13 nM和214 nM,响应时间均  研究工作得到国家自然科学基金、中科院青年创新促进会、中科院基础前沿科学研究计划从0到1原始创新项目、中科院“西部之光”人才培养计划和新疆维吾尔自治区等的支持。新疆大学科研人员参与研究。
  • 科学家实现神经毒剂的超灵敏抗干扰快速检测
    近日,中科院大连化学物理研究所研究员卢宪波和研究员陈吉平团队在电化学生物传感器的研发中取得新进展。团队设计合成了一系列二维导电金属有机框架(cMOFs),在此基础上制备的生物传感器展现出优异的电化学性能,实现了多种介质中神经毒剂的超灵敏抗干扰快速检测。相关成果发表在《分析化学》上。由于MOFs超高的孔隙率、巨大的比表面积以及可调整的结构和性能,各个领域已经对其展开了广泛的研究。然而,绝大多数MOFs的固有绝缘特性,阻碍了其在电子器件中的应用。卢宪波和陈吉平团队一直致力于新型纳米传感器在环境污染物快速检测上的应用研究。神经毒剂的急性毒性可致人、动物等死亡,其在化学中毒性疾病发病占比最高,亟需发展快速、廉价的检测方法满足应急检测需求。该工作中,团队合成了一系列基于不同金属中心和共轭有机配体的cMOFs,其良好的导电性和稳定性以及纳米尺度上活性位点的有序排列展现出对提高传感器关键性能的优异协同效应,而良好的导电性源自于金属中心和共轭配体之间的面内扩展d-π共轭。研究人员通过对cMOFs结构的原子级调整,发现了金属中心的种类以及孔径大小在电化学性能中的决定性作用。超小的羟基苯醌配体(THQ)具有明显的二维螯合效应,进一步提高了cMOF的导电性和稳定性。团队开发了基于cMOFs的电化学生物传感器,发现基于Cu3(THQ)2的传感器性能优异,通过显著降低信号底物的氧化电位提高了传感器的抗干扰能力,同时传感器灵敏度提高达到一个数量级。研究进一步证明了Cu3(THQ)2上密集的混合价铜和分析物之间电荷转移的重要作用,实现了多种介质中神经毒剂的超灵敏抗干扰快速检测。这项研究展示了cMOFs作为新型电极材料在电化学传感上的巨大潜力。
  • 浅谈 | 激光共聚焦显微镜特点及应用
    激光扫描共聚焦显微镜(LSCM)是基于共轭焦点技术设计的显微镜类型,即为使激光光源、被测样品和探测器都处于彼此的共轭位置上。基本原理在一般的显微镜中通过将物镜的焦平面与探测器重合使得观测的像平面与相邻的轴平面隔离开来,而在共聚焦显微镜中通过使用衍射受限的光点照亮样品,并在该光点共轭焦点处的收集光路径中使用针孔来过滤杂散光达到产生这种隔离效果从而提高分辨率。激光共聚焦显微镜原理图成像特点—不同的焦平面上生成“z叠层”图像—上图所示结构中,只有在共轭的样品层反射回的光可以通过收集光路径中的小孔,其余无关的样品层反射被小孔阻隔。这可以得到显著的分辨率的提升。如下图所示的是同一厚样品的多维荧光显微镜和共聚焦显微镜的并排比较。当在不同的焦平面上拍摄一系列图像时,可以生成通常被称为“z叠层”的图像,这一图像显示了共聚焦显微镜提供的分辨率和对比度增益以及这些增益的根本原因。可以看到在成像平面位于组织上方的堆栈顶部检查图像可以发现荧光图像中带有大量的散射光,而共聚焦显微镜的图像则显示为黑色。这种轴向上的PSF的减少直接导致了z叠层中间光学界面上观察到的分辨率差异。同一厚样品多维荧光显微镜和共聚焦显微镜成像比较成像特点—光学切片扫描成像—激光扫描共聚焦显微镜的另一个特点是它是一种扫描成像技术,传统的宽场照明技术是将整个样品都照亮,因此可以图像可以直接被肉眼或探测器捕捉,但是LSCM采用一束或多束聚焦光束穿过样品扫描成像,这样得到的图像被称为光学切片,下所示即为传统的宽场照明方式与激光扫描共聚焦照明方式的区别。传统宽场显微镜和激光扫描共聚焦显微镜照明方式区别因此现代共聚焦显微镜的一种实际的工作方式如下图所示,激光发出的激发光通过二向色镜,通过一对振镜在样品x方向和y方向进行扫描,样品激发(或反射)的光通过针孔进入PMT检测器被记录,记录下的扫描图像通过计算机重构出实际的样品图像。一种实际的激光扫描共聚焦显微镜示意图成像特点—分辨率对比宽场照明大幅提升—在荧光显微镜中,单点发射的光强度由点扩散函数(PSF)描述,其图案就是一个艾里斑,荧光系统的分辨率可以由艾里斑的半径来描述,艾里斑的半径可以由物镜的数值孔径和激发光的波长决定:另一种荧光系统分辨率测量方式是半高宽最大值,即强度下降到峰值50%的值,此时宽场荧光照明的横向分辨率为:激光扫描共聚焦显微镜的分辨率为:这表明,共聚焦显微镜的理论最大分辨率比宽场照明提高了倍。下图表示了宽场显微镜与共聚焦显微镜的对比,左图为宽场显微镜得到的图像,右图为共聚焦显微镜得到的图像。宽场显微镜与共聚焦显微镜成像对比主要应用领域—医疗领域
  • 卫生部批准6种新资源食品用于食品生产加工
    中 华 人 民 共 和 国 卫 生部   公 告   2009年 第12号   根据《中华人民共和国食品安全法》和《新资源食品管理办法》的规定,批准γ-氨基丁酸、初乳碱性蛋白、共轭亚油酸、共轭亚油酸甘油酯、植物乳杆菌(菌株号ST-Ⅲ)、杜仲籽油为新资源食品。上述6种新资源食品用于食品生产加工时,应当符合有关法律、法规、标准规定。   特此公告。   附件:6种新资源食品目录.doc
  • 科学家开发出太阳能电池用新型聚合物材料
    p   迄今为止,世界上80%以上的能源是通过燃烧石油、天然气和煤产生的。首先,这会导致严重的环境污染 其次,人类在过去不到两百年的时间里已消耗了经过数百万年形成的全球石油资源可开采储量的一半以上。目前,世界各地的科学家的主要目标集中在如何提高太阳能的光电转换效率,却很少有人关注太阳能电池板基体材料的稳定性。 br/ /p p   在俄罗斯科学基金会资助下,以俄科院化学物理问题研究所科学家为首的国际团队开发出以有机半导体材料(共轭聚合物和富勒烯衍生物)为基体的高效稳定的薄膜太阳能电池,这是一种光化学和热稳定性较高、且具备可有效适用于有机太阳能电池的最佳性能的新型光敏材料。有机太阳能电池由于光电转换成本比化石燃料价格更低,因而有望彻底改变全球能源产业。研究成果发表在《Journal of Materials Chemistry》杂志材料上。 /p p   太阳光是一种很有前途的环保、廉价的能源。据估算,全人类每年能量需求约为20太瓦,而太阳每年辐射到地球的能量约105太瓦。因此,太阳可视做现代社会取之不尽用之不竭的能源。以有机半导体材料为基体的太阳能电池具有重量轻、成本低、灵活性等特点,已经引起研究人员和创新型企业的极大关注。 /p p   俄科学家的研究成果主要包括: /p p   一是创建了适用于有机太阳能电池的新的共轭聚合物组,并发现使用单体单元在主链中无序排列的不规则共聚物,其光电特性明显优于链节以严格顺序交替排列的常规结构聚合物。研制开发的以共轭聚合物为基体的有机太阳能电池的效率大于7%,这是国际上面积大于1平方厘米的同类装置中能得到的最好结果之一。 /p p   二是开发出用于有机太阳能电池、以富勒烯衍生物为基体的新型电子受体材料,这种新型材料能够保证有机太阳能电池在140℃高温下运行稳定。这是实现有机太阳能电池类设备长期稳定运行并得到实际应用的重要步骤。 /p p   俄科学家在以色列内盖夫沙漠中对若干类型的有机太阳能电池进行了实地试验,研究了影响太阳能电池操作稳定性的最重要因素。结果发现,采用电子顺磁(自旋)共振法可以轻松完成材料的光稳定性筛查并找出最具前景的结构。 /p p   上述研究工作是与德国弗劳恩霍夫太阳能研究所、巴伐利亚能源产业应用研究中心和以色列本-古里安大学的科学家合作完成的。 /p p br/ /p
  • HORIBA前沿用户报道 | 了解低聚聚苯乙烯侧链分布排列对全聚合物太阳能电池性能的影响
    转自 | 材料人引 言近年来,共轭聚合物给体材料和受体材料的显著发展促使着研究人员在不断地开发更高性能的全聚合物太阳能电池器件。聚合物太阳能电池为有机太阳能电池中的一种,其光敏层主要由共轭聚合物和富勒烯及衍生物组成,而全聚合物太阳能电池则是将聚合物太阳能电池中的富勒烯材料换成聚合物材料,也就是说在光敏层中全部使用的是聚合物材料,这也使得全聚合物太阳能电池具有制造工艺简单,成本低,太阳能光谱覆盖良好,化学性质和形态稳定等诸多优点。许多全聚合物太阳能电池都具有较低的短路电流(JSC)和填充因子(FF),这是由聚合物的低载流子迁移率所引起的。因此,研究人员一直寻求在有机场效应晶体管器件测量下具有高电荷载流子迁移率的给体-受体(D-A)型共轭聚合物。成果简介近日,来自斯坦福大学的鲍哲南教授(通讯作者)团队在Advanced Eenergy Materials上发表了一篇题为“Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance”的文章,文中报道了该研究团队有关光敏层中聚合物的分子形态对全聚合物太阳能电池性能影响的新研究成果。在该文中,低聚聚苯乙烯(PS)侧链引入共轭主链被证明可以增强半导体聚合物的加工性和电子性能。研究者制备两种具有不同摩尔百分比的PS侧链的给体和受体聚合物,以研究阐明它们的取代分布排列对于全聚合物太阳能电池性能的影响。当PS侧链在给体聚合物上被取代时,观察到的电池器件性能较低,当PS侧链在受体聚合物上被取代时,观察到的电池器件性能较高。研究表明,将PS侧链引入受体聚合物有助于共混聚合物膜中相分离畴尺寸的降低,然而减小的畴尺寸仍然比典型的激子扩散长度大一个数量级。详细的分子形态学研究以及原始PS、给体和受体聚合物的溶解度参数的估计显示,每个组分的溶解度的相对值主要对相分离结构域的纯度有正向作用,这强烈影响了光电流的的数量和太阳能电池的整体性能。图文导读图1D-PSX和A-PSX的合成路线合成D-PSX时,Pd(PPh3)4为催化剂;合成A-PSX时,Pd2(dba)3CHCl3为催化剂。图2电池性能表征(a)D-PSX/A-PSX全聚合物太阳能电池效率 (b)D-PSX/A-PSX全聚合物太阳能电池短路电流密度JSC(c)D-PSX/A-PSX全聚合物太阳能电池开路电压VOC(d)D-PSX/A-PSX全聚合物太阳能电池填充因子图3共混膜的RSoXS数据(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)在给体聚合物中具有固定量的PS侧链的散射曲线。所有RSoXS数据是在287 eV下测试获得的,其中不同聚合物之间的散射对比度与不同量的PS侧链附着相似。图4共混膜的荧光猝灭行为(a-c)PS侧链在受体聚合物中的数量分别为0%、5%和10%;(d-f)不同PS侧链数量的给体聚合物的PL猝灭行为。补充内容图4共混膜荧光猝灭行为的表征是使用的HORIBA Fluorolog系列荧光光谱仪,具有超高灵敏度,特别适用于荧光强度逐渐降低的猝灭实验。利用荧光猝灭方法,可以有效确认相态分离结构与复合行为的关系。其中,通过测试共混膜的荧光猝灭谱,发现当PS侧链在给体聚合物上被取代时,发生更多复合;当PS侧链在受体聚合物上被取代时,发生更高效的激子解离。从而可以得到结论,共混膜中相分离结构域的纯度和粒径影响了光电流的的数量和太阳能电池的整体性能。 图5相互作用和溶解度参数确定D-PSX/A-PSX共混膜中相分离行为的示意图和各聚合物溶解度参数的假设顺序。小结在本文研究中,研究者使用活性阴离子聚合和缩合的组合制备了一系列具有不同数量的PS侧链的给体和受体聚合物。标准表征显示PS侧链对给体和受体聚合物的光吸收和能级特征的影响可以忽略不计。从全聚合物太阳能电池性能可以看出,在给体聚合物上引入PS侧链能导致JSC值和PEC的降低,而在受体聚合物上引入PS侧链可以增强电池性能。文献链接Understanding the Impact of Oligomeric Polystyrene Side Chain Arrangement on the All-Polymer Solar Cell Performance (Adv. Energy Mater, 2017, DOI: 10.1002/aenm.201701552)免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 宁波材料所在sp2c-COFs薄膜制备及海洋能源器件方面取得进展
    共价有机框架(COFs)材料是一类由重复有机单元通过共价键连接具有二维拓展结构的多孔晶体材料。该类材料具有高结晶度、均一孔径分布和高比表面积等特点,因此广泛应用在气体储存和分离、能源储存、光电催化等领域。   其中二维sp2碳共轭共价有机框架(sp2c-COFs)具有有序π堆叠、丰富活性位点、可调谐开放纳米孔道结构、可定制化分子构筑基元与强共价连接键等特点。并且得益于碳碳双键增强的π共轭电子跃迁、超高的化学/热稳定性及高电子迁移率等特性,sp2c-COFs的高效构建是半导体器件、能源催化、选择性分离膜等前瞻性新兴技术及苛刻环境领域内研究的热点。   然而,sp2c-COFs的构筑受阻于高度不可逆的C=C成键过程;此外,目前报道的sp2c-COFs都是以粉末形式存在的,粉末的不溶性和共价有机薄膜制备困难的问题,阻碍了这些材料在相关分离膜、能源或光电器件中的应用。   中国科学院宁波材料技术与工程研究所界面功能高分子材料团队在张涛研究员的带领下对二维sp2碳共轭共价有机框架材料可控构筑及前沿基础应用进行了深入研究。该团队前期提出多种可靠新型单体、碳碳双键构筑路径及含有稳定性增强效应sp2c-COFs的设计策略(J. Am. Chem. Soc. 2022, 144, 13953 ACS Catal. 2023, 13, 1089 Chem. Mater. 2023, 10.1021/acs.chemmater.2c03083),突破了当前缩聚策略和单体种类的局限性,实现数类高度共轭sp2c-COFs的制备。   近期,该团队提出一种表面自组装单分子层(SAM)辅助的表面引发席夫碱介导羟醛缩合反应(SI-SBMAP)技术,实现sp2c-COF薄膜(命名为TFPT-TMT和TB-TMT)在多种基底上的可控构筑(图1)。并且得益于均匀的氨基单分子层提供的反应成核位点,通过SI-SBMAP合成的sp2c-COF薄膜展现了连续均匀的形貌和高度有序的晶体结构,并拥有高的比表面积和均一的孔径分布等结构特征(图2和3)。这些优点使得该薄膜材料在海洋渗透发电装置中展现出极高功率密度和稳定性。   为了解sp2c-COF薄膜的形态演变,进一步收集了不同反应时间的样品,并通过扫描电镜对其进行了分析。已知2D COFs中的平面三嗪基团由于强的π-π相互作用有助于促进COF层沿z轴的垂直堆叠,从而导致结晶度增强并形成棒状或带状形态。   因此,与三嗪基团较少的TB-TMT薄膜相比,TFPT-TMT薄膜中大量的三嗪基团倾向于形成更长的纤维。得益于表面引发技术可适用于多种基底的优势,sp2c-COF薄膜也可以在NH2-SAM修饰的其他各种基材上制备,包括聚丙烯腈(PAN)膜、玻璃纤维、铝片等。并且在PAN基底上制备的sp2c-COF薄膜尺寸可达18cm×7cm,为大面积制备sp2c-COF薄膜提供了新的途径(图4)。   在进一步的实验中,利用TFPT-TMT薄膜高化学稳定性、明确的准一维通道、高孔隙密度的优点,将其集成到海洋渗透发电装置中。该设备在50倍盐度梯度(pH=14恶劣条件)下输出功率密度高达14.1 Wm-2,中间电阻低至17.74 kΩ,优于大多数报道的COF膜,达到商业基准(5 Wm-2)的近3倍(图5)。这项工作为sp2c-COF薄膜的合成提供了一种新型、可靠的方法,并证明了其具有在极端酸碱条件下能源相关器件中的巨大应用潜力。   该工作近期以“Monolayer-Assisted Surface-Initiated Schiff-Base-Mediated Aldol Polycondensation for the Synthesis of Crystalline sp2 Carbon-Conjugated Covalent Organic Framework Thin Films”为题发表在Journal of the American Chemical Society期刊上,本研究得到了浙江省自然科学基金(LR21E030001)、国家自然科学基金(52003279)、浙江省创新创业领军团队引进项目(2021R01005)、宁波市重点研发计划(2022ZDYF020023)的支持。
  • 特邀报告人—李永舫院士 ‖ BCEIA 2023双碳战略下的可持续科学与技术高峰论坛
    双碳战略下的可持续科学与技术高峰论坛是中国分析测试协会倾力打造的“院士论坛”,聚焦新能源技术与产业发展,关注气候变化与生态环境保护的新业态、新模式,助力构建绿色低碳循环发展的新经济体系。会议时间:2023年9月7日下午13:00—17:00会议地点:北京.中国国际展览中心(顺义馆)学术会议区W201 李永舫 中国科学院院士 中国科学院化学研究所报告题目:聚合物太阳电池光伏材料研究从跟随到引领的创新之路摘 要: 太阳能是取之不尽、用之不竭的可再生能源,将太阳能转变成电能的太阳电池是一种零碳能源技术,在实现双碳目标中将发挥重要作用。聚合物太阳电池的活性层由p-型共轭聚合物给体和n-型有机半导体受体的共混薄膜所组成,活性层厚度一般只有100~200 nm,具有轻、薄、柔等突出优点。柔性聚合物太阳电池将来在可穿戴能源、便携式能源、建筑和交通光伏一体化等方面具有重要的应用前景。本报告将介绍我国学者的聚合物太阳电池光伏材料研究从跟随到引领的创新之路,重点介绍我国学者引领的窄带隙小分子受体光伏材料、小分子受体高分子化的聚合物受体光伏材料、基于小分子受体的巨分子受体光伏材料、以及与窄带隙受体匹配的低成本高效聚合物给体光伏材料的最新研究进展。 个人简介 1982年在华东化工学院(现名华东理工大学)化学系获硕士学位,1986年在复旦大学化学系获博士学位。1986-1988年在中国科学院化学研究所进行博士后研究,1988年留化学所工作,1993年晋升研究员。曾于1988.10.-1991.4.到日本分子科学研究所和1997.6.– 1998.6.到美国加州大学圣巴巴拉分校(UCSB)进行访问研究。2012年受聘苏州大学材料与化学化工学部教授,2013年当选中国科学院院士。 主要从事聚合物太阳能电池光伏材料和器件、导电聚合物电化学和半导体纳米材料等方面的研究,已发表研究论文900 多篇,国内外学术会议大会报告和邀请报告140多次。发表论文已被SCI他人引用73000余次,h-因子133。撰写中文专著三部:《导电聚合物电化学》(李永舫、穆绍林,科学出版社,2020年)、《聚合物太阳电池材料和器件》(李永舫、何有军、周祎,中国化工出版社,2013年)、《电化学动力学》(吴浩青、李永舫,高等教育出版社,施普林格出版社,1998)。编著英文著作“Organic Optoelectronic Materials”(Yongfang Li, Lecture Notes in Chemistry 91, Springer, 2015)。 “锂电池电极反应机理---电化学嵌入反应的研究” 1987年获国家教委科技进步二等奖(排名第二,排名第一是吴浩青先生);“导电聚吡咯的研究” 1993年获中国科学院自然科学一等奖;1995年获国家自然科学二等奖(排名第二,排名第一是钱人元先生);1998年获人事部授予“中青年有突出贡献专家”称号,“导电聚合物电化学和聚合物发光电化学池的研究” 获2005年度北京市科学技术奖一等奖。(排名第一);“带共轭侧链的聚合物给体和茚双加成富勒烯受体光伏材料”获2018年度国家自然科学二等奖(排名第一);“胶体量子点的可控合成和高品质LED应用研究”,获2018年度北京市科学技术二等奖(排名第一)。2013年入选汤森路透发布的全球Hottest Scientific Researchers 21人名单、入选科睿唯安(Clarivate Analytics)发布的2014年材料科学领域以及2015~2022年材料科学和化学两个领域Highly cited researchers名单。长期从事共轭聚合物光电子材料和器件以及导电聚合物电化学方面的研究工作,2000年起集中开展聚合物太阳电池光伏材料和器件方面的研究。 现任《高分子通报》主编、《中国科学 化学》副主编,兼任多个全国重点实验室和教育部重点实验室学术委员会委员。扫描下方二维码报名参会或PC端点击链接预登记:http://t2.eainfor.com/T/p/103_5 或手机端点击链接预登记:http://t2.eainfor.com/T/w/103_5
  • 黄伟国团队开发基于菲啶的多功能荧光探针分子
    利用荧光探针监测微环境在细胞成像、疾病诊断、材料缺陷跟踪和高分辨传感中起着至关重要的作用。然而大多数荧光分子只能检测微环境中的一种或几种分析物或物理参数,极大地限制了它们在动态复杂微环境中的应用。开发可检测多种分析物或物理参数的荧光探针不但可用于监测多种微环境,还能提供更全面的微环境信息,实现实时监测微环境的动态变化。中国科学院福建物质结构研究所研究员黄伟国团队设计开发了基于菲啶的荧光探针分子:B1,F1,和T1。B1由菲啶和吡咯单元融合,表现出一维线性的分子构型。F1含有三个B1单元,中间以苯环为核进行连接,呈现出二维的刚性平面共轭分子构型。T1含有四个B1单元,中间以1,3,5,7-环辛四烯(COT)为核进行连接,从而形成三维的动态共轭分子构型。基于COT的特性,T1可发生由马鞍形三维分子构型和平面二维分子构型的动态转变。由于三个分子均含有菲啶单元,因而可和多种分子形成Polar-π相互作用,展现出反刚致变色行为。菲啶单元上的 “N” 杂原子可对微环境中质子和离子进行响应。在极端高压下,三者均展现出荧光发射红移,其中以F1荧光红移程度最为明显(高达163nm),并实现了有机荧光分子鲜有的全彩“压致变色现”象。在细胞成像方面,F1和T1选择性地对细胞核进行染色,而B1主要对细胞质进行染色。该研究为具多重响应的荧光探针提供了新的设计方法,并在信息安全、细胞内传感、早期诊断及“靶向选择性” 治疗方面具潜在的应用前景。近期,相关研究成果发表在《德国应用化学》(Angewandte Chemie International Edition)上。研究工作得到国家海外高层次人才计划、国家自然科学基金、福建省自然科学基金杰出青年项目、中国福建光电信息科学与技术创新实验室等的支持。多功能荧光探针在微环境检测方面的应用
  • 中科院在有机近红外固体微纳激光研究方面取得系列进展
    有机固体激光器因其制备简单、价格低廉和易于集成等优势,一直以来备受科研工作者的关注。与无机激光介质相比,有机激光材料来源广泛,并且具有发射光谱宽、受激发射截面积大等特性,近年来在激光显示、生物传感器等应用方面显示出很大的应用前景。在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子动态与稳态结构国家重点实验室和光化学院重点实验室研究员付红兵课题组近期在设计有机共轭小分子近红外发光材料的基础上,发展了有机固体微纳近红外激光器。  传统无机半导体垂直腔面发射激光器(Vertical Cavity SurfaceEmitting Laser, VCSEL)由上下两层反射腔镜以及夹在中间的活性层材料组成,需要复杂的工艺流程和昂贵的成本。相比较而言,有机半导体材料可以通过低温溶液加工工艺进行激光器谐振腔的构筑。科研人员从1,4-二芳乙烯基苯(DSB)入手,利用溶液自组装的方法制备了六边形微米盘单晶。利用这种微米片状结构所形成的回音壁模式(Whisper Gallery Mode)的光学微腔,通过调控微米片的尺寸,分别实现了单模和多模的激光发射 (Angew. Chem. Int. Ed. 2014, 53, 5863) 进一步基于有机分子的可裁剪性,系统研究并揭示了分子结构—微纳谐振腔—激光性能三者之间的内在关联规律,为高性能有机固体激光器提供了新的设计思路 (J. Am. Chem. Soc. 2014, 136, 16602) 与此同时科研人员把材料体系拓展到有机无机杂化钙钛矿材料,实现了绿光波段的激光发射 (Adv. Mater. 2015, 27, 22)。  最近,研究人员通过把“分子内氢键”引入有机共轭小分子的策略,合成了固体发光量子效率高达15.2%的近红外发光材料?查耳酮衍生物DPHP。由于DPHP的双亲性质,用溶液自组装方法自下而上构筑了有机微米半球的回音壁谐振腔。与此同时,DPHP材料自身超快的辐射速率,避免了在高强度泵浦光下的激子-激子湮灭现象,使得DPHP材料发出的近红外荧光在回音壁腔中实现了光的受激发大,这也是基于非掺杂型有机固体近红外激光的首例报道(J. Am. Chem. Soc. 2015, DOI:10.1021/jacs.5b03051)。文章在线发表后,美国《化学与工程新闻》(C&EN)周刊网站,以Organic Lasers Shine Bright in the Infrared 为题对此工作进行了相关报道并且给予了高度评价:“Easy-to-build hemispheres could prove widely useful for lasing applications”。图1 北京天坛(回音壁)和有机六边形微米盘中光波的回音壁现象图2 有机固体近红外激光器示意图
  • 大连化物所发展荧光传感器阵列监测淀粉样蛋白聚集
    近日,中科院大连化学物理研究所生物技术研究部分子探针与荧光成像研究组(1818组)徐兆超研究员团队和新加坡科技设计大学刘晓刚教授团队合作,发展了一种全分子多因素调控荧光团TICT的方法,设计出具有宽动态响应范围和梯度敏感性的荧光传感器阵列,应用于Aβ蛋白聚集动力学的监测。该方法基于荧光分子的发光构效关系,通过实验和理论相结合的方式,深入理解分子发光机理,为工程化创制高性能的荧光分子提供了新思路和新方法。   通过抑制荧光分子受光激发后的扭转分子内电荷转移(Twisted Intramolecular Charge Transfer, TICT),可以开发出高亮度、高稳定性的荧光团。调控荧光团TICT性能可以设计具有不同敏感性的荧光探针以满足探测生理环境多样性的需求。分子工程方法依靠单个影响因素来调控TICT,如电子供体的供电子能力或共轭体系大小等,一直以来缺乏从分子结构整体来系统发现和考量多种影响因素。   针对这一问题,本工作中合作团队通过理论计算和实验验证,首先发现多个结构因素对荧光团TICT态存在影响,包括发色团共轭链长度、分子是否带电、供体模块的供电性以及供体和发色团之间的几何结构的预扭转等。   进一步,研究团队以广泛应用于蛋白质检测、粘度或pH指示剂的半花菁类荧光团为研究骨架,将多重影响因素系统考量指导分子结构改造,设计合成了15种半花菁衍生物荧光阵列,发光颜色涵盖整个可见光区(444至735nm),并具有梯度灵敏度和不同动态响应范围(粘度响应系数从0.46到0.97)。这种阵列的宽动态响应范围和梯度敏感性得益于荧光分子结构的多样性,最终实现了对Aβ蛋白聚集不同阶段动力学的监测以及对形成的Aβ纤维的荧光成像。徐兆超团队在理解和调控TICT这一淬灭荧光的光物理过程中做了系统性工作:通过结构改造,抑制了TICT并创制了多种高亮度的荧光染料(J. Am. Chem. Soc.,2016);发现了一种新型的光诱导分子内电荷转移机制(Angew. Chem. Int. Ed.,2019);实现了准确预测不同类型荧光染料TICT态的方法(Angew. Chem. Int. Ed. ,2020);近期也对该领域的进展做了系统性的综述(Chem. Soc. Rev.,2021)。   相关研究成果以“Monitoring Amyloid Aggregation via Twisted Intramolecular Charge Transfer (TICT)-Based Fluorescent Sensor Array”为题,于近日发表在《化学科学》(Chemical Science)上。该工作的第一作者是1818组博士后王超和博士研究生江文钞。上述工作得到国家自然科学基金、我所创新基金等项目的资助。
  • 散射式近场光学显微镜(neaSNOM)助力有机半导体的分子取向探究
    导读:布拉迪斯拉发先进材料应用中心(Center of Advanced Material Applications in Bratislava)的科研工作者利用对光致各向异性有不同响应的超高分辨散射式近场光学显微镜-neaSNOM,研究了有机半导体薄膜的分子取向与离散分子结构异质性的关系,揭示了分子取向对分子缺陷的影响。在此过程中,作者自创了一种综合利用振幅和相位信号测量分子取向的方法。上图:利用Neaspec设备表征材料得到的s-SNOM结果 文献解析:近年来, 共轭高分子以及小分子在有机电子设备方面的应用受到广泛关注,这是因为相比于无机半导体,它们在以下方面展现了其潜在优势:应用适配性、生物相容性、以及相对简单的制备过程。简单的制备过程也吸引化学家设计并研发了具有各种不同结构和功能基团的共轭分子,以此来满足有机电子设备的需要。而电导率作为重要的功能指标之一,与分子的取向息息相关。考虑到大多数分子都是各向异性的,分子取向将直接影响其光电特性(也就是能量转换效率)和机械特性。而根据具体应用的不同,设备需要一种特定的分子取向以满足其需要,并且此时其他的分子取向会被视为材料的缺陷。也因此,缺陷分析在有机半导体设备的开发与改进工作中,起到了举足轻重的作用。然而,对尺寸小于100 nm缺陷的判定一直是一块未被充分研究与记录的领域。 光学技术是表征分子取向的主要手段。而衍射限的存在限制了其测量精度,致使得到的光学响应信号体现的只是(精度范围内)很多纳米颗粒的平均情况。面对该问题,德国Neaspec公司历经多年研发出散射式近场光学显微镜(scattering-type scanning near-field optical microscopy,s-SNOM)。该设备突破衍射限(优于10 nm空间分辨率)并完成了超高空间分辨率的纳米成像。它能表征薄膜材料的固有纳米晶体结构、局部多晶型、异质性或应变性以及反应分子取向等信息。尽管近些年技术方面的进步日新月异,利用s-SNOM分析分子取向的工作却迟迟没有进展,眼下只有寥寥几篇的相关报告得以被发表。在本文中,作者深入研究了分子取向,并对离散分子结构的异质性做了分析。在此之上,作者观察到了与表面形貌并不相关的定向缺陷。这些缺陷对有机电子系统的功能性产生了直接的影响。 参考文献[1] Nanoimaging of Orientational Defects in Semiconducting Organic Films, [J]. The Journal of Physical Chemistry C, 2021, 125(17):9229-9235.
  • 基于TICT零背景荧光的通用型荧光点亮传感设计策略研究获进展
    荧光传感作为一种快速可视化、高特异性、简单便携和高性价比的检测技术,经历了从以实验方法为导向到以分子设计为导向的发展历程。科研人员在构象依赖型暗态发射荧光探针分子设计策略方面投入了大量的努力。其中,通过精确调控分子结构扭转,构建荧光发射禁阻跃迁的扭转分子内电荷转移(TICT),对于消除背景荧光、提升荧光点亮传感性能具有重要意义。然而,如何通过简单外界环境变化以调控荧光探针扭转能力的设计鲜有报道,这严重限制了TICT原理的拓展应用。针对于此,中国科学院新疆理化技术研究所痕量化学物质感知团队创新性地提出了一种背景荧光信号完全消除的新策略:通过化学酸化控制氨基质子化,进而引入激发态分子内质子转移(ESIPT)、空间位阻效应和共轭效应,从热力学与动力学层面极大促进了TICT过程的旋转效率。   为了验证该策略的可行性和通用性,研究人员采用密度泛函理论(DFT)以及含时密度泛函理论(TDDFT),对(2-(2-氨基-4-羧基苯基)-苯并噻唑(邻苯噻唑),o-BT)探针分子及其他9种结构类似分子进行了势能面扫描过渡态计算、电子空穴激发分析以及从头算分子动力学(AIMD)等理论模拟分析。结果表明,质子化o-BT探针激发态质子转移过程的反应势垒在热力学/动力学上具有明显优势;其次,结合激发态分子内氢键增强过程,o-BT探针的ESIPT光异构化过程被显著促进;再次,质子转移发生后质子给体氨基释放出的孤对电子在激发态条件下与苯环发生共轭;最后,质子给体氨基与转移后的H原子之间得以产生较强的空间位阻效应。以上三个效应耦合大大降低了系统能量,增加了电子和空穴在空间上完全分离的TICT构象形成概率,实现了背景荧光的完全消除。借助该策略,实现了直径最小为0.44 μm(~1 pg)的亚硝酸盐颗粒的超灵敏荧光点亮检测。   该研究成果有望为设计开发超灵敏、实时、精准响应的高性能荧光探针提供理论思路和依据。相关成果以“A General Twisted Intramolecular Charge Transfer Triggering Strategy by Protonation for Zero-Background Fluorescent Turn-On Sensing”为题发表在《物理化学通讯》(The Journal of Physical Chemistry Letters)杂志上,博士研究生李继广为第一作者,窦新存研究员和雷达博士为通讯作者,中科院新疆理化所为唯一完成单位。同时,基于该工作的创新性,被杂志选为Supplementary Cover封面论文。该研究工作得到了自治区重点实验室开放课题、国家自然科学基金面上项目、中科院从0到1原始创新项目、新疆维吾尔自治区杰出青年基金等项目的资助。质子化-激发态分子内质子转移(ESIPT)-扭转分子内电荷转移(TICT)策略实现皮克级亚硝酸盐荧光点亮检测示意图
  • 乐枫科普:为什么超纯水要即取即用?
    分析仪器(如HPLC、IC、AAS、ICP等)、细胞生物学、分析生物学、标准溶液和空白溶液配置、以及纳米材料科学等都会用到超纯水。大家知道自来水中含有千万种会影响科学实验结果的杂质,那么如何去除杂质,制造出“超纯水”?我们需要利用先进的技术来纯化水质。你知道吗?超纯水制造出来的瞬间,即刻开始与接触的环境产生溶解反应,我们可以戏称超纯水为“Hungry Water”,因为超纯水中溶解的离子浓度很低甚至没有, 这样极易会从外界环境中吸收杂质,如颗粒,挥发性有机物、细菌及其他污染物等,也可能从低级塑料和玻璃制造的储水器中吸收化学溶出物污染水质,还可以溶解空气中的二氧化碳,形成碳酸。 碳酸是一种弱酸,但由于超纯水中无任何主导型的相对强酸、强碱、共轭酸、共轭碱,碳酸就成为了唯一主导型的弱酸,也是唯一H+离子的来源(忽略掉H2O的解离)。CO2(g)+H2O(l) ? H2CO3(l) 当超纯水开始曝露在大气下时,二氧化碳的溶解就会无可避免的持续下去,我们可以用电阻率的变化来监测这个过程。实践证明15MΩ.cm以上的超纯水暴露在空气中1个小时后水质就会下降至4MΩ.cm左右。 所以,超纯水最好能现场使用,任何方式的贮存或久放,除了会有容器本身造成的污染外,空气中的悬浮粉尘、挥发性有机物、微生物等污染及二氧化碳造成的电阻率下降,pH下降都是无法避免的。另外,久存的超纯水,TOC (总有机碳)及微生物也都有快速升高的隐忧,超纯水最好还是得即取即用。关于上海乐枫生物科技有限公司上海乐枫专业从事高端水纯化和实验室分离纯化产品的研发、设计和制造,致力于,为生命科学和生物技术提供精锐品质、高附加值的创新产品。乐枫产品线包括实验室纯水系统、密理博纯水兼容耗材和实验室分离纯化产品。成立十年,乐枫创立出了自己的品牌RephiLe(瑞枫),拥有30多项专利和多个软件著作权。产品销往全球近90个国家和地区。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制