当前位置: 仪器信息网 > 行业主题 > >

喋啶

仪器信息网喋啶专题为您提供2024年最新喋啶价格报价、厂家品牌的相关信息, 包括喋啶参数、型号等,不管是国产,还是进口品牌的喋啶您都可以在这里找到。 除此之外,仪器信息网还免费为您整合喋啶相关的耗材配件、试剂标物,还有喋啶相关的最新资讯、资料,以及喋啶相关的解决方案。

喋啶相关的资讯

  • 实时SEM折叠观察 百万次折叠测试!同济大学吴庆生/吴彤《Matter》:仿生导电超级可折叠材料
    随着柔性电子产品的蓬勃发展对便携性、耐用性提出了更高的要去,因此折叠特性越来越受到关注。然而,这些产品的可折叠性取决于它们的旋转轴而不是电子材料,这极大地限制了它们的折叠方向和任意尺寸变化。为了满足未来柔性电子产品的各种折叠需求,能够实现任意重复真实折叠的导电材料是必要的,但很难获得。要实现上述折叠特性,首先要明确折叠(真折叠和伪折叠)的相关概念。真折是指压下折痕,使弯曲的两部分完全贴合。而伪折叠通常在折痕处打开。真折叠的最大应力可能比伪折叠大几个数量级。近年来,尽管研究人员已经付出了巨大努力来研究各种导电材料(如石墨烯、碳纳米管和MXene等)的组装和灵活性,但目前所有组装的导电材料仍然无法承受多次真实折叠而且折叠次数也通常以结构损坏为代价。鉴于此,同济大学吴庆生教授、吴彤研究员和上海师范大学万颖教授首次使用改进的静电纺丝/碳化技术成功设计并制备了一种超级可折叠导电碳材料(SFCM)。它可显着承受1,000,000次重复真折叠而无结构损坏和导电性波动。通过实时SEM折叠观察和机械模拟揭示了这种性能突破的根源。其具有适当孔隙、非交联连接、可滑动纳米纤维、可分离层和可压缩网络的结构可以协同作用在真折叠下的折痕处产生ε状折叠结构,通过凸起的层、分散的弧线完全分散应力,以及ε中的可滑动凹槽。因此,当整个材料真正折叠时,每根纳米纤维都避免直接面对180°折叠。这项工作体现了结构创新、性能突破和机制揭示,具有重大的科学意义和应用前景。相关工作以“A biomimetic conductive super-foldable material”为题发表在国际顶级期刊《Matter》上。SFCMs的制备和表征作者采用仿生定向场控静电纺丝技术制备生茧状聚合物结构,同时协同控制静电纺丝的参数。原位梯度-温度反应-保持技术与卷取过程一样,通过控制多级聚合物热解同时完成造孔、解结和层膨化,从而成功制备了SFCMs(图1)。SFCM的SEM图像显示其结构是由碳纳米纤维编织的多层网络。纳米纤维是直的、光滑的、多孔的,直径为200 nm,长度为毫米级,纵横比超过10,000。纳米纤维是逐层堆叠的但彼此之间没有粘连(图2)。非交联的编织层网络可以形成一个完整的应力传递和分散系统。这些微观结构特征与超柔韧的切茧高度相似。此外,SFCMs具有良好的导电性,在-1~ 0 V范围内具有稳定的电化学窗口,这对于超级可折叠的储能设备很有希望。图1 SFCMs的仿生合成图2 SFCM的结构表征超级折叠属性和机制作者设计并安装了一个设备对各种材料进行了大量折叠测试(图3)。平行实验表明,在整个折叠周期从1到1,000,000次,SFCMs的纳米纤维都完好无损,电导率没有明显波动,内侧只出现两个微槽,这是由于纳米纤维滑动造成的。外侧几乎没有结构变化。此外,进行不同形式的折叠,所有 SFCM 都可以保持结构完整性,甚至在展开后自动迅速反弹,这为超级可折叠性提供进一步支持。当 SFCM 完全折叠时会形成光滑的ε状结构。局部结构的放大观察表明所有纳米纤维都是无损伤的,这可能与它们在折叠过程中的上述结构调整密切相关。当SFCMs的厚度达到100 mm时,它们仍然可以通过形成ε折叠结构来保持超折叠性能。图3 SFCM 的超折叠特性以及与典型对照样品的比较除了弯曲(折叠),柔性指标还包括滚动、扭曲、拉伸和压缩,它们可能对超折叠性起到辅助作用(图4)。扭转和滚动测试表明SFCM没有纳米纤维损坏。在拉伸性能方面,SFCMs的应力-应变曲线表现出显着特征。在压缩测试中,SFCM 厚度的99.3%恢复可以在将压力逐渐增加到10 MPa后保持,结果反映了它们的高强度和弹性,这也有助于柔韧性。这些力学性能为并为超级可折叠性提供强有力的支持。图4 SFCM 折叠以外的灵活性特征SFCM的超折叠机制源于折痕处的ε折叠结构,其中包含三个典型区域:(1) 由层间分离和纳米纤维滑动引起的凸起层可以减少沿层的应力。(2) 由折痕正中层的凸起和凸起两侧的层的压缩所带来的两条分散弧,避免形成应力集中的0内角。(3) 由纳米纤维滑动引起的两个折叠微槽,垂直对应于两个分散弧的内部,可以分散厚度方向的应力。这三种协同的微观结构变化有效地分散了各个层次和方向的应力,实现了超折叠性(图5)。此外,对一些微观结构不满足超折叠性的要求的材料(如rGO膜、碳布以及织物等)折叠特性的研究间接支持了该原理。图5 折叠与相关材料对比小结:作者通过改进的静电纺丝/碳化技术制备了具有层状纳米纤维网络结构的超级可折叠导电碳材料。在折叠机上多次真实折叠过程中观察它们的结构变化和电导率波动来研究它们的超级折叠特性,并通过实时SEM折叠观察和机械模拟揭示了超级折叠机制。更重要的是,还根据这些结果总结了超折叠材料的构建原理,对制备其他超折叠材料具有重要的指导意义。全文链接:https://www.sciencedirect.com/science/article/abs/pii/S2590238521003921
  • 聚光科技跌停 三机构买入近千万难阻大跌
    上周五刚刚创出阶段新高的创业板次新股聚光科技昨天(14日)突然遭到空头打压,股价以跌停报收。深交所盘后公布的交易公开信息显示,三家机构合计买入977万元,但依然难以阻挡股价大跌。   龙虎榜显示,昨天聚光科技买入前五席位中有三家机构,分别净买入聚光科技623万元、180万元和174万元,合计977万元 卖出前五交易席位均为游资营业部,合计买入聚光科技285万元,卖出730万元。   三季报显示,聚光科技前三季度公司累计实现营业收入5.2 亿元,同比增长27.74%,实现归属于上市公司股东的净利润为8439.36 万元,同比增长16.47%,实现基本每股收益0.2 元,基本符合市场预期。   公司主营业务为研发、生产和销售应用于环境监测、工业过程分析和安全监测领域的仪器仪表。公司主要产品包括激光在线气体分析系统、紫外在线气体分析系统、环境气体监测系统、环境水质监测系统、数字环保信息系统、近红外光谱分析系统等。   市场人士指出,“并购、研发并举,多种监测产品协同发展”是国际大型监测企业快速成长的制胜法宝,聚光科技也不例外,公司最大的看点就在于持续并购。   今年8月25日,聚光科技公告收购吉天仪器,这标志着公司向实验室仪器领域迈出了坚实的一步。在此之前,2007年3月1日,聚光科技并购北京英贤仪器,该公司主营近红外分析仪器研发、生产和销售;2007年4月15日,并购北京摩威泰迪,该公司主营石化、空分领域的仪器仪表销售;2007年8月23日,并购北京盈安科技,该公司主营金属分析领域的仪器仪表销售,同时也是英国MetalScan旗下ARUN产品和美国热电旗下NITON产品在中国的总代理商和技术服务中心;2008年2月,公司收购杭州长聚科技,该公司主营范围是冶金钢铁行业;2009年8月,公司收购杭州大地安科62.5%的股权,该公司主要从事环境监测领域的仪器仪表销售。   广发证券认为,公司主营收入稳定增长,未来的超预期主要看点在并购。从公司的产品结构来看,液体分析仪器和固体分析仪器等横向并购值得期待,同时通过并购可以实现渠道和技术的互补。公司上市发行4,500万股,约占发行后总股本的10.11%,就是为以后的持续并购做铺垫。   值得关注的是,聚光科技最近三个月以来的股价逆势走强,但近期市场疲软,强势股补跌现象较为明显。海通证券认为,公司后续增长主要看潜在的收购整合进程和整个环保监测仪器行业需求的复苏,预测公司2011-2013年每股收益分别为0.47、0.67和0.88元,维持增持投资评级。
  • 开元仪器:上市首日下跌4%
    湘股新丁开元仪器7月28日登陆深圳创业板,上市首日下跌4%。   开元仪器早盘低开后继续下探,10点半左右开始大幅反弹并艰难翻红,不过午后跟随大盘再度大跌。截至收盘,开元仪器下跌4%,收于25.92元,全天最低价25.68元,最高价27.09元。   开元仪器一起上市的还有三只创业板新股。其中,天银机电收盘下跌了6.35% 麦迪电气涨10.77% 科恒股份遭到市场爆炒,收盘暴涨52.40%,换手率高达84.68%。
  • 凯格精机:固晶设备Die Bonding精度达±10um,属半导体生产流程中的关键设备
    有投资者向凯格精机(301338)提问, 请问公司的半导体设备,技术含量如何?在半导体生产流程中是否为关键设备?是否存在国产替代的空间?公司回答表示,您好!公司的半导体固晶设备,其Die Bonding精度达到±10um,属于半导体生产流程中的关键设备,也具有国产替代空间。谢谢您的关注!
  • 拥抱指尖,化茧成蝶!
    四年指尖梦 我们共飞翔---指尖上的仪器四周年生日快乐时序更替,梦想前行。2018年1月27日-28日,指尖上的仪器四周年年会暨仪器联盟筹备大会在风景秀丽的从化成功举办。会议以“拥抱指尖、化茧成蝶”为主题,吸引了来自全省各地的200多名行业精英汇聚一堂,共襄行业盛举。会议内容丰富,思想深邃,先后以检测行业新趋势、用户采购心得分享、进出口贸易中注意事项分享、招投标的注意事项分享、价值时代、新形势下仪器行业的新思考等为题进行了交流分享,对行业发展现状、前景趋势进行了深入的探讨分析,碰撞出了不少思想火花,对行业发展具有一定的指导意义和参考价值。砥砺前行,不忘初心。指尖上的仪器成立于2014年,致力于打造仪器行业新人专业技能培训,公司同行信息交流互动,用户需求整体解决方案探索分享的最佳平台。历经四年磨砺洗礼,俘获了业界的广泛信任和支持,已经发展成为立足广东,辐射华南,具有一定影响力的专业行业协会组织。目前,全国拓展5个群,集聚了500余位资深从业人员,人员结构涵盖外企高管、销售、代理商老板、业务员。线上分享活动达1500多个,95%以上的仪器产品在线交流咨询,线下活动达到100多次!同行感情与专业技能与日俱增。众多尖友通过指尖的平台,获得了成长的智慧,积蓄了腾飞的力量。凡是过去,皆是序章。2018年,又是充满希望的一年。面对崇山峻岭、激流险滩,正如会议所言,指尖将充分发挥桥梁和纽带作用,以规范仪器行业、联合多方力量、建立互动机制、促进身心健康为愿景和宗旨,为尖友谋福利,为行业谋发展,逐步扩大知名度、认知度和影响力。拥抱指尖,化茧成蝶,诚邀更多有识之士仪器同行加入指尖、融入指尖,让我们扬帆再起航,让梦想在春天里蝶舞飞翔。--指尖仪器联盟
  • 天美公司助力第六届钙钛矿、异质结与叠层技术论坛
    第六届钙钛矿、异质结与叠层技术论坛将于4月16-18日在常州召开,会议探讨光伏行业展望与异质结、钙钛矿和叠层电池市场分析,大面积工业化钙钛矿和叠层电池材料体系、制造工艺与核心设备,钙钛矿电池转换效率提升与长期稳定性研究,异质结、钙钛矿与叠层组件封装技术与封装材料等。天美公司携爱丁堡分子光谱产品在光伏行业中的应用方案出席了此次技术论坛。在会议期间,各行业相关人员莅临到天美公司展台,了解天美公司在光伏行业中的仪器测试解决方案。本次会议天美应用工程师在大会上作《爱丁堡分子光谱产品在光伏领域中的应用》的报告,让行业客户更加了解爱丁堡分子光谱产品在光伏行业中的应用。天美集团旗下爱丁堡系列分子光谱仪器可为光伏行业提供高效,精准的拉曼,荧光、紫外及红外测试技术,表征光伏材料的带隙,载流子迁移,量子效率,结构晶型分析和缺陷分析等信息,为进一步提高光伏行业器件效率提供基础。
  • 亲近自然!用科学方法揭开蝴蝶“乘凉”的秘密~
    事实证明,蝴蝶在红外世界和在可见光光谱中一样引人注目。最近,哥伦比亚工程大学和哈佛大学的研究人员在《自然》杂志上发表了一项研究,研究了蝴蝶翅膀的热力学特性,以及辐射冷却在保持这些精细结构颤振中的重要性。哥伦比亚大学应用物理学副教授Nanfang Yu特别说明了热成像仪在这项研究中扮演了重要角色。传统测量误差大过去对蝴蝶翅膀的研究由于使用热电偶等设备来测量温度而受到限制。即使是最小的探针也比蝴蝶翅膀的厚度大,而且测量的行为会影响局部温度。由于测量是逐点进行的,因此可能会出现额外的误差。现在有了热成像仪,“你可以测量和绘制整个温度分布图,”Yu说。他的团队已经能够观察和测量翅膀静脉、膜和其他结构(如气味垫)之间的温度差异。他们发现,含有活细胞(翅脉)的蝴蝶翅膀区域比没有生命的翅膀区域(薄膜)有更高的热发射率。活体翅膀结构(翅膀静脉、气味垫/补丁)具有较高的发射率,以便于通过热辐射散热无创红外测量也有挑战“这是最无创的温度测量方法” Yu解释说。在这项研究中,研究小组鉴定了蝴蝶翅膀中复杂的生物结构,这些结构可以熟练地帮助调节温度。Yu说,通过FLIR SC660,几乎就像x光一样,你可以看到——蝴蝶的骨架,翅膀纹理、薄膜̷...在热环境下,蝴蝶翅膀的明亮颜色和图案都消失了,取而代之的是你看到的是翅膀本身的底层结构。红外世界中的蝴蝶“这种热成像技术使我们能够检测物理适应,从而将翅膀的可见外观与其热力学特性分离开来。”Yu在《哥伦比亚工程》杂志上的一篇文章中说。“我们发现,不同尺度的纳米结构和不均匀的角质层厚度会通过热辐射产生不均匀的散热分布,从而有选择地降低活体结构的温度,如翅膀静脉和气味垫。利用热成像技术测量蝴蝶翅膀的温度并非没有障碍。“这里的挑战是,在测量蝴蝶翅膀时,热成像仪给你一个温度读数,但你却不能完全相信这个温度读数,”Yu说。“蝴蝶翅膀在红外世界中是半透明的,所以当你用热成像仪观察蝴蝶翅膀时,你不仅仅是在接收翅膀本身的热辐射,你还接收到了翅膀后面背景产生的热辐射。”类似的现象也可以用一层薄薄的塑料薄膜观察到,比如塑料购物袋,它就像蝴蝶翅膀一样,在可见光光谱中是不透明的,但在红外光谱中是透明的。很薄的材料,如塑料袋或蝴蝶翅膀,在红外光谱中可能是透明的。为了得到蝴蝶翅膀的真实温度读数,Yu的团队必须量化翅膀的发射率和反射率,并从测量中去除这些背景温度源。FLIR红外热成像仪的应用除了绘制蝴蝶翅膀的热分布图之外,研究人员还在热状态下进行了行为学研究。他们使用一束微弱的光作为热源,证明了蝴蝶利用翅膀来感知阳光的方向和强度。在大约40°C的“触发”温度下,他们研究的所有物种都在几秒钟内转过身,以避开光线并防止翅膀过热。蝴蝶翅膀具有机械传感器,可检测光的方向和强度。在这里,蝴蝶迅速移动以防止其翅膀过热Yu使用热像仪研究昆虫。“2013年我加入哥伦比亚大学时,FLIR热像仪是我在建立实验室时购买的设备,” Yu说。在与纳米生物学同事的早期合作中,Yu研究了撒哈拉银蚁,它们生活在地球上最热的陆地环境中,在白天的高温下觅食。 这项研究在2015年发表在《科学》中,报道中说研究人员还使用了FLIR热成像仪监控蚂蚁的体温。 蝴蝶翅膀研究的延伸他的研究继续探索小昆虫如何保持凉爽的问题。蝴蝶翅膀上覆盖着探测过热的机械传感器,它们的翅膀鳞片含有纳米结构,有助于辐射冷却。除了这些发现的生物学意义外,Yu认为这些发现还可以为耐热纳米结构和热感飞机的设计提供灵感。热成像有助于揭示这种山核桃色的蝴蝶是如何防止过热的。翅膀纹理之间的薄膜实际上比翅膀的其他部分更热,但看起来更冷,因为它是半透明的,背景比较冷Yu和他的同事Naomi E. Pierce(生物学教授)计划继续他们对蝴蝶翅膀的研究。Pierce是哈佛比较动物学博物馆鳞翅目动物的馆长,可以接触到大量蝴蝶和飞蛾。他们目前正在使用FLIR热成像仪对馆藏进行广泛的扫描,以希望了解有助于蝴蝶翅膀设计的因素。
  • 海顿科克最新推出21000系列双叠厚电机
    海顿科克直线传动是美国AMETEK集团公司的一员,是全球直线传动领域的领军型企业,最近公司新推出了21000系列双叠厚电机,该产品的推出有丰富了海顿混合式系列的产品线,同其他电机一样,电机使用最先进的材料和制造工艺以保证其优秀的品质,众所周知,海顿电机一直都是品质最好的直线步进电机。 21000双叠厚电机,其截面边长为21MM,结构非常小巧,但是最大推力可以达到7.7KG,空间推力比非常大,同样的其也有三种结构可选,固定轴式,外部驱动式和贯通轴式,步进步长从0.0025-0.04MM可选,超长寿命,免维护。为了保证电机的运动精度,海顿科克严格遵守电机质量控制体系,所有电机都有着极高的一致性,其关键的部件螺杆和螺母都是在美国加工而成,其精度和强度都是业内最好的,另外客户还可以通过驱动器细分,进一步提高电机的分辨率。21000双叠厚电机其使用也十分广泛,精密医疗仪器,半导体生产设备,XY平台,手持式检测设备等行业都有很多的应用,另外,海顿科克还可以根据客户要求进行客户化定制,满足客户的特殊的需求。更多信息请访问海顿直线电机(常州)有限公司网站http://www.haydonkerk.com.cn
  • 蝴蝶、蜜蜂和蛇,它们在红外世界中有哪些趣事?
    人类之所以能够和自然万物和平共处,科技的力量发挥了很大的作用!今天小菲就与大家分享一些使用FLIR热成像技术与动物和睦相处的实例!散热的蝴蝶色彩斑斓的蝴蝶是一种迷人的生物,最近一项用FLIR红外热像仪,研究揭示了关于它们的翅膀、温度和飞行能力的有趣的发现。这项由哥伦比亚工程大学和哈佛大学共同进行的研究发表在《自然》杂志上,它强调了温度调节对鳞翅目昆虫的重要性,以及身体和行为适应如何帮助它们防止翅膀过热。利用FLIR SC660红外热像仪,包括哥伦比亚大学应用物理学副教授Nanfang Yu在内的研究团队,研究了蝴蝶翅膀中复杂生物结构的热力学特性,以及对热触发的行为反应。此外,该技术还可以用于无创性研究,测量翅膀静脉、膜和气味垫之间的温差。至于这项研究的目的, Yu说,“我们想找出小型动物是如何在极端高温下生存的。”他还说,热成像蝴蝶的研究也可以为其他应用提供灵感,如耐热纳米结构和热感飞机的设计。寒冬中拯救蜜蜂寒冷的冬天,对养蜂人来说保护蜜蜂们顺利活下来是巨大的挑战!但对于养蜂大师Rusty Burlew来说就比较容易,有了FLIR ONE手机红外热像仪,就可以轻松确定蜂巢内蜜蜂群的位置,它们在热感图像上作为一个热点出现。确定位置非常重要,比如蜂巢顶部的蜂群表明蜜蜂已经成功地吃掉了它们储存的蜂蜜,需要快速补食。在使用FLIR ONE手机红外热像仪的一年里,Burlew说她挽救了两个蜂箱。“我只是给它们喂糖水,让它们吃到春天,这样就可以把它们都救活了。”说到春天,FLIR热像仪在一年中的任何时候检查蜂群都很方便。Burlew补充说,“假设你想添加一种螨虫治疗方法,而说明书告诉你需要把它放在集群的上面或里面。集群在哪里?用FLIR ONE手机红外热像仪拍照即可。”所以,正如你所看到的,FLIR在帮助养蜂人保护蜜蜂健康成长方面发挥了重要作用。被蛇咬后的疼痛反应众所周知,蛇的毒液能够诱发局部炎症和疼痛反应,临床医师在治疗被毒蛇伤害的患者时面临的挑战之一就是缺乏合适的临床工具来精确评估不同毒液引起的局部反应,以便为选择治疗方案提供精确的标准,特别是最有效的抗蛇毒药物。幸好红外成像作为一种临床工具有很大的潜力,因为它是一种无生物副作用的无创技术,不需要镇静或麻醉,并且可以根据需要重复进行测试。在一次临床医学的研究过程中,使用的设备是FLIR T650SC,研究人员利用FLIR T650SC中嵌入的利用的多边形绘图工具,参考解剖学划分出受影响区域,目的是将受影响区域的定量数据与正常或对照区域的定量数据进行比较。利用这些数据,研究人员可以定量地评估毒液影响区域和周围身体区域或身体对侧区域之间的温度不对称性(Δt值)。无论动物或是植物都能在红外世界中捕捉到想要发现它们的另一面拿起手中的红外热像仪寻找其中的奥秘吧~
  • 基于折叠数字型超构透镜的片上光谱仪
    近日,哈尔滨工业大学(深圳)徐科教授、宋清海教授课题组,提出一种基于像素编码的片上数字型超构透镜,因其灵活的设计自由度而具备强大的光场调控能力。该工作以折叠级联的方式构建了高度紧凑的色散元件,结合重构算法实现了片上集成的高分辨率光谱仪。文章提出的数字型超构透镜可显著提升面内光束聚焦、准直和偏转能力。所设计的级联折叠型超构透镜组能够很好地解决传统色散光谱仪尺寸和分辨率互为矛盾的问题。结合重构算法,该器件以100 μm ×100 μm的紧凑尺寸在近红外波段超过35 nm的波长范围内实现了0.14 nm的分辨率,并且可以完成任意光谱的重构和解析。该光谱仪完全通过标准硅光工艺制造,在系统级集成和CMOS兼容性方面具有优势。所提出的超构透镜结构还可移植到氮化硅或其他光子集成平台,以轻松扩展到可见光或中红外波长等波段,为成像、光学计算等其他应用提供有力的光场调控方案。该研究成果以“Folded digital meta-lenses for on-chip spectrometer”为题于2023年4月11日在线发表在《Nano Letters》上。随着物联网、消费电子等应用领域的不断发展,对光谱仪的小型化提出了更高的要求。近40年里,光谱仪的微型化技术经历了从基于分立器件技术到集成光学技术的发展,逐渐趋于低成本和片上集成化。近年来,受到自由空间超构表面波前调控的启发,基于超构波导的一些平面内衍射光网络正在成为片上光波操纵的有力工具。目前已报道的片上超构系统都是基于各单元长度不等的传输阵列,结构规则简单但设计自由度受限,导致系统集成度和功能的局限性。如何突破设计自由度的限制,是提升片上超构表面光场调控能力以及拓展应用的关键。借助超构表面强大的光学操控能力,有望突破传统片上光谱仪分辨率和器件尺寸相互制约的矛盾。为了解决设计自由度受限的问题,文章提出了一种基于像素编码的数字型超构表面。基本思想为求解超构表面目标相位分布。为降低算力消耗,我们将目标区域划分为多个单元,通过逆向设计对每个单元图案分别进行编码,在平面任意区域实现任意相位响应。与数字型超构波导在局部区域内的原位控制不同,本文提出的数字型超构表面可以整体操纵面内波衍射及其在整个平板区域内的传播。这种特性使该结构能够设计连续大相位梯度的高色散数字型超构透镜,允许光束在紧凑的尺寸内实现聚焦、准直和大角度弯曲等类似几何光学透镜的功能。具体设计原理如图1所示。图1. 基于数字型超构表面的超构透镜逆向设计原理。(a)超构透镜在1550 nm处的光弯曲 (θ=45°)和聚焦(f = 19.5 μm)的射线光学演示。(b)透镜的理想相位轮廓曲线(φ),可视为45°弯曲相位曲线 (φ1)和聚焦相位曲线(φ2)的叠加。I:计算的绝对相位,II:对应的菲涅耳相位。(c)每个单元的优化器件图案和对应的理想相位曲线(φ)。(d) 计算出的理想相位掩模(黑色实线)与所设计超构透镜的模拟相位响应(红色虚线)之间的比较。(e)所设计单个超构透镜的模拟光场分布。(f)模拟超构透镜的焦点AI不同波长下沿x'轴的偏移。插图为不同波长下焦点的横截面光场分布图。要实现更高的波长分辨率,需要累积色差和增加光程。为了验证设计效果,本文设计并制备了一种基于五层折叠超构透镜的光谱仪,器件尺寸仅为100 μm×100 μm。该器件的模拟光场和实测结果如图2所示。图2(a)中的五层超构透镜功能不同,透镜I用于准直扩束输入光同时转折光路,透镜II-IV则承担着累积色散和波长分束的作用。受到读出波导间距的限制,此时该器件直接读出的分辨率约为1 nm (图2(d))。为了进一步提高光谱仪性能以及器件的制备容差,在色散分光的基础上引入了光谱重构算法。图2. 基于五层折叠超构透镜的光谱仪。(a)五层折叠超构透镜光谱仪在1550 nm处的模拟光场分布。(b)器件尺寸为100 μm×100 μm的光谱仪显微镜图像。插图:超构透镜和输出波导阵列的局部电镜图像。(c)器件实测的输出强度与输入波长的映射图。(d)两个相邻输出通道11和12的透射光谱,通道间距约为1 nm。(e)谱相关函数C(δλ)的半高半宽δλ为0.108 nm,与光谱仪的估计分辨率相对应。为了体现光谱仪的性能,构造了几种不同类型的预编程光谱来测试光谱仪的性能。重构光谱见图3。结果表明,结合重构算法后,该光谱仪的光谱分辨率提升至0.14 nm(图3(a)),整体工作带宽覆盖1530 nm-1565 nm,且性能在边带依旧保持稳定(图3(c))。此外,对于同时具有宽高斯背景和窄带单峰特征的复杂频谱(图3(d)),本文提出的片上光谱仪依旧能与商用光谱仪保持良好的一致性。图3. 使用基于五个折叠超构透镜的片上光谱仪进行光谱重建(实线表示重建光谱,虚线表示商用光谱仪测试结果)。(a)两条相隔约0.14 nm的窄光谱线的重建光谱。(b)距离约20.61 nm的双峰重建光谱。(c)在工作带宽上分别重建7处不同波长的窄带光谱。(d)宽带光源入射的重建光谱。此文提出的基于数字型超构透镜的片上光谱仪在超过35 nm的波长范围内实现了0.14 nm的分辨率。整体尺寸仅为100 μm ×100 μm,最小特征尺寸为120 nm,可通过标准硅光工艺大规模制造。该设计方案具有可移植性,使用氮化硅或其他集成平台,基于超构透镜的光谱仪可以扩展到可见光或中红外波长。目前器件的数据读出依赖于片外功率计,可以通过集成片上光电探测器阵列来改善。此外,片上数字型超构透镜作为一种功能强大的片上光场调控器件,在成像、光计算等领域也有应用潜力。
  • 超导量子芯片演绎“庄周梦蝶”
    量子计算的前景令人期待,它在基础科学研究、新材料和药物研发、类脑人工智能技术开发等领域有潜在应用价值。  中国科学院物理研究所固态量子信息与计算实验室研究员范桁、副研究员许凯,与中国科学院物理研究所量子计算研究中心研究员郑东宁、副主任工程师相忠诚等合作,研发出超40比特的一维超导量子芯片,以战国时期思想家和哲学家庄子命名,利用其成功模拟了“侯世达蝴蝶”能谱以及各种新奇拓扑零模式。相关研究成果近日发表于《物理评论快报》。  “庄子”芯片诞生记  在科学家看来,大规模的量子计算正朝着实用化的方向发展,要想实现实用化,需要操纵精确、比特数多、相干时间长、效率足够高。在这个过程中,量子芯片的设计、制备、测控都至关重要。  相忠诚长期从事超导量子芯片制备,他告诉记者,与传统芯片相比,量子芯片对外界环境的扰动非常敏感。  “量子芯片是一种非常脆弱的系统,稳定时间非常短,在芯片上运行量子算法就好像是在夏日里堆雪人,需要足够的速度,赶在雪融化前把雪人堆出来。通常超导量子芯片的相干时间大约在几十微秒量级,这意味着量子效应维持的时间只在一瞬,要在很短的相干时间尺度内精确执行完量子算法是比较困难的。”相忠诚解释道。  借助中国科学院物理研究所位于北京怀柔的综合极端条件实验室的超导量子计算实验平台,郑东宁与相忠诚在器件设计和制备实践中反复摸索思考,不断改进和优化器件的设计方法和制备工艺,完成了43比特一维超导量子芯片的设计和制备,芯片中整体比特参数与设计值一致,总体退相干时间、制备良品率、量子状态易读性等都得到了大幅提升。部分比特退相干时间达到百微秒量级。  在最新发表的研究中,他们设计并构建了多达41个量子比特的对角AAH模型的各种实例,并应用动态光谱技术实验测量了著名的“侯世达蝴蝶”能谱。由于对角AAH模型的拓扑特性,出现了“翅膀形状”的能隙,整个能谱图看起来就像一只翩翩起舞的蝴蝶,研究人员不禁联想到庄周梦蝶的故事,这也是该量子处理器名字的由来。  因为“庄子”处理器拥有足够多的量子比特,有限尺寸效应的影响被极大地抑制,“蝴蝶”身体细节中的分形结构和能带的分裂被清晰展示了出来。  零下200多摄氏度的实验  量子芯片是第一步,利用多个超导量子比特模拟各种量子效应也是当前人们关注的前沿研究。  量子芯片只有指甲盖大小。拿到芯片后,许凯和团队成员立刻开始对芯片进行测控,并开展量子模拟实验。  许凯告诉记者:“量子模拟,就是通过调控量子芯片构建一些重要的多体模型,实现对真实物质或材料体系的各种新奇物理特性进行仿真和计算,以解决能源、材料等领域的一系列重要问题。”  超导量子计算芯片需要在极低温环境中工作,以避免热量(噪声)对量子态的干扰。  研究人员将芯片封装进盒子中,并放入稀释制冷机中降温至10mK,制冷机的温度比绝对零度(零下273.15℃)仅高了0.01℃,这种极低的温度可以使芯片转变为无损的超导态并有效抑制芯片周围的环境噪声和热噪声,从而呈现量子效应,让科研人员更好地操控量子效应。  操控芯片的过程并不轻松。在实验室,数十台仪器微波脉冲信号与“芯片”相连,研究人员在自己开发的软件平台上编写程序控制仪器,对芯片发出“指令”,从而“操控”芯片。“指令”发出的时间达到了纳秒级。  “我们要非常精细地优化每个量子比特的调控参数和它们之间的相互作用,这个过程需要准备两个月。”许凯说,通过使程序实现自动化参数搜索,进行自动化操控,未来的研究会更加高效。  由于“庄子”量子处理器超过40个量子比特,这足以让研究人员在这个重要的一维量子多体系统复杂的能带结构中捕捉到大量拓扑特征。使用由高度可控的Floquet(周期驱动)调控技术辅助的超导量子处理器,研究人员提出了一种通用混合量子模拟方法来探索含噪声中等规模量子时代的量子拓扑系统。  前景广阔 需要人才  许凯和相忠诚及其所在团队长期致力于超导量子计算、量子模拟、量子器件制备等方面的实验研究,并取得了许多领先的成果。在他们看来,量子计算前景广阔,未来还有很长的路要走。  “虽然目前量子芯片只能完成一些特定任务,而且还未达到超越经典计算的量子优势,但是通过量子模拟的实验可以积累各种操控技术、探索和展示量子计算的各种应用场景,这对未来量子计算机的实现和应用都是非常有价值的。”许凯说。  在许凯看来,我国在量子计算方面与国际上最好的团队相比还存在一定的差距。量子计算是一个交叉学科,需要各方面的人才,他们期待新鲜血液加入量子团队。  “我们虽然需要建立全方位的生态,但还要尊重科学发展的自然规律,在加快实验节奏的同时不能操之过急。”许凯说。
  • 沃特世公司:走在蛋白折叠和大分子复合物的研究前沿
    使用沃特世公司SYNAPT High Definition质谱系统, 利兹大学就所获得的结果发表文章 沃特世(Waters® )公司(股票代码NYSE: WAT) 2007年12月3日宣布利兹大学爱斯布理Astbury结构分子生物学中心使用最近购买的沃特世公司SYNAPT High Definition MS™ (HDMS) 质谱系统,在Journal of the American Society of Mass Spectrometry (JASMS) 美国质谱协会杂志上发表了蛋白研究的成果。 Ashcroft实验室正在使用SYNAPT® HDMS质谱系统研究生物分子功能。在2007年12月刊的一篇文章中,利兹的研究人员描述了对几种蛋白,如细胞色素C和贝塔-2-微球蛋白,的成功分离和分析,Ashcroft希望该成就可以通向对某些生物过程的完全了解,如淀粉纤维形成,细菌纤毛集结以及病毒衣壳的装配,这些过程都与衰老症有关。 蛋白质被人体小心地折叠,经三维长链分子装配而成。当正确地被折叠时,蛋白调节正常身体功能。当某些蛋白被折叠成特殊形状而变成错误折叠时,引起一系列反应,可导致自身聚集和淀粉纤维形成,因此一些高发疾病可能发生,包括老年痴呆症,疯牛病和帕金森氏综合症。在利兹大学,Alison Ashcroft艾利森艾斯克劳福特博士和她的同事Sheena Radford诗娜拉德福德教授就是研究这样一种蛋白,贝塔-2-微球蛋白,试图探索它是如何形成纤维,在透析病人的关节聚集,并与透析相关的淀粉样变性病有关。对这些过程在分子水平的完全了解将有助于治疗方法的设计。 新型质谱为生物学研究带来新领域 作为工具,常规质谱是区分不同质量蛋白质的优秀方法。然而,一个特定蛋白的不同构象或不同的折叠形式具有同一质量数,使用常规的方法是无法区分开来的。这就是沃特世公司SYNAPT HDMS质谱系统和镶嵌其中的离子淌度技术帮助利兹大学的方式。 “一个蛋白可以折叠成紧密的三维结构,或者在某些条件下,蛋白可以打开成伸展的结构。即使这些三维结构拥有相同的质量和质荷比(m/z),SYNAPT HDMS的离子淌度功能可以分离这些蛋白,并告诉您多少蛋白在折叠的形式而多少在非折叠的形式。而且,由于两种蛋白构象的横截面积不同,因为能够基于形状分离,SYNAPT HDMS质谱系统使我们能够区分各种不同的蛋白形状。 ”结果确实令人惊奇。”Alison Ashcroft艾利森艾斯克劳福特博士说,她是生物分子质谱研究员,质谱室主任。 来自沃特世公司的SYNAPT 质谱系统为实验室带来研究聚集过程的新的洞察力。“它为我们的研究提供新一维的空间。我们现在可以对原始状态的蛋白质定量,也可对非折叠或部分折叠的蛋白进行定量。我们也可以监测某种特定的蛋白构象在聚集过程被消耗。这为生物分子在分子水平如何工作提供了重要的新层面。”艾斯克劳福特博士补充道。 沃特世公司于2006年6月在美国西雅图美国质谱年会上推出SYNAPT HDMS质谱系统。它是第一台商业化的,在质量之外,基于尺寸,形状和电荷数分析离子的质谱。 一个管理万亿字节科学数据的决策 在生物技术和生物科学院(BBSRC) 和维尔康姆信托的资助下,艾斯克劳福特实验室拥有五台不同形式的质谱仪器,而管理其产生的数据是一个巨大的挑战。为了更有效地管理数据文件,该实验室选择沃特世公司NuGenesis Scientific Data Management System (SDMS)科学数据管理系统。 “每天在DVD上备份数据已经不需要了。科学数据管理系统SDMS 每天一次从五台质谱仪上将数据自动备份,我们的研究生和博士后可以直接从他们办公室的计算机上看到数据。存档文件对我们很重要,因为政府资助部门要求我们自建成之日起存储五或十年的数据。研究生花四年的时间拿到博士学位,所以他们需要四年或更长时间查看数据,特别是如果在拿到博士学位后要写文章” 艾斯克劳福特博士评论道。 “非分析化学背景的人们认为一台质谱就是一个复杂的称重机器。通常他们没有意识到使用这台仪器可以看到蛋白功能和行为。但是当他们发现了之后,会感到无比惊奇。”艾斯克劳福特博士说。 艾斯克劳福特博士在美国质谱协会杂志的文章全文参考: Monitoring co-populated conformational states during protein folding events using ESI-IMS-MS, D. P. Smith, K. Giles, R. H. Bateman, S. E. Radford,A. E Ashcroft, J. Am. Soc. Mass Spectrom., 2007 Dec 18 (12): 2180 – 90, DOI:10.1016/j.jasms.2007.09.017 文章再版要求请寄至A. E. Ashcroft 博士, Astbury Centre for Structural Molecular Biology, Astbury Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT UK,或发电子邮件email: a.e.ashcroft@leeds.ac.uk 关于利兹大学生物科学系,请浏览(http://www.fbs.leeds.ac.uk/) 利兹大学的生物科学系是英国最大的生命科学研究团体之一,拥有将近一百五十名学者和四百多名博士后和研究生。该系目前活跃的研究基金约六千万英镑,资助者包括慈善,研究院,欧盟和企业。该系拥有杰出的研究成果,在上一期政府研究评价检查(HEFCE)中,所有主要评估项目均获得第五级。 关于利兹大学爱斯布理Astbury中心, 请浏览(http://www.astbury.leeds.ac.uk/) 爱斯布理Astbury结构分子生物学中心是利兹大学一个跨学科研究中心。成立该中心的目的是在结构分子生物学的各个领域从事国际水平的研究课题。Astbury中心汇集了五十多位来自利兹大学各学科的学者,拥有共同的学术兴趣。该中心以 W.T.Astbury 的名字命名,他是生物物理学家,在利兹大学长期从事科学研究(1928-1961),工作期间在该领域成立了多个基金会。 艾利森艾斯克劳福特博士,(http://www.astbury.leeds.ac.uk/facil/mass.htm) 是生物分子质谱研究员,利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心质谱室主任。她的研究着重于开发和使用质谱方法探索生物分子功能。 诗娜拉德福德教授,(http://bmbsgi10.leeds.ac.uk/),是利兹大学,生物科学系,爱斯布理Astbury结构分子生物学中心结构分子生物学教授。她的研究着重于蛋白质折叠,非折叠和聚集机理。 生物技术和生物科学研究院(BBSRC) (www.bbsrc.ac.uk)是英国生命科学资助机构。 政府投资的生物技术和生物科学研究院BBSRC 每年在很大范围的研究领域投资三亿八千万英镑,为英国国民的生活质量做出突出贡献。 维尔康姆信托(www.wellcome.ac.uk)是英国最大的慈善机构。它资助英国国内和国际创新生物医学研究,每年投资额在五亿英镑左右。 (Waters, SYNAPT, High Definition MS, High Definition Mass Spectrometry, NuGenesis 和 HDMS 是沃特世公司商标。)
  • 微观世界|第5期 ‘蝶’影重重
    引子 各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾 书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)。扫描电镜下图像 绿色部分 图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。 黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。 所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 超临界流体色谱实战(二)丨迭加进样
    摘要 制备工艺被广泛地应用于许多领域,如从新合成的化合物中选择性地筛选候选化合物或先导化合物,或用于对药物中的杂质、天然物质中具有特定功能的组分进行结构分析。制备型超临界流体色谱(简称制备SFC)具有分析时间短、后处理简单等优点,在医药工业和许多其他领域得到了广泛的应用。对于色谱峰数量有限的分析,如手性异构体的分离,“迭加进样”可以提高制备纯化的效率。本报告描述了一个使用Nexera UC 制备型超临界流体色谱仪的“迭加进样”功能来提高制备操作效率的实例。 关键词: 制备型SFC,迭加进样 1使用SFC以缩短分析时间 由于超临界二氧化碳的低粘度和高扩散系数,即使在高流速下,SFC的色谱柱压也很低。这意味着可以在不牺牲色谱柱效的情况下提高分析速度。因此,其分析时间比高效液相色谱法要短得多。 以奥美拉唑的手性分离为例,使用制备LC和制备SFC所需时间的对比如图1所示,制备型SFC所用时间仅为制备型LC消耗时间的1/4,极大地提升了分析效率。 图.1 HPLC与SFC对奥美拉唑手性拆分的比较(制备型) 表1 分析条件 2迭加进样 “迭加进样”是一种标配于SIL-40自动进样器和FRS-40馏分收集器的连续进样技术,其利用色谱峰保留的时间间隔持续进样,从而节约分析时间提高分离效率,其工作原理如图2所示。在进行“迭加进样”设置时,需要特别注意以下几点: • 仅适用于等度分析• 色谱峰之间不会相互重叠 图.2 “迭加进样”工作原理 3“迭加进样”设置方法 “迭加进样”功能可以在LabSolutions工作站软件中轻松设定。通过设定“进样间隔”、“进样次数”和“等待下一次预处理的时间”等参数(图3),并使用单次运行结果(色谱图)模拟给定进样间隔的结果(图4),可以很容易地确认是否存在色谱峰重叠。若要连续进样,则必须设定适当的等待时间,以便样品从样品环(图5)中流出后,样品环可以切换回LOAD状态(图5的右侧)。 图.3 设定“迭加进样”参数(用于图4) 图.4 “迭加进样”模拟结果 (LabSolutions) 图.5 样品阀动作 (FRS-40) 对于数据采集时间,输入一个大于单次分析时长且加上进样间隔和进样次数的乘积。例如,以0.8分钟的进样间隔连续进样9次,则输入值至少为单次分析时长加上7.2分钟(图6)。 图.6 数据采集时间 (SPD-M40) 在每次进样周期后将分馏阀返回其初始位置,则可以在同一瓶中收集相同的峰。因此,“迭加进样”方式可将同一化合物的所有峰收集在同一个收集瓶中。馏分收集将依据时间程序进行,仅需输入单次分析的时间程序,随后工作站即可以自动地根据进样间隔计算出馏分收集时间(图7和8) 图.7 “迭加进样”的复位时间图.8 复位时间与制备间隔的关系 4“迭加进样”用于手性样品分离 以下介绍一个实际使用“迭加进样”分离手性药物的案例,样品为10mg/mL华法林溶液(甲醇)。分析条件如表2所示,所得色谱图如图9所示。结果表明,在10.5分钟的分析时间内,进样次数可由常规进样的3次增加到“迭加进样”的9次,极大提高了制备操作的效率。 表2 分析条件图.9 华法林分离实例
  • OPTON的微观世界第5期 ‘蝶’影重重
    引子各位看官,小编今天出一道竞猜题,请问上图欧波同LOGO是用什么材料做成的?小编声明在先,猜对没奖。前期回顾书归正传,前两期内容我们通过显微分析技术,探索了2009版的美元防伪蓝条和我们的粮食——大米的微观结构,本期我们的题目是【‘蝶’影重重】。序言 还记得我们第三期节目中美元防伪蓝条么?那一期我们通过显微分析美元MOTION安全线解开了微透镜阵列成像技术之谜。小编觉得呢,人不能只为money活着,还要有诗和远方,春天到了,没事多出去走走,看看这美丽多彩的世间万物,比如说——蝴蝶。蝶儿为什么这样‘炫’? 先来看看小编的这只蝴蝶标本吧 剪取翅膀黄色和绿色部分,置于偏光显微镜和扫描电镜内观察,结果如下:偏光显微镜下图像偏光显微镜下,我们的蝴蝶翅膀上可以看到绿色翅膀部分有好多鳞片紧密排列,而鳞片上还有微细的结构,是不是还有更小的结构呢?这些细小结构对发光有没有影响呢?我们随后用ZEISS场发射扫描电镜进行超低电压观察(原因是蝴蝶翅膀不导电、怕辐照、观察原始形貌又不能喷金)扫描电镜下图像绿色部分图A中可以发现蝴蝶翅膀上鳞片鳞次栉比,且有分层,上层鳞片局部放大(图B、图C)清楚可见鳞片上有很多脊脉和微小凹坑。黄色部分 黄色部分微细结构明显与绿色的结构不同,排列紧密呈条纹状的脊脉(图B、图C)。这些结构难道就是蝶儿这么“炫”的原因?原理解析 其实呢,自然界生物的色彩原理有科学家研究过,有兴趣的朋友可以自行度娘或Google。对于蝴蝶来说,它身上斑斓的色彩来源于鳞片内含有的色素和鳞片的这些细微结构,称之为鳞片的化学色和结构色,色素色彩的变化主要来源于对不同频率光的吸收,而结构性色彩,其原理是利用周期性结构,即光子晶体,对光的反射、透射等进行调控。所谓化学色,也叫色素色是指鳞片由于含有不同的色素而显现出不同的颜色。蝴蝶翅膀的色素一般有黑色素(melanins),黄酮类物质(flavonoids),蝶呤(pterins)和眼色素(ommochromes)等四种。比如,蝶呤可以增强光线在单个鳞片里的反射,因而蝶呤含量高的鳞片会表现艳丽的色彩;而黑色素是高分子聚合物,会同时吸收UV和可见光,一般表现为蝴蝶翅膀斑斓花纹底下默默付出的黑色和深棕色的背景。每片鳞片都是由一个表皮细胞产生的,有自己独特的颜色,各色的鳞片们像瓦片一样彼此重叠,拼凑出眼点,条纹和渐变色等等图案(见下图)。 结构色是鳞片表面的微观物理结构产生的。这些微观结构,比如鳞片内的多层片状薄膜(也叫肋状结构,肋片),使光波发生干涉、衍射和散射而产生了比化学色更加绚丽的颜色。这些色彩可以因不同视距、视角等因素而变化,泛着金属般的光泽,又称为彩虹色。几乎没有蝴蝶不具有结构色,尤其是闪蝶科和凤蝶科的蝴蝶。比如这只来自印尼的爱神凤蝶(见下图)。 这种现象原理是什么呢?我们都知道,光从一种介质进入到另一种介质,会同时发生光的反射和折射。如果一束自然光(白光)进入一个厚度为d的薄膜,会在薄膜的上表面发生一次反射,同时折射进入薄膜。由于白光是由各色光组成的,各色光的折射角不一样,第一次折射就将赤橙黄绿青蓝紫不同波长的光分离出来了。这些不同波长的光再遇到薄膜的下表面,又会发生一次反射和折射,若存在多个薄膜则依次类推。这样,各色光线的第二次反射光线,和它们的第一次反射光线,频率相同,传播方向相同,具有了干涉的基本条件。而当同样波长的光发生相长干涉时,所产生的光亮度则是色素发光没法儿比的。【上图:白光遇到薄膜时发生的折射和反射。下图:当两列相干光波相遇时,如果位相差异为波长的整数倍,那么它们的波峰会和波峰相遇,波谷会和波谷相遇,光波的振幅变大,亮度提高,这种现象叫做相长干涉(constructive interference)。图片来自HowStuffWorks】 后记总之,鳞片的化学色构成蝴蝶静态的美丽花纹,而结构色,则赋予静止花纹以生命,让它随着光线发生动态的变化。正是这两种色彩的水乳交融,让自然界造就出那么多色彩斑斓的蝴蝶。刚开始的无奖问答大家想必有答案了吧?对!是蝴蝶翅膀!下期有什么精彩内容呢?敬请期待吧!
  • 跌落试验,保仪器平安——百特仪器高可靠性之秘诀
    众所周知,物流运输是精密仪器质量保证的最后一公里,但这个环节厂家一般无法直接控制,运输时常常会出现野蛮装卸、叠层过高(重压)、露天淋雨、配件遗失等现象,使用户收到受损的仪器,给厂家和用户造成损失。 如何避免这种现象发生?提升仪器和包装防护强度是唯一途径。如何验证仪器和包装防护强度?跌落试验是一种有效的验证方法。跌落试验就是将包装好的仪器多次提升到一定的高度后再自由下落到地面上,看仪器的耐受程度的一种试验方法。 做跌落试验,需要设定升举高度、落地时的接触碰面、棱、角等,这样才能全面验证仪器和包装防护强度。目前,跌落试验的标准有以下几个,一是GB/T 11606-2007《分析仪器环境试验方法》、GB/T 2423.6-1995 《电工电子产品环境试验 第2部分:试验方法 试验Eb和导则:碰撞》、GB/T 2423.8-1995 《电工电子产品环境试验 第2部分:试验方法 试验Ed:自由跌落》、GB/T 4857.5-1992《包装 运输包装件 跌落试验方法》等等。根据这些标准,结合粒度仪自身特点,我们制定了《百特公司仪器抗跌落研究试验方法》,作为百特跌落试验研究的标准。为了进行跌落试验,百特购置了跌落试验机,建立了专门的跌落试验室,对每一种型号的仪器都进行跌落试验,以便验证包装箱强度、填充物有效性、仪器结构强度等。跌落试验后,数据分析很重要。我们把跌落试验中发现的一些包装箱、填充物、仪器结构等方面的问题一一记录,逐条分析,并针对出现的问题从仪器结构上加强,在包装箱上加固,在填充物上加量,同时进行防雨防潮、对小零件单件防护和塑料袋充气填充等,这些措施,避免了百特仪器在运输中可能造成的损坏,保证了仪器的开箱合格率达到100%的目标。 通过跌落试验,保证了仪器的整体质量和包装质量都尽可能的完美,以便去适应具有诸多不可控因素的物流运输。多年来,百特的仪器从研发到生产,每一个环节都是在加强可靠性能的基础上开展的。我们做的仪器跌落试验,就是要保证仪器在到客户手中的最后一个环节也是有可靠性保证的。 本文作者:百特研发中心机械设计工程师 刘伟
  • 中美贸易战打响 9家上市仪器公司股价骤跌
    p   strong  仪器信息网讯 /strong & nbsp 北京时间3月23日凌晨,美国打响了对华贸易战的第一枪。美国总统特朗普签署备忘录,宣布将采取措施对中国产品加征关税,限制中国投资,并将相关问题诉诸WTO争端解决机制。 /p p   23日上午,中国开始反击,给出了第一步的反制措施。上午7点,中国商务部发布针对美国进口钢铁和铝产品232措施的中止减让产品清单并征求公众意见,拟对自美进口部分产品加征关税,以平衡因美国对进口钢铁和铝产品加征关税给中方利益造成的损失。 /p p   考虑到美国贸易代表办公室将在15天拟定加征关税的中国进口商品清单,预计中国还将据此提出进一步的反制清单。清单涉及商品会依据美方提出的清单,可能保持规模和金额大体相似的力度。 /p p   此消息一出,美股受挫道指暴跌2.93%,在美的中概股也同样受到影响。其中美国科技股普遍重挫:苹果收跌1.41%,谷歌母公司Alphabet收跌3.73%,亚马逊收跌2.34%,Facebook收跌2.66%,微软收跌2.91%,英伟达收跌2.7%,奈飞收跌3.09%,AMD收跌3.11%,英特尔收跌1.42%,美光科技收跌3.52%,特斯拉收跌2.35%,IBM收跌2.94%,推特收跌4.67%。 /p p   而在科学仪器行业,9家美国上市仪器公司股价也出现骤跌。赛默飞收跌2.64%,安捷伦收跌2.78%,沃特世收跌3.11%,珀金埃尔默收跌2.54%,布鲁克收跌1.69%,梅特勒-托利多收跌3.47%,Illumina收跌2.32%,Bio-Rad收跌3.15%,阿美特克收跌2.50%。且23日早上开盘后,仍旧保持下跌趋势。 /p p   近年来跨国仪器公司看重中国市场,正加紧在华的战略投资,中国的业绩增长速度也远超美国和其他发达市场。此番美国对华打响贸易战,对原本并不稳固的全球经济复苏来说可谓雪上加霜。全球经济前景不明朗,贸易战将给科学仪器行业带来什么影响,仪器信息网将持续跟踪报道。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/7347ae03-8c07-4416-83d5-ea657268deab.jpg" title=" 赛默飞.jpg" style=" width: 500px height: 342px " width=" 500" vspace=" 0" hspace=" 0" height=" 342" border=" 0" / /p p style=" text-align: center " strong 赛默飞 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/91a42be2-4430-475d-b463-a1ba08a9d583.jpg" title=" 安捷伦.jpg" style=" width: 500px height: 342px " width=" 500" vspace=" 0" hspace=" 0" height=" 342" border=" 0" / /p p style=" text-align: center " strong 安捷伦 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/3c5971dd-48e2-432a-ba2b-99dd8ad3dc86.jpg" title=" 沃特世.jpg" style=" width: 500px height: 345px " width=" 500" vspace=" 0" hspace=" 0" height=" 345" border=" 0" / /p p style=" text-align: center " strong 沃特世 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/e075c283-fe53-410c-b00f-e14e1e3d0f1d.jpg" title=" 珀金埃尔默.jpg" style=" width: 500px height: 342px " width=" 500" vspace=" 0" hspace=" 0" height=" 342" border=" 0" / /p p style=" text-align: center " strong 珀金埃尔默 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/926b15db-e1b2-43a6-a58a-b6ad193efa93.jpg" title=" 布鲁克.jpg" style=" width: 500px height: 342px " width=" 500" vspace=" 0" hspace=" 0" height=" 342" border=" 0" / /p p style=" text-align: center " strong 布鲁克 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/091c2ded-83b4-4b5a-bf15-f0cae7c686a9.jpg" title=" 梅特勒-托利多.jpg" style=" width: 500px height: 342px " width=" 500" vspace=" 0" hspace=" 0" height=" 342" border=" 0" / /p p style=" text-align: center " strong 梅特勒-托利多 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/4890bccc-db52-4d37-ac5c-2c15cca4314c.jpg" title=" Illumina.jpg" style=" width: 500px height: 342px " width=" 500" vspace=" 0" hspace=" 0" height=" 342" border=" 0" / /p p style=" text-align: center " strong Illumina /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/8dcd6b14-1f10-4f96-9c6d-2481034e4e96.jpg" title=" 伯乐.jpg" style=" width: 500px height: 342px " width=" 500" vspace=" 0" hspace=" 0" height=" 342" border=" 0" / /p p style=" text-align: center " strong Bio-Rad /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/0b6f08dd-792f-471f-8c88-9a2f39e6ff3a.jpg" title=" 阿美特克.jpg" style=" width: 500px height: 345px " width=" 500" vspace=" 0" hspace=" 0" height=" 345" border=" 0" / /p p style=" text-align: center " strong 阿美特克 /strong /p p strong   相关新闻: a href=" http://www.instrument.com.cn/news/20180323/242698.shtml" target=" _blank" title=" 贸易战下中概股哀鸿遍野 国产仪器厂商是否遭殃及?" style=" color: rgb(255, 0, 0) text-decoration: underline " span style=" color: rgb(255, 0, 0) " 贸易战下中概股哀鸿遍野 国产仪器厂商是否遭殃及? /span /a /strong /p
  • 宁波材料所在提高钙钛矿/晶硅叠层太阳能电池效率方面取得新进展
    近年来,钙钛矿/硅叠层太阳能电池技术飞速发展,其效率已从13.7%发展到如今的33.2%,这得益于其更宽的太阳光谱吸收范围和更高的开路电压输出值。因此,钙钛矿/硅叠层太阳能电池被认为是最有希望从根本上提高光电转换效率并大幅降低太阳能发电成本的新型光伏技术。   然而,钙钛矿/硅叠层电池的不稳定性,特别是钙钛矿顶电池的不稳定性,仍然是限制其实际应用的主要障碍之一,通常与钙钛矿薄膜内部的残余应力密切相关。钙钛矿薄膜内部残余应力的存在会显著降低钙钛矿相变、缺陷形成和离子迁移的能垒,并最终加速钙钛矿的降解。因此,如何有效释放钙钛矿薄膜内部的残余应力并获得高效稳定的叠层器件成为关键。   近期,中国科学院宁波材料技术与工程研究所所属新能源所硅基太阳能及宽禁带半导体团队在叶继春研究员的带领下,在前期晶体硅和钙钛矿太阳电池研究的基础上(Adv. Sci. 2021, 8, 2003245 J. Mater. Chem. A 2021, 9, 12009 Energy Environ. Sci. 2021, 14, 6406 Adv. Funct. Mater. 2021, 32, 2110698 Nano Energy 2022, 100, 107529 Joule 2022, 6 , 2644 ACS Appl. Mater. Interfaces 2022, 14, 52223 Adv. Energy Mater. 2023, 13, 2203006 J. Mater. Chem. A, 2023,11, 6556 Nat. Commun. 2023, 14, 2166),在高效钙钛矿/硅叠层电池领域取得了新的进展。   该团队提出一种基于表面重构的钙钛矿/硅叠层太阳能电池,认证效率达到29.3%(稳态效率29.0%),是目前报道的基于遂穿氧钝化接触(TOPCon)电池的最高效率之一。   在该工作中,研究人员将正丁基碘化胺(BAI)溶于二甲基甲酰胺(DMF)和异丙醇(IPA)的混合溶剂中,并用于表面后处理。这种方法不仅可以实现BA离子在钙钛矿表面全面的A位替换,还能促进BA离子向钙钛矿薄膜内部的深扩散。在不影响薄膜质量的前提下,实现了钙钛矿薄膜表面和内部残余应力的同时释放。经过应力释放的薄膜表现出更少的缺陷态、更弱的离子迁移和更好的能级排列等优点,制得的单结电池和叠层电池分别获得21.8%和29.3%的效率,并展现出良好的热、湿、光照和运行稳定性。该工作促进了高效稳定的钙钛矿基太阳电池应变工程发展,并为未来的应用和部署提供了参考。   相关成果以“Surface Reconstruction for Efficient and Stable Monolithic Perovskite/Silicon Tandem Solar Cells with Greatly Suppressed Residual Strain”为题发表于Advanced Materials(DOI:10.1002/adma.202211962)上。2020级直博生李鑫为第一作者,应智琴博士后、杨熹副研究员和叶继春研究员为共同通讯作者。该研究得到了国家自然科学基金(Grant No. 62204245)和浙江省重点研发计划(Grant No. 2022C01215)等项目的支持。基于钙钛矿表面重构的两端口钙钛矿/硅叠层太阳电池
  • 高考作文题目引争议 显微镜下蝴蝶到底有没有颜色?
    p   蝴蝶到底有没有颜色?随着安徽高考作文题出炉,这一话题迅速成为各界议论的焦点。当大家都在分析如何立意时,昨天下午,网上陆续出现了来自“科学界”的不同声音,“理工男”们通过分析,指出这一命题“不够严谨”。 /p p strong   作文题目回顾: /strong /p p   为了丰富中小学生的课余生活,让同学们领略科技的魅力,过一把尖端科技的瘾,中科院某研究所推出了公众开放日系列科普活动。活动期间,科研人员特地设计了一个有趣的实验,让同学们亲手操作 a href=" http://www.instrument.com.cn/zc/53.html" target=" _self" title=" " 扫描式电子显微镜 /a ,观察蝴蝶的翅膀。 /p p   通过这台可以看清纳米尺度物体三维结构的显微镜,同学们惊奇地发现:原本色彩斑斓的蝴蝶翅膀竟然失去了色彩,显现出奇妙的凹凸不平的结构。 /p p   原来,蝴蝶的翅膀本是无色的,只是因为具有特殊的微观结构,才会在光线的照射下呈现出缤纷的色彩& amp #823& amp #823 /p p   strong  “科普文”率先发声引起争论 /strong /p p   昨天下午,微信朋友圈里一篇“科普文”被疯狂转发,网友看完纷纷表示“高考作文命题不科学啊”。 /p p   “显微镜下蝴蝶没有颜色吗?”文章作者首先对“何为颜色”进行了科普。在其看来,黑色的光谱不在可见光范围内,即为没有颜色。 /p p   而作文材料中,老师让学生做实验,在显微镜下看到蝴蝶“失去了色彩”。这位作者认为,材料中所说的“没有颜色”,其实是一团漆黑,并分析了可能造成这种情况的几种可能,同时一一指出了各种“不靠谱”。 /p p   不过,也有网友留言,认为这位作者的分析并不靠谱,“ 没有颜色不应该是透明的么,怎么是黑色呢?这也不科学。” /p p   strong  瑕疵1:电子显微镜下看不到物体颜色 /strong /p p   除了这篇文章,网上陆续还有不少专家发声。昨晚,新安晚报、安徽网记者联系上了其中一位——蝴蝶研究专家、滁州学院生物与食品工程学院教授诸立新。 /p p   “是的,我已经关注到了。”听了记者的问题,诸立新笑了笑,他说试题材料中“有两个问题”。 /p p   “材料中说,学生们做实验使用的是扫描式电子显微镜。不仅是蝴蝶,任何物体在电子显微镜下都是没有颜色的。”诸立新说,材料中可能并没有弄清楚电子显微镜的成像原理,电子显微镜并不是靠可见光,而是电子束成像,通过扫描产生物体的表现结构,转换成人能看到的图形,并不存在颜色问题。 /p p   而任何物体在电子显微镜下都是没有颜色的,“ 包括蝴蝶在内。”诸立新说,而如果用光学显微镜,那么在可见光下,和肉眼一样,能看见蝴蝶翅膀的颜色。 /p p    strong 瑕疵2:只描述了物理色而忽视化学色 /strong /p p   对于研究的“老本行”,诸立新教授认为材料中还有一处不够严谨。 /p p   “蝴蝶翅膀的颜色,其实是由化学色和物理色两部分构成。”诸立新说,化学色来自蝴蝶翅膀上鳞片的颜色。假如用显微镜看蝴蝶的翅膀,可以发现成千上万的鳞片,系统地密排在翅膜上,使整个翅膀依种类而呈现一定的色彩,我们称其为化学色或色素色,比如黑色、黄色等深色都是化学色。 /p p   另一种则是物理色。这是因为翅膀细微的结构使光线产生反射、折射,表现出来有金属感、闪光的颜色,也称之为结构色。 /p p   “材料中所表述的,其实是蝴蝶翅膀颜色的物理性,并不全面。”诸立新认为,无论肉眼还是光学显微镜,在可见光下,都能看到蝴蝶翅膀的物理色与化学色,而作文材料中仅片面地描述其物理性,可能会对大众产生一定程度上的“误导”。“目前大多数种类的蝴蝶都有物理色与化学色。” /p p   显微镜下蝴蝶到底有没有颜色?对此,您有何高见? /p p   请点击论坛帖子参与讨论: span style=" color: #0000ff" strong span style=" text-decoration:underline " a href=" http://bbs.instrument.com.cn/boardlist/bbs/topic?threadid=5828544" 论坛帖子命中2015高考作文题——蝴蝶翅膀颜色 /a /span /strong /span /p
  • 异动:南华仪器股价大跌5.11%创历史新低
    p & nbsp & nbsp & nbsp & nbsp 2018年02月01日下午盘13时01分,南华仪器(300417)出现异动,股价大幅下跌5.11%,创历史新低(除权后价格)。截至发稿,该股报21.00元/股,成交量6275手,换手率2.19%,振幅7.24%,量比0.86。 /p p & nbsp & nbsp & nbsp & nbsp 最新的三季报显示,该股于2017年9月30日实现营业收入1.32亿元,净利润2642万元,每股收益0.32元,市盈率81.81。 /p p & nbsp & nbsp & nbsp & nbsp 过去一年内该股还未有涨停。 /p p & nbsp & nbsp & nbsp & nbsp 而过去一年内该股有2次跌停,跌停后第二交易日涨2次,跌0次,涨占比100%。 /p p & nbsp & nbsp & nbsp & nbsp 南华仪器所在的仪器仪表行业,整体跌幅为2.97%,其相关个股中正业科技,天奇股份,赛腾股份跌幅较大,分别下跌10.0%,8.8%,7.6%;赛腾股份,光力科技,海川智能较为活跃,换手率分别为14.8%、5.6%及4.6%;奥普光电,正业科技,康斯特明显放量,量比分别为7.6,5.2,4.5;振幅较大的相关个股有智能自控,光力科技,天奇股份,振幅分别为11.6%,11.4%,11.2%。 /p p & nbsp & nbsp & nbsp & nbsp 南华仪器公司主营业务为机动车环保和安全检测用分析仪器及系统研发、生产和销售。截至2018年02月01日,该公司股东人数(户)为9883,较上个统计日减少820户。 /p p br/ /p
  • 美国已从我国试验机市场“神坛”跌落?
    长期以来,我国高端试验机市场被进口设备垄断,国内试验机厂家则处于中低端市场打价格战。近几年,由于中美贸易战,国外高端设备陆续对我国禁售,给了国内试验机企业一些机会。此外,在“十四五”规划文件及地方政策的支持下,国产仪器发展整体提速,国内试验机企业(如三思纵横、力试、中机试验等)慢慢聚焦到高端试验机的研制开发,并取得了一定的进展。在此背景下,仪器信息网特对电子万能试验机(HS90241010)近三年海关数据进行了汇总分析,并整理成文,以方便业内人士更深一步了解我国试验机市场的发展状况。从进口数据看:我国电子万能试验机进口量持续减少,对美国产品的依赖度下降自中美贸易战开打,电子万能试验机经历了几轮加征关税,其进口市场受到冲击,再加上新冠疫情致使全球经济发展面临需求收缩、供给冲击、预期转弱等压力,近年来我国电子万能试验机的进口数量连续下跌。2019年至2021年,我国电子万能试验机的年进口数量分别为362台、347台和160台,2021年进口量较2019年下降了近56%。从近三年的逐月进口量可以看出,2019年和2020年,我国电子万能试验机的月进口量在30台上下波动;2021年,我国电子万能试验机的月进口量明显下降,徘徊在10台~20台之间。从近三年的进口总量来说,美国仍是我国电子万能试验机最大的贸易伙伴,其次是德国、日本、英国和意大利。从各年的进口量来看,2019和2020年,美国稳坐中国电子万能机试验进口市场首位,中美贸易战似乎并没有影响到我国从美国进口电子万能试验机的热情;2021年,我国自德国和日本进口电子万能试验机的数量均赶超美国,德国一跃成为2021年度中国电子万能试验机第一大进口国,而美国则从首位跌至第三位,这一定程度上可以说明我国对美国电子万能试验机产品的依赖度已有所下降。从出口数据看:出口量远高于进口量,马来西亚是最大出口国2019年至2021年,我国电子万能试验机的年出口量分别为72990台、92374台、84132台,远高于同期进口量。从年出口量来看,2021年我国电子万能试验机的出口量较2020年下降约9%;而从年出口额来看,2021年我国电子万能试验机的出口额为8300万元,较2020年增长近13%。我国电子万能试验机的月出口量跨度较大,低有2020年2月仅出口8台,高有2019年5月出口达20930台。从上图(我国电子万能试验机逐月出口量)可以看出,每年2月、7月和10月的出口量相对较低。近三年,马来西亚、意大利、日本、英国、美国是我国电子万能试验机的五大出口贸易国。尤其马来西亚,2020年和2021年的贸易量分别为39043台和47931台,远高于其他国家,是我国电子万能机试验出口市场的绝对主体。此外,日本、英国和美国不仅是我国电子万能试验机的主要出口贸易国,也是主要进口贸易国。对比:进口均价连续上升,出口数量多而价格低从数量的角度来看,我国电子万能试验机的年出口量远高于同期进口量;然而从金额的角度来看,我国电子万能试验机的年出口额均低于同期进口额。根据每年的总进出口金额和总进出口数量,计算得出每年的进出口均价。2019年至2021年,我国电子万能试验机进口均价分别为47.64万元/台、50.59万元/台和77.64万元/台,而出口均价分别为0.11万元/台、0.08万元/台和0.10万元/台。总的来说,虽然在进出口方面,我国电子万能试验机的市场情况均不容乐观,但是随着进口税率一涨再涨,进口均价一升再升,国产采购政策一帮再帮,我国市场对美高端电子万能试验机产品的依赖程度已有所下降,无论是进口量还是出口量,美国的贸易占比都出现了下降趋势。此外,受益于我国和日、韩、澳、新西兰及东盟十国于2020年11月签订的《区域全面经济伙伴关系协定》(RCEP),区域内电子万能试验机的关税减少,2021年我国电子万能试验机的出口额较2020年略有增长,且出口地区发生明显偏移,由意大利、美国、法国、德国等转至马来西亚、越南、泰国、新加坡等国家。
  • 西工大垂直管射折叠翼无人机研究取得重大突破
    “嘭!”“发射正常!”“机翼尾翼展开正常!”“螺旋桨最大功率推进!”“姿态改平正常!”“开始巡航!”“到达目标上空发现目标!”“目标锁定成功!”“完成打击!”。伴随着这一连串的指令,西北工业大学无人系统技术研究院副研究员昌敏负责的大仰角弹射长航时“游隼”管射折叠翼无人机(以下简称“游隼”长航时折叠翼无人机)捷联图像末制导闭环试验成功。管射折叠翼无人机是近年来兴起的新型巡飞与精确制导装备。由于考虑便携性和灵巧性,管射折叠翼无人机采用储存、运输、发射一体,发射管的有限空间约束极大限制了无人机机翼尺寸,从而影响了折叠翼无人机气动性能,是一门“螺蛳壳里做道场”的艺术。昌敏说:“单次折叠的串列翼布局是国际上主流的折叠翼无人机布局形式。”经过长期研究,昌敏团队发现串列翼布局对于有限尺寸的发射管来说,机翼面积更大些。但是受发射管长度限制,机翼展弦比不高。而且随着攻角的增加,串列翼布局的前后翼远距气动耦合诱导阻力增加得很快,串列布局的折叠翼无人机最佳升力系数不高,升阻比也较低,并且很难再有所提高,这意味着飞行器平台的飞行性能被这个天花板牢牢压制,因此这就成为了折叠翼无人机技术发展的瓶颈。在日以继夜的分析试飞数据和反推动力学模型后,团队发现多次折叠方案中“Z型折叠”总体上能够满足设计要求,但是其技术资料极少,其核心是高动态变体结构的气动、结构和动力学精确建模与预报技术。终于在团队不断攻关下,成功提出了“气动-结构协同的大展弦比折叠翼无人机设计技术”,首次将我国“由陆到空”“由海到空”折叠翼无人机升阻比大幅提升,将我国巡飞平台的气动性能提上了一个新的平台。在成功完成大展弦比折叠翼无人机设计后,昌敏团队又将目光投向了海空跨域飞行。由陆到空、由海到空是折叠翼无人机的主要跨域路径,而基于海面、陆地的高仰角发射飞行是约束折叠翼无人机使用范围的技术瓶颈。研究团队通过探明折叠翼面瞬时变体中的力系生成机制,揭示了变体几何布局-动力拓扑-气动力系架构-高仰角起飞瞬时转弯等时变耦合机理,突破了水面摇晃态垂直发射气动力系拓扑结构变体重构技术,实现“游隼”长航时折叠翼无人机国内首次深水释放、水面漂浮垂直冷发射无人机自主飞行验证与首次电动后推螺旋桨陆地垂直冷发射折叠翼无人机自主飞行验证。“游隼”长航时折叠翼无人机在陆地大仰角发射过程与末制导过程(西北工业大学供图)
  • 人和科仪金碟EAS系统成功实施应用
    上海人和科学仪器有限公司的金蝶EAS系统在经过一年多的筹备与实施已于2011年8月成功上线。在一个多月的使用中,EAS系统运行正常,为人和科仪的信息化建设打下坚实基础。 随着公司的不断发展,业务的不断增加,促进企业信息化建设的步伐也必须加快。此次与金蝶公司携手,投入巨资引进的金蝶EAS系统即是人和在信息化建设中迈出的关键一步。 金蝶EAS构建于金蝶自主研发的商业操作系统金蝶BOS之上,面向大中型企业的企业,体现了最新的ERP管理思想,它涵盖了企业内部资源管理、横向的供应链管理、客户资源管理、知识管理、商业智能等,并能实现企业间的协作和电子商务的应用集成。 在今后的发展中,人和科仪将充分利用金蝶EAS管理信息平台,实现财务、供应管理、销售与分销、客户关系管理、人力资源、知识管理等全方面和一体化的应用,实现以最少资源创造最大价值,开创仪器行业信息化发展的新格局! 人和科仪器自成立以来,一直致力于为实验室客户提供高效优质的服务。人和在竞争中求发展,在变革中求生存,数十年来已经成为华东地区最具竞争力的实验室领域的专业公司之一。在激烈多变的市场环境中,人和公司紧紧把握客户需求,在不断壮大自身的过程中为客户创造更多的价值。 更多详情欢迎来电咨询:400 820 0117 同时欢迎点击我司网站 www.renhe.net 查询更多产品优惠信息。 上海人和科仪欢迎经销商合作洽谈! 上海人和科学仪器有限公司 上海市漕河泾新兴技术开发区虹漕路39号怡虹科技园区B座四楼(200233) 电话:021-6485 0099 传真:021-6485 7990 公司网址: www.renhe.net E-mail:info@renhesci.com 【上海人和科学仪器有限公司十数年一直致力于提升中国实验室生产力水平,从提供全球一流品质的实验室仪器、设备,到为客户度身定制系统的实验室整体解决方案,通过专业、细致和全面的技术支持服务实现&ldquo 为客户创造更多价值&rdquo 的承诺。主要代理品牌:IKA、BROOKFIELD、GRABNER、ILMVAC、MIELE、MEMMERT、KOEHLER、SIEMENS、EXAKT、COLE-PARMER、ATAGO、YAMATO、ESPEC等。】
  • 聚光科技:“泡沫”捅破 股价暴跌
    拥有“豪华版”发起人阵容的聚光科技于今年4月15日登陆创业板。早在2007年,聚光科技一直谋求的是境外上市,但两年后却突然转战创业板,发行价定为20元/股。对此价格,一研究人士感慨:“这家公司每股净资产仅1.36元,上市时却拥有高达84亿的总市值,这个泡沫制造得太大。”   股权转让变“迂回战”   2002年3月,聚光科技实际控制人王健、姚纳新与朱敏、YUEN KONG在美国共同设立了FPI(US)。值得一提的是,朱敏曾被福布斯誉为国内最佳投资人,正是在朱敏的引导下,聚光科技的发起人阵容逐渐强大。目前朱敏及其关联人控制的香港富盈、绍兴龙山赛伯乐、杭州灵峰赛伯乐分别持有聚光科技发行前16.45%、1.61%、1.61%股份。   为了筹备境外上市,自2007年12月开始,聚光科技的股权腾挪越发频繁。2007年12月20日,FPI(US)将其所持公司100%股权以 1000万美元转让给香港富盈。2008年4月2日,发起人王健将所持股份平移至旗下空壳公司 FOCUSED EQUIPMENT LIMITED,转股价格为每股0.001美元 另一发起人姚纳新将其持有的885万股转让给控制的空壳公司BRIGHT GAIN GROUP LIMITED,转股价格为每股0.001美元。   而在确定了在国内上市后,聚光科技股权归属又发生了变化。2009年10月,香港富盈与浙江睿洋科技有限公司等14家机构签订股权转让协议,约定以注册资本的价格转让其持有的聚光有限81.11%的股权。“如此纷繁复杂的股权转让令人眼花缭乱,这之间的利益要害估计只有当事人才能理得清楚。”南京一投资者对此大呼“长见识”了。   携巨大“泡沫”上市   “发行前,公司每股净资产只有1.36元,每年不足两亿的利润,却拥有84亿的总市值。”一券商研究人士直言,“作为创业板的上市企业,聚光科技这个高价发行制造了一个巨大的泡沫。”   但由于头顶“环保、高科技”的光环,聚光科技仍然于4月15日顺利登陆创业板上市。不过,泡沫终归是泡沫,上市后聚光科技连续10个交易日暴跌,股价“一泻千里”(从24.80元/股暴跌至16.76元/股)。这让申购聚光科技的机构和散户寒心不已。   此外,上述研究人士仍有担心:“从基本面上看,聚光科技有四分之一业务是代理国外的产品。公司在所处的行业需要面对一堆外企如西门子、ABB、赛默飞世尔科技、美国哈希公司、日本岛津公司等公司,还有本土的宇星科技发展(深圳)有限公司的竞争,行业的利润率呈现下降趋势。”   营业外收入“居功至伟”   实际上,补贴、税收优惠一直是聚光科技业绩贡献的主力。2007年,聚光科技的主营业务亏损,最终依靠财政补贴和增值税退税,才勉强将业绩“做正”。此后几年,公司获取的补贴税惠几乎占据了业绩的半壁江山。   资料显示,2008年聚光科技利润总额为8700万元,其中3700万元是营业外收入,构成为2700万增值税退税和1000万政府补助 2009年利润总额为1.5亿元,其中4400万元为营业外收入,主要构成为2900万增值税退税和900万政府补助 2010年上半年利润总额为 3500万元,1600万元是营业外收入,主要构成仍是增值税退税和政府补贴。   此外,聚光科技子公司因外资身份获得所得税减免:2007年至2010年1-6月,子公司分别被减免500万元、1200万元、1400万元和 320万元的所得税。经测算,2007年至2010年1-6月,公司税收优惠金额占净利润的比例分别为142%、46%、31%和43%。   值得一提的是,聚光科技2007年实现净利润901万元,但到了2009年,净利润却猛增至1.32亿元。两年间盈利悬殊巨大暴露出公司的业务风险。据聚光科技招股说明书显示,公司主导产品中的原材料成本占产品成本的比例约为80%-90%,如果原材料价格波动太大,会影响公司的整体盈利水平。
  • 大跌超9%!"国家队"减持燕东微
    “国家队”频繁出手。6月5日晚,燕东微公告,因自身资金需求,持股5%以上股东国家集成电路产业投资基金股份有限公司(简称“国家集成电路基金”或“国家大基金”)拟通过大宗交易方式减持。今日开盘,燕东微股价一路下行,一度大跌超9%。值得注意的是,5月30日晚间,北斗星通发布公告,国家大基金拟以集中竞价、大宗交易方式减持公司股份不超过1077.03万股,即不超过1.98%公司股份。事实上,从2019年开始,大基金一期就进入了为期5年的投资回收期,随后,大基金一期陆续减持。日前,国家大基金三期成立的消息在市场刷屏。有分析师指出,第三期大基金加大投资布局,有望在泛AI领域或将引发新的投资热潮。自2019年起,大基金一期进入投资回收阶段,逐步展开减持操作。与此同时,大基金三期的成立成为市场新焦点,分析师预期这将带动新一轮投资热,尤其是在泛人工智能领域,可能激发更多的投资活力。具体到燕东微的减持细节,国家大基金计划在未来三个月内,通过大宗交易减持不超过公司总股本2%的股份,即不超过2398.21万股。燕东微作为一家集芯片设计、晶圆制造与封装测试于一身的半导体企业,拥有完整的产业链布局,并在2023年被认定为“北京市智能工厂”。尽管如此,燕东微在2023年度的财务报告显示,受市场需求变化及产品价格调整影响,其营收与净利润均略有下滑。大跌超9%,“国家队”减持知名半导体公司!燕东微强调,国家大基金的减持行为将遵循市场规则,减持计划的实施存在不确定性,提醒投资者注意风险。此外,国家大基金三期的成立以其巨额注册资本——3440亿元,远超前两期,显示出政府对半导体行业的强力支持。市场分析普遍认为,大基金三期将重点扶持国内半导体产业链中的薄弱环节,加速推进半导体产业的国产化进程,特别是在先进制程、存储、设备材料等关键技术领域。回顾大基金一、二期的投资,其长期持有的策略在A股市场表现突出。截至2024年第一季度,大基金(一、二期合并计算)在31家上市公司的前十大流通股东中占有一席之地,其中不乏持股超过5年的公司,凸显出大基金对于半导体产业长期发展的坚定支持。此外,大基金二期最近还参与了长电科技汽车电子子公司的增资,进一步扩大其在汽车电子领域的布局。
  • 2024-Q1,全球光刻设备出货量大跌!
    半导体光刻机的出货量,一定程度上比较准确地反映了全球半导体产能的扩张情况。最近,ASML、NIKON和CANON三家都公布了今年Q1的设备出货量。整理后发现,最新季度中全球光刻设备的出货无论是环比还是同比都出现了明显下降。话不多说,上图表:以下是分类数据的统计:1)EUV设备的供应商只有ASML一家。从下图上看,如果忽略2023年Q1的短暂暴增,其实最近两年的出货数据变化不大。说明手机和AI算力芯片的带动下,高端工艺的产能扩张情况还算比较稳定2)DUV的设备出货量明显下降首先,浸入式ArF光刻设备的供应商是ASML和NIKON两家。从下表的数据上看,两家的出货量均有大幅衰减其次是干式ArF设备。目前看来跌幅较大的是ASML。不过这类设备总体出货量不大,对总体的影响很小然后是KrF设备。这种设备三家都有供货。不过从数据上看,只有ASML一家数据是下降的。CANON在这一领域的市占率也不算小,但看起来出货量上没有什么明显变化3)i-Line设备三家都有供货,而且从数量上看CANON是第一大供应商。目前这个领域出货量同比是增加的。忽略去年Q4的异常暴增数据影响,看起来走势还是向好的简单总结所以,总体看来出货量下降的主要原因来自ASML。除了它的EUV设备变化不大,其它各种类型光刻设备的出货数据在Q1都有明显下降从ASML营收的区域分布来看,中国大陆在Q1依旧是最大买家。降幅主要来自中国台湾地区和韩国。尤其是台湾地区,Q1采购量跌到10年前的水平看起来,以TSMC为首的台系晶圆厂在最近一段时间的产能扩张都极其保守。这对于其它头部设备供应商而言都可能会有不小的负面影响
  • 长电科技收购晟碟半导体新进展
    8月11日晚间,长电科技发布公告透露公司收购晟碟半导体80%股权新进展,此次收购获得闵行区规划和自然资源局审批同意。同时,长电科技还收到了国家市场监督管理总局下发的《经营者集中反垄断审查不予禁止决定书》,决定对交易不予禁止,交易各方可以实施集中。今年3月4日,长电科技董事会审议通过了《关于公司全资子公司长电科技管理有限公司收购晟碟半导体(上海)有限公司80%股权的议案》,同意长电科技管理有限公司(简称“长电管理公司”)以现金方式收购SANDISK CHINA LIMITED持有的晟碟半导体80%的股权。根据公告,交易对价以北京亚太联华资产评估有限公司出具的评估报告为依据,由交易双方协商确定。经交易双方充分沟通协商交易对价约6.24亿美元(约人民币44.73亿元)。交易完成后,长电管理公司持有晟碟半导体80%股权,SANDISK CHINA LIMITED持有20%股权。资料显示,长电科技是国内集成电路成品制造和技术服务提供商,提供全方位的芯片成品制造一站式服务,包括集成电路的系统集成、设计仿真、技术开发、产品认证、晶圆中测、晶圆级中道封装测试、系统级封装测试、芯片成品测试等。近年,长电科技加大了对先进技术领域的投入力度,多维扇出异构集成XDFOI技术平台已在旗下多家工厂稳定量产,向国内外客户提供面向小芯片架构的先进封装解决方案,满足高性能计算、高带宽存储等领域的封装需求。晟碟半导体是西部数据旗下封测厂,由SANDISK CHINA LIMITED全资持股,主要从事先进闪存存储产品的封装和测试,产品类型主要包括iNAND闪存模块,SD、MicroSD存储器等。产品广泛应用于移动通信,工业与物联网,汽车,智能家居及消费终端等领域。除了长电科技外,美光科技在封测领域的收购也迎来了最新进展:今年6月28日,美光科技宣布成功收购力成西安资产。力成西安厂设立于2014年,其目的在于为美光科技供应全球电脑使用WBGA封装技术的DRAM。去年6月美光宣布在西安的封装测试工厂投资逾43亿元人民币,其中包括加建一座新厂房,引入全新产线,制造更广泛的产品解决方案,并决定收购力成半导体(西安)有限公司(力成西安)的封装设备,同时,向力成西安逾1200名全体员工提供新的就业合同,进一步壮大人才队伍与运营规模。业界认为,人工智能、大数据、云计算等技术快速发展,高性能存储需求不断增长,存储领域封测技术与产能重要性日益凸显,竞争也不断加剧。这一背景下,存储封测行业有望出现更多的产业整合和并购活动,以形成更大的规模和更强的竞争力。
  • 暴跌2800亿!中美贸易战下的美国投资市场
    p   自美国总统特朗普2017年就职以来,中国在美投资暴跌近90%,中国买家在美购置住房金额下降56%,令硅谷初创企业、曼哈顿房地产市场和花费数年吸引中国投资的州政府遭殃。 /p p   美国业内人士透露,中国投资者对美国市场开放程度表示担忧。他们在地方官员和联邦官员那儿受到了不同待遇,而中国投资给美国一些地区带来了新工厂和就业机会,帮助它们从大萧条中艰难复苏。 /p p    strong 特朗普上台两年,中国对美投资暴跌九成 /strong /p p   据美国《纽约时报》7月21日报道,特朗普上台后,一度稳定的中国资金流入美国速度出现减缓。中美都对投资加强了审查,美国经济则普遍感受到了这种下滑,硅谷初创企业、房地产市场和州政府都受到了影响。 /p p   多年来,中国对美投资速度持续上升,大量资金涌入了美国汽车、科技、能源和农业领域,为密歇根州、南卡罗来纳州、密苏里州、得克萨斯州和其他州创造了新岗位。 /p p   随着中国经济的蓬勃发展,美国各州、地方政府以及公司都想从中国争取资金,直到特朗普挑起中美贸易摩擦。 /p p   美国商业咨询机构荣鼎集团(Rhodium Group)数据显示,2018年,中国对美直接投资从2016年465亿美元(约合人民币3200亿)的峰值降至54亿美元(约合人民币372亿),降幅达88%。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 600px height: 211px " src=" https://img1.17img.cn/17img/images/201907/uepic/f6c63fd2-46e5-47c2-bb3c-9815031a251d.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 211" border=" 0" vspace=" 0" / /p p   根据今年截至4月的初步数据,中国大陆企业的投资交易规模为28亿美元,仅比去年略有上升。 /p p    strong 多次交易受阻,美国市场还“开放”吗? /strong /p p   值得注意的是,特朗普对中国商品征收“惩罚性”关税的嗜好,与美政府对外国投资、尤其是中国投资者的更严格“审查”,都吓坏了两国企业。 /p p   在美国“外国投资委员会”的干预下,有一系列交易最终宣告失败,人们愈加担忧起了美国对中国投资者的接受程度。 /p p   受美国财政部领导,该委员会在2018年获得了更大的权力,它能叫停的交易范围也更为广泛,其中包括对电信和计算等敏感技术的少数股权和投资交易。 /p p   贝克麦坚时国际律师事务所(Baker McKenzie)的外国投资评估专家罗德· 亨特(Rod Hunter)透露,“我在与投资者的交谈中,听到了他们对美国市场是否仍然开放的许多担忧。这可能会给中国投资者带来‘寒蝉效应’。” /p p   咨询公司高纬环球(Cushman& amp Wakefield)5月份的一份报告指出,一些案例让中国投资者感受到了“不受欢迎”,中国商业房地产投资者在美国展开了“疯狂的处理行动”。 /p p   2018年,中国买家共进行了37项房产收购交易,价值23亿美元,但有价值31亿美元的商业房地产被抛售。 /p p   与此同时,中国投资者对美国住宅房地产的兴趣也有所下降。“全美房地产经纪人协会”最近发布的研究报告发现,在截至今年3月的一年里,中国仍是美国房产的最大海外买家,但中国买家在美购房金额下降了56%,至134亿美元。 /p p   该协会首席经济学家指出,“这一跌幅相当惊人,意味着投资者对在美国拥有房产的信心下降。” /p p   此外,包括银行和私募股权在内的美国金融业也感受到了冲击。 /p p   两名美国财政部官员表示,美国财政部正密切关注高盛与中投在2017年共同创立的一只基金。该基金旨在投资美国制造业和医疗保健企业,然后在中国开展业务。 /p p   高盛发言人强调,该银行遵守了政府的所有规定。 /p p    strong 受苦的又是美国大农村 /strong /p p   《纽约时报》对此渲染称,多年来全球最大的两个经济体不断加强一体化,如今却开始“脱钩”。 /p p   美媒还认为,中国投资减少不太可能使美国经济脱轨,因为其只占英国、加拿大、日本和德国投资的一小部分。但投资减少可能会伤害那些已经处于经济劣势、依赖中国资金的地区。此前,密歇根州等州持续吸引中国投资,获得了新工厂和就业机会,挣扎着从大萧条中复苏。 /p p   所以,非盈利机构“美中贸易全国委员会”主席艾伦(Craig Allen)指出,美国农村地区将显著感受到中国投资减少带来的影响。中国投资者在这些地区购买了工厂,重振了陷入困境的企业。“这对美国相对贫困、需要工作的地区造成了有害的影响。” /p p   “中国人在州政府和地方官员那里受到了欢迎,但从联邦官员那里听到了不同的声音。” /p p   在肯塔基州巴拉德县,当地官员感谢中企去年收购了一家关门的造纸厂。今年5月,这家工厂重新开工,挽回了许多岗位。 /p p   肯塔基州帕迪尤卡市长哈雷斯(Brandi Harless)曾赴华与中企高管会面。她表示,如果贸易紧张阻碍了这些城镇的制造业投资,那将是一件令人遗憾的事情。 /p p   6月12日,针对美方有人鼓吹中美“脱钩论”,外交部发言人耿爽回应指出,“脱钩论”是美国一小撮固守冷战思维、奉行零和博弈的人鼓噪出来的极其危险、极不负责任的论调。 /p p   耿爽强调,奉劝美方某些人摒弃意识形态窠臼,不要妄图开历史倒车。 /p p br/ /p
  • 再签标杆!CTI华测检测与金蝶达成战略合作
    1月31日,华测检测认证集团股份有限公司(以下简称“CTI华测检测”)与金蝶软件(中国)有限公司(以下简称“金蝶”)数字化战略合作签约仪式成功举办。本次签约标志着双方将在数字化转型方面展开深度合作。借助可组装的企业级PaaS平台金蝶云苍穹与金蝶云星瀚SaaS管理云,携手推进CTI华测检测数字化转型战略的实施,共同打造检测与认证服务行业的数字化转型标杆。CTI华测检测集团总裁申屠献忠、首席财务官王皓、计量及数字化事业部总裁徐江、华南区行政总裁王在彬、数字化战略发展中心总监赵小云、人力资源总监陈志红、信息资源管理部总监林宏轩,以及金蝶中国总裁章勇、助理总裁兼深圳分公司总经理颜全铨、深圳大客户经营部总经理胡炜等双方领导出席本次会议。CTI华测检测成立于2003年,总部位于深圳,是第三方检测与认证服务的开拓者和领先者,中国检测认证行业首家上市公司(股票代码:300012)。CTI华测检测在全球90多个城市设立160多间实验室和260多个服务网络,拥有12,000多名员工,是中国国家强制性产品认证(CCC)指定认证机构,中国合格评定国家认可委员会(CNAS)和检验检测机构资质认定(CMA)机构,同时获得众多海外权威机构认可并授权合作。基于遍布全球的服务网络和权威公信力,CTI华测检测每年可出具390多万份检测认证报告,服务客户逾十万家,其中世界五百强客户逾百家。当下,在国内国际双循环相互促进的背景下,高质量发展要求带来新一轮科技革命和产业转型升级,给检验检测行业带来新的挑战和发展机遇。CTI华测检测坚持高质量发展方向,通过推进数字化战略转型,积极探索数字化技术的综合应用,来提高公司并购整合、运营协同、客户服务、国际化等能力,实现精益和数字化创新助力,持续提升公司在检测行业内的核心竞争力。为响应集团数字化战略发展大方向,CTI华测检测携手金蝶,将搭建先进的数字化技术平台,全面支持数字化战略落地,实现人、财、物管理全面贯通,提升集团组织效能及智能化发展。CTI华测检测总裁申屠献忠表示,经过20多年的发展,CTI华测检测已经成为中国TIC行业的领军企业,而且有志于跻身全球领军TIC企业之列;数字化转型升级既顺应了行业和客户不断往数字化发展的趋势,也是公司自身往国际化发展和效率提升的需要。华测此次与业内知名服务商金蝶达成数字化战略合作,将借助金蝶在数字化软件和科技智能场景应用方面多年沉淀的经验和技术,打造华测“一套系统、一个平台”的全新运营管理模式,全面提升CTI华测检测在信息共享、业务流程优化、运营效率和协同等方面的能力,不断提升客户体验和服务水平。同时,依托云计算、物联网技术研究和应用,不断优化实验室流程和效率,并逐步推进智能化、无人检测实验室落地,全面打造智能华测和科技华测。CTI华测检测总裁申屠献忠金蝶中国总裁章勇表示,CTI华测检测与金蝶在数字化领域合作悠久,非常荣幸能够参与并见证华测检测与金蝶战略合作签约的重要时刻。此次华测检测ERP系统建设,将借助行业内先进的“低代码、云原生”的金蝶云苍穹平台,打造华测集团统一数字化底座平台,提升华测整体数字化服务水平、快速的业务响应能力。此次合作,金蝶也将对项目充分重视,扎实落实每一阶段的工作,确保资源充分投入,为项目建设全程保驾护航,为CTI华测检测数字化转型提供重要助力,共同将此打造成行业灯塔项目。金蝶中国总裁章勇成立30年来,作为全球知名的企业管理云SaaS公司,金蝶已经为超过740万家企业、政府等组织构建可组装的EBC(Enterprise Business Capability,企业业务能力)。未来,金蝶将依托核心技术能力与多年行业数字化实践经验,助力CTI华测检测构建强大的数字化平台,共创数字化转型标杆,共同迈向世界一流!
  • 江西理工大学研制出新式可折叠锂电池 轻薄如纸
    据新华社南昌4月8日电 智能手机近年来获得了长足的发展,而电池技术发展却相对缓慢。近日,江西理工大学研制出一款新式的可折叠锂电池,轻薄如纸、可任意弯曲,性能优于目前的普通锂离子电池。   江西理工大学&ldquo 江西省动力电池及材料重点实验室&rdquo 研发团队主要成员胡经纬表示,普通电池的电极材料附着在金属片上,即便再薄,电极材料也容易脱落,而用一种碳纳米管形成的宏观膜替代传统的金属片,便解决了这个问题。同等条件下,这款电池的比容量、能量密度均高于传统商用锂离子电池。该电池在经历5次持续折叠情况下仍能保持正常工作。   胡经纬说:&ldquo 这款电池主要是顺应了可穿戴设备的发展,可穿戴设备要受到一定的弯曲甚至折叠,要求它的电池也具备弯曲和折叠性能。我们设计的这款电池,最大限度地满足了可穿戴设备对电池柔性的需求。此外,由于轻质碳纳米管膜替代了金属箔材,该电池的能量密度有明显提高,因而可改善可穿戴设备续航能力不足的缺点。&rdquo
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制