当前位置: 仪器信息网 > 行业主题 > >

溴化锰

仪器信息网溴化锰专题为您提供2024年最新溴化锰价格报价、厂家品牌的相关信息, 包括溴化锰参数、型号等,不管是国产,还是进口品牌的溴化锰您都可以在这里找到。 除此之外,仪器信息网还免费为您整合溴化锰相关的耗材配件、试剂标物,还有溴化锰相关的最新资讯、资料,以及溴化锰相关的解决方案。

溴化锰相关的资讯

  • 把烟囱“搬”进显微镜,浙大制出不会“中毒”的催化剂
    p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮氧化合物是最主要的大气污染物之一,如何“减排”至关重要,工业上称之为脱硝。但是,目前广泛的SCR脱硝法存在一处“软肋”:在450-523K的中低温区间,哪怕废气中存在一丁点儿的二氧化硫,都会导致催化剂失效。浙江大学材料科学与工程学院教授王勇和杨杭生研究团队通过原位环境电子显微技术,首次在原子尺度实时观察到了脱硝反应过程中催化剂的动态行为,解码了催化剂中毒的微观机理,在此基础上成功设计制备出一种新型催化剂,它能在低温下持续、稳定、高效地脱硝,达到了准工业级水平。 /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) font-size: 16px " strong span style=" color: rgb(0, 112, 192) font-size: 16px text-indent: 2em " 看——把烟囱“搬”进显微镜 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 氮气是空气的主要成分,在工业上,通常有燃烧的地方就有氮氧化合物产生。这是一类对人类很不友好的气体,可引起光化学烟雾、酸雨、臭氧层破坏等环境问题,也是人类健康的威胁因素,人们一直在想办法去掉它们,保护大气。上世纪八十年代,选择催化还原技术(SCR)开始用于工业现场,对于火电厂等产生的高温废气,它们有着优秀的脱硝能力,但对于钢铁、陶瓷、玻璃等工业过程中产生的中低温尾气,它们却束手无策。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 科学界称催化剂失效的现象为“中毒”。低温工业尾气净化往往先脱硫,再脱硝,在脱硫阶段残余的二氧化硫会严重影响脱硝阶段的成效。催化剂为何中毒?科学家希望通过电子显微镜在原子尺度观察“中毒”现象,帮助它们认识其深层机理。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 研究团队在球差校正透射电镜里构建了一个人工“烟囱”,里面的气压和温度与真实工业线保持一致。“这里模拟了工业线上的脱硝环境,在原子层级实时呈现催化剂的‘中毒’过程。”王勇说。通过实验,科研人员得到了世界上第一张原子分辨级的催化剂中毒照片。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在催化剂氧化铈晶体的部分表面,我们看到它的晶格结构已经模糊,二氧化硫与催化剂反应形成硫酸盐颗粒,表面覆盖累积,形成许多不均匀的小凸起。“正是这些凸起遮蔽了催化剂与废气的接触,束缚了催化效力的发挥。”王勇说。 /span /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 299px " src=" https://img1.17img.cn/17img/images/201909/uepic/a39f3b22-860e-4d0a-8ed1-fe370db5bcc3.jpg" title=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" alt=" 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”.PNG" width=" 450" height=" 299" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " strong 在电子显微镜下可以看到,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿” /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 如何破解中毒难题?科学家在电子显微镜的“烟囱”里,继续探索催化剂“解毒”的过程。他们发现,当氨气经过中毒的催化剂表面,沉积在氧化铈表面的硫酸盐凸起渐渐“消肿”了,“这是催化剂的‘解毒’的过程。”杨杭生说,“‘消肿’后的催化剂,可以恢复催化能力。”“氨气本来是参与SCR催化反应的气体,通过原位电镜研究,我们意外的发现在合适的实验条件下氧化铈可以实现硫酸盐的沉积与分解的动态平衡,这个信息对我们“解毒”至关重要。”王勇补充说。 /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 16px " img style=" max-width: 100% max-height: 100% width: 450px height: 393px " src=" https://img1.17img.cn/17img/images/201909/uepic/5b16ca19-0219-41c7-ac0e-99e84cd079d3.jpg" title=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" alt=" 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡.png" width=" 450" height=" 393" border=" 0" vspace=" 0" / /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 反应循环的建立确保硫酸盐的沉积与分解达到动态平衡 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" text-indent: 2em " 算——“白马”“黑马”最佳配比 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在脱硝催化剂领域,氧化锰是催化性能优异的“白马”,而氧化铈是表现一般的“黑马”。但是,“白马”容易受到二氧化硫的干扰,一遇到二氧化硫,其性能就直线下降。氧化铈虽然催化效力差氧化锰很远,但它自带的“解毒”本领,让科学家看到了它的潜力。王勇说,氧化铈能让硫酸盐的沉积与转化实现动态的平衡,这是其“解毒”机制的核心。“下一步是希望怎样把两者的优点结合,扬长避短。” /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 根据电子显微镜提供的信息,理论计算科学家通过第一性原理模拟,试图去寻找“白马”与“黑马”的最佳配比方案。这种复合催化剂的思路,该研究团队并不是第一个想到的。但他们发现,常见的混合方法容易在催化剂表面形成硫酸(氢)铵网络结构,导致氮氧化物和氨气分子无法靠近锰离子并与之发生反应,造成催化剂活性下降。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 334px " src=" https://img1.17img.cn/17img/images/201909/uepic/ebd9855f-f73c-48d5-8d08-f935b9636cba.jpg" title=" 理论计算理解位阻效应.png" alt=" 理论计算理解位阻效应.png" width=" 450" height=" 334" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 理论计算理解位阻效应 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “通过原位环境透射技术的观察和第一理论计算,我们得到了一种全新的设计方案。”王勇介绍,这是一种新型的氧化铈、氧化锰复合催化剂,两者以全新的方式混合,形成一定的微观结构。“氧化锰颗粒形成团簇,分布于棒状的氧化铈晶体上,氧化锰团簇的尺寸在1纳米左右。”杨杭生补充道:“这些都是通过精密的理论计算得出的。” /span /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " 测 /span /strong /span span style=" color: rgb(0, 112, 192) " strong span style=" font-size: 16px " —— /span span style=" text-indent: 2em " 1000小时耐力测试 /span /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 新型的催化剂的“减排”能力究竟如何?需要有接近工业现场的实验验证。研究团队在实验室构建了一个仿真的烟气处理装置,新型催化剂在进行真实场景的考验。 /span /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 450px height: 193px " src=" https://img1.17img.cn/17img/images/201909/uepic/f0dad4cd-8d6c-4218-9ef4-2826072f4f45.jpg" title=" 持续稳定的抗中毒性能.png" alt=" 持续稳定的抗中毒性能.png" width=" 450" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 0em " strong span style=" font-size: 16px " 持续稳定的抗中毒性能 /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " 在“起跑”的最初几个小时,传统的氧化锰催化剂与新型催化剂齐头并进,共同处于催化能力的高位。但不到24小时,氧化锰的催化能力锐减,迅速跌破“黑马”氧化铈的能力线。而新型催化剂则一路“笑到最后”,实验持续进行了1000小时,其能力线一直平稳的处于高位。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 16px " “可以说,这种催化剂达到了准工业级的应用要求。”杨杭生说,这一氧化铈氧化锰的复合催化剂,解决了低温尾气持续高效净化的难题。在此之前,科学界曾尝试用添加“牺牲剂”的方法去消除二氧化硫的干扰,但王勇认为,牺牲剂虽然在短时间内能消除二氧化硫,但需要不断补充添加才能得以实现“抗毒”效果,否则将很快中毒失效,因此应用于工业现场并不现实。“我们的方法是既维持了硫酸盐的沉积与转化的动态平衡,又保持了催化剂的高效催化。” /span /p
  • “紫砂门”:美的出尔反尔 设置退款条件限制
    近日,美的“紫砂门”事件备受关注,而其出尔反尔,对退款条件的限制再次引发消费者的强烈质疑。 5月30日,美的客服人员仍声称自己的产品“无毒害”,纯属“宣传不当”,并对退货附加了“购买一年之内才能退货”的新条件。   据了解,自美的紫砂煲被央视曝出内胆用普通陶土,添加铁红粉、二氧化锰等化学原料增色,而非真正的紫砂做成后,广东美的生活电器制造有限公司承诺,设立咨询电话接受消费者退货。不过,美的紫砂煲却被曝出,退货要收折旧费,也没有具体退换货细则。   紧接着,美的生活电器总裁通过央视新闻频道承诺,无条件退换货,且“无发票也能退货”。令消费者大跌眼镜的是,美的方面又发生变卦表示“无发票不能退货”。   然而,5月30日,美的客服人员却表示,购买美的紫砂煲的消费者如果要退货,应保证购买日期在一年之内,并需要带上正规发票或电脑小票和身份证,拿到经销商或者所购买的门店办理退货。如果不符合上述要求,可将紫砂煲送到该公司的维修部门。该人员还表示,在对美的紫砂煲的宣传中,外界一些“不当”的报道将“普通砂煲”说成“天然紫砂”,给消费者造成误解。但当记者表示其锅上明明写的就是紫砂时,该人员含糊其辞,没有作答。   为此,吴冬律师表示,美的宣称产品是“纯正紫砂烧制”的,已属于虚假宣传,并且造假售假,侵犯了消费者的合法权益,消费者不但可以要求退货,还有权要求全额退款。根据《消费者权益保护法》第49条,生产厂家应对产品进行退货处理,并对消费者进行双倍赔偿。即“假一赔双”。而根据第35条和第38条的规定,如果只是产品质量问题,消费者只能以违约为由起诉销售者,不能起诉生产厂家;如果因为产品存在缺陷损害了消费者以及其他任何人的人身、财产,则可以以侵权为由起诉销售者或者生产厂家。   “从某个角度看,这类现象的发生也反映出监管的缺失。”吴冬律师说,餐具的质量安全比食品更容易把控,相关部门应建立一套完整的检测指标,完善相关的行业制度,加强监管,避免造成更严重的后果。
  • 部分扣式电池进出口将实施汞含量专项检测
    进出口锌-氧化银、锌-空气、锌-二氧化锰扣式电池(下称扣式电池)将于7月1日起实施汞含量专项检测。   此前,进出口扣式电池尚无汞含量限值国家标准,因此暂不实施汞含量检测,但必须办理备案手续。2009年9月30日,国家质检总局和国家标准委联合发布《锌-氧化银、锌-空气、锌-二氧化锰扣式电池中汞含量的限制要求》,该标准将于2010年7月1日实施,含汞量小于等于0.005毫克每克属于无汞电池,含汞量小于等于20毫克每克属于含汞电池,超出此标准限值属于不合格电池。   根据《进出口电池产品汞含量检验管理办法》规定:检验检疫机构对进出口电池产品实行备案和汞含量专项检测制度,未经备案或汞含量检测不合格的电池产品,不准进口或出口。
  • 349项国家标准公开征求意见
    349项推荐性国家标准(征求意见稿)序号计划号项目名称制修订截止日期120202567-T-607精油 产品标签标识通则制订2022/2/8220202659-T-607玫瑰精油(大马士革)制订2022/2/8320203837-T-607日用香精修订2022/2/8420200694-T-605锰铁、锰硅合金、氮化锰铁和金属锰 锰含量的测定 电位滴定法、硝酸铵氧化滴定法及高氯酸氧化滴定法修订2022/2/7520200693-T-605锰铁、锰硅合金、氮化锰铁和金属锰 硫含量的测定 红外线吸收法和燃烧中和滴定法修订2022/2/7620190733-T-605锰铁、锰硅合金、氮化锰铁和金属锰 磷含量的测定 钼蓝分光光度法和铋磷钼蓝分光光度法修订2022/2/7720211117-T-312疑似毒品中甲基苯丙胺检验 气相色谱、气相色谱-质谱、液相色谱和液相色谱-质谱法修订2022/2/7820180749-T-604用户端能源管理系统 第3-2部分:子系统接口网关 数据配置制订2022/2/6920193073-T-604用户端能源管理系统 第4部分:主站与网关信息交互规范制订2022/2/61020210900-T-469热交换器及传热元件性能测试方法 第1部分:通用要求修订2022/2/61120204897-T-469板式热交换器机组修订2022/2/61220204035-T-306科技资源核心元数据修订2022/2/61320210901-T-469热交换器及传热元件性能测试方法 第2部分:热交换器修订2022/2/61420210899-T-469热交换器及传热元件性能测试方法 第4部分:空冷器噪声测定修订2022/2/61520210902-T-469热交换器及传热元件性能测试方法 第3部分:传热元件修订2022/2/61620193187-T-469基于工业云平台的个性化定制实施规范制订2022/2/51720192136-T-469信息技术 云计算 云资源管理系统性能测试指标和度量方法制订2022/2/51820201805-T-348挖泥船离心式泥泵制订2022/2/51920201472-T-604小型熔断器 第8部分:带有特殊过电流保护的熔断电阻制订2022/2/52020201550-T-801载人航天术语制订2022/2/52120204924-T-469工业云服务 知识库接入与管理要求制订2022/2/52220204926-T-469工业云服务 资源配置要求制订2022/2/52320210944-T-469国际贸易单证样式 第1部分:纸质单证修订2022/2/52420194234-T-469政府网站网页电子文件管理系统建设规范制订2022/2/52520203870-T-604数控机床远程运维 第1部分:通用要求制订2022/2/52620213055-T-604智能工厂 面向柔性制造的自动化系统 通用要求制订包装容器 金属方桶修订2022/2/5
  • 544项推荐性国家标准公布 涉ICP、气相、离子色谱法等
    近日,中国国家标准化管理委员会公布《2022年第21号中国国家标准公告》,共544项推荐性国家标准和4项国家标准修改单。本次公布的中国国家标准涉及化工、材料、临床检测、化学、化工、环境、植物、食品等各个领域,检测方法涉及滴定法、红外吸收法、等离子体原子发射光谱法、γ能谱分析、辉光放电质谱法、气相色谱法、细胞计数法、透射电镜、二次离子质谱法、离子色谱法等。以下是部分与科学仪器及分析检测相关的标准:  纺织品 定量化学分析 第4部分:某些蛋白质纤维与某些其他纤维的混合物(次氯酸盐法),  炭黑 第29部分:溶剂可萃取物的测定,  锰铁、锰硅合金、氮化锰铁和金属锰 硫含量的测定 红外线吸收法和燃烧中和滴定法,  饲料中粗纤维的含量测定,  金精矿化学分析方法 第7部分:铁量的测定,  金精矿化学分析方法 第8部分:铁量的测定,  稀土金属及其氧化物中非稀土杂质化学分析方法 第1部分:碳、硫量的测定 高频-红外吸收法,  表面活性剂 工业烷烃磺酸盐 总烷烃磺酸盐含量的测定,  锆及锆合金化学分析方法 第26部分:合金及杂质元素的测定 电感耦合等离子体原子发射光谱法,  环境及生物样品中放射性核素的γ能谱分析方法,  塑料 差示扫描量热法(DSC) 第5部分: 特征反应曲线温度、时间,  反应焓和转化率的测定,  金矿石化学分析方法 第7部分:铁量的测定,  金矿石化学分析方法 第8部分:硫量的测定,  皮革和毛皮 化学试验 游离脂肪酸的测定,  纺织品 非织造布试验方法 第102部分:拉伸弹性的测定,  稀土铁合金化学分析方法 第1部分:稀土总量的测定,  稀土铁合金化学分析方法 第2部分:稀土杂质含量的测定 电感耦合等离子体发射光谱法,  稀土铁合金化学分析方法 第3部分:钙、镁、铝、镍、锰量的测 定 电感耦合等离子体发射光谱法,  稀土铁合金化学分析方法 第4部分:铁量的测定 重铬酸钾滴定法,  稀土铁合金化学分析方法 第5部分:氧含量的测定 脉冲-红外吸收法,  塑料 动态力学性能的测定 第11部分: 玻璃化转变温度,  金属锗化学分析方法 第3部分:痕量杂质元素的测定 辉光放电质谱法,  直接还原铁 金属铁含量的测定 溴-甲醇滴定法,  硫化橡胶或热塑性橡胶 硬度的测定 第7部分:邵氏硬度法测定胶辊的表观硬度,  硫化橡胶或热塑性橡胶 硬度的测定 第8部分:赵氏硬度(P&J)法测定胶辊的表观硬度,  塑料 环氧树脂 差示扫描量热法(DSC)测定交联环氧树脂交联度,  橡胶中镁含量的测定 原子吸收光谱法  生胶和硫化胶 用电感耦合等离子体发射光谱仪(ICP-OES)测定金属含量  橡胶 全硫含量的测定 离子色谱法  颗粒 激光粒度分析仪 技术要求  色漆和清漆 涂料中水分含量的测定 气相色谱法  摄影 冲洗废液 氨态氮含量的测定 (微扩散法)  摄影 冲洗废液 氨态氮总含量的测定 (微扩散凯氏氮法)  生物技术 细胞计数 第1部分:细胞计数方法通则  生物技术 核酸靶序列定量方法的性能评价要求 qPCR法和dPCR法  分子体外诊断检验 冷冻组织检验前过程的规范 第1部分:分离RNA  分子体外诊断检验 冷冻组织检验前过程的规范 第2部分:分离蛋白质  农产品中生氰糖苷的测定 液相色谱-串联质谱法  木薯叶片中黄酮醇的测定 高效液相色谱法  生橡胶 毛细管气相色谱测定残留单体和其他挥发性低分子量化合物 热脱附(动态顶空)法  皮革 化学试验 热老化条件下六价铬含量的测定  皮革 色牢度试验 耐汗渍色牢度  海洋石油勘探开发钻井泥浆和钻屑中铜、铅、锌、镉、铬的测定 微波消解-电感耦合等离子体质谱法  纳米技术 多相体系中纳米颗粒粒径测量 透射电镜图像法  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第1部分:分离RNA  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第2部分:分离蛋白质  分子体外诊断检验 福尔马林固定及石蜡包埋组织检验前过程的规范 第3部分:分离DNA  纺织品 色牢度试验 耐摩擦色牢度 Gakushin法  表面活性剂 环氧丙烷聚合型表面活性剂中游离环氧丙烷的测定 气相色谱法  纳米技术 石墨烯粉体中金属杂质的测定 电感耦合等离子体质谱法  纳米技术 [60]/[70]富勒烯纯度的测定 高效液相色谱法  土壤、水系沉积物 碘、溴含量的测定 半熔-电感耦合等离子体质谱法  铬铒共掺钇钪镓石榴石晶体光学及激光性能测量方法  金属及其他无机覆盖层 热障涂层耐热循环与热冲击性能测试方法  金属及其他无机覆盖层 温度梯度下热障涂层热循环试验方法  锆化合物化学分析方法 钙、铪、钛、钠、铁、铬、镉、锌、锰、铜、镍、铅含量的测定 电感耦合等离子体原子发射光谱法  氮化铝材料中痕量元素(镁、镓)含量及分布的测定 二次离子质谱法  硬质合金 总碳量的测定 高频燃烧红外吸收法/热导法  氮化硅粉体中氟离子和氯离子含量的测定 离子色谱法  硫化橡胶 热拉伸应力的测定
  • 又一批行业标准报批公示 这些有变化
    p   7月23日,工信部发布行业标准修改单报批公示,此次涉及电子、化工、冶金、有色、纺织、石化领域。 /p p   具体来说包括:《品牌培育管理体系实施指南 电子信息行业》等6项电子行业标准、《合成氨行业绿色工厂评价导则》等3项化工行业标准、《钢渣集料混合料路面基层施工技术规程》等13项冶金行业标准、《岩土工程勘察报告编制规程》等11项有色行业标准、《涂层织物 低温耐折性能试验方法》等48项纺织行业标准和《石油化工钢制管法兰》1项石化行业标准修改单。 /p p   其中,有多项涉及检测: /p p & nbsp /p table cellspacing=" 0" cellpadding=" 0" width=" 600" border=" 1" uetable=" null" tbody tr class=" firstRow" td width=" 83" p style=" TEXT-ALIGN: center" strong 标准编号 /strong /p /td td width=" 104" p style=" TEXT-ALIGN: center" strong 标准名称 /strong /p /td td width=" 258" p style=" TEXT-ALIGN: center" strong 标准主要内容 /strong /p /td td width=" 75" p style=" TEXT-ALIGN: center" strong 代替标准 /strong /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4708-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了火焰原子吸收光谱法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4709-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化锰含量的测定& nbsp 高碘酸钾(钠) 分光光度法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了高碘酸钾(钠)分光光度法测定氧化锰含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化锰含量的测定,测定范围(质量分数):0.50%~10.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4710-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化亚铁含量的测定& nbsp 重铬酸钾滴定法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了重铬酸钾滴定法测定氧化亚铁含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化亚铁含量的测定,测定范围(质量分数):2.00%~20.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4711-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 钢渣& nbsp 氧化钾和氧化钠含量的测定 火焰原子吸收光谱法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了采用火焰原子吸收光谱法测定氧化钾和氧化钠含量。 br/ & nbsp & nbsp & nbsp 本标准适用于钢渣中氧化钾和氧化钠含量的测定,测定范围:氧化钾0.02%~0.10%。(质量分数);氧化钠0.02%~0.10%(质量分数)。 /p /td td width=" 75" p style=" TEXT-ALIGN: center" YB/T 140-2009中部分 /p /td /tr tr td width=" 83" p style=" TEXT-ALIGN: center" YB/T 4716-2018 /p /td td width=" 104" p style=" TEXT-ALIGN: center" 轧钢铁鳞& nbsp 含水量和含油量的测定 热重法 /p /td td width=" 258" p style=" TEXT-ALIGN: center" & nbsp & nbsp & nbsp 本标准规定了热重法测定轧钢铁磷含水量和含油量的原理、仪器和设备、取样、分析步骤、分析结果的计算等。 br/ & nbsp & nbsp & nbsp 本标准适用于轧钢铁鳞含水量和含油量的测定。含水量测定范围(质量分数):0.50%~45.00%;干基含油量测定范围(质量分数):0.10%~30.00%。 /p /td td width=" 75" p style=" TEXT-ALIGN: center"   /p /td /tr /tbody /table p & nbsp /p p   附件: /p p   a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269672.doc" target=" _blank"  1.81项行业标准主要内容.doc /a /p p    a title=" " href=" http://www.miit.gov.cn/n1146285/n1146352/n3054355/n3057497/n3057502/c6269664/part/6269673.doc" target=" _blank" 2.1项石化行业标准修改单.doc /a /p p & nbsp /p
  • 苏泊尔承认炊具锰含量超2%
    其一款样品的锰含量达到了7.92% 但锰含量2%是否“硬指标”尚有争议   昨日,记者从苏泊尔公司了解到,苏泊尔在“问题锅”危机出现之后,已连发5篇文章自证清白。不过记者从苏泊尔的检测报告中发现,苏泊尔一款样品的化学成分中,锰含量达到了7.92%,超过了2%的标准。苏泊尔相关负责人在接受本报记者采访时回应指出,国家就不锈钢材质尚未制定强制性标准,目前同时存在的都是两个推荐性标准,即GB/T3280和GB/T20878,“既然是推荐性标准,2%是硬指标一说就不成立,并且这两个标准对锰含量规定的上限均不是2%。”苏泊尔强调。   苏泊尔“问题锅”发展到现在,双方纠结在一个问题,那就是炊具的锰含量是否可以超过2%。以中国特钢协会不锈钢分会为代表的一派坚持认为,不锈钢材料中锰含量不能高于2%,“不锈钢加入高比例的锰之后,容易导致点蚀,成为腐蚀源,这种腐蚀源会让硫化锰进入容器中的食品或液体中”,而硫化锰是一种有毒物质。这种说法在媒体中得到了广泛的报道。   而在苏泊尔最新挂出的“自证清白”的10份检测报告中,记者留意到,其中一份样品规格为“ST22K1/ST16K1”的检测报告,该报告不仅对铬、镍、锰的特殊迁移量进行检测,还对样品化学成分进行分析。其中成分分析中,锰含量7.92%、铬含量15.37%、镍含量3.97%。   这是苏泊尔首次对自家产品的锰含量进行披露。苏泊尔有如此“胆量”主动亮出自己的锰含量,在于其对“2%是硬指标”的不同看法。苏泊尔相关负责人昨日对本报记者指出,锰含量上限为2%的依据是GB/T3280,这个标准是国家推荐的行业标准。苏泊尔方面强调关于不锈钢炊具产品应当使用何种成分的钢材,卫生部在2011年12月21日前后采用了不同的强制性标准,苏泊尔相关产品均符合国家强制标准。   苏泊尔还指出,“不锈钢材质中锰含量与锰析出量是两个截然不同的概念,两者之间不存在简单的正比关系” “目前我国未对不锈钢制品锰迁移量作出限定”。   锰的毒性仅是砒霜的九百分之一   锰含量过高是否意味着不安全?为此,记者采访了国际第三方检测认证机构SGS通标公司轻工产品实验室技术专家朱慧君,他表示,锰含量成分比例需符合国家相关标准,但国家并没有一个明确的锰迁移量安全指标。   他还指出,在钢材成分要求上,国内标准与国外是基本一致的。   但朱慧君也说,不锈钢锰含量过高,未必等于锰迁移量过高,也不能下结论说产品不安全。国家也明确锰迁移量限值,国外也只有意大利对锰迁移量做出限制。朱慧君进一步指出,锰的急性毒性很低,仅是砒霜的九百分之一。直接暴露(比如采矿)带来的急性危害主要是头痛、头晕等。而锰的迁移则会带来积累性危害,国际机构将锰列为“可疑致癌物”,说明积累到一定程度会可能致癌,但积累的程度是多少则还没有数据。
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxeneCoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growthand Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal ofCrystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 煤中碳氢氮含量检测标准方法比对
    目前,市场上关于煤中煤中碳氢氮含量检测的标准方法,主要采用《GBT476-2008 煤中碳和氢的测定方法》和《GBT30733---2014煤中碳氢氮的测定仪器法》,二者分别有何优劣,今天就让小编来给大家做一个全面的比对。1.测试原理《GBT476-2008 煤中碳和氢的测定方法》:采用俗称的二节炉或三节炉,通过吸收剂将煤中碳元素燃烧产生的二氧化碳吸收、氢元素燃烧产生的水蒸气吸收,由吸收剂的增量来确定煤中碳元素的含量。《GBT30733---2014 煤中碳氢氮的测定仪器法》:采用红外光谱法和热导法,煤样完全燃烧后,煤中碳元素转化为二氧化碳、氢元素转化为水蒸气、氮元素转化为氮氧化物,燃烧后的气体根据朗伯-比尔定律(不同气体在红外区有不同的吸收波段,而在特定波段,气体吸收红外光强与其浓度成一定的函数关系),计算得到被测煤样的碳氢元素含量。取一定量的气体进行还原后,进入热导池测试得到氮元素含量。2.自动化程度《GBT476-2008 煤中碳和氢的测定方法》:仪器主要包括净化系统、燃烧系统、吸收系统三大部分,每个系统均需在使用前填充试剂或其他材料,操作繁琐,若试剂或材料填充不好,将直接影响测试结果。测试结束后,需仔细、小心进行U型吸收管表面的干燥、擦拭及称量操作,稍有不慎,则会导致测试结果异常。从空白样测试(空白试验不成功则无法进行测试样的测定)、气体收集、冷却、称量到计算均需人工操作,过程繁琐、难度大,且测试结果的准确度无法保证。《GBT30733---2014 煤中碳氢氮的测定仪器法》:每次测试前开启计算机及仪器,点击升温后仪器自动恒温、控温,操作人员只需将当天需测试的所有煤样一次性称量好后放入放样盘即可(预留空白样测试孔位),录入空白样及测试样信息后,点击开始实验,仪器将自动完成所有样品的测试。3.主要试剂及材料《GBT476-2008 煤中碳和氢的测定方法》:铬酸铅(需用蒸馏水调成糊状,挤压成型,放入高温炉中,在850℃下灼烧2h,取出冷却备用)、银丝卷、高锰酸银、二氧化锰、无水高氯酸镁、铜丝卷、氧化铜、氧气、三氧化钨、碱石棉、真空硅脂、硫酸等。三节炉:需用铬酸铅和银丝卷消除硫和氯对碳测定的影响;二节炉:需用高锰酸银热解产物消除硫和氯对碳测定的影响;三节炉/二节炉:需用粒状二氧化锰消除氮对碳的测定的影响。《GBT30733---2014 煤中碳氢氮的测定仪器法》:氧气、氮气、氦气、氧化钙、无水高氯酸镁、碱石棉、线状铜、铜线、氮催化剂。4.测试时间《GBT476-2008 煤中碳和氢的测定方法》: 约30min/个《GBT30733---2014 煤中碳氢氮的测定仪器法》:约5min/个5.测试示意图《GBT476-2008 煤中碳和氢的测定方法》: 三节炉和二节炉碳氢测定示意图《GBT30733---2014 煤中碳氢氮的测定仪器法》:三德科技SDCHN536碳氢氮元素分析仪测试气路示意图结论《GBT30733---2014煤中碳氢氮的测定仪器法》与《GBT476-2008 煤中碳和氢的测定方法》相比,具备以下显著优势:01自动化程度高,操作步骤简单;02所需试剂及材料种类少;03测试速度快。《GBT30733---2014煤中碳氢氮的测定仪器法》是煤中碳元素测定的优选方法。
  • 中国科大提出纳米胶束电解质新思路并用于高性能水系锌锰二次电池
    近日,中国科学技术大学闫立峰教授课题组通过利用两亲性甲基脲分子,设计了一种新型结构的水基纳米胶束电解质。这一工作打破了以往对于电解质连续溶剂相的认识,通过纳米胶束结构包裹了自由移动的离子,建立了局部/界面相互作用网络,通过金属离子的控制释放,有效地维持了离子的三维扩散形式和有利的界面成核反应,实现了金属枝晶和电极副反应的有效抑制。相关研究成果率先在锌-锰电池体系中得到了证实,并发表于化学专业知名期刊《美国化学会志》(Journal of the American Chemical Society)。   锌离子电池由于锌阳极的高理论比容量(820 mA h g-1)、高储量、成本低、氧化还原电位低(-0.762 V vs. SHE)等优势,被认为是下一代清洁能源存储的有前途的候选者。然而,锌离子电池的寿命受到锌阳极不可逆电化学反应的严重限制,如析氢反应(HER)、“死锌”的持续积累以及不受控制的枝晶生长等。同时,以二氧化锰为正极材料代表的一系列锌离子电池普遍具有低的工作电压(1.5 V)和难以匹配锌阳极的电极容量。如何通过电解质的设计优化来调控锌电池的电化学性能是至关重要的问题。   该文提出了一种独特的纳米胶束电解质设计思路,由ZnSO4、MnSO4和高浓度甲基脲(Mu)分子通过自组装策略构建,水溶剂环境被划分为亲水区和疏水区,阳离子和阴离子则被封装到纳米域中(图1)。纳米胶束阻断了连续的水基体相,打破了水分子之间氢键网络并在胶束内部和胶束/水界面上重构了局部氢键。此外,Mu分子参与了Zn2+/Mn2+离子的溶剂鞘结构,排斥了溶剂化水分子,降低了脱溶剂化能垒,抑制了水分解反应。更重要的是,Zn2+/Mn2+离子可以可控地从胶束团簇中释放出来,以三维扩散方式扩散并在电极表面均匀沉积。此外,在锌阳极表面一种新的固体电解质界面(SEI)保护层Znx(Mu)ySO4∙nH2O得以原位生成,以避免水分子持续渗入造成的锌腐蚀。 图1.胶束电解质的自组装示意图   动态光散射结果表明电解质A3Mu中存在约14nm左右的纳米胶束,核磁结果证实了胶束内部的多重氢键相互作用,DFT计算结果也表明Zn2+/Mn2+和Mu分子上的羰基和具有更强的结合能力,进而有利于进入到胶束内核中,减少溶剂鞘结构中的水分子数(图2)。此外,红外,拉曼光谱结果也识别到了SO42-阴离子扭曲的正四面体结构,可能是由于胶束内部拥挤的空间和电荷-偶极相互作用造成的,这些结果表明了胶束电解质的成功构建。 图2.胶束电解质的核磁,红外,拉曼以及结合能计算表征   得益于胶束电解质内部氢键的重构,电解质和碳布正极界面接触角降低,MnO2/Mn2+成核电位降低,同时由于Mn2+的控制释放特性,生成了反应可逆性更高,结构更加疏松的二氧化锰颗粒。在不同SOC状态下,非原位SEM,XPS,Raman, XRD等测试方法核实了高度可逆的二电子转化反应。利用二电子反应的锌锰电池显示出前所未有的高能量密度800.4 Wh kg-1(基于正极活性材料)以及高达1.87 V的放电电压(图3)。 图3.Zn||Mn 电池的电化学性能   中国科学技术大学化学与材料科学学院博士生邓永琦为该文章的第一作者,闫立峰教授为通讯作者。该研究得到了科技部、国家自然科学基金和中国科学技术大学的经费资助。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 格林凯瑞在高锰酸盐指数检测中的突破性进展
    导读:目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,但线性关系仅达到0.9987。格林凯瑞对高锰酸盐指数试剂又开启了新一轮研发,线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987。  高锰酸盐指数(CODMn)的检测主要应用于生活饮用水、地表水、河流断面、水库、湖泊水质的水质情况,在我国“十四五”生态环境监测规划、“三河三湖”流域“十五”水污染防治、农村环境保护和重点流域水污染防治专项规划中,高锰酸盐指数是衡量水质污染程度的重要综合指标之一。   目前国标的检测方法为GB 11892-1989采用酸性高锰酸钾氧化,沸水浴加热,滴定检测。该方法的准确度与高锰酸钾标准溶液浓度、样品加热时间、样品反应温度、酸度、滴定速度等因素有关,并且试验所要求的用水也有一定的要求,整个实验检测周期长,操作较为繁琐。   随着社会快节奏的发展,生产生活的需求对检测结果的时效性提出了更高的要求,市场迫切需要简单、快速、准确、更少产生二次污染的检测方法,那么实验检测中采用分光光度法测定高锰酸盐指数便成为快速检测的主流方式。   光度法检测高锰酸盐指数,   国内主流的3种检测方式如下   1、依靠高锰酸钾氧化,亚铁间接检测法。   2、依靠高锰酸钾氧化,碘化钾检测法。   3、依靠高锰酸钾氧化,直接光度法。   依据相关学术报告研究和格林凯瑞实验室测试,在严格控制实验检测反应条件的方式下,我们对主流的3种方法做了大量重复性测试,但无法达到一个较好的重复稳定性,zui高达到R²=0.9987,这个线性关系,勉强满足于快速检测需求,但准确度不佳,与国标滴定法相比,仍有较大的差距。   三种常规检测方法测试结果如下   实验原理:   基于GB/T 5750.7-2006中耗氧量的检测   标液:   葡萄糖溶液(外采)深究其原因可能为:   1、酸性高锰酸钾对有机物的氧化率不稳定。   2、酸性高锰酸钾氧化有机物后还有其他副反应,这也是导致光度法检测高锰酸盐指数不稳定的主要因素。   高锰酸钾在酸性溶液中,高锰酸钾理论上发生的反应是+7价的锰被还原为+2价的锰。   MnO4-+8H++5e-=Mn2++4H20   但是在实际测试过程中发现,水浴消解完毕后,反应液常常伴随着略带褐色的浑浊现象,测试时浓度与吸光度线性检测异常,毫无线性关系,且高锰酸盐指数越高,消解后的反应液越浑浊,经过处理后,反应液呈现为正常的高锰酸钾溶液的颜色,浓度与吸光度线性关系也达到了0.9987,通过分析得知,呈现这一现象的原因可能是高锰酸钾有副反应发生,+7价的锰被还原为+2价的锰以后,过量的+7价的锰和+2价锰发生归中反应,生成难溶于水的二氧化锰(+4价锰)。   2MnO4-+3Mn2++2H20=5MnO2+4H+   由此分析可知,高锰酸盐指数酸性光度法测定重复稳定性不佳且线性关系仅达到0.9987的根本原因。且采用亚铁,亚硝酸盐等其他还原方法间接检测均未有显著改善,未能解决根本问题。   那么需要让检测稳定,就必须减少高锰酸钾反应的副反应,让高锰酸钾尽可能地定向转化。   找到问题的关键所在,我们对高锰酸盐指数试剂又开启了新一轮研发。最终结果如下:  结论   其中还有少量不溶于水的二氧化锰影响检测结果,经过处理后,吸光度和高锰酸盐指数浓度形成较好的线性关系,由此可忽略副反应消耗的高锰酸钾,不影响最终结果的检测。线性关系可达 R²=0.9995,显著优于市场主流的3种光度法的线性关系 R²=0.9987,检测结果与国标滴定法无显著差异。  政策   目前新研发高锰酸盐指数检测试剂已同步上市,已采购格林凯瑞公司产品的用户,若检测项目中包含高锰酸盐指数检测指标,通过400电话预约后可将设备邮寄格林凯瑞总部,我们免费向老用户提供高锰酸盐指数试剂的曲线标定及维护服务。   产品已申请专利保护,友商可通过官方渠道获取技术支持与合作。
  • 第七届科学仪器网络原创作品大奖赛7月作品推荐
    第七届科学仪器网络原创作品大奖赛(以下简称:原创大赛)7月1日火热开赛,开赛以来大赛受到全国各地网友、科学仪器行业工作者地积极响应与热情参与,截至目前共征集到170余篇参赛作品,其中也涌现出很多优秀的原创作品(7月获奖作品见下表)。此外,本届原创大赛还首次运用微信平台对原创文章进行了分享,7月期间共推送了9篇文章,浏览量近9000次,转发量近200次(推送文章见下表)。   微信端文章推送 文章标题 阅读量 转发量 Agilent7683B系列百位盘传送皮带更换过程图解 732 18 气相色谱-串联质谱法检测黑枸杞和蓝莓中多农药残留量 1028 26 小小肉虫竟有如此精致&ldquo 毒箭&rdquo 1092 23 几招让老旧DSQII气质联用仪重获新生 1366 12 拆解PHS-3C酸度计,手把手教你排除随机数显故障 1597 62 饲料国标测雀巢全脂奶粉中铁,能信不? 600 6 图解如何救赎被判&ldquo 死刑&rdquo 的进样针 1079 11 用数据告诉你一个真实的CE研究现状 446 15 你的手机屏幕够硬吗?耐不耐刮? 954 11 7月份原创大赛获奖作品公示 文章题目 作者 奖项 图解如何救赎被判&ldquo 死刑&rdquo 的进样针 anping 一等奖 气相色谱-串联质谱法检测黑枸杞和蓝莓中多农药残留量 wakinqian 一等奖柱后光化学衍生-高效液相测定大米中5种拟除虫菊酯类农药残 bingwang228 一等奖 香精香料样品GCMS数据处理实例 jimzhu 一等奖 Agilent7683B系列百位盘传送皮带更换过程图解 ethanxu 一等奖 几招让老旧DSQII气质联用仪重获新生 v2886868 一等奖 ARL3460直读光谱仪透镜的维护与保养 wccd 二等奖 再遇ICP切割气故障 ljhciq 二等奖 基于HACH比色盘的酚类化合物废水现场快速分析 54943110 二等奖 C18色谱柱测试方法及汇总评价报告 zrtt 二等奖 如何完全分离4种菊酯类农药? zyl3367898 二等奖 气相色谱法分析花生油,山茶油,橄榄油等食用油中的脂肪酸组成 nphfm2009 二等奖 食品中草甘膦、草铵膦、氨甲基膦酸残留量检测方法 v2807696 二等奖 液相色谱串联质谱测定草鱼中的孔雀石绿及其代谢物 sukiliang 二等奖 借鉴与改进,谈硫化锰中锰含量测定 denx5201314 二等奖 拆解PHS-3C酸度计,手把手教你排除随机数显故障 sc360xp 二等奖 你的手机屏幕够硬吗?耐不耐刮? unht 三等奖 小小肉虫竟有如此精致&ldquo 毒箭&rdquo asahi42 三等奖 内标法在矿物检测中的应用 abcpgf 三等奖 饲料国标测雀巢全脂奶粉中铁,能信不? fengxueyixiao 三等奖 耗时60天的辛苦却没有换来一份收获 gzlk650 三等奖 纯水惹得祸? v2826867 三等奖 HPLC法测定当归四逆汤合煎液与单煎合并液中阿魏酸和芍药苷含量 labin 三等奖液相色谱分析重要指标之一&mdash &mdash 理论塔板数 houjjun 三等奖 用数据告诉你一个真实的CE研究现状 nini2006 三等奖 实例说明,整理资料时,一二三的重要性 fengmo4668 三等奖 陶瓷中铅镉重金属溶出量测量审核的历程 999youran 三等奖 能力验证的三重门-硅铁测量审核变形记 denx5201314 三等奖 白酒中乙酸乙酯内标法与外标法的比较 zftxy2001 三等奖 原子荧光法测定食品中铅的方法研究 huangza 三等奖 一次失败的试验&mdash &mdash 蔬菜中有机磷的测定 zyl3367898 三等奖 GCMS定量离子的选择 byron1111 三等奖 领你看看氢气发生器的内部构造&mdash &mdash 一次渗水引发的拆机事件 yuanrui82 三等奖   本届原创大赛设有12个分赛区,分别为:质谱、色谱、光谱及X射线、样品前处理、电镜、材料测试、食品检测、环境监测、药物分析、实验室建设及认可、仪器采购、综合类 征文类型涉及仪器维护维修、仪器使用经验、图谱解析、分析方法开发与应用、实验室管理方法与建设、仪器选型、采购交流等多个方面。欢迎更多的网友们加入进来,分享您的经验与心得。大赛每月各赛区会评选出月度获奖作品,大赛结束后将从所有参赛作品中评选出年度优秀作品,并发放证书与礼品进行奖励!   大赛在举办过程中也受到了业内各厂商的关注与支持,同期举办各类活动也为大赛增添了更多乐趣。目前正在进行的同期活动有:   活动一:哈希与您携手参加第七届原创大赛 赢取双重奖励!   活动二:岛津原吸分析达人助力原创大赛,参与活动赢取双重大奖!   活动三:参与第七届原创大赛 &ldquo 国产好仪器&rdquo 专区得双重奖励!   仪器信息网第七届科学仪器网络原创文章大奖赛活动介绍:   为促进分析人员的技术交流,提高行业内仪器应用水平,第七届科学仪器网络原创作品大奖赛将于2014年7月1日正式拉开帷幕。本届大赛由仪器信息网与我要测网主办,每月评选月奖,月奖获得者将有机会参与年终大奖评选,赢取价值5000元大奖。另外,凡第一次参与原创大赛的网友还将100%获得原创首发红包!活动整体礼品总额更高达15万元,原创大赛精彩无限,期待您的参与!   活动网址:http://www.instrument.com.cn/activity/2014yc/   第七届科学仪器网络原创大赛由以下公司赞助举办,特此感谢(排名不分先后):   徕卡显微系统(上海)贸易有限公司   哈希公司(HACH)   岛津企业管理(中国)有限公司
  • 海关总署调整必须实施检验的进出口商品目录,6月10日起实施
    2021年6月1日,海关总署发布关于调整必须实施检验的进出口商品目录的公告(2021年第39号)。根据《中华人民共和国进出口商品检验法》及其实施条例,海关总署决定对必须实施检验的进出口商品目录进行调整,具体如下:一、对涉及机电产品、金属材料、化工品、仿真饰品等234个10位海关商品编号取消监管条件“A”,海关对相关商品不再实施进口商品检验。二、对涉及进口再生原料的8个10位海关商品编号增设监管条件“A”,海关对相关商品实施进口商品检验。三、对涉及出口钢坯、生铁的24个10位海关商品编号增设海关监管条件“B”,海关对相关商品实施出口商品检验。该公告自2021年6月10日起实施。必须实施检验的进出口商品目录调整表序号海关商品编号商品名称调整前监管条件调整后监管条件18417100000矿砂、金属的焙烧、熔化用炉A28417801000炼焦炉A38417802000放射性废物焚烧炉A48417803000水泥回转窑A58417804000石灰石分解炉A68417805000垃圾焚烧炉A78417809010平均温度1000℃的耐腐蚀焚烧炉A88417809020热裂解炉A98417809090其他非电热的工业用炉及烘箱A108419391000微空气流动陶瓷坯件干燥器A118419399020烟丝烘干机A128419399030干燥箱A138419399050污泥干燥机A148419399090其他用途的干燥器A158419409010氢-低温蒸馏塔A168419409020耐腐蚀蒸馏塔A178419409090其他蒸馏或精馏设备A188419500030冷却UF6的热交换器A198419500040冷却气体用热交换器A208419609010液化器A218419891000加氢反应器A228419899021凝华器(或冷阱)A238419899023UF6冷阱A248456110090其他用激光处理的机床A258456120000用其他光或光子束处理的机床A268456200000用超声波处理各种材料的加工机床A278456301010数控放电加工机床A288456301090其他数控的放电处理加工机床A298456309010非数控放电加工机床A308456309090其他非数控的放电处理加工机床A318456409000其他用等离子弧处理的机床A328456500000水射流切割机A338456900000其他方法处理材料的加工机床A348457101000立式加工金属的加工中心A358457102000卧式加工金属的加工中心A368457103000龙门式加工金属的加工中心A378457109100铣车复合加工中心A388457109900其他加工金属的加工中心A398457200000加工金属的单工位组合机床A408457300000加工金属的多工位组合机床A418458110090其他切削金属的卧式数控车床A428458190000切削金属的其他卧式车床A438458911090其他切削金属的立式数控车床A448458912090其他切削金属的数控车床A458458990000切削金属的其他车床A468459100000切削金属的直线移动式动力头钻床A478459210000切削金属的其他数控钻床A488459290000切削金属的其他钻床A498459310000切削金属的其他数控镗铣机床A508459390000切削金属的其他镗铣机床A518459410000切削金属的其他数控镗床A528459490000切削金属的其他镗床A538459510000切削金属的升降台式数控铣床A548459590000切削金属的其他升降台式铣床A558459611000切削金属的其他龙门数控铣床A568459619000切削金属的其他数控铣床A578459691000切削金属的其他龙门非数控铣床A588459699000切削金属的其他非数控铣床A598459700000切削金属的其他攻丝机床A608460121000加工金属的数控平面磨床A618460199000加工金属的其他非数控平面磨床A628460221000加工金属的数控无心磨床A638460229000加工金属的其他数控无心磨床A648460231100加工金属的数控曲轴磨床A658460231900加工金属的其他数控外圆磨床A668460239000加工金属的其他数控外圆磨床A678460241100加工金属的数控内圆磨床A688460241900加工金属的其他数控磨床A698460249000加工金属的其他数控磨床A708460291100加工金属的非数控外圆磨床A718460291200加工金属的非数控内圆磨床A728460291900加工金属的其他非数控磨床A738460299000加工金属的其他非数控磨床A748460310000加工金属的数控刃磨机床A758460390000加工金属的其他刃磨机床A768460401000金属珩磨机床A778460402000金属研磨机床A788460902000金属抛光机床A798460909000其他用磨石、磨料加工金属的机床A808461401100切削金属的数控齿轮磨床A818461401900切削金属的数控切齿机、数控齿轮精加工机床A828461409000切削金属的其他切齿机,齿轮磨床A838479600000蒸发式空气冷却器A848479710000机场用旅客登机桥A858517691001用于呼叫、提示和寻呼的便携式接收器A868521909010用于光盘生产的金属母盘生产设备A878521909020光盘型广播级录像机A888525801110抗辐射电视摄像机A898525801190其他特种用途电视摄像机A908525801200非特种用途广播级电视摄像机A918525803100特种用途视频摄录一体机A928525803200非特种用途的广播级视频摄录一体机A938525803300非特种用途的家用型视频摄录一体机A948525803910非特种用途的航拍摄录一体无人机A959022299090其他非医疗用α、β、γ射线设备A968506101110扣式无汞碱性锌锰的原电池及原电池组A978506101210圆柱形无汞碱性锌锰的原电池及原电池组A988506101910其他无汞碱性锌锰的原电池及原电池组A998506109010其他无汞二氧化锰的原电池及原电池组A1008506400010氧化银的原电池及原电池组(无汞)A1018506600010锌空气的原电池及原电池组(无汞)A1028506800011无汞燃料电池A1038506800019其他无汞原电池及原电池组A1048507100000启动活塞式发动机用铅酸蓄电池A1058507200000其他铅酸蓄电池A1068507300010飞机用镍镉蓄电池A1078507300090其他镍镉蓄电池A1088507400000镍铁蓄电池A1098507500000镍氢蓄电池A1108507600030飞机用锂离子蓄电池A1118507803000全钒液流电池A1128507809010燃料电池A1138507809090其他蓄电池A11472082610004.75mm厚≥3mm其他大强度热轧卷材A1157208269000其他4.75mm厚≥3mm热轧卷材A11672083810004.75mm厚度≥3mm的大强度卷材A1177208389000其他4.75mm厚度≥3mm的卷材A11872091610003mm厚度1mm的大强度冷轧卷材A11972091710001mm≥厚度≥0.5mm大强度冷轧卷材A1207211230000含碳量低于0.25%的冷轧板材A1217214200000铁或非合金钢的热加工条、杆A1227214300000易切削钢的热加工条、杆A1237214990000其他热加工条、杆A1247216101000截面高度<80mmH型钢A1257216102000截面高度<80mm工字钢A1267216109000截面高度<80mm槽钢A1277216210000截面高度<80mm角钢A1287216220000截面高度<80mm丁字钢A1297216310000截面高度≥80mm槽钢A1307216321000截面高度200mm工字钢A131721632900080mm≤截面高度≤200mm工字钢A1327216331100截面高度800mmH型钢A1337216331900200mm<截面高度≤800mmH型钢A134721633900080mm≤截面高度≤200mmH型钢A1357216401000截面高度≥80mm角钢A1367216402000截面高度≥80mm丁字钢A1377222400000不锈钢角材、型材及异型材A1387225110000取向性硅电钢宽板A1397225401000宽≥600mm热轧工具钢材A1407225409100宽≥600mm热轧含硼合金钢材A1417225991000宽≥600mm的高速钢制平板轧材A1427226110000取向性硅电钢窄板A1437226200000宽度<600mm的高速钢平板轧材A1447226911000宽度<600mm热轧工具钢材A1457226919100宽度<600mm热轧含硼合金钢板材A1467227100000高速钢的热轧盘条A1477227200000硅锰钢的热轧盘条A1487227901000不规则盘卷的含硼合金钢热轧条杆A1497228100000其他高速钢的条、杆A1507228200000其他硅锰钢的条、杆A1517228301000含硼合金钢热加工条、杆A1527228701000履带板合金型钢A1537228709000其他合金钢角材、型材及异型材A1547228800000其他合金钢空心钻钢A1557302100000钢轨A1567302300000道岔尖轨、辙叉、尖轨拉杆A1577302400000钢铁制鱼尾板、钢轨垫板A1587302901000钢铁轨枕A1597302909000其他铁道电车道铺轨用钢铁材料A1602842904000磷酸铁锂A1612933610000三聚氰胺(蜜胺)A16229337100006-己内酰胺A1632935900034磺胺双甲基嘧啶A1643104202000纯氯化钾A1657106101100平均粒径3微米非片状银粉A1667106101900平均粒径≥3微米非片状银粉A1677117110000贱金属制袖扣、饰扣A1687117190000其他贱金属制仿首饰A1697117900000未列名材料制仿首饰A1708517180010其他加密电话机A1718517180090其他电话机A1728517691091卫星地球站(含终端地球站)无线电发射设备A17385446012001千伏<额定电压≤35千伏的电缆A1742525300000云母废料A1752618001001主要含锰的冶炼钢铁产生的粒状熔渣,含锰量>25 %A1762618001090其他主要含锰的冶炼钢铁产生的粒状熔渣A1772618009000其他的冶炼钢铁产生的粒状熔渣A1782619000010轧钢产生的氧化皮A1792619000021冶炼钢铁所产生的含钒浮渣、熔渣,五氧化二钒含量>20%A1802619000029其他冶炼钢铁所产生的含钒浮渣、熔渣A1812619000030含铁大于80%的冶炼钢铁产生的渣钢铁A1822619000090冶炼钢铁产生的其他熔渣、浮渣及其他废料A1832620190000其他主要含锌的矿渣、矿灰及残渣A1842620999011含其他金属及其化合物的矿渣、矿灰及残渣,五氧化二钒>20%(冶炼钢铁所产生的及含钒废催化剂除外)A1852620999019含其他金属及其化合物的矿渣、矿灰及残渣,10%<五氧化二钒≤20%的(冶炼钢铁所产生的及含钒废催化剂除外)A1862620999020含铜大于10%的铜冶炼转炉渣及火法精炼渣、其他铜冶炼渣A1872804619011含硅量>99.9999999%的多晶硅废碎料A1882804619013含硅量>99.9999999%的太阳能级多晶硅废碎料A1892804619091其他含硅量≥99.99%的硅废碎料A1902804619093含硅量≥99.99%的太阳能级多晶硅废碎料A1913915100000乙烯聚合物的废碎料及下脚料A1923915200000苯乙烯聚合物的废碎料及下脚料A1933915300000氯乙烯聚合物的废碎料及下脚料A1943915901000聚对苯二甲酸乙二酯废碎料及下脚料A1953915909000其他塑料的废碎料及下脚料A1964004000090未硫化橡胶废碎料、下脚料及其粉、粒A1975202100000废棉纱线A1985505100000合成纤维废料A1995505200000人造纤维废料A2007112911010金的废碎料A2017112911090包金的废碎料A2027112921000铂及包铂的废碎料A2037204300000镀锡钢铁废碎料A2047204490010废汽车压件A2057204490020以回收钢铁为主的废五金电器A2067204490090其他未列名钢铁废碎料A2077204500000供再熔的碎料钢铁锭A2087401000010沉积铜(泥铜)A2097404000010以回收铜为主的废电机等A2107404000090其他铜废碎料A2117503000000镍废碎料A2127602000010以回收铝为主的废电线等A2137602000090其他铝废碎料A2147902000000锌废碎料A2158002000000锡废碎料A2168101970000钨废碎料A2178103300000钽废碎料A2188104200000镁废碎料A2198106001092其他未锻轧铋废碎料A2208108300000钛废碎料A2218109300000锆废碎料A2228112924010铌废碎料A2238112929011未锻轧的铪废碎料A2248113001010颗粒或粉末状碳化钨废碎料A2258113009010其他碳化钨废碎料,颗粒或粉末除外A2268506101190扣式含汞碱性锌锰的原电池及原电池组A2278506101290圆柱形含汞碱性锌锰的原电池及原电池组A2288506101990其他含汞碱性锌锰的原电池及原电池组A2298506109090其他含汞二氧化锰的原电池及原电池组A2308506300000氧化汞的原电池及原电池组A2318506400090氧化银的原电池及原电池组(含汞)A2328506600090锌空气的原电池及原电池组(含汞)A2338506800091含汞燃料电池A2348506800099其他含汞原电池及原电池组A2357204100010符合GB/T 39733-2020标准要求的再生钢铁原料A2367204210010其他符合GB/T 39733-2020标准要求的再生钢铁原料A2377204290010其他符合GB/T 39733-2020标准要求的再生钢铁原料A2387204410010符合GB/T 39733-2020标准要求的机械加工中产生的再生钢铁原料(机械加工指车,刨,铣,磨,锯,锉,剪,冲加工)A2397204490030符合GB/T 39733-2020标准要求的未列名再生钢铁原料A2407404000020符合标准GB/T38470-2019规定的再生黄铜原料A2417404000030再生铜原料(符合标准GB/T 38471-2019规定的)A2427602000020再生铸造铝合金原料(符合标准GB/T 38472-2019规定的)A2437201100010高纯生铁(含锰量0.08%,含磷量0.03%,含硫量0.02%,含钛量0.03%)﹝999﹞B2447201100090非合金生铁,含磷量≤0.5%(含锰量0.08%,含磷量0.03%,含硫量0.02%,含钛量0.03%的高纯生铁除外)﹝999﹞B2457201200000非合金生铁,按重量计含磷量0.5%﹝999﹞B2467201500010含金生铁﹝999﹞B2477201500090镜铁﹝999﹞B2487205100000生铁、镜铁及钢铁颗粒﹝101非合金生铁﹞,﹝102合金生铁﹞,﹝103其他铁合金﹞,B2497205210000合金钢粉末﹝999﹞B2507205290000生铁、镜铁及其他钢铁粉末﹝999平均粒径10微米的超细铁粉﹞B2517206100000铁及非合金钢锭﹝999﹞B2527206900000其他初级形状的铁及非合金钢[101板坯],[102其他钢坯(锭)]B2537207110000宽度小于厚度两倍的矩形截面钢坯(含碳量0.25%)﹝999﹞B2547207120010其他矩形截面的厚度400毫米的连铸板坯[含碳量0.25%(正方形截面除外)]﹝999﹞B2557207120090其他矩形截面钢坯[含碳量0.25%(正方形截面除外]﹝999﹞B2567207190010其他碳含量0.25%的厚度400毫米的连铸板坯﹝999﹞B2577207190090其他碳含量0.25%的钢坯﹝999﹞B2587207200010车轮用连铸圆坯(直径为380毫米和450毫米,公差±1.2%,含碳量:0.38%-0.85%,含锰量:0.68%-1.2%,含磷量≤0.012%,总氧化物含量≤0.0012%)﹝999﹞B2597207200090其他含碳量≥0.25%的钢坯﹝999﹞B2607218100000不锈钢锭及其他初级形状﹝999﹞B2617218910000矩形截面的不锈钢半制成品(正方形截面除外)﹝999﹞B2627218990000其他不锈钢半制成品﹝999﹞B2637224100000其他合金钢锭及其他初级形状﹝999﹞B2647224901000粗铸锻件坯(单件重量≥10吨﹝999﹞B2657224909010其他合金钢圆坯,直径≥700毫米(其他合金钢锭及其他初级形态的)﹝999﹞B2667224909090其他合金钢坯,直径≥700毫米的合金钢圆坯除外(其他合金钢锭及其他初级形态的)﹝999﹞B
  • 大连化物所傅强和慕仁涛团队在表面氢溢流原子可视化研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究组研究员傅强和慕仁涛团队在表面氢溢流原子可视化研究中取得进展,发现氧化物表面结构对氢溢流的有效调控,利用表面晶格限域效应提升氢溢流速率。氢活化和氢溢流是诸多涉氢反应的重要基元过程,对其进行有效调控是提高涉氢催化反应性能的关键。该团队在前期研究中通过构筑氧化物表界面活性中心调控H2活化(ACS Catal. ),利用氢溢流形成的表面氢物种提升反应选择性和催化剂稳定性(Angew. Chem. Int. Ed. 、ACS Catal. 、J. Phys. Chem. Lett. ),并通过氢溢流再生“Ni-O路易斯酸碱对”活性中心实现H2O的有效活化(J. Phys. Chem. Lett. )。本工作在Pt(111)衬底表面构建MnO(001)和Mn3O4(001)单层结构。近常压扫描隧道显微镜(NAP-STM)原位成像显示,在MnO(001)表面氢物种沿着晶格条纹一维扩散,而在Mn3O4(001)表面上呈现出二维扩散特征,且在MnO(001)上的扩散速率是Mn3O4(001)上的4倍。理论研究表明,氧化锰表面晶格中合适的O-O间距利于氢扩散,而存在低配位表面O原子则抑制氢扩散。该研究揭示了氧化物表面晶格限域效应对氢溢流的促进作用。相关研究成果以Direct observation of accelerating hydrogen spillover via surface-lattice-confinement effect为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家重点研发计划、国家自然科学基金、中科院碳中和光子科学中心等的支持。大连化物所表面氢溢流原子可视化研究获进展
  • 紫砂门鉴定 行业协会模糊处理 官方失语
    被央视多次曝光的“紫砂门”事件在经过了一个多月之后,终于有了第三方的声音。也正是由中国家用电器协会联合中国陶瓷协会发布的这份鉴定结果,使人们再次将目光聚集到“紫砂门”。   尽管对于这份结果,使一直处于焦急状态的紫砂产品生产企业表现得十分欣喜,但值得关注的是这份鉴定结果对矛盾的焦点“是不是紫砂”回答得十分模糊,而最应该发出“权威”声音的质检部门和卫生部门却始终沉默,这也让人们对鉴定事   件本身产生了更多的联想。   鉴定结果出炉的背后   沉寂了一个多月之后,“紫砂煲”再次出现在公众的视野中。但与上次不同,引发此轮关注的是一份中国家用电器协会和中国陶瓷协会发布的鉴定结果。   6月21日,中国家用电器协会突如其来地在其官方网站上公布了其联合中国陶瓷协会对紫砂煲生产企业的产品的抽检结果和专家论证鉴定结果。   鉴定结果称,根据广东美的生活电器制造有限公司、九阳股份有限公司、简氏依立电器有限公司、浙江苏泊尔家电制造有限公司四家家电企业和潮州市金航陶瓷实业有限公司的申请,中国陶瓷工业协会和中国家用电器协会委托国家陶瓷产品质量监督检验中心(江西)对其家电用陶瓷内胆产品进行了抽检,产品质量符合 QB/T2580-2002《精细陶瓷烹调器》标准要求。   据记者了解,在5月23日央视曝光美的紫砂煲造假后,许多紫砂煲生产企业主动要求相关部门进行检测,这其中包括是否含有紫砂成分和是否有毒有害等。   一位不愿具名的生产商对记者表示,紫砂煲事件后其当时联系了多个检测部门,但基本都遭到了拒绝。   而作为企业的娘家,中国家用电器协会和中国陶瓷协会最后顺理成章成为了急于验明正身的企业的“救命稻草”。   据该协会的一位负责人对记者透露,这项结果是6月17日和18日两天召开的“家电用陶瓷内胆生产应用情况研讨会”上专家意见的结论和总结。参会者包括部分高校、陶瓷科研院所、国家陶瓷质量检测机构、企业等专家。   不难看出,该鉴定结果中上述申请企业的“家电用陶瓷内胆均符合安全质量标准”实际上为企业产品进行了底线认定,即该类产品不会危害人的身体健康。   而且,结果还特别提出了“适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格的产品不会危害人体健康”。这也从一个侧面回应了央视针对紫砂煲内胆的生产添加氧化锰是否对人体有害的质疑。   是不是紫砂仍无定论   尽管鉴定结果的出炉让企业松了一口气,但同时一些矛盾和争辩的问题也暴露了出来。值得关注的是,对于这些“家电用陶瓷内胆”是否为紫砂陶器,鉴定结果则未直接提及,只称:“从陶瓷科学的角度,利用宜兴产区以外的粘土原料,通过配方的调整,同样可以制作出符合GB/T10816-2008《紫砂陶器》标准的产品。其他产区(宜兴之外)的紫砂器产品虽然在化学成分上、烧结后的矿物组成上与宜兴紫砂陶接近,如果产品胎体不呈赤褐色,仅利用化妆土装饰而称为‘紫砂’是不恰当的。”   对此,有业内人士向本报记者表示,两个协会对抽检产品是否为紫砂产品未直接界定,而且阐述的也较为模糊,其实是对央视曝光的造假问题的“含蓄肯定”,即把上釉的普通陶器宣传为紫砂类产品是“造假”行为。   “之所以对其没有界定是因为当前只有对紫砂的定义而没有相关的工艺标准和规范,所以在鉴定结果上并没有直接给予产品紫砂陶器与非紫砂陶器的认定。”上述家电协会的负责人对本报记者表示。   根据GB/T5000-85《日用陶瓷名词术语》的定义,紫砂陶器是指用质地细腻、含铁量较高的特种粘土制成的,颜色以赤褐为主,质地较坚硬的无釉制品。   “简单来说,富含铁的、不带釉的、赤褐色就可以认为是紫砂陶器。”上述协会负责人表示,“但仅仅通过定义是不能直接对上述抽检产品进行认定的,这还要对生产的技术和工艺过程进行规范,目前还没有针对工艺过程的相关标准出台。”   记者了解,国家在1989年颁布了《紫砂陶器》标准,对产品的技术要求做出规范,2008年又做了修订,修改后的新标准于去年6月1日实施。   新标准主要对铅、镉溶出量进行了修改,而且对注浆、机械成型及上釉紫砂陶器进行了排斥,技术标准也多处细化。   但新标准对于工艺过程却没有过多规范,相关工艺过程的标准一直处于“真空”状态。   谁最应该鉴定?  虽然行业协会作为第三方对“紫砂门”事件作出了一个回应,但显然,如果“无毒无害”的鉴定由卫生部门出具可能更加权威,而有关质量等相关问题则要看质检部门了。然而,“紫砂门”事件后,包括质检总局、工商总局和卫生部等相关部门始终噤声。   记者日前致电质检总局和工商总局,前者并未给予任何置评,而后者则表示,工商部门的职责范围是根据质检部门的检测结果检查和监督卖场撤架。   不仅是质检和工商部门沉默,对于紫砂产品的底线问题——是否有毒有害也没有相关部门发布任何公告。   此前,广东省质监局的有关人士曾在接受媒体采访时表示,质检部门的职责是紫砂煲有没有按照国家的生产规范标准去生产,而对于紫砂成分则很难通过检测鉴定,至于对人体有没有毒、有没有害,要通过卫生部门的毒性检测才能确定。   一位不愿透露姓名的专家对本报记者表示,官方的重视和表态无论对企业还是消费者个人,都会起到以正视听和引导行业健康发展的作用,但遗憾的是,企业很焦急,消费者很期盼,行业很受伤。   记者走访了几个大型卖场和超市,紫砂产品确实都已经下架。   据一位卖场负责人介绍,恢复上架还没有时间表。“虽然家电协会的鉴定结果出来了,但还要看权威部门的检测结果和有关通知才能决定是否上架。”而对于紫砂煲等紫砂类产品的销售情况,该负责人表示,其销售只占该卖场小家电销售量的很小一部分。   据记者了解,受紫砂门事件影响,已有生产企业出现规模罢工、停工事件,更有消息称,有5万紫砂行业工人面临下岗失业。“行业出现问题可以规范和引导,如果坐视不管和一棒子打死都会对整个行业产生巨大影响。”上述专家表示。   看来,这份行业协会出具的鉴定结果,要想拯救现在处于水深火热中的紫砂行业还很难。
  • 黑臭水体治理重在制定长效管理方案和引入群众监督
    p   全国认定的黑臭水体数量在2100个左右。黑臭水体的污染源主要可以分为内源、外源和其他,其中外源包括点源和面源。在促成水体黑臭的环境因素不可控情况下,控制污染源成为黑臭水体预防和治理的主要手段。住建部和环保部发布的《城市黑臭水体整治工作指南》对黑臭水体的定义、成因及治理流程进行了介绍。黑臭水体的治理不能一蹴而就,制定行之有效的长效管理方案是保障治理和维护顺利进行的重要保障。与此同时,住建部和环保部依据各地的建设成果评出了20个黑臭水体治理示范城市,并建立了“全国城市黑臭水体整治监管平台”,加大群众的监督力度。 /p p   黑臭水体治理涉及面广,制定长效管理方案是保障黑臭水体治理顺利进行的重要保障。 /p p   城市黑臭水体是指城市建成区内,呈现令人不悦的颜色和(或)散发令人不适气味的水体的统称。目前全国认定的黑臭水体数量在2100个左右。黑臭水体的污染源主要可以分为内源、外源和其他,其中外源包括点源和面源。 /p p   普遍认为有机物污染是导致黑臭的直接原因(第一要因)。水体中有机污染物含量过高时,在好氧微生物的作用下,水体中的铁、锰等金属离子与水中的硫离子形成硫化亚铁、硫化锰等化合物,悬浮颗粒吸附硫化亚铁、硫化锰等,致使水体变黑 而有机物分解会大量消耗水中的氧气,使水体转化成缺氧或厌氧状态。在缺氧或厌氧状态下,有机物腐败、分解,产生氨、硫化氢、硫酸、硫醚、有机胺和有机酸等恶臭物质,致使水体变臭。 /p p   除了污染源外,致使水体黑臭的原因还包括温度等其他非认为可控条件。在其他影响因素不可控的情况下,尽可能的控制污染源成为了主要的预防和治理手段。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/769d7120-5ef3-49df-98b0-c5569cc86487.jpg" title=" 图1.png" alt=" 图1.png" / /p p   受污染时间、污染源规模、污染物含量加上温度条件不同的综合作用下,黑臭水体黑臭的程度也有所不同,住房城乡建设部和环境保护部发布的《城市黑臭水体整治工作指南》,依据黑臭程度的不同,可将黑臭水体细分为“轻度黑臭”和“重度黑臭”两级。显然,重度黑臭的治理难度和投入高于轻度黑臭。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/bcae25ab-97ef-4e91-88a7-9a7f8c30cf92.jpg" title=" 图2.png" alt=" 图2.png" / /p p   对黑臭水体的级别进行判定,只是黑臭水体治理的其中一个小环节。事实上,黑臭水体的治理是一个长期的过程,前提需要对黑臭水体进行排查识别,并依据实际情况制定对症下药的方案,接下来是工程实施及监测评估,而已治理好的水体同样面临着被再次污染的可能,因此需要制定长效管理方案,除了对水土进行日常的污染物打捞和养护外,还需要借助地方政府和人民群众的力量,共同的监督和反馈。住建部《城市黑臭水体整治工作指南》中对黑臭水体的治理流程和要求做出了明确的引导和规范。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/325299ab-c88d-4950-b737-c34c62e14401.jpg" title=" 图3.png" alt=" 图3.png" / /p p   20省市被确定为2018年黑臭水体治理示范城市,整治监管平台的发布是长效管理的重要环节。 /p p   对各地黑臭水体的治理进行评审并公布当年的黑臭水体治理示范城市,是住建部和生态环境部监督和鼓励各地积极治理黑臭水体的重要举措。2018年10月24日,这两大部门依据此前发布的《财政部办公厅住房城乡建设部办公厅生态环境部办公厅关于组织申报2018年城市黑臭水体治理示范城市的通知》对30个城市进行了现场答辩评审并确定将得分排在前20名的城市评为“2018年城市黑臭水体治理示范城市”,主要包括九江、沈阳、长春、马鞍山等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/ad063bd2-7083-451f-9547-a84c2f070a58.jpg" title=" 图4.png" alt=" 图4.png" / /p p   作为长效管理方案中的一个重要环节,住建部会同环保部建立了“全国城市黑臭水体整治监管平台”,并同步开通“城市水环境公众参与”微信号。2016开通以来,住建部每个季度都将公布各地黑臭水体整治名单和完成情况,并将对完不成整治任务的地方进行约谈。 /p p   该平台公布的最新数据显示,截至2019年01月27日(自微信公众号发布以来),该平台累计收到了11751条监督举报信息,其中11605条已经办结,逾期未回复的信息125条。治理不易,维护更难,黑臭水体的治理和维护既需要政府的监督、管理以及各大环保企业的积极参与,同时也需要广大人民群众的监督和反馈。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/fbf2a52a-069f-405f-baaa-913ded368d4d.jpg" title=" 图5.png" alt=" 图5.png" / /p
  • 紫砂门后行业苦等标准 上百紫砂企业停工避风
    两个协会通过召开“家电用陶瓷内胆生产应用情况研讨会”,得出结论认为,紫砂陶发源于宜兴,但从陶瓷科学的角度,利用宜兴产区以外的黏土原料,通过配方的调整,同样可以制作出符合标准的产品。   协会:合格产品不会危害人体健康   中国陶瓷工业协会与中国家用电器协会昨日透露,通过邀请全国部分高校、陶瓷科研院所、国家陶瓷质量检测机构、企业等单位专家召开的“家电用陶瓷内胆生产应用情况研讨会”可得出结论:适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格的产品不会危害人体健康。   研讨会还强调,紫砂陶发源于宜兴,随后全国各地利用当地原料陆续开始生产,逐步形成了日用陶瓷的一个重要品种。从陶瓷科学的角度,利用宜兴产区以外的黏土原料,通过配方的调整,同样可制作出符合标准的产品。   昨日,紫砂煲产品的创始人——佛山简氏依立电器公司董事长简广则在接受本报记者专访时指出,造成行业目前局面混乱的原因,是因为“紫砂”定义没有明确,缺乏相关的细化的标准。   厂家:紫砂泥不稀缺,番禺大夫山就有   值得注意的是,对于此前外界普遍认为的紫砂矿“稀缺”的论调,简广认为并不准确。“中国的紫砂泥含量足以支撑工业化制造紫砂煲几百年,紫砂矿不是一种稀缺的资源”,简广反复强调,“即使是最贵的紫砂产品,其紫砂原材料价格也就几元钱一斤,价格是否昂贵不在于原材料,而在于成形的工艺”。   简广随后带领记者来到位于番禺区禺山西路的大夫山一角,指出该处存在的赤褐色泥土都是紫砂泥。记者在现场看到,由于亚运道路工程施工,大夫山的该处山体已呈现大片切面,在裸露的切面上,赤褐色泥土面积规模不小。简广表示,他已经通过公司的实验室对这些泥土的化学成分和矿物成分进行分析,结论就是这些泥土就是“紫砂泥”,并且已经在实验室成功制作一个紫砂煲。   求证:尚无官方证据证明大夫山有紫砂泥   记者随后向此前来过这片山体考察的江西理工大学材料与化学工程学院教授王平求证,王平证实,该处泥土的矿物成分与化学成分与宜兴的紫砂成分“非常相近”,王教授透露,事实上包括广东在内的江南地区,这种紫砂泥都非常常见。   不过到目前为止,尚无任何官方证据可以证明该处泥土属紫砂泥。
  • 紫砂煲产业出台国家标准成当务之急
    一场“紫砂门”事件,对紫砂煲产业造成了沉重打击。如今事情过去两月有余,紫砂煲目前销售情况如何?   据业内人士透露,在这次“紫砂门”事件中,依立、九阳等一批紫砂品牌虽然未出问题,但是也受到波及。目前,这些企业正积极引导行业走出低谷,通过行业协会与主管部门沟通,争取各种渠道向广大消费者公布自家原料检测报告、原料基地情况,重新取得消费者的认可。同时,一面恢复国内市场,一面积极拓展国际市场,并联合业内人士呼吁:需尽快出台国家标准,促进产业良性有序的发展。   据了解,作为紫砂煲的创始者,依立占据了国内50%以上的市场份额,是紫砂煲行业的第一品牌。在这次“紫砂门”事件中,依立虽然未出问题,但是也受到波及。有消息灵通人士透露,近日中国陶瓷工业协会与中国家用电器协会邀请全国产业界、学术界以及国家陶瓷质量检测机构、企业等单位召开了家电用陶瓷内胆生产应用情况研讨会,并发布联合声明表示:依立等5家企业生产的紫砂煲产品是安全无毒害的。依立电器董事长简广认为:“紫砂是我国的物质文化财产,不能因为极少数企业的非良性竞争而全盘否定整个紫砂煲行业。为了保障紫砂行业的良性发展,这个行业需要制定国家标准。”   “从紫砂电器产品诞生近20年的历史来看,还未发现1例由于消费者使用紫砂产品引发的食品安全事故。”中国陶瓷工业协会高级工程师樊瑞新介绍,这更进一步证明该产品是健康安全的。专家认为,作为无机非金属材料,陶瓷与金属材料和其他有机材料制品相比,用于饮食器具更卫生、安全。因为陶瓷的形成依赖于高温烧成,经过一系列的物理、化学变化,各类原料形成更稳定的物质。而适当添加氧化铁、氧化锰、氧化镍生产陶瓷产品,是一种稳定成熟的生产技术,合格产品不会危害人体健康。   据了解,紫砂产品在欧美等海外市场深受欢迎,依立紫砂产品长期大量出口海外,且经受住了欧美严格的相关安全检测。依立先后获得了国家级重点新产品荣誉、欧盟CE品质认证、德国GS认证、香港安全标志认证、加拿大CSA认证、美国UL认证等食品安全认证,获得了通往全球的“通行证”。依立至今已有30多项国家专利,此前出台的国家非金属陶瓷电饭煲的标准也由依立参与起草完成。目前,依立正积极与有关部门沟通,推动政府尽快制定紫砂容器电炊具的国家标准,规范市场引领行业健康发展。   广东省家电商会秘书长谢德盛表示:“近年来,加入紫砂电器行业的厂家越来越多,这本来是件好事,但浮躁的风气却大大伤害了大有前途的紫砂行业,相应国家标准的缺乏是造成紫砂煲产品市场鱼龙混杂的重要原因。”   据悉,由国家质检总局和国家标准委联合发布的《紫砂陶器国家标准》,并未对紫砂陶成分有明确界定,而只是对紫砂陶器的技术要求作了说明。“如果紫砂没有一个判定标准,那就是标准的缺失。”标准化方面的专家赵祖明指出,目前很多行业都存在标准缺失的问题,但国家有关部门正在不断地完善之中,这需要有一个过程。
  • 毒紫砂恐慌蔓延 部分合格产品也下架
    部分紫砂企业喊冤:没问题也“被下架”   “美的紫砂门”事件让消费者变得更加小心翼翼。记者昨日了解到,包括南方一些以紫砂产品为主业的制造企业正试图通过与有关部门的沟通,推动紫砂产品相关标准的建立,为自己正名。   央视再爆调色紫砂壶   5月23日,央视《每周质量报告》曝光,包括美的在内的紫砂锅事实上“无紫砂”,其“天然紫砂内胆”是用田土、黄土、黑土等普通陶土添加铁红粉、二氧化锰等化学颜料配制加工而成的“伪紫砂”。消息发布后,各大超市、家电卖场内纷纷下架紫砂产品,但却并未平息消费者的愤怒。5月30日,央视最新一期《每周质量报告》再度爆出市场上很多紫砂壶实际上是化工原料调色的“化工壶”。   全行业面临信任危机   “经销商告诉我们暂时不能销售了。”佛山一家紫砂制品企业负责人告诉记者,尽管已经在这个行业干了20年,并有相当规模的市场份额,公司还是难以逃过“紫砂门”的泥沼。由于自认没有质量问题,这家公司并未向经销商发出下架和退货通知,但除了自建的专卖店,在其他渠道销售的产品都已经“被下架”。   随着媒体不断曝光,“毒紫砂”引发的恐慌已经波及整个紫砂行业。在茶具市场,原本足以证明紫砂品质的“江苏宜兴”产地标签变得可疑起来。   作为历史上紫砂的主要产地,宜兴因紫砂成名,不过由于宜兴市的紫砂矿破坏严重,当地的紫砂矿“禁采令”已经实施了5年。但是,记者在马连道茶城看到,几乎每一家茶叶店都摆放着数十款甚至上百款紫砂壶、紫砂杯等。从几十元到上万元,价格相差百倍不止的产品在产地一栏无不标榜产自“江苏宜兴”。晨报记者 刘映花   紫砂行业呼吁制定国标   紫砂煲”造假引爆整个行业信任危机。记者5月31日了解到,目前一些正规紫砂电炊具企业正与有关部门沟通,希望能够明确紫砂概念、认证机构等等,为紫砂产品洗去污名。同时,尽快制定“紫砂容器电炊具”的国家标准。   某紫砂电炊具企业负责人表示,紫砂行业陷入今天的尴尬境地,很大原因在于行业标准的缺失。   据陶瓷专家介绍,所谓的“潜规则”,首先要明确“什么是紫砂”。人们常说的紫砂是紫砂陶器的简称,根据《紫砂陶器》国家标准的定义,紫砂陶器与其他陶器的区别是:含铁量较高的黏土制成、不上釉、透气性,因此,符合上述三点的陶器就是紫砂,同时,产品品质必须符合《紫砂陶器》国家标准各项技术要求的规定。制作紫砂陶器的原料在各地区也都广泛具备,不仅限于“宜兴”地区,广西、广东、江西、江南一带都有。制作不同的紫砂陶器产品,根据需要可加入某种氧化物,也就是业内所说的“配方”,没有“化学料”之说。由于要经过高温烧制(通常在1100度以上),因此,对人体是无毒、无害的。   目前,国家并没有紫砂的量化成分标准,由于制陶工艺比较复杂,各个厂有不同的配方工艺,并不统一,也让不良企业有了可乘之机。广东省家电商会秘书长谢德盛认为“市场上没有真正紫砂的说法”并不准确,“个别企业的不诚信行为,如果被扭曲扩大成整个行业潜规则的话,将对千年紫砂文化的发扬传承带来灾难性的后果。”
  • 电厂汞监测:数百万元的高价仪器未必好用
    仪器信息网讯 电力行业是国家的支柱产业,也是环保工作中的重点行业,在污染防治工作中有着具足轻重的作用。根据《火电厂大气污染物排放标准》,火电厂将从2015年1月1日起执行汞及化合物污染物排放限值,基于我国火电机组的巨大基数和汞排放量,其汞污染防控是个很大的市场,如何监测和控制火电厂的汞污染排放,你准备好了吗? 中国环境监测总站齐文启研究员分析汞监测技术   2014年4月18日,中国科学仪器行业的&ldquo 达沃斯论坛&rdquo &mdash &mdash 2014中国科学仪器发展年会(ACCSI 2014)于北京召开,作为发展年会的分会场之一,环境监测仪器技术论坛也在同期召开。此次会议上,中国环境监测总站齐文启研究员应邀就《燃煤电厂排放汞的控制与监测》做了报告,就我国及世界火电行业的汞排放现状、汞的减排技术、汞在电厂三废中的分布、国内外烟尘烟气中汞的检测技术、汞监测仪器性能比对、汞监测中的一些技术难点和注意事项做了全面的阐述,引发参会业内人士的高度关注。   据介绍,我国为产煤耗煤大国,年耗煤20亿吨以上,汞含量平均为300微克/千克,年排放汞约600吨,远超过美国的41吨和日本的1.5吨,但限于我国经济发展需求,我国的汞排放标准与控制仍是远比欧美日宽松。   齐文启表示,无论是汞的在线分析还是实验室分析,采样均为关键,目前国际上主要有湿法、干法,湿法又包括EPA29方法、安大略法(OHM)、BS EN13211方法等,美、日、英等国家主要采用用湿法,其方法准确度高、精度好、复杂 我国使用较多的干法主要采用活性炭、二氧化锰、高锰酸钾捕集柱等进行消解分析,成本低、简单,但只用于净化后烟气,只能测气态汞 而在线监测仪器通常备有形态转换模块,其响应快,但价格比较贵而且复杂。而分析方法主要有CVAAS、CVAFS、ZAAS、AES、UV等。   对目前市面上的仪器,齐文启直言不讳,对一些高价仪器提出了质疑:&ldquo 目前美、德、加、日、俄等国都已研发生产出烟气汞在线监测仪器,但这些进口仪器普遍价格非常高,如Tekran、Lumex、MI等均为150-200万的价格。&rdquo 而不仅如此,这些仪器往往还使用专利技术的一次性配件,使得其运行费用也很高,一台150万元的仪器甚至年运行费用也要约150万元,需要日均投入数千元。   如此高价的仪器却不一定好用。齐文启说,2009年北美对36家运行此类仪器的电厂调查显示,运行3个月内仅6家未出现故障,光源、探头堵塞、腐蚀、系统故障灯等多方面出现问题。对六家厂商的仪器进行7天的比对后,仅一家合格。而环境监测总站也使用手工采样分析与某些进口仪器进行了比对,发现其数据上相差较大,用于环境监测执法是有问题的。   齐文启表示,不建议在汞监测中购买如此高价的进口仪器。他给大家算了一笔账,如果购买原子荧光仪器,再配两名检测人员,也可以完成相关工作,哪怕为两位检测人员各开出20万元高薪,仪器及消解设备等的费用加上人员开支,每年也不过80万元左右,远低于某些高价仪器。齐文启认为,这方面国内的仪器研发应该跟上,而在2013年,我国也的确启动了相关课题,并在重大仪器专项研发中投入约1800万元。
  • 新型纳米材料的流动合成法
    p    strong 爱沙尼亚塔尔图大学物理研究所选用了一款搭载Flow-UV& #8482 探测器的Uniqsis FlowSyn& #8482 连续流动反应器来帮助他们开发可用于下一代应用的新型纳米材料。 /strong /p p style=" text-align: center " img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/aac6b0cc-ddae-46ee-b9eb-5de725939aa7.jpg" / /p p   材料科学研究小组的Aile Tamm博士在采购Uniqsis FlowSyn系统之前评估了不同种合成纳米材料的技术路径。 /p p   Aile Tamm博士谈到:“我们已研究过具有先进电磁性能的纳米颗粒和纳米复合材料。例如,我们已成功制备出含有平均粒径在5-50纳米的氧化铁、氧化铁铒、氧化锰铁和氧化镧微粒的薄固体膜粒子复合涂层。这些新型复合材料已被证明具有电子设备开发所需要的非线性饱和磁化及强制磁滞现象。除这些纳米材料以外,我们研究所也正在研究若干其他形式的纳米颗粒。” /p p   Uniqsis总经理,Paul Pergande评论道:“我们很高兴欢迎Tamm博士的知名研究团队加入到这一日渐发展的群体中来,这一群体涵盖了多家国际领先的使用Flowsyn来研究纳米颗粒合成的材料科学实验室。”他还补充道:“Flow-UV内嵌式二极管阵列探测器可被用于确定何时达到稳态,从而可确定何时开始与停止收集反应产物。紫外-可见吸收光谱测量法对于纳米颗粒分布具有特别重大的意义,并可提供有关粒径及是否发生团聚的信息。” /p p   FlowSyn& #8482 是一种被设计成可简单、安全、有效运行的集成化持续流动反应系统。FlowSyn& #8482 包含了一系列可进行单重或多重的均相或非均相反应的产品型号,并具有手动或自动运行功能。反应的范围通过Uniqsis的集成模块化流动化学系统的不断探究,已变得越来越广,并被越来越多发表于学术刊物和Uniqsis应用注释中的应用文章所证明。 /p p br/ /p p   获取更多有关FlowSyn& #8482 连续流动反应器的信息,及讨论该系统的试验请联系Uniqsis的电话+44-845-864-7747或电子邮箱 info@uniqsis.com /p p   Uniqsis擅于设计中等规格的,用于各种不同化学和药学研究应用的持续流动化学系统。公司目标是使初学者和经验丰富的使用者都易于使用我们的流动化学系统。 /p p /p
  • 东西分析应对《水泥化学分析方法》国标
    水泥是一种良好的建筑材料,在建筑行业中具有广泛的使用范围。近些年来,我国经济水平在不断地提高,建筑行业也有了很大地发展。如果要保证建筑的质量,就必须保证所使用水泥的质量,因此对于水泥的化学分析变显得十分重要。本文通过对GB/T176-2017《水泥化学分析方法》的研读,整理出一套东西分析应对水泥化学分析的解决方案,希望对水泥生产厂商、建筑施工方及第三方检测分析检测人员提供便利。国标检测对象本标准适用于通用硅酸盐水泥和制备上述水泥的熟料、生料及指定采用本标准的其它水泥和材料。国标涵盖内容本标准规定了水泥化学分析方法、X射线荧光分析方法和电感耦合等离子体发射光谱法对烧矢量(LOI)、SO3、不溶物(IR)、SiO2、Fe2O3、Al2O3、CaO、MgO、TiO2、Cl-、K2O、Na2O、S2-、MnO、P2O5、CO2、ZnO、F-、游离氧化钙(CaO)、SrO的测定。水泥化学分析方法又分为基准法和代用法,如果同一成分列了多种测定方法,当有争议时以基准法为准。东西分析应对方案(基准法)原子吸收分光光度法(AAS法)水泥中MgO(氧化镁)成分测定 AAS法水泥中 ZnO(氧化锌)成分测定 AAS法AA-7050原子吸收分光光度计三十年来,东西分析一直致力于原子吸收光谱仪器和分析技术发展,共研发出五代原子吸收分光光度计,继续领跑国产原子吸收新技术。AA-7050型原子吸收分光光度计,一款全功能、全自动仪器,使客户在工作中可以更加便捷、直观和高效,简化客户分析过程。示例:紫外-可见分光光度法(UV法)水泥中Fe2O3 (三氧化二铁)成分分析 UV法 水泥中TiO2(二氧化钛)成分分析 UV法水泥中MnO(氧化锰)成分分析 UV法Cintra 系列紫外-可见光分光光度计 双光束光学系统,具有长时间稳定性、准确性;配合Cintral 软件,能够进行波长扫描、时间扫描和固定波长测量,还具有定量分析和系统性能验证等应用特性;采用Czerny-Turner单色器,标配1.5nm固定狭缝宽度,可升级成1.0nm-3.0nm范围内狭缝连续可调。附录:水泥中全部检测成分及方法关于我们北京东西分析仪器有限公司,拥有三十年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 力合科技新品LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪
    01OC/EC监测的背景意义碳质气溶胶是大气气溶胶中的重要含碳组分,主要由有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)组成,OC是一种具有光散射性,含有上百种有机物的混合气溶胶,来源复杂,既包括由排放源直接排放的一次有机碳(POC),又包括一些大气中气态前体物(如VOCs等)经过光化学反应、二次凝结凝聚及吸湿增长后生成的二次有机气溶胶(SOC)。碳质气溶胶是我国大气气溶胶的重要组成部分,约占我国城市大气气溶胶的20%~50%,随着我国大气气溶胶治理工作的深入,大量学者对气溶胶中含碳组分进行了研究。02产品介绍LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪采用国际上使用最广泛、公认较成熟的分析方法-热光法,可用于对碳质气溶胶的持续监测,广泛应用于全国各大重点城市颗粒物组分站中,实现环境空气颗粒物中OC和EC浓度的准确测量,探究污染成因、开展来源解析工作。在恒定流速下,激光照射在采集颗粒物样品的石英滤膜上,首先,在氦气的非氧化环境中样品逐级升温,有机碳被加热挥发;此后,在氦气/氧气混和气环境中样品再次逐级升温,元素碳被氧化分解为气态氧化物,两个过程中产生的分解产物经过二氧化锰氧化炉被转化为CO2后,由NDIR探测器定量检测。通过判断激光的强度找到有机碳/元素碳的分割点,分割点前的为有机碳,此后的为元素碳。03产品优势独创石英膜固定方式。采用独创的石英膜固定方式,滤膜安装、更换方便,数据可信度更高;两种方法同时测量。热光透射法(TOT)和热光反射法(TOR)同时测量,满足不同的标准要求;短路径设计。解析炉-氧化炉短路径设计,提高响应的同时避免了有机物的传输损耗,测量误差小;高性能温控。炉丝采用高性能合金丝结合精密的温控算法,升温快速,升温准确,炉丝使用寿命长;自动零点核查。每日自动零点核查,提高数据的可靠性,可自定义升温程序,方便用户自由选择;维护安装方便。光路上光学元器件的精简和可拆卸设计,维护清洗方便,采样独特的结构设计,滤膜安装、更换方便。04应用领域LFOEC-2018颗粒物有机碳/元素碳OC/EC在线分析仪在湖南、四川、新疆等全国多个省市颗粒物组分站中得到应用,可用于评估区域碳质气溶胶排放水平,分析PM2.5来源及组分特征、污染成因及规律、重污染天气污染源成分等,提高颗粒物精细化管理水平,为精准防控提供科学依据。
  • Nature Materials | 李殿中研究员团队在低氧稀土钢研究领域取得进展
    在国家自然科学基金项目(批准号:52031013、U1708252、51725103)等资助下,中国科学院金属研究所李殿中研究员率领其团队与所内相关课题组合作,在低氧稀土钢研究领域取得进展。相关研究成果以“低氧稀土钢(Low-oxygen rare earth steels)”为题,于2022年9月8日在《自然材料》(Nature Materials)上在线发表。论文链接:https://www.nature.com/articles/s41563-022-01352-9。国内外大量研究表明,在钢中添加微量的稀土即可显著提高钢的韧塑性、耐磨、耐热、耐蚀等性能。然而,由于稀土金属极为活泼,在其电解制备时容易形成大尺寸稀土氧化物,这些稀土氧化物随稀土金属或合金加入到钢液中,带入的大尺寸稀土夹杂物难以上浮去除,从而导致稀土钢性能波动并与耐火材料反应堵塞浇口。该工作利用自主发明的夹杂物萃取三维表征技术,分析了稀土GCr15轴承钢和进口某轴承钢中的夹杂物形貌,发现在三维尺度上进口轴承钢中以氧化铝和大尺寸硫化锰夹杂物为主(图1a),而稀土轴承钢中夹杂物主要是细小的球状稀土氧硫化物(图1b)。与氧化铝夹杂物相比,稀土氧硫化物在疲劳加载过程中可以发生塑性变形,引发夹杂物周围应力集中显著减小,有效延缓疲劳裂纹的萌生。基于上述发现,研究人员阐明了氧的关键作用,开发了钢液低氧和稀土金属低氧的控制技术(“双低氧稀土钢”技术),有效解决了稀土钢工业应用中的瓶颈问题。研究表明,在高纯净度的GCr15轴承钢中应用后,与不加稀土的轴承钢相比,稀土轴承钢±800MPa拉压疲劳寿命提升了40倍,滚动接触疲劳寿命提升了40%,而添加现有商业稀土金属(稀土金属中氧含量为270ppm)的对比样品疲劳寿命出现明显波动(图2)。同时研究人员利用计算和表征证实了钢中存在一定数量的固溶稀土,固溶的稀土能够显著降低钢中碳的扩散系数,为通过调控碳扩散优化钢的显微组织和力学性能提供了新途径。图1 某进口轴承钢(a)与双低氧稀土轴承钢(b)中的夹杂物对比图2 稀土轴承钢与不加稀土的轴承钢、添加商业稀土的轴承钢的拉压疲劳和滚动接触疲劳寿命对比该工作揭示了稀土在钢中的关键作用机制,即控制夹杂物和稀土固溶,制备出性能优越、稳定的低氧稀土钢,吨钢只需添加百余克的镧铈轻稀土,即可在成本基本不增加、工艺流程基本不变的条件下显著提升钢的性能,对于发挥我国稀土资源优势,平衡稀土资源利用,提升优特钢的品质具有重要意义。
  • 石化、冶金、化工等87项行业标准报批,涉及ICP-OES、分光光度计等多种方法
    近日,工业和信息化部科技司发布87项行业标准及1项行业标准修改单,其中,化工行业标准12项、石化行业标准4项、冶金行业标准40项、有色行业标准19项、黄金行业标准2项、建材行业标准3项、稀土行业标准7项以及石化行业标准的修改工作1项。其中涉及ICP-OES、分光光度计等多种分析方法。87项行业标准及1项行业标准修改单报批公示根据行业标准制修订计划,相关标准化技术组织已完成《黄磷行业绿色工厂评价要求》等12项化工行业标准、《石油化工企业职业安全卫生设计规范》等4项石化行业标准、《含铁尘泥 二氧化钛含量的测定 二安替吡啉甲烷分光光度法》等40项冶金行业标准、《电解铝行业节能监察技术规范》等19项有色行业标准、《金矿充填料力学性能测定方法》等2项黄金行业标准、《建筑材料生产企业固体废物综合利用规范》等3项建材行业标准、《稀土采选冶行业绿色工厂评价导则》等7项稀土行业标准的制修订工作,《石油化工设备和管道涂料防腐蚀设计标准》1项石化行业标准的修改工作。在以上87项行业标准及1项行业标准修改单批准发布之前,为进一步听取社会各界意见,现予以公示,截止日期2021年2月26日。以上标准及标准修改单报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2021年1月26日—2021年2月26日附件:1.87项行业标准名称及主要内容.doc2.1项石化行业标准修改单.doc工业和信息化部科技司2021年1月26日附件1:87项行业标准名称及主要内容化工行业1 HG/T 5900-2021黄磷行业绿色工厂评价要求本标准规定了黄磷行业绿色工厂评价的评价原则、评价指标体系、一般程序等综合内容。本标准适用于黄磷生产企业的绿色工厂评价。 2 HG/T 5901-2021合成氨行业节能监察技术规范本标准给出了合成氨企业节能监察的内容、方法、程序等内容。本标准适用于对以优质无烟块煤、非优质无烟块煤、型煤、粉煤(包括无烟煤、烟煤)、天然气为原料生产合成氨产品的企业实施节能监察。对其它原料生产合成氨产品的企业实施节能监察可参照执行。 3 HG/T 5902-2021化学制药行业绿色工厂评价要求本标准规定了化学制药行业绿色工厂评价的总则、指标及要求、方法、程序、报告格式等。本标准适用于化学药品原料药制造和化学药品制剂制造的绿色工厂评价工作。 4 HG/T 5903-2021电石行业节能监察技术规范本标准规定了电石行业生产企业节能监察的内容、方法、程序等内容。本标准适用于对所有类型的电石生产企业实施节能监察,对电石和其他产品联合生产企业实施节能监察可参照执行。 5 HG/T 5904-2021氯碱行业节能监察技术规范本标准给出了氯碱生产企业节能监察的内容、方法、程序等内容。本标准适用于对氯碱生产企业实施节能监察。对氯碱和其他产品联合生产企业实施节能监察可参照执行。 6 HG/T 5905-2021石油和化工行业绿色供应链管理 导则本标准规定了石油和化工行业绿色供应链管理的目的、范围、总体要求以及产品生命周期绿色供应链的策划、实施与控制要求。本标准适用于石油和化工行业绿色供应链的建立、管理。 7 HG/T 5906-2021绿色化工园区评价导则本标准规定了绿色化工园区评价的基本要求、评价指标体系、评价实施方法与指标计算方法。本标准适用于各类化工园区开展绿色发展评价。 8 HG/T 5907-2021染料副产硫酸铵本标准规定了染料和染料中间体副产硫酸铵的要求、试验方法、检验规则和标志、包装、运输和贮存。本标准适用于染料和染料中间体生产过程中产生的含硫酸废水经净化、氨中和、浓缩、结晶、过滤等过程制备的副产硫酸铵产品。产品主要用作复混肥生产的原料和染料助染剂、稀土提炼等工业用途。不得直接施肥或用于食品、饲料等领域。 9 HG/T 5908-2021异氰酸酯行业绿色工厂评价要求本标准规定了异氰酸酯行业绿色工厂评价的总则、评价指标体系及要求、评价程序。本标准适用于异氰酸酯生产企业绿色工厂的评价工作。 10 HG/T 21637-2021化工管道过滤器系列本标准规定了化工管道过滤器的基本技术要求,包括公称尺寸、公称压力、材料、密封面尺寸、公差及标记等。本标准适用于化工行业管道过滤器的选用。HG/T 21637-199111 HG/T 20534-2021化工固体原、燃料制备设计规范本标准规定了化工固体原、燃料制备的设计要求。本标准适用于新建、改建和扩建化工企业物料的破碎、筛分、磨粉和干燥等固体原、燃料制备系统的工程设计。HG/T 20534-199312 HG/T 20721-2021浓盐水蒸发塘设计规范本标准规定了浓盐水蒸发塘的设计要求,主要技术内容包括总则、术语、选址、总体设计、系统设计、封场设计等。本标准适用于新建、改建、扩建化工企业生产过程中或化工工业园区产生的浓盐水用蒸发塘处置的规划、设计。 石化行业13 SH/T 3047-2021石油化工企业职业安全卫生设计规范本标准规定了石油化工企业职业安全卫生设计需要分析和评估的危险和有害因素,给出工厂布置、职业安全、职业卫生、个人防护装备、应急救援、气体防护站等工程设计技术要求。本标准适用于以石油、煤或天然气为原料制取燃料和化工品的生产、储运工程建设的职业安全卫生设计。SH 3047-199314 SH/T 3152-2021石油化工粉粒物料输送设计规范本标准规定了石油化工粉粒物料输送的系统设计、工艺布置、设备选型、安全卫生与环境保护等方面的设计要求。本标准适用于石油化工新建、改建、扩建工程中粉粒物料的输送设计。SH/T 3152-200715 SH/T 3153-2021石油化工电信设计规范本标准规定了石油化工电信系统的设计内容、系统构成、设计原则与技术要求。本标准适用于石油化工及天然气化工企业、以煤为原料经过煤气化或煤液化过程制取燃料和化工产品的企业、液化天然气接收站、石油储备库、特级石油库、一级石油库的新建、扩建和改建工程的电信系统设计。SH/T 3153-2007 SH/T 3028-200716 SH/T 3552-2021石油化工电气工程施工及验收规范本标准规定了石油化工电气工程施工及验收的技术要求。本标准适用于石油化工和煤化工新建、改建和扩建工程项目中电压等级为220kV及以下的电气工程施工及验收。SH 3552-2013冶金行业17 YB/T 4726.3-2021含铁尘泥 二氧化钛含量的测定 二安替吡啉甲烷分光光度法本标准规定了用二安替吡啉甲烷分光光度法测定含铁尘泥中二氧化钛含量的方法。本标准适用于含铁尘泥中二氧化钛含量的测定,测定范围(质量分数):0.02%~1.0%。 18 YB/T 4726.4-2021含铁尘泥 硅含量的测定 硫酸亚铁铵还原-硅钼蓝分光光度法本标准规定了用硫酸亚铁铵还原-硅钼蓝分光光度法测定含铁尘泥中硅含量的方法。本标准适用于含铁尘泥中硅含量的测定,测定范围(质量分数):0.10%~5.0%。 19 YB/T 4726.8-2021含铁尘泥 碳含量的测定 红外线吸收法本标准规定了用红外线吸收法测定含铁尘泥中碳含量的方法。本标准适用于含铁尘泥中碳含量的测定。测定范围(质量分数):0.1%~30.0%。 20 YB/T 4726.10-2021含铁尘泥 氧化铝含量的测定 EDTA滴定法本标准规定了用EDTA滴定法测定含铁尘泥中氧化铝含量的方法。本标准适用于含铁尘泥中氧化铝含量的测定。测定范围(质量分数):0.2%~3.0%。 21 YB/T 4726.11-2021含铁尘泥 氧化亚铁含量测定 重铬酸钾滴定法本标准规定了用重铬酸钾滴定法测定含铁尘泥中氧化亚铁含量的方法。本标准适用于含铁尘泥中氧化亚铁含量的测定,测定范围(质量分数):4.0%~80.0%。 22YB/T 4726.12-2021含铁尘泥 氧化锰含量的测定 高碘酸钾(钠)分光光度法本标准规定了用高碘酸钾(钠)分光光度法测定含铁尘泥中氧化锰含量的方法。本标准适用于含铁尘泥中氧化锰含量的测定,测定范围(质量分数):0.03%~7.00%。 23 YB/T 4939-2021绿色设计产品评价技术规范 冷镦用线材本标准规定了冷镦用线材绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于冷镦用线材绿色设计产品评价。 24 YB/T 4940-2021绿色设计产品评价技术规范 桥梁缆索用盘条本标准规定了桥梁缆索用盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于桥梁缆索用盘条绿色设计产品评价。 25 YB/T 4941-2021绿色设计产品评价技术规范 钢帘线用热轧盘条本标准规定了钢帘线用热轧盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于钢帘线用热轧盘条绿色设计产品评价。 26 YB/T 4942-2021绿色设计产品评价技术规范 焊接用钢盘条本标准规定了焊接用钢盘条绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于焊接用钢盘条绿色设计产品评价。 27 YB/T 4943-2021绿色设计产品评价技术规范 胎圈钢丝用盘条本标准规定了胎圈钢丝用盘条绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于胎圈钢丝用盘条绿色设计产品评价。 28 YB/T 4944-2021绿色设计产品评价技术规范 轨道扣件用弹簧钢本标准规定了轨道扣件用弹簧钢绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于轨道扣件用弹簧钢绿色设计产品评价。 29 YB/T 4945-2021绿色设计产品评价技术规范 机械用易切削钢本标准规定了机械用易切削钢绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于机械用易切削钢绿色设计产品评价。 30 YB/T 4946-2021绿色设计产品评价技术规范 汽车用非调质钢棒材本标准规定了汽车用非调质钢棒材绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于汽车用非调质钢棒材绿色设计产品评价。 31 YB/T 4947-2021绿色设计产品评价技术规范 汽车用轴承钢本标准规定了汽车用轴承钢绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于汽车用轴承钢绿色设计产品评价。 32 YB/T 4948-2021绿色设计产品评价技术规范 塑料模具用预硬型合金钢板本标准规定了塑料模具用预硬型合金钢板绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于塑料模具用预硬型合金钢板绿色设计产品评价。 33 YB/T 4949-2021绿色设计产品评价技术规范 船舶及海洋工程用钢板和钢带本标准规定了船舶及海洋工程用钢板和钢带绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用高炉炼铁、炼钢、热轧等工序生产的船舶及海洋工程用钢板和钢带绿色设计产品评价。 34 YB/T 4950-2021绿色设计产品评价技术规范 石化行业用铬钼钢板本标准规定了石化行业用铬钼钢板绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用高炉炼铁、炼钢、热轧等工序生产的石化行业用铬钼钢板绿色设计产品评价。其他行业也可参考使用。 35 YB/T 4951-2021绿色设计产品评价技术规范 食品包装用镀锡(铬)板本标准规定了食品包镀锡(铬)板绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于采用冷轧基板生产的食品包装用电镀锡(铬)钢板绿色设计产品评价。 36 YB/T 4952-2021绿色设计产品评价技术规范 饮用水管用不锈钢钢板和钢带本标准规定了饮用水管用不锈钢钢板和钢带绿色产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于饮用水管用不锈钢钢板和钢带绿色设计产品评价。 37 YB/T 4953-2021绿色设计产品评价技术规范 超超临界火电机组用不锈钢无缝钢管本标准规定了超超临界火电机组用不锈钢无缝钢管绿色设计产品评价的术语和定义、评价原则和方法、评价要求、生命周期评价报告编制方法。本标准适用于超超临界火电机组用不锈钢无缝钢管绿色设计产品评价。 38YB/T 4954-2021绿色设计产品评价技术规范 油气开采用套管和油管本标准规定了油气开采用套管和油管绿色产品评价的术语和定义、评价原则和方法、评价要求和生命周期评价报告编制方法。本标准适用于油气开采用套管和油管绿色设计产品评价。 39 YB/T 4955-2021绿色设计产品评价技术规范 建筑结构用方矩形钢管本标准规定了建筑结构用方矩形钢管绿色设计产品评价的术语和定义、评价原则和方法、评价要求和生命周期评价报告编制方法。本标准适用于建筑结构用热轧无缝、焊接方矩形钢管绿色设计产品评价。 40 YB/T 4956-2021转底炉法粗锌粉 铁、铅、银、铜和镉含量的测定 电感耦合等离子体发射光谱法本标准规定了用电感耦合等离子体发射光谱法测定铁、铅、银、铜和镉含量的方法。本标准适用于转底炉法粗锌粉中铁、铅、银、铜和镉含量的测定。 41 YB/T 4957-2021耐磨混凝土用钢渣砂本标准规定了耐磨混凝土用钢渣砂的术语和定义、技术要求、试验方法、检验规则、标志、贮存和运输。本标准适用于公路工程水泥混凝土细集料用钢渣。 42 YB/T 4958-2021机制砂用含钛高炉渣本标准规定了机制砂用含钛高炉渣的术语和定义、技术要求、试验方法、检验规则、包装、标志、储存和运输等。本标准适用于用作机制砂生产的含钛高炉渣。 43 YB/T 4959-2021冶金矿山尾矿胶结充填技术规范本标准规定了冶金矿山尾矿胶结的术语和定义、充填系统、充填料浆、充填采场、自动化控制。本标准适用于冶金矿山尾矿胶结充填开采、设计、运行等。 44YB/T 4960-2021冶金企业污染场地地下水抽提技术规范本标准规定了冶金企业污染场地地下水抽提技术的术语和定义、抽提井的布设、抽提井的结构设计、施工与运行、过程监测等内容。本标准适用于在产及停产冶金企业污染场地开展地下水抽提,包括建井和地下水抽出,不包括抽出后地下水的处理。 45 YB/T 4961-2021钢铁行业地下水监测技术规范本标准规定了钢铁行业地下水监测过程中的术语和定义、监测点网布设、监测项目及方法、样品采集及管理、资料整编及数据库建立等内容。本标准适用于钢铁企业开展地下水自行监测工作。 46 YB/T 4962-2021高炉循环冷却水系统能耗限额与能效等级本标准规定了钢铁企业高炉循环冷却水系统能耗限额与能效等级的术语和定义、能效指标与能效等级划分、提高高炉循环冷却水系统能效等级方法等。本标准适用于高炉循环冷却水系统的能耗测定与计算、能效比计算与能效等级评定,也可作为现有高炉循环冷却水系统是否需要改造的判断依据、改造方案的选择依据。 47 YB/T 4963-2021钢铁行业富氧燃烧节能技术规范本标准规定了富氧燃烧节能技术的术语和定义、原理与流程、应用分类与适用条件、技术要求和评价指标。本标准适用于钢铁行业高炉、热风炉、加热炉和锅炉等工业炉窑,铁包、钢包、中间包等烘烤设备可参照执行,其他行业也可参照执行。 48  60 YS/T 1421-2021铝用炭素焙烧能耗测试方法本标准规定了铝用炭素焙烧燃料能耗的测试方法。本标准适用于铝用炭素焙烧工序。 
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。   加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:   按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。   禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。   加强联邦环境质量手册对多溴联苯醚的检测。   对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。   检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。   此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。   BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • “食物嗅嗅”能嗅出啥?
    p   食品安全乃是人命关天的头等大事,万万不可掉以轻心。每年在全球范围内发生的食品安全丑闻事件、因问题食品而致病的案例不计其数,不仅对人的健康产生有害影响,让其遭受病痛的折磨,还大幅增加了政府在了公共卫生、医疗救护方面的开支。所以长久以来,欧盟在食品安全领域倾注了很多的人力和资金。 /p p   在当前,对于食品样品中有害物质的检测只能在实验室中依靠各种仪器设备才能完成。但样品需要运送至实验室,而检测仪器十分贵重,操作人员也必须是经过严格训练的专业人士,检测时间也通常要在24至48小时左右。这些复杂的程序和过长的等待时间使普通经销商或消费者无力对食品进行安全监测。 /p p   为了突破这一难关,2016年,由欧盟投资,荷兰瓦格宁根安全食品联盟(Trustfood stichting)与多国研究机构协力完成了新发明——食物嗅嗅(foodsniffer)。 /p p style=" text-align: center " img title=" 636244992591947262898.jpg" src=" http://img1.17img.cn/17img/images/201703/insimg/e5d8daa6-f03b-46a2-abca-916b0b1304c9.jpg" / /p p style=" text-align: center " strong 食物嗅嗅 /strong /p p   食物嗅嗅只有A5打印纸大小,却内置了10个传感器和全硅集成芯片,具有极高的精确度,可以在短时内快速完成检测。检测结果将传送至用户的智能手机,通过智能手机的GPS定位系统能将检测结果和特定检测站点联系起来,并上传至中央监测系统。 /p p    strong span style=" color: rgb(0, 176, 240) " 什么样的用户需要它? /span span style=" color: rgb(0, 176, 240) " /span /strong /p p   1. 过敏者:对部分食物过敏的人可以通过食物嗅嗅测试食物中是否包含特定致敏原,特别适合过敏者在旅途中或在一些食品安全信息不明的高风险地区使用。 /p p   2. 素食者或有机食品消费者:它可以帮助你测试食品中是否包含肉类蛋白或有机农业中禁止的农药残留。 /p p   3. 葡萄酒爱好者:食物嗅嗅可以通过DNA分析鉴定出葡萄酒中所含葡萄的种类。 /p p   4. 不愿食用转基因食品的人:食物嗅嗅可以帮你检测出食物样品中多种转基因成分。 /p p   5. 食品供应商与销售商:食物嗅嗅可以为食品的生产环节保驾护航。食品销售商则可以在食品上架前,对其进行安全检测。 /p p   供食品生产商和销售商使用的食物嗅嗅专业版于2016年投入市场,供普通消费者使用的将会在一至两年后面世。 /p p   有了食物嗅嗅在手,简直像拥有了一座行走的食品安全实验室一样爽快,让你更加了解你的食物,吃得更健康、更安全。 /p p    span style=" color: rgb(0, 176, 240) " strong 关于食品安全,你还应该知道: /strong /span /p p   1.病从口入:超过200种的疾病是通过我们的食物传播的 /p p   2.在美国,每天发生二十万起食源性疾病,很多人因此失去生命 /p p   3.在工业化国家中每年有约三分之一的人口可能感染食源性疾病 /p p   4.在食物看起来、闻起来或尝起来腐坏之前,引发食源性疾病的细菌就已经可以让你生病了 /p p    span style=" color: rgb(0, 176, 240) " strong 你的肉食是怎么变坏的? /strong /span /p p   生产过程: /p p   动物肉中自带的细菌在宰杀和生产过程中可以繁殖,鲜活动物体内的细菌越多,它的肉就会越快坏掉。 /p p   商店(销售环节): /p p   1.商店的卫生条件是否过关? /p p   2.浸泡在血水中的肉类会更快腐坏 /p p   家中 /p p   1.室温下或通过微波炉解冻的肉类,变质的可能性更大,最好用冰箱冷藏解冻。 /p p   2.肉类在室温条件下腐坏速度加快4倍,由于肉中的水分膨胀破坏了细胞膜,细菌更容易滋生。所以解冻后的肉类,那简直就是细菌的天堂。要及时消费已经解冻的肉类,避免反复解冻又冷冻。 /p
  • 有毒难退货 美的紫砂煲“霸王条款”何时了
    央视每周质量报告继续曝光“紫砂真相”,重金属溶出量异常,而深陷“紫砂门”事件的美的却设定种种障碍拒绝给消费者退货,引起消费者不满。   近日,央视曝光美的紫砂煲黑幕,立即在消费者群中引起了极大反响,许多有健康意识的消费者本以为可以利用此煲养生降脂、获得更多矿物质,但现在却换来“铁红粉”、“二氧化锰”等对身体有致癌作用的化学物质。   当天下午,事件主角美的对外表示,已将该公司相关负责人停职,并接受消费者退货。同时,美的公司还出示了一份《国家陶瓷及水暖卫浴产品质量检验中心》检测报告的证据。宣称该中心检测报告显示,美的紫砂煲内胆、紫砂盖,无毒无害,请消费者不要恐慌。   但仔细对照央视等权威媒体曝光的“美的紫砂煲黑幕”细节和美的公司事后发表的公开申明,不难发现:美的被迫道歉是真,道歉内容是假 知错不改是真,改错方法是假。   马桶生产标准=紫砂煲生产标准?   在常识里,马桶和紫砂煲内胆是两个毫不相干的东西,但据媒体调查发现,为美的生产紫砂煲内胆的厂家,同时也是一家生产马桶的作坊工厂。试问,用来生产“方便”马桶的质量技术安全标准怎么可用来生产解决“一日三餐”的紫砂煲内胆?   卫浴产品质检标准=厨房电器质量安检标准?   假紫砂煲骗局刚被曝光,美的公司就忙不迭地亮出“国家陶瓷及水暖卫浴产品质量检验中心”的牌,声称称该中心检测报告显示,美的紫砂煲内胆、紫砂盖,无毒无害,请消费者不要恐慌。   但据记者调查了解,“国家陶瓷及水暖卫浴产品质量检验中心”就位于美的总部所在的佛山,该检验中心的检验范围主要覆盖建筑陶瓷、卫生陶瓷、日用陶瓷、水龙头、阀门、卫浴电器等产品及原材料等领域。作为一个主要负责陶瓷产品物理性能检验的机构,是否有资格出具厨房电器食品安全方面的检测报告?   为此,记者致电国家陶瓷及水暖卫浴产品质量检验中心进行求证。问及是否该中心给美的公司出具过紫砂煲无毒无害证明时,该中心人士表示不清楚,没有查到过这份报告。随后记者拨通美的生活电器制造有限公司新闻发言人的电话,该发言人拒绝回答。   关于假紫砂煲是否有毒,岂能企业自己说了算?   美的紫砂锅黑幕曝光后,至今没有看到权威监管部门的有关产品查封声明。而按照正常程序,问题产品应该第一时间被撤出市场,库存产品也要在第一时间被查封。关于问题产品有毒与否,也应该是由国家权威技监部门从封存产品中抽样检测,而不能由肇事者自己说了算。   作为“造假”事件的主角,美的绕开国家质量监督检验等权威部门,绕开广大消费者的知情渠道,单方面沟通送检机构,无论结果如何,显然不具备公信力。而且面对美的以往一连串的造假行为,消费者完全有理由质疑其悔改的真实性。   央视曝光:紫砂壶有毒,紫砂煲无毒?   央视每周质量报告继续曝光“紫砂真相”:13个紫砂壶样品重金属溶出量异常   第二期的质量报告中中央视记者随机购买了15件紫砂壶和紫砂杯送到上海材料研究所检测中心进行检测。检测项目主要针对记者调查时发现人为添加的钡、锰、钴、铬等几种重金属元素。经过检测,15件紫砂茶具,除了两件原矿紫砂茶具之外,其余13件样品重金属溶出量都出现了异常。这些重金属熔点较高,在紫砂陶器的煅烧过程中很难挥发,最终还是会残留在烧制好的茶具里面,在使用时可能会产生不同程度的溶出量。保健专家指出,长期摄入钡、锰、钴、铬等金属离子,就会危及人体健康。   随着事件的深入,美的仍不承认造假事实,也没给受害者相应赔偿,而且又拉上了九阳、伊立等同行垫背,甚至在媒体上为自己道歉、退货的举动进行自我歌颂。试问,如果央视没有曝光其造假行为,美的会主动承认造假事实吗?如果央视没有曝光其造假行为,美的还要欺骗中国消费者多久?
  • 郝吉明院士:控制氮氧化物排放是改善空气质量关键
    中国许多城市目前正遭受着严重的空气污染,而氮氧化物被认为是导致空气污染的罪魁祸首。原因在于,氮氧化物排放造成的二次污染可以产生多种环境影响:酸沉降、水体富营养化、臭氧、PM2.5、气候变化……   “因此,NOx(氮氧化物)排放控制是改善我国环境空气质量的关键。”近日,中国工程院院士、清华大学教授郝吉明在贵阳“第七届全国环境化学”大会报告上如此表示。   氮氧化物主要来自电厂燃煤烟气和汽车尾气。郝吉明说,仅通过锅炉优化燃烧和机内净化控制氮氧化物远不能满足日益严格的排放标准,“而选择性催化还原(SCR)氮氧化物为氮气是最有效的净化方法”。   该方法要用到脱硝催化剂——其功能在于促使还原剂选择性地与烟气中的氮氧化物发生化学反应。郝吉明说,关键在于高效低成本脱硝催化剂的设计,目前该领域主要聚焦在“高性能催化体系设计和复杂环境下技术适应性”两个方面。   SCR催化剂可以分为金属氧化物和分子筛两类催化剂,前者主要应用于燃煤烟气脱硝,后者用在柴油车尾气氮氧化物控制。   郝吉明说,我国燃煤烟气脱硝主流技术为NH3-SCR,但这一技术存在高温选择性差、抗中毒能力弱、工作温度窗口窄等问题,难以满足我国电厂复杂烟气排放特征(高灰高钙高硫),及不同负荷宽工作温度下脱硝的需求。   而影响催化剂选择性及抗中毒和温度窗口的关键因素是脱硝催化剂的氧化还原性和酸性。   因此,郝吉明提出通过合理调控催化剂的氧化还原性和酸性,设计新的催化剂体系,从而最终解决上述难题的思路。   我国2003年前建设的电厂,由于没有预留脱硝空间,烟气脱硝装置被安装在除尘或脱硫之后,此时烟气温度已经降到200℃以下。要在如此低温条件下,将氮氧化物还原为氮气,对国内外学术界和工业界都是一个挑战。   郝吉明认为,解决这一问题的关键,仍然是探索新的活性组分。由于锰具有很好的低温活性,研究人员将二氧化锰应用到低温脱硝领域,最终发明了锰铈锡三元复合氧化物催化剂体系。目前该团队已完成了从原材料到脱硝催化剂制造的整个产业链工作,相继完成了小试、中试和产业化应用全过程。   在分子筛研究方面,当前国际上主要聚焦在小孔高硅CHA分子筛上。郝吉明研究团队发现,Cu/CHA分子筛具有优异的脱硝活性和氮气选择性,铜含量的增加会有效提高低温活性,且具有优异的抗水热老化和抗积碳能力,成为柴油车尾气净化的关键催化材料。   郝吉明说,下一步需要对不同排放源的氮氧化物开展污染控制,但关键的脱硝催化剂材料研究及应用仍然面临着三个方面的挑战。   一是再生及废弃催化剂如何资源化利用。“十二五”期间将大规模安装脱硝装置,脱硝催化剂市场良莠不齐,很难保证所有的脱硝催化剂都能够达到设计寿命,所以脱硝催化剂寿命和稳定性仍然是一个挑战。此外,将来大量的废旧催化剂如何再利用是下一阶段的研究课题。   二是推动烟气多污染物的协同控制。零价汞是全球性的大气污染物,燃煤烟气是汞的主要排放源之一,燃煤烟气汞的排放控制成为需要迫切解决的问题,研究如何能够在高效脱硝的同时氧化汞。   三是研发高效低成本分子筛脱硝催化剂。对于柴油车尾气中氮氧化物控制,虽然小孔分子筛负载铜的催化剂体系具有良好的脱硝性能及高热稳定性和抗积碳特性,但针对国内的劣质柴油,仍然需要解决催化剂的抗硫性能。   此外,替代燃料车尾气排放控制也面临难题。含氧替代燃料会造成尾气中氮氧化物排放量增加,提高了脱硝难度 不同燃料车尾气中非常规污染物(醛类、酸类等)的排放和危害也成为环境化学家必须关注的问题。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制