当前位置: 仪器信息网 > 行业主题 > >

辛硫醚

仪器信息网辛硫醚专题为您提供2024年最新辛硫醚价格报价、厂家品牌的相关信息, 包括辛硫醚参数、型号等,不管是国产,还是进口品牌的辛硫醚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合辛硫醚相关的耗材配件、试剂标物,还有辛硫醚相关的最新资讯、资料,以及辛硫醚相关的解决方案。

辛硫醚相关的资讯

  • 生物医药创新合作大会,六大同期论坛讲师揭秘
    面对新阶段、新发展,万怡医学定于2022年6月16-17日在苏州召开“2022第六届中国生物医药创新合作大会(BIO-PHARM2022)”。大会历时2日,将邀请200+权威领袖、1500+行业专家,开展10+专题论坛,聚焦最前沿的技术资讯、解读最新产业政策,以主旨报告、圆桌讨论、一对一商务对接、特邀晚宴、颁奖盛典等形式全面链接产学研资多方平台。继往开来踏新程,谱写生物医药新诗篇,诚邀您6月相聚苏州,共襄盛会!2022第六届中国生物医药创新合作大会(BIO-PHARM2022)2022年6月16-17日苏州凯宾斯基酒店大会流程【六大同期论坛】抗体药物开发与靶点筛选论坛ALK-1抗体联合PD-1 抗体治疗晚期肝癌的临床II期研究成果Flexibody双特异抗体技术平台CLDN18.2双特异性抗体的差异化开发和战略布局靶向CD39的双特异抗体开发CD47 融合蛋白联合疗法CD3/EGFR 双抗药物开发与临床进展拥有IgG1赋能強力杀伤肿瘤的ADCC 及ADCP功能的抗CD47单克隆安全抗体的开发CD20 三特异性抗体研究进展杨建新,基石药业首席医学官杨剑飞,开拓药业生物药研发副总裁陈明久,博奥信生物技术(南京)有限公司总裁卢启应,启愈生物首席医学官兼高级副总裁刘树民,康源久远董事长兼总经理卢宏韬,科望医药联合创始人兼首席科学官田文志,宜明昂科创始人彭佳萍,时迈药业执行总裁罗培志,天演药业CEO张洁,恩沐生物首席运营官柯樱,上海医药集团科研发展部总经理凌虹,维立志博生物副总裁&首席科学官下一代细胞疗法开发论坛细胞治疗临床试验设计及应对策略靶向 BCMA LCAR-B38M CAR-T 治疗复发或难治多发性骨髓瘤临床进展及全球化竞争格局开发低成本、持久型的实体瘤CAR-T产品 First-in-Class HBV 特异性 TCR-T 细胞治疗非病毒定点整合CAR-T技术的开发和应用CAR-NK 肿瘤原位免疫细胞治疗基于诱导多能干细胞 (iPSC) 分化的表达嵌合抗原受体的巨噬细胞iPSC-CAR-NK 细胞治疗的开发与应用前景针对神经系统疾病的 iPSC 细胞药物开发专题 2:细胞治疗临床研究与申报范晓虎,南京传奇生物联合创始人兼首席科学官Emily Tan,毕诺济生物执行副总裁兼首席运营官杨林,博生吉医药科技(苏州)有限公司创始人兼董事长;博生吉安科细胞技术有限公司董事长兼CEO专题 3:细胞疗法研发与产业化王婷婷,Lion TCR 首席运营官 & 首席医学官张楫钦,华东师范大学生命医学研究所副研究员;上海邦耀生物科技有限公司研发副总裁彭群武,杭州优凯瑞医药董事长专题 4:诱导多能干细胞(iPSC)开发与布局王嘉显,艾尔普再生医学创始人童建松,赛元生物CEO戴卫国,门罗生物 CEO魏君,睿健医药联合创始人兼 CEO创新药开发论坛自身免疫性疾病和炎症的临床阶段新型免疫调节剂开发 自身免疫性疾病的 FIC 创新性免疫疗法基于IL-22新靶点的肿瘤和炎症疾病的新型生物疗法单抗药物在自身免疫疾病治疗中的研发思路未来角逐,神经退行性疾病药物探索中枢神经系统疾病管线引入与商业化神经领域大有可为,CNS 新药开发的机遇与挑战抗病毒新药开发全过程中的策略与考量靶向艾滋病毒逆转录酶与辅助蛋白Vif的双靶点抑制剂抗呼吸道合胞病毒特效药开发与临床进展专题 5:自身免疫与肿瘤免疫潘武宾,苏州康乃德生物医药有限公司总裁、董事长段晓华,安立玺荣总经理刘巨波,亿一生物CEO吴奕涵,瑞石生物首席医学官胡志强,华奥泰生物首席医学官专题 6:中枢神经系统疾病药物开发利民,赛神医药创始人兼首席执行官周显波,中泽医药联合创始人、首席执行官兼首席科学官吴凯,上海赛默罗生物科技有限公司联席CEO刘平,福贝生物首席医学官专题 7:抗感染药物开发秦东辉,辉诺医药创始人、董事长兼CEO党群,真实生物总裁邬征,爱科百发董事长兼首席执行官严立,腾盛博药首席医学官小分子创新药技术论坛肿瘤标志物与免疫疗法开发生物标志物检测推进抗肿瘤药物研发生物标志物的应用与创新药临床研究生物标志物和伴随诊断在抗肿瘤药物开发中的应用PROTAC 技术——小分子新药开发新模式基于结构药理学平台研发的新一代 EGFR 抑制剂打造基于 AI+DEL 技术的靶向小分子药物发现平台创新药-针对慢性乙肝治愈的组合疗法专题 8:伴随诊断与药物开发邹灵龙,复宏汉霖生物分析副总经理王奎锋,勤浩医药(苏州)有限公司 CEO叶斌,盛诺基医药临床生物标志物与药物开发副总裁任以中,葆元生物医药科技(杭州)有限公司医学总监专题 9:小分子创新药开发与技术创新韩巍巍,礼来制药药物研发与医学事务中心医学总监邵湘红,元启(苏州)生物制药首席商务官廖迈菁,红云生物 CEO戴学东,美迪西国际研发服务部执行副总裁寿建勇,轶诺药业创始人、CSO李兴海,海创药业CSO/联合创始人杨金夫,征祥医药的联合创始人、董事长唐国志,维申医药共同创始人、CEO Ariel Guo,德琪医药 VP of Pipeline Strategy and Project Management基因治疗与罕见病论坛建立中国罕见病医疗保障多方支付机制,提升罕见病药研发与用药水平探索中国孤儿药研发与进展系统性肥大细胞增生症(SM)治疗思考与进展眼科疾病基因疗法研究罕见病创新药的授权引进模式AAV基因治疗药物开发与策略新一代表观基因编辑技术开发和应用AAV基因治疗商业化挑战与机会专题 10:罕见病药物开发史录文,北京大学药学院药事管理与临床药学系、北京大学医药管理国际研究中心主任、国家卫健委罕见病诊疗与保障专家委员会委员郑维义,应诺生物董事长、CEO陈苏宁,江苏省血液研究所副所长汪枫桦,朗信生物首席执行官专题 11:基因疗法与基因编辑技术陈功,NeuExcell Therapeutics创始人、首席科学官;中国暨南大学脑修复中心主任韩照中,领诺医药首席科学官张宝弘,益杰立科 CEO、联合创始人才源,星眸生物CEO&联合创始人谭青桥,上海鼎新基因科技有限公司首席技术官除了以上各大技术论坛,更有BD合作与国际化论坛期待您的加入!包含话题如下:中国药企出海现状和趋势License-out: 中国企业面对MNC的谈判策略医疗行业海外交易法律风险及应对生物医药投资逻辑变化和源头创新… … 【缤纷会期活动】听完各位大咖讲师的见解和宝贵经验后,是时候进行一些社交活动了!1~会期1对1商务对接活动所有注册报名的与会嘉宾在会前一个月将收到1对1对接系统的邮件,通过对接系统可自由邀约客户现场面谈。会期,大会专设1对1对接室,方便与会嘉宾更高效地沟通与交流。2~2022中国生物医药产业价值榜及特邀晚宴万怡医学联合华医研究院结合竞争要素、商业化要素、价值要素、战略要素、产品要素、团队要素等多个维度进行判断,对行业、产业、企业深度测评,形成“2022中国生物医药产业价值榜”。9项系列评选正在如火如荼展开,点击下图查看参评要求:3~展区互动、赢大奖在展区,不仅有展商自发组织的小游戏小礼品,更有来自主办方策划的游戏环节(暂且保密~),丰厚礼品,种类繁多,等你来取!【联系我们】组委会张老师手机:18621654360邮箱:shelleyzhang@healife.com
  • Dolomite公司参加第二届微流控及芯片实验室国际会议
    2018年6月8-10日,英国Dolomite公司出席了第二届微流控及芯片实验室国际会议(The Second International Conference of Microfluidics, Nanofluidics and Lab-on-a-Chip,ICMFLOC 2018)在北京召开。来自中国、美国、英国、德国、法国、瑞士、澳大利亚、新加坡、韩国等17个国家和地区的300余位代表参加了此次会议。 微流控技术是涉及物理,化学,工程,生物学,材料等学科的一门新兴交叉学科,其众多的潜在优势和广泛的应用前景受到世界学术界和产业界的极大关注。英国Dolomite公司此次展出了的微流控芯片、微流泵、芯片夹具等受到专家,学者的强烈兴趣。参观者充分肯定了Dolomite微流控设计的巧妙和技术的精准,在微流控技术上的领先地位和卓越贡献。
  • 月饼硫残留是公开秘密 国家标准无相关限制
    “今年油、面粉、糖和做馅用的各种原料价格上涨,月饼主要生产企业整体市场零售价随之上涨10%,然而市场上仍有相当一部分小的月饼厂家借机大打价格战,为了缩减制作成本,月饼馅料二氧化硫残留有可能发展成产业内的一场'三聚氰胺危机’。”日前,华南月饼制造业资深人士卢超明(化名)告诉本报记者。记者4日在广州某大超市看到,店内至少销售20款月饼,价格参差不齐,以一盒四个普通装双黄白莲蓉月饼为例,最低不到30元一盒,而最高超过200元一盒。卢超明称,国内月饼市场容量达200亿元,而前十名的大企业只占约10%的市场份额,中小品牌众多以及巨大的市场空间给行业的质量监控提高了难度。   原材料价格上涨月饼普涨   “受农副产品市场价格影响,今年生产月饼的主要原材料成本与去年同比大幅上涨,如莲子价格约为4.8万元/吨,同比上涨165% 五仁类原材料同比上涨40%-60% 糖约为5500元/吨,同比上涨30% 花生油约为1.7万元/吨,同比上涨50% 面粉约为5000元/吨,同比上涨15%。”广州酒家集团利口福食品有限公司总经理吴家威告诉本报记者,广州酒家今年中秋月饼原材料成本平均升幅高达30%。由于主要原材料成本大幅上涨,记者发现去年广式月饼主要品牌月饼系列的价格不超过百元的月饼占到六七成,但是今年预计单价超过或接近百元左右的品种占月饼总销量的70%。“从1994年开始,安琪月饼只提过一次价,今年是第二次。”深圳市场月饼龙头老大深圳安琪食品有限公司董事长梁球胜告诉本报记者,今年安琪双黄白莲蓉月饼每盒零售价从原来的108元提高10元,标价118元,产品平均增幅在10%左右。   从制定国内月饼国家标准,到生产企业强制Q S认证,国内月饼市场近年得到较大程度的规范,然而国内月饼市场容量达200亿元,而前十名大企业只占约10%的市场份额。“国内目前月饼的生产巨头有上海杏花楼、广州酒家、深圳安琪、北京稻香村、北京好利来和东莞华美等大品牌,销售额最大的杏花楼不过3亿元左右,广州酒家约2.5亿元,深圳安琪约2亿元,排名前十位的生产企业的市场销售总额接近20亿元,只占200亿的市场整体容量的10%份额。”华南月饼制造业资深人士卢超明(化名)告诉本报记者。   以劣充好,食品安全隐患上升   依据国家月饼标准,包括以莲子为主要原料加工成馅的月饼,除油、糖外的馅料原料中,莲子含量应不低于60%,然而由于今年莲蓉价格大涨,不少企业以“薯粉”冒充莲蓉。然而化学物在月饼中的残留,造成的质量影响更大。“月饼制作过程中不少企业为图价格优势,使用硫化糖,该类糖含有一定的二氧化硫残留,并容易带入月饼馅料中。除此外,莲蓉的制作过程中,为令莲子漂白,行内普遍用食用碱水,但是有不法商家为加快进程,用一种含有二氧化硫的化学物,这无疑增加了莲子硫残留风险。”卢超明称。当前关于月饼的国家标准中,并没有针对硫残留含量限制的相关条款,而月饼的硫残留已成为行业公开的秘密。   乳业三聚氰胺危机令乳业巨头掀起奶源基地兴建热潮,苏丹红风波令食品行业加强对色素的监管,而月饼行业的安全隐患却鲜为人知。“广式月饼的主要原料有莲子、蛋黄、面粉、糖、油等,其中又属莲子和蛋黄最关键。”安琪董事长梁球胜告诉记者。为把控莲蓉的品质监控,今年安琪在湖北仙桃建立逾万亩湘莲种植基地,并与武汉大学开展无公害莲业科研合作,该项合作被列为“十一五”国家支撑计划重大项目。而在湖北仙桃沙湖,安琪也建立了非饲料养殖的养鸭基地。“苏丹红事件后,使用工业色素'上色’的投机行为少了,但市场上不少表面看上去颜色鲜亮的咸蛋黄,其实养殖过程中鸭农仍然喂饲了可食用的胡萝卜素。相比之下富含天然胡萝卜素的麦黄角草是沙湖的特产,以该草料喂养的鸭子所产咸蛋,出油、起沙和色泽都是最出色的。该莲子和养鸭基地一年可以为安琪提供充足的莲蓉和咸蛋黄,这标志着安琪正突破当前月饼产业收购莲子中间存在原料多重购销环节的模式,从莲子种植、莲业研发、莲蓉制作,到月饼产销,开创月饼全产业链时代。”梁球胜称。
  • 色谱图里的秘密:PFPD检测器硫物质分析
    脉冲式火焰光度检测器PFPD5383硫物质分析——杰出的选择性和灵敏度PFPD对于硫物质具有线性的、等摩尔响应,能够选择性地测定从极低的ppb到ppm级的各个独立硫物质的浓度以及各个独立的硫物质峰加和的总硫浓度。单独一台检测器就能够同时得到硫物质和烃类物质的色谱图,这一独特的功能使其远优于其它的硫物质检测技术。PFPD操作原理氢气和空气的混合燃烧气被引入并且从下向上充满检测器的内腔体和上盖(1)。燃烧混合气在上盖位置被点燃(2)。点燃的火焰沿着内部的流路传播,同时消耗氢气和空气的混合气(3)。由气相色谱仪的柱子分离出来的物质在石英燃烧管内燃烧并且发射出元素特定波长的光(4)。当火焰到达检测器的底部时熄灭,激发出来的物质持续发射荧光长达25毫秒。激发出来的物质发射出来的光沿着一根光管传播,选择性发射出来的光穿过一个滤光片到达光电倍增管进行检测(5)。整个脉冲的火焰周期以大约每秒钟3至4次的频率重复。相比于其他的检测器,PFPD提高了长期稳定性并且只需要极少的维护,避免了其他检测器由于烟尘的沉积干扰了硫发射信号的传播。检测和定量气体中的硫污染物对于工业过程的正常运转以及控制产品品质都是格外重要的。GPC-PFPD已经被证明是实现硫物质分析的高效的手段。&bull 液化石油气(LPG)中的硫物质&bull 乙烯和丙烯原料中的羰基硫&bull 天然气中的硫物质&bull 饮料级CO2中的不纯物质&bull 半导体和工业气体的纯度&bull 气体产物和混合过程中的质量控制乙烯和丙烯原料丙烯是乙烯蒸汽裂化的副产品。羰基硫(COS)是丙烯原料中最主要污染物,如果不能够有效地去除,将损坏用于聚合物生产和其它过程中的昂贵的催化剂床。右侧的色谱图显示了在丙烯和乙烯装置分离之前以及洗刷掉硫物质之前,原料气中存在的烃类物质和COS。天然气天然气中含有硫化氢或者甲硫醇,也称作“酸”气。天然气中的硫化氢的浓度范围从几乎检测不到到高达0.30%(3,000 ppm)。CO2中的不纯硫物质尽早地检测和控制H2S和COS的含量是控制食品级CO2品质的一个重要考虑因素,因为这些物质的存在,将在碳酸饮料中产生不希望的气味和口感。石化产品中的硫分析PFPD已经被广泛应用在实验室以及过程气相色谱仪器上,用于分析液态石化产品中的各个独立的硫物质以总硫的浓度。汽油柴油气态和液态的石化产品&bull 丙烯中的羰基硫(ASTM D5303)&bull 天然气中的硫物质(ASTM D5504&D6228)超低硫浓度的汽油(ULSG)&bull 超低硫浓度的柴油(ULSD)&bull 苯中的噻吩(ASTM D4735-02&D7011)&bull 石油醚液体中的硫物质(ASTM D5623)喷气机燃油&bull 萘&bull 原油和合成油燃料油&bull 轻循环油(LCO)
  • HORIBA科学仪器发布最新碳硫分析仪EMIA-Pro
    新的高效清扫机构让燃烧炉维护周期达200次检测。元素分析系统及解决方案的全球HORIBA科学仪器在此发布新的碳硫分析仪EMIA-Pro。新的碳硫分析仪EMIA-Pro充分发挥HORIBA在非分散红外检测技术(NDIR)方面的优势,优化了检测范围,碳为1.6ppm—6.0%,硫为2ppm—1.0%。设计的独到之处还在于采用了CO检测器。综合的性能优势让EMIA-Pro可以广泛地用于无机材料,如钢铁、焦炭、催化剂、有色金属锂电池材料等的分析与检测。相比较传统的碳硫分析仪,这一新产品所配备的新型清扫机构大地提升了清扫效率,燃烧炉的免维护周期可达200次检测,这也同时节约了用户大量用于维护和清理的时间。 除了新型的清扫机构所提供的优异的性能,HORIBA还采用的减少部件及优化的设计以实现突出的系统稳健性和耐用性,可靠性得到大幅提高,修理服务的需求大幅降低。EMIA-Pro的另一项优异性能就是大提高检测效率,从检测开始到检测结果给出并完成清扫,整个的检测流程只需要70秒。同时,EMIA-Pro具备强大的导航系统,用户据此可以轻松完成佳分析条件的设定、故障的分析与排除和维护操作。
  • Dolomite微流控芯片3D打印机荣获科学仪器行业优秀新产品
    热烈祝贺英国Dolomite微流控芯片3D打印机荣获2016年科学仪器行业优秀新产品。 Dolomite3D芯片打印机是世界首台商品化微流控器件3D打印机,该系统能够快速并可靠地打印出客户自己设计的模型,免去了制造微流控设备所消耗的时间和精力。Dolomite 3D芯片打印使用COC聚合物为材料,打印价格低廉,根据您自己设计的微流控芯片、连接件等或从打印机设计库中选取打印。该智能的打印机确保微流通道密封性好,且具有可升级的印刷头,印刷床和软件,便于将来的功能化扩展。应用在医学诊断、药物研发、化学合成、酶生物转化、生物医药实验和教育领域。
  • 刘忠范院士:于纳米之微,寻家国之大
    1993年的一天,北京大学校园里来了一位从日本留学回来的青年人,他带着六十余箱仪器设备回国,一入燕园,便从头开始建设实验室。几十年后,这位青年学者在世界科研领域享誉盛名,成为世界纳米材料研究领域的先驱。他就是全国政协常委、九三学社中央副主席、中国科学院院士、北京大学纳米科学与技术研究中心主任、北京石墨烯研究院院长刘忠范。“我的人生挺简单,就是在做一件事情,小时候是读书学习,现在是读书研究。”回国参与科研建设的数十年间,刘忠范一次次地锐意进取、开拓创新,以纳米材料之微,寻国计民生之大。从出国到归国:“出国做研究,回国做事业”1983年7月,怀揣着对化学浓烈兴趣的青年刘忠范在母亲的支持下,选择继续深造,从此开启了十年的日本留学生涯。钻研使他在化学的世界里越陷越深,先后在日本横滨大学、东京大学获得硕士、博士学位,并在东京大学和日本分子科学研究所做博士后。留学的第8个年头,刘忠范遇到了他的伯乐——北京大学化学系教授蔡生民。蔡生民教授不止一次对刘忠范发出邀请,希望他能够回国工作。面对蔡生民教授的热情和诚意,刘忠范接受了他的邀请。而彼时的中国尚处在科技腾飞的前夜,科研条件相对落后,“出去”的多,“回来”的少。科学无国界,科学家却有祖国。“在国外做的只是研究,回到国内才是真正做事业,会有更大的天地,更广的舞台。能为祖国作贡献,这就是我回国的最大心愿!”这是他的心声。刘忠范选择了祖国。带着导师送的60余箱实验仪器,刘忠范回到北京大学,亲手建立起光电智能材料研究室。在两间空房子里,他从零开始,既没经费,也没人员,就去工地、工厂找来沙子和锯末,自己动手搭起了防震台。每一个插头放在哪里,刘忠范都会自己设计并找人安装,桌椅板凳也需要他自己一件件购买。每天第一个来实验室的是他,晚上最后一个离开也是他,有时候工作到深夜,楼门已经关闭,只能翻大门回家。寒来暑往,刘忠范做得踏踏实实。1994年,刘忠范申请了科技部攀登计划项目,经费500万。在90年代初期,这是个庞大的数字。凭借着踏实的研究成果,刘忠范成为这个项目的首席科学家,也是当时科技部最年轻的首席科学家。从此,刘忠范开始了纳米攀登之旅。1997年9月27日,刘忠范和吴全德院士一道推动成立了国内最早跨院系、跨学科的纳米研究机构——北京大学纳米科学与技术研究中心。对科研方向的高度敏感,与刘忠范从小对大自然的强烈探求欲不无关系。1962年冬,刘忠范出生在吉林九台的一个农民家庭。小时候家里穷困,父亲务农,母亲是家庭妇女,只有在邻村小学教书的哥哥有文化。受到哥哥的熏陶,刘忠范从小就喜欢读书。凡是书上看到的东西他都想亲自试验一下:给鸡鸭听音乐是否会多产蛋?用凉开水浇地是否比用生水更好?怀着强烈的好奇心,他将这些“突发奇想”付诸行动,并仔细地观察实验结果。在此后的很多年里,对知识的浓厚兴趣总是牵引着他的研究。1998年的一天,刘忠范突发奇想,能不能把碳纳米管也像分子那样一个个排起来。冒出这个想法后,他立刻着手尝试,反复试验下,想法成功落地,碳纳米管首次整齐地矗立在表面上。2000年,他以开拓者的身份发表了国际相关领域的第一篇文章。从碳纳米管到石墨烯 :“要么上书架,要么上货架”石墨烯 —— 被称为“ 会改变世界的材料”——于2004年被英国科学家发现,随之成为世界范围的前沿领域,是目前世界上已知最薄、最坚硬、导电性和导热性最好的新材料。2008年,刘忠范率领团队转而深耕石墨烯领域,开始研究石墨烯的合成方法。2010年的诺贝尔物理学奖,授予了发现石墨烯的两名科学家,世界范围内掀起了竞争石墨烯产业领域的热潮。与此同时,石墨烯的产业应用在国内得到了广泛的关注,各地纷纷兴建石墨烯产业园,成立产业中心。“老实说那个时候,社会上对石墨烯的宣传有点过热,很多有关石墨烯的说法不靠谱。”刘忠范坦言。但他认为,与其指出这种说法不对、这种做法不行,不如尝试一下自己认为正确的做法。“别的一概不做了,只做石墨烯,而且往前走,做‘有用、实用’的石墨烯。”正是这一决定,让他开启了石墨烯产业化研究的新征程。“被其魅力所征服,被其未来所吸引,义无反顾地走到今天,亦将为之奋斗余生。”刘忠范潜心于石墨烯基础理论研究,十年如一日地探索研究,发文无数。2018年,刘忠范一手建立了北京石墨烯研究院,作为院长的他,带领团队全方位开展石墨烯基础研究和产业化核心技术研发,为我国石墨烯研究和应用领域开山探路。“我们现在所做的事情,将来都会变成术语,所以一定要规范。”刘忠范反复告诫学生。他认为,对于石墨烯产业,制备决定未来。因此,他的团队抓住关键两点,一是制备具有全球竞争能力的优质材料,二是研究制备装备领域更高端更上游的技术。“有它行没它也行”不是刘忠范心中杀手锏级的应用。虽然国内市场上出现了许多石墨烯相关产品,但大多还是“三大件”,即石墨烯电热产品,石墨烯改性电池以及石墨烯防腐涂料。这些产品很难给人类生活带来颠覆性的改变,他认为,一个杀手锏级的应用,应当可以让传统产业升级换代,创造出新的产业。因此,刘忠范始终致力于探索更多方向,提供最好的材料与装备。“要做点真正有用的东西,或者上书架或者上货架。”这是刘忠范一贯的理念。上书架,并非简单地发表学术论文,而是真正对科学有用,是能够在教科书里找到;而上货架,并非简单地申请几项专利,而是真正对国计民生有用,是能够在百姓生活里找到。从科研到育人 :“人才决定潜力,文化决定高度”2009年,刘忠范被评为“科学中国人年度人物”,2011年当选中科院院士,2012年获得中国化学会—阿克苏诺贝尔化学奖。在他心里,学者应该专注于学问;院士是一个崇高的称号,选上是件“水到渠成的事情”,而不应是追求的功利目标。他希望自己还是最初的那个“自己”,做好学问,在推动学术发展的同时把年轻一代带起来… … 正因如此,对于奋战在科研第一线的刘忠范来说,三尺讲台更是他的另一个阵地。他认为,“科研跟教书育人并不矛盾,作为一名教师,也有义务承担起培育新人的重任”。“人才决定潜力,机制决定效率,文化决定高度”,这是刘忠范一贯的信条。谈起最自豪的事,不是发表的600多篇学术论文,不是探索出了新领域,而是培养了一批热爱科学、热爱纳米的学生。身教胜于言传,刘忠范的以身作则,点燃了一批批学生对科研的兴趣。他的学生绝大多数都在国内外高校和科研院所从事科研工作,其中已经有60多位教授或研究员,包括一位院士、5名万人计划领军和拔尖人才、5名长江学者和青年长江学者、9名杰青、8名优青,还有10位企业高管,都在各自的领域里为科学研究和国家发展贡献自己的力量。刘忠范始终带着兴趣做科研,兴趣也是他教育理念的第一页。“一个新学生来我这里做科研,我都先问他的特长和爱好是什么,我让他自己找感兴趣的问题。当他不知道对什么感兴趣时,我会问他对哪些不感兴趣,以尽量避免做自己不感兴趣的工作。”作为导师,导引学生找到自己所擅长的兴趣,他认为这同样重要,将两者结合起来,还需要耐得住寂寞的马拉松式的坚持。针对“十四五”时期的人才培养,他提出“要进行兴趣导向,分类支持”,基础研究和应用研发不能混为一谈:基础研究需要的是自由宽松的创新性文化环境和文化土壤;应用研究和高技术研发需要明确的应用目标牵引。每个人精力有限,把它集中于真正的科学问题上,保持一颗安静平和、积极向上的心,不懈努力,才会有所突破。责任二字,同样是他育人理念的重要一页。在谈及2020年政府工作报告时,他认为一句“生命至上”令人动容,这也是他责任心的一个生动体现。静心在科研世界之外,刘忠范深深地感受到越来越多的社会责任。儿时刻骨铭心的经历使他对农村教育和失学儿童问题十分关注,他多方奔走,设立的奖学金帮助了不少濒临失学的儿童。他曾经就读的村小学有了漂亮的新校舍、宽敞明亮的图书室、崭新的桌椅和计算机房。收到学生家长寄来的感谢信,讲述自己的孩子第一次看到和使用电脑时的激动心情,刘忠范感动得落了泪。他还在母校长春工业大学设立“励志奖学金”“烯望之星奖学金”,鼓励母校的年轻学子奋发向上。“有了兴趣,就有了追求;而有了责任意识,就能够把个人的追求与集体乃至国家融为一体。”刘忠范尽自己最大的努力承担起社会的责任,他也将这种勇于担当的精神传递给他的学生。“做好一件事,不负北大人”“矢志不渝家国梦,敢凭烯碳赌人生。”回到祖国怀抱30年,刘忠范用实力为自己的事业开拓了一片广阔的天空,也为祖国的纳米科技领域和人才培养奉献了自己的力量。“科学精神实际是追求真理,追求事实本身,由好奇心驱动, 其实质就是关注、认识和解释自然,没有私心杂念,更无过多功利性虚荣心。只有厚积培植科学精神滋长的土壤,才能孕育和激发出更多的原始创新。”刘忠范这么说,他也是这么做,他还将继续这么做下去。(本文原载于《中国统一战线》2022年第5期总第365期 记者:程佳俊,北京大学融媒体中心)
  • 聚醚醚酮(PEEK)树脂材料的中压恒流泵研制成功
    我公司成功研制泵头、流路材料是聚醚醚酮(PEEK)树脂材料的中压恒流泵。 TBP-k 系列恒流泵(PEEK泵、柱塞泵、耐腐蚀泵、中压泵、输液泵)采用聚醚醚酮(PEEK)树脂这种性能优异的特种工程塑料,PEEK不溶于浓硫酸外的几乎所有溶剂。TBP-k 系列恒流泵可以广泛用于化工、石化、煤炭、染料、精细化工、科研、环保、农药、制药、食品等行业,满足以上行业恒压恒流精确输送酸碱腐蚀性液体。 主要特点 &bull 耐酸碱溶剂腐蚀:采用PEEK特种工程塑料、红宝石、氧化锆陶瓷 &bull 压力脉动小:双柱塞结构,宝石球寿命长; &bull 流量精确:进口宝石柱塞和宝石,误差小; &bull 内建过压保护和流量校正系统 ; &bull 电脑控制:通过 RS232 接口与电脑通讯 &bull 大屏幕液晶显示; &bull 排气装置:有效除去输送液体中的气泡。
  • 探秘《止咳药被检出硫磺》的行业“潜规则”!
    今天,关于“止咳药被检出硫磺”的新闻,在朋友圈已经开启了刷屏模式。因为使用了经过硫磺熏蒸的浙贝作为原料,国内多家知名药厂或被牵涉其中。  更让我们痛心的是,硫磺熏蒸浙贝犹如医药行业的“三聚氰胺”,已经成为中药材行业的潜规则,而有关检测的缺失则让这一潜规则发展成为“明规则”!    为您的食品药品安全保驾护航,海能应用实验室运用专业的检测仪器——SOA100二氧化硫残留量测定仪,迅速对止咳常用药中的二氧化硫含量进行测定,提供一手资料,希望对大家有所帮助!  1引言  硫磺燃烧产生二氧化硫,直接杀死虫卵、蛹等,抑制霉菌、真菌滋生,达到防虫防霉作用。二氧化硫与药材中的水分子结合形成亚硫酸。具有脱水、漂白作用。二氧化硫使表皮细胞破坏,促进干燥,特别象产地在南方潮湿地区天麻、 山药等。从毒理学上来说,硫磺属低毒化学品,但其蒸汽及硫磺燃烧后发生的二氧化硫对人体有剧毒。食用二氧化硫超标的食品,容易产生恶心、呕吐等胃肠道反应,此外,还可影响钙吸收,促进机体钙流失。过量进食引起的急性中毒可出现眼、鼻黏膜刺激症状,严重时产生喉头痉挛、喉头水肿、支气管痉挛等。  药典规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg,上述限量标准均在世界卫生组织(WHO)认可的安全标准范围内。测定中药及其饮片成品药中二氧化硫含量是为保障人体健康做的最后一道防线,预防救命药变成毒药。  2参考文献  2015版《中国药典》  3药典原理步骤  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置两颈圆底烧瓶中,加水300-400ml,打开回流冷凝管开关给水,将冷凝管的上端E口处连接一橡胶导气管置于100ml锥形瓶底部。锥形瓶内加入3%过氧化氢溶液50ml作为吸收液(橡胶导气管的末端应在吸收液面一下)。使用前,在吸收液中加入3滴甲基红乙醇溶液指示剂(2.5mg/ml),并用0.01mol/L的氢氧化钠滴定液滴定至黄色(即终点,如果超过终点,则应舍弃该吸收溶液)。开通氮气,使用流量计调节气体流量至约0.2L/min,打开分液漏斗C的活塞,使盐酸溶液(6mol/L)10ml流入蒸馏瓶,立即加热两颈烧瓶内的溶液至沸,并保持微沸,烧瓶内的水沸腾至1.5h后,停止加热。吸收液放冷后,置于磁力搅拌器上不断搅拌,用氢氧化钠滴定液(0.01mol/L)滴定,至黄色持续时间20s不褪,并将滴定结果用空白试验校正。  4反应方程式  SO32- + 2H+→ H2O + SO2  SO2 + H2O2→H2SO4  H2SO4 + NaOH →Na2SO4 + H2O  5仪器  SOA100二氧化硫分析仪(如图1)  T860自动电位滴定仪  pH复合电极  烧杯  6试剂  60%磷酸  3%H2O2  NaOH滴定液(C(NaOH)=0.02mol/L) (图 1)  去离子水  供试品  7试样处理  取药材或饮片细粉约10g(如二氧化硫残留量较高,超过1000mg/kg,可适当减少取样量,但应不少于5g),精密称定,置于400ml蒸馏管中。  (取样如图2)    (图2)  测定蒸馏: 开机,设置参数,进行实验。(图3)  参数设置(如图3)  自动测试  稀释水量:50ml  接收液量: 25ml  加酸体积:10ml  蒸馏时间:7min  淋洗水量:10ml  (蒸馏过程如图4)   (图4)  l 滴定  参数设置  终点设置滴定  终点数:1  终点结束体积:10.00ml  终点pH: 6.20  最小添加体积:0.01ml  初次添加体积:0.02ml  终点预控范围:1.50pH  (滴定过程如图5)    (图5)  SO2总含量计算:  二氧化硫残留量(ug/g)=(A-B)*C*0.032*106/W  式中 A---供试品溶液消耗氢氧化钠滴定液的体积,ml  B---空白消耗氢氧化钠滴定液的体积,ml  C---氢氧化钠滴定液摩尔浓度,mol/L  0.032---1ml氢氧化钠滴定液(1mol/L)相当于二氧化硫的质量,g  W ---供试品的重量,g  实验结果  2 中药材:浙贝母    备注:实验结果只用于为验证实验方法  8结果与讨论  实验选取的浙贝母中二氧化硫的平均含量为644.13ug/g(mg/kg),明显超国家规定的400mg/kg。而含浙贝的止咳药中均检出二氧化硫且含量很高,相比同类止咳药川贝类药品中二氧化硫含量明显低于浙贝产品。国家药典委员会规定山药,牛膝,粉葛等11种传统习用硫磺熏蒸的中药材及其饮片,二氧化硫残留量不得超400mg/kg,其他中药材及其饮片的二氧化硫残留量不得超过150mg/kg。  在使用药典法测试液体类样品中二氧化硫含量时,需剧烈振摇样品或者超声加热除去其中的二氧化碳,因为在滴定过程中二氧化碳会消耗滴定剂氢氧化钠。  在使用SOA100采用药典法进行蒸馏时,建议将6mol/L的盐酸换作60%的磷酸,由于机器蒸馏功率大,易挥发的盐酸很容易蒸馏到吸收液中,造成结果偏大,而磷酸作为中强酸,沸点比盐酸高,不易挥发,效果更好。日本公定法及台湾药典均采用磷酸而非盐酸。  采用药典法进行测试时,由于吸收液过氧化氢不稳定,易分解生成水和氧气,需即用即配。  在使用SOA100采用药典法进行蒸馏时,实验之前需将吸收液H2O2调至pH=6.2,因为过氧化氢显酸性,滴定过程中会消耗氢氧化钠,造成实验结果偏大。  中药中淀粉含量较大,若测试试样为粉末状,在称样前需在蒸馏管中加入20ml蒸馏水,将样品放入后进行摇匀,防止实验时样品结块,造成结果偏低。
  • 三星宣布3纳米GAA成功流片
    技术论坛时台积电强调3纳米制程将照时程于2022下半年正式量产,竞争对手韩国三星日前也表示,采用GAA架构的3纳米制程技术正式流片(Tape Out),对全球只有这两家能做到5纳米制程以下的半导体晶圆代工厂来说,较劲意味浓厚。外媒报道,三星3纳米制程流片进度是与新思科技(Synopsys)合作,加速为GAA架构的生产流程提供高度优化参考方法。因三星3纳米制程不同于台积电或英特尔的FinFET架构,而是GAA架构,三星需要新设计和认证工具,因此采用新思科技的Fusion Design Platform。制程技术的物理设计套件(PDK)已在2019年5月发布,并2020年通过制程技术认证。预计此流程使三星3纳米GAA结构制程技术用于高性能运算(HPC)、5G、行动和高阶人工智能(AI)应用芯片生产。三星代工设计技术团队副总裁Sangyun Kim表示,三星代工是推动下一阶段产业创新的核心。三星将藉由不断发展技术制程,满足专业和广泛市场增长的需求。三星电子最新且先进的3纳米GAA制程技术,受惠于与新思科技合作,Fusion Design Platform加速准备,有效达成3纳米制程技术承诺,证明关键联盟的重要性和优点。新思科技数位设计部总经理Shankar Krishnamoorthy也表示,GAA晶体管结构象征着制程技术进步的关键转折点,对保持下一波超大规模创新所需的策略至关重要。新思科技与三星战略合作支持提供一流技术和解决方案,确保发展趋势延续,以及为半导体产业提供机会。GAA(Gate-all-around)架构是周边环绕着Gate的FinFET架构。照专家观点,GAA架构的晶体管提供比FinFET更好的静电特性,可满足某些栅极宽度的需求。这主要表现在同等尺寸结构下,GAA的沟道控制能力强化,尺寸进一步微缩更有可能性。相较传统FinFET沟道仅3面被栅极包覆,GAA若以纳米线沟道设计为例,沟道整个外轮廓都被栅极完全包裹,代表栅极对沟道的控制性更好。3纳米GAA制程技术有两种架构,就是3GAAE和3GAAP。这是两款以纳米片的结构设计,鳍中有多个横向带状线。这种纳米片设计已被研究机构IMEC当作FinFET架构后续产品进行大量研究,并由IBM与三星和格芯合作发展。三星指出,此技术具高度可制造性,因利用约90%FinFET制造技术与设备,只需少量修改的光罩即可。另出色的栅极可控性,比三星原本FinFET技术高31%,且纳米片通道宽度可直接图像化改变,设计更有灵活性。对台积电而言,GAAFET(Gate-all-around FETs)仍是未来发展路线。N3技术节点,尤其可能是N2节点使用GAA架构。目前正进行先进材料和晶体管结构的先导研究模式,另先进CMOS研究,台积电3纳米和2纳米CMOS节点顺利进行中。台积电还加强先导性研发工作,重点放在2纳米以外节点,以及3D晶体管、新存储器、low-R interconnect等领域,有望为许多技术平台奠定生产基础。台积电正在扩大Fab12的研发能力,目前Fab12正在研究开发N3、N2甚至更高阶制程节点。
  • 北京大学王初课题组发展硫辛酰化修饰的组学鉴定新方法
    近日,北京大学化学与分子工程学院、北大-清华生命联合中心王初课题组在Journal of American Chemical Society杂志上发表题为“Quantitative Site-Specific Chemoproteomic Profiling of Protein Lipoylation”的研究文章。在这项工作中,作者发展了新型的用于捕获硫辛酰化修饰的化学探针,并结合定量化学蛋白质组学的技术,首次实现在大肠杆菌和哺乳动物细胞中的硫辛酰化修饰位点全局性鉴定与定量,并对大肠杆菌中特定底物蛋白中三个硫辛酰化修饰位点的调控和硫辛酰化修饰合成酶的功能进行了研究。 硫辛酰化修饰是一种通过酰胺键将硫辛酸共价连接到蛋白质赖氨酸残基上的翻译后修饰。硫辛酰化修饰在进化中高度保守,并且位于细菌和哺乳细胞核心代谢途径几种重要蛋白质复合物(丙酮酸脱氢酶复合物,酮戊二酸脱氢酶复合物和支链酮酸脱氢酶复合物)的活性口袋中,作为关键辅因子发挥着重要的催化作用。硫辛酰化修饰的失调与人类代谢紊乱、癌症等疾病相关。因此,加深对硫辛酰化修饰调节的理解对于研究与这些疾病相关分子机制具有重要的意义。 早期工作主要通过结构生物学和生物化学的方法对单个蛋白硫辛酰化修饰进行研究。近些年来,科学家们通过将基于抗体或化学连接的方法与基于质谱的蛋白质组学技术结合,实现了不同细胞类型和组织中硫辛酰化修饰的检测。然而,硫辛酰化抗体的结合亲和力不足,无法实现对所有硫辛酰化修饰蛋白进行鉴定。最近,北京大学陈兴课题组发展了一种化学连接策略用于硫辛酰化修饰蛋白的鉴定(Angew. Chem. | 蛋白质硫辛酰化修饰的化学标记),但未能实现在组学层面对硫辛酰化修饰位点的定量分析和检测。而使用选择反应检测扫描(SRM)的方法则可以实现对特定的底物蛋白二氢硫辛酰胺乙酰转移酶(DLAT)中硫辛酰化修饰位点进行相对定量,但很难实现对所有的硫辛酰化修饰位点进行全覆盖。因此,到目前为止,仍然缺乏一种用于全局分析蛋白质组中蛋白质硫辛酰化修饰的位点特异性鉴定和定量的方法。本论文发展了一种标记硫辛酰化修饰的探针和一套具有位点分辨率的定量化学蛋白质组技术。作者受醛基基团保护策略中常用的基于硫缩醛的方法启发,设计了丁醛探针BAP。该探针中含有醛基,可与硫辛酰化修饰发生缩合反应,并结合生物正交基团炔基,通过铜催化的点击化学反应引入可切割的富集标签。作者结合底物序列分析结果,使用V8蛋白内切酶Glu-C代替常规的胰蛋白酶Trypsin,实现了对大肠杆菌中所有已知硫辛酰化修饰位点的鉴定。在大肠杆菌中,其中一个蛋白底物二氢硫辛酰赖氨酸乙酰转移酶ODP2上含有三个修饰位点,在Glu-C进行酶切后会产生完全一致的肽段序列。为了能够对ODP2中三个硫辛酰化修饰位点进行区分,作者巧妙地利用修饰肽段下游的序列来代表三个硫辛酰化修饰位点,结合稳定同位素二甲基化定量的方法,开发出一种能够将ODP2上三个硫辛酰化位点进行区分定量的流程。利用发展的大肠杆菌硫辛酰化修饰位点定量策略,本研究对ODP2中三个硫辛酰化修饰任意的单突变和双突变组合菌株中硫辛酰化修饰状态进行分析。实验结果显示,ODP2中三个硫辛酰化修饰位点在体内的调控是相对独立的,并且当体内感受到整体的硫辛酰化修饰降低到一定限度时,会启动一定的补偿调控机制。作者进一步在大肠杆菌中探究了硫辛酰化修饰从头合成途径(由辛酸转移酶LipB和硫辛酰化合成酶LipA级联介导调控)和硫辛酰化修饰直接合成途径(由硫辛酸蛋白连接酶LplA调控)在硫辛酰化修饰合成过程的重要性。作者对三个硫辛酰化修饰合成酶LplA、LipB和LipA进行敲除,利用开发的位点定量流程对大肠杆菌中所有已知硫辛酰化修饰位点进行定量。实验结果显示,在营养充足的情况下,从头合成途径比直接合成途径起了更重要的作用。同时LplA在辛酸充足的条件下能够发挥与LipB类似的辛酸转移酶的功能。但是相比之下,LipB是体内更为重要的辛酸转移酶。作者接下来将该定量化学蛋白质组学流程运用到哺乳细胞体系中。作者发现,在人源细胞大多数的硫辛酰化修饰肽段都含有两个酸性氨基酸,这严重影响了质谱正离子检测模式下肽段的检测效率。为了解决这个问题,作者在常规的酸切标签DADPS的结构中引入了一个额外的氨基,发展了新一代酸切割的生物素叠氮标签CY58。利用新型的电离辅助亲和标签CY58,结合二甲基化标记定量策略,作者成功地实现了对人源细胞中所有已知的六个硫辛酰化修饰位点进行定量。最后,作者利用BAP探针结合质量标签的方法,成功地实现对甘氨酸裂解系统 H 蛋白(GCSH)中硫辛酰化修饰的修饰率进行测量,未来有望进一步在蛋白质组水平上直接检测所有蛋白中硫辛酰化修饰的修饰率。总之,本工作为组学层面的硫辛酰化修饰位点定量分析提供了强有力的工具,极大地助力了硫辛酰化修饰位点的功能研究。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命联合中心的王初教授。其指导的化学与分子工程学院2016级博士研究生赖书畅和博士后陈颖博士为本文的共同第一作者。王初课题组杨帆博士,肖伟弟博士和刘源博士等合作者为本课题做出了突出的贡献。该工作得到了科技部、基金委、北京分子科学国家研究中心、教育部生物有机和分子工程重点实验室的经费支持。
  • 糯米滩电站成柳州最后防线
    柳城县副县长汤振国介绍,糯米滩水电站是处置龙江污染事件的关键点,是唯一能打柳州水质安全保卫战的地方。“过了这里下游就是一马平川,柳州饮用水的安全能否保得住看的就是这里。”   记者从广西柳州市处置龙江河突发环境事件应急指挥部了解到,造成此次镉污染事件的污染源已经被截断。由于主要污染源团还在柳江上游的龙江河段,目前柳州市区饮水水源保护地仍面临威胁。   污染源已被截断   指挥部新闻发言人、柳州市环保局局长甘景林告诉记者,广西壮族自治区环保厅监控表明,此次污染来源地、位于广西河池宜州市的拉浪水库,目前镉浓度监测数据显示已经达标,这说明造成此次镉污染事件的污染源已经被截断,没有新的污染源进入。   专家分析,由于污染带较长,仍有可能对柳江饮用水安全造成较大威胁。   经过科学处置,29日6时的监测数据表明,柳州市饮用水水源保护地各断面的镉浓度仍符合国家标准,但部分断面已接近临界值。   糯米滩镉浓度超标8倍   记者29日从柳江上游糯米滩水电站现场指挥部了解到,截至当天12时,糯米滩水电站镉浓度超标8倍,预计明后两日随着污染团峰值靠近,镉浓度还会有所变化,防治形势趋于严峻。   糯米滩水电站位于龙江柳城段。柳城县副县长汤振国介绍,糯米滩水电站是处置龙江污染事件的关键点,是唯一能打柳州水质安全保卫战的地方。“过了这里下游就是一马平川,柳州饮用水的安全能否保得住看的就是这里。”   柳州自来水未现不达标   甘景林说,柳州市已经做好准备应对水流污染峰值的出现。当取水口镉浓度超标2倍以下时,柳州的自来水厂有能力处理达标,完全可以做到为市民输送达标的自来水。   柳州威立雅水务有限公司29日6时向应急指挥部报告,目前公司供水水量充足,出厂水质符合国家饮用水标准,请市民放心饮用。   广西龙江河突发环境事件应急指挥部专家组组长、环境保护部华南环境科学研究所副所长许振成说,短期摄入镉超标的水对人体造成的影响微小,市民不必过度紧张。综合新华社电
  • 探访山东临沂甲流实验室 揭开甲流的秘密
    甲型H1N1流感,让人闻听色变,唯恐躲避不及。而在山东临沂市疾病预防控制中心的国家流感监测网络实验室里,却有9名工作人员半年多来每天都与甲流病毒零距离接触,为一批批疑似甲流样本进行了核酸检测工作。2009年11月10日,记者走近他们,用镜头记录下了他们在抗击甲流工作中鲜为人知的幕后生活。   上午11时许,刚刚从实验室出来的工作人员刚刚倒杯热水,一声熟悉且凌厉的警笛声传来,只见他们立即各就各位,记者经过特许后更换了一套医用三级防护服,紧接着,莒南县疾病预防控制中心送来的一批样本被送到了16楼。记者紧随两名工作人员跨越了三道门才来到流感实验室内的核酸提取区,工作人员首先用提取区的生物安全柜提取核酸。据了解,提取核酸是整套工作程序的第一关,保护措施极其严密,因为在提取核酸的过程中,存在着工作人员被甲流感病毒感染的可能,核酸是病毒的一种遗传物质,通过PCR(分子生物学技术中常规的检测手段)技术来扩增核酸能检测到疑似甲流样本中是否存在甲流感病毒。   半个多小时后,工作人员把提取的核酸送到体系配制区,仔细将作为模板的核酸加入反应体系,又马不停蹄地送到另外一间实验室,用PCR仪进行反应,大约两个小时后,终于检测出了结果。此时,各实验室的工作人员才露出轻松的笑意,赶紧脱下闷热的隔离服,清理个人卫生。   流感监测网络实验室主任季圣翔告诉记者,对流感病毒检测分常规检测和应急检测,常规检测正常情况下检测一批样本要用6个小时,而市疾控中心用的是应急检测,只需4个小时就可得知结果,且应急检测灵敏度高,检测的结果也更精确。季主任称,这个团队一共9人,半年多来一直轮流值班,昼夜战斗在抗击甲流的第一线,最繁忙时一天能检测6批样本。 详细图片请见:http://unn.people.com.cn/GB/14748/10358209.html
  • 苏州纳米所等开发出可以“看到”载流子的新型纳米成像技术
    目前,纳米材料已经被日益广泛地应用在电子、光电、生物电子、传感以及能源等领域的各种器件中。因此,理解和表征纳米材料的电学性能不仅是基础科学研究的兴趣所在,也是实现其广泛实用化的迫切需求。但是,传统的场效应晶体管(field-effect transistor, FET)方法在纳米材料电学性能的表征中遭遇到器件制备过程复杂、材料-电极欧姆接触不易实现以及检测通量较低等问题。  中国科学院苏州纳米技术与纳米仿生研究所研究员陈立桅课题组与合作者共同发展了一种名为介电力显微术(dielectric force microscopy, DFM)的新型功能成像技术来解决上述难题。相关综述发表于近期的Accounts of Chemical Research 期刊(Accounts of Chemical Research 48:1788 (2015) )。  半导体和金属材料对于外部电场介电响应的主要贡献来自于载流子迁移引起的宏观极化。因此,材料中的载流子浓度及其迁移率既决定了该材料的介电响应也决定了它的电导率。借助于扫描探针技术对微小作用力的超灵敏检测(~pN),DFM通过测量材料的诱导偶极与针尖上的电荷之间的相互作用力来表征纳米材料的介电响应。此成像模式无需电极接触即可“看”到纳米材料中的载流子(图a)。以单壁碳纳米管(直径~1nm)和氧化锌纳米线(直径~30-50nm)作为研究模型,DFM成功地实现了对纳米材料介电常数的测量(Nano Letters 7:2729 (2007))、半导体与金属导电性的分辨(Nano Letters 9:1668 (2009))以及半导体材料中载流子类型的判定(Journal of Physical Chemistry C 116:7158 (2012))(图e-g)。更为有趣的是,DFM展现出传统FET方法无法实现的~20nm 的空间分辨率。  此外,陈立桅与合作者通过比对同一单壁碳管的DFM与FET测量结果,证实了DFM与FET互为平行测量手段(Nano Research 7:1623 (2014))。相关研究结果揭示了DFM信号的门控调制比(DFM信号在不同门电压下的比值)正比于FET器件开关比的对数(图b)。这个半对数关系得到微观层面的Drude模型的解释和证实(图c)。这一模型将对未来DFM技术在不同材料与器件体系中的应用提供一个理论框架。  在纳米材料电学性质测量领域中,由斯坦福大学教授沈志勋(Zhi-Xun Shen)开发的扫描近场微波显微术(scanning near-field microwave microscopy)具有与DFM类似的特性与功能(Review of Scientific Instruments 79:063703 (2008))。扫描近场微波显微术与DFM均具有无接触测量和纳米尺度空间分辨率等特性。不同的是,扫描近场微波显微术和DFM分别测量材料的高频和低频介电性质。DFM无需昂贵的高频网络分析器和特制的扫描探针,因而便于应用在多种复杂成像环境中。DFM这一成像模式可能在未来的基础研究与工业在线监测领域获得广泛应用。  相关系列工作由国家自然科学基金、中科院先导专项计划、江苏省自然科学基金、美国化学会石油研究基金会和苏州纳米科技协同创新中心提供资助。  图:(a)DFM二次扫描模式示意图。(b)DFM门控比与FET器件开关比之间的半对数关联性。(c)DFM信号与载流子浓度和迁移率依赖性的数值模拟结果。DFM纳米尺度空间分辨率展示:内部具有金属-半导体结的单壁碳管的形貌像(d)和介电响应像(e-g)。
  • 微流控高端学术会议MICRO 2012开幕
    2012年全国微纳尺度生物分离分析学术会议、第七届全国微全分析系统学术会议暨第三届国际微流控分析(西湖)学术论坛隆重召开   仪器信息网讯 由国家自然科学基金委和中国化学会联合主办, 浙江省自然科学基金委、浙江省化学会协办,浙江大学承办的2012年全国微纳尺度生物分离分析学术会议、第七届全国微全分析系统学术会议暨第三届国际微流控分析(西湖)学术论坛(MICRO 2012)于2012年4月23-25日在杭州浙江大学紫金港校区召开。   本次会议旨在为从事相关领域基础、应用和开发研究的学者提供多学科交叉的、可实现广泛学术交流的平台,以促进相关学科的深入发展。会议历时3天,分为国际微流控分析论坛及全国会议两大部分,大会包含大会报告、专题报告、邀请报告、口头报告、墙报等交流形式。仪器信息网作为协作媒体参加了此次会议。   MCRIO 2012之国内会议于4月24日举行,来自国内外近400名专家、学者参加了本届微分析会议。 会议现场   本届国内会议开幕式由浙江大学方群教授主持,南京大学陈洪渊院士和浙江大学理学部李浩然院长在开幕式上致辞。会议邀请陈洪渊院士、大连化物所张玉奎院士、中科院生态环境研究中心江桂斌院士和国家自然科学基金委庄乾坤主任做大会报告。 浙江大学 方群教授主持开幕式 南京大学 陈洪渊院士致辞并作“微流控芯片上电极集成方法及其应用”报告 浙江大学理学部院长 李浩然教授致辞 报告人:中科院大连化物所 张玉奎院士 报告题目:蛋白质组定量新方法及相关技术研究进展 报告人:中科院生态环境研究中心 江桂斌院士 报告题目:新型微纳尺度碳纳米材料在环境样品前处理中的应用 报告人:庄乾坤 国家基金委分析化学学科主任 报告题目:从成像分析看分析化学的创新研究思路   此外,本届会议分设色谱分析、毛细管电泳、微纳分析、多相微流控、微纳反应器、微纳生化分析、细胞微流控微纳系统应用及微流控青年论坛共8个分会场。来自全国高等院校、科研院所等单位的多位教授、学者分别就各论坛主题在学术研究及相关仪器研制和应用方面进行了报告,与会人员进行了热烈的交流。   会议期间,就微流控技术,仪器信息网编辑简短采访了陈洪渊院士。陈洪渊院士谈到,要做好微流控技术,首先要掌握各项原理,再有就是微机的加工技术要精细巧妙。仪器微型化是非常重要的,因为在小进样量的情况下,实现分离、富集的目的就要求所使用的仪器是微型化的。这种加工技术目前在国内掌握的机构还不是很多,主要是由于加工出来的产品在分离过程中使用的结果再现性比较差。   关于微流控技术的应用前景,陈洪渊院士讲到,微流控技术具有高选择性,对单个分析对象来说可能意义较小,但对于数量较多的分析对象来说就具有了统计意义。预计微流控技术未来在生命科学研究方面将具有很大的应用前景,在环境监测方面前景也很广阔,更进一步来说,食品安全检测方面也有可能会使用微流控技术,只要与分析相关的领域,基本上都可能会用到微流控技术,因此,微流控技术的应用前景非常好。
  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • 蜂蜜新国标实施 在售蜂蜜多成“蜂蜜制品”
    日前,再次“升级”的蜂蜜新国标已正式实施,记者走访海口部分超市发现,蜂蜜的包装和标签并没有太大变化,销售人员也不知道新国标的实施,很多蜂蜜商家对于新规一脸茫然。据了解,根据新国标关于蜂蜜的定义,市面上许多在售“蜂蜜”只能叫做“蜂蜜制品”。   加工蜂蜜将成蜂蜜制品   据了解,即将实施的《食品安全国家标准蜂蜜》与2003年出台的《蜂蜜卫生标准》相比有了较大变化,里面增加了蜂蜜的定义 将原料要求改为蜜源要求 修改了感官要求和理化指标 增加了污染物限量、兽药残留限量、农药残留限量等。   新国标规定,蜂蜜是天然物质,经过化学工艺加工的,只能称为“蜂蜜制品”,不能称为“蜂蜜”。此外,蜜蜂采集植物的花蜜、分泌物或蜜露应安全无毒,不得来源于雷公藤、博落回等有毒蜜源植物 而旧标准仅规定不得含有来源于蜜源植物的有毒物质,比较含糊。同时规定,100克蜂蜜至少应含有60克果糖和葡萄糖。桉树蜂蜜、柑橘蜂蜜、紫苜蓿蜂蜜、荔枝蜂蜜和野桂花蜜的蔗糖含量要小于或等于10克/100克,其他蜂蜜则要求小于或等于5克/100克。   海口商家仍用旧标准   记者走访海口多家超市了解到,目前,市场上销售的蜂蜜外包装上大部分都标有“纯正”、“天然”、等字样,然而蜂蜜标签的执行标准为旧版GB18796-2005的标准,配料标明为“天然纯蜂蜜”的小字说明。   在文明东路一超市内记者看到,10余种品牌的蜂蜜排满货架,产地大多集中在辽宁、广西、湖南、云南等地,种类包括桂花蜜、龙眼蜜、荔枝蜜、槐花蜜、椴树蜜、紫云英蜜等。   虽为同一种类蜂蜜,价格却相差甚远。某品牌550克“洋槐蜜”售价为11.5元,而另一种同等规格的“洋槐蜜”售价却为40元。与国产品牌相比,一些“进口蜂蜜”的价格更高。面对记者“哪种蜂蜜好”的询问,某品牌蜂蜜促销人员表示,现在假蜂蜜太多了,都掺了糖,“好蜂蜜根本没有便宜的”。“如果按照新国标的要求,今后对非纯蜂蜜等产品有所标识,那么我们买的时候也能有据可依了”。对于蜂蜜新国标,几位接受采访的市民表示很欢迎。   记者采访了解到,很多蜂蜜销售人员对于蜂蜜新国标并不知情。记者走访中发现,对于已经实施的新国标,蜂蜜商家比较淡定,没有折价促销的现象出现。(记者李银 )
  • 加拿大发布十溴联苯醚和六溴环十二烷限制提案
    据CHEMICAL WATCH网站消息,近日,加拿大环境部公布了一份对多溴联苯醚(PBDEs)的限制提案。该提案认为十溴联苯醚可在有机体内大量累积,并可能转化成生物蓄积毒性或潜在生物蓄积毒性物质,对有机体高度有害。但溴化阻燃剂行业协会(BSEF)对此结论并不认同,特别是在十溴联苯醚的脱溴相关问题上,两者分歧十分严重。   加拿大政府于今年3月公布的多溴联苯醚风险管理修正策略在经过60天的公众评议后,现在做出最终决策论断:   按照加拿大环境保护法(CEPA)要求,需立即正式禁止制造、使用、销售和进口产品中的四溴、五溴、六溴二苯醚及所有多溴联苯醚。使用、销售和进口领域的禁令扩大到七溴、八溴、九溴和十溴联苯醚同类及所有树脂类或含有这些物质的聚合物。   禁止使用、销售和进口含四溴到十溴联苯醚超过0.1%的所有新产品。   加强联邦环境质量手册对多溴联苯醚的检测。   对包括含有多溴联苯醚及相关成分的堆填区、焚化炉和回收设施制定风险管理战略措施。   检测加拿大民众对于多溴联苯醚的暴露情况和空气中的多溴联苯醚浓度。   此外,加拿大环境部还针对六溴环十二烷(HBCD)发布了一份评估筛选报告草案和一份风险管理范围文件,两份文件的公众评议日期皆为60天,截至日期为10月27日。   BSEF协会还补充说,加拿大现在发布的六溴环十二烷筛选评估和风险控制范围报告即表示支持聚苯乙烯保温泡沫在联合国和欧盟整体过渡阶段授权使用六溴环十二烷。
  • 【参展回顾】摩方精密受邀参加中国微米纳米技术学会第五届微流控技术应用创新论坛
    2022年7月27日至29日,重庆摩方精密科技有限公司赴广州参加了为期三天的中国微米纳米技术学会第五届微流控技术应用创新论坛。论坛作为微流控技术领域的重量级盛会,已成功举办了四届,在生化分析、疾病诊断、微创外科手术、环境检测、司法鉴定和食品卫生监督等诸多行业都产生了深远的影响。本届论坛旨在总结国内外微流控技术的发展和应用的进展,探索科研发展过程中的技术瓶颈,碰撞科技创新的火花,搭建了一个以分享新技术、展示新产品、探讨新思路为主题的微流控技术应用交流平台。参与论坛的不但有国内相关行业的重量级嘉宾,还有上百位来自相关行业的杰出企业代表,摩方精密作为微纳3D打印行业的龙头企业,很荣幸受邀参加了此次论坛。7月28日上午,摩方精密技术经理彭瑛博士带来了题为《PμSL微尺度3D打印技术及其在微流控芯片中的应用》的专题报告。面投影微立体光刻(PμSL: Projection Micro Stereolithography)技术,是一种面投影光固化3D打印技术,该技术适用于制作微尺度的复杂三维结构,也因其具有高分辨率、高精度、跨尺度加工、适用材料广、加工效率高、加工成本低等诸多特点,有着目前极少能实现超高打印精度、高公差加工能力,被认为是目前最具潜力的微纳加工技术之一。因此,PμSL在微流控领域也将拥有良好的应用前景和广阔的发展空间。彭瑛博士的精彩报告引起了在场专家学者的热烈反响,得到了业内人员高度关注,也纷纷表示出进行进一步深入了解的意向。此次参会,摩方精密通过与优秀人才、企业的沟通与交流,充分展示了企业形象,体现了企业先进的发展理念、雄厚的技术实力和丰硕的科研成果。
  • 国家纳米中心在肿瘤外泌体microRNA高灵敏检测方面取得进展
    p   近日,国家纳米科学中心孙佳姝课题组在肿瘤外泌体microRNA高灵敏检测方面取得新进展。相关研究成果“Thermophoretic Detection of Exosomal microRNAs by Nanoflares”于 2020年3月在线发表于《美国化学会志》(J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs.9b13960)。 /p p   外泌体是由细胞分泌的含有蛋白质与核酸等生物大分子的纳米尺度(30-150 nm)脂质囊泡,通过运输活性分子参与细胞通讯,是肿瘤液体活检的靶标之一。microRNA是一种长度约为22核苷酸的非编码单链RNA。肿瘤细胞中高表达的microRNA会被包载在外泌体中,参与肿瘤增殖与转移,是新型肿瘤诊断标志物。现有的外泌体microRNA检测方法面临外泌体microRNA含量低、样本消耗量高以及需要RNA提取等挑战。因此,发展微量样品中外泌体microRNA的高灵敏检测新方法对癌症早期诊断具有重大意义。 /p p   在前期工作中,孙佳姝课题组利用热泳富集与核酸适体标记,实现了细胞外囊泡表面蛋白组测量和癌症分类(Nat. Biomed. Eng. 2019, 3, 183-193, J. Am. Chem. Soc. 2019, 141, 9, 3817-3821, Adv. Mater. 2019, 31, 1804788)。在此基础上进一步开发了结合纳米耀斑(nanoflare)与热泳的检测新方法,实现了0.5 μL血清样本中外泌体microRNA的高灵敏检测,检出限低至0.36 fM,接近qRT-PCR。纳米耀斑通过被动输运进入外泌体后,可以特异性识别靶标microRNA并产生荧光信号。外泌体在热泳作用下快速汇聚,有效放大其中纳米耀斑产生的荧光信号,提高外泌体microRNA的检测灵敏度。临床血清样本中,外泌体肿瘤相关microRNA表达信息可以用于ER+乳腺癌的早期诊断。与常规检测手段相比,该方法灵敏度高,样本消耗量小,排除了非外泌体microRNA的干扰,为外泌体microRNA检测与癌症早期检测提供了新思路,新工具。 /p p br/ /p
  • 纳米操作机器人治疗淋巴瘤获进展
    近日,在国家自然科学基金、中国科学院和机器人学国家重点实验室的支持下,中科院沈阳自动化研究所微纳米课题组成功利用微电子机械系统(MEMS)工艺加工的微柱阵列对单个细胞进行夹持固定,并进行机器人化探测,这标志着我国纳米操作机器人在淋巴瘤分子靶向治疗方面取得了新进展。该成果发表在《物理化学学报》上。   据介绍,该课题的研究背景来源于医院的现实需求,即在淋巴癌的靶向治疗中存在同一种药对某些患者有效,而对另一些患者无效的现象。这种情况使临床治疗中对症下“对”药变成一件极其困难的事。为此,亟须研究产生耐药性差异的分子机理,进而指导实现临床的个性化用药。   沈阳自动化所联合北京307医院淋巴瘤科开展了此方面的探索研究,其基本出发点是利用纳米操作机器人以单细胞为对象开展研究,并获得了上述进展。   业内专家认为,该思路相比于传统方法具有一定优势。传统的生化实验多在试管中进行,其实验结果反映的是来自许多细胞大量分子的平均活动行为,即集群平均效应。生物体自身之间的差异也由于该效应而被淹没于整体之中,这正是导致药物疗效差异的根本原因。纳米操作机器人则是对单个细胞开展探测,这对传统的集群平均是一种有益补充,更容易发现不同生物体之间的分子个性和细胞个性。   据了解,纳米操作机器人是机器人领域的新分支。传统机器人技术以提高效率、减轻人的工作量为目的,多用来完成人有能力但不愿意干的工作,比如焊接、搬运等枯燥、高重复性劳动 而纳米操作机器人技术则以扩展和提升人的能力为目的,主要去执行极端尺度下人们无法完成的工作,如原子精度定位、分子力测量等任务。利用纳米操作机器人开展淋巴癌靶向治疗差异机理研究正是用机器人技术提升人的能力、在细胞表面进行原位探测和操作的具体表现。
  • 美国对杀虫剂吡丙醚制定残留许可限量最终法规
    近日,美国环保署发布了吡丙醚(Pyriproxyfen)许可限量最终法规,对杀虫剂吡丙醚制定了残留许可限量的最终法规。   法规规定吡丙醚在叶类蔬菜(芸苔类除外)上的残留许可限量为3.0ppm 根茎块茎叶类蔬菜为2.0ppm 芦笋为2.0ppm。   吡丙醚(Pyriproxyfen)许可限量最终法规具体内容详见:   http://www.epa.gov/fedrgstr/EPA-PEST/2009/October/Day-28/p25689.pdf
  • 半导体材料 硫化铂光电特性研究获新突破
    记者6月20日从云南大学材料与能源学院获悉,该学院杨鹏、万艳芬团队经过持续研发,解决了类石墨烯材料大面积均匀少层硫化铂的合成及其结构和物理性能的一系列问题,为更丰富的应用场景器件开发提供支持,同时给行将终结的摩尔定律注入新的希望,提供极具潜力的半导体材料。“微电子技术历经半个多世纪发展,给人类带来了极大的便利。作为信息产业基础的半导体材料是微电子、光电子及太阳能等工业的基石,对我国的工业、信息及国防事业发展具有重要意义。”云南大学副教授杨鹏介绍,石墨烯作为典型的二维纳米材料,具备化学、光、电、机械等一系列优良的特性而得到广泛应用,但石墨烯存在零带隙、光吸收率低等缺点,限制其更广泛地应用。与此同时,类石墨烯材料应运而生。作为类石墨烯材料的典型代表,过渡金属硫族化合物不仅具备类似石墨烯的范德华力结合的层状结构,还拥有优异的光、电、磁等性能,可更好地弥补石墨烯的缺点,大大拓宽了半导体材料的实际应用范围。基于贵金属的硫化铂作为过渡金属硫族化合物家族的重要成员,具有较宽且可调带隙、“光—物质”相互作用强和稳定性好等特点,是半导体器件的潜在候选者,给现代电子技术领域带来了新的发展机遇。然而当今二维材料共同面对的比如材料面积不大、不易转移等问题对半导体产业的发展形成了一定的影响。针对这些难题,云南大学材料与能源学院、云南省微纳材料与技术重点实验室杨鹏、万艳芬团队通过物理气相沉积和化学气相沉积相结合的方式,在合适的温度、压强等条件下,实现制备平方厘米级大面积少层、均匀的硫化铂材料,并表征了相关物理特性。这一研究成果为大面积电子器件的发展提供了新的思路与技术基础,并为未来拓展过渡金属硫族化合物的应用范围提供了重要参考。相关研究成果发表在国际著名材料学术刊物《现代材料物理学》上。
  • 肿瘤细胞分离检测中微流控芯片系统的应用有哪些?
    作为液体活检的重要标志物之一,循环肿瘤细胞(CTCs)在外周血中的含量可以用来辅助判断患者的癌症病发状况。除此以外,CTCs对于肿瘤细胞转移行为等基础研究也具有非常重要的意义。然而人体血液中的CTCs含量极其稀少,通常仅有0~10个/mL,与之相对,红细胞、白细胞和血小板的含量则分别达到5×109 个/mL、4×106 个/mL和3×108 个/mL,而且肿瘤细胞在转移过程中可以通过上皮-间质转化(EMT)和间质-上皮转化(MET)来不断地改变自身的特征。正是由于其稀缺性和异质性,以及血液中复杂基质的干扰,CTCs的精准检测成为巨大的难题。 由于常规的光学分析手段在检出限和灵敏度上均难以达到直接检测的要求,因此通常在进行外周血中CTCs的检测之前,要通过一些样品前处理方法来实现其分离和富集。常采用的样品前处理方法可以分为物理法和化学法,物理法主要根据细胞在物理特征上的差异来进行分离,例如膜过滤分离和密度梯度离心,就是分别依据细胞的大小和密度来完成筛选。化学法则主要依靠生物大分子的特异性识别作用,例如抗原抗体相互作用,核酸适配体与靶标的选择性结合。  上述样品前处理方法虽然能够在不同程度上实现CTCs的分离富集,但也存在着一定的缺陷。由于这些方法都是非连续性的,在吸附、洗脱和转移的过程中难免会造成细胞的丢失,加之CTCs本身的稀缺性,很容易导致假阴性结果的产生。利用微流控芯片功能集成的特点则可以很好地解决这一问题,CTCs的捕获、释放、计数及检测等操作均可在芯片上完成,连续的自动化处理可以有效减少人为误差的干扰。此外,微流控芯片所需要的进样量非常小,可以大大减少珍贵样品和试剂的消耗,降低检测成本。并且在微尺度下表面力的作用会明显放大,可以有效提高物质混合和反应的效率,实现快速高效的分离分析。因此,近年来多项研究尝试利用微流控芯片平台开展CTCs分离检测工作,取得了良好的效果。本文对微流控芯片技术用于CTCs分离检测的相关研究进展进行了综述,将采用的分离方法主要分为物理筛选和生物亲和两大类,同时囊括正向富集和反向富集两种策略。此外,对于近期发展的芯片原位检测CTCs新方法也进行了介绍。  1、CTCs分离芯片研究进展  作为商品化较为成功的CTCs分离检测系统,强生公司的CellSearch产品采用的是基于上皮细胞黏附分子(EpCAM)抗体特异性识别肿瘤细胞的方法,类似的方法在CTCs分离芯片中也被广泛使用,可以视作利用生物亲和作用进行CTCs分离富集的代表。  另一方面,依据细胞在物理性质方面的差异,无须生物标志物的条件下即可实现CTCs的筛选,其中有无外力介入的被动分离方法,例如利用微尺度下流体力学中的惯性效应和黏弹性效应来进行筛分。  也有外加物理场的主动分离方法,诸如介电泳、表面声波和光镊技术等。除了直接对CTCs进行特异性识别实现正向富集外,也可以通过选择性结合诸如白细胞等干扰,再将其排除,从而达到反向富集的效果。  2、、芯片原位CTCs检测  对于CTCs的检测,通常采取先进行细胞染色,再用荧光显微镜观察的方法,但该方法在灵敏度上有待提高,且重现性较差,需要手动操作和人工计数。  此外,以荧光光谱为代表,一些常见的光谱检测手段也被广泛应用在芯片上CTCs的检测中。  除了光学分析方法外,研究人员通过使用传感元件实现了CTCs芯片检测结果的数字化直读或可视化分析。  3、总结与展望  本文对CTCs分离微流控芯片的技术原理、分离策略和研究进展进行了综述。其技术原理主要分为物理筛选和生物亲和两大类,分离策略分为正向富集和反向富集两个方向。同时,介绍了CTCs芯片原位检测的主要技术方法和优化策略。随着微流控芯片技术的快速发展,其微尺度流体操控、微结构加工和集成传感检测能力得到极大提升,进一步推动了CTCs分离微流控芯片技术的发展。多项研究显示,以微流控芯片为平台来分离检测外周血中的CTCs,可以充分发挥芯片本身微量、高效、易于自动化和集成化的优势,最终实现对临床血液中CTCs的快速精准分析,在肿瘤早期诊断、复发与转移监测以及抗肿瘤药物评价等多个领域具有重要的应用空间。  现阶段,CTCs芯片在筛选精度和筛选效率方面仍存在较大的提升空间。针对这一挑战,由于精准与高效二者难以兼得,未来的芯片设计应该更专注于单个目标的实现。一方面,针对基础研究,应当注重于提高CTCs筛选的细胞纯度及细胞活性。可以先利用惯性效应对血液进行粗分离,筛分出尺寸较大的白细胞和CTCs。再采用液滴分选的方法,通过免疫磁性分离实现CTCs的精确筛选。液滴分选技术能够达到单细胞分析的精度,利用液滴分选进行肿瘤细胞筛选也已有文献报道。另一方面,针对临床检测领域,研究重点则在于实现临床样本的高通量分析。可以采用电分析方法,依据不同种类细胞的比膜电容和细胞质电导率差异来设置恰当的阈值,对流经检测窗口的CTCs实现快速分析。此外,微流控芯片技术属于多学科交叉领域,CTCs芯片的发展同时也受益于微机电系统(MEMS)、材料学、流体力学和生物医学等研究领域的技术突破。随着相关领域研究技术的发展,CTCs芯片未来有望成为肿瘤基础研究和癌症早期临床诊断的重要平台。
  • 天然气含硫新标5月1日正式实施,SCD硫化学发光检测器轻松应对!
    ☆ 导读 ☆现阶段,能源紧张已成为影响和制约全球发展的关键问题,当前的俄乌局势更加凸显了能源问题对全世界的影响。2021年10月11日国家市场监督管理局和国家标准化管理委员会发布了GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,2022年5月1日正式实施,并替代原来的2014年版本。其中一项重要的变化是0.1~600mg/m3(以硫计)总硫的测定,并规定:通过将不同硫化物的硫含量进行加和,得到总硫含量。天然气中的硫化物杂质对其运输、存储和使用安全及环境均会产生不利影响,不仅会腐蚀设备、污染环境,还会危害人体健康。含硫化合物的种类不同其危害也不尽相同,对于天然气中含硫化合物的测定,岛津硫化学发光检测器(SCD)不仅具有灵敏度高、重复性好、操作简单等优点,还具有硫等摩尔响应、无基质淬灭、自动化程度高等优势,助您轻松应对新标准! ☆ 天然气中含硫化合物的危害 ☆天然气的主要成分是甲烷,来源于常规油气田开发出来的天然气、页岩气、煤层气等。2019年天然气储量数据来源:煤层气行业深度研究报告:“双碳”政策下,如何打造盈利新模式? 我国天然气需求量对外依存度达40%,进口液化天然气(LNG)占中国天然气进口量的60%以上,以澳大利亚占比最高。 数据来源:左图2021年中国液化天然气产量、进出口及需求现状分析,全球最大的LNG进口国_我国_华经_液化,右图2021年我国油气进口来源国分布 - 知乎 天然气中可能的硫化物有硫化氢、氧硫化碳、二氧化硫、甲硫醇、乙硫醇、叔丁硫醇、甲硫醚、乙硫醚、甲基乙基硫醚、四氢噻吩等,这些硫化物对运输、储存和使用安全及环境均会产生不利影响。当其作为燃料不仅会腐蚀输送管道和燃具,而且燃烧后的尾气或者废气还会造成人员中毒,排放到大气中也会引起环境污染;当其作为化工行业的原材料不仅会腐蚀储存容器和反应装置,更会导致贵重的催化剂中毒而失去活性。因此准确检测出天然气中的硫化物含量是非常必要的。 ☆ 新标来袭,岛津方案助您从容应对 ☆天然气作为经济环保的绿色能源和化工原材料倍受关注,在我国的能源安全中越发重要。新标准GB/T 11060.10-2021 《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》中介绍GC-FPD、GC-PFPD、GC-MSD、GC-SCD等不同检测器用于0.1~600mg/m3范围内硫化物检测的分析方法。其中,GC-SCD(硫化学发光检测器)方法对硫具有等摩尔响应的特性,在总硫分析方面具有独特的优势,所以得到了大家的广泛认可。 图1. Nexis GC-2030 SCD l 分析条件 标准气体:甲烷中微量硫化氢、氧硫化碳、甲硫醇、乙硫醇、甲硫醚、二硫化碳、叔丁硫醇、甲基乙基硫醚、乙硫醚、四氢噻吩10种硫化物混合标气。浓度1.0mg/m3天然气中硫化物混合标气进样1.0mL 分析,典型谱图如下:图2. 浓度1.0mg/m3天然气中硫化物标气谱图(1硫化氢、2氧硫化碳、3甲硫醇、4乙硫醇、5甲硫醚、6二硫化碳、7叔丁硫醇、8甲基乙基硫醚、9乙硫醚、10四氢噻吩) l 标准曲线和检出限5瓶混和标气浓度以硫计分别为:1.0mg/m3 、3.0mg/m3、5.0mg/m3、15.0mg/m3、20.0mg/m3。硫化物混合标气重复进样4次,各组分面积重复性均优于1.0%,相关系数R值除甲硫醇和乙硫醇为0.9998外其余8种硫化物都大于0.9999。选择了其中3种硫化物的标准曲线展示见图3。各硫化物的检出限见表1。 图3. 天然气中3种典型硫化物标准曲线表1. 天然气中10种硫化物检出限☆ 结语 ☆“十四五”期间将是我国天然气工业的大发展时期,天然气产量到2025预计达到2500亿方,天然气勘探开发将迎来新的发展。岛津Nexis GC-2030 SCD色谱仪助您轻松应对GB/T 11060.10-2021《天然气 含硫化合物的测定 第10部分:用气相色谱法测定硫化合物》标准,确保天然气的生产安全、使用安全、运输安全。 本文内容非商业广告,仅供专业人士参考。
  • 我国科学家开发微米分辨率的肿瘤组织磁成像技术
    病理组织检测是诊断癌症的“金标准”。传统的光学成像技术容易受到样品光学背景强、检测信号稳定性差、定量不准确和不同光学方法不能共用等问题的影响。中国科学技术大学的研究团队开发了微米分辨率的肿瘤组织磁成像技术,相较于传统的光学成像检测方法,该技术具有高稳定性、低背景和肿瘤标志物绝对定量的特点。相关成果在《PNAS》发表,题为:A generalized linear mixed model association tool for biobank-scale data。  研究团队开发了组织水平的免疫磁标记方法,通过抗原-抗体的特异性识别,将磁颗粒特异标记在肿瘤组织中的靶蛋白分子上,将已完成磁标记的组织样品紧密贴附在磁显微镜的检测器上进行磁场成像,最后通过深度学习模型定量分析检测信号,实现微米分辨率的肿瘤组织磁成像。由于生物样本自身一般都没有磁场背景,而且磁信号的高稳定性便于样品的长期保存和重复检测,所以这项技术在分析含光学背景、光透过差和需要定量分析的生物组织时具备明显优势,是肿瘤组织检测领域的重要突破。  该研究成果不仅在肿瘤临床诊断方面具有广阔的应用前景,也为肿瘤相关研究提供了新的技术支撑。   注:此研究成果摘自《PNAS》,文章内容不代表本网站观点和立场。  论文链接:https://www.pnas.org/content/119/5/e2118876119
  • Micrux便携式自动微流控电泳系统进入中国市场
    Micrux专注于微流控(microfluidic)方向的仪器研发和制造,将实验室多项步骤(样品前处理、混合、萃取、分离、检测),集成于一台便携式的商业化仪器,产生了真正&ldquo 芯片实验室&rdquo (Lab-On-a-Chip)。 Micrux采用选择性强的、体积小的安培(电流)检测器,适用于检测电活性物质,如醇、酚类、氨基酸、糖、多肽、生物碱等。安培检测比电导检测、紫外检测的灵敏度更高,选择性也更好,尤其对于那些不适于直接光学检测的物质(如脂肪族化合物)具有良好的使用价值。 仪器特点: - 检测体系简单、高效 - 仪器小型化、便于携带 - 样品需要量小、通常少于50微升,大大降低了成本 - 检测灵敏度高,可以检测超低浓度的样品。 适用于: 环境化工: 苯基类化合物(硝基苯酚、硝基苯胺异构体)、酚类化合物等 药物分析:有效成分分析、定性、定量和纯度分析 食品农业:激动剂,如肉制品中盐酸克伦特罗、硫酸特布他林、盐酸莱克多巴胺等 Micrux公司拥有仪器研发设计和新技术的应用开发能力,Micrux便携式自动微流控电泳系统是分析、质检和研发人员的好帮手,相关资料可以在雷迪美特中国有限公司的资料中心下载。请电:400-628-2898 或 Email:analysis@126.com
  • 蜂蜜新国标本月20日实施 口感太甜的可能是假蜜
    从本月20日起,再次“升级”的蜂蜜新国标将正式实施,除了增加污染物限量、农残限量等食品安全保障方面的规定,新国标还针对市面上有些蜂蜜蔗糖含量过高作出“限甜”的规定。   目前,卫生部官网可以查询到即将正式实施的《食品安全国家标准蜂蜜》,该标准与2003年出台的《蜂蜜卫生标准》相比有了较大变化:增加了蜂蜜的定义 将原料要求改为蜜源要求 修改了感官要求和理化指标 增加了污染物限量、兽药残留限量、农药残留限量等。   新国标规定,蜂蜜是天然物质,经过化学工艺加工的,只能称为“蜂蜜制品”,不能称为“蜂蜜”。此外,新国标明确规定,蜜蜂采集植物的花蜜、分泌物或蜜露应安全无毒,不得来源于雷公藤、博落回等有毒蜜源植物 而旧标准仅规定不得含有来源于蜜源植物的有毒物质,比较含糊不容易操作。   记者注意到,新国标明确规定,100克蜂蜜中至少应含有60克果糖和葡萄糖。桉树蜂蜜、柑橘蜂蜜、紫苜蓿蜂蜜、荔枝蜂蜜和野桂花蜜的蔗糖含量要小于或等于10克/100克,其他蜂蜜则要求小于或等于5克/100克。专家介绍,这一条可以被解读为“针对市面上有些蜂蜜蔗糖含量过高的问题”而设置的。   业内人士告诉记者,蜂蜜并不是越透明越甜越好,含糖过高的蜂蜜很可能造假。一些不法商贩使用糖精、香精等添加剂制作人造蜂蜜。更有专业造假者,使用了大米糖浆、玉米糖浆、甜菜糖浆等材料造假。
  • 欧盟拟修改辣椒和茄子中恶醚唑的残留限量
    近日,法国收到一份申请,要求欧盟修改辣椒和茄子中恶醚唑的残留限量,将其在辣椒中的LOQ值改为0.5mg/kg,茄子中改为2mg/kg。
  • 第六届微流控芯片高端论坛在广州召开
    p style=" text-indent: 2em " strong 仪器信息网讯 /strong 2018年12月15日——16日,由中国科学院大连化学物理研究所和中国生物检测监测产业技术创新战略联盟主办,广东省生物医学工程学会临床实验医学分会、广州市第一人民医院、广州市宝创生物技术有限公司承办,仪器信息网协办的“第六届微流控芯片高端论坛”在广州市广州大厦召开。论坛旨在促成产、学、研、用等多领域人员的充分交流和紧密互动,为微流控芯片研究和产业化提供更充分的信息和资源。会议200余位微流控芯片领域著名学者、生物医学领域著名微流控应用专家以及正在形成中的微流控产业界人士参会交流,分享他们的成果和体会。 /p p style=" text-align: center " & nbsp img title=" 1.jpg" alt=" 1.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/441376ba-8808-4b12-a85e-fc43aac4f075.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 会议现场 /span /p p style=" text-indent: 2em " 本次微流控芯片高端论坛秉承“小型、高端”的理念,力求为微流控学术和产业领域的互动式交流提供一个有利的平台。会议开幕式由广州市第一人民医院刘大渔(会议执行主席)主持,广东省生物医学工程学会理事长王一飞、广东省生物医学工程学会临床实验分会主任委员徐邦牢和首都医科大学天坛医院实验诊断中心主任康熙雄致辞。 /p p style=" text-align: center " img title=" 2.jpg" alt=" 2.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/51e1b0d9-ab31-44eb-94b1-e9cc9dad2a0b.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 王一飞 广东省生物医学工程学会理事长 /span /p p style=" text-align: center " img title=" 3.jpg" alt=" 3.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/1ea33feb-c457-4038-ba6e-dd38924a3f80.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 徐邦牢 广东省生物医学工程学会临床实验分会主任委员 /span /p p style=" text-align: center " img title=" 4.png" alt=" 4.png" src=" https://img1.17img.cn/17img/images/201812/uepic/9cab96d2-dcd8-4c2b-9291-1af8252c1876.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 康熙雄 首都医科大学天坛医院实验诊断中心主任 /span /p p style=" text-indent: 2em " 学术报告部分包括9场特邀报告和22场专题报告。特邀报告内容如下: /p p style=" text-align: center " img title=" 5.jpg" alt=" 5.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/3b6dd750-7764-425c-a479-e54e754005d4.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 张学记 北京科技大学 /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《基于免光刻和3D打印技术微流控装置在肿瘤生物学研究中的应用》 /span /strong /p p style=" text-indent: 2em " 目前,微流控芯片制作往往依赖微机械,微电子加工技术的不断发展也为微流控技术提供了很高的平台。不过昂贵的微电子加工设备和较高的技术门槛限制了微流控芯片技术的推广和应用。张学记教授介绍了他们课题组在微流控芯片领域,特别是不依赖于光刻等微加工手段和桌面3D打印技术制备微流控芯片装置,并将这些装置应用于肿瘤细胞生物学领域的研究及取得的最新成果。包括:(1)通过3D打印快速成型技术,制成悬滴式细胞培养装置,培养3维肿瘤细胞团簇,对药物刺激下的凋亡,细胞团簇在3D细胞外基质中的转移迁移等生物学表型和基因表达做了系统的研究;(2)通过3D打印微流控芯片装置和无光刻模板制备方法,对肿瘤细胞微环境进行有效的模拟,对肿瘤迁移以及基因表达做了系统深入的研究。有助于更好的理解肿瘤-体细胞-微环境三者之间的相互联系和相互作用。 /p p style=" text-align: center " img title=" 6.jpg" alt=" 6.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/3ec6094c-1df4-4503-af58-c80d3b290432.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 杨朝勇 厦门大学 /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《基于微流控芯片技术的液体活检新方法》 /span /strong /p p style=" text-indent: 2em " 循环肿瘤细胞(CTC)的检测在肿瘤分期诊断、动态监测、疗效评估、药物开发和预后监测等方面具有重大意义,是一种可望用于替代肿瘤组织活检的液体活检新技术。然而依赖于单一上皮源性抗体的CTC免疫富集及计数检测方法无法对不同分型的CTC进行全面捕获、难于无损释放CTC、无法提供深度的分子病理信息。基于微流恐慌技术,杨教授团队发展了高效核酸适体筛选方法,获得了多条可识别不同CTC的高亲和力、高特异性核酸适体序列;利用流体调控与表面调控技术,杨教授团队构筑了基于细胞尺寸与生物识别特性协同捕获的微流控微柱阵列芯片,实现了CTC的高效捕获与无损释放;借助微流体器件的精准操作优势,团队还开发了一些列高通量单细胞分析方法,用于解释CTC的分子病理信息。团队所发展的肿瘤细胞的识别探针、捕获芯片与高通量单细胞分析方法在癌症的精准诊断、用药指导、疗效评估等方面具有重要的应用前景。 /p p style=" text-align: center " img title=" 7.jpg" alt=" 7.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/d68ef01d-e384-4534-a263-72772ceb851b.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 方群 浙江大学 /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《基于微流控液滴系统的核酸分析》 /span /strong /p p style=" text-indent: 2em " 在报告中,方群教授介绍了研究团队基于顺序操作液滴阵列(Sequential Operation Droplet Array,SODA)技术发展的核酸分析系统。在2015年,该团队奖SODA系统应用于单细胞基因表达定量分析,实现单细胞基因分析所需的液滴反应器生成、单细胞捕获、细胞裂解、RNA逆转录、PCR扩增、实时荧光定量检测等多个操作。2017年,该团队将SODA系统应用于数字PCR检测中,发展了一种可快速、灵活形成多体积液滴阵列的方法,并将其应用于多体积数字PCR的绝对定量分析。最近,方群教授基于SODA技术,研制了集成化、低成本实时荧光定量PCR分析系统,该系统可自动完成基于固相萃取的样本核酸提取、样本再分配、逆转录、PCR扩增、实时荧光定量检测,并成功应用于呼吸道感染常见病原体的分析。 span style=" text-align: center " /span /p p style=" text-align: center " img title=" 11.jpg" alt=" 11.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/70816ebb-bbb5-4d6d-8325-aefe65764e6b.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 刘大渔 华南理工大学附属广州市第一人民医院 /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《微流控芯片:国内IVD行业的基于与挑战》 /span /strong /p p style=" text-indent: 2em " 刘大渔课题组工作于临床检验第一线,其研究目的是针对临床检验工作中的通电问题,针对性的发展创新微流控诊断技术。在报告中,刘大渔研究员介绍了微流控芯片的基础知识、技术特点及典型应用案例。选择了微流控诊断技术最主要的几个应用领域,介绍了代表性的微流控产品和或技术。面对新形势下微流控诊断产业的机遇与挑战,刘大渔研究员从检验医学工作者和微流控技术研究者的双重角度,剖析了微流控技术产业化的难点和解决方案。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7b5ce1c4-937d-462b-b79f-0df057387888.jpg" title=" 罗勇.jpg" alt=" 罗勇.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 罗勇 大连理工大学 /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《器官芯片的研究与应用》 /span /strong /p p style=" text-align: left text-indent: 2em " span style=" text-indent: 2em " 器官芯片是2016年世界达沃斯论坛评选的“十大新兴技术”之一,其应用面覆盖药物筛选、医学研究、食品安全、生殖健康等多个领域。罗教授在本次报告中主要介绍器官芯片发展史,技术研究与应用,主要内容包括:(1)肾芯片及其在药物肾毒性评价中的应用;(2)肝芯片及其在联合用药肝毒性评价中的应用;(3)胰岛芯片及其在药物活性评价中的应用;(4)肠芯片及其在肠道菌群研究中的应用;(5)血管糖鄂芯片及其在保健品研究中的应用;(6)肿瘤芯片及其在医学研究中的应用等。 /span br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1e8e82a8-3b47-426d-b3a3-7cef625c8708.jpg" title=" 杨梦甦.jpg" alt=" 杨梦甦.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 杨梦甦 香港城市大学 /span /p p style=" text-align: center " strong 报告题目:《结合微流控技术与单细胞分析研究肿瘤异质性》 /strong /p p style=" text-indent: 2em " 近年来,结合微流控芯片和单细胞分析技术用于肿瘤异质性的研究引起了广泛关注。在本次报告中,杨教授着重介绍了课题组在这一领域的最新进展。杨教授团队开发了一种带有单细胞固定和迁移通道的微流控芯片,研究来自同一细胞系的癌细胞迁移异质性。利用机械约束可调的微流控芯片控制癌细胞的集体迁移,并通过单细胞转录分析,系统的研究了主导细胞和追随细胞的EMT相关基因表达的异质性。同时,该团队还开发出了一种用于捕获上皮性卵巢恶性腹水中的单细胞和细胞簇的微流控芯片,并基于对EMT相关基因进行单细胞转录分析。对被分离细胞的簇内和簇间异质性进行了系统的研究。毫无疑问,微流控技术和单细胞分析技术的结合将在癌症生物学研究和精准医学应用中有巨大潜力。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/2e3e058e-08fd-4cc6-a633-129def37d751.jpg" title=" 叶嘉明.jpg" alt=" 叶嘉明.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 叶嘉明 浙江清华长三角研究院 /span /p p style=" text-align: center " strong 报告题目:《微流控芯片的广度开发和深度产业化》 /strong /p p style=" text-indent: 2em " 集成电路芯片使计算机微型化,而微流控芯片使实验室微型化。当前,微流控芯片已在医疗体外诊断、食品安全、环境监测、药物筛选、军事科学等领域获得深入的基础研究与极广泛的应用研究,学术界和产业界一致认为:微流控芯片“极有可能领导化学和生物医学的下一场革命”,并成为未来“必将被深度产业化的科学技术”。叶博士在本次报告中介绍了微流控芯片的技术特征、战略意义、国内外研究及产业化现状,重点围绕报告者多年的微流控产品研发经验,探讨了微流控芯片在应用研究及产业化方面的工作思路。报告内容包括:(1)微流控芯片技术特征与战略意义;(2)国内外微流控研究及产业化现状;(3)微流控芯片产业化的关键要素;(4)微流控POCT系统在食品安全快速检测领域中的产业化进展。报告结尾,叶博士对清华长三角研究院微流控系统工程研究中心进行了简单的介绍。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7e612b05-5b90-4bbf-a5b8-1cb8dbf52663.jpg" title=" 吴洪开.jpg" alt=" 吴洪开.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 吴洪开 香港科技大学 /span /p p style=" text-align: center " strong 报告题目:《对微流体芯片产业化的探索》 /strong /p p style=" text-indent: 2em " 微流控芯片技术(Microfluidics)泛指在微尺寸范围内控制、操作和检测流体的技术,是指在微电子、微机械、生物工程和纳米技术基础上发展起来的一门全新交叉学科。在过去的二十多年来,微流控技术发展迅猛,在生物、化学、医学的等领域已经展现了巨大潜力,已经发展成为一个生物、化学、医学、流体、电子、材料、机械等学科交叉的崭新应用研究领域。由于微流控芯片自身的各种特点,相较于它在研究实验室中的广泛应用,微流控技术的产业化发展相对较慢。吴教授在本次报告中主要介绍了近期团队关于微流体技术在细胞冷冻保存及DNA检测方面的产业化探索。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/6ebc4663-a27c-45bd-823a-5c3e9c32c069.jpg" title=" 林炳承.jpg" alt=" 林炳承.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 林炳承 中国科学院大连化学物理研究所 /span /p p style=" text-align: center " strong 报告题目:《微流控芯片的战略机遇》 /strong /p p style=" text-indent: 2em " 微流控芯片使当代极为重要的新型科学技术平台,国家层面产业转型的潜在战略领域,科技部2017年明确的“颠覆性技术”。林教授指出,微流控芯片的第一轮产业化已在体外诊断领域启动,下一轮产业化将要波及单细胞分析、第二代和第三代测序技术、用于超大规模和超高通量的药物和其他材料筛选的液滴芯片技术、以及用于过程监控、个体化治疗、制药产业和化妆品产业等的器官芯片技术。林教授本次报告主要讨论了未来十年、十五年微流控芯片将会面临的一个重要战略机遇期,并对这一领域的广大研究人员、工程技术人员和产业界认识提出了建议。 /p p style=" text-indent: 2em " 22位专家做了专题报告,部分专题报告如下: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a16a3d2e-56d9-4b51-8b59-fc009bd48b16.jpg" title=" 0.png" alt=" 0.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 周小棉 广州市宝创生物技术公司 /span /p p style=" text-align: center " strong 报告题目:《无源微流控芯片的研制与产业化》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0c271cef-45db-420e-a8d6-5e8c08b170c0.jpg" title=" 程鑫.jpg" alt=" 程鑫.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 程鑫 南方科技大学 /span /p p style=" text-align: center " strong 报告题目:《数字液滴微流控芯片平台技术介绍及最新进展》 /strong /p p style=" text-align: center " img title=" 14.jpg" alt=" 14.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/863674fa-648f-46c8-bfca-4a154874a5ea.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " & nbsp 巫金波 上海大学 strong /strong /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《表面张力限制液滴阵列芯片》 /span /strong /p p style=" text-align: center " img title=" 15.jpg" alt=" 15.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/39f9e298-5ad2-473d-b645-c1332e454c0d.jpg" / /p p style=" text-align: center " & nbsp span style=" color: rgb(127, 127, 127) " 李博伟 中国科学院烟台海岸带研究所 /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《新型旋转微阀纸芯片分析平台在环境和生化分析中的应用》 /span /strong /p p style=" text-align: center " img title=" 16.jpg" alt=" 16.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/6c8fed2f-8492-4f90-bc98-5459dbc3836f.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 颜智斌 华南师范大学 /span /p p style=" text-align: center " strong span style=" color: rgb(0, 0, 0) " 报告题目:《针对微流控芯片的新型低成本非超净间加工方法》 /span /strong /p p strong span style=" color: rgb(0, 0, 0) " /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/44f133bf-0e3f-482d-88e2-1a155b742c1f.jpg" title=" 郭永.jpg" alt=" 郭永.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 郭永 清华大学 /span /p p style=" text-align: center " strong 报告题目:《微液滴数字PCR与产业化》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/545b4d6d-b992-4662-b84c-0d4f19d11ba4.jpg" title=" 周朋.jpg" alt=" 周朋.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 周朋 北京博晖创新光电技术光电技术股份有限公司 /span /p p style=" text-align: center " strong 报告题目:《微流控HPV基因分型检测产品的产业化及其在市场的应用状况 /strong 》 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/31637db4-b8ea-4c6e-a5fe-0c9dc3977d11.jpg" title=" 周蕾.jpg" alt=" 周蕾.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 周蕾 中国科学院过程工程研究所生化工程国家重点实验室 /span /p p style=" text-align: center " strong 报告题目:《微流控、纳米材料和体外诊断技术》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0f3c53c6-1b47-4fd4-9417-5b84b520c9c8.jpg" title=" 刘婷娇.jpg" alt=" 刘婷娇.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 刘婷姣 大连医科大学 /span /p p style=" text-align: center " strong 报告题目:《肝肾PTS培养微流控芯片的构建及其在肿瘤外泌体器官趋向性研究中的应用》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/389c4844-9cf6-47c1-a6e3-b23b8b46ed86.jpg" title=" 陆瑶.jpg" alt=" 陆瑶.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 陆瑶 中国科学院大连化学物理研究所 /span /p p style=" text-align: center " strong 报告题目:《基于高密度抗体阵列的单细胞分析 /strong 》 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/0fdd4e9f-1fd4-4117-8a18-3e9595ba3c61.jpg" title=" 李远.jpg" alt=" 李远.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 李远 重庆医科大学附属永川医院 /span /p p style=" text-align: center " strong 报告题目:《直微通道微流控芯片:一种简易的细胞生物学功能分析工具》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/99ad1e62-053e-46a8-947e-f0be5cfa5518.jpg" title=" 张元庆.jpg" alt=" 张元庆.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 张元庆 中山大学 /span /p p style=" text-align: center " strong 报告题目:《基于微流控芯片的单细胞迁移研究》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/e0b273f0-90ff-4693-bded-7621e73fddac.jpg" title=" 马波.jpg" alt=" 马波.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 马波 中科院青岛生物能源与过程研究所 /span /p p style=" text-align: center " strong 报告题目:《拉曼单细胞分析分选技术及其应用》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/cad92a82-2a2e-4673-bc6b-0f2d83d0ffdc.jpg" title=" 黄术强.jpg" alt=" 黄术强.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 黄术强 中科院深圳先进技术研究院 /span /p p style=" text-align: center " strong 报告题目:《多尺度微流控技术在细菌耐药性研究中的初步应用》 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/bae60360-2eb7-436b-a872-a3b7c3ad380e.jpg" title=" 胡斌峰.jpg" alt=" 胡斌峰.jpg" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 胡槟枫 南方科技大学 /span /p p style=" text-align: center " strong 报告题目:《从芯片材料到仪器信号读出:构建微流控诊断平台的逻辑》 /strong /p p style=" text-indent: 2em " 论坛第二天举办了“微流控芯片产业化的机遇与挑战”的主题沙龙,由重庆医科大学检验医学院周钦主持,来自浙江清华长三角研究院的叶嘉明、上海奥普生物医药有限公司的王& nbsp 鼎、东莞博识生物科技有限公司的霍卫松以及澳银资本的李晋等几位嘉宾就微流控芯片的机遇、挑战和产业发展方向作了热烈的讨论。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/5d12afb5-fa5e-4328-a051-70ad3419229d.jpg" title=" 0.jpg" alt=" 0.jpg" width=" 447" height=" 447" style=" width: 447px height: 447px " / & nbsp /p p style=" text-indent: 2em " 众多企业携创新微流控产品亮相本次会议。广州宝创、深圳天大、广州万孚、杭州霆科、广东国盛、北京百康芯、深圳理邦和赛沛等国内外企业展示了他们的微流控芯片产品。深圳市合川医疗和广州万孚的代表还在午餐研讨会介绍了他们的微流控芯片产品和技术服务。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/6c4670a8-3157-4239-a2bd-a395123c6b35.jpg" title=" 00.jpg" alt=" 00.jpg" / & nbsp /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " /span /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 微流控厂商部分产品展示 /span /p p span style=" color: rgb(127, 127, 127) " /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/57e8dbf7-831c-4ff7-a5f4-eb22b4cff8e9.jpg" title=" 111.png" alt=" 111.png" / /p p style=" text-align: center " span style=" color: rgb(127, 127, 127) " 本次大会承办单位广州市宝创生物技术有限公司系列产品 /span br/ /p p style=" text-indent: 2em " 为期两天的微流控芯片高端论坛圆满落下帷幕,关于本次会议更多精彩内容,请关注仪器信息网后续报道。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制